Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources.
Gao, Xiang; Acar, Levent
2016-07-04
This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors' data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented.
Olfactory source localization in the open field using one or both nostrils.
Welge-Lussen, A; Looser, G L; Westermann, B; Hummel, T
2014-03-01
This study aims to examine humans ́ abilities to localize odorants within the open field. Young participants were tested on a localization task using a relatively selective olfactory stimulus (2-phenylethyl-alcohol, PEA) and cineol, an odorant with a strong trigeminal component. Participants were blindfolded and had to localize an odorant source at 2 m distance (far-field condition) and a 0.4 m distance (near-field condition) with either two nostrils open or only one open nostril. For the odorant with trigeminal properties, the number of correct trials did not differ when one or both nostrils were used, while more PEA localization trials were correctly completed with both rather than one nostril. In the near-field condition, correct localization was possible in 72-80% of the trials, irrespective of the odorant and the number of nostrils used. Localization accuracy, measured as spatial deviation from the olfactory source, was significantly higher in the near-field compared to the far-field condition, but independent of the odorant being localized. Odorant localization within the open field is difficult, but possible. In contrast to the general view, humans seem to be able to exploit the two-nostril advantage with increasing task difficulty.
Tracking fluid-borne odors in diverse and dynamic environments using multiple sensory mechanisms
NASA Astrophysics Data System (ADS)
Taylor, Brian Kyle
The ability to locate odor sources in different types of environments (i.e. diverse) and environments that change radically during the mission (i.e., dynamic) is essential. While many engineered odor tracking systems have been developed, they appear to be designed for a particular environment (e.g., strong or low flow). In field conditions, agents may encounter both. Insect olfactory orientation studies show that several animals can locate odor sources in both high and low flow environments, and environments where the wind vanishes during tracking behavior. Furthermore, animals use multi-modal sensing, including olfaction, vision and touch to localize a source. This work uses simulated and hardware environments to explore how engineered systems can maintain wind-driven tracking behavior in diverse and dynamic environments. The simulation uses olfaction, vision and tactile attributes to track and localize a source in the following environments: high flow, low flow, and transition from high to low flow (i.e., Wind Stop). The hardware platform tests two disparate tracking strategies (including the simulated strategy) in an environment that transitions from strong to low flow. Results indicate that using a remembered wind direction post wind-shutoff is a viable way to maintain wind-driven tracking behavior in a wind stop environment, which can help bridge the gap between high flow and low flow strategies. Also, multi-modal sensing with tactile attributes, vision and olfaction helps a vehicle to localize a source. In addition to engineered systems, the moth Manduca sexta is challenged to track in the following environments: Wind and Odor, Wind Stop, Odor and No Wind, No Odor and No Wind to gain a better understanding of animal behavior in these environments. Results show that contrary to previous studies of different moth species, M. sexta does not generally maintain its wind-driven tracking behavior post-wind shutoff, but instead executes a stereotyped sequence of maneuvers followed by odor-modulated undirected exploration of its environment. In the Odor and No Wind environment, animals become biased towards the area of the arena where odor is located compared to the No Odor and No Wind environment. Robot and animal results are compared to learn more about both.
Robust and Rapid Air-Borne Odor Tracking without Casting1,2,3
Bhattacharyya, Urvashi
2015-01-01
Abstract Casting behavior (zigzagging across an odor stream) is common in air/liquid-borne odor tracking in open fields; however, terrestrial odor localization often involves path selection in a familiar environment. To study this, we trained rats to run toward an odor source in a multi-choice olfactory arena with near-laminar airflow. We find that rather than casting, rats run directly toward an odor port, and if this is incorrect, they serially sample other sources. This behavior is consistent and accurate in the presence of perturbations, such as novel odors, background odor, unilateral nostril stitching, and turbulence. We developed a model that predicts that this run-and-scan tracking of air-borne odors is faster than casting, provided there are a small number of targets at known locations. Thus, the combination of best-guess target selection with fallback serial sampling provides a rapid and robust strategy for finding odor sources in familiar surroundings. PMID:26665165
Walking patterns induced by learned odors in the honeybee, Apis mellifera L.
Yamashita, Toshiya; Haupt, S Shuichi; Ikeno, Hidetoshi; Ai, Hiroyuki
2016-01-01
The odor localization strategy induced by odors learned via differential conditioning of the proboscis extension response was investigated in honeybees. In response to reward-associated but not non-reward-associated odors, learners walked longer paths than non-learners and control bees. When orange odor reward association was learned, the path length and the body turn angles were small during odor stimulation and greatly increased after stimulation ceased. In response to orange odor, bees walked locally with alternate left and right turns during odor stimulation to search for the reward-associated odor source. After odor stimulation, bees walked long paths with large turn angles to explore the odor plume. For clove odor, learning-related modulations of locomotion were less pronounced, presumably due to a spontaneous preference for orange in the tested population of bees. This study is the first to describe how an odor-reward association modulates odor-induced walking in bees. © 2016. Published by The Company of Biologists Ltd.
Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search
Song, Kai; Liu, Qi; Wang, Qi
2011-01-01
Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401
Yang, Zhongyuan; Sassa, Fumihiro; Hayashi, Kenshi
2018-06-22
Improving the efficiency of detecting the spatial distribution of gas information with a mobile robot is a great challenge that requires rapid sample collection, which is basically determined by the speed of operation of gas sensors. The present work developed a robot equipped with a high-speed gas sensor module based on localized surface plasmon resonance. The sensor module is designed to sample gases from an on-ground odor source, such as a footprint material or artificial odor marker, via a fine sampling tubing. The tip of the sampling tubing was placed close to the ground to reduce the sampling time and the effect of natural gas diffusion. On-ground ethanol odor sources were detected by the robot at high resolution (i.e., 2.5 cm when the robot moved at 10 cm/s), and the reading of gas information was demonstrated experimentally. This work may help in the development of environmental sensing robots, such as the development of odor source mapping and multirobot systems with pheromone tracing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zmuda, J.
1994-07-01
Few environmental issues attract more attention than odor emissions. The odor source can quickly be identified, coming under immediate public scrutiny. Often, odor is not merely a public nuisance problem but can be indicative of volatile organic compound (VOC) control needs at the facility. In some cases, odor-producing compounds are VOCs regulated under different sections of federal, state or local law. Specific requirements for VOC or odor control depend on many factors, including the source and nature of the emissions, the quantity of emissions and the location of the facility. Many states impose specific odor-control requirements, in addition to themore » regulations of the Clean Air Act Amendments of 1990 (CAAA), under which odor-causing emissions may be regulated under Titles 1 and/or 3. Under Title 1, the non-attainment title, facilities located in major metropolitan areas not in attainment of the National Ambient Air Quality Standards (NAAQS) for ozone likely will be required to reduce emissions of VOCs.« less
Belanger, Rachelle M; Peters, Tyler J; Sabhapathy, Gita S; Khan, Sana; Katta, Juhi; Abraham, Noor K
2015-05-01
Environmental pollutants, found in aquatic ecosystems, have been shown to have an effect on olfactory-mediated behaviors including feeding, mate attraction, and other important social behaviors. Crayfish are polytrophic, meaning that they feed on and become prey for all levels of the aquatic food web as well as are also important for the transfer of energy between benthic and terrestrial food webs. Because crayfish are a keystone species, it is important to investigate any factors that may affect their population size. Crayfish are active at night and rely heavily on their sensory appendages (e.g., antennulues, maxillipeds, and pereopods) to localize food sources. In this experiment, we investigated the effects of atrazine (ATR) exposure on the chemosensory responses of male and female crayfish to food odors. We exposed crayfish to environmentally relevant, sublethal levels of ATR [80 ppb (µg/L)] for 72 h and then examined the behavioral responses of both ATR-treated and control crayfish to food odor delivered from one end of a test arena. We used Noldus Ethovision XT software to measure odor localization and locomotory behaviors of crayfish in response to food (fish) odor. We found that control crayfish spent more time in the proximal region of the test arena and at the odor source compared with ATR-treated crayfish. Furthermore, there were no differences in the time spent moving and not moving, total distance travelled in the tank, and walking speed (cm/s) when control and ATR-treated crayfish were compared. Overall, this indicates that acute ATR exposure alters chemosensory abilities of crayfish, whereas overall motor function remains unchanged.
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming
2011-01-01
This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots' search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot's detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection-diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method.
Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming
2011-01-01
This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots’ search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot’s detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection–diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method. PMID:22346650
Lockey, Jacob K; Willis, Mark A
2015-07-01
Determining the location of a particular stimulus is often crucial to an animal's survival. One way to determine the local distribution of an odor is to make simultaneous comparisons across multiple sensors. If the sensors detect differences in the distribution of an odor in space, the animal can then steer toward the source. American cockroaches, Periplaneta americana, have 4 cm long antennae and are thought to track odor plumes using a spatial sampling strategy, comparing the amount of odor detected between these bilateral sensors. However, it is not uncommon for cockroaches to lose parts of their antennae and still track a wind-borne odor to its source. We examined whether bilateral odor input is necessary to locate an odor source in a wind-driven environment and how the loss of increasing lengths of the antennae affects odor tracking. The tracking performances of individuals with two bilaterally symmetrical antennae of decreasing length were compared with antennal length-matched individuals with one antenna. Cockroaches with one antenna were generally able to track an odor plume to its source. In fact, the performances of unilaterally antennectomized individuals were statistically identical to those of their bilaterally symmetrical counterparts when the combined length of both antennae equaled the length of the single antenna of the antennectomized individuals. This suggests that the total length of available antennae influences odor tracking performance more than any specific piece of antenna, and that they may be doing something more complex than a simple bilateral comparison between their antennae. The possibility of an antenna-topic map is discussed. © 2015. Published by The Company of Biologists Ltd.
Capelli, Laura; Sironi, Selena; Rosso, Renato Del
2013-01-01
Sampling is one of the main issues pertaining to odor characterization and measurement. The aim of sampling is to obtain representative information on the typical characteristics of an odor source by means of the collection of a suitable volume fraction of the effluent. The most important information about an emission source for odor impact assessment is the so-called Odor Emission Rate (OER), which represents the quantity of odor emitted per unit of time, and is expressed in odor units per second (ou·s−1). This paper reviews the different odor sampling strategies adopted depending on source type. The review includes an overview of odor sampling regulations and a detailed discussion of the equipment to be used as well as the mathematical considerations to be applied to obtain the OER in relation to the sampled source typology. PMID:23322098
Capelli, Laura; Sironi, Selena; Del Rosso, Renato
2013-01-15
Sampling is one of the main issues pertaining to odor characterization and measurement. The aim of sampling is to obtain representative information on the typical characteristics of an odor source by means of the collection of a suitable volume fraction of the effluent. The most important information about an emission source for odor impact assessment is the so-called Odor Emission Rate (OER), which represents the quantity of odor emitted per unit of time, and is expressed in odor units per second (ou∙s-1). This paper reviews the different odor sampling strategies adopted depending on source type. The review includes an overview of odor sampling regulations and a detailed discussion of the equipment to be used as well as the mathematical considerations to be applied to obtain the OER in relation to the sampled source typology.
Daly, Kevin C.; Galán, Roberto F.; Peters, Oakland J.; Staudacher, Erich M.
2011-01-01
The transient oscillatory model of odor identity encoding seeks to explain how odorants with spatially overlapped patterns of input into primary olfactory networks can be discriminated. This model provides several testable predictions about the distributed nature of network oscillations and how they control spike timing. To test these predictions, 16 channel electrode arrays were placed within the antennal lobe (AL) of the moth Manduca sexta. Unitary spiking and multi site local field potential (LFP) recordings were made during spontaneous activity and in response to repeated presentations of an odor panel. We quantified oscillatory frequency, cross correlations between LFP recording sites, and spike–LFP phase relationships. We show that odor-driven AL oscillations in Manduca are frequency modulating (FM) from ∼100 to 30 Hz; this was odorant and stimulus duration dependent. FM oscillatory responses were localized to one or two recording sites suggesting a localized (perhaps glomerular) not distributed source. LFP cross correlations further demonstrated that only a small (r < 0.05) distributed and oscillatory component was present. Cross spectral density analysis demonstrated the frequency of these weakly distributed oscillations was state dependent (spontaneous activity = 25–55 Hz; odor-driven = 55–85 Hz). Surprisingly, vector strength analysis indicated that unitary phase locking of spikes to the LFP was strongest during spontaneous activity and dropped significantly during responses. Application of bicuculline, a GABAA receptor antagonist, significantly lowered the frequency content of odor-driven distributed oscillatory activity. Bicuculline significantly reduced spike phase locking generally, but the ubiquitous pattern of increased phase locking during spontaneous activity persisted. Collectively, these results indicate that oscillations perform poorly as a stimulus-mediated spike synchronizing mechanism for Manduca and hence are incongruent with the transient oscillatory model. PMID:22046161
Ando, Noriyasu; Emoto, Shuhei; Kanzaki, Ryohei
2016-12-19
Robotic odor source localization has been a challenging area and one to which biological knowledge has been expected to contribute, as finding odor sources is an essential task for organism survival. Insects are well-studied organisms with regard to odor tracking, and their behavioral strategies have been applied to mobile robots for evaluation. This "bottom-up" approach is a fundamental way to develop biomimetic robots; however, the biological analyses and the modeling of behavioral mechanisms are still ongoing. Therefore, it is still unknown how such a biological system actually works as the controller of a robotic platform. To answer this question, we have developed an insect-controlled robot in which a male adult silkmoth (Bombyx mori) drives a robot car in response to odor stimuli; this can be regarded as a prototype of a future insect-mimetic robot. In the cockpit of the robot, a tethered silkmoth walked on an air-supported ball and an optical sensor measured the ball rotations. These rotations were translated into the movement of the two-wheeled robot. The advantage of this "hybrid" approach is that experimenters can manipulate any parameter of the robot, which enables the evaluation of the odor-tracking capability of insects and provides useful suggestions for robotic odor-tracking. Furthermore, these manipulations are non-invasive ways to alter the sensory-motor relationship of a pilot insect and will be a useful technique for understanding adaptive behaviors.
Descriptive epidemiology of indoor odor complaints at a large teaching institution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boswell, R.T.; DiBerardinis, L.; Ducatman, A.
1994-04-01
Investigation of indoor odor complaints consumes a substantial portion of the time and resources of many industrial hygiene offices, yet very little information has been published on the subject. We examined 3 years of data on indoor odor complaints at the Massachusetts Institute of Technology in Cambridge, Massachusetts in order to identify factors that may trigger complaints of odors. Plumbing and maintenance accounted for the majority of activities responsible for the identified sources (35% of calls), while research and teaching activities accounted for only 11 percent of calls. A larger number of calls were received during the winter months whenmore » windows are closed and school is in session. There was generally good correlation between the description of an odor by a complainant and the actual source. Offices/secretarial areas/office support rooms accounted for almost half of the calls, while laboratory facilities accounted for 19 percent of the calls. Despite the fact that the chemistry department was responsible for the most number of calls, the odor sources from these complaints were related primarily to plumbing (dried sink and floor drains) and not the chemicals used for research and teaching. Four types of abatement measures were used when odor sources could be identified: natural dissipation of the odor (23%), advice for prevention of future odors (11%), controlling an odor source (16%), and correction of the odor source (33%). We conclude that the majority of sources of indoor odors which trigger complaints are related to the maintenance of the physical plant, and that complaints are likely to be generated by unfamiliarity with certain odors. Recommendations are given to help reduce indoor odors and the time-consuming investigations into complaints from these odors. 10 refs., 4 figs.« less
de Valk, Josje M; Wnuk, Ewelina; Huisman, John L A; Majid, Asifa
2017-08-01
People appear to have systematic associations between odors and colors. Previous research has emphasized the perceptual nature of these associations, but little attention has been paid to what role language might play. It is possible odor-color associations arise through a process of labeling; that is, participants select a descriptor for an odor and then choose a color accordingly (e.g., banana odor → "banana" label → yellow). If correct, this would predict odor-color associations would differ as odor descriptions differ. We compared speakers of Dutch (who overwhelmingly describe odors by referring to the source; e.g., smells like banana) with speakers of Maniq and Thai (who also describe odors with dedicated, abstract smell vocabulary; e.g., musty), and tested whether the type of descriptor mattered for odor-color associations. Participants were asked to select a color that they associated with an odor on two separate occasions (to test for consistency), and finally to label the odors. We found the hunter-gatherer Maniq showed few, if any, consistent or accurate odor-color associations. More importantly, we found the types of descriptors used to name the smells were related to the odor-color associations. When people used abstract smell terms to describe odors, they were less likely to choose a color match, but when they described an odor with a source-based term, their color choices more accurately reflected the odor source, particularly when the odor source was named correctly (e.g., banana odor → yellow). This suggests language is an important factor in odor-color cross-modal associations.
Zaspel, Jennifer M.; Kononenko, Vladimir S.; Ignell, Rickard; Hill, Sharon R.
2016-01-01
The host preference of the economically important fruit piercing moth, Calyptra lata (Butler 1881), was studied when exposed to different fruits and the odors of those fruits in enclosed feeding assays and in a two-choice olfactometer. The fruits consisted of three ripe and locally available types: raspberries, cherries and plums. Moths were released in cages with the ripened fruit and observed for any feeding events, which were then documented. Moths fed on both raspberries and cherries, but not on plums. To test the role of olfactory cues in fruit preference, male moths were released singly in the two choice olfactometer, with one type of fruit odor released in one arm and background control air in the other. The behavior of the moths was recorded on video. Parameters scored were 1) time to take off, 2) flight duration and 3) total time to source contact. The moths showed a significant preference for raspberry odor, exhibited a neutral response to cherry odor and significantly avoided the odor of plums. These results indicate that Calyptra lata demonstrates selective polyphagic feeding behavior and uses olfactory cues from both preferred and non-preferred fruits to detect and locate potential food sources. The possible implications for pest control are discussed. PMID:27324579
Brattoli, Magda; Mazzone, Antonio; Giua, Roberto; Assennato, Giorgio; de Gennaro, Gianluigi
2016-02-26
The evaluation of odor emissions and dispersion is a very arduous topic to face; the real-time monitoring of odor emissions, the identification of chemical components and, with proper certainty, the source of annoyance represent a challenge for stakeholders such as local authorities. The complaints of people, often not systematic and variously distributed, in general do not allow us to quantify the perceived annoyance. Experimental research has been performed to detect and evaluate olfactory annoyance, based on field testing of an innovative monitoring methodology grounded in automatic recording of citizen alerts. It has been applied in Taranto, in the south of Italy where a relevant industrial area is located, by using Odortel(®) for automated collection of citizen alerts. To evaluate its reliability, the collection system has been integrated with automated samplers, able to sample odorous air in real time, according to the citizen alerts of annoyance and, moreover, with meteorological data (especially the wind direction) and trends in odor marker compounds, recorded by air quality monitoring stations. The results have allowed us, for the first time, to manage annoyance complaints, test their reliability, and obtain information about the distribution and entity of the odor phenomena, such that we were able to identify, with supporting evidence, the source as an oil refinery plant.
Determination of urine-derived odorous compounds in a source separation sanitation system.
Liu, Bianxia; Giannis, Apostolos; Chen, Ailu; Zhang, Jiefeng; Chang, Victor W C; Wang, Jing-Yuan
2017-02-01
Source separation sanitation systems have attracted more and more attention recently. However, separate urine collection and treatment could induce odor issues, especially in large scale application. In order to avoid such issues, it is necessary to monitor the odor related compounds that might be generated during urine storage. This study investigated the odorous compounds that emitted from source-separated human urine under different hydrolysis conditions. Batch experiments were conducted to investigate the effect of temperature, stale/fresh urine ratio and urine dilution on odor emissions. It was found that ammonia, dimethyl disulfide, allyl methyl sulfide and 4-heptanone were the main odorous compounds generated from human urine, with headspace concentrations hundreds of times higher than their respective odor thresholds. Furthermore, the high temperature accelerated urine hydrolysis and liquid-gas mass transfer, resulting a remarkable increase of odor emissions from the urine solution. The addition of stale urine enhanced urine hydrolysis and expedited odor emissions. On the contrary, diluted urine emitted less odorous compounds ascribed to reduced concentrations of odorant precursors. In addition, this study quantified the odor emissions and revealed the constraints of urine source separation in real-world applications. To address the odor issue, several control strategies are recommended for odor mitigation or elimination from an engineering perspective. Copyright © 2016. Published by Elsevier B.V.
Weissburg, Marc; Atkins, Lorin; Berkenkamp, Kimberly; Mankin, Danielle
2012-12-01
Blue crabs can distinguish and navigate to attractive (food) odors even when aversive odors (injured crab metabolites) are released nearby. Blue crabs in these conditions detect the aversive odor and avoid it, but find the attractive source with nearly the same success rate as when the attractive source is presented alone. Spatially and temporally distinct odor filaments appear to signal to foragers that the two odor sources are not co-located, and hence navigating to the attractive odor entails an acceptable risk of predation. However, environmentally produced turbulence suppresses tracking by homogenizing the two odors; blue crabs fail to track to the attractive source when the aversive source is present, even though turbulence does not substantially inhibit tracking to the attractive source alone. Removal of sensory input from aesthetascs on the antennules, but not chemosensors on the legs, rescues navigation to attractive-aversive dual plumes in turbulent conditions. These results suggest that mixing in the natural environment may amplify the effects of predators by suppressing tracking to food odors when aversive cues are present, and that the olfactory pathway mediates the response.
Hernandez Bennetts, Victor; Lilienthal, Achim J; Neumann, Patrick P; Trincavelli, Marco
2011-01-01
Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully "translated" into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms.
Hernandez Bennetts, Victor; Lilienthal, Achim J.; Neumann, Patrick P.; Trincavelli, Marco
2011-01-01
Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully “translated” into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms. PMID:22319493
Characterizing odors from cattle feedlots with different odor techniques
USDA-ARS?s Scientific Manuscript database
Odors from cattle feedlots negatively affect local communities. The purpose of this study was to characterize odors and odorants using different odor sampling techniques. Odors were characterized with field olfactometers (Nasal Ranger®), sensory techniques (GC-O) and analytical techniques (sorbent t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshika, Y.; Nihei, Y.; Muto, G.
1981-04-01
A simple circular odor chart is proposed for the explanation of the relationship between sensory responses (to odor quality and intensity) to odors and chemical analysis data of the odorants responsible for each odor discharged from thirteen odor sources. The odorants were classified into eight odorant groups and were analyzed by a systematic gas chromatographic (GC) technique. The characterization of the trace amounts of the odorants was carried out by using the values of a new proposed unit (pOU) based on the ratio of detected concentration to recognition threshold value. The calculated pOU values of the eight groups were plottedmore » in circular charts. It was found that the shape and size of each circular odor chart represent the quality and the intensity of each odor.« less
Yu, Jianwei; An, Wei; Cao, Nan; Yang, Min; Gu, Junong; Zhang, Dong; Lu, Ning
2014-07-01
Taste and odor (T/O) in drinking water often cause consumer complaints and are thus regulated in many countries. However, people in different regions may exhibit different sensitivities toward T/O. This study proposed a method to determine the regional drinking water odorant regulation goals (ORGs) based on the odor sensitivity distribution of the local population. The distribution of odor sensitivity to 2-methylisoborneol (2-MIB) by the local population in Beijing, China was revealed by using a normal distribution function/model to describe the odor complaint response to a 2-MIB episode in 2005, and a 2-MIB concentration of 12.9 ng/L and FPA (flavor profile analysis) intensity of 2.5 was found to be the critical point to cause odor complaints. Thus the Beijing ORG for 2-MIB was determined to be 12.9 ng/L. Based on the assumption that the local FPA panel can represent the local population in terms of sensitivity to odor, and that the critical FPA intensity causing odor complaints was 2.5, this study tried to determine the ORGs for seven other cities of China by performing FPA tests using an FPA panel from the corresponding city. ORG values between 12.9 and 31.6 ng/L were determined, showing that a unified ORG may not be suitable for drinking water odor regulations. This study presents a novel approach for setting drinking water odor regulations. Copyright © 2014. Published by Elsevier B.V.
Enticknap, Julie J; Nonogaki, Hirofumi; Place, Allen R; Hill, Russell T
2006-06-01
Litter from the chicken industry can present several environmental challenges, including offensive odors and runoff into waterways leading to eutrophication. An economically viable solution to the disposal of waste from chicken houses is treatment to produce a natural, granulated fertilizer that can be commercially marketed for garden and commercial use. Odor of the final product is important in consumer acceptance, and an earthy odor is desirable. By understanding and manipulating the microbial processes occurring during this process, it may be possible to modify the odors produced. Geosmin and related volatiles produced by soil actinomycetes are responsible for earthy odors, and actinomycetes are likely to be present in the composting manure. Bacterial communities at each stage of the process were analyzed by culturing studies and denaturing gradient gel electrophoresis (DGGE). The processing steps changed the culturable bacterial community, but the total community was shown by DGGE to be stable throughout the process. A local agricultural soil was analyzed in parallel as a potential source of geosmin-producing actinomycetes. This agricultural soil had higher microbial diversity than the compost at both the culturable and the molecular levels. Actinomycete bacteria were isolated and analyzed by AromaTrax, a gas chromatography-olfactometry system. This system enables the odor production of individual isolates to be monitored, allowing for rational selection of strains for augmentation experiments to improve the odor of the final fertilizer product.
Enticknap, Julie J.; Nonogaki, Hirofumi; Place, Allen R.; Hill, Russell T.
2006-01-01
Litter from the chicken industry can present several environmental challenges, including offensive odors and runoff into waterways leading to eutrophication. An economically viable solution to the disposal of waste from chicken houses is treatment to produce a natural, granulated fertilizer that can be commercially marketed for garden and commercial use. Odor of the final product is important in consumer acceptance, and an earthy odor is desirable. By understanding and manipulating the microbial processes occurring during this process, it may be possible to modify the odors produced. Geosmin and related volatiles produced by soil actinomycetes are responsible for earthy odors, and actinomycetes are likely to be present in the composting manure. Bacterial communities at each stage of the process were analyzed by culturing studies and denaturing gradient gel electrophoresis (DGGE). The processing steps changed the culturable bacterial community, but the total community was shown by DGGE to be stable throughout the process. A local agricultural soil was analyzed in parallel as a potential source of geosmin-producing actinomycetes. This agricultural soil had higher microbial diversity than the compost at both the culturable and the molecular levels. Actinomycete bacteria were isolated and analyzed by AromaTrax, a gas chromatography-olfactometry system. This system enables the odor production of individual isolates to be monitored, allowing for rational selection of strains for augmentation experiments to improve the odor of the final fertilizer product. PMID:16751521
Key Odorants Regulate Food Attraction in Drosophila melanogaster
Giang, Thomas; He, Jianzheng; Belaidi, Safaa; Scholz, Henrike
2017-01-01
In insects, the search for food is highly dependent on olfactory sensory input. Here, we investigated whether a single key odorant within an odor blend or the complexity of the odor blend influences the attraction of Drosophila melanogaster to a food source. A key odorant is defined as an odorant that elicits a difference in the behavioral response when two similar complex odor blends are offered. To validate that the observed behavioral responses were elicited by olfactory stimuli, we used olfactory co-receptor Orco mutants. We show that within a food odor blend, ethanol functions as a key odorant. In addition to ethanol other odorants might serve as key odorants at specific concentrations. However, not all odorants are key odorants. The intensity of the odor background influences the attractiveness of the key odorants. Increased complexity is only more attractive in a concentration-dependent range for single compounds in a blend. Orco is necessary to discriminate between two similarly attractive odorants when offered as single odorants and in food odor blends, supporting the importance of single odorant recognition in odor blends. These data strongly indicate that flies use more than one strategy to navigate to a food odor source, depending on the availability of key odorants in the odor blend and the alternative odor offered. PMID:28928642
Eckmann, Ted C; Wright, Samantha G; Simpson, Logan K; Walker, Joe L; Kolmes, Steven A; Houck, James E; Velasquez, Sandra C
2018-01-01
This study combines Ordinary Kriging, odor monitoring, and wind direction data to demonstrate how these elements can be applied to identify the source of an industrial odor. The specific case study used as an example of how to address this issue was the University Park neighborhood of Portland, Oregon (USA) where residents frequently complain about industrial odors, and suspect the main source to be a nearby Daimler Trucks North America LLC manufacturing plant. We collected 19,665 odor observations plus 105,120 wind measurements, using an automated weather station to measure winds in the area at five-minute intervals, logging continuously from December 2014 through November 2015, while we also measured odors at 19 locations, three times per day, using methods from the American Society of the International Association for Testing and Materials. Our results quantify how winds vary with season and time of day when industrial odors were observed versus when they were not observed, while also mapping spatiotemporal patterns in these odors using Ordinary Kriging. Our analyses show that industrial odors were detected most frequently to the northwest of the Daimler plant, mostly when winds blew from the southeast, suggesting Daimler's facility is a likely source for much of this odor.
Kolmes, Steven A.; Houck, James E.; Velasquez, Sandra C.
2018-01-01
This study combines Ordinary Kriging, odor monitoring, and wind direction data to demonstrate how these elements can be applied to identify the source of an industrial odor. The specific case study used as an example of how to address this issue was the University Park neighborhood of Portland, Oregon (USA) where residents frequently complain about industrial odors, and suspect the main source to be a nearby Daimler Trucks North America LLC manufacturing plant. We collected 19,665 odor observations plus 105,120 wind measurements, using an automated weather station to measure winds in the area at five-minute intervals, logging continuously from December 2014 through November 2015, while we also measured odors at 19 locations, three times per day, using methods from the American Society of the International Association for Testing and Materials. Our results quantify how winds vary with season and time of day when industrial odors were observed versus when they were not observed, while also mapping spatiotemporal patterns in these odors using Ordinary Kriging. Our analyses show that industrial odors were detected most frequently to the northwest of the Daimler plant, mostly when winds blew from the southeast, suggesting Daimler’s facility is a likely source for much of this odor. PMID:29385136
Intranasal Localizability of Odorants: Influence of Stimulus Volume
Frasnelli, J.; Berg, J.; Huang, G.; Doty, R.L.
2011-01-01
When an odorant is presented to one side of the nose and air to the other, the ability to localize which side received the odorant depends upon trigeminal nerve stimulation. It has been shown that performance on this lateralization task increases as stimulus concentration increases. In this study, we determined the influences of stimulus volume and sex on the ability to localize each of 8 odorants presented at neat concentrations: anethole, geraniol, limonene, linalool, menthol, methyl salicyclate, phenyl ethanol, and vanillin. At a low stimulus volume (11 mL), only menthol was localized at an above-chance level. At a high stimulus volume (21 mL), above-chance localization occurred for all odorants except vanillin. Women were significantly better than men in localizing menthol. Stimuli rated as most intense were those that were most readily localized. The detection performance measures, as well as rated intensity values, significantly correlated with earlier findings of the trigeminal detectability of odorants presented to anosmic and normosmic subjects. This study suggests that differences in stimulus volume may explain some discrepant findings within the trigeminal chemosensory literature and supports the concept that vanillin may be a “relatively pure” olfactory stimulus. PMID:21310764
Intranasal localizability of odorants: influence of stimulus volume.
Frasnelli, J; Hummel, T; Berg, J; Huang, G; Doty, R L
2011-05-01
When an odorant is presented to one side of the nose and air to the other, the ability to localize which side received the odorant depends upon trigeminal nerve stimulation. It has been shown that performance on this lateralization task increases as stimulus concentration increases. In this study, we determined the influences of stimulus volume and sex on the ability to localize each of 8 odorants presented at neat concentrations: anethole, geraniol, limonene, linalool, menthol, methyl salicylate, phenyl ethanol, and vanillin. At a low stimulus volume (11 mL), only menthol was localized at an above-chance level. At a high stimulus volume (21 mL), above-chance localization occurred for all odorants except vanillin. Women were significantly better than men in localizing menthol. Stimuli rated as most intense were those that were most readily localized. The detection performance measures, as well as rated intensity values, significantly correlated with earlier findings of the trigeminal detectability of odorants presented to anosmic and normosmic subjects. This study suggests that differences in stimulus volume may explain some discrepant findings within the trigeminal chemosensory literature and supports the concept that vanillin may be a "relatively pure" olfactory stimulus.
Tadesse, Tizeta; Derby, Charles D; Schmidt, Manfred
2014-01-01
We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca(2+) imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca(2+) signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons. Both Ca(2+) signals are primarily mediated by an influx of extracellular Ca(2+) through voltage-activated Ca(2+) channels that can be blocked by CoCl2 and the L-type Ca(2+) channel blocker verapamil. Intracellular Ca(2+) stores contribute little to odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations. The odorant-induced Ca(2+) transients as well as the spontaneous Ca(2+) oscillations depend on action potentials mediated by Na(+) channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca(2+) signals represent experimentally accessible proxies of spiking.
Floral odor learning within the hive affects honeybees' foraging decisions
NASA Astrophysics Data System (ADS)
Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.
2007-03-01
Honeybees learn odor cues quickly and efficiently when visiting rewarding flowers. Memorization of these cues facilitates the localization and recognition of food sources during foraging flights. Bees can also use information gained inside the hive during social interactions with successful foragers. An important information cue that can be learned during these interactions is food odor. However, little is known about how floral odors learned in the hive affect later decisions of foragers in the field. We studied the effect of food scent on foraging preferences when this learning is acquired directly inside the hive. By using in-hive feeders that were removed 24 h before the test, we showed that foragers use the odor information acquired during a 3-day stimulation period with a scented solution during a food-choice situation outside the nest. This bias in food preference is maintained even 24 h after the replacement of all the hive combs. Thus, without being previously collected outside by foragers, food odors learned within the hive can be used during short-range foraging flights. Moreover, correct landings at a dual-choice device after replacing the storing combs suggests that long-term memories formed within the colony can be retrieved while bees search for food in the field.
Gregory, E; Engel, K; Pfaff, D
1975-07-01
Male hamsters approach sources of odors from female hamster vaginal discharges and spend significantly more time around these odor sources than around control locations in the test box. This preference for female hamster vaginal odors appears in sexually inexperienced as well as experienced males, even in individuals isolated from females since the time of weaning. Castration significantly reduces the sex odor preference, and treatment with testosterone propionate partially restores it.
Excitatory Local Interneurons Enhance Tuning of Sensory Information
Assisi, Collins; Stopfer, Mark; Bazhenov, Maxim
2012-01-01
Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process –lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations. PMID:22807661
Leis, Jeffrey M; Siebeck, Ulrike; Dixson, Danielle L
2011-11-01
Nearly all demersal teleost marine fishes have pelagic larval stages lasting from several days to several weeks, during which time they are subject to dispersal. Fish larvae have considerable swimming abilities, and swim in an oriented manner in the sea. Thus, they can influence their dispersal and thereby, the connectivity of their populations. However, the sensory cues marine fish larvae use for orientation in the pelagic environment remain unclear. We review current understanding of these cues and how sensory abilities of larvae develop and are used to achieve orientation with particular emphasis on coral-reef fishes. The use of sound is best understood; it travels well underwater with little attenuation, and is current-independent but location-dependent, so species that primarily utilize sound for orientation will have location-dependent orientation. Larvae of many species and families can hear over a range of ~100-1000 Hz, and can distinguish among sounds. They can localize sources of sounds, but the means by which they do so is unclear. Larvae can hear during much of their pelagic larval phase, and ontogenetically, hearing sensitivity, and frequency range improve dramatically. Species differ in sensitivity to sound and in the rate of improvement in hearing during ontogeny. Due to large differences among-species within families, no significant differences in hearing sensitivity among families have been identified. Thus, distances over which larvae can detect a given sound vary among species and greatly increase ontogenetically. Olfactory cues are current-dependent and location-dependent, so species that primarily utilize olfactory cues will have location-dependent orientation, but must be able to swim upstream to locate sources of odor. Larvae can detect odors (e.g., predators, conspecifics), during most of their pelagic phase, and at least on small scales, can localize sources of odors in shallow water, although whether they can do this in pelagic environments is unknown. Little is known of the ontogeny of olfactory ability or the range over which larvae can localize sources of odors. Imprinting on an odor has been shown in one species of reef-fish. Celestial cues are current- and location-independent, so species that primarily utilize them will have location-independent orientation that can apply over broad scales. Use of sun compass or polarized light for orientation by fish larvae is implied by some behaviors, but has not been proven. Use of neither magnetic fields nor direction of waves for orientation has been shown in marine fish larvae. We highlight research priorities in this area. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
The effect of meat consumption on body odor attractiveness.
Havlicek, Jan; Lenochova, Pavlina
2006-10-01
Axillary body odor is individually specific and potentially a rich source of information about its producer. Odor individuality partly results from genetic individuality, but the influence of ecological factors such as eating habits are another main source of odor variability. However, we know very little about how particular dietary components shape our body odor. Here we tested the effect of red meat consumption on body odor attractiveness. We used a balanced within-subject experimental design. Seventeen male odor donors were on "meat" or "nonmeat" diet for 2 weeks wearing axillary pads to collect body odor during the final 24 h of the diet. Fresh odor samples were assessed for their pleasantness, attractiveness, masculinity, and intensity by 30 women not using hormonal contraceptives. We repeated the same procedure a month later with the same odor donors, each on the opposite diet than before. Results of repeated measures analysis of variance showed that the odor of donors when on the nonmeat diet was judged as significantly more attractive, more pleasant, and less intense. This suggests that red meat consumption has a negative impact on perceived body odor hedonicity.
Receptor modeling of a natural gas processing odor source in a rural setting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dattner, S.; Pendleton, D.; Ross, O.
1985-01-01
The use of continuous pollutant monitoring instruments and meteorological instruments has been shown to be useful in identifying the probable sources of elevated levels of gaseous sulfur compounds even when those levels were, significantly below health effect levels or odor threshold, or both. When the elevated concentrations were compared to complaint diaries, significant agreement could be seen. This agreement helped to establish the probable source of the odors. Once the odor sources could be accurately identified, remedial action could be taken to control them. The biggest problem that the TACB encountered was convincing the complainants to keep an odor complaintmore » diary. Two combined actions are being considered to aleviate this difficulty. First, produce a standardized odor complaint diary. This document will have space for all the pertinent information needed. The standardized form may encourage the complainants to complete them, since the complainant won't have to guess what to report. The form should include space for the following information: Date, time, and duration of odor problem; Nature of odor; Associated meteorology; Times when the complainant was not home. Second, encourage the complainants to complete the diary. The complainant has to be convinced that the information reported in the diary is vital to establishing a link between odors and elevated pollutant concentrations. The agency may need to require formally that a diary be kept as a condition to conduct monitoring.« less
The role of attention in the localization of odors to the mouth.
Stevenson, Richard J; Mahmut, Mehmet K; Oaten, Megan J
2011-01-01
Odors can be perceived as arising from the environment or as part of a flavor located in the mouth. One factor that may dictate where an odor is perceived to be is concurrent gustatory stimulation in the mouth. A taste may impair the ability to attend to an odor, especially if they are perceptually similar. Alternatively, salient mouth-based features of a flavor might command attention at the expense of smell. Experiment 1 and 2, using different stimulus sets, explored the impact of perceptually similar and dissimilar pairings of tastes in the mouth and odors at the nose. In each case, these were followed by judgments of the odor's location (mouth vs. nose). Perceptual similarity had no impact on localization judgments. Experiment 3 then manipulated the salience of the olfactory and gustatory cues and showed that each could independently shift the perceived location of an odorant-salient olfactory cues toward the nose and gustatory cues toward the mouth. These findings suggest that the salient features of a flavor may command attention at the expense of olfaction and, thereby, contribute to oral localization, with implications for flavor binding.
The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume.
Reidenbach, Matthew A; Koehl, M A R
2011-09-15
Odors are dispersed across aquatic habitats by turbulent water flow as filamentous, intermittent plumes. Many crustaceans sniff (take discrete samples of ambient water and the odors it carries) by flicking their olfactory antennules. We used planar laser-induced fluorescence to investigate how flicking antennules of different morphologies (long antennules of spiny lobsters, Panulirus argus; short antennules of blue crabs, Callinectes sapidus) sample fluctuating odor signals at different positions in a turbulent odor plume in a flume to determine whether the patterns of concentrations captured can provide information about an animal's position relative to the odor source. Lobster antennules intercept odors during a greater percentage of flicks and encounter higher peak concentrations than do crab antennules, but because crabs flick at higher frequency, the duration of odor-free gaps between encountered odor pulses is similar. For flicking antennules there were longer time gaps between odor encounters as the downstream distance to the odor source decreases, but shorter gaps along the plume centerline than near the edge. In contrast to the case for antennule flicking, almost all odor-free gaps were <500 ms at all positions in the plume if concentration was measured continuously at the same height as the antennules. Variance in concentration is lower and mean concentration is greater near the substratum, where leg chemosensors continuously sample the plume, than in the water where antennules sniff. Concentrations sampled by legs increase as an animal nears an odor source, but decrease for antennules. Both legs and antennules encounter higher concentrations near the centerline than at the edge of the plume.
Odorant-Binding Protein: Localization to Nasal Glands and Secretions
NASA Astrophysics Data System (ADS)
Pevsner, Jonathan; Sklar, Pamela B.; Snyder, Solomon H.
1986-07-01
An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants.
Origins of correlated spiking in the mammalian olfactory bulb
Gerkin, Richard C.; Tripathy, Shreejoy J.; Urban, Nathaniel N.
2013-01-01
Mitral/tufted (M/T) cells of the main olfactory bulb transmit odorant information to higher brain structures. The relative timing of action potentials across M/T cells has been proposed to encode this information and to be critical for the activation of downstream neurons. Using ensemble recordings from the mouse olfactory bulb in vivo, we measured how correlations between cells are shaped by stimulus (odor) identity, common respiratory drive, and other cells’ activity. The shared respiration cycle is the largest source of correlated firing, but even after accounting for all observable factors a residual positive noise correlation was observed. Noise correlation was maximal on a ∼100-ms timescale and was seen only in cells separated by <200 µm. This correlation is explained primarily by common activity in groups of nearby cells. Thus, M/T-cell correlation principally reflects respiratory modulation and sparse, local network connectivity, with odor identity accounting for a minor component. PMID:24082089
Pheromone modulates plant odor responses in the antennal lobe of a moth.
Chaffiol, Antoine; Dupuy, Fabienne; Barrozo, Romina B; Kropf, Jan; Renou, Michel; Rospars, Jean-Pierre; Anton, Sylvia
2014-06-01
In nature, male moths are exposed to a complex plant odorant environment when they fly upwind to a sex pheromone source in their search for mates. Plant odors have been shown to affect responses to pheromone at various levels but how does pheromone affects plant odor perception? We recorded responses from neurons within the non-pheromonal "ordinary glome ruli" of the primary olfactory center, the antennal lobe (AL), to single and pulsed stimulations with the plant odorant heptanal, the pheromone, and their mixture in the male moth Agrotis ipsilon. We identified 3 physiological types of neurons according to their activity patterns combining excitatory and inhibitory phases. Both local and projection neurons were identified in each physiological type. Neurons with excitatory responses to heptanal responded also frequently to the pheromone and showed additive responses to the mixture. Moreover, the neuron's ability of resolving successive pulses generally improved with the mixture. Only some neurons with combined excitatory/inhibitory, or purely inhibitory responses to heptanal, also responded to the pheromone. Although individual mixture responses were not significantly different from heptanal responses in these neurons, pulse resolution was improved with the mixture as compared with heptanal alone. These results demonstrate that the pheromone and the general odorant subsystems interact more intensely in the moth AL than previously thought. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Recruits of the stingless bee Scaptotrigona pectoralis learn food odors from the nest atmosphere.
Reichle, Christian; Jarau, Stefan; Aguilar, Ingrid; Ayasse, Manfred
2010-05-01
The ability to learn food odors inside the nest and to associate them with food sources in the field is of essential importance for the recruitment of nestmates in social bees. We investigated odor learning by workers within the hive and the influence of these odors on their food choice in the field in the stingless bee Scaptotrigona pectoralis. During the experiments, recruited bees had to choose between two feeders, one with an odor that was present inside the nest during the recruitment process, and one with an unknown odor. In all experiments with different odor combinations (linalool/phenylacetaldehyde, geraniol/eugenol) a significant majority of bees visited the feeder with the odor they had experienced in their nest (chi (2)-tests; p < 0.05). By contrast, the bees showed no preference for one of two feeders when they were either baited with the same odor (linalool) or contained no odor. Our results clearly show that naïve workers of S. pectoralis can learn the odor of a food source during the recruitment process from the nest atmosphere and that their subsequent food search in the field is influenced by the learned odor.
Recruits of the stingless bee Scaptotrigona pectoralis learn food odors from the nest atmosphere
NASA Astrophysics Data System (ADS)
Reichle, Christian; Jarau, Stefan; Aguilar, Ingrid; Ayasse, Manfred
2010-05-01
The ability to learn food odors inside the nest and to associate them with food sources in the field is of essential importance for the recruitment of nestmates in social bees. We investigated odor learning by workers within the hive and the influence of these odors on their food choice in the field in the stingless bee Scaptotrigona pectoralis. During the experiments, recruited bees had to choose between two feeders, one with an odor that was present inside the nest during the recruitment process, and one with an unknown odor. In all experiments with different odor combinations (linalool/phenylacetaldehyde, geraniol/eugenol) a significant majority of bees visited the feeder with the odor they had experienced in their nest ( χ 2-tests; p < 0.05). By contrast, the bees showed no preference for one of two feeders when they were either baited with the same odor (linalool) or contained no odor. Our results clearly show that naïve workers of S. pectoralis can learn the odor of a food source during the recruitment process from the nest atmosphere and that their subsequent food search in the field is influenced by the learned odor.
The effect of verbal context on olfactory neural responses.
Bensafi, Moustafa; Croy, Ilona; Phillips, Nicola; Rouby, Catherine; Sezille, Caroline; Gerber, Johannes; Small, Dana M; Hummel, Thomas
2014-03-01
Odor names refer usually to "source" object categories. For example, the smell of rose is often described with its source category (flower). However, linguistic studies suggest that odors can also be named with labels referring to categories of "practices". This is the case when rose odor is described with a verbal label referring to its use in fragrance practices ("body lotion," cosmetic for example). It remains unknown whether naming an odor by its practice category influences olfactory neural responses differently than that observed when named with its source category. The aim of this study was to investigate this question. To this end, functional MRI was used in a within-subjects design comparing brain responses to four different odors (peach, chocolate, linden blossom, and rose) under two conditions whereby smells were described either (1) with their source category label (food and flower) or (2) with a practice category label (body lotion). Both types of labels induced activations in secondary olfactory areas (orbitofrontal cortex), whereas only the source label condition induced activation in the cingulate cortex and the insula. In summary, our findings offer a new look at olfactory perception by indicating differential brain responses depending on whether odors are named according to their source or practice category. Copyright © 2012 Wiley Periodicals, Inc.
Olafson, Pia Untalan
2012-01-01
Biting flies are economically important, blood-feeding pests of medical and veterinary significance. Chemosensory-based biting fly behaviors, such as host/nutrient source localization and ovipositional site selection, are intriguing targets for the development of supplemental control strategies. In an effort to expand our understanding of biting fly chemosensory pathways, transcripts encoding the highly conserved insect odorant co-receptor (Orco) were isolated from two representative biting fly species, the stable fly (Scal\\Orco) and the horn fly (Hirr\\Orco). Orco forms a complex with an odor-specific odorant receptor to form an odor-gated ion channel. The biting fly transcripts were predicted to encode proteins with 87% – 94% amino acid similarity to published insect Orco sequences and were detected in various immature stages as well as in adult structures associated with olfaction, i.e. antennae and maxillary palps, and gustation, i.e. proboscis. Further, the relevant proteins were immunolocalized to specific antennal sensilla using anti-serum raised against a peptide sequence conserved between the two fly species. Results from this study provide a basis for functional evaluation of repellent/attractant effects on as yet uncharacterized stable fly and horn fly conventional odorant receptors. PMID:23278866
2012-01-01
Objective Odor exposure is an environmental stressor that is responsible of many citizens complains about air pollution in non-urban areas. However, information about the exposure-response relation is scarce. One of the main challenges is to identify a measurable compound that can be related with odor annoyance responses. We investigated the association between regional and temporal variation of ammonia (NH3) concentrations in five Danish non-urban regions and environmental odor annoyance as perceived by the local residents. Methods A cross-sectional study where NH3 concentration was obtained from the national air quality monitoring program and from emission-dispersion modelling, and odor pollution perception from questionnaires. The exposure-response model was a sigmoid model. Linear regression analyses were used to estimate the model constants after equation transformations. The model was validated using leave-one-out cross validation (LOOCV) statistical method. Results About 45% of the respondents were annoyed by odor pollution at their residential areas. The perceived odor was characterized by all respondents as animal waste odor. The exposure-annoyance sigmoid model showed that the prevalence of odor annoyance was significantly associated with NH3 concentrations (measured and estimated) at the local air quality monitoring stations (p < 0.01,R2 = 0.99; and p < 0.05,R2 = 0.93; respectively). Prediction errors were below 5.1% and 20% respectively. The seasonal pattern of odor perception was associated with the seasonal variation in NH3 concentrations (p < 0.001, adjusted R2 = 0.68). Conclusion The results suggest that atmospheric NH3 levels at local air quality stations could be used as indicators of prevalence of odor annoyance in non-urban residential communities. PMID:22513250
Assessing implicit odor localization in humans using a cross-modal spatial cueing paradigm.
Moessnang, Carolin; Finkelmeyer, Andreas; Vossen, Alexandra; Schneider, Frank; Habel, Ute
2011-01-01
Navigation based on chemosensory information is one of the most important skills in the animal kingdom. Studies on odor localization suggest that humans have lost this ability. However, the experimental approaches used so far were limited to explicit judgements, which might ignore a residual ability for directional smelling on an implicit level without conscious appraisal. A novel cueing paradigm was developed in order to determine whether an implicit ability for directional smelling exists. Participants performed a visual two-alternative forced choice task in which the target was preceded either by a side-congruent or a side-incongruent olfactory spatial cue. An explicit odor localization task was implemented in a second experiment. No effect of cue congruency on mean reaction times could be found. However, a time by condition interaction emerged, with significantly slower responses to congruently compared to incongruently cued targets at the beginning of the experiment. This cueing effect gradually disappeared throughout the course of the experiment. In addition, participants performed at chance level in the explicit odor localization task, thus confirming the results of previous research. The implicit cueing task suggests the existence of spatial information processing in the olfactory system. Response slowing after a side-congruent olfactory cue is interpreted as a cross-modal attentional interference effect. In addition, habituation might have led to a gradual disappearance of the cueing effect. It is concluded that under immobile conditions with passive monorhinal stimulation, humans are unable to explicitly determine the location of a pure odorant. Implicitly, however, odor localization seems to exert an influence on human behaviour. To our knowledge, these data are the first to show implicit effects of odor localization on overt human behaviour and thus support the hypothesis of residual directional smelling in humans. © 2011 Moessnang et al.
Odor Perception by Dogs: Evaluating Two Training Approaches for Odor Learning of Sniffer Dogs.
Fischer-Tenhagen, Carola; Johnen, Dorothea; Heuwieser, Wolfgang; Becker, Roland; Schallschmidt, Kristin; Nehls, Irene
2017-06-01
In this study, a standardized experimental set-up with various combinations of herbs as odor sources was designed. Two training approaches for sniffer dogs were compared; first, training with a pure reference odor, and second, training with a variety of odor mixtures with the target odor as a common denominator. The ability of the dogs to identify the target odor in a new context was tested. Six different herbs (basil, St. John's wort, dandelion, marjoram, parsley, ribwort) were chosen to produce reference materials in various mixtures with (positive) and without (negative) chamomile as the target odor source. The dogs were trained to show 1 of 2 different behaviors, 1 for the positive, and 1 for the negative sample as a yes/no task. Tests were double blind with one sample presented at a time. In both training approaches, dogs were able to detect chamomile as the target odor in any presented mixture with an average sensitivity of 72% and a specificity of 84%. Dogs trained with odor mixture containing the target odor had more correct indications in the transfer task. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Impact of low sulfur diets on air and odor emissions from swine operations
USDA-ARS?s Scientific Manuscript database
Sulfur is key nutrient associated with odor from swine operations. This study was conducted to determine the impact of sulfur levels and sulfur source in swine diets have on odor emissions. Swine diets were formulated at varying levels of S and using different protein sources enrich for S. One set o...
Evaluation of Food Freshness and Locality by Odor Sensor
NASA Astrophysics Data System (ADS)
Koike, Takayuki; Shimada, Koji; Kamimura, Hironobu; Kaneki, Noriaki
The aim of this study was to investigate whether food freshness and locality can be classified using a food evaluation system consisting four SnO2-semiconductor gas sensors and a solid phase column, into which collecting aroma materials. The temperature of sensors was periodically changed to be in unsteady state and thus, the sensor information was increased. The parameters (in quefrency band) were extracted from sensor information using cepstrum analysis that enable to separate superimposed information on sinusoidal wave. The quefrency was used as parameters for principal component and discriminant analyses (PCA and DCA) to detect food freshness and food localities. We used three kinds of strawberries, people can perceive its odors, passed from one to three days after harvest, and kelps and Ceylon tea, people are hardly to perceive its odor, corrected from five areas as sample. Then, the deterioration of strawberries and localities of kelps and Ceylon teas were visually evaluated using the numerical analyses. While the deteriorations were classified using PCA or DCA, the localities were classified only by DCA. The findings indicate that, although odorant intensity influenced the method detecting food quality, the quefrency obtained from odorant information using cepstrum analysis were available to detect the difference in the freshness and the localities of foods.
CONTROLLING ODOROUS EMISSIONS FROM IRON FOUNDRIES
The report discusses the control of odorous emissions from iron foundries. he main process sources of odors in iron foundries are mold and core making, casting, and sand shakeout. he odors are usually caused by chemicals, which may be present as binders and other additives to the...
Sharma, Manju; O'Connell, Susan; Garelli, Brett; Sattayatewa, Chakkrid; Moschandreas, Demetrios; Pagilla, Krishna
2012-01-01
Indoor air quality (IAQ) and odors were determined using sampling/monitoring, measurement, and modeling methods in a large dewatering building at a very large water reclamation plant. The ultimate goal was to determine control strategies to reduce the sensory impacts on the workforce and achieve odor reduction within the building. Study approaches included: (1) investigation of air mixing by using CO(2) as an indicator, (2) measurement of airflow capacity of ventilation fans, (3) measurement of odors and odorants, (4) development of statistical and IAQ models, and (5) recommendation of control strategies. The results showed that air quality in the building complies with occupational safety and health guidelines; however, nuisance odors that can increase stress and productivity loss still persist. Excess roof fan capacity induced odor dispersion to the upper levels. Lack of a local air exhaust system of sufficient capacity and optimum design was found to be the contributor to occasional less than adequate indoor air quality and odors. Overall, air ventilation rate in the building has less effect on persistence of odors in the building. Odor/odorant emission rates from centrifuge drops were approximately 100 times higher than those from the open conveyors. Based on measurements and modeling, the key control strategies recommended include increasing local air exhaust system capacity and relocation of exhaust hoods closer to the centrifuge drops.
DESIGN MANUAL: ODOR AND CORROSION CONTROL IN SANITARY SEWERAGE SYSTEMS AND TREATMENT PLANTS
Wastewater is known to the public for its potential to create odor nuisance. Sometimes it is the odors escaping from sewer manholes that cause complaints; more commonly, the odor source is a wastewater treatment facility. Yet there are wastewater treatment facilities that are fr...
Characterization of outdoor air particles as source of impurities in supply air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasanen, P.; Kalliokoski, P.; Tuomainen, A.
1997-12-31
Odor emission of supply air filters has proved to be a major source of stuffy odor of supply air. In this study, the odor emission characteristics of outdoor air particles and odor emissions of coarse prefilters and fine filters were studied. The outdoor air samples were collected by the aid of high volume impactor. Odor emissions of the size fractions, < 2.1 {micro}m , 2.1--10 {micro}m and >10 {micro}m were studied separately in laboratory with a trained olf panel: The odor emissions of the ventilation filters in real use were evaluated five times during the 14 month study period. Aftermore » the field evaluation the emissions of carbonyl compounds and other volatile organic compounds. The odor emissions of outdoor air particles were the highest during the heating season and lowest in the summer. The particles in the coarsest fraction had the most abundant emissions (1,200 olf/g) while the emissions from fine particles were lowest (100 olf/g). The odor emissions evaluated from the coarse and fine ventilation filters supported the finding that particles collected on coarse prefilter had the most abundant odor emission.« less
[Actinobacteria and their odor-producing capacities in a surface water in Shanghai].
Chen, Jiao; Bai, Xiao-hui; Lu, Ning; Wang, Xian-yun; Zhang, Yong-hui; Wu, Pan-cheng; Guo, Xin-chi
2014-10-01
The odor in raw water is one of the main sources of odor in drinking water. The occurrence of actinobacteria and their odor producing capacities in a reservoir in.Shanghai were investigated. Gauze's medium and membrane filtration were used for actinobacteria isolation. Through combined methods of 16S rRNA sequencing, colony and hyphae morphology, carbon source utilization, physiological and biochemical characteristics, 40 strains of actinobacteria were identified from the reservoir. Results showed that there were 38 Streptomyces, an Aeromicrobium and a Pseudonocardia. Liquid culture medium and the real reservoir water were used to test the odor producing capacity of these 40 strains of actinobacteria, and headspace solid phase microextraction (HS-SPME) and high resolution gas chromatography mass spectroscopy (GC/MS) were used to analyze the odor compounds 2-methylisoborneol (2-MIB) and geosmin (GSM) in the fermentation liquor. The test results showed that, the odor-producing capacities of these actinobacteria in different fermentation media showed different variation trends, even within the genera Streptomyces. The odor-producing capacity of actinobacteria in the liquid culture medium could not represent their states in the reservoir water or their actual odor contribution to the aquatic environment.
Ki, Bo-Min; Ryu, Hee Wook; Cho, Kyung-Suk
2018-02-22
Soil burial and composting methods have been widely used for the disposal of pig carcasses. The relationship between bacterial community structure and odor emission was examined using extended local similarity analysis (eLSA) during the degradation of pig carcasses in soil and compost. In soil, Hyphomicrobium, Niastella, Rhodanobacter, Polaromonas, Dokdonella and Mesorhizobium were associated with the emission of sulfur-containing odors such as hydrogen sulfide, methyl mercaptan and dimethyl disulfide. Sphingomonas, Rhodanobacter, Mesorhizobium, Dokdonella, Leucobacter and Truepera were associated with the emission of nitrogen-containing odors including ammonia and trimetylamine. In compost, however, Carnobacteriaceae, Lachnospiaceae and Clostridiales were highly correlated with the emission of sulfur-containing odors, while Rumincoccaceae was associated with the emission of nitrogen-containing odors. The emission of organic acids was closely related to Massilia, Sphaerobacter and Bradyrhizobiaceae in soil, but to Actinobacteria, Sporacetigenium, Micromonosporaceae and Solirubrobacteriales in compost. This study suggests that network analysis using eLSA is a useful strategy for exploring the mechanisms of odor emission during biodegradation of pig carcasses.
[Odor pollution from landfill sites and its control: a review].
Hu, Bin; Ding, Ying; Wu, Wei-Xiang; Hu, Bei-Gang; Chen, Ying-Xu
2010-03-01
Landfill sites are the major sources of offensive odor in urban public facilities. With the progress of urbanization and the residents' demands for a higher living environment quality, the odor emission from landfill sites has become a severe pollution problem, and the odor control at landfill sites has been one of the research hotspots. This paper summarized the main components and their concentrations of the odor from landfill sites, and expatiated on the research progress in the in-situ control of the odor. The further research directions in in-situ control of the odor from landfill sites were prospected.
Evolving a Neural Olfactorimotor System in Virtual and Real Olfactory Environments
Rhodes, Paul A.; Anderson, Todd O.
2012-01-01
To provide a platform to enable the study of simulated olfactory circuitry in context, we have integrated a simulated neural olfactorimotor system with a virtual world which simulates both computational fluid dynamics as well as a robotic agent capable of exploring the simulated plumes. A number of the elements which we developed for this purpose have not, to our knowledge, been previously assembled into an integrated system, including: control of a simulated agent by a neural olfactorimotor system; continuous interaction between the simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and background odor; the systematic use of artificial evolution driven by olfactorimotor performance (e.g., time to locate a plume source) to specify parameter values; the incorporation of the realities of an imperfect physical robot using a hybrid model where a physical robot encounters a simulated plume. We close by describing ongoing work toward engineering a high dimensional, reversible, low power electronic olfactory sensor which will allow olfactorimotor neural circuitry evolved in the virtual world to control an autonomous olfactory robot in the physical world. The platform described here is intended to better test theories of olfactory circuit function, as well as provide robust odor source localization in realistic environments. PMID:23112772
NASA Astrophysics Data System (ADS)
Ranzato, Laura; Barausse, Alberto; Mantovani, Alice; Pittarello, Alberto; Benzo, Maurizio; Palmeri, Luca
2012-12-01
Unpleasant odors are a major cause of public complaints concerning air quality and represent a growing social problem in industrialized countries. However, the assessment of odor pollution is still regarded as a difficult task, because olfactory nuisance can be caused by many different chemical compounds, often found in hard-to-detect concentrations, and the perception of odors is influenced by subjective thresholds; moreover, the impact of odor sources on air quality is mediated by complex atmospheric dispersion processes. The development of standardized assessment approaches to odor pollution and proper international regulatory tools are urgently needed. In particular, comparisons of the methodologies commonly used nowadays to assess odor impacts on air quality are required. Here, we assess the olfactory nuisance caused by an anaerobic treatment plant for municipal solid waste by means of two alternative techniques: the field inspection procedure and the atmospheric dispersion model CALPUFF. Our goal was to compare rigorously their estimates of odor nuisance, both qualitatively (spatial extent of odor impact) and quantitatively (intensity of odor nuisance). To define the impact of odors, we referred to the German standards, based on the frequency of odor episodes in terms of odor hours. We report a satisfying, although not perfect agreement between the estimates provided by the two techniques. For example, they assessed similar spatial extents of odor pollution, but different frequencies of odor episodes in locations where the odor nuisance was highest. The comparison highlights strengths and weaknesses for both approaches. CALPUFF is a cheaper methodology which can be used predictively, but fugitive emissions are difficult to model reliably, because of uncertainty regarding timing, location and emission rate. Field inspection takes into account the role of human perception, but unlike the model it does not always characterize precisely the extent of the odor nuisance caused by a single source when other odors are present, because only the most unpleasant odor is reported. We conclude that these two assessment methods provide reasonable estimates of odor nuisance.
NASA Astrophysics Data System (ADS)
Miller, Urszula; Grzelka, Agnieszka; Romanik, Elżbieta; Kuriata, Magdalena
2018-01-01
Operation of municipal management facilities is inseparable from the problem of malodorous compounds emissions to the atmospheric air. In that case odor nuisance is related to the chemical composition of waste, sewage and sludge as well as to the activity of microorganisms whose products of life processes can be those odorous compounds. Significant reduction of odorant emission from many sources can be achieved by optimizing parameters and conditions of processes. However, it is not always possible to limit the formation of odorants. In such cases it is best to use appropriate deodorizing methods. The choice of the appropriate method is based on in terms of physical parameters, emission intensity of polluted gases and their composition, if it is possible to determine. Among the solutions used in municipal economy, there can be distinguished physico-chemical methods such as sorption and oxidation. In cases where the source of the emission is not encapsulated, odor masking techniques are used, which consists of spraying preparations that neutralize unpleasant odors. The paper presents the characteristics of selected methods of eliminating odor nuisance and evaluation of their applicability in municipal management facilities.
History dependence in insect flight decisions during odor tracking.
Pang, Rich; van Breugel, Floris; Dickinson, Michael; Riffell, Jeffrey A; Fairhall, Adrienne
2018-02-01
Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, "infotaxis", in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in natural plume tracking.
History dependence in insect flight decisions during odor tracking
van Breugel, Floris; Dickinson, Michael; Riffell, Jeffrey A.; Fairhall, Adrienne
2018-01-01
Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, “infotaxis”, in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in natural plume tracking. PMID:29432454
Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight.
Wasserman, Sara; Lu, Patrick; Aptekar, Jacob W; Frye, Mark A
2012-08-15
Tracking distant odor sources is crucial to foraging, courtship and reproductive success for many animals including fish, flies and birds. Upon encountering a chemical plume in flight, Drosophila melanogaster integrates the spatial intensity gradient and temporal fluctuations over the two antennae, while simultaneously reducing the amplitude and frequency of rapid steering maneuvers, stabilizing the flight vector. There are infinite escape vectors away from a noxious source, in contrast to a single best tracking vector towards an attractive source. Attractive and aversive odors are segregated into parallel neuronal pathways in flies; therefore, the behavioral algorithms for avoidance may be categorically different from tracking. Do flies plot random ballistic or otherwise variable escape vectors? Or do they instead make use of temporally dynamic mechanisms for continuously and directly avoiding noxious odors in a manner similar to tracking appetitive ones? We examine this question using a magnetic tether flight simulator that permits free yaw movements, such that flies can actively orient within spatially defined odor plumes. We show that in-flight aversive flight behavior shares all of the key features of attraction such that flies continuously 'anti-track' the noxious source.
Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight
Wasserman, Sara; Lu, Patrick; Aptekar, Jacob W.; Frye, Mark A.
2012-01-01
SUMMARY Tracking distant odor sources is crucial to foraging, courtship and reproductive success for many animals including fish, flies and birds. Upon encountering a chemical plume in flight, Drosophila melanogaster integrates the spatial intensity gradient and temporal fluctuations over the two antennae, while simultaneously reducing the amplitude and frequency of rapid steering maneuvers, stabilizing the flight vector. There are infinite escape vectors away from a noxious source, in contrast to a single best tracking vector towards an attractive source. Attractive and aversive odors are segregated into parallel neuronal pathways in flies; therefore, the behavioral algorithms for avoidance may be categorically different from tracking. Do flies plot random ballistic or otherwise variable escape vectors? Or do they instead make use of temporally dynamic mechanisms for continuously and directly avoiding noxious odors in a manner similar to tracking appetitive ones? We examine this question using a magnetic tether flight simulator that permits free yaw movements, such that flies can actively orient within spatially defined odor plumes. We show that in-flight aversive flight behavior shares all of the key features of attraction such that flies continuously ‘anti-track’ the noxious source. PMID:22837456
Circuit oscillations in odor perception and memory.
Kay, Leslie M
2014-01-01
Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40-100Hz in rats and mice, and 20Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15-30Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2-12Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events. © 2014 Elsevier B.V. All rights reserved.
Endres, Courtney S; Putman, Nathan F; Ernst, David A; Kurth, Jessica A; Lohmann, Catherine M F; Lohmann, Kenneth J
2016-01-01
Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas) that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles' foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1) initiate a search strategy; or (2) follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands.
Endres, Courtney S.; Putman, Nathan F.; Ernst, David A.; Kurth, Jessica A.; Lohmann, Catherine M. F.; Lohmann, Kenneth J.
2016-01-01
Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas) that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles’ foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1) initiate a search strategy; or (2) follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands. PMID:26941625
Characterization and control of odorous gases at a landfill site: a case study in Hangzhou, China.
Ying, Ding; Chuanyu, Cai; Bin, Hu; Yueen, Xu; Xuejuan, Zheng; Yingxu, Chen; Weixiang, Wu
2012-02-01
Municipal solid waste (MSW) landfills are one of the major sources of offensive odors potentially creating annoyance in adjacent communities. At the end of May 2007, an odor pollution incident occurred at the Tianziling landfill site, Hangzhou, China, where the residents lodged complaints about the intense odor from the landfill, which drew a significant attention from the government. In this study, ambient air monitoring was conducted at the Tianziling landfill site. The main odor composition of the gas samples collected on June 1st 2007 and the reduction of various odorous gases from the samples collected on June 1st 2009 due to the applied odor control techniques were determined using gas chromatography-mass spectrometry (GC-MS). In addition, variations of primary odorous gaseous (NH(3) and H(2)S) concentrations at different locations in the landfill site from July 2007 to June 2009 were also investigated by using classical spectrophotometric methods. Results showed that a total of 68 volatile compounds were identified among which H(2)S (56.58-579.84 μg/m(3)) and NH(3) (520-4460 μg/m(3)) were the notable odor components contributing to 4.47-10.92% and 83.91-93.94% of total concentrations, respectively. Similar spatial and temporal shifts of H(2)S and NH(3) concentrations were observed and were significantly affected by environmental factors including temperature, air pressure and wind direction. Odor pollution was worse when high temperature, high humidity, low air pressure, and southeast, northeast or east wind appeared. Moreover, the environmental sampling points of the dumping area and the leachate treatment plant were found to be the main odor sources at the Tianziling landfill site. The odor control technologies used in this project had a good mitigating effect on the primary odorous compounds. This study provides long-term valuable information concerning the characteristics and control of odors at landfill sites in a long run. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittmeyer, S.; Cap, R.; Lange, C.
1996-11-01
Taste and odor problems in drinking water supplies have been a topic of research since the early 1900`s. Studies have identified various taste and odor compounds, including methyl-iso-borneol (MIB), geosmin, trichloranisole, and their potential sources, to include the phytoplankton genera Aphanizomenon, Anabaena, Microcystis, and Dinobryon. Many methods of treatment have been investigated to mitigate taste and odors, including the addition of copper sulfate and various chemical oxidants, as well as the introduction of bacteria capable of metabolizing oil-like organic compounds. Taste and odor problems associated with drinking water supplies have become increasingly important, in part because public awareness of watermore » quality issues such as chlorine and associated disinfection byproducts, and the perception that malodorous water may be associated with pathogens such as the infectious Cryptosporidium parvum. Due to marked increases in customer complaints beginning in 1993, and elevated levels of the taste and odor compounds. MIB and geosmin, in eastern Lake Erie and the Niagara River, the Erie County Water Authority (ECWA) initiated an investigation into the impact of MIB and geosmin on water quality, assessment of various means of effective removal, and potential sources.« less
The impact of odor–reward memory on chemotaxis in larval Drosophila
Schleyer, Michael; Reid, Samuel F.; Pamir, Evren; Saumweber, Timo; Paisios, Emmanouil; Davies, Alexander
2015-01-01
How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn. We first report how odor-source intensities modulate these decisions to bring about higher levels of chemotactic performance for higher odor-source intensities during innate chemotaxis. We then examine whether the same modulations are responsible for alterations of chemotactic performance by learned odor “valence” (understood throughout as level of attractiveness). We find that run speed (i) is neither modulated by the innate nor by the learned valence of an odor. Turn rate (ii), however, is modulated by both: the higher the innate or learned valence of the odor, the less often larvae turn whenever heading toward the odor source, and the more often they turn when heading away. Likewise, turning direction (iii) is modulated concordantly by innate and learned valence: turning is biased more strongly toward the odor source when either innate or learned valence is high. Using numerical simulations, we show that a modulation of both turn rate and of turning direction is sufficient to account for the empirically found differences in preference scores across experimental conditions. Our results suggest that innate and learned valence organize adaptive olfactory search behavior by their summed effects on turn rate and turning direction, but not on run speed. This work should aid studies into the neural mechanisms by which memory impacts specific aspects of behavior. PMID:25887280
Functional neuronal processing of body odors differs from that of similar common odors.
Lundström, Johan N; Boyle, Julie A; Zatorre, Robert J; Jones-Gotman, Marilyn
2008-06-01
Visual and auditory stimuli of high social and ecological importance are processed in the brain by specialized neuronal networks. To date, this has not been demonstrated for olfactory stimuli. By means of positron emission tomography, we sought to elucidate the neuronal substrates behind body odor perception to answer the question of whether the central processing of body odors differs from perceptually similar nonbody odors. Body odors were processed by a network that was distinctly separate from common odors, indicating a separation in the processing of odors based on their source. Smelling a friend's body odor activated regions previously seen for familiar stimuli, whereas smelling a stranger activated amygdala and insular regions akin to what has previously been demonstrated for fearful stimuli. The results provide evidence that social olfactory stimuli of high ecological relevance are processed by specialized neuronal networks similar to what has previously been demonstrated for auditory and visual stimuli.
Henkin, R I; Levy, L M
2001-01-01
Our goal was to use functional MRI (fMRI) of brain to reveal activation in each cerebral hemisphere in response to imagination and smell of odors. FMRI brain scans were obtained in 24 normal subjects using multislice fast low angle shot (FLASH) MRI in response to imagination of banana and peppermint odors and in response to smell of corresponding odors of amyl acetate and menthone, respectively, and of pyridine. Three coronal sections selected from anterior to posterior brain regions were used. Similar studies were obtained in two patients with hyposmia using FLASH MRI and in one patient with hyposmia using echo planar imaging (EPI) both before and after theophylline treatment that returned smell function to or toward normal in each patient and in two patients with birhinal phantosmia (persistent foul odor) and global phantogeusia (persistent foul taste) with FLASH and EPI fMRI before and after treatment with neuroleptic drugs that inhibited their phantosmia and phantogeusia. Activation images were derived using correlation analysis. Ratios of hemispheric areas of brain activation to total hemispheric brain areas were calculated for FLASH fMRI, and numerical counts of pixel clusters in each hemisphere were made for EPI studies. Total pixel cluster counts in localized regions of each hemispheric section were also obtained. In normal subjects, activation generally occurred in left (L) > right (R) brain hemisphere in response to banana and peppermint odor imagination and to smell of corresponding odors of amyl acetate and menthone. Whereas there were no overall hemispheric differences for pyridine odor, activation in men was R > L hemisphere. Although absolute activation in both L and R hemispheres in response to banana odor imagination and amyl acetate smell was men > women, the ratio of L to R activation was women > men. In hyposmic patients studied by FLASH fMRI, activation to banana odor imagination and amyl acetate smell was L > R hemisphere both before and after theophylline treatment. In the hyposmic patient studied with EPI before theophylline treatment, activation to banana and peppermint odor imagination and to amyl acetate, menthone, and pyridine smell was R > L hemisphere; after theophylline treatment restored normal smell function, activation shifted completely with banana and peppermint odor imagination and amyl acetate and menthone smell to L > R hemisphere, consistent with responses in normal subjects. However, this shift also occurred for pyridine smell, which is opposite to responses in normal control subjects. In patients with phantosmia and phantogeusia, activation to phantosmia and phantogeusia before treatment was R > L hemisphere; after treatment inhibited phantosmia and phantogeusia, activation shifted with a slight L > R hemispheric lateralization. Localization of all lateralized responses indicated that anterior frontal and temporal cortices were brain regions most involved with imagination and smell of odors and with phantosmia and phantogeusia presence. Imagination and smell of odors perceived as pleasant generally activated the dominant or L > R brain hemisphere. Smell of odors perceived as unpleasant and unpleasant phantosmia and phantogeusia generally activated the contralateral or R > L brain hemisphere. With remission of phantosmia and phantogeusia, hemispheric activation was not only inhibited, but also there was a slight shift to L > R hemispheric predominance. Predominant L > R hemispheric differences in brain activation in normal subjects occurred in the order amyl acetate > menthone > pyridine, consistent with the hypothesis that pleasant odors are more appreciated in L hemisphere and unpleasant odors more in R hemisphere. Anterior frontal and temporal cortex regions previously found activated by imagination and smell of odors and phantosmia and phantogeusia perception accounted for most hemispheric differences.
Feng, Muhua; Xu, Xiangen; Liu, Feifei; Ke, Fan; Li, Wenchao
2018-01-01
The co-occurrence of cyanotoxins and taste-and-odor compounds are a growing concern for drinking water treatment plants (DWTPs) suffering cyanobacteria in water resources. The dissolved and cell-bound forms of three microcystin (MC) congeners (MC-LR, MC-RR and MC-YR) and four taste-and-odor compounds (geosmin, 2-methyl isoborneol, β-cyclocitral and β-ionone) were investigated monthly from August 2011 to July 2012 in the eastern drinking water source of Lake Chaohu. The total concentrations of microcystins and taste-and-odor compounds reached 8.86 μg/L and 250.7 ng/L, respectively. The seasonal trends of microcystins were not consistent with those of the taste-and-odor compounds, which were accompanied by dominant species Microcystis and Dolichospermum. The fate of the cyanobacteria and metabolites were determined simultaneously after the processes of coagulation/flocculation, sedimentation, filtration and chlorination in the associated full-scale DWTP. The dissolved fractions with elevated concentrations were detected after some steps and the breakthrough of cyanobacteria and metabolites were even observed in finished water. Chlorophyll-a limits at intake were established for the drinking water source based on our investigation of multiple metabolites, seasonal variations and their elimination rates in the DWTP. Not only microcystins but also taste-and-odor compounds should be taken into account to guide the management in source water and in DWTPs. PMID:29301296
Shang, Lixia; Feng, Muhua; Xu, Xiangen; Liu, Feifei; Ke, Fan; Li, Wenchao
2018-01-02
The co-occurrence of cyanotoxins and taste-and-odor compounds are a growing concern for drinking water treatment plants (DWTPs) suffering cyanobacteria in water resources. The dissolved and cell-bound forms of three microcystin (MC) congeners (MC-LR, MC-RR and MC-YR) and four taste-and-odor compounds (geosmin, 2-methyl isoborneol, β -cyclocitral and β -ionone) were investigated monthly from August 2011 to July 2012 in the eastern drinking water source of Lake Chaohu. The total concentrations of microcystins and taste-and-odor compounds reached 8.86 μg/L and 250.7 ng/L, respectively. The seasonal trends of microcystins were not consistent with those of the taste-and-odor compounds, which were accompanied by dominant species Microcystis and Dolichospermum . The fate of the cyanobacteria and metabolites were determined simultaneously after the processes of coagulation/flocculation, sedimentation, filtration and chlorination in the associated full-scale DWTP. The dissolved fractions with elevated concentrations were detected after some steps and the breakthrough of cyanobacteria and metabolites were even observed in finished water. Chlorophyll- a limits at intake were established for the drinking water source based on our investigation of multiple metabolites, seasonal variations and their elimination rates in the DWTP. Not only microcystins but also taste-and-odor compounds should be taken into account to guide the management in source water and in DWTPs.
Honey bee recruitment to food sources: olfaction or language?
Wenner, A M; Wells, P H; Johnson, D L
1969-04-04
Honey bee recruits locate food sources by olfaction and not by use of distance and direction information contained in the recruitment dance. Recruitment efficiency increases as odor of the food source accumulates in the hive, from hour to hour and from day to day. Flight patterns, landing patterns, bee odor, and Nassanoff secretion apparently do not aid in recruitment of bees.
Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing
Frederick, Donald E.; Brown, Austin; Brim, Elizabeth; Mehta, Nisarg; Vujovic, Mark
2016-01-01
Olfactory system beta (15–35 Hz) and gamma (40–110 Hz) oscillations of the local field potential in mammals have both been linked to odor learning and discrimination. Gamma oscillations represent the activity of a local network within the olfactory bulb, and beta oscillations represent engagement of a systemwide network. Here, we test whether beta and gamma oscillations represent different cognitive modes using the different demands of go/no-go and two-alternative choice tasks that previously were suggested to favor beta or gamma oscillations, respectively. We reconcile previous studies and show that both beta and gamma oscillations occur in both tasks, with gamma dominating the early odor sampling period (2–4 sniffs) and beta dominating later. The relative power and coherence of both oscillations depend separately on multiple factors within both tasks without categorical differences across tasks. While the early/gamma-associated period occurs in all trials, rats can perform above chance without the later/beta-associated period. Longer sampling, which includes beta oscillations, is associated with better performance. Gamma followed by beta oscillations therefore represents a sequence of cognitive and neural states during odor discrimination, which can be separately modified depending on the demands of a task and odor discrimination. Additionally, fast (85 Hz) and slow (70 Hz) olfactory bulb gamma oscillation sub-bands have been hypothesized to represent tufted and mitral cell networks, respectively (Manabe and Mori, 2013). We find that fast gamma favors the early and slow gamma the later (beta-dominated) odor-sampling period and that the relative contributions of these oscillations are consistent across tasks. SIGNIFICANCE STATEMENT Olfactory system gamma (40–110 Hz) and beta (15–35 Hz) oscillations of the local field potential indicate different neural firing statistics and functional circuits. We show that gamma and beta oscillations occur in stereotyped sequence during odor sampling in associative tasks, with local gamma dominating the first 250 ms of odor sniffing, followed by systemwide beta as behavioral responses are prepared. Oscillations and coupling strength between brain regions are modulated by task, odor, and learning, showing that task features can dramatically adjust the dynamics of a cortical sensory system, which changes state every ∼250 ms. Understanding cortical circuits, even at the biophysical level, depends on careful use of multiple behavioral contexts and stimuli. PMID:27445151
Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing.
Frederick, Donald E; Brown, Austin; Brim, Elizabeth; Mehta, Nisarg; Vujovic, Mark; Kay, Leslie M
2016-07-20
Olfactory system beta (15-35 Hz) and gamma (40-110 Hz) oscillations of the local field potential in mammals have both been linked to odor learning and discrimination. Gamma oscillations represent the activity of a local network within the olfactory bulb, and beta oscillations represent engagement of a systemwide network. Here, we test whether beta and gamma oscillations represent different cognitive modes using the different demands of go/no-go and two-alternative choice tasks that previously were suggested to favor beta or gamma oscillations, respectively. We reconcile previous studies and show that both beta and gamma oscillations occur in both tasks, with gamma dominating the early odor sampling period (2-4 sniffs) and beta dominating later. The relative power and coherence of both oscillations depend separately on multiple factors within both tasks without categorical differences across tasks. While the early/gamma-associated period occurs in all trials, rats can perform above chance without the later/beta-associated period. Longer sampling, which includes beta oscillations, is associated with better performance. Gamma followed by beta oscillations therefore represents a sequence of cognitive and neural states during odor discrimination, which can be separately modified depending on the demands of a task and odor discrimination. Additionally, fast (85 Hz) and slow (70 Hz) olfactory bulb gamma oscillation sub-bands have been hypothesized to represent tufted and mitral cell networks, respectively (Manabe and Mori, 2013). We find that fast gamma favors the early and slow gamma the later (beta-dominated) odor-sampling period and that the relative contributions of these oscillations are consistent across tasks. Olfactory system gamma (40-110 Hz) and beta (15-35 Hz) oscillations of the local field potential indicate different neural firing statistics and functional circuits. We show that gamma and beta oscillations occur in stereotyped sequence during odor sampling in associative tasks, with local gamma dominating the first 250 ms of odor sniffing, followed by systemwide beta as behavioral responses are prepared. Oscillations and coupling strength between brain regions are modulated by task, odor, and learning, showing that task features can dramatically adjust the dynamics of a cortical sensory system, which changes state every ∼250 ms. Understanding cortical circuits, even at the biophysical level, depends on careful use of multiple behavioral contexts and stimuli. Copyright © 2016 the authors 0270-6474/16/367750-18$15.00/0.
Mitigation of Methane and Odor using a Pilot-Scale Engineered Biocover at a Landfill, South Korea
NASA Astrophysics Data System (ADS)
Bomin, K.; O, G. C.; Ryu, H. W.; Jeon, J. M.; Cho, K. S.
2016-12-01
Landfill is an important anthropogenic source of methane (CH4) and odorous gases. In South Korea, 37% (0.5 Tg/y) of annual anthropogenic CH4 emissions come from landfills, which represent the third largest source of anthropogenic CH4 emissions. Moreover, civil complaints on landfill odor have been gradually increased. Biocovers have been demonstrated as promising solutions to mitigate CH4 and odors from landfills. The pilot-scale biocover (10 m in length x 5 m in width x 1 m in depth) was constructed at a landfill, Gwangyang, South Korea. The mixture of soil and perlite was used as packing materials, and EG microbial agent was used as an inoculum source. Methane removal efficiencies were 21% 72% from Feburary to May. Based on the dilution-to-threshold ratios derived by the air dilution sensory test, the removal efficiencies for complex odor were ranged from 95% to 99%. The packing materials of biocover were sampled from each of the following depth intervals: 0-15 cm, 15-30 cm, and 30-50 cm, and CH4 and DMS degradation rates were measured in serum bottles experiment. CH4 and DMS average degradation rates were the fastest in the 15-30 cm depth. Average degradation rates of CH4 and DMS in the 15-30 cm depth were 208±2.68 and 82±3.04 μg·g dry soil-1·h-1, respectively. Specific degradation rate were calculated excluding the lag time. CH4 specific degradation rate was the fastest in the 0-15 cm depth (329±14.45 μg·g dry soil-1·h-1), while DMS specific degradation rate was the fastest in the 30-50 cm depth (106±6.93 μg·g dry soil-1·h-1). The filling materials of biocover were sampled during winter, spring and summer. And three samples were examined bacterial communities by 16S rRNA pyrosequencing analysis. In order to clarify the relationship between the community structures and CH4/odor concentration, network analysis using extended local similarity analysis (eLSA) was also conducted. According to a phylogenic analysis, Methylobacter (40.4 42.1%) and Flavobacterium (20.2 38.2%) were the most prevalent species in the pilot-scale biocover. Methylobacter (Methanotrophics of Type I) are responsible for methane oxidation and can be identified in the biocover.
Peripheral and Central Olfactory Tuning in a Moth
Ong, Rose C.
2012-01-01
Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain. PMID:22362866
Butler, Ryan K.; White, L. Casey; Frederick-Duus, Dani; Kaigler, Kris F.; Fadel, Jim R.; Wilson, Marlene A.
2012-01-01
Rats exposed to the odor of a predator or to the elevated plus maze express fear behaviors without a prior exposure to either stimulus. The expression of innate fear provides for an ideal model of anxiety which can aid in the elucidation of brain circuits involved in anxiety-related behaviors. The current experiments compared activation of neuropeptide-containing neuronal populations in the amygdala of rats exposed to either the elevated plus maze (EPM; 5 minutes) versus home cage controls, or predator ferret odor versus butyric acid, or no odor (30 minutes). Sections of the brains were prepared for dual-labeled immunohistochemistry and counts of c-Fos co-localized with somatostatin (SOM) or neuropeptide Y (NPY) were made in the basolateral (BLA), central (CEA), medial (MEA) nucleus of the amygdala. Ferret odor and butyric acid exposure significantly decreased the percentage of SOM–positive neurons also immunoreactive for c-Fos in the anterior BLA compared to controls, whereas EPM exposure yielded a significant increase in the activation of SOM-positive neurons versus home cage controls. In the CEA, ferret odor and butyric exposure significantly decreased the percentage of SOM-positive neurons also immunoreactive for c-Fos compared to no-odor controls whereas EPM exposure yielded no change versus controls. In the MEA, both ferret odor exposure and EPM exposure resulted in increased SOM co-localized with c-Fos compared to control groups whereas NPY co-localized with c-Fos occurred following ferret odor exposure, but not EPM exposure. These results indicate that phenotypically distinct neuronal populations of the amygdala are differentially activated following exposure to different anxiogenic stimuli. These studies further elucidate the fundamental neurocircuitry of anxiety and could possibly explain the differential behavioral effects of predator versus novelty-induced stress. PMID:22917777
Effects of extraneous odors on canine detection
NASA Astrophysics Data System (ADS)
Waggoner, L. Paul; Jones, Meredith H.; Williams, Marc; Johnston, J. M.; Edge, Cindy C.; Petrousky, James A.
1998-12-01
Dogs are often required to detect target substances under challenging conditions. One of these challenges is to detect contraband in the presence of extraneous odors, whether they are part of the ambient environment or placed there for the purpose of evading detection. This paper presents the results of two studies evaluating the ability of dogs to detect target substances in the presence of varying concentrations of extraneous odors. The studies were conducted under behavioral laboratory conditions, providing good control over vapor sources and a clear basis for evaluation of detection responses. Dogs were trained to sample an air stream consisting of the extraneous odor only or the extraneous odor plus the target odor and then press the appropriate lever to earn food. The results are described in terns of the ability of dogs to detect target odors in the presence of a wide range of concentrations of the extraneous odors.
Odor compounds in waste gas emissions from agricultural operations and food industries.
Rappert, S; Müller, R
2005-01-01
In the last decades, large-scale agricultural operations and food industries have increased. These operations generate numerous types of odors. The reduction of land areas available for isolation of agricultural and food processing industrial operations from the public area and the increase in sensitivity and demand of the general public for a clean and pleasant environment have forced all of these industries to control odor emissions and toxic air pollutants. To develop environmentally sound, sustainable agricultural and food industrial operations, it is necessary to integrate research that focuses on modern analytical techniques and latest sensory technology of measurement and evaluation of odor and pollution, together with a fundamental knowledge of factors that are the basic units contributing to the production of odor and pollutants. Without a clear understanding of what odor is, how to measure it, and where it originates, it will be difficult to control the odor. The present paper reviews the available information regarding odor emissions from agricultural operations and food industries by giving an overview about odor problems, odor detection and quantification, and identifying the sources and the mechanisms that contribute to the odor emissions. Finally, ways of reducing or controlling the odor problem are discussed.
Introducing Computational Fluid Dynamics Simulation into Olfactory Display
NASA Astrophysics Data System (ADS)
Ishida, Hiroshi; Yoshida, Hitoshi; Nakamoto, Takamichi
An olfactory display is a device that delivers various odors to the user's nose. It can be used to add special effects to movies and games by releasing odors relevant to the scenes shown on the screen. In order to provide high-presence olfactory stimuli to the users, the display must be able to generate realistic odors with appropriate concentrations in a timely manner together with visual and audio playbacks. In this paper, we propose to use computational fluid dynamics (CFD) simulations in conjunction with the olfactory display. Odor molecules released from their source are transported mainly by turbulent flow, and their behavior can be extremely complicated even in a simple indoor environment. In the proposed system, a CFD solver is employed to calculate the airflow field and the odor dispersal in the given environment. An odor blender is used to generate the odor with the concentration determined based on the calculated odor distribution. Experimental results on presenting odor stimuli synchronously with movie clips show the effectiveness of the proposed system.
Synthesis of Exotic Soaps in the Chemistry Laboratory
NASA Astrophysics Data System (ADS)
Phanstiel, Otto, IV; Dueno, Eric; Xianghong Wang, Queenie
1998-05-01
A variety of different triglyceride sources ranging from Vietnamese garlic oil to a local restaurant's grill sludge were saponified to generate a series of exotic soaps. Students did not quantify their results, but described their products in terms of color, texture and odor. Their results were compared with existing data on the triglyceride content for each source used (when possible). Soap texture seemed to be related to the degree of unsaturation present in the starting triglyceride. However, texture alterations due to occluded impurities could not be ruled out. In general, fats and oils high in saturated fats (butter) gave hard, chunky, and waxlike soaps, while those high in unsaturated fats gave flaky and easily crumbled soaps (olive, corn, peanut and sunflower oils). Soap color was not consistent with triglyceride unsaturation levels during the time frame studied. Odor changes were dramatic and were explained in terms of a change in chemical structure (i.e. conversion from an ester to a carboxylate salt). In general, the experiment was well received by students and stressed the importance of making precise qualitative observations during the experiment.
Whiskers aid anemotaxis in rats.
Yu, Yan S W; Graff, Matthew M; Bresee, Chris S; Man, Yan B; Hartmann, Mitra J Z
2016-08-01
Observation of terrestrial mammals suggests that they can follow the wind (anemotaxis), but the sensory cues underlying this ability have not been studied. We identify a significant contribution to anemotaxis mediated by whiskers (vibrissae), a modality previously studied only in the context of direct tactile contact. Five rats trained on a five-alternative forced-choice airflow localization task exhibited significant performance decrements after vibrissal removal. In contrast, vibrissal removal did not disrupt the performance of control animals trained to localize a light source. The performance decrement of individual rats was related to their airspeed threshold for successful localization: animals that found the task more challenging relied more on the vibrissae for localization cues. Following vibrissal removal, the rats deviated more from the straight-line path to the air source, choosing sources farther from the correct location. Our results indicate that rats can perform anemotaxis and that whiskers greatly facilitate this ability. Because air currents carry information about both odor content and location, these findings are discussed in terms of the adaptive significance of the interaction between sniffing and whisking in rodents.
Whiskers aid anemotaxis in rats
Yu, Yan S. W.; Graff, Matthew M.; Bresee, Chris S.; Man, Yan B.; Hartmann, Mitra J. Z.
2016-01-01
Observation of terrestrial mammals suggests that they can follow the wind (anemotaxis), but the sensory cues underlying this ability have not been studied. We identify a significant contribution to anemotaxis mediated by whiskers (vibrissae), a modality previously studied only in the context of direct tactile contact. Five rats trained on a five-alternative forced-choice airflow localization task exhibited significant performance decrements after vibrissal removal. In contrast, vibrissal removal did not disrupt the performance of control animals trained to localize a light source. The performance decrement of individual rats was related to their airspeed threshold for successful localization: animals that found the task more challenging relied more on the vibrissae for localization cues. Following vibrissal removal, the rats deviated more from the straight-line path to the air source, choosing sources farther from the correct location. Our results indicate that rats can perform anemotaxis and that whiskers greatly facilitate this ability. Because air currents carry information about both odor content and location, these findings are discussed in terms of the adaptive significance of the interaction between sniffing and whisking in rodents. PMID:27574705
Food odors trigger an endocrine response that affects food ingestion and metabolism.
Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R
2015-08-01
Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.
Chemical factors determine olfactory system beta oscillations in waking rats.
Lowry, Catherine A; Kay, Leslie M
2007-07-01
Recent studies have pointed to olfactory system beta oscillations of the local field potential (15-30 Hz) and their roles both in learning and as specific responses to predator odors. To describe odorant physical properties, resultant behavioral responses and changes in the central olfactory system that may induce these oscillations without associative learning, we tested rats with 26 monomolecular odorants spanning 6 log units of theoretical vapor pressure (estimate of relative vapor phase concentration) and 10 different odor mixtures. We found odorant vapor phase concentration to be inversely correlated with investigation time on the first presentation, after which investigation times were brief and not different across odorants. Analysis of local field potentials from the olfactory bulb and anterior piriform cortex shows that beta oscillations in waking rats occur specifically in response to the class of volatile organic compounds with vapor pressures of 1-120 mmHg. Beta oscillations develop over the first three to four presentations and are weakly present for some odorants in anesthetized rats. Gamma oscillations show a smaller effect that is not restricted to the same range of odorants. Olfactory bulb theta oscillations were also examined as a measure of effective afferent input strength, and the power of these oscillations did not vary systematically with vapor pressure, suggesting that it is not olfactory bulb drive strength that determines the presence of beta oscillations. Theta band coherence analysis shows that coupling strength between the olfactory bulb and piriform cortex increases linearly with vapor phase concentration, which may facilitate beta oscillations above a threshold.
Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius.
Liu, Feng; Chen, Zhou; Liu, Nannan
2017-04-06
As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs.
Szyłak-Szydłowski, Mirosław
2017-09-01
The basic principle of odor sampling from surface sources is based primarily on the amount of air obtained from a specific area of the ground, which acts as a source of malodorous compounds. Wind tunnels and flux chambers are often the only available, direct method of evaluating the odor fluxes from small area sources. There are currently no widely accepted chamber-based methods; thus, there is still a need for standardization of these methods to ensure accuracy and comparability. Previous research has established that there is a significant difference between the odor concentration values obtained using the Lindvall chamber and those obtained by a dynamic flow chamber. Thus, the present study compares sampling methods using a streaming chamber modeled on the Lindvall cover (using different wind speeds), a static chamber, and a direct sampling method without any screens. The volumes of chambers in the current work were similar, ~0.08 m 3 . This study was conducted at the mechanical-biological treatment plant in Poland. Samples were taken from a pile covered by the membrane. Measured odor concentration values were between 2 and 150 ou E /m 3 . Results of the study demonstrated that both chambers can be used interchangeably in the following conditions: odor concentration is below 60 ou E /m 3 , wind speed inside the Lindvall chamber is below 0.2 m/sec, and a flow value is below 0.011 m 3 /sec. Increasing the wind speed above the aforementioned value results in significant differences in the results obtained between those methods. In all experiments, the results of the concentration of odor in the samples using the static chamber were consistently higher than those from the samples measured in the Lindvall chamber. Lastly, the results of experiments were employed to determine a model function of the relationship between wind speed and odor concentration values. Several researchers wrote that there are no widely accepted chamber-based methods. Also, there is still a need for standardization to ensure full comparability of these methods. The present study compared the existing methods to improve the standardization of area source sampling. The practical usefulness of the results was proving that both examined chambers can be used interchangeably. Statistically similar results were achieved while odor concentration was below 60 ou E /m 3 and wind speed inside the Lindvall chamber was below 0.2 m/sec. Increasing wind speed over these values results in differences between these methods. A model function of relationship between wind speed and odor concentration value was determined.
Odor Evoked Neural Oscillations in Drosophila Are Mediated by Widely Branching Interneurons
Tanaka, Nobuaki K.; Ito, Kei; Stopfer, Mark
2009-01-01
Stimulus-evoked oscillatory synchronization of neurons has been observed in a wide range of species. Here, we combined genetic strategies with paired intracellular and local field potential (LFP) recordings from the intact brain of Drosophila to study mechanisms of odor-evoked neural oscillations. We found common food odors at natural concentrations elicited oscillations in LFP recordings made from the mushroom body (MB), a site of sensory integration and analogous to the vertebrate pyriform cortex. The oscillations were reversibly abolished by application of the GABAa blocker picrotoxin. Intracellular recordings from local and projection neurons within the antennal lobe (AL, analogous to the olfactory bulb) revealed odor-elicited spikes and sub-threshold membrane potential oscillations that were tightly phase-locked to LFP oscillations recorded downstream in the MBs. These results suggested that, as in locusts, odors may elicit the oscillatory synchronization of AL neurons by means of GABAergic inhibition from local neurons (LNs). An analysis of the morphologies of genetically distinguished LNs revealed two populations of GABAergic neurons in the AL. One population of LNs innervated parts of glomeruli lacking terminals of receptor neurons, whereas the other branched more widely, innervating throughout the glomeruli, suggesting the two populations might participate in different neural circuits. To test the functional roles of these LNs, we used the temperature-sensitive dynamin mutant gene, shibire, to conditionally and reversibly block chemical transmission from each or both of these populations of LNs. We found only the more widely branching population of LNs is necessary for generating odor-elicited oscillations. PMID:19571150
Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens
Pregitzer, Pablo; Schubert, Marco; Breer, Heinz; Hansson, Bill S.; Sachse, Silke; Krieger, Jürgen
2012-01-01
In many insects, mate finding relies on female-released sex pheromones, which have to be deciphered by the male olfactory system within an odorous background of plant volatiles present in the environment of a calling female. With respect to pheromone-mediated mate localization, plant odorants may be neutral, favorable, or disturbing. Here we examined the impact of plant odorants on detection and coding of the major sex pheromone component, (Z)-11-hexadecenal (Z11-16:Ald) in the noctuid moth Heliothis virescens. By in vivo imaging the activity in the male antennal lobe (AL), we monitored the interference at the level of olfactory sensory neurons (OSN) to illuminate mixture interactions. The results show that stimulating the male antenna with Z11-16:Ald and distinct plant-related odorants simultaneously suppressed pheromone-evoked activity in the region of the macroglomerular complex (MGC), where Z11-16:Ald-specific OSNs terminate. Based on our previous findings that antennal detection of Z11-16:Ald involves an interplay of the pheromone binding protein (PBP) HvirPBP2 and the pheromone receptor (PR) HR13, we asked if the plant odorants may interfere with any of the elements involved in pheromone detection. Using a competitive fluorescence binding assay, we found that the plant odorants neither bind to HvirPBP2 nor affect the binding of Z11-16:Ald to the protein. However, imaging experiments analyzing a cell line that expressed the receptor HR13 revealed that plant odorants significantly inhibited the Z11-16:Ald-evoked calcium responses. Together the results indicate that plant odorants can interfere with the signaling process of the major sex pheromone component at the receptor level. Consequently, it can be assumed that plant odorants in the environment may reduce the firing activity of pheromone-specific OSNs in H. virescens and thus affect mate localization. PMID:23060749
Ventilation/odor study, field study. Final report, Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffee, R.A.; Jann, P.
1981-04-01
The results are presented of field investigations in schools, hospitals, and an office building on the relation between ventilation rate and odor within the buildings. The primary objective of the study was to determine: the reduction in ventilation rates that could be achieved in public buildings without causing adverse effects on odor; the sources of odor in public buildings; and the identity of the odorants. The variables of particular interest include: type of odor, occupant density, odorant identity and concentration, differences in impressions between occupants adapted to prevailing conditions and visitors, and the influence of temperature and humidity on bothmore » the generation and perception of common contaminants. Sensory odor measurements, chemical measurements, fresh air ventilation measurements, and acceptability evaluations via questionnaires were made. Sensory odor levels were found to be quite low in most buildings tested. A three-to-five-fold reduction in the fresh air ventilation in schools, hospitals, and office buildings can be achieved without significantly affecting perceived odor intensities or detectability. Tobacco smoking was found to be the most significant, pervasive contributor to interior odor level. Total hydrocarbon content of indoor air varies directly with ventilation rates; odor, however, does not. The complete set of reduced data are contained in Volume II. (LEW)« less
Odors and incontinence: What does the nose know?
Dalton, Pamela; Maute, Christopher
2018-06-01
The fear of producing malodors that can be detected by others is a daily cause of anxiety for millions of people with incontinence. For many, the risk-whether real or imagined-that leaked waste products will be detectable by odor is sufficiently concerning to result in limitations on many types of activities. However, worry about personal odors can sensitize our olfactory system and cause us to be more aware of odors that may otherwise not be perceptible. In addition, heightened olfactory attention can often lead to odor misattributions, such as when we erroneously identify our body as the source of an odor that may simply be present in the environment. Odors produced by our bodies (endogenous odors) do enjoy a greater access to emotional brain centers and are processed faster than general odors. Here we provide examples from both everyday life and laboratory studies to explain how and why the olfactory system is unique among our sensory systems and how this knowledge can provide insights to our concerns about smell and incontinence and inform the development of products and solutions for incontinence.
Murray S. Blum; John C. Moser; A.D. Cordero
1964-01-01
The higher members of the tribe Attini characteristically lay persistent and extensive odor trails especially in many neotropical areas. Thus, in Acromyrmex and Atta, long columns of foraging workers are frequently present on the odor trails but in the less specialized attine genera, workers may forage either in files or singly. Weber (1958...
Regulatory Features for Odorant Receptor Genes in the Mouse Genome.
Degl'Innocenti, Andrea; D'Errico, Anna
2017-01-01
The odorant receptor genes, seven transmembrane receptor genes constituting the vastest mammalian gene multifamily, are expressed monogenically and monoallelicaly in each sensory neuron in the olfactory epithelium. This characteristic, often referred to as the one neuron-one receptor rule, is driven by mostly uncharacterized molecular dynamics, generally named odorant receptor gene choice . Much attention has been paid by the scientific community to the identification of sequences regulating the expression of odorant receptor genes within their loci , where related genes are usually arranged in genomic clusters. A number of studies identified transcription factor binding sites on odorant receptor promoter sequences. Similar binding sites were also found on a number of enhancers that regulate in cis their transcription, but have been proposed to form interchromosomal networks. Odorant receptor gene choice seems to occur via the local removal of strongly repressive epigenetic markings, put in place during the maturation of the sensory neuron on each odorant receptor locus . Here we review the fast-changing state of art for the study of regulatory features for odorant receptor genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cain, W.S.; Shoaf, C.R.; Velasquez, S.F.
1992-03-01
In response to numerous requests for information related to odor thresholds, this document was prepared by the Air Risk Information Support Center in its role in providing technical assistance to State and Local government agencies on risk assessment of air pollutants. A discussion of basic concepts related to olfactory function and the measurement of odor thresholds is presented. A detailed discussion of criteria which are used to evaluate the quality of published odor threshold values is provided. The use of odor threshold information in risk assessment is discussed. The results of a literature search and review of odor threshold informationmore » for the chemicals listed as hazardous air pollutants in the Clean Air Act amendments of 1990 is presented. The published odor threshold values are critically evaluated based on the criteria discussed and the values of acceptable quality are used to determine a geometric mean or best estimate.« less
Sniffing shapes the dynamics of olfactory bulb gamma oscillations in awake behaving rats.
Rosero, Mario A; Aylwin, María L
2011-09-01
Mammals actively sample the environment for relevant olfactory objects. This active sampling is revealed by rapid changes in respiratory rate that influence the olfactory input. Yet the role of sniffing in shaping the neural responses to odorants has not been elucidated. In the olfactory bulb (OB), odorant-evoked gamma oscillations reflect the synchronous activity of mitral/tufted cells, a proposed mechanism for odorant representation. Here we examined the effect of sniffing frequency on the odorant-evoked gamma oscillations in the OB. We simultaneously recorded the respiratory rate and the local field potential while rats performed a lick/no-lick olfactory discrimination task with low odorant concentrations. High-frequency sniffing (HFS) augmented the power of gamma oscillations, suggesting an increase in the sensitivity to odorants. By contrast, coupling of the gamma oscillations to the sniff cycle and the amplitude of individual bursts were not modified by the respiratory rate. However, HFS prolonged the overall response to odorants and increased the frequency of the gamma oscillations, indicating that HFS reduces the adaptation to continuous odorant stimulation. Therefore, the increase in gamma power during HFS is the result of more frequent gamma bursts and the extended response to odorants. As odorant discrimination can be performed in a single sniff, a reduction in the adaptation mediated by HFS of novel odorants may facilitate odorant memory formation for subsequent odorant identification. Finally, these results corroborate that olfactory sampling should be integrated to the study of odorant coding in behaving animals. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia
Craven, Brent A.; Paterson, Eric G.; Settles, Gary S.
2010-01-01
The canine nasal cavity contains hundreds of millions of sensory neurons, located in the olfactory epithelium that lines convoluted nasal turbinates recessed in the rear of the nose. Traditional explanations for canine olfactory acuity, which include large sensory organ size and receptor gene repertoire, overlook the fluid dynamics of odorant transport during sniffing. But odorant transport to the sensory part of the nose is the first critical step in olfaction. Here we report new experimental data on canine sniffing and demonstrate allometric scaling of sniff frequency, inspiratory airflow rate and tidal volume with body mass. Next, a computational fluid dynamics simulation of airflow in an anatomically accurate three-dimensional model of the canine nasal cavity, reconstructed from high-resolution magnetic resonance imaging scans, reveals that, during sniffing, spatially separate odour samples are acquired by each nostril that may be used for bilateral stimulus intensity comparison and odour source localization. Inside the nose, the computation shows that a unique nasal airflow pattern develops during sniffing, which is optimized for odorant transport to the olfactory part of the nose. These results contrast sharply with nasal airflow in the human. We propose that mammalian olfactory function and acuity may largely depend on odorant transport by nasal airflow patterns resulting from either the presence of a highly developed olfactory recess (in macrosmats such as the canine) or the lack of one (in microsmats including humans). PMID:20007171
Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius
Liu, Feng; Chen, Zhou; Liu, Nannan
2017-01-01
As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs. PMID:28383033
Johnson, Brett A.; Ong, Joan; Leon, Michael
2014-01-01
To determine how responses evoked by natural odorant mixtures compare to responses evoked by individual odorant chemicals, we mapped 2-deoxyglucose uptake during exposures to vapors arising from a variety of odor objects that may be important to rodents in the wild. We studied 21 distinct natural odor stimuli ranging from possible food sources such as fruits, vegetables, and meats to environmental odor objects such as grass, herbs, and tree leaves. The natural odor objects evoked robust and surprisingly focal patterns of 2-deoxyglucose uptake involving clusters of neighboring glomeruli, thereby resembling patterns evoked by pure chemicals. Overall, the patterns were significantly related to patterns evoked by monomolecular odorant components that had been studied previously. Object patterns also were significantly related to the molecular features present in the mixture components. Despite these overall relationships, there were individual examples of object patterns that were simpler than might have been predicted given the multiplicity of components present in the vapors. In these cases, the object patterns lacked certain responses evoked by their major odorant mixture components. These data suggest the possibility of mixture response interactions and provide a foundation for understanding the neural coding of natural odor stimuli. PMID:20187145
Genetic influences on human body odor: from genes to the axillae.
Preti, George; Leyden, James J
2010-02-01
Several groups have identified the characteristic axillary odorants and how they arrive on the skin surface, pre-formed, bound to water-soluble odorless precursors in apocrine secretions. In the current issue, Martin et al., (2010) describe the relationship between the production of axillary odorants and variants in the ABCC11 gene. Individuals who are homozygotic for a SNP (538G>A) were found to have significantly less of the characteristic axillary odorants than either individuals who were heterozygotic for this change or those who had the wild-type gene. The 538G>A SNP predominates in Asians who have nearly complete loss of typical body odor. ABCC11 is expressed and localized in apocrine sweat glands. These findings are remarkably similar to the ethnic distribution and expression patterns for apocrine apoD, a previously identified carrier of a characteristic axillary odorant.
Li, Anan; Gire, David H.
2015-01-01
Studies in different sensory systems indicate that short spike patterns within a spike train that carry items of sensory information can be extracted from the overall train by using field potential oscillations as a reference (Kayser et al., 2012; Panzeri et al., 2014). Here we test the hypothesis that the local field potential (LFP) provides the temporal reference frame needed to differentiate between odors regardless of associated outcome. Experiments were performed in the olfactory system of the mouse (Mus musculus) where the mitral/tufted (M/T) cell spike rate develops differential responses to rewarded and unrewarded odors as the animal learns to associate one of the odors with a reward in a go–no go behavioral task. We found that coherence of spiking in M/T cells with the ϒ LFP (65 to 95 Hz) differentiates between odors regardless of the associated behavioral outcome of odor presentation. PMID:25855190
OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.
Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M
2007-01-01
Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.
Differential associative training enhances olfactory acuity in Drosophila melanogaster.
Barth, Jonas; Dipt, Shubham; Pech, Ulrike; Hermann, Moritz; Riemensperger, Thomas; Fiala, André
2014-01-29
Training can improve the ability to discriminate between similar, confusable stimuli, including odors. One possibility of enhancing behaviorally expressed discrimination (i.e., sensory acuity) relies on differential associative learning, during which animals are forced to detect the differences between similar stimuli. Drosophila represents a key model organism for analyzing neuronal mechanisms underlying both odor processing and olfactory learning. However, the ability of flies to enhance fine discrimination between similar odors through differential associative learning has not been analyzed in detail. We performed associative conditioning experiments using chemically similar odorants that we show to evoke overlapping neuronal activity in the fly's antennal lobes and highly correlated activity in mushroom body lobes. We compared the animals' performance in discriminating between these odors after subjecting them to one of two types of training: either absolute conditioning, in which only one odor is reinforced, or differential conditioning, in which one odor is reinforced and a second odor is explicitly not reinforced. First, we show that differential conditioning decreases behavioral generalization of similar odorants in a choice situation. Second, we demonstrate that this learned enhancement in olfactory acuity relies on both conditioned excitation and conditioned inhibition. Third, inhibitory local interneurons in the antennal lobes are shown to be required for behavioral fine discrimination between the two similar odors. Fourth, differential, but not absolute, training causes decorrelation of odor representations in the mushroom body. In conclusion, differential training with similar odors ultimately induces a behaviorally expressed contrast enhancement between the two similar stimuli that facilitates fine discrimination.
Encoding of Olfactory Information with Oscillating Neural Assemblies
NASA Astrophysics Data System (ADS)
Laurent, Gilles; Davidowitz, Hananel
1994-09-01
In the brain, fast oscillations of local field potentials, which are thought to arise from the coherent and rhythmic activity of large numbers of neurons, were observed first in the olfactory system and have since been described in many neocortical areas. The importance of these oscillations in information coding, however, is controversial. Here, local field potential and intracellular recordings were obtained from the antennal lobe and mushroom body of the locust Schistocerca americana. Different odors evoked coherent oscillations in different, but usually overlapping, ensembles of neurons. The phase of firing of individual neurons relative to the population was not dependent on the odor. The components of a coherently oscillating ensemble of neurons changed over the duration of a single exposure to an odor. It is thus proposed that odors are encoded by specific but dynamic assemblies of coherently oscillating neurons. Such distributed and temporal representation of complex sensory signals may facilitate combinatorial coding and associative learning in these, and possibly other, sensory networks.
Characterization and analysis of diesel exhaust odor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shala, F.J.
1983-01-01
An instrumental method known as the Diesel Odor Analysis System or DOAS, has been developed at A.D. Little, Inc. for measuring diesel exhaust odor. It was of interest to determine which compound or compounds in the oxygenated fraction of the exhaust were primarily responsible for the odor correlation as developed at A.D. Little, Inc. This was accomplished by observing how the measurement of the exhaust odor intensity and number of chemical constituents of the oxygenate fraction were changing with respect to the odor values as measured by the DOAS. Benzaldehyde was found to give the best correlation (R = 0.98)more » with odor. A quantitative relationship between exhaust odor as measured by the total intensity of aroma (TIA) and the benzaldehyde concentration (B) in ppm in the exhaust is given by: TIA = 1.11 log/sub 10/(B) + 4.10. This correlation was supported by results obtained from two other diesel engine exhaust sources. A methyl benzaldehyde isomer also yielded a good correlation (R = 0.90) with odor. Air to fuel ratio correlations were determined for the tentatively identified compounds, cinnamaldehyde (R = 0.94) and a C2-benzaldehyde isomer (R = 0.94).« less
Composition of key offensive odorants released from fresh food materials
NASA Astrophysics Data System (ADS)
Kim, Ki-Hyun; Kim, Yong-Hyun
2014-06-01
A refrigerator loaded with a variety of foods without sealed packaging can create quite an olfactory nuisance, and it may come as a surprise that fresh foods emit unpleasant odorants just as those that are decaying. To learn more about nuisance sources in our daily lives, we measured a list of 22 compounds designated as the key offensive odorants (e.g., reduced sulfur, nitrogenous, volatile fatty acid (VFA), and carbonyls) from nine types of common food items consumed in S. Korea: raw beef, raw fish, spam, yolks and albumin of boiled eggs (analyzed separately), milk, cheese, onions, and strawberries. The odor intensity (OI) of each food item was computed initially with the aid of previously used empirical equations. This indicates that the malodor properties of target foods tend to be governed by a few key odorants such as VFA, S, and N compounds. The extent of odorant mixing of a given food was then evaluated by exploring the correlation between the human olfaction (e.g., dilution-to-threshold (D/T) ratio) and the odor potential determined indirectly (instrumentally) such as odor activity value (OAV) or sum of odor intensity (SOI). The overall results of our study confirm the existence of malodorant compounds released from common food items and their contribution to their odor characteristics to a certain degree.
Odor measurements according to EN 13725: A statistical analysis of variance components
NASA Astrophysics Data System (ADS)
Klarenbeek, Johannes V.; Ogink, Nico W. M.; van der Voet, Hilko
2014-04-01
In Europe, dynamic olfactometry, as described by the European standard EN 13725, has become the preferred method for evaluating odor emissions emanating from industrial and agricultural sources. Key elements of this standard are the quality criteria for trueness and precision (repeatability). Both are linked to standard values of n-butanol in nitrogen. It is assumed in this standard that whenever a laboratory complies with the overall sensory quality criteria for n-butanol, the quality level is transferable to other, environmental, odors. Although olfactometry is well established, little has been done to investigate inter laboratory variance (reproducibility). Therefore, the objective of this study was to estimate the reproducibility of odor laboratories complying with EN 13725 as well as to investigate the transferability of n-butanol quality criteria to other odorants. Based upon the statistical analysis of 412 odor measurements on 33 sources, distributed in 10 proficiency tests, it was established that laboratory, panel and panel session are components of variance that significantly differ between n-butanol and other odorants (α = 0.05). This finding does not support the transferability of the quality criteria, as determined on n-butanol, to other odorants and as such is a cause for reconsideration of the present single reference odorant as laid down in EN 13725. In case of non-butanol odorants, repeatability standard deviation (sr) and reproducibility standard deviation (sR) were calculated to be 0.108 and 0.282 respectively (log base-10). The latter implies that the difference between two consecutive single measurements, performed on the same testing material by two or more laboratories under reproducibility conditions, will not be larger than a factor 6.3 in 95% of cases. As far as n-butanol odorants are concerned, it was found that the present repeatability standard deviation (sr = 0.108) compares favorably to that of EN 13725 (sr = 0.172). It is therefore suggested that the repeatability limit (r), as laid down in EN 13725, can be reduced from r ≤ 0.477 to r ≤ 0.31.
Lübke, Katrin T; Hoenen, Matthias; Pause, Bettina M
2012-03-17
On an individual level, human body odors carry information about whether a person is an eligible mate. The current studies investigate if body odors also transmit information about individuals being potential partners in more general terms, namely in regards to gender and sexual orientation. In study 1, 14 gay and 14 heterosexual men were presented with body odors obtained from potential partners (gay male and heterosexual female body odors, respectively) and heterosexual male body odor as a control. In study 2, 14 lesbian and 14 heterosexual women were presented with lesbian female and heterosexual male body odors representing body odors of potential partners, and heterosexual female body odor as a control. Central nervous processing was analyzed using chemosensory event-related potentials and current source density analysis (64-channel EEG recording). Gay and heterosexual men responded with shorter P2 latencies to the body odors of their preferred sexual partners, and lesbian women responded with shorter P2 latencies to body odors of their preferred gender. In response to heterosexual male body odors, lesbian women displayed the most pronounced P3 amplitude, and distinct neuronal activation in medial frontal and parietal neocortical areas. A similar pattern of neuronal activation was observed in gay men when presented with heterosexual male body odor. Both the early processing advantage (P2) for desirable partners' body odors as well as the enhanced evaluative processing (P3, CSD) of undesirable partners' body odors suggest that human body odors indeed carry information about individuals being potential partners in terms of gender and sexual orientation. Copyright © 2011 Elsevier B.V. All rights reserved.
Odor modeling methodology for determining the odor buffer distance for sanitary landfills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Dukman.
1991-01-01
The objective of this study is to create a methodology whereby reductions in off-site odor migrations resulting from operational and design changes in new or expanded sanitary landfills can be evaluated. The Ann Arbor Sanitary Landfill was chosen as a prototype landfill to test a hypothesis for this study. This study is a unique approach to odor prediction at sanitary landfills using surface flux measurements, odor threshold panel measurements, and dispersion modeling. Flux measurements were made at open tipping face, temporary cover, final cover, vents, and composting zones of the Ann Arbor Sanitary Landfill. Surface gas velocities and in-ground concentrationsmore » were determined to allow a quantification of the total and methane gas flow rate. Odor threshold panel measurements were performed to determine the odor intensity in odor units at the corresponding sites. The used the flux and odor panel measurements in the Industrial Source Complex Terrain Model to determine the hourly averaged highest and second highest odor levels at 175 receptors placed at the property boundary and 25 nearby residential locations. Using measured values for velocity, subsurface CH{sub 4} concentration and odor intensity, it was determined that the proposed 1990 operations with a buffer distance of 600 feet provided at least a factor of five protection below 1 o.u. of the odor threshold for all receptors, and dilution protection equal to the historic 1984 operations with a 1,200 feet isolation distance.« less
The effects of predator odors in mammalian prey species: a review of field and laboratory studies.
Apfelbach, Raimund; Blanchard, Caroline D; Blanchard, Robert J; Hayes, R Andrew; McGregor, Iain S
2005-01-01
Prey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding.
Source chemical characterization of swine odor
USDA-ARS?s Scientific Manuscript database
Odors from swine production have been linked to a host of issues affecting quality of life, property values and potentially human health. Typical compounds and classes of compounds include: sulfides, thiols, acids, phenols, indoles, ammonia and amines. The wide range of compounds assoicated with swi...
Sensory Coordination of Insect Flight
2009-12-29
begun to study how fruit flies pinpoint the location of an odor source ( banana mash placed within a black pole, a strong visual landmark against a...hover feeding, flower tracking, odor tracking etc. Figure 4: Extracting wing and body kinematics from freely flying Drosophila melanogaster. (A
Palmiotto, Marinella; Fattore, Elena; Paiano, Viviana; Celeste, Giorgio; Colombo, Andrea; Davoli, Enrico
2014-07-01
The large amounts of treated waste materials and the complex biological and physicochemical processes make the areas in the proximity of landfills vulnerable not only to emissions of potential toxic compounds but also to nuisance such as odor pollution. All these factors have a dramatic impact in the local environment producing environmental quality degradation. Most of the human health problems come from the landfill gas, from its non-methanic volatile organic compounds and from hazardous air pollutants. In addition several odorants are released during landfill operations and uncontrolled emissions. In this work we present an integrated risk assessment for emissions of hazard compounds and odor nuisance, to describe environmental quality in the landfill proximity. The study was based on sampling campaigns to acquire emission data for polychlorinated dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorobiphenyls, polycyclic aromatic hydrocarbons, benzene and vinyl chloride monomer and odor. All concentration values in the emissions from the landfill were measured and used in an air dispersion model to estimate maximum concentrations and depositions in correspondence to five sensitive receptors located in proximity of the landfill. Results for the different scenarios and cancer and non-cancer effects always showed risk estimates which were orders of magnitude below those accepted from the main international agencies (WHO, US EPA). Odor pollution was significant for a limited downwind area near the landfill appearing to be a significant risk factor of the damage to the local environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel.
Ikeno, Hidetoshi; Akamatsu, Tadaaki; Hasegawa, Yuji; Ai, Hiroyuki
2013-12-31
It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.
Odors and Air Pollution: A Bibliography with Abstracts.
ERIC Educational Resources Information Center
Environmental Protection Agency, Research Triangle Park, NC. Office of Air Programs.
The annotated bibliography presents a compilation of abstracts which deal with odors as they relate to air pollution. The abstracts are arranged within the following categories: Emission sources; Control methods; Measurement methods; Air quality measurements; Atmospheric interaction; Basic science and technology; Effects-human health;…
DESIGN MANUAL: SULFIDE CONTROL IN SANITARY SEWERAGE SYSTEMS
One characteristic by which sanitary sewage is known to the public is its potential for creating odor nuisances. Sometimes it is the odors escaping from sewer manholes that cause complaints; more commonly, the source is a wastewater treatment plant. Yet there are wastewater treat...
ERIC Educational Resources Information Center
Chemecology, 1996
1996-01-01
Describes an activity that enables students to understand that there are many substances and odors carried in the flow of water. Students identify and describe a variety of natural and introduced materials found in bodies of water, and observe the effects of silt, sand, gravel and odor sources on water. (DDR)
Cerda-Molina, Ana Lilia; Hernández-López, Leonor; de la O, Claudio E; Chavira-Ramírez, Roberto; Mondragón-Ceballos, Ricardo
2013-01-01
Several studies have shown that a woman's vaginal or axillary odors convey information on her attractivity. Yet, whether such scents induce psychoneuroendocrinological changes in perceivers is still controversial. We studied if smelling axillary and vulvar odors collected in the periovulatory and late luteal phases of young women modify salivary testosterone and cortisol levels, as well as sexual desire in men. Forty-five women and 115 men, all of them college students and unacquainted with each other, participated in the study. Female odors were collected on pads affixed to the axilla and on panty protectors both worn the entire night before experiments. Men provided five saliva samples, a basal one before the smelling procedure, and four more 15, 30, 60, and 75 min after exposure to odors. Immediately after smelling the odor source, men answered a questionnaire rating hedonic qualities of scents, and after providing the last saliva sample they answered questionnaire on sexual desire. We found that periovulatory axillary and vulvar odors increased testosterone and cortisol levels, with vulvar scents producing a more prolonged effect. Luteal axilla odors decreased testosterone and cortisol levels, while luteal vulva odors increased cortisol. Periovulatory axilla and vulva scents accounted for a general increase of interest in sex. These odors were also rated as more pleasant and familiar, while luteal vulvar odors were perceived as intense and unpleasant.
Cerda-Molina, Ana Lilia; Hernández-López, Leonor; de la O, Claudio E.; Chavira-Ramírez, Roberto; Mondragón-Ceballos, Ricardo
2013-01-01
Several studies have shown that a woman’s vaginal or axillary odors convey information on her attractivity. Yet, whether such scents induce psychoneuroendocrinological changes in perceivers is still controversial. We studied if smelling axillary and vulvar odors collected in the periovulatory and late luteal phases of young women modify salivary testosterone and cortisol levels, as well as sexual desire in men. Forty-five women and 115 men, all of them college students and unacquainted with each other, participated in the study. Female odors were collected on pads affixed to the axilla and on panty protectors both worn the entire night before experiments. Men provided five saliva samples, a basal one before the smelling procedure, and four more 15, 30, 60, and 75 min after exposure to odors. Immediately after smelling the odor source, men answered a questionnaire rating hedonic qualities of scents, and after providing the last saliva sample they answered questionnaire on sexual desire. We found that periovulatory axillary and vulvar odors increased testosterone and cortisol levels, with vulvar scents producing a more prolonged effect. Luteal axilla odors decreased testosterone and cortisol levels, while luteal vulva odors increased cortisol. Periovulatory axilla and vulva scents accounted for a general increase of interest in sex. These odors were also rated as more pleasant and familiar, while luteal vulvar odors were perceived as intense and unpleasant. PMID:24194730
DoOR 2.0 - Comprehensive Mapping of Drosophila melanogaster Odorant Responses
NASA Astrophysics Data System (ADS)
Münch, Daniel; Galizia, C. Giovanni
2016-02-01
Odors elicit complex patterns of activated olfactory sensory neurons. Knowing the complete olfactome, i.e. the responses in all sensory neurons for all relevant odorants, is desirable to understand olfactory coding. The DoOR project combines all available Drosophila odorant response data into a single consensus response matrix. Since its first release many studies were published: receptors were deorphanized and several response profiles were expanded. In this study, we add unpublished data to the odor-response profiles for four odorant receptors (Or10a, Or42b, Or47b, Or56a). We deorphanize Or69a, showing a broad response spectrum with the best ligands including 3-hydroxyhexanoate, alpha-terpineol, 3-octanol and linalool. We include all of these datasets into DoOR, provide a comprehensive update of both code and data, and new tools for data analyses and visualizations. The DoOR project has a web interface for quick queries (http://neuro.uni.kn/DoOR), and a downloadable, open source toolbox written in R, including all processed and original datasets. DoOR now gives reliable odorant-responses for nearly all Drosophila olfactory responding units, listing 693 odorants, for a total of 7381 data points.
In response to numerous requests for information related to odor thresholds, this document was prepared by the Air Risk Information Support Center in its role in providing technical assistance to State and Local government agencies on risk assessment of air pollutants. Discussion...
Genetic Characterization of Allium Tuncelianum: An Endemic Edible Allium Species With Garlic Odor
USDA-ARS?s Scientific Manuscript database
A. tuncelianum is a native species to the Eastern Anatolia. Its plant architecture resembles garlic (A. sativum) and it has mild garlic odor and flavor. Because of these similarities, it has been locally called “garlic”. In addition, it has 16 chromosomes number in its diploid genome like garlic. ...
NASA Astrophysics Data System (ADS)
Sówka, Izabela; Karski, Leszek
2018-01-01
The problem of odor nuisance requires undertaking legal means that aim towards implementation of regulations in order to improve the odor-related quality of air in selected areas in Poland. So far the works carried out in the country were concluded by drawing up `The guidelines for the bill on counteracting the odor nuisance'. However, as a result of completed social consultations in Poland, the Ministry of Environment, in 2015, resigned from implementing of so called anti-odor act. Currently, the legislature is taking steps which aim at undertaking specific actions in order to introduce solutions, which would directly regulate the issues of odors and the odor nuisance, to the national system. In the countries of the European Union, the issues related to odors are solved in diversified ways and the system still lacks of a uniform proposition, among others related to odor standards. In connection with the above, actions that are taken on a national level should fundamentally aim at developing national odor standards which would take into account the type / the kind of economic activity being a source of odor emission (e.g. clearly separated for existing objects and planned investments), at establishing a procedure and also legal and operational requirements related to determination and the types of zones with defined values of acceptable concentration and determination of reference methodology in monitoring, and modeling the dispersion of odors e.g. including strictly defined frequency of necessary tests. In addition, the process should be accompanied by a creation of financial mechanisms and streams in range of investments related to the development of technology and methods used to limit emission of odors.
Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source.
Liberzon, Alexander; Harrington, Kyra; Daniel, Nimrod; Gurka, Roi; Harari, Ally; Zilman, Gregory
2018-01-01
Some female moths attract male moths by emitting series of pulses of pheromone filaments propagating downwind. The turbulent nature of the wind creates a complex flow environment, and causes the filaments to propagate in the form of patches with varying concentration distributions. Inspired by moth navigation capabilities, we propose a navigation strategy that enables a flier to locate an upwind pulsating odor source in a windy environment using a single threshold-based detection sensor. This optomotor anemotaxis strategy is constructed based on the physical properties of the turbulent flow carrying discrete puffs of odor and does not involve learning, memory, complex decision making or statistical methods. We suggest that in turbulent plumes from a pulsating point source, an instantaneously measurable quantity referred as a "puff crossing time", improves the success rate as compared to the navigation strategies based on temporally regular zigzags due to intermittent contact, or an "internal counter", that do not use this information. Using computer simulations of fliers navigating in turbulent plumes of the pulsating point source for varying flow parameters such as turbulent intensities, plume meandering and wind gusts, we obtained statistics of navigation paths towards the pheromone sources. We quantified the probability of a successful navigation as well as the flight parameters such as the time spent searching and the total flight time, with respect to different turbulent intensities, meandering or gusts. The concepts learned using this model may help to design odor-based navigation of miniature airborne autonomous vehicles.
Odor-conditioned rheotaxis of the sea lamprey: modeling, analysis and validation
Choi, Jongeun; Jean, Soo; Johnson, Nicholas S.; Brant, Cory O.; Li, Weiming
2013-01-01
Mechanisms for orienting toward and locating an odor source are sought in both biology and engineering. Chemical ecology studies have demonstrated that adult female sea lamprey show rheotaxis in response to a male pheromone with dichotomous outcomes: sexually mature females locate the source of the pheromone whereas immature females swim by the source and continue moving upstream. Here we introduce a simple switching mechanism modeled after odor-conditioned rheotaxis for the sea lamprey as they search for the source of a pheromone in a one-dimensional riverine environment. In this strategy, the females move upstream only if they detect that the pheromone concentration is higher than a threshold value and drifts down (by turning off control action to save energy) otherwise. In addition, we propose various uncertainty models such as measurement noise, actuator disturbance, and a probabilistic model of a concentration field in turbulent flow. Based on the proposed model with uncertainties, a convergence analysis showed that with this simplistic switching mechanism, the lamprey converges to the source location on average in spite of all such uncertainties. Furthermore, a slightly modified model and its extensive simulation results explain the behaviors of immature female lamprey near the source location.
The Use of Sensory Analysis Techniques to Assess the Quality of Indoor Air.
Lewkowska, Paulina; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek
2017-01-02
The quality of indoor air is one of the significant elements that influences people's well-being and health inside buildings. Emissions of pollutants, which may cause odor nuisance, are the main reason for people's complaints regarding the quality of indoor air. As a result, it is necessary to perform tests aimed at identifying the sources of odors inside buildings. The article contains basic information on the characteristics of the sources of indoor air pollution and the influence of the odor detection threshold on people's health and comfort. An attempt was also made to classify and use sensory analysis techniques to perform tests of the quality of indoor air, which would enable identification of sensory experience and would allow for indication of the degree of their intensity.
Odor impact assessment of trace sulfur compounds from working faces of landfills in Beijing, China.
Liu, Yanjun; Lu, Wenjing; Wang, Hongtao; Huang, Qifei; Gao, Xingbao
2018-08-15
Odor pollution from landfills is causing a growing number of public complaints and concerns. Compared with hydrogen sulfide (H 2 S) and ammonia (NH 3 ), odor impacts of trace sulfur compounds (TSCs) are arousing concerns due to their low odor threshold values (OTVs). Working face on landfill sites has been claimed as major source of odor impacts. This study estimated the odor impacts of fugitive TSCs from the working face of a large typical municipal solid waste (MSW) landfill in Beijing, China. A modified wind tunnel system was introduced to estimate emission rates of TSCs, which is a basic requirement for odor impact assessment. The odor activity value (OAV) method was introduced for odor evaluation. Fieldwork in the selected landfill was conducted from 2014 to 2015. Methyl mercaptan (CH 3 SH), dimethyl sulfide, dimethyl disulfide (DMDS), and carbon disulfide (CS 2 ) were the TSCs studied in this work. The spatial concentration distributions of the TSCs were calculated on the basis of the Gaussian dispersion model in a "normal case" scenario and a "worst case" scenario. DMDS showed the highest emission rate (7.18 μg m -2 s -1 ), and CH 3 SH was the dominant odorous compound with an average emission rate of 4.58 μg m -2 s -1 . The dispersion modeling indicated that the odor impact distances of the TSCs in the studied landfill for the normal case and worst case scenarios were 495 ± 96 m and 9230 m at the downwind regions, respectively. Results of this study can benefit the formulation of strategies for odor control and abatement in landfill sites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Raineki, Charlis; Sarro, Emma; Rincón-Cortés, Millie; Perry, Rosemarie; Boggs, Joy; Holman, Colin J; Wilson, Donald A; Sullivan, Regina M
2015-01-01
Caregiver-associated cues, including those learned in abusive attachment, provide a sense of safety and security to the child. Here, we explore how cues associated with abusive attachment, such as maternal odor, can modify the enduring neurobehavioral effects of early-life abuse. Two early-life abuse models were used: a naturalistic paradigm, where rat pups were reared by an abusive mother; and a more controlled paradigm, where pups underwent peppermint odor-shock conditioning that produces an artificial maternal odor through engagement of the attachment circuit. Animals were tested for maternal odor preference in infancy, forced swim test (FST), social behavior, and sexual motivation in adulthood—in the presence or absence of maternal odors (natural or peppermint). Amygdala odor-evoked local field potentials (LFPs) via wireless electrodes were also examined in response to the maternal odors in adulthood. Both early-life abuse models induced preference for the maternal odors in infancy. In adulthood, these early-life abuse models produced FST deficits and decreased social behavior, but did not change sexual motivation. Presentation of the maternal odors rescued FST and social behavior deficits induced by early-life abuse and enhanced sexual motivation in all animals. In addition, amygdala LFPs from both abuse animal models showed unique activation within the gamma frequency (70–90 Hz) bands in response to the specific maternal odor present during early-life abuse. These results suggest that attachment-related cues learned during infancy have a profound ability to rescue neurobehavioral dysregulation caused by early-life abuse. Paradoxically, abuse-associated cues seem to acquire powerful and enduring antidepressive properties and alter amygdala modulation. PMID:25284320
Raineki, Charlis; Sarro, Emma; Rincón-Cortés, Millie; Perry, Rosemarie; Boggs, Joy; Holman, Colin J; Wilson, Donald A; Sullivan, Regina M
2015-03-01
Caregiver-associated cues, including those learned in abusive attachment, provide a sense of safety and security to the child. Here, we explore how cues associated with abusive attachment, such as maternal odor, can modify the enduring neurobehavioral effects of early-life abuse. Two early-life abuse models were used: a naturalistic paradigm, where rat pups were reared by an abusive mother; and a more controlled paradigm, where pups underwent peppermint odor-shock conditioning that produces an artificial maternal odor through engagement of the attachment circuit. Animals were tested for maternal odor preference in infancy, forced swim test (FST), social behavior, and sexual motivation in adulthood-in the presence or absence of maternal odors (natural or peppermint). Amygdala odor-evoked local field potentials (LFPs) via wireless electrodes were also examined in response to the maternal odors in adulthood. Both early-life abuse models induced preference for the maternal odors in infancy. In adulthood, these early-life abuse models produced FST deficits and decreased social behavior, but did not change sexual motivation. Presentation of the maternal odors rescued FST and social behavior deficits induced by early-life abuse and enhanced sexual motivation in all animals. In addition, amygdala LFPs from both abuse animal models showed unique activation within the gamma frequency (70-90 Hz) bands in response to the specific maternal odor present during early-life abuse. These results suggest that attachment-related cues learned during infancy have a profound ability to rescue neurobehavioral dysregulation caused by early-life abuse. Paradoxically, abuse-associated cues seem to acquire powerful and enduring antidepressive properties and alter amygdala modulation.
Beshel, Jennifer
2010-01-01
We previously showed that in a two-alternative choice (2AC) task, olfactory bulb (OB) gamma oscillations (∼70 Hz in rats) were enhanced during discrimination of structurally similar odorants (fine discrimination) versus discrimination of dissimilar odorants (coarse discrimination). In other studies (mostly employing go/no-go tasks) in multiple labs, beta oscillations (15–35 Hz) dominate the local field potential (LFP) signal in olfactory areas during odor sampling. Here we analyzed the beta frequency band power and pairwise coherence in the 2AC task. We show that in a task dominated by gamma in the OB, beta oscillations are also present in three interconnected olfactory areas (OB and anterior and posterior pyriform cortex). Only the beta band showed consistently elevated coherence during odor sniffing across all odor pairs, classes (alcohols and ketones), and discrimination types (fine and coarse), with stronger effects in first than in final criterion sessions (>70% correct). In the first sessions for fine discrimination odor pairs, beta power for incorrect trials was the same as that for correct trials for the other odor in the pair. This pattern was not repeated in coarse discrimination, in which beta power was elevated for correct relative to incorrect trials. This difference between fine and coarse odor discriminations may relate to different behavioral strategies for learning to differentiate similar versus dissimilar odors. Phase analysis showed that the OB led both pyriform areas in the beta frequency band during odor sniffing. We conclude that the beta band may be the means by which information is transmitted from the OB to higher order areas, even though task specifics modify dominance of one frequency band over another within the OB. PMID:20538778
Song, Xin-Mi; Zhang, Lin-Ya; Fu, Xiao-Bin; Wu, Fan; Tan, Jing; Li, Hong-Liang
2018-01-01
Odorant-binding proteins (OBPs) are the critical elements responsible for binding and transporting odors and pheromones in the sensitive olfactory system in insects. Honey bees are representative social insects that have complex odorants and pheromone communication systems relative to solitary insects. Here, we first cloned and characterized OBP11 ( AcerOBP11 ), from the worker bees antennae of Eastern honey bee, Apis cerana . Based on sequence and phylogenetic analysis, most sequences homologous to AcerOBP11 belong to the typical OBPs family. The transcriptional expression profiles showed that AcerOBP11 was expressed throughout the developmental stages and highly specifically expressed in adult antennae. Using immunofluorescence localization, AcerOBP11 in worker bee's antennae was only localized in the sensilla basiconica (SB) near the fringe of each segment. Fluorescence ligand-binding assay showed that AcerOBP11 protein had strong binding affinity with the tested various bee pheromones components, including the main queen mandibular pheromones (QMPs), methyl p-hydroxybenzoate (HOB), and ( E )-9-oxo-2-decanoic acid (9-ODA), alarm pheromone (n-hexanol), and worker pheromone components. AcerOBP11 also had strong binding affinity to plant volatiles, such as 4-Allylveratrole. Based on the docking and site-directed mutagenesis, two key amino acid residues (Ile97 and Ile140) were involved in the binding of AcerOBP11 to various bee pheromones. Taken together, we identified that AcerOBP11 was localized in a single type of antennal chemosensilla and had complex ligand-binding properties, which confer the dual-role with the primary characteristics of sensing various bee pheromones and secondary characteristics of sensing general odorants. This study not only prompts the theoretical basis of OBPs-mediated bee pheromones recognition of honey bee, but also extends the understanding of differences in pheromone communication between social and solitary insects.
Noradrenergic induction of odor-specific neural habituation and olfactory memories
Shea, Stephen D.; Katz, Lawrence C.; Mooney, Richard
2008-01-01
For many mammals, individual recognition of conspecifics relies on olfactory cues. Certain individual recognition memories are thought to be stored when conspecific odor cues coincide with surges of noradrenaline (NA) triggered by intensely arousing social events. Such familiar stimuli elicit reduced behavioral responses, a change likely related to NA-dependent plasticity in the olfactory bulb (OB). In addition to its role in these ethological memories, NA signaling in the OB appears to be relevant for the discrimination of more arbitrary odorants as well. Nonetheless, no NA-gated mechanism of long-term plasticity in the OB has ever been directly observed in vivo. Here we report that NA release from locus coeruleus (LC), when coupled to odor presentation, acts locally in the main olfactory bulb (MOB) to cause a specific long-lasting suppression of respones to paired odors. These effects were observed for both food odors and urine, an important social recognition cue. Moreover, in subsequent behavioral tests, mice exhibited habituation to paired urine stimuli, suggesting that this LC-mediated olfactory neural plasticity, induced under anesthesia, can store an individual recognition memory that is observable upon recovery. PMID:18923046
Conrad, Taina; Paxton, Robert J; Assum, Günter; Ayasse, Manfred
2018-01-01
In some insect species, females may base their choice for a suitable mate on male odor. In the red mason bee, Osmia bicornis, female choice is based on a male's odor bouquet as well as its thorax vibrations, and its relatedness to the female, a putative form of optimal outbreeding. Interestingly, O. bicornis can be found as two distinct color morphs in Europe, which are thought to represent subspecies and between which we hypothesize that female discrimination may be particularly marked. Here we investigated (i) if these two colors morphs do indeed represent distinct, reproductively differentiated populations, (ii) how odor bouquets of male O. bicornis vary within and between populations, and (iii) whether variation in male odor correlates with genetic distance, which might represent a cue by which females could optimally outbreed. Using GC and GC-MS analysis of male odors and microsatellite analysis of males and females from 9 populations, we show that, in Denmark, an area of subspecies sympatry, the two color morphs at any one site do not differ, either in odor bouquet or in population genetic differentiation. Yet populations across Europe are distinct in their odor profile as well as being genetically differentiated. Odor differences do not, however, mirror genetic differentiation between populations. We hypothesize that populations from Germany, England and Denmark may be under sexual selection through female choice for local odor profiles, which are not related to color morph though which could ultimately lead to population divergence and speciation.
[Evaluation of treatment technology of odor pollution source in petrochemical industry].
Mu, Gui-Qin; Sui, Li-Hua; Guo, Ya-Feng; Ma, Chuan-Jun; Yang, Wen-Yu; Gao, Yang
2013-12-01
Using an environmental technology assessment system, we put forward the evaluation index system for treatment technology of the typical odor pollution sources in the petroleum refining process, which has been applied in the assessment of the industrial technology. And then the best available techniques are selected for emissions of gas refinery sewage treatment plant, headspace gas of acidic water jars, headspace gas of cold coke jugs/intermediate oil tank/dirty oil tank, exhaust of oxidative sweetening, and vapors of loading and unloading oil.
Mutic, Smiljana; Moellers, Eileen M; Wiesmann, Martin; Freiherr, Jessica
2015-01-01
Human body odor is a source of important social information. In this study, we explore whether the sex of an individual can be established based on smelling axillary odor and whether exposure to male and female odors biases chemosensory and social perception. In a double-blind, pseudo-randomized application, 31 healthy normosmic heterosexual male and female raters were exposed to male and female chemosignals (odor samples of 27 heterosexual donors collected during a cardio workout) and a no odor sample. Recipients rated chemosensory samples on a masculinity-femininity scale and provided intensity, familiarity and pleasantness ratings. Additionally, the modulation of social perception (gender-neutral faces and personality attributes) and affective introspection (mood) by male and female chemosignals was assessed. Male and female axillary odors were rated as rather masculine, regardless of the sex of the donor. As opposed to the masculinity bias in the odor perception, a femininity bias modulating social perception appeared. A facilitated femininity detection in gender-neutral faces and personality attributes in male and female chemosignals appeared. No chemosensory effect on mood of the rater was observed. The results are discussed with regards to the use of male and female chemosignals in affective and social communication.
Mutic, Smiljana; Moellers, Eileen M.; Wiesmann, Martin; Freiherr, Jessica
2016-01-01
Human body odor is a source of important social information. In this study, we explore whether the sex of an individual can be established based on smelling axillary odor and whether exposure to male and female odors biases chemosensory and social perception. In a double-blind, pseudo-randomized application, 31 healthy normosmic heterosexual male and female raters were exposed to male and female chemosignals (odor samples of 27 heterosexual donors collected during a cardio workout) and a no odor sample. Recipients rated chemosensory samples on a masculinity-femininity scale and provided intensity, familiarity and pleasantness ratings. Additionally, the modulation of social perception (gender-neutral faces and personality attributes) and affective introspection (mood) by male and female chemosignals was assessed. Male and female axillary odors were rated as rather masculine, regardless of the sex of the donor. As opposed to the masculinity bias in the odor perception, a femininity bias modulating social perception appeared. A facilitated femininity detection in gender-neutral faces and personality attributes in male and female chemosignals appeared. No chemosensory effect on mood of the rater was observed. The results are discussed with regards to the use of male and female chemosignals in affective and social communication. PMID:26834656
Dissecting the Signaling Mechanisms Underlying Recognition and Preference of Food Odors
Harris, Gareth; Shen, Yu; Ha, Heonick; Donato, Alessandra; Wallis, Samuel; Zhang, Xiaodong
2014-01-01
Food is critical for survival. Many animals, including the nematode Caenorhabditis elegans, use sensorimotor systems to detect and locate preferred food sources. However, the signaling mechanisms underlying food-choice behaviors are poorly understood. Here, we characterize the molecular signaling that regulates recognition and preference between different food odors in C. elegans. We show that the major olfactory sensory neurons, AWB and AWC, play essential roles in this behavior. A canonical Gα-protein, together with guanylate cyclases and cGMP-gated channels, is needed for the recognition of food odors. The food-odor-evoked signal is transmitted via glutamatergic neurotransmission from AWC and through AMPA and kainate-like glutamate receptor subunits. In contrast, peptidergic signaling is required to generate preference between different food odors while being dispensable for the recognition of the odors. We show that this regulation is achieved by the neuropeptide NLP-9 produced in AWB, which acts with its putative receptor NPR-18, and by the neuropeptide NLP-1 produced in AWC. In addition, another set of sensory neurons inhibits food-odor preference. These mechanistic logics, together with a previously mapped neural circuit underlying food-odor preference, provide a functional network linking sensory response, transduction, and downstream receptors to process complex olfactory information and generate the appropriate behavioral decision essential for survival. PMID:25009271
Effects of female odors on the sexual behavior of male hamsters.
Johnston, R E
1986-09-01
A series of experiments was undertaken to investigate the effects of removal of several scent glands and scent-producing organs of female hamsters on the copulatory performance of male hamsters. In the first experiment it was shown that males engage in less copulatory activity toward females lacking vaginal secretions than toward females with these odors. Eliminating visual cues by observing pairs under infrared illumination did not change the performance of males toward these two kinds of females. The results of Experiment 2 indicated the importance of flank, ear, and Harderian glands as well as vaginal secretions--males showed the highest levels of copulatory behavior toward females with a full complement of odors and the lowest levels toward those lacking three of four sources of scent. Similar results were obtained in the third experiment in which anesthetized females were used as stimulus animals to increase the importance of chemical cues and to reduce variability due to the behavior of females. The sexual behavior of males was greatest toward females with all sources of scent present, lower toward those lacking vaginal secretions, and still lower toward those lacking vaginal secretions and other sources of odors. In the fourth experiment we asked whether any one of the nonvaginal scent glands was particularly important in stimulating male sexual behavior, but we found no differences in male performance toward females that lacked vaginal secretions or that in addition lacked one of the other scent glands. In the fifth experiment males displayed higher levels of sexual behavior toward vaginectomized females than toward vaginectomized females that had been deodorized by a cleaning procedure, again indicating the importance of nonvaginal odors in stimulating copulatory performance. Thus these experiments demonstrate the importance of vaginal secretions in the sexual arousal of male hamsters, a role for nonvaginal odors in sexual arousal of males, and the lack of necessity of these odors for male copulatory behavior. These results have implications for theories of olfactory communication in mammals and for interpretations of experiments in which lesions of the olfactory system lead to deficits in male copulatory performance.
USDA-ARS?s Scientific Manuscript database
Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3) and odorous volatile organic compound (VOC) emissions associated with animal production is a critical need. Current methods utilizing wind tunnels and flux chambers for measurements of gaseous emissions from area sources such as f...
Methods to measure olfactory behavior in mice
Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui
2015-01-01
Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse’s olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, to both social and nonsocial odors. PMID:25645244
Köster, Egon P.; Møller, Per; Mojet, Jozina
2014-01-01
Our senses have developed as an answer to the world we live in (Gibson, 1966) and so have the forms of memory that accompany them. All senses serve different purposes and do so in different ways. In vision, where orientation and object recognition are important, memory is strongly linked to identification. In olfaction, the guardian of vital functions such as breathing and food ingestion, perhaps the most important (and least noticed and researched) role of odor memory is to help us not to notice the well-known odors or flavors in our everyday surroundings, but to react immediately to the unexpected ones. At the same time it provides us with a feeling of safety when our expectancies are met. All this happens without any smelling intention or conscious knowledge of our expectations. Identification by odor naming is not involved in this and people are notoriously bad at it. Odors are usually best identified via the episodic memory of the situation in which they once occurred. Spontaneous conscious odor perception normally only occurs in situations where attention is demanded, either because the inhaled air or the food smell is particularly good or particularly bad and people search for its source or because people want to actively enjoy the healthiness and pleasantness of their surroundings or food. Odor memory is concerned with novelty detection rather than with recollection of odors. In this paper, these points are illustrated with experimental results and their consequences for doing ecologically valid odor memory research are drawn. Furthermore, suggestions for ecologically valid research on everyday odor memory and some illustrative examples are given. PMID:24575059
Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies
NASA Astrophysics Data System (ADS)
MacLeod, Katrina; Laurent, Gilles
1996-11-01
Stimulus-evoked oscillatory synchronization of neural assemblies and temporal patterns of neuronal activity have been observed in many sensory systems, such as the visual and auditory cortices of mammals or the olfactory system of insects. In the locust olfactory system, single odor puffs cause the immediate formation of odor-specific neural assemblies, defined both by their transient synchronized firing and their progressive transformation over the course of a response. The application of an antagonist of ionotropic γ-aminobutyric acid (GABA) receptors to the first olfactory relay neuropil selectively blocked the fast inhibitory synapse between local and projection neurons. This manipulation abolished the synchronization of the odor-coding neural ensembles but did not affect each neuron's temporal response patterns to odors, even when these patterns contained periods of inhibition. Fast GABA-mediated inhibition, therefore, appears to underlie neuronal synchronization but not response tuning in this olfactory system. The selective desynchronization of stimulus-evoked oscillating neural assemblies in vivo is now possible, enabling direct functional tests of their significance for sensation and perception.
Access to the odor world: olfactory receptors and their role for signal transduction in insects.
Fleischer, Joerg; Pregitzer, Pablo; Breer, Heinz; Krieger, Jürgen
2018-02-01
The sense of smell enables insects to recognize and discriminate a broad range of volatile chemicals in their environment originating from prey, host plants and conspecifics. These olfactory cues are received by olfactory sensory neurons (OSNs) that relay information about food sources, oviposition sites and mates to the brain and thus elicit distinct odor-evoked behaviors. Research over the last decades has greatly advanced our knowledge concerning the molecular basis underlying the reception of odorous compounds and the mechanisms of signal transduction in OSNs. The emerging picture clearly indicates that OSNs of insects recognize odorants and pheromones by means of ligand-binding membrane proteins encoded by large and diverse families of receptor genes. In contrast, the mechanisms of the chemo-electrical transduction process are not fully understood; the present status suggests a contribution of ionotropic as well as metabotropic mechanisms. In this review, we will summarize current knowledge on the peripheral mechanisms of odor sensing in insects focusing on olfactory receptors and their specific role in the recognition and transduction of odorant and pheromone signals by OSNs.
Dissecting the signaling mechanisms underlying recognition and preference of food odors.
Harris, Gareth; Shen, Yu; Ha, Heonick; Donato, Alessandra; Wallis, Samuel; Zhang, Xiaodong; Zhang, Yun
2014-07-09
Food is critical for survival. Many animals, including the nematode Caenorhabditis elegans, use sensorimotor systems to detect and locate preferred food sources. However, the signaling mechanisms underlying food-choice behaviors are poorly understood. Here, we characterize the molecular signaling that regulates recognition and preference between different food odors in C. elegans. We show that the major olfactory sensory neurons, AWB and AWC, play essential roles in this behavior. A canonical Gα-protein, together with guanylate cyclases and cGMP-gated channels, is needed for the recognition of food odors. The food-odor-evoked signal is transmitted via glutamatergic neurotransmission from AWC and through AMPA and kainate-like glutamate receptor subunits. In contrast, peptidergic signaling is required to generate preference between different food odors while being dispensable for the recognition of the odors. We show that this regulation is achieved by the neuropeptide NLP-9 produced in AWB, which acts with its putative receptor NPR-18, and by the neuropeptide NLP-1 produced in AWC. In addition, another set of sensory neurons inhibits food-odor preference. These mechanistic logics, together with a previously mapped neural circuit underlying food-odor preference, provide a functional network linking sensory response, transduction, and downstream receptors to process complex olfactory information and generate the appropriate behavioral decision essential for survival. Copyright © 2014 the authors 0270-6474/14/339389-15$15.00/0.
Toxicological Assessment of ISS Air Quality: Contingency Sampling - February 2013
NASA Technical Reports Server (NTRS)
Meyers, Valerie
2013-01-01
Two grab sample containers (GSCs) were collected by crew members onboard ISS in response to a vinegar-like odor in the US Lab. On February 5, the first sample was collected approximately 1 hour after the odor was noted by the crew in the forward portion of the Lab. The second sample was collected on February 22 when a similar odor was noted and localized to the end ports of the microgravity science glovebox (MSG). The crewmember removed a glove from the MSG and collected the GSC inside the glovebox volume. Both samples were returned on SpaceX-2 for ground analysis.
Maras, Pamela M.; Petrulis, Aras
2009-01-01
In many rodent species, such as Syrian hamsters, reproductive behavior requires neural integration of chemosensory information and steroid hormone cues. The medial amygdala processes both of these signals through anatomically distinct sub-regions; the anterior region (MeA) receives substantial chemosensory input, but contains few steroid receptor-labeled neurons, whereas the posterodorsal region (MePD) receives less chemosensory input, but contains a dense population of steroid receptors. Importantly, these sub-regions have considerable reciprocal connections, and the goal of this experiment was therefore to determine whether interactions between MeA and MePD are required for male hamsters’ preference to investigate female over male odors. To functionally disconnect MeA and MePD, males received unilateral lesions of MeA and MePD within opposite brain hemispheres. Control males received either unilateral lesions of MeA and MePD within the same hemisphere or sham surgery. Odor preferences were measured using a 3-choice apparatus, which simultaneously presented female, male and clean odor stimuli; all tests were done under conditions that either prevented or allowed contact with the odor sources. Under non-contact conditions, males with asymmetrical lesions investigated female and male odors equally, whereas males in both control groups preferred to investigate female odors. Under contact conditions, all groups investigated female odors longer than male odors, although males with asymmetrical lesions displayed decreased investigation of female odors compared to sham males. These data suggest that MeA-MePD interactions are critical for processing primarily the volatile components of social odors and highlight the importance of input from the main olfactory system to these nuclei in the regulation of reproductive behavior. More broadly, these results support the role of the medial amygdala in integrating chemosensory and hormone information, a process that may underlie social odor processing in a variety of behavioral contexts. PMID:19931356
Detection and avoidance of a carnivore odor by prey
Ferrero, David M.; Lemon, Jamie K.; Fluegge, Daniela; Pashkovski, Stan L.; Korzan, Wayne J.; Datta, Sandeep Robert; Spehr, Marc; Fendt, Markus; Liberles, Stephen D.
2011-01-01
Predator–prey relationships provide a classic paradigm for the study of innate animal behavior. Odors from carnivores elicit stereotyped fear and avoidance responses in rodents, although sensory mechanisms involved are largely unknown. Here, we identified a chemical produced by predators that activates a mouse olfactory receptor and produces an innate behavioral response. We purified this predator cue from bobcat urine and identified it to be a biogenic amine, 2-phenylethylamine. Quantitative HPLC analysis across 38 mammalian species indicates enriched 2-phenylethylamine production by numerous carnivores, with some producing >3,000-fold more than herbivores examined. Calcium imaging of neuronal responses in mouse olfactory tissue slices identified dispersed carnivore odor-selective sensory neurons that also responded to 2-phenylethylamine. Two prey species, rat and mouse, avoid a 2-phenylethylamine odor source, and loss-of-function studies involving enzymatic depletion of 2-phenylethylamine from a carnivore odor indicate it to be required for full avoidance behavior. Thus, rodent olfactory sensory neurons and chemosensory receptors have the capacity for recognizing interspecies odors. One such cue, carnivore-derived 2-phenylethylamine, is a key component of a predator odor blend that triggers hard-wired aversion circuits in the rodent brain. These data show how a single, volatile chemical detected in the environment can drive an elaborate danger-associated behavioral response in mammals. PMID:21690383
Bias of Tedlar bags in the measurement of agricultural odorants.
Trabue, Steven L; Anhalt, Jennifer C; Zahn, James A
2006-01-01
Odor regulations typically specify the use of dynamic dilution olfactometery (DDO) as a method to quantify odor emissions, and Tedlar bags are the preferred holding container for grab samples. This study was conducted to determine if Tedlar bags affect the integrity of sampled air from animal operations. Air samples were collected simultaneously in both Tedlar bags and Tenax thermal desorption tubes. Sample sources originated from either a hydrocarbon-free air tank, dynamic headspace chamber (DHC), or swine-production facility, and were analyzed by gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Several background contaminants were identified from Tedlar bags, which included the odorous compounds N,N-dimethyl acetamide (DMAC), acetic acid, and phenol. Samples from the DHC demonstrated that recovery of malodor compounds was dependent on residence time in the Tedlar bag with longer residence time leading to lower recovery. After 24 h of storage, recovery of C3-C6 volatile fatty acids (VFA) averaged 64%, 4-methylphenol and 4-ethylphenol averaged 10%, and indole and 3-methylindole were below the detection limits of GC-MS-O. The odor activity value (OAV) of grab samples collected in Tedlar bags were 33 to 65% lower following 24 h of storage. These results indicate that significant odorant bias occurs when using Tedlar bags for the sampling of odors from animal production facilities.
Measurement of the odor impact of a waste deposit using the SF6-tracer method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roetzer, H.; Muehldorf, V.; Riesing, J.
1994-12-01
Landfill gas emitted from a waste disposal often causes odor nuisance in the vicinity. To verify that the odor concentrations were below these limit values, the odor contributions of different sources had to be distinguished. A tracer method was applied to measure the odor impact of the sanitary landfill to its environment. The emitted landfill gas was labelled with the tracer gas SF6. The tracer gas was parted to even amounts and released through ten special nozzles equally distributed over the surface of the landfill. In the area around the landfill the concentration of the tracer gas was measured bymore » collecting air samples and analyzing them with a gas chromatograph with an electron capture detector. Fifteen air sampling units were used to collect eight consecutive air samples at each selected point. These measurements gave the relation between the emission of landfill gas and the resulting concentrations in ambient air.« less
Pena, Roberta Ribas; Medeiros, Daniel de Castro; Guarnieri, Leonardo de Oliveira; Guerra, Julio Boriollo; Carvalho, Vinícius Rezende; Mendes, Eduardo Mazoni Andrade Marçal; Pereira, Grace Schenatto; Moraes, Márcio Flávio Dutra
2017-11-05
The brain oscillations may play a critical role in synchronizing neuronal assemblies in order to establish appropriate sensory-motor integration. In fact, studies have demonstrated phase-amplitude coupling of distinct oscillatory rhythms during cognitive processes. Here we investigated whether olfacto-hippocampal coupling occurs when mice are detecting familiar odors located in a spatially restricted area of a new context. The spatial olfactory task (SOT) was designed to expose mice to a new environment in which only one quadrant (target) contains odors provided by its own home-cage bedding. As predicted, mice showed a significant higher exploration preference to the target quadrant; which was impaired by olfactory epithelium lesion (ZnSO 4 ). Furthermore, mice were able to discriminate odors from a different cage and avoided the quadrant with predator odor 2,4,5-trimethylthiazoline (TMT), reinforcing the specificity of the SOT. The local field potential (LFP) analysis of non-lesioned mice revealed higher gamma activity (35-100Hz) in the main olfactory bulb (MOB) and a significant theta phase/gamma amplitude coupling between MOB and dorsal hippocampus, only during exploration of home-cage odors (i.e. in the target quadrant). Our results suggest that exploration of familiar odors in a new context involves dynamic coupling between the olfactory bulb and dorsal hippocampus. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Steinhaus, Martin; Schieberle, Peter
2005-07-27
Application of the aroma extract dilution analysis on an extract of white pepper powder showing an intense fecal, cowshed-like off-flavor revealed 3-methylindole (fecal, swine-manure) and 4-methylphenol (fecal, horse-like) with the highest flavor dilution (FD) factors among the 22 odor-active compounds detected. In addition, high FD factors and/or undesirable odor qualities suggested 3-methylphenol (phenolic), butanoic acid (cheese-like), and 2- and 3-methylbutanoic acid (cheese-like) as well as pentanoic acid and hexanoic acid (cheese-like odors) as contributors to the malodor. Although the intensities of the off-note were clearly different in 50 commercial samples of white pepper, quantitation of 3-methylindole and 3- and 4-methylphenol as well as of the five short-chain acids by means of stable isotope dilution assays showed similar concentrations in most of the samples. Storage of a freshly ground white pepper powder for up to 7 months revealed a significant decrease in the typical odor qualities of white pepper and an increase in the fecal odor note with storage time. Because the concentrations of the odorants mentioned above were not much changed during storage, possibly very volatile odorants, such as alpha-pinene, which are able to mask the malodor, are lost during storage of, in particular, pepper powders. On the basis of odor activity values, which were calculated using breakthrough thresholds, in particular, 3-methylindole, 4-methylphenol, 3-methylphenol, and butanoic acid could be suggested as the main sources of the fecal off-flavor.
Sampling Technique for Robust Odorant Detection Based on MIT RealNose Data
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
This technique enhances the detection capability of the autonomous Real-Nose system from MIT to detect odorants and their concentrations in noisy and transient environments. The lowcost, portable system with low power consumption will operate at high speed and is suited for unmanned and remotely operated long-life applications. A deterministic mathematical model was developed to detect odorants and calculate their concentration in noisy environments. Real data from MIT's NanoNose was examined, from which a signal conditioning technique was proposed to enable robust odorant detection for the RealNose system. Its sensitivity can reach to sub-part-per-billion (sub-ppb). A Space Invariant Independent Component Analysis (SPICA) algorithm was developed to deal with non-linear mixing that is an over-complete case, and it is used as a preprocessing step to recover the original odorant sources for detection. This approach, combined with the Cascade Error Projection (CEP) Neural Network algorithm, was used to perform odorant identification. Signal conditioning is used to identify potential processing windows to enable robust detection for autonomous systems. So far, the software has been developed and evaluated with current data sets provided by the MIT team. However, continuous data streams are made available where even the occurrence of a new odorant is unannounced and needs to be noticed by the system autonomously before its unambiguous detection. The challenge for the software is to be able to separate the potential valid signal from the odorant and from the noisy transition region when the odorant is just introduced.
Communication of direction by the honey bee.
Gould, J L; Henerey, M; MacLeod, M C
1970-08-07
In the presence of controls for site- and path-specific odors, observer and food-source scents, Nasanov gland and alarm odors, visual cues, wind, and general site taxis, recruited bees were able to locate the food source indicated by the dances of returning foragers in preference to a food source located at an equal distance in the opposite direction. This was true even when foragers were simultaneously dancing to indicate two different stations. Recruitment in the absence of dancing was very low, while in the absence of foraging it was virtually zero. Thus, under the experimental conditions used, the directional information contained in the dance appears to have been communicated from forager to recruit and subsequently used by the recruit.
Locatelli, Fernando F; Fernandez, Patricia C; Villareal, Francis; Muezzinoglu, Kerem; Huerta, Ramon; Galizia, C. Giovanni; Smith, Brian H.
2012-01-01
Experience related plasticity is an essential component of networks involved in early olfactory processing. However, the mechanisms and functions of plasticity in these neural networks are not well understood. We studied nonassociative plasticity by evaluating responses to two pure odors (A and X) and their binary mixture using calcium imaging of odor elicited activity in output neurons of the honey bee antennal lobe. Unreinforced exposure to A or X produced no change in the neural response elicited by the pure odors. However, exposure to one odor (e.g. A) caused the response to the mixture to become more similar to the other component (X). We also show in behavioral analyses that unreinforced exposure to A caused the mixture to become perceptually more similar to X. These results suggest that nonassociative plasticity modifies neural networks in such a way that it affects local competitive interactions among mixture components. We used a computational model to evaluate the most likely targets for modification. Hebbian modification of synapses from inhibitory local interneurons to projection neurons most reliably produces the observed shift in response to the mixture. These results are consistent with a model in which the antennal lobe acts to filter olfactory information according to its relevance for performing a particular task. PMID:23167675
Natsch, Andreas; Derrer, Samuel; Flachsmann, Felix; Schmid, Joachim
2006-01-01
Human body odor is to a large part determined by secretions of glands in the axillary regions. Two key odoriferous principles, 3-methylhex-2-enoic acid (3MH2; 4/5) and 3-hydroxy-3-methylhexanoic acid (HMHA; 6) have been shown to be released from glutamine conjugates secreted in the axilla by a specific N(alpha)-acyl-glutamine aminoacylase (N-AGA) obtained from axilla isolates of Corynebacteria sp. However, the low number of different odorants reported in humans stands in contrast to the observed high inter-individual variability in body odors. Axilla secretions of individual donors were, therefore, analyzed in detail. The secretions were treated with N-AGA, analyzed by GC/MS, and compared to undigested controls. Over 28 different carboxylic acids were released by this enzyme from odorless axilla secretions (Table 1). Many of these body odorants have not been reported before from a natural source, and they include several aliphatic 3-hydroxy acids with 4-Me branches, 3,4-unsaturated, 4-Et-branched aliphatic acids, and a variety of degradation products of amino acids. The odor threshold of some of the acids was found to be in the range of 1 ng. Most of these compounds were present in all donors tested, but in highly variable relative amounts, and they are, thus, candidate molecules as key components of a 'compound odor' determining the individual types of human body odor.
The importance of chemosensory clues in Aguaruna tree classification and identification.
Jernigan, Kevin A
2008-05-03
The ethnobotanical literature still contains few detailed descriptions of the sensory criteria people use for judging membership in taxonomic categories. Olfactory criteria in particular have been explored very little. This paper will describe the importance of odor for woody plant taxonomy and identification among the Aguaruna Jívaro of the northern Peruvian Amazon, focusing on the Aguaruna category númi (trees excluding palms). Aguaruna informants almost always place trees that they consider to have a similar odor together as kumpají - 'companions,' a metaphor they use to describe trees that they consider to be related. The research took place in several Aguaruna communities in the upper Marañón region of the Peruvian Amazon. Structured interview data focus on informant criteria for membership in various folk taxa of trees. Informants were also asked to explain what members of each group of related companions had in common. This paper focuses on odor and taste criteria that came to light during these structured interviews. Botanical voucher specimens were collected, wherever possible. Of the 182 tree folk genera recorded in this study, 51 (28%) were widely considered to possess a distinctive odor. Thirty nine of those (76%) were said to have odors similar to some other tree, while the other 24% had unique odors. Aguaruna informants very rarely described tree odors in non-botanical terms. Taste was used mostly to describe trees with edible fruits. Trees judged to be related were nearly always in the same botanical family. The results of this study illustrate that odor of bark, sap, flowers, fruit and leaves are important clues that help the Aguaruna to judge the relatedness of trees found in their local environment. In contrast, taste appears to play a more limited role. The results suggest a more general ethnobotanical hypothesis that could be tested in other cultural settings: people tend to consider plants with similar odors to be related, but say that plants with unique odors are unrelated to any other plants.
Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants.
Turner, Stephanie Lynn; Ray, Anandasankar
2009-09-10
The fruitfly Drosophila melanogaster exhibits a robust and innate olfactory-based avoidance behaviour to CO(2), a component of odour emitted from stressed flies. Specialized neurons in the antenna and a dedicated neuronal circuit in the higher olfactory system mediate CO(2) detection and avoidance. However, fruitflies need to overcome this avoidance response in some environments that contain CO(2) such as ripening fruits and fermenting yeast, which are essential food sources. Very little is known about the molecular and neuronal basis of this unique, context-dependent modification of innate olfactory avoidance behaviour. Here we identify a new class of odorants present in food that directly inhibit CO(2)-sensitive neurons in the antenna. Using an in vivo expression system we establish that the odorants act on the Gr21a/Gr63a CO(2) receptor. The presence of these odorants significantly and specifically reduces CO(2)-mediated avoidance behaviour, as well as avoidance mediated by 'Drosophila stress odour'. We propose a model in which behavioural avoidance to CO(2) is directly influenced by inhibitory interactions of the novel odours with CO(2) receptors. Furthermore, we observe differences in the temporal dynamics of inhibition: the effect of one of these odorants lasts several minutes beyond the initial exposure. Notably, animals that have been briefly pre-exposed to this odorant do not respond to the CO(2) avoidance cue even after the odorant is no longer present. We also show that related odorants are effective inhibitors of the CO(2) response in Culex mosquitoes that transmit West Nile fever and filariasis. Our findings have broader implications in highlighting the important role of inhibitory odorants in olfactory coding, and in their potential to disrupt CO(2)-mediated host-seeking behaviour in disease-carrying insects like mosquitoes.
Gouagna, Louis-Clément; Poueme, Rodrigue S; Dabiré, Kounbobr Roch; Ouédraogo, Jean-Bosco; Fontenille, Didier; Simard, Frédéric
2010-12-01
Sugar feeding by male mosquitoes is critical for their success in mating competition. However, the facets of sugar source finding under natural conditions remain unknown. Here, evidence obtained in Western Burkina Faso indicated that the distribution of An. gambiae s.s. (M and S molecular forms) males across different peri-domestic habitats is dependent on the availability of potential sugar sources from which they obtain more favorable sites for feeding or resting. Among field-collected anophelines, a higher proportion of specimens containing fructose were found on flowering Mangifera indica (Anacardiaceae), Dolonix regia (Fabaceae), Thevetia neriifolia (Apocynaceae), Senna siamea, and Cassia sieberiana (both Fabaceae) compared to that recorded on other nearby plants, suggesting that some plants are favored for use as a sugar source over others. Y-tube olfactometer assays with newly-emerged An. gambiae s.s. exposed to odors from individual plants and some combinations thereof showed that males use odor cues to guide their preference. The number of sugar-positive males was variable in a no-choice cage assay, consistent with the olfactory response patterns towards corresponding odor stimuli. These experiments provide the first evidence both in field and laboratory conditions for previously unstudied interactions between males of An. gambiae and natural sugar sources. © 2010 The Society for Vector Ecology.
Effects of agriculture upon the air quality and climate: research, policy, and regulations.
Aneja, Viney P; Schlesinger, William H; Erisman, Jan Willem
2009-06-15
Scientific assessments of agricultural air quality, including estimates of emissions and potential sequestration of greenhouse gases, are an important emerging area of environmental science that offers significant challenges to policy and regulatory authorities. Improvements are needed in measurements, modeling, emission controls, and farm operation management. Controlling emissions of gases and particulate matter from agriculture is notoriously difficult as this sector affects the most basic need of humans, i.e., food. Current policies combine an inadequate science covering a very disparate range of activities in a complex industry with social and political overlays. Moreover, agricultural emissions derive from both area and point sources. In the United States, agricultural emissions play an important role in several atmospherically mediated processes of environmental and public health concerns. These atmospheric processes affect local and regional environmental quality, including odor, particulate matter (PM) exposure, eutrophication, acidification, exposure to toxics, climate, and pathogens. Agricultural emissions also contribute to the global problems caused by greenhouse gas emissions. Agricultural emissions are variable in space and time and in how they interact within the various processes and media affected. Most important in the U.S. are ammonia (where agriculture accounts for approximately 90% of total emissions), reduced sulfur (unquantified), PM25 (approximately 16%), PM110 (approximately 18%), methane (approximately 29%), nitrous oxide (approximately 72%), and odor and emissions of pathogens (both unquantified). Agriculture also consumes fossil fuels for fertilizer production and farm operations, thus emitting carbon dioxide (CO2), oxides of nitrogen (NO(x)), sulfur oxides (SO(x)), and particulates. Current research priorities include the quantification of point and nonpoint sources, the biosphere-atmosphere exchange of ammonia, reduced sulfur compounds, volatile organic compounds, greenhouse gases, odor and pathogens, the quantification of landscape processes, and the primary and secondary emissions of PM. Given the serious concerns raised regarding the amount and the impacts of agricultural air emissions, policies must be pursued and regulations must be enacted in orderto make real progress in reducing these emissions and their associated environmental impacts.
The differential mice response to cat and snake odor.
de Oliveira Crisanto, Karen; de Andrade, Wylqui Mikael Gomes; de Azevedo Silva, Kayo Diogenes; Lima, Ramón Hypolito; de Oliveira Costa, Miriam Stela Maris; de Souza Cavalcante, Jeferson; de Lima, Ruthnaldo Rodrigues Melo; do Nascimento, Expedito Silva; Cavalcante, Judney Cley
2015-12-01
Studies from the last two decades have pointed to multiple mechanisms of fear. For responding to predators, there is a group of highly interconnected hypothalamic nuclei formed by the anterior hypothalamic nucleus, the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus—the predator-responsive hypothalamic circuit. This circuit expresses Fos in response to predator presence or its odor. Lesion of any component of this system blocks or reduces the expression of fear and consequently defensive behavior when faced with a predator or its cue. However, most of the knowledge about that circuit has been obtained using the rat as a model of prey and the cat as a source of predator cues. In the present study, we exposed mice to strong cat or snake odors, two known mice predators, and then we used the rat exposure test (RET) to study their behavior when confronted with the same predator's odor. Our data point to a differential response of mice exposed to these odors. When Swiss mice were exposed to the cat odor, they show defensive behavior and the predator-responsive hypothalamic circuit expressed Fos. The opposite was seen when they faced snake's odor. The acute odor exposure was not sufficient to activate the mouse predator-responsive hypothalamic circuit and the mice acted like they were not in a stressful situation, showing almost no sign of fear or defensive posture. This leads us to the conclusion that not all the predator cues are sufficient to activate the predator-responsive hypothalamic circuit of mice and that their response depends on the danger that these predators represent in the natural history of the prey.
Birgiolas, Justas; Jernigan, Christopher M.; Gerkin, Richard C.; Smith, Brian H.; Crook, Sharon M.
2017-01-01
Many scientifically and agriculturally important insects use antennae to detect the presence of volatile chemical compounds and extend their proboscis during feeding. The ability to rapidly obtain high-resolution measurements of natural antenna and proboscis movements and assess how they change in response to chemical, developmental, and genetic manipulations can aid the understanding of insect behavior. By extending our previous work on assessing aggregate insect swarm or animal group movements from natural and laboratory videos using the video analysis software SwarmSight, we developed a novel, free, and open-source software module, SwarmSight Appendage Tracking (SwarmSight.org) for frame-by-frame tracking of insect antenna and proboscis positions from conventional web camera videos using conventional computers. The software processes frames about 120 times faster than humans, performs at better than human accuracy, and, using 30 frames per second (fps) videos, can capture antennal dynamics up to 15 Hz. The software was used to track the antennal response of honey bees to two odors and found significant mean antennal retractions away from the odor source about 1 s after odor presentation. We observed antenna position density heat map cluster formation and cluster and mean angle dependence on odor concentration. PMID:29364251
Sea lamprey orient toward a source of a synthesized pheromone using odor-conditioned rheotaxis
Johnson, Nicholas S.; Muhammad, Azizah; Thompson, Henry; Choi, Jongeun; Li, Weiming
2012-01-01
Characterization of vertebrate chemo-orientation strategies over long distances is difficult because it is often not feasible to conduct highly controlled hypothesis-based experiments in natural environments. To overcome the challenge, we couple in-stream behavioral observations of female sea lampreys (Petromyzon marinus) orienting to plumes of a synthesized mating pheromone, 7a,12a,24-trihydroxy-5a-cholan-3-one-24-sulfate (3kPZS), and engineering algorithms to systematically test chemo-orientation hypotheses. In-stream field observations and simulated movements of female sea lampreys according to control algorithms support that odor-conditioned rheotaxis is a component of the mechanism used to track plumes of 3kPZS over hundreds of meters in flowing water. Simulated movements of female sea lampreys do not support that rheotaxis or klinotaxis alone is sufficient to enable the movement patterns displayed by females in locating 3kPZS sources in the experimental stream. Odor-conditioned rheotaxis may not only be effective at small spatial scales as previous described in crustaceans, but may also be effectively used by fishes over hundreds of meters. These results may prove useful for developing management strategies for the control of invasive species that exploit the odor-conditioned tracking behavior and for developing biologically inspired navigation strategies for robotic fish.
Studies on vaginal malodor. I. Study in humans.
Chvapil, M; Eskelson, C; Jacobs, S; Chvapil, T; Russell, D H
1978-07-01
Forty-two percent of collagen sponges tested as an intravaginal barrier contraceptive method developed malodor when retained for 5 days. Only 4% developed odor when the sponge was removed within 24 hours after intercourse, rinsed, and reinserted. While sexually active volunteers found odor in 37% of the sponges, odor formed only in 4% of the sponges worn by sexually inactive users. No difference in the rate of odor formation was found when neutral pH (7.0) and acid pH (3.4) collagen sponges were tested, although we believe that a pH 3.4 is too acid and promotes odor formation. The optimal pH of the sponge should be 4.5 to 5.5. Malodor was efficiently extracted from sponges by washing in acid milieu of tap water and vinegar or 0.1 M acetate buffer, pH 4.0. Alkali extraction procedures were ineffective, and lukewarm water was slightly less effective than acid extraction of odor. At the time of malodor development, the high content of polyamines (putrescine, spermine, spermidine) in the ejaculate decreased to undetectable values. We conclude that the ejaculate is the major source of malodor formation in intravaginally worn collagen sponges. Removal, rinsing optimally in vinegar solution, and reinsertion within 24 hours after intercourse reduces the chance of malodor formation.
Hellier, Jennifer L; Arevalo, Nicole L; Blatner, Megan J; Dang, An K; Clevenger, Amy C; Adams, Catherine E; Restrepo, Diego
2010-10-28
Previous studies have shown that schizophrenics have decreased expression of α7-nicotinic acetylcholine (α7) receptors in the hippocampus and other brain regions, paranoid delusions, disorganized speech, deficits in auditory gating (i.e., inability to inhibit neuronal responses to repetitive auditory stimuli), and difficulties in odor discrimination and detection. Here we use mice with decreased α7 expression that also show a deficit in auditory gating to determine if these mice have similar deficits in olfaction. In the adult mouse olfactory bulb (OB), α7 expression localizes in the glomerular layer; however, the functional role of α7 is unknown. We show that inbred mouse strains (i.e., C3H and C57) with varying α7 expressions (e.g., α7 wild-type [α7+/+], α7 heterozygous knock-out [α7+/-] and α7 homozygous knock-out mice [α7-/-]) significantly differ in odor discrimination and detection of chemically-related odorant pairs. Using [(125)I] α-bungarotoxin (α-BGT) autoradiography, α7 expression was measured in the OB. As previously demonstrated, α-BGT binding was localized to the glomerular layer. Significantly more expression of α7 was observed in C57 α7+/+ mice compared to C3H α7+/+ mice. Furthermore, C57 α7+/+ mice were able to detect a significantly lower concentration of an odor in a mixture compared to C3H α7+/+ mice. Both C57 and C3H α7+/+ mice discriminated between chemically-related odorants sooner than α7+/- or α7-/- mice. These data suggest that α7-nicotinic-receptors contribute strongly to olfactory discrimination and detection in mice and may be one of the mechanisms producing olfactory dysfunction in schizophrenics. Copyright © 2010 Elsevier B.V. All rights reserved.
Ghrelin, leptin and adiponectin as possible predictors of the hedonic value of odors.
Trellakis, Sokratis; Tagay, Sefik; Fischer, Cornelia; Rydleuskaya, Alena; Scherag, André; Bruderek, Kirsten; Schlegl, Sandra; Greve, Jens; Canbay, Ali E; Lang, Stephan; Brandau, Sven
2011-02-25
Several lines of evidence point to a close relationship between the hormones of energy homeostasis and the olfactory system. Examples are the localization of leptin and adiponectin receptors in the olfactory system or increased activation of brain regions related to the palatability and the hedonic value of food in response to food pictures after application of ghrelin. In this preliminary study, we tested in 31 subjects (17 male and 14 female) if and to what extent the peripheral blood concentrations of "satiety" hormones, such as leptin, adiponectin, and ghrelin (acyl and total), are correlated with the self-ratings of odor pleasantness and with the objective olfactory and gustatory ability. The hedonic values of some odors were found to be differently rated between donors depending on gender and body weight. The concentrations of leptin, adiponectin and total ghrelin were significantly associated with the hedonic value of pepper black oil, but failed to show significant correlations for 5 other odors tested. Except for a significant association between leptin and odor identification, hormone concentrations were not linked to the abilities of smell and taste. Peripheral adipokines and gut hormones may alter the perception and pleasantness of specific odors, presumably either directly through their receptors in the olfactory system or indirectly through central interfaces between the regulation systems of olfaction, appetite control, memory and motivation. Copyright © 2010 Elsevier B.V. All rights reserved.
Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R
2006-03-01
Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.
Variable selection based cotton bollworm odor spectroscopic detection
NASA Astrophysics Data System (ADS)
Lü, Chengxu; Gai, Shasha; Luo, Min; Zhao, Bo
2016-10-01
Aiming at rapid automatic pest detection based efficient and targeting pesticide application and shooting the trouble of reflectance spectral signal covered and attenuated by the solid plant, the possibility of near infrared spectroscopy (NIRS) detection on cotton bollworm odor is studied. Three cotton bollworm odor samples and 3 blank air gas samples were prepared. Different concentrations of cotton bollworm odor were prepared by mixing the above gas samples, resulting a calibration group of 62 samples and a validation group of 31 samples. Spectral collection system includes light source, optical fiber, sample chamber, spectrometer. Spectra were pretreated by baseline correction, modeled with partial least squares (PLS), and optimized by genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS). Minor counts differences are found among spectra of different cotton bollworm odor concentrations. PLS model of all the variables was built presenting RMSEV of 14 and RV2 of 0.89, its theory basis is insect volatilizes specific odor, including pheromone and allelochemics, which are used for intra-specific and inter-specific communication and could be detected by NIR spectroscopy. 28 sensitive variables are selected by GA, presenting the model performance of RMSEV of 14 and RV2 of 0.90. Comparably, 8 sensitive variables are selected by CARS, presenting the model performance of RMSEV of 13 and RV2 of 0.92. CARS model employs only 1.5% variables presenting smaller error than that of all variable. Odor gas based NIR technique shows the potential for cotton bollworm detection.
DeGreeff, Lauryn E; Furton, Kenneth G
2011-09-01
Human remains detection canines are used in locating deceased humans in diverse scenarios and environments based on odor produced during the decay process of the human body. It has been established that human remains detection canines are capable of locating human remains specifically, as opposed to living humans or animal remains, thus suggesting a difference in odor between the different sources. This work explores the collection and determination of such odors using a dynamic headspace concentration device. The airflow rate and three sorbent materials-Dukal cotton gauze, Johnson & Johnson cotton-blend gauze, and polyester material-used for odor collection were evaluated using standard compounds. It was determined that higher airflow rates and openly woven material, e.g., Dukal cotton gauze, yielded significantly less total volatile compounds due to compound breakthrough through the sorbent material. Collection from polymer- and cellulose-based materials demonstrated that the molecular backbone of the material is a factor in compound collection as well. Volatiles, including cyclic and straight-chain hydrocarbons, organic acids, sulfides, aldehydes, ketones, and alcohols, were collected from a population of 27 deceased bodies from two collection locations. The common compounds between the subjects were compared and the odor profiles were determined. These odor profiles were compared with those of animal remains and living human subjects collected in the same manner. Principal component analysis showed that the odor profiles of the three sample types were distinct.
Butler, R K; Sharko, A C; Oliver, E M; Brito-Vargas, P; Kaigler, K F; Fadel, J R; Wilson, M A
2011-02-23
Exposure of rats to an odor of a predator can elicit an innate fear response. In addition, such exposure has been shown to activate limbic brain regions such as the amygdala. However, there is a paucity of data on the phenotypic characteristics of the activated amygdalar neurons following predator odor exposure. In the current experiments, rats were exposed to cloth which contained either ferret odor, butyric acid, or no odor for 30 min. Ferret odor-exposed rats displayed an increase in defensive burying versus control rats. Sections of the brains were prepared for dual-labeled immunohistochemistry and counts of c-Fos co-localized with Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), parvalbumin, or calbindin were made in the basolateral (BLA), central (CEA), and medial (MEA) nucleus of the amygdala. Dual-labeled immunohistochemistry showed a significant increase in the percentage of CaMKII-positive neurons also immunoreactive for c-Fos in the BLA, CEA and MEA of ferret odor-exposed rats compared to control and butyric acid-exposed groups. Further results showed a significant decrease in calbindin-immunoreactive neurons that were also c-Fos-positive in the anterior portion of the BLA of ferret odor-exposed rats compared to control and butyric acid-exposed rats, whereas the MEA expressed a significant decrease in calbindin/c-Fos dual-labeled neurons in butyric acid-exposed rats compared to controls and ferret odor-exposed groups. These results enhance our understanding of the functioning of the amygdala following exposure to predator threats by showing phenotypic characteristics of activated amygdalar neurons. With this knowledge, specific neuronal populations could be targeted to further elucidate the fundamental underpinnings of anxiety and could possibly indicate new targets for the therapeutic treatment of anxiety. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Findings and Recommendations From the Joint NIST—AGA Workshop on Odor Masking
Rawson, Nancy; Quraishi, Ali; Bruno, Thomas J.
2011-01-01
Since the days of the alchemist, the observation that some substances have a smell while other substances do not has been a source of fascination. The sense of smell, or olfaction, is our least understood sense, however it is important for many human functions, including digestion, food selection and hazard avoidance. The detailed explanation of why individual chemicals (called odorants) might have a particular smell is still elusive. The situation with mixtures of odorants is even more complex and interesting. A number of distinct odorant mixture phenomena have been documented. Odorant suppression (sometimes called masking), conjugation (as described first by Zwaadermaker) and cross-adaptation are among a collection of such phenomena. They are related to the differential effects that one odorant species will have when mixed with another. Masking is a term that describes situations in which one odorant can overpower the sensation of another. There may be profound technological implications in a number of industrial sectors, most prominently in the fuel gas sector. Here, masking is suspected when the odorant that is added to natural gas can be detected by analytical instrumentation, but cannot be properly detected by an observer with a normal sense of smell. Note that this phenomenon is distinct from odor fade, which more properly describes a decrease in the concentration of an odorant rather than a decrease, disappearance or qualitative change in the perception of the odor in the absence of a change in absolute concentration. Anecdotal descriptions of masking events in the natural gas industry have persisted for over a decade, with the frequency of such events on the rise. Pursuant to the philosophy that the technological problem cannot be addressed until the basic science is understood, NIST, in collaboration with the American Gas Association (AGA), sponsored a workshop that brought together olfactory scientists and natural gas operations personnel in an effort to achieve a common understanding and identify critical research questions. This document is a summary of that workshop, and most importantly, a compendium of the findings and recommendations that resulted from the meeting. PMID:26989604
Findings and Recommendations From the Joint NIST-AGA Workshop on Odor Masking.
Rawson, Nancy; Quraishi, Ali; Bruno, Thomas J
2011-01-01
Since the days of the alchemist, the observation that some substances have a smell while other substances do not has been a source of fascination. The sense of smell, or olfaction, is our least understood sense, however it is important for many human functions, including digestion, food selection and hazard avoidance. The detailed explanation of why individual chemicals (called odorants) might have a particular smell is still elusive. The situation with mixtures of odorants is even more complex and interesting. A number of distinct odorant mixture phenomena have been documented. Odorant suppression (sometimes called masking), conjugation (as described first by Zwaadermaker) and cross-adaptation are among a collection of such phenomena. They are related to the differential effects that one odorant species will have when mixed with another. Masking is a term that describes situations in which one odorant can overpower the sensation of another. There may be profound technological implications in a number of industrial sectors, most prominently in the fuel gas sector. Here, masking is suspected when the odorant that is added to natural gas can be detected by analytical instrumentation, but cannot be properly detected by an observer with a normal sense of smell. Note that this phenomenon is distinct from odor fade, which more properly describes a decrease in the concentration of an odorant rather than a decrease, disappearance or qualitative change in the perception of the odor in the absence of a change in absolute concentration. Anecdotal descriptions of masking events in the natural gas industry have persisted for over a decade, with the frequency of such events on the rise. Pursuant to the philosophy that the technological problem cannot be addressed until the basic science is understood, NIST, in collaboration with the American Gas Association (AGA), sponsored a workshop that brought together olfactory scientists and natural gas operations personnel in an effort to achieve a common understanding and identify critical research questions. This document is a summary of that workshop, and most importantly, a compendium of the findings and recommendations that resulted from the meeting.
Vesterinen, Sanna; Parshintsev, Jevgeni; Johansson, Per; Riekkola, Marja-Liisa; Björkroth, Johanna
2014-01-01
Leuconostoc gelidum subsp. gasicomitatum is a common spoilage bacterium in meat products packaged under oxygen-containing modified atmospheres. Buttery off-odors related to diacetyl/acetoin formation are frequently associated with the spoilage of these products. A whole-genome microarray study, together with gas chromatography (GC)-mass spectrometry (MS) analyses of the pathway end products, was performed to investigate the transcriptome response of L. gelidum subsp. gasicomitatum LMG18811T growing on semidefined media containing glucose, ribose, or inosine, which are essential carbon sources in meat. Generally, the gene expression patterns with ribose and inosine were quite similar, indicating that catabolism of ribose and nucleosides is closely linked. Diacetyl/acetoin concentrations as high as 110 or 470 μM were measured when growth was based on inosine or ribose, respectively. The gene expression results for pyruvate metabolism (upregulation of α-acetolactate synthase, downregulation of l-lactate dehydrogenase and pyruvate dehydrogenase) were as expected when diacetyl and acetoin were the end products. No diacetyl production (<7.5 μM) was detected with the glucose-containing medium, even though the cell counts of LMG18811T was 6 or 10 times higher than that on inosine or ribose, respectively. Although glucose was the most effective carbon source for the growth of L. gelidum subsp. gasicomitatum, utilization of inosine and ribose resulted in the production of the unwanted buttery-odor compounds. These results increase our understanding of which compounds are likely to enhance the formation of buttery odors during meat spoilage caused by L. gelidum subsp. gasicomitatum. PMID:25548057
Child Odors and Parenting: A Survey Examination of the Role of Odor in Child-Rearing.
Okamoto, Masako; Shirasu, Mika; Fujita, Rei; Hirasawa, Yukei; Touhara, Kazushige
2016-01-01
Parental caregiving is critical for the survival of our young and continuation of our species. In humans, visual and auditory signals from offspring have been shown to be potent facilitators of parenting. However, whether odors emitted by our young also influence human parenting remains unclear. To explore this, we conducted a series of questionnaire surveys targeting parents with children under 6 years old. First, we collected episodes on experiencing odors/sniffing various parts of a child's body (n = 507). The prevalence of experiencing events described in those episodes was examined in a separate survey (n = 384). Based on those results, the Child Odor in Parenting scale (COPs) was developed, and subsequently used in the main survey (n = 888). We found COPs to have adequate content validity, concurrent validity, and reliability. Responses to the COPs demonstrated that parents, especially mothers with infants, are aware of odors from their offspring, and actively seek them in daily child-rearing. The factor structure and content of the COPs items indicated that child odors have both affective and instrumental roles. Affective experiences induce loving feeling and affectionate sniffing, while instrumental experiences pertain to specific hygienic needs. The head was the most frequent source of affective experiences, and the child's bottom of instrumental. Each was experienced by more than 90% of the mothers with a child below 1 year of age. Affective experiences significantly declined as the child grew older, possibly associated with the decline of physical proximity between parents and child. This age-related decline was not prominent for instrumental experiences, except for the bottom, which significantly declined after 3 years of age. The present findings suggest that child odors play roles in human parenting, and that their nature and significance change during the course of a child's development.
Bias to pollen odors is affected by early exposure and foraging experience.
Arenas, A; Farina, W M
2014-07-01
In many pollinating insects, foraging preferences are adjusted on the basis of floral cues learned at the foraging site. In addition, olfactory experiences gained at early adult stages might also help them to initially choose food sources. To understand pollen search behavior of honeybees, we studied how responses elicited by pollen-based odors are biased in foraging-age workers according to (i) their genetic predisposition to collect pollen, (ii) pollen related information gained during foraging and (iii) different experiences with pollen gained at early adult ages. Bees returning to the hive carrying pollen loads, were strongly biased to unfamiliar pollen bouquets when tested in a food choice device against pure odors. Moreover, pollen foragers' orientation response was specific to the odors emitted by the pollen type they were carrying on their baskets, which suggests that foragers retrieve pollen odor information to recognize rewarding flowers outside the hive. We observed that attraction to pollen odor was mediated by the exposure to a pollen diet during the first week of life. We did not observe the same attraction in foraging-age bees early exposed to an artificial diet that did not contain pollen. Contrary to the specific response observed to cues acquired during foraging, early exposure to single-pollen diets did not bias orientation response towards a specific pollen odor in foraging-age bees (i.e. bees chose equally between the exposed and the novel monofloral pollen odors). Our results show that pollen exposure at early ages together with olfactory experiences gained in a foraging context are both relevant to bias honeybees' pollen search behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.
Identification of second messenger mediating signal transduction in the olfactory receptor cell.
Takeuchi, Hiroko; Kurahashi, Takashi
2003-11-01
One of the biggest controversial issues in the research of olfaction has been the mechanism underlying response generation to odorants that have been shown to fail to produce cAMP when tested by biochemical assays with olfactory ciliary preparations. Such observations are actually the original source proposing a possibility for the presence of multiple and parallel transduction pathways. In this study the activity of transduction channels in the olfactory cilia was recorded in cells that retained their abilities of responding to odorants that have been reported to produce InsP3 (instead of producing cAMP, and therefore tentatively termed "InsP3 odorants"). At the same time, the cytoplasmic cNMP concentration ([cNMP]i) was manipulated through the photolysis of caged compounds to examine their real-time interactions with odorant responses. Properties of responses induced by both InsP3 odorants and cytoplasmic cNMP resembled each other in their unique characteristics. Reversal potentials of currents were 2 mV for InsP3 odorant responses and 3 mV for responses induced by cNMP. Current and voltage (I-V) relations showed slight outward rectification. Both responses showed voltage-dependent adaptation when examined with double pulse protocols. When brief pulses of the InsP3 odorant and cytoplasmic cNMP were applied alternatively, responses expressed cross-adaptation with each other. Furthermore, both responses were additive in a manner as predicted quantitatively by the theory that signal transduction is mediated by the increase in cytoplasmic cAMP. With InsP3 odorants, actually, remarkable responses could be detected in a small fraction of cells ( approximately 2%), explaining the observation for a small production of cAMP in ciliary preparations obtained from the entire epithelium. The data will provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants.
Ding, Wenjie; Li, Lin; Liu, Junxin
2015-01-01
Sludge drying is a necessary step for sludge disposal. In this study, sludge was collected from two wastewater treatment plants, and dried at different temperatures in the laboratory. The emission of odor and total volatile organic compounds (TVOCs) during the sludge drying process were determined by an online odor monitoring system. The volatile organic compounds (VOCs) in off-gas were analyzed by gas chromatography-mass spectrometry. Results showed that sludge with 30% moisture content could be obtained in 51 minutes under drying temperature 100 °C but only within 27 minutes under 150 °C. Concentration of odor, TVOCs, sulfur-containing compounds (SCCs), and amines were changed with drying temperature and sludge sources. The maximum concentration of odor, TVOCs, SCCs, and amines were 503.13 ppm, 3.01 ppm, 8.15 ppm, and 11.27 ppm, respectively, at drying temperature 100 °C. These values reached 1,250.79, 8.10, 53.51, and 37.80 ppm when sludge dried at 150 °C. Odor concentration had a close relationship with emission of SCCs, amines, and TVOCs. The main VOCs released were benzene series and organic acid. Potential migration of substances in sludge was examined via analysis of off-gas and condensate, aiming to provide scientific data for effective sludge treatment and off-gas control.
Huang, Heyong; Xu, Xiaoguang; Liu, Xiansheng; Han, Ruiming; Liu, Jine; Wang, Guoxiang
2018-04-18
Organic matter-induced black blooms, such as cyanobacterial and vegetation blooms, are a serious ecosystem disasters that have occurred in Taihu Lake. After large-scale outbreaks of blooms in eutrophic water, a large number of cyanobacterial and vegetation residue accumulate in the coastal areas, and rapidly fermented into odorous compounds. In this study, four taste and odor compounds have been analyzed in sediments and overlying water of different ecology environment in Taihu Lake. High concentrations of DMDS (up to 7165.25 ngg -1 dw -1 ), DMTS (up to 50.93 ngg -1 dw -1 ), β-cyclocitral (up to 5441.69 ngg -1 dw -1 ), β-ionone (up to 1669.37 ngg -1 dw -1 ) were detected in sediments. Also, the spatial distributions of DMDS, DMTS, β-cyclocitral and β-ionone in the sediments were investigated. As the depth of sediment increases, nutrients and odorous compounds are greatly reduced. The results showed that during the degradation of cyanobacterial and vegetation residues, DMDS, DMTS, β-cyclocitral, β-ionone and nutrients are gradually released. In addition, when assessing the source of odorous compounds in overlying water, it should also be considered that it may be released from the sediment. This study shows that odorous compounds are ubiquitous in near-shore zones Taihu Lake, and may take potential hazard to aquatic ecosystems.
Olfactory cues associated with the major histocompatibility complex.
Eggert, F; Müller-Ruchholtz, W; Ferstl, R
Besides its immunological function of self/non-self discrimination the major histocompatibility complex (MHC) has been recognized as a possible source of individual specific body odors. Dating back to speculations on the role of the extraordinary polymorphism of the MHC as background of an individual chemosensory identity and to early observations of MHC-dependent mate choice in inbred strains of mice, systematic experimental studies revealed a first evidence for H-2 related body odors in this species. Meanwhile a large number of animal studies with rodents and a series of field studies and experiments with humans have extended our knowledge of MHC-related odor signals and substantiated the hypothesis of immunogenetic associated odor types. These results suggest that the most prominent feature of the MHC, its extraordinary genetic diversity, seems in part to be selectively maintained by behavioral mechanisms which operate in contemporary natural populations. The high degree of heterozygosity found in natural populations of most species seems to be promoted by non-disease-based selection such as mating preferences and selective block of pregnancy.
The role of vision in odor-plume tracking by walking and flying insects.
Willis, Mark A; Avondet, Jennifer L; Zheng, Elizabeth
2011-12-15
The walking paths of male cockroaches, Periplaneta americana, tracking point-source plumes of female pheromone often appear similar in structure to those observed from flying male moths. Flying moths use visual-flow-field feedback of their movements to control steering and speed over the ground and to detect the wind speed and direction while tracking plumes of odors. Walking insects are also known to use flow field cues to steer their trajectories. Can the upwind steering we observe in plume-tracking walking male cockroaches be explained by visual-flow-field feedback, as in flying moths? To answer this question, we experimentally occluded the compound eyes and ocelli of virgin P. americana males, separately and in combination, and challenged them with different wind and odor environments in our laboratory wind tunnel. They were observed responding to: (1) still air and no odor, (2) wind and no odor, (3) a wind-borne point-source pheromone plume and (4) a wide pheromone plume in wind. If walking cockroaches require visual cues to control their steering with respect to their environment, we would expect their tracks to be less directed and more variable if they cannot see. Instead, we found few statistically significant differences among behaviors exhibited by intact control cockroaches or those with their eyes occluded, under any of our environmental conditions. Working towards our goal of a comprehensive understanding of chemo-orientation in insects, we then challenged flying and walking male moths to track pheromone plumes with and without visual feedback. Neither walking nor flying moths performed as well as walking cockroaches when there was no visual information available.
Christlbauer, Monika; Schieberle, Peter
2009-10-14
By application of the aroma extract dilution analysis (AEDA) on an aroma distillate isolated from a freshly prepared, stewed beef/vegetable gravy, 52 odor-active compounds were detected in the flavor dilution (FD) factor range of 4-4096. On the basis of high FD factors in combination with the results of the identification experiments, 3-(methylthio)propanal (cooked potato), 3-mercapto-2-methylpentan-1-ol (gravy-like), (E,E)-2,4-decadienal (deep-fried, fatty), 3-hydroxy-4,5-dimethyl-2(5H)-furanone (lovage-like), vanillin (vanilla-like), (E,E)-2,4-nonadienal (deep-fried), and (E)-2-undecenal (metallic) are suggested as key contributors to the aroma of the gravy. To get an insight into the role of the vegetables as sources of gravy odorants, a beef gravy was prepared without vegetables. The AEDA results revealed that, in particular, onions and leek are important sources of gravy aroma compounds, adding particularly the very potent, gravy-like smelling 3-mercapto-2-methylpentan-1-ol to the overall aroma profile. Further compounds that were clearly derived from the vegetables and, thus, are important modifiers of the overall aroma were 4-vinyl-2-methoxyphenol, (E)-beta-damascenone, beta-ionone, 2-isopropyl-3-methoxypyrazine, and 2-(sec-butyl)-3-methoxypyrazine. Interestingly, none of the key odorants detected in the gravy can be assumed to be formed from a reaction between beef and vegetable constituents. A comparison of the odorants in the beef/vegetable gravy with a gravy prepared according to the same procedure, but substituting beef by pork meat, indicated that most of the aroma compounds were identical-although different in FD factors-but the tallowy smelling 12-methyltridecanal was detected as key odorant only in the beef/vegetable gravy.
The role of vision in odor-plume tracking by walking and flying insects
Willis, Mark A.; Avondet, Jennifer L.; Zheng, Elizabeth
2011-01-01
SUMMARY The walking paths of male cockroaches, Periplaneta americana, tracking point-source plumes of female pheromone often appear similar in structure to those observed from flying male moths. Flying moths use visual-flow-field feedback of their movements to control steering and speed over the ground and to detect the wind speed and direction while tracking plumes of odors. Walking insects are also known to use flow field cues to steer their trajectories. Can the upwind steering we observe in plume-tracking walking male cockroaches be explained by visual-flow-field feedback, as in flying moths? To answer this question, we experimentally occluded the compound eyes and ocelli of virgin P. americana males, separately and in combination, and challenged them with different wind and odor environments in our laboratory wind tunnel. They were observed responding to: (1) still air and no odor, (2) wind and no odor, (3) a wind-borne point-source pheromone plume and (4) a wide pheromone plume in wind. If walking cockroaches require visual cues to control their steering with respect to their environment, we would expect their tracks to be less directed and more variable if they cannot see. Instead, we found few statistically significant differences among behaviors exhibited by intact control cockroaches or those with their eyes occluded, under any of our environmental conditions. Working towards our goal of a comprehensive understanding of chemo-orientation in insects, we then challenged flying and walking male moths to track pheromone plumes with and without visual feedback. Neither walking nor flying moths performed as well as walking cockroaches when there was no visual information available. PMID:22116754
Schmuker, Michael; Yamagata, Nobuhiro; Nawrot, Martin Paul; Menzel, Randolf
2011-01-01
The honeybee Apis mellifera has a remarkable ability to detect and locate food sources during foraging, and to associate odor cues with food rewards. In the honeybee's olfactory system, sensory input is first processed in the antennal lobe (AL) network. Uniglomerular projection neurons (PNs) convey the sensory code from the AL to higher brain regions via two parallel but anatomically distinct pathways, the lateral and the medial antenno-cerebral tract (l- and m-ACT). Neurons innervating either tract show characteristic differences in odor selectivity, concentration dependence, and representation of mixtures. It is still unknown how this differential stimulus representation is achieved within the AL network. In this contribution, we use a computational network model to demonstrate that the experimentally observed features of odor coding in PNs can be reproduced by varying lateral inhibition and gain control in an otherwise unchanged AL network. We show that odor coding in the l-ACT supports detection and accurate identification of weak odor traces at the expense of concentration sensitivity, while odor coding in the m-ACT provides the basis for the computation and following of concentration gradients but provides weaker discrimination power. Both coding strategies are mutually exclusive, which creates a tradeoff between detection accuracy and sensitivity. The development of two parallel systems may thus reflect an evolutionary solution to this problem that enables honeybees to achieve both tasks during bee foraging in their natural environment, and which could inspire the development of artificial chemosensory devices for odor-guided navigation in robots.
Role of a Ubiquitously Expressed Receptor in the Vertebrate Olfactory System
DeMaria, Shannon; Berke, Allison P.; Van Name, Eric; Heravian, Anisa; Ferreira, Todd
2013-01-01
Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the “one receptor, one neuron” rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed. PMID:24048853
Pang, Xueli; Cao, Jianmin; Wang, Dabin; Qiu, Jun; Kong, Fanyu
2017-05-24
For the characterization of chemical components contributing to the aroma of ginger, which could benefit the development of deep-processed ginger products, volatile extracts were isolated by a combination of direct solvent extraction-solvent-assisted flavor evaporation and static headspace analysis. Aroma-impact components were identified by gas chromatography-olfactometry-mass spectrometry, and the most potent odorants were further screened by aroma extract dilution analysis (AEDA) and static headspace dilution analysis (SHDA). The AEDA results revealed that geranial, eucalyptol, β-linalool, and bornyl acetate were the most potent odorants, exhibiting the highest flavor dilution factor (FD factor) of 2187. SHDA indicated that the predominant headspace odorants were α-pinene and eucalyptol. In addition, odorants exhibiting a high FD factor in SHDA were estimated to be potent aroma contributors in AEDA. The predominant odorants were found to be monoterpenes and sesquiterpenes, as along with their oxygenated derivatives, providing minty, lemon-like, herbal, and woody aromas. On the other hand, three highly volatile compounds detected by SHDA were not detected by AEDA, whereas 34 high-polarity, low-volatility compounds were identified only by AEDA, demonstrating the complementary natures of SHDA and AEDA and the necessity of utilizing both techniques to accurately characterize the aroma of ginger.
Chavez, C; Coufal, C D; Niemeyer, P L; Carey, J B; Lacey, R E; Miller, R K; Beier, R C
2004-10-01
An experiment was conducted to detect differences in odor characteristics of broiler excreta due to utilization of different supplementary Met sources by a trained human descriptive aroma attribute sensory panel. The 5 treatment groups were no supplemental Met (control group), sodium methioninate aqueous solution, dry Met hydroxy analogue, liquid Met hydroxy analogue, and DL-Met. Two trials were conducted consisting of 5 treatment groups with 3 replications of 13 randomly distributed straight run broiler chicks per pen reared in battery cages. Starter and grower diets were formulated to contain 0.5 and 0.38% Met activity, respectively (except control group, 0.35% Met activity). Excreta were collected for 24 h in litter pans lined with aluminum foil at wk 4, 5, and 6 and analyzed by a trained sensory panel (7 people). Each panelist was given 25 g of manure heated at 27 degrees C for 5 min for sensory analysis. The 13 odor attributes used to determine differences in broiler excreta by the trained sensory panel were ammonia, dirty socks, wet poultry, fermented rotten fruit, hay, musty wet, sharp, sour, urinous, rotten eggs, irritating, pungent, and nauseating. Panelist marked intensities for each attribute ranging from 0 = none and 15 = extremely intense. Each panelist was given 2 replications of each treatment group in a random order each week (total of 10 samples per wk). All data were evaluated by ANOVA using the general linear model procedure of SAS software. No significant differences were observed in BW, feed consumption, or feed conversion among the treatments. The attributes of ammonia, wet poultry, rotten fruit, musty wet, sharp, and pungent differed (P < 0.05) across treatment groups. These findings demonstrate that supplemental Met sources significantly influence odor production in broiler excreta.
Predator odor exposure increases food-carrying behavior in rats.
Wernecke, Kerstin E A; Brüggemann, Judith; Fendt, Markus
2016-02-01
To cover their energy demands, prey animals are forced to search for food. However, during foraging they also expose themselves to the risk of becoming the prey of predators. Consequently, in order to increase their fitness foraging animals have to trade-off efficiency of foraging against the avoidance of predation risk. For example, the decision on whether a found food piece should be eaten at the food source or whether it should be carried to a protective site such as the nest (food-carrying behavior), is strongly dependent on different incentive factors (e.g., hunger level, food size, distance to the nest). It has been shown that food-carrying behavior increases the more risky the foraging situation becomes. Since predator odors are clearly fear-inducing in rats, we ask here whether the detection of predator odors in close proximity to the food source modulates food-carrying behavior. In the present study, the food-carrying behavior of rats for six different food pellet sizes was measured in a "low risk" and a "high risk" testing condition by presenting water or a fox urine sample, respectively, next to the food source. For both testing conditions, food-carrying behavior of rats increased with increasing food pellet weight. Importantly, the proportion of food-carrying rats was significantly higher during exposure to fox urine ("high risk") than when rats were tested with the water control ("low risk"). Taken together, these results demonstrate that food-carrying behavior of rats is increased by the detection of a predator odor. Our data also support the idea that such food-carrying behavior can be considered as a pre-encounter defensive response. Copyright © 2015 Elsevier Inc. All rights reserved.
Dissipative vibrational model for chiral recognition in olfaction
NASA Astrophysics Data System (ADS)
Tirandaz, Arash; Taher Ghahramani, Farhad; Shafiee, Afshin
2015-09-01
We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered an overall measure of chiral interactions. The biological environment is conveniently modeled as a bath of harmonic oscillators. The resulting spin-boson model is adapted by a polaron transformation to derive the corresponding Born-Markov master equation with which we obtain the elastic and inelastic electron tunneling rates. We show that the inelastic tunneling through left- and right-handed enantiomers occurs with different rates. The discrimination mechanism depends on the ratio of tunneling frequency to localization frequency.
ASTM Data Banks and Chemical Information Sources
ERIC Educational Resources Information Center
Batik, Albert; Hale, Eleanor
1972-01-01
Among the data described are infrared indexes, mass spectral data, chromatographic data, X-ray emmission data, odor and taste threshold data, and thermodynamics data. This paper provides the chemical documentarian a complete reference source to a wide variety of analytical data. (Author/NH)
The banana code-natural blend processing in the olfactory circuitry of Drosophila melanogaster.
Schubert, Marco; Hansson, Bill S; Sachse, Silke
2014-01-01
Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca(2+) signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions.
Gikonyo, Nicholas K; Hassanali, Ahmed; Njagi, Peter G N; Saini, Rajinder K
2003-10-01
In a previous study, comparison of the behavior of teneral Glossina morsitans morsitans on waterbuck, Kobus defassa (a refractory host), and on two preferred hosts, buffalo, Syncerus caffer, and ox, Bos indicus, suggested the presence of allomones in the waterbuck odor. Examination of the volatile odors by coupled gas chromatography-electroantennographic detection showed that the antennal receptors of the flies detected constituents common to the three bovids (phenols and aldehydes), as well as a series of compounds specific to waterbuck, including C8-C13 methyl ketones, delta-octalactone, and phenols. In this study, behavioral respones of teneral G. m. morsitans to different blends of these compounds were evaluated in a choice wind tunnel. The flies' responses to known or putative attractant blends (the latter comprising EAG-active constituents common to all three animals and those common to buffalo and ox, excluding the known tseste attractants, 4-methylphenol and 3-n-propylphenol), and to putative repellent (the blend of EAG-active compounds specific to the waterbuck volatiles), were different. A major difference related to their initial and final behaviors. When a choice of attractant blends (known or putative) and clean air was presented, flies initially responded by flying upwind toward the odor source, but later moved downwind and rested on either side of the tunnel, with some preference for the side with the odor treatments. However, when presented with a choice of waterbuck-specific blend (putative repellent) and clean air, the flies' initial reaction appeared random; flies flew upwind on either side, but eventually settled down on the odorless side of the tunnel. Flies that flew up the odor plume showed an aversion behavior to the blend. The results lend further support to previous indications for the existence of a tsetse repellent blend in waterbuck body odor and additional attractive constituents in buffalo and ox body odors.
Child Odors and Parenting: A Survey Examination of the Role of Odor in Child-Rearing
Okamoto, Masako; Shirasu, Mika; Fujita, Rei; Hirasawa, Yukei; Touhara, Kazushige
2016-01-01
Parental caregiving is critical for the survival of our young and continuation of our species. In humans, visual and auditory signals from offspring have been shown to be potent facilitators of parenting. However, whether odors emitted by our young also influence human parenting remains unclear. To explore this, we conducted a series of questionnaire surveys targeting parents with children under 6 years old. First, we collected episodes on experiencing odors/sniffing various parts of a child’s body (n = 507). The prevalence of experiencing events described in those episodes was examined in a separate survey (n = 384). Based on those results, the Child Odor in Parenting scale (COPs) was developed, and subsequently used in the main survey (n = 888). We found COPs to have adequate content validity, concurrent validity, and reliability. Responses to the COPs demonstrated that parents, especially mothers with infants, are aware of odors from their offspring, and actively seek them in daily child-rearing. The factor structure and content of the COPs items indicated that child odors have both affective and instrumental roles. Affective experiences induce loving feeling and affectionate sniffing, while instrumental experiences pertain to specific hygienic needs. The head was the most frequent source of affective experiences, and the child’s bottom of instrumental. Each was experienced by more than 90% of the mothers with a child below 1 year of age. Affective experiences significantly declined as the child grew older, possibly associated with the decline of physical proximity between parents and child. This age-related decline was not prominent for instrumental experiences, except for the bottom, which significantly declined after 3 years of age. The present findings suggest that child odors play roles in human parenting, and that their nature and significance change during the course of a child’s development. PMID:27138751
Identification of Second Messenger Mediating Signal Transduction in the Olfactory Receptor Cell
Takeuchi, Hiroko; Kurahashi, Takashi
2003-01-01
One of the biggest controversial issues in the research of olfaction has been the mechanism underlying response generation to odorants that have been shown to fail to produce cAMP when tested by biochemical assays with olfactory ciliary preparations. Such observations are actually the original source proposing a possibility for the presence of multiple and parallel transduction pathways. In this study the activity of transduction channels in the olfactory cilia was recorded in cells that retained their abilities of responding to odorants that have been reported to produce InsP3 (instead of producing cAMP, and therefore tentatively termed “InsP3 odorants”). At the same time, the cytoplasmic cNMP concentration ([cNMP]i) was manipulated through the photolysis of caged compounds to examine their real-time interactions with odorant responses. Properties of responses induced by both InsP3 odorants and cytoplasmic cNMP resembled each other in their unique characteristics. Reversal potentials of currents were 2 mV for InsP3 odorant responses and 3 mV for responses induced by cNMP. Current and voltage (I-V) relations showed slight outward rectification. Both responses showed voltage-dependent adaptation when examined with double pulse protocols. When brief pulses of the InsP3 odorant and cytoplasmic cNMP were applied alternatively, responses expressed cross-adaptation with each other. Furthermore, both responses were additive in a manner as predicted quantitatively by the theory that signal transduction is mediated by the increase in cytoplasmic cAMP. With InsP3 odorants, actually, remarkable responses could be detected in a small fraction of cells (∼2%), explaining the observation for a small production of cAMP in ciliary preparations obtained from the entire epithelium. The data will provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants. PMID:14581582
Public perception of rural environmental quality: Moving towards a multi-pollutant approach
NASA Astrophysics Data System (ADS)
Cantuaria, Manuella Lech; Brandt, Jørgen; Løfstrøm, Per; Blanes-Vidal, Victoria
2017-12-01
Most environmental epidemiology studies have examined pollutants individually. Multi-pollutant approaches have been recognized recently, but to the extent of our knowledge, no study to date has specifically investigated exposures to multiple air pollutants in rural environments. In this paper we characterized and quantified residential exposures to air pollutant mixtures in rural populations, provided a better understanding of the relationships between air pollutant mixtures and annoyance responses to environmental stressors, particularly odor, and quantified their predictive abilities. We used validated and highly spatially resolved atmospheric modeling of 14 air pollutants for four rural areas of Denmark, and the annoyance responses considered were annoyance due to odor, noise, dust, smoke and vibrations. We found significant associations between odor annoyance and principal components predominantly described by nitrate (NO3-), ammonium (NH4+), particulate matter (PM10 and PM2.5) and NH3, which are usually related to agricultural emission sources. Among these components, NH3 showed the lowest error when comparing observed population data and predicted probabilities. The combination of these compounds in a predictive model resulted in the most accurate model, being able to correctly predict 66% of odor annoyance responses. Furthermore, noise annoyance was found to be significantly associated with traffic-related air pollutants. In general terms, our results suggest that emissions from the agricultural and livestock production sectors are the main contributors to environmental annoyance, but also identify traffic and biomass burning as potential sources of annoyance.
Horner, Amy J; Nickles, Scott P; Weissburg, Marc J; Derby, Charles D
2006-10-01
Caribbean spiny lobsters display a diversity of social behaviors, one of the most prevalent of which is gregarious diurnal sheltering. Previous research has demonstrated that shelter selection is chemically mediated, but the source of release and the identity of the aggregation signal are unknown. In this study, we investigated the source and specificity of the aggregation signal in Caribbean spiny lobsters, Panulirus argus. We developed a relatively rapid test of shelter choice in a 5000-l laboratory flume that simulated flow conditions in the spiny lobster's natural environment, and used it to examine the shelter preference of the animals in response to a variety of odorants. We found that both males and females associated preferentially with shelters emanating conspecific urine of either sex, but not with shelters emanating seawater, food odors, or the scent of a predatory octopus. These results demonstrate specificity in the cues mediating sheltering behavior and show that urine is at least one source of the aggregation signal.
Salyer, Adam; Bennett, Gary W.; Buczkowski, Grzegorz A.
2014-01-01
Invasive species and habitat disturbance threaten biodiversity worldwide by modifying ecosystem performance and displacing native organisms. Similar homogenization impacts manifest locally when urbanization forces native species to relocate or reinvade perpetually altered habitat. This study investigated correlations between ant richness and abundance in response to urbanization and the nearby presence of invasive ant species, odorous house ants (Tapinoma sessile), within its native region. Surveying localized ant composition within natural, semi-natural, and urban habitat supported efforts to determine whether T. sessile appear to be primary (drivers) threats as instigators or secondary (passengers) threats as inheritors of indigenous ant decline. Sampling 180 sites, evenly split between all habitats with and without T. sessile present, yielded 45 total species. Although urbanization and T. sessile presence factors were significantly linked to ant decline, their interaction correlated to the greatest reduction of total ant richness (74%) and abundance (81%). Total richness appeared to decrease from 27 species to 18 when natural habitat is urbanized and from 18 species to 7 with T. sessile present in urban plots. Odorous house ant presence minimally influenced ant communities within natural and semi-natural habitat, highlighting the importance of habitat alteration and T. sessile presence interactions. Results suggest urbanization releases T. sessile from unknown constraints by decreasing ant richness and competition. Within urban environment, T. sessile are pre-adapted to quickly exploit new resources and grow to supercolony strength wherein T. sessile drive adjacent biodiversity loss. Odorous house ants act as passengers and drivers of ecological change throughout different phases of urban ‘invasion’. This progression through surviving habitat alteration, exploiting new resources, thriving, and further reducing interspecific competition supports a “back-seat driver” role and affects pest management strategies. As demonstrated by T. sessile, this article concludes native species can become back-seat drivers of biodiversity loss and potentially thrive as “metro-invasive” species. PMID:25551819
Functional transformations of odor inputs in the mouse olfactory bulb.
Adam, Yoav; Livneh, Yoav; Miyamichi, Kazunari; Groysman, Maya; Luo, Liqun; Mizrahi, Adi
2014-01-01
Sensory inputs from the nasal epithelium to the olfactory bulb (OB) are organized as a discrete map in the glomerular layer (GL). This map is then modulated by distinct types of local neurons and transmitted to higher brain areas via mitral and tufted cells. Little is known about the functional organization of the circuits downstream of glomeruli. We used in vivo two-photon calcium imaging for large scale functional mapping of distinct neuronal populations in the mouse OB, at single cell resolution. Specifically, we imaged odor responses of mitral cells (MCs), tufted cells (TCs) and glomerular interneurons (GL-INs). Mitral cells population activity was heterogeneous and only mildly correlated with the olfactory receptor neuron (ORN) inputs, supporting the view that discrete input maps undergo significant transformations at the output level of the OB. In contrast, population activity profiles of TCs were dense, and highly correlated with the odor inputs in both space and time. Glomerular interneurons were also highly correlated with the ORN inputs, but showed higher activation thresholds suggesting that these neurons are driven by strongly activated glomeruli. Temporally, upon persistent odor exposure, TCs quickly adapted. In contrast, both MCs and GL-INs showed diverse temporal response patterns, suggesting that GL-INs could contribute to the transformations MCs undergo at slow time scales. Our data suggest that sensory odor maps are transformed by TCs and MCs in different ways forming two distinct and parallel information streams.
Reactive Searching and Infotaxis in Odor Source Localization
Voges, Nicole; Chaffiol, Antoine; Lucas, Philippe; Martinez, Dominique
2014-01-01
Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching. PMID:25330317
Reactive searching and infotaxis in odor source localization.
Voges, Nicole; Chaffiol, Antoine; Lucas, Philippe; Martinez, Dominique
2014-10-01
Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.
Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.
Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas
2018-01-01
The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.
Chen, Xichao; Luo, Qian; Wang, Donghong; Gao, Jijun; Wei, Zi; Wang, Zijian; Zhou, Huaidong; Mazumder, Asit
2015-11-01
Owing to the growing public awareness on the safety and aesthetics in water sources, more attention has been given to the adverse effects of volatile organic compounds (VOCs) on aquatic organisms and human beings. In this study, 77 target VOCs (including 54 common VOCs, 13 carbonyl compounds, and 10 taste and odor compounds) were detected in typical drinking water sources from 5 major river basins (the Yangtze, the Huaihe, the Yellow, the Haihe and the Liaohe River basins) and their occurrences were characterized. The ecological, human health, and olfactory assessments were performed to assess the major hazards in source water. The investigation showed that there existed potential ecological risks (1.30 × 10 ≤ RQtotals ≤ 8.99 × 10) but little human health risks (6.84 × 10(-7) ≤ RQtotals ≤ 4.24 × 10(-4)) by VOCs, while that odor problems occurred extensively. The priority contaminants in drinking water sources of China were also listed based on the present assessment criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.
Predicting human olfactory perception from chemical features of odor molecules.
Keller, Andreas; Gerkin, Richard C; Guan, Yuanfang; Dhurandhar, Amit; Turu, Gabor; Szalai, Bence; Mainland, Joel D; Ihara, Yusuke; Yu, Chung Wen; Wolfinger, Russ; Vens, Celine; Schietgat, Leander; De Grave, Kurt; Norel, Raquel; Stolovitzky, Gustavo; Cecchi, Guillermo A; Vosshall, Leslie B; Meyer, Pablo
2017-02-24
It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features. The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors ("garlic," "fish," "sweet," "fruit," "burnt," "spices," "flower," and "sour"). Regularized linear models performed nearly as well as random forest-based ones, with a predictive accuracy that closely approaches a key theoretical limit. These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule. Copyright © 2017, American Association for the Advancement of Science.
2014-06-01
high-throughput method has utility for evaluating a diversity of natural materials with unknown complex odor blends that can then be down-selected for...method has utility for evaluating a diversity of natural materials with unknown complex odor blends that can then be down-selected for further...leishmaniasis. Lancet 366: 1561-1577. Petts, S.L., Y. Tang, and R.D. Ward. 1997. Nectar from a wax plant, Hoya sp., as a carbohydrate source for
[Characteristics of odors and VOCs from sludge direct drying process].
Chen, Wen-He; Deng, Ming-Jia; Luo, Hui; Zhang, Jing-Ying; Ding, Wen-Jie; Liu, Jun-Xin; Liu, Jun-Xin
2014-08-01
Co-processing sewage sludge by using the high-temperature feature of cement kiln can realize harmless disposal and energy recycling. In this paper, investigation on characteristics of the flue gas from sludge drying process was carried out in Guangzhou Heidelberg Yuexiu Cement Co., LTD. The composition and the main source of odors and volatile organic compounds (VOCs) emitted during the drying process were analyzed, aimed to provide scientific basis for the treatment of sewage sludge. Results showed that there were a large number of malodorous substances and VOCs in the flue gas. Sulfur dioxide and other sulfur-containing compounds were the main components in the malodorous substances, while benzene derivatives were predominant in VOCs. The compositions of odors and VOCs were influenced by the characteristics of the sludge and the heat medium (kiln tail gas). Total organic compounds in the sludge were significantly decreased after drying. Other organic substances such as volatile fatty acid, protein, and polysaccharide were also obviously reduced. The organic matter in sludge was the main source of VOCs in the flue gas. Part of sulfurous substances, such as sulfur dioxide, carbon disulfide, were from sulfur-containing substances in the sludge, and the rest were from the kiln tail gas itself.
Human breath odors and their use in diagnosis.
Whittle, Chris L; Fakharzadeh, Steven; Eades, Jason; Preti, George
2007-03-01
Humans emit a complex array of volatile and nonvolatile molecules that are influenced by an individual's genetics, health, diet, and stress. Olfaction is the most ancient of our distal senses and may be used to evaluate food and environmental toxins as well as recognize kin and potential predators. Many body odors evolved to be olfactory messengers, which convey information between individuals. Consequently, those practicing the healing arts have used olfaction to aid in their diagnosis of disease since the dawn of medical practice. Studies using modern instrumental analyses have focused upon analysis of breath volatiles for biomarkers of internal diseases. In these studies, a subject's oral health status appears to seldom be considered. However, saliva and properly collected alveolar air samples must pass over or come in contact with the posterior dorsal surface of the tongue, a site of bacterial plaque development and source of halitosis-related volatiles. Because of our basic research into the nature of human body odors, our lab has received referrals of people with idiopathic malodor production, from either the oral cavity or body. We developed a protocol to help differentiate individuals with chronic halitosis from those with the genetic, odor-producing metabolic disorder trimethylaminuria (TMAU). In our referred population, TMAU is the largest cause of undiagnosed body odor. Many TMAU-positive individuals present with oral symptoms of dysguesia and halitosis as well as body odor. We present data regarding the presentation of our referred subjects as well as the analytical results from a small number of these subjects regarding their oral levels of halitosis-related malodorants and trimethylamine.
The banana code—natural blend processing in the olfactory circuitry of Drosophila melanogaster
Schubert, Marco; Hansson, Bill S.; Sachse, Silke
2014-01-01
Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca2+ signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions. PMID:24600405
He, Chao; Altshuler-Keylin, Svetlana; Daniel, David; L'Etoile, Noelle D; O'Halloran, Damien
2016-10-06
In mammals, olfactory subsystems have been shown to express seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-one-neuron pattern, whereas in Caenorhabditis elegans, olfactory sensory neurons express multiple G-protein coupled odorant receptors per olfactory sensory neuron. In both mammalian and C. elegans olfactory sensory neurons (OSNs), the process of olfactory adaptation begins within the OSN; this process of negative feedback within the mammalian OSN has been well described in mammals and enables activated OSNs to desensitize their response cell autonomously while attending to odors detected by separate OSNs. However, the mechanism that enables C. elegans to adapt to one odor and attend to another odor sensed by the same olfactory sensory neuron remains unclear. We found that the cyclic nucleotide gated channel subunit CNG-1 is required to promote cross adaptation responses between distinct olfactory cues. This change in sensitivity to a pair of odorants after persistent stimulation by just one of these odors is modulated by the internal nutritional state of the animal, and we find that this response is maintained across a diverse range of food sources for C. elegans. We also reveal that CNG-1 integrates food related cues for exploratory motor output, revealing that CNG-1 functions in multiple capacities to link nutritional information with behavioral output. Our data describes a novel model whereby CNG channels can integrate the coincidence detection of appetitive and olfactory information to set olfactory preferences and instruct behavioral outputs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A model of olfactory associative learning
NASA Astrophysics Data System (ADS)
Tavoni, Gaia; Balasubramanian, Vijay
We propose a mechanism, rooted in the known anatomy and physiology of the vertebrate olfactory system, by which presentations of rewarded and unrewarded odors lead to formation of odor-valence associations between piriform cortex (PC) and anterior olfactory nucleus (AON) which, in concert with neuromodulators release in the bulb, entrains a direct feedback from the AON representation of valence to a group of mitral cells (MCs). The model makes several predictions concerning MC activity during and after associative learning: (a) AON feedback produces synchronous divergent responses in a localized subset of MCs; (b) such divergence propagates to other MCs by lateral inhibition; (c) after learning, MC responses reconverge; (d) recall of the newly formed associations in the PC increases feedback inhibition in the MCs. These predictions have been confirmed in disparate experiments which we now explain in a unified framework. For cortex, our model further predicts that the response divergence developed during learning reshapes odor representations in the PC, with the effects of (a) decorrelating PC representations of odors with different valences, (b) increasing the size and reliability of those representations, and enabling recall correction and redundancy reduction after learning. Simons Foundation for Mathematical Modeling of Living Systems.
Senses and Your 4- to 7-Month-Old
... the supermarket, or an outing to the local zoo all provide wonderful opportunities for your baby to ... toward smells they favor and turn away from bad odors. Though sweetness is preferred, taste preferences will ...
Dambroski, Hattie R; Linn, Charles; Berlocher, Stewart H; Forbes, Andrew A; Roelofs, Wendell; Feder, Jeffrey L
2005-09-01
Rhagoletis pomonella (Diptera: Tephritidae) use volatile compounds emitted from the surface of ripening fruit as important chemosensory cues for recognizing and distinguishing among alternative host plants. Host choice is of evolutionary significance in Rhagoletis because these flies mate on or near the fruit of their respective host plants. Differences in host choice based on fruit odor discrimination therefore result in differential mate choice and prezygotic reproductive isolation, facilitating sympatric speciation in the absence of geographic isolation. We test for a genetic basis for host fruit odor discrimination through an analysis of F2 and backcross hybrids constructed between apple-, hawthorn-, and flowering dogwood-infesting Rhagoletis flies. We recovered a significant proportion (30-65%) of parental apple, hawthorn, and dogwood fly response phenotypes in F2 hybrids, despite the general failure of F1 hybrids to reach odor source spheres. Segregation patterns in F2 and backcross hybrids suggest that only a modest number of allelic differences at a few loci may underlie host fruit odor discrimination. In addition, a strong bias was observed for F2 and backcross flies to orient to the natal fruit blend of their maternal grandmother, implying the existence of cytonuclear gene interactions. We explore the implications of our findings for the evolutionary dynamics of sympatric host race formation and speciation.
Vaginal scent marking: effects on ultrasonic calling and attraction of male golden hamsters.
Johnston, R E; Kwan, M
1984-11-01
Male hamsters were tested for their responses to areas that had been scent marked by intact or vaginectomized females to determine the effects of naturally deposited vaginal secretions on male behavior. In the first experiment males produced more ultrasonic courtship calls when investigating areas marked by intact females than areas scented by vaginectomized females, demonstrating that vaginal marks facilitate such calling. In a wind-tunnel preference test situation in which scent-marked alleys and clean alleys served as sources of odor, males approached the scented alley first if it had been freshly marked by intact females but not if it had been scented by vaginectomized females or other males. Thus, the odors of vaginal marks are sufficient to attract males over short distances. After males entered these alleys they showed a preference for odors of both intact and vaginectomized females over no odors, but still spent significantly more time investigating the odors of intact females than those of vaginectomized females. These experiments indicate that vaginal secretions are one of the primary cues that elicit male courtship calling, and the small quantities of vaginal secretions deposited by females in vaginal marks are sufficient to elicit ultrasonic calling and attract males over short distances. Thus it is likely that vaginal scent marking and ultrasonic calling by females interact to facilitate attraction and location of mates during courtship.
Ni, Zhe; Liu, Jianguo; Song, Mingying; Wang, Xiaowei; Ren, Lianhai; Kong, Xin
2015-03-01
Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 μg/m3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 μg/m3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air. Copyright © 2015. Published by Elsevier B.V.
Jacob, Juliah W; Tchouassi, David P; Lagat, Zipporah O; Mathenge, Evan M; Mweresa, Collins K; Torto, Baldwyn
2018-04-27
Several studies have shown that odors of plant and animal origin can be developed into lures for use in surveillance of mosquito vectors of infectious diseases. However, the effect of combining plant- and mammalian-derived odors into an improved lure for monitoring both nectar- and blood-seeking mosquito populations in traps is yet to be explored. Here we used both laboratory dual choice olfactometer and field assays to investigate responses of the malaria vector, Anopheles gambiae, to plant- and mammalian-derived compounds and a combined blend derived from these two odor sources. Using subtractive bioassays in dual choice olfactometer we show that a 3-component terpenoid plant-derived blend comprising (E)-linalool oxide, β-pinene, β-ocimene was more attractive to females of An. gambiae than (E)-linalool oxide only (previously found attractive in field trials) and addition of limonene to this blend antagonized its attractiveness. Likewise, a mammalian-derived lure comprising the aldehydes heptanal, octanal, nonanal and decanal, was more preferred than (E)-linalool oxide. Surprisingly, combining the plant-derived 3-component blend with the mammalian derived 4-component blend attracted fewer females of An. gambiae than the individual blends in laboratory assays. However, this pattern was not replicated in field trials, where we observed a dose-dependent effect on trap catches while combining both blends with significantly improved trap catches at higher doses. The observed dose-dependent attractiveness for An. gambiae has practical implication in the design of vector control strategies involving kairomones from plant- and mammalian-based sources. Copyright © 2018 Elsevier B.V. All rights reserved.
The scent of disease: human body odor contains an early chemosensory cue of sickness.
Olsson, Mats J; Lundström, Johan N; Kimball, Bruce A; Gordon, Amy R; Karshikoff, Bianka; Hosseini, Nishteman; Sorjonen, Kimmo; Olgart Höglund, Caroline; Solares, Carmen; Soop, Anne; Axelsson, John; Lekander, Mats
2014-03-01
Observational studies have suggested that with time, some diseases result in a characteristic odor emanating from different sources on the body of a sick individual. Evolutionarily, however, it would be more advantageous if the innate immune response were detectable by healthy individuals as a first line of defense against infection by various pathogens, to optimize avoidance of contagion. We activated the innate immune system in healthy individuals by injecting them with endotoxin (lipopolysaccharide). Within just a few hours, endotoxin-exposed individuals had a more aversive body odor relative to when they were exposed to a placebo. Moreover, this effect was statistically mediated by the individuals' level of immune activation. This chemosensory detection of the early innate immune response in humans represents the first experimental evidence that disease smells and supports the notion of a "behavioral immune response" that protects healthy individuals from sick ones by altering patterns of interpersonal contact.
Qamaruz-Zaman, N; Kun, Y; Rosli, R-N
2015-01-01
Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100g per kg food waste) to control odour from seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gourévitch, Boris; Kay, Leslie M; Martin, Claire
2010-05-01
The hippocampus and olfactory regions are anatomically close, and both play a major role in memory formation. However, the way they interact during odor processing is still unclear. In both areas, strong oscillations of the local field potential (LFP) can be recorded, and are modulated by behavior. In particular, in the olfactory system, the beta rhythm (15-35 Hz) is associated with cognitive processing of an olfactory stimulus. Using LFP recordings in the olfactory bulb and dorsal and ventral hippocampus during performance of an olfactory go/no-go task in rats, we previously showed that beta oscillations are also present in the hippocampus, coherent with those in the olfactory bulb, during odor sampling. In this study, we provide further insight into information transfer in the olfacto-hippocampal network by using directional coherence (DCOH estimate), a method based on the temporal relation between two or more signals in the frequency domain. In the theta band (6-12 Hz), coherence between the olfactory bulb (OB) and the hippocampus (HPC) is weak and can be both in the feedback and feedforward directions. However, at this frequency, modulation of the coupling between the dorsal and ventral hippocampus is seen during stimulus expectation versus odor processing. In the beta frequency band (15-35 Hz), analysis showed a strong unidirectional coupling from the OB to dorsal and ventral HPC, indicating that, during odor processing, beta oscillations in the hippocampus are driven by the olfactory bulb.
Tsuruta, Miho; Takahashi, Toru; Tokunaga, Miki; Iwasaki, Masanori; Kataoka, Shota; Kakuta, Satoko; Soh, Inho; Awano, Shuji; Hirata, Hiromi; Kagawa, Masaharu; Ansai, Toshihiro
2017-03-14
Pathologic subjective halitosis is known as a halitosis complaint without objective confirmation of halitosis by others or by halitometer measurements; it has been reported to be associated with social anxiety disorder. Olfactory reference syndrome is a preoccupation with the false belief that one emits a foul and offensive body odor. Generally, patients with olfactory reference syndrome are concerned with multiple body parts. However, the mouth is known to be the most common source of body odor for those with olfactory reference syndrome, which could imply that the two conditions share similar features. Therefore, we investigated potential causal relationships among pathologic subjective halitosis, olfactory reference syndrome, social anxiety, and preoccupations with body part odors. A total of 1360 female students (mean age 19.6 ± 1.1 years) answered a self-administered questionnaire regarding pathologic subjective halitosis, olfactory reference syndrome, social anxiety, and preoccupation with odors of body parts such as mouth, body, armpits, and feet. The scale for pathologic subjective halitosis followed that developed by Tsunoda et al.; participants were divided into three groups based on their scores (i.e., levels of pathologic subjective halitosis). A Bayesian network was used to analyze causal relationships between pathologic subjective halitosis, olfactory reference syndrome, social anxiety, and preoccupations with body part odors. We found statistically significant differences in the results for olfactory reference syndrome and social anxiety among the various levels of pathologic subjective halitosis (P < 0.001). Residual analyses indicated that students with severe levels of pathologic subjective halitosis showed greater preoccupations with mouth and body odors (P < 0.05). Bayesian network analysis showed that social anxiety directly influenced pathologic subjective halitosis and olfactory reference syndrome. Preoccupations with mouth and body odors also influenced pathologic subjective halitosis. Social anxiety may be a causal factor of pathologic subjective halitosis and olfactory reference syndrome.
Piltingsrud, Harley V; Zimmer, Anthony T; Rourke, Aaron B
2003-08-01
During the summer of 1994, football players at a practice field reported noxious odors in the area. Ohio Environmental Protection Agency (OEPA) investigations of industries surrounding the field included a printing facility producing vinyl shower curtains with screen-printed designs. Though not the source of the odor, they were discharging volatile organic compounds directly to the environs in violation of OEPA regulations. To achieve compliance they installed a catalytic oxidizer for treating discharged air. Due to high equipment costs, the capacity of the installed catalytic oxidizer resulted in a substantial reduction in discharged air flow rates and increased solvent vapor concentrations within the workplace. Vapor levels caused worker discomfort, prompting a request for assistance from the Ohio Bureau of Workers Compensation. The vapor concentrations were found to exceed NIOSH, OSHA, and ACGIH acceptable exposure levels. The workers were then required to wear organic vapor removing respirators full-time while printing as a temporary protective measure. The company requested NIOSH assistance in finding methods to reduce solvent vapor concentrations. NIOSH studies included the identification of the sources and relative magnitude of solvent emissions from the printing process, the design of controls for the emissions, and the development of substitute inks using non-photochemically reactive solvents. The new ink system and controls allowed OEPA removal of the requirement for the treatment of discharged air and substantial increases in dilution ventilation. Increased ventilation would permit reduction in worker exposures to less than 1/3 mixture TLV levels and removal of requirements for respirator usage. This solution was the result of a comprehensive review of all facets of the problem, including OEPA regulations. It also required cooperative work between the company and federal, state, and local governmental agencies.
Furukawa, Shota; Sekine, Yoshika; Kimura, Keita; Umezawa, Kazuo; Asai, Satomi; Miyachi, Hayato
2017-05-15
Ammonia is one of the members of odor gases and a possible source of odor in indoor environment. However, little has been known on the actual emission rate of ammonia from the human skin surface. Then, this study aimed to estimate the whole-body dermal emission rate of ammonia by simultaneous and multi-point measurement of emission fluxes of ammonia employing a passive flux sampler - ion chromatography system. Firstly, the emission fluxes of ammonia were non-invasively measured for ten volunteers at 13 sampling positions set in 13 anatomical regions classified by Kurazumi et al. The measured emission fluxes were then converted to partial emission rates using the surface body areas estimated by weights and heights of volunteers and partial rates of 13 body regions. Subsequent summation of the partial emission rates provided the whole body dermal emission rate of ammonia. The results ranged from 2.9 to 12mgh -1 with an average of 5.9±3.2mgh -1 per person for the ten healthy young volunteers. The values were much greater than those from human breath, and thus the dermal emission of ammonia was found more significant odor source than the breath exhalation in indoor environment. Copyright © 2017 Elsevier B.V. All rights reserved.
The wiring diagram of a glomerular olfactory system
Berck, Matthew E; Khandelwal, Avinash; Claus, Lindsey; Hernandez-Nunez, Luis; Si, Guangwei; Tabone, Christopher J; Li, Feng; Truman, James W; Fetter, Rick D; Louis, Matthieu; Samuel, Aravinthan DT; Cardona, Albert
2016-01-01
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI: http://dx.doi.org/10.7554/eLife.14859.001 PMID:27177418
Functional architecture of olfactory ionotropic glutamate receptors.
Abuin, Liliane; Bargeton, Benoîte; Ulbrich, Maximilian H; Isacoff, Ehud Y; Kellenberger, Stephan; Benton, Richard
2011-01-13
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate chemical communication between neurons at synapses. A variant iGluR subfamily, the Ionotropic Receptors (IRs), was recently proposed to detect environmental volatile chemicals in olfactory cilia. Here, we elucidate how these peripheral chemosensors have evolved mechanistically from their iGluR ancestors. Using a Drosophila model, we demonstrate that IRs act in combinations of up to three subunits, comprising individual odor-specific receptors and one or two broadly expressed coreceptors. Heteromeric IR complex formation is necessary and sufficient for trafficking to cilia and mediating odor-evoked electrophysiological responses in vivo and in vitro. IRs display heterogeneous ion conduction specificities related to their variable pore sequences, and divergent ligand-binding domains function in odor recognition and cilia localization. Our results provide insights into the conserved and distinct architecture of these olfactory and synaptic ion channels and offer perspectives into the use of IRs as genetically encoded chemical sensors. Copyright © 2011 Elsevier Inc. All rights reserved.
Dhawale, Ashesh K.; Hagiwara, Akari; Bhalla, Upinder S.; Murthy, Venkatesh N.; Albeanu, Dinu F.
2011-01-01
Sensory inputs frequently converge on the brain in a spatially organized manner, often with overlapping inputs to multiple target neurons. Whether the responses of target neurons with common inputs become decorrelated depends on the contribution of local circuit interactions. We addressed this issue in the olfactory system using newly generated transgenic mice expressing channelrhodopsin-2 in all olfactory sensory neurons. By selectively stimulating individual glomeruli with light, we identified mitral/tufted (M/T) cells that receive common input (sister cells). Sister M/T cells had highly correlated responses to odors as measured by average spike rates, but their spike timing in relation to respiration was differentially altered. In contrast, non-sister M/T cells correlated poorly on both these measures. We suggest that sister M/T cells carry two different channels of information: average activity representing shared glomerular input, and phase-specific information that refines odor representations and is substantially independent for sister M/T cells. PMID:20953197
Punzo, F
2003-01-01
The purpose of this study was to assess the effects of early feeding experiences on subsequent responses to prey in the tegu, Tupinambis teguixin. Five-day old lizards were exposed to the odors of various prey and control substances on cotton-tipped applicators with the tongue-flick attack score (TFAS) chosen as the dependent variable. Each lizard was exposed to four stimuli: two controls (deionised water and cologne), and extracts from a mouse Mus musculus, and a lizard Ameiva ameiva, in a repeated measures, randomized block design, receiving one stimulus training session / day over a 40-day period. Tongue-flicks directed toward the applicator were counted over a 1 min period as well as the amount of time that elapsed from the first tongue flick to any bite that may have occurred. Live neonatal mice (but not A. ameiva), offered on a weekly basis, were used as a food source for tegus over a 10-month period. After 10 months, tegus were exposed to applicators containing control odors as well as those containing extracts from mice and lizards (A. ameiva). Mouse extracts elicited significantly higher TFAS as compared to those elicited by A. ameiva or control odors, suggesting that prey odors encountered in the environment shortly after hatching can influence prey preferences by these lizards later in life. These results also indicate that tegu lizards can learn to use specific odor cues associated with naturally occurring prey as releasers for subsequent hunting behaviors.
Zhou, Huaying; Luo, Dehan; GholamHosseini, Hamid; Li, Zhong; He, Jiafeng
2017-01-01
This paper provides a review of the most recent works in machine olfaction as applied to the identification of Chinese Herbal Medicines (CHMs). Due to the wide variety of CHMs, the complexity of growing sources and the diverse specifications of herb components, the quality control of CHMs is a challenging issue. Much research has demonstrated that an electronic nose (E-nose) as an advanced machine olfaction system, can overcome this challenge through identification of the complex odors of CHMs. E-nose technology, with better usability, high sensitivity, real-time detection and non-destructive features has shown better performance in comparison with other analytical techniques such as gas chromatography-mass spectrometry (GC-MS). Although there has been immense development of E-nose techniques in other applications, there are limited reports on the application of E-noses for the quality control of CHMs. The aim of current study is to review practical implementation and advantages of E-noses for robust and effective odor identification of CHMs. It covers the use of E-nose technology to study the effects of growing regions, identification methods, production procedures and storage time on CHMs. Moreover, the challenges and applications of E-nose for CHM identification are investigated. Based on the advancement in E-nose technology, odor may become a new quantitative index for quality control of CHMs and drug discovery. It was also found that more research could be done in the area of odor standardization and odor reproduction for remote sensing. PMID:28486407
Mall, Veronika; Schieberle, Peter
2016-08-24
Application of aroma extract dilution analysis (AEDA) to an aroma distillate of blanched prawn meat (Litopenaeus vannamei) (BPM) revealed 40 odorants in the flavor dilution (FD) factor range from 4 to 1024. The highest FD factors were assigned to 2-acetyl-1-pyrroline, 3-(methylthio)propanal, (Z)-1,5-octadien-3-one, trans-4,5-epoxy-(E)-2-decenal, (E)-3-heptenoic acid, and 2-aminoacetophenone. To understand the influence of different processing conditions on odorant formation, fried prawn meat was investigated by means of AEDA in the same way, revealing 31 odorants with FD factors between 4 and 2048. Also, the highest FD factors were determined for 2-acetyl-1-pyrroline, 3-(methylthio)propanal, and (Z)-1,5-octadien-3-one, followed by 4-hydroxy-2,5-dimethyl-3(2H)-furanone, (E)-3-heptenoic acid, and 2-aminoacetophenone. As a source of the typical marine, sea breeze-like odor attribute of the seafood, 2,4,6-tribromoanisole was identified in raw prawn meat as one of the contributors. Additionally, the aroma of blanched prawn meat was compared to that of blanched Norway and American lobster meat, respectively (Nephrops norvegicus and Homarus americanus). Identification experiments revealed the same set of odorants, however, with differing FD factors. In particular, 3-hydroxy-4,5-dimethyl-2(5H)-furanone was found as the key aroma compound in blanched Norway lobster, whereas American lobster contained 3-methylindole with a high FD factor.
Zhou, Huaying; Luo, Dehan; GholamHosseini, Hamid; Li, Zhong; He, Jiafeng
2017-05-09
This paper provides a review of the most recent works in machine olfaction as applied to the identification of Chinese Herbal Medicines (CHMs). Due to the wide variety of CHMs, the complexity of growing sources and the diverse specifications of herb components, the quality control of CHMs is a challenging issue. Much research has demonstrated that an electronic nose (E-nose) as an advanced machine olfaction system, can overcome this challenge through identification of the complex odors of CHMs. E-nose technology, with better usability, high sensitivity, real-time detection and non-destructive features has shown better performance in comparison with other analytical techniques such as gas chromatography-mass spectrometry (GC-MS). Although there has been immense development of E-nose techniques in other applications, there are limited reports on the application of E-noses for the quality control of CHMs. The aim of current study is to review practical implementation and advantages of E-noses for robust and effective odor identification of CHMs. It covers the use of E-nose technology to study the effects of growing regions, identification methods, production procedures and storage time on CHMs. Moreover, the challenges and applications of E-nose for CHM identification are investigated. Based on the advancement in E-nose technology, odor may become a new quantitative index for quality control of CHMs and drug discovery. It was also found that more research could be done in the area of odor standardization and odor reproduction for remote sensing.
Yan, Luchun; Liu, Jiemin; Qu, Chen; Gu, Xingye; Zhao, Xia
2015-01-28
In order to explore the odor interaction of binary odor mixtures, a series of odor intensity evaluation tests were performed using both individual components and binary mixtures of aldehydes. Based on the linear relation between the logarithm of odor activity value and odor intensity of individual substances, the relationship between concentrations of individual constituents and their joint odor intensity was investigated by employing a partial differential equation (PDE) model. The obtained results showed that the binary odor interaction was mainly influenced by the mixing ratio of two constituents, but not the concentration level of an odor sample. Besides, an extended PDE model was also proposed on the basis of the above experiments. Through a series of odor intensity matching tests for several different binary odor mixtures, the extended PDE model was proved effective at odor intensity prediction. Furthermore, odorants of the same chemical group and similar odor type exhibited similar characteristics in the binary odor interaction. The overall results suggested that the PDE model is a more interpretable way of demonstrating the odor interactions of binary odor mixtures.
Odors: appetizing or satiating? Development of appetite during odor exposure over time.
Ramaekers, M G; Boesveldt, S; Lakemond, C M M; van Boekel, M A J S; Luning, P A
2014-05-01
Exposure to palatable food odors influences appetite responses, either promoting or inhibiting food intake. Possibly, food odors are appetizing after a short exposure (of circa 1-3 min), but become satiating over time (circa 10-20 min). To investigate the effect of odor exposure on general appetite and sensory-specific appetite (SSA) over time. In a cross-over study, 21 unrestrained women (age: 18-45 years; BMI: 18.5-25 kg m(-2)) were exposed for 20 min to eight different odor types: five food odors, two nonfood odors and no-odor. All odors were distributed in a test room at suprathreshold levels. General appetite, SSA and salivation were measured over time. All food odors significantly increased general appetite and SSA, compared with the no-odor condition. The nonfood odors decreased general appetite. All effects did not change over time during odor exposure. Savory odors increased the appetite for savory foods, but decreased appetite for sweet foods, and vice versa after exposure to sweet odors. Neither food odors nor nonfood odors affected salivation. Palatable food odors were appetizing during and after odor exposure and did not become satiating over a 20-min period. Food odors had a large impact on SSA and a small impact on general appetite. Moreover, exposure to food odors increased the appetite for congruent foods, but decreased the appetite for incongruent foods. It may be hypothesized that, once the body is prepared for intake of a certain food with a particular macronutrient composition, it is unfavorable to consume foods that are very different from the cued food.
Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice
Chelminski, Yan; Magnan, Christophe; Luquet, Serge H.; Everard, Amandine; Meunier, Nicolas; Gurden, Hirac; Martin, Claire
2017-01-01
Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning. PMID:28154537
Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb
Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.
2014-01-01
Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011
Olfactory bulb gamma oscillations are enhanced with task demands.
Beshel, Jennifer; Kopell, Nancy; Kay, Leslie M
2007-08-01
Fast oscillations in neural assemblies have been proposed as a mechanism to facilitate stimulus representation in a variety of sensory systems across animal species. In the olfactory system, intervention studies suggest that oscillations in the gamma frequency range play a role in fine odor discrimination. However, there is still no direct evidence that such oscillations are intrinsically altered in intact systems to aid in stimulus disambiguation. Here we show that gamma oscillatory power in the rat olfactory bulb during a two-alternative choice task is modulated in the intact system according to task demands with dramatic increases in gamma power during discrimination of molecularly similar odorants in contrast to dissimilar odorants. This elevation in power evolves over the course of criterion performance, is specific to the gamma frequency band (65-85 Hz), and is independent of changes in the theta or beta frequency band range. Furthermore, these high amplitude gamma oscillations are restricted to the olfactory bulb, such that concurrent piriform cortex recordings show no evidence of enhanced gamma power during these high-amplitude events. Our results display no modulation in the power of beta oscillations (15-28 Hz) shown previously to increase with odor learning in a Go/No-go task, and we suggest that the oscillatory profile of the olfactory system may be influenced by both odor discrimination demands and task type. The results reported here indicate that enhancement of local gamma power may reflect a switch in the dynamics of the system to a strategy that optimizes stimulus resolution when input signals are ambiguous.
Multivariate prediction of odor from pig production based on in-situ measurement of odorants
NASA Astrophysics Data System (ADS)
Hansen, Michael J.; Jonassen, Kristoffer E. N.; Løkke, Mette Marie; Adamsen, Anders Peter S.; Feilberg, Anders
2016-06-01
The aim of the present study was to estimate a prediction model for odor from pig production facilities based on measurements of odorants by Proton-Transfer-Reaction Mass spectrometry (PTR-MS). Odor measurements were performed at four different pig production facilities with and without odor abatement technologies using a newly developed mobile odor laboratory equipped with a PTR-MS for measuring odorants and an olfactometer for measuring the odor concentration by human panelists. A total of 115 odor measurements were carried out in the mobile laboratory and simultaneously air samples were collected in Nalophan bags and analyzed at accredited laboratories after 24 h. The dataset was divided into a calibration dataset containing 94 samples and a validation dataset containing 21 samples. The prediction model based on the measurements in the mobile laboratory was able to explain 74% of the variation in the odor concentration based on odorants, whereas the prediction models based on odor measurements with bag samples explained only 46-57%. This study is the first application of direct field olfactometry to livestock odor and emphasizes the importance of avoiding any bias from sample storage in studies of odor-odorant relationships. Application of the model on the validation dataset gave a high correlation between predicted and measured odor concentration (R2 = 0.77). Significant odorants in the prediction models include phenols and indoles. In conclusion, measurements of odorants on-site in pig production facilities is an alternative to dynamic olfactometry that can be applied for measuring odor from pig houses and the effects of odor abatement technologies.
9 CFR 590.546 - Albumen flake process drying facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... be equipped with approved intake filters. (b) The intake air source shall be free from foul odors, dust, and dirt. (c) Premix-type burners, if used, shall be equipped with approved air filters at blower...
9 CFR 590.546 - Albumen flake process drying facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... be equipped with approved intake filters. (b) The intake air source shall be free from foul odors, dust, and dirt. (c) Premix-type burners, if used, shall be equipped with approved air filters at blower...
Individual recognition and learning of queen odors by worker honeybees
Breed, Michael D.
1981-01-01
A honeybee queen is usually attacked if she is placed among the workers of a colony other than her own. This rejection occurs even if environmental sources of odor, such as food, water, and genetic origin of the workers, are kept constant in laboratory conditions. The genetic similarity of queens determines how similar their recognition characteristics are; inbred sister queens were accepted in 35% of exchanges, outbred sister queens in 12%, and nonsister queens in 0%. Carbon dioxide narcosis results in worker honeybees accepting nonnestmate queens. A learning curve is presented, showing the time after narcosis required by workers to learn to recognize a new queen. In contrast, worker transfers result in only a small percentage of the workers being rejected. The reason for the difference between queens and workers may be because of worker and queen recognition cues having different sources. PMID:16593008
Petrulis, A; Peng, M; Johnston, R E
1999-03-01
Removal of the vomeronasal organ (VNX) did not eliminate the ability of female hamsters to discriminate between individual male's flank gland or urine odors in a habituation/discrimination task nor did it impair preference for male odors over female odors from a distance. Vomeronasal organ removal did reduce overall levels of investigation of flank gland odor in the habituation/discrimination task. Although VNX females did not show severe impairments in the frequency of either flank or vaginal marking in response to odors, they did show an abnormal pattern of marking. VNX females, unlike shams, did not flank mark more to female odors than to male odors, nor did they vaginal mark more to male odors than to female odors. Thus, the vomeronasal organ in female hamsters appears to be important for differences in scent marking toward male and female odors, but is not essential for discrimination of individual odors or for preferences for male over female odors.
Odor preference and olfactory memory are impaired in Olfaxin-deficient mice.
Islam, Saiful; Ueda, Masashi; Nishida, Emika; Wang, Miao-Xing; Osawa, Masatake; Lee, Dongsoo; Itoh, Masanori; Nakagawa, Kiyomi; Tana; Nakagawa, Toshiyuki
2018-06-01
Olfaxin, which is a BNIP2 and Cdc42GAP homology (BCH) domain-containing protein, is predominantly expressed in mitral and tufted (M/T) cells in the olfactory bulb (OB). Olfaxin and Caytaxin, which share 56.3% amino acid identity, are similar in their glutamatergic terminal localization, kidney-type glutaminase (KGA) interaction, and caspase-3 substrate. Although the deletion of Caytaxin protein causes human Cayman ataxia and ataxia in the mutant mouse, the function of Olfaxin is largely unknown. In this study, we generated Prune2 gene mutant mice (Prune2 Ex16-/- ; knock out [KO] mice) using the CRISPR/Cas9 system, during which the exon 16 containing start codon of Olfaxin mRNA was deleted. Exon 16 has 80 nucleotides and is contained in four of five Prune2 isoforms, including PRUNE2, BMCC1, BNIPXL, and Olfaxin/BMCC1s. The levels of Olfaxin mRNA and Olfaxin protein in the OB and piriform cortex of KO mice significantly decreased. Although Prune2 mRNA also significantly decreased in the spinal cord, the gross anatomy of the spinal cord and dorsal root ganglion (DRG) was intact. Further, disturbance of the sensory and motor system was not observed in KO mice. Therefore, in the current study, we examined the role of Olfaxin in the olfactory system where PRUNE2, BMCC1, and BNIPXL are scarcely expressed. Odor preference was impaired in KO mice using opposite-sex urinary scents as well as a non-social odor stimulus (almond). Results of the odor-aversion test demonstrated that odor-associative learning was disrupted in KO mice. Moreover, the NMDAR2A/NMDAR2B subunits switch in the piriform cortex was not observed in KO mice. These results indicated that Olfaxin may play a critical role in odor preference and olfactory memory. Copyright © 2018 Elsevier B.V. All rights reserved.
The impact of methionine source on poultry fecal matter odor volatiles.
Chavez, C; Coufal, C D; Lacey, R E; Carey, J B
2004-03-01
To determine the impact of Met source on volatile compounds of broiler excreta, 2 trials were conducted using straight-run broiler chicks that were randomly distributed in battery cages with 3 replicate pens of 16 birds each. The treatment groups were 1) dry Met hydroxy analogue (52% Met activity), 2) sodium methioninate aqueous solution (45.9% Met activity), 3) liquid Met hydroxy analogue (88% Met activity), 4) DL-Met, (98% Met activity), and 5) no supplemental Met. All starter diets were formulated to contain 3,135 kcal of ME/kg, 23% crude protein, and 0.8% total Met activity and otherwise met NRC nutrient requirements. Diets were fed ad libitum from d 1 to termination of the study (5 to 6 wk). Feed consumption and feed conversion were measured daily, and all birds were weighed weekly. There were no significant differences in BW, feed consumption, or feed conversion among the treatments in either trial. All excreta were collected in litter pans daily lined with aluminum foil. Litter pans for each pen were individually transferred to a separate room for weekly odor volatile analysis. An electronic nose was used to capture 3 to 4 air samples from various locations for each pan of broiler excreta resulting in a total of 10 air samples from each treatment group. All data taken from the electronic nose were evaluated using analysis of variance. Results indicated that there were significant differences in volatiles in the broiler excreta for all treatment groups. These data indicate that different Met sources may result in the production of different odor-related compounds in broiler excreta.
Su, Ming; Jia, Dongmin; Yu, Jianwei; Vogt, Rolf D; Wang, Jingshi; An, Wei; Yang, Min
2017-01-01
Abatement and control of algae, producing toxins and creating taste & odor (T&O) in drinking water sources, is a major challenge for water supply. In this study we proposed a strategy based on water level regulation for the control of odor-producing cyanobacteria in source water. Miyun Reservoir, the main surface water source for Beijing, has been suffering from 2-methylisoborneol (2-MIB) induced T&O problems caused by deep-living Planktothrix sp. since 2002. The biomass of deep-living Planktothrix in Miyun Reservoir was found to be mainly governed by the water depth above its sediment habitat. An algorithm for water level regulation aiming to minimize the risk for T&O in different types of reservoirs is proposed. The study demonstrates that risk for T&O can be minimized by increasing the water level in Miyun Reservoir. The high-risk area can be reduced by about 2.91% (0.61% to 5.76%) of surface area for each meter increase in the water level, when the water level is lower than 145m. More specifically, the water level needs to be raised to higher than 147.7ma.s.l. from 131.0m in order to obtain an acceptable risk level (ARL) of 10%. This management strategy to abate T&O problems is simpler and cheaper to implement compared to traditional physical, chemical and biological techniques. Moreover, it has no apparent negative impact on water quality and aquatic organisms. Copyright © 2016. Published by Elsevier B.V.
Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M
2016-07-15
Odour emissions from meat chicken sheds can at times cause odour impacts on surrounding communities. Litter is seen as the primary source of this odour. Formation and emission of odour from meat chicken litter during the grow-out period are influenced by various factors such as litter conditions, the environment, microbial activity, properties of the odorous gases and management practices. Odour emissions vary spatially and temporally. This variability has made it challenging to understand how specific litter conditions contribute to odour emissions from the litter and production sheds. Existing knowledge on odorants, odour formation mechanisms and emission processes that contribute to odour emissions from litter are reviewed. Litter moisture content and water thermodynamics (i.e. water activity, Aw) are also examined as factors that contribute to microbial odour formation, physical litter conditions and the exchange of individual odorant gases at the air-water interface. Substantial opportunities exist for future research on litter conditions and litter formation mechanisms and how these contribute to odour emissions. Closing this knowledge gap will improve management strategies that intercept and interfere with odour formation and emission processes leading to an overall reduction in the potential to cause community impacts. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Liao, C M; Liang, H M
2000-05-01
Two models for evaluating the contents and advection of manure moisture on odor causing volatile organic compounds (VOC-odor) volatilization from stored swine manure were studied for their ability to predict the volatilization rate (indoor air concentration) and cumulative exposure dose: a MJ-I model and a MJ-II model. Both models simulating depletion of source contaminant via volatilization and degradation based on an analytical model adapted from the behavior assessment model of Jury et al. In the MJ-I model, manure moisture movement was negligible, whereas in the MJ-II model, time-dependent indoor air concentrations was a function of constant manure moisture contents and steady-state moisture advection. Predicted indoor air concentrations and inhaled doses for the study VOC-odors of p-cresol, toluene, and p-xylene varied by up to two to three orders of magnitude depending on the manure moisture conditions. The sensitivity analysis of both models suggests that when manure moisture movement exists, simply MJ-I model is inherently not sufficient to represent a more generally volatilization process, which can even become stringent as moisture content increases. The conclusion illustrates how one needs to include a wide variety of manure moisture values in order to fully assess the complex volatilization mechanisms that are present in a real situation.
Wang, Shu-Ping; Guo, Wei-Yan; Muhammad, Shahid Arain; Chen, Rui-Rui; Mu, Li-Li; Li, Guo-Qing
2014-01-01
Abstract Rotting fruits offer all of the known resources required for the livelihood of Drosophila melanogaster Meigen (Diptera: Drosophilidae). During fruit fermentation, carbohydrates and proteins are decomposed to produce volatile alcohols and amines, respectively. It is hypothesized that D. melanogaster adults can detect these chemical cues at a distance to identify and locate the decaying fruits. In the present paper, we compared the olfactory responses and movement of male flies varying in mating status and nutritional state to methanol, ethanol, and ammonia sources using a glass Y-tube olfactometer. In general, ethanol vapor at low to moderate concentrations repelled more hungry mated males than satiated ones. In contrast, methanol showed little difference in the attractiveness to males at different nutritional states and mating status. Moreover, ammonia attracted more hungry mated males. The attractiveness increased almost linearly with ammonia concentration from lowest to highest. When ammonia and artificial diet were put together in the odor arm, the responses of male flies to mixed odor mimicked the response to ammonia. Furthermore, odorant concentration, mating status, and nutritional state affected the flies’ dispersal. Mated and starved males dispersed at a higher rate than virgin and satiated ones. Thus, our results showed that starved, mated males increased dispersal and preferred ammonia that originated from protein. PMID:25368075
NASA Astrophysics Data System (ADS)
Wiley, Megan Beth
Autonomous vehicles have had limited success in locating point sources of pollutants, chemicals, and other passive scalars. However, animals such as stomatopods, a mantis shrimp, track odor plumes easily for food, mates, and habitat. Laboratory experiments using Planar Laser Induced Fluorescence measured odor concentration downstream of a diffusive source with and without live stomatopods to investigate their source-tracking strategies in unidirectional and "wave-affected" (surface waves with a mean current) flows. Despite the dearth of signal, extreme temporal variation, and meandering plume centerline, the stomatopods were able to locate the source, especially in the wave-affected flow. Differences in the two plumes far from the source (>160 cm) appeared to help the animals in the wave-affected flow position themselves closer to the source (<70 cm) at times with relatively large amounts of odor and plume filaments of high concentration. At the height of the animals' antennules, the site of their primary chemosensors, the time-averaged Reynolds stresses in the two flows were approximately the same. The temporal variation in stresses over the wave cycle may be responsible for differences in the two plumes. The antennule height falls between a region of large peaks in Reynolds stress in phase with peaks in streamwise acceleration, and a lower region with a smaller Reynolds stress peak in phase with maximum shear during flow reversal. Six undergraduate students assisted with the research. We documented their daily activities and ideas on plume dispersion using open-ended interviews. Most of their time was spent on tasks that required no understanding of fluid mechanics, and there was little evidence of learning by participation in the RAship. One RA's conceptions of turbulence did change, but a group workshop seemed to support this learning more than the RAship. The documented conceptions could aid in curriculum design, since situating new information within current knowledge seems to deepen learning outcomes. The RAs' conceptions varied widely with some overlap of ideas. The interviews also showed that most RAs did not discuss molecular diffusion as part of the mixing process and some remembered information from course demonstrations, but applied them inappropriately to the interview questions.
Cook, Stephanie; Fallon, Nicholas; Wright, Hazel; Thomas, Anna; Giesbrecht, Timo; Field, Matt; Stancak, Andrej
2015-01-01
Odors can alter hedonic evaluations of human faces, but the neural mechanisms of such effects are poorly understood. The present study aimed to analyze the neural underpinning of odor-induced changes in evaluations of human faces in an odor-priming paradigm, using event-related potentials (ERPs). Healthy, young participants (N = 20) rated neutral faces presented after a 3 s pulse of a pleasant odor (jasmine), unpleasant odor (methylmercaptan), or no-odor control (clean air). Neutral faces presented in the pleasant odor condition were rated more pleasant than the same faces presented in the no-odor control condition, which in turn were rated more pleasant than faces in the unpleasant odor condition. Analysis of face-related potentials revealed four clusters of electrodes significantly affected by odor condition at specific time points during long-latency epochs (600-950 ms). In the 620-640 ms interval, two scalp-time clusters showed greater negative potential in the right parietal electrodes in response to faces in the pleasant odor condition, compared to those in the no-odor and unpleasant odor conditions. At 926 ms, face-related potentials showed greater positivity in response to faces in the pleasant and unpleasant odor conditions at the left and right lateral frontal-temporal electrodes, respectively. Our data shows that odor-induced shifts in evaluations of faces were associated with amplitude changes in the late (>600) and ultra-late (>900 ms) latency epochs. The observed amplitude changes during the ultra-late epoch are consistent with a left/right hemisphere bias towards pleasant/unpleasant odor effects. Odors alter evaluations of human faces, even when there is a temporal lag between presentation of odors and faces. Our results provide an initial understanding of the neural mechanisms underlying effects of odors on hedonic evaluations.
Cook, Stephanie; Fallon, Nicholas; Wright, Hazel; Thomas, Anna; Giesbrecht, Timo; Field, Matt; Stancak, Andrej
2015-01-01
Odors can alter hedonic evaluations of human faces, but the neural mechanisms of such effects are poorly understood. The present study aimed to analyze the neural underpinning of odor-induced changes in evaluations of human faces in an odor-priming paradigm, using event-related potentials (ERPs). Healthy, young participants (N = 20) rated neutral faces presented after a 3 s pulse of a pleasant odor (jasmine), unpleasant odor (methylmercaptan), or no-odor control (clean air). Neutral faces presented in the pleasant odor condition were rated more pleasant than the same faces presented in the no-odor control condition, which in turn were rated more pleasant than faces in the unpleasant odor condition. Analysis of face-related potentials revealed four clusters of electrodes significantly affected by odor condition at specific time points during long-latency epochs (600−950 ms). In the 620−640 ms interval, two scalp-time clusters showed greater negative potential in the right parietal electrodes in response to faces in the pleasant odor condition, compared to those in the no-odor and unpleasant odor conditions. At 926 ms, face-related potentials showed greater positivity in response to faces in the pleasant and unpleasant odor conditions at the left and right lateral frontal-temporal electrodes, respectively. Our data shows that odor-induced shifts in evaluations of faces were associated with amplitude changes in the late (>600) and ultra-late (>900 ms) latency epochs. The observed amplitude changes during the ultra-late epoch are consistent with a left/right hemisphere bias towards pleasant/unpleasant odor effects. Odors alter evaluations of human faces, even when there is a temporal lag between presentation of odors and faces. Our results provide an initial understanding of the neural mechanisms underlying effects of odors on hedonic evaluations. PMID:26733843
Honeybees Learn Odour Mixtures via a Selection of Key Odorants
Reinhard, Judith; Sinclair, Michael; Srinivasan, Mandyam V.; Claudianos, Charles
2010-01-01
Background The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures. Methodology/Principal Findings This study investigates learning of complex odour mixtures in honeybees using a simple olfactory conditioning procedure, the Proboscis-Extension-Reflex (PER) paradigm. Restrained honeybees were trained to three scent mixtures composed of 14 floral odorants each, and then tested with the individual odorants of each mixture. Bees did not respond to all odorants of a mixture equally: They responded well to a selection of key odorants, which were unique for each of the three scent mixtures. Bees showed less or very little response to the other odorants of the mixtures. The bees' response to mixtures composed of only the key odorants was as good as to the original mixtures of 14 odorants. A mixture composed of the other, non-key-odorants elicited a significantly lower response. Neither an odorant's volatility or molecular structure, nor learning efficiencies for individual odorants affected whether an odorant became a key odorant for a particular mixture. Odorant concentration had a positive effect, with odorants at high concentration likely to become key odorants. Conclusions/Significance Our study suggests that the brain processes complex scent mixtures by predominantly learning information from selected key odorants. Our observations on key odorant learning lend significant support to previous work on olfactory learning and mixture processing in honeybees. PMID:20161714
Commander’s Guide Renewable Energy
2011-08-01
water deep underground. The most common way of capturing the energy from geothermal sources is to tap into naturally occurring hydrothermal ...Emissions: smoke and condensation plume impacts on atmospheric opacity (visual and other spectra), odors, noise, and boiler ash. Commanders
What's that smell? An ecological approach to understanding preferences for familiar odors.
Schloss, Karen B; Goldberger, Carolyn S; Palmer, Stephen E; Levitan, Carmel A
2015-01-01
How do odor preferences arise? Following Palmer and Schloss's (2010, PNAS, 107, 8877-8882) ecological valence theory of color preferences, we propose that preference for an odor is determined by preferences for all objects and/or entities associated with that odor. The present results showed that preferences for familiar odors were strongly predicted by average preferences for all things associated with the odors (eg people liked the apple odor which was associated with mostly positive things, such as apples, soap, and candy, but disliked the fish odor, which was associated with mostly negative things, such as dead fish, trash, and vomit). The odor WAVEs (weighted affective valence estimates) performed significantly better than one based on preference for only the namesake object (eg predicting preference for the apple odor based on preference for apples). These results suggest that preferences for familiar odors are based on a summary statistic, coding the valence of previous odor-related experiences. We discuss how this account of odor preferences is consistent with the idea that odor preferences exist to guide organisms to approach beneficial objects and situations and avoid harmful ones.
Rhythmic coordination of hippocampal neurons during associative memory processing
Rangel, Lara M; Rueckemann, Jon W; Riviere, Pamela D; Keefe, Katherine R; Porter, Blake S; Heimbuch, Ian S; Budlong, Carl H; Eichenbaum, Howard
2016-01-01
Hippocampal oscillations are dynamic, with unique oscillatory frequencies present during different behavioral states. To examine the extent to which these oscillations reflect neuron engagement in distinct local circuit processes that are important for memory, we recorded single cell and local field potential activity from the CA1 region of the hippocampus as rats performed a context-guided odor-reward association task. We found that theta (4–12 Hz), beta (15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz) frequencies exhibited dynamic amplitude profiles as rats sampled odor cues. Interneurons and principal cells exhibited unique engagement in each of the four rhythmic circuits in a manner that related to successful performance of the task. Moreover, principal cells coherent to each rhythm differentially represented task dimensions. These results demonstrate that distinct processing states arise from the engagement of rhythmically identifiable circuits, which have unique roles in organizing task-relevant processing in the hippocampus. DOI: http://dx.doi.org/10.7554/eLife.09849.001 PMID:26751780
Autonomic nervous responses according to preference for the odor of jasmine tea.
Inoue, Naohiko; Kuroda, Kyoko; Sugimoto, Akio; Kakuda, Takami; Fushiki, Tohru
2003-06-01
The effect of jasmine tea odor on the autonomic nervous system was investigated by a power spectral analysis of the heart rate variability. We assigned eight volunteers to two groups with either a predilection for or antipathy toward the jasmine tea odor. We tested both high- and low-intensity jasmine tea odors. The low-intensity odor was produced by diluting 20-fold the jasmine tea used for the high-intensity odor test. The low-intensity odor produced an increase in parasympathetic nervous activity in both the predilection and antipathy groups. The high-intensity odor produced an increase in parasympathetic nervous activity in the predilection group, but an increase in sympathetic nervous activity in the antipathy group. The odor of Chinese green tea, a basic ingredient of jasmine tea, produced no effects similar to those of the jasmine tea odor. These results suggest that the jasmine tea odor activated the parasympathetic nerve, whereas the higher-intensity odor activated the sympathetic nerve in those subjects who disliked the odor.
Jebreili, Mahnaz; Neshat, Hanieh; Seyyedrasouli, Aleheh; Ghojazade, Morteza; Hosseini, Mohammad Bagher; Hamishehkar, Hamed
2015-09-01
The main purpose of this study was to investigate the calming effects of breastmilk odor and vanilla odor on preterm infants during and after venipuncture. One hundred thirty-five preterm infants were randomly selected and divided into three groups: control, vanilla odor, and breastmilk odor. Infants in the breastmilk group were exposed to breastmilk odor, and infants in the vanilla group were exposed to vanilla odor from 5 minutes before the start of sampling until 30 seconds after sampling. The Premature Infant Pain Profile was used for calculating quality of pain in infants during and after sampling. Statistical analyses showed that both vanilla and breastmilk odors had calming effects on premature infants during sampling, but just breastmilk odor had calming effects on infants after the end of sampling. Compared with vanilla odor, breastmilk odor has more calming effects on premature infants. Breastmilk odor can be used for calming premature infants during and after venipuncture.
Journey, Celeste; Arrington, Jane M.
2009-01-01
The U.S. Geological Survey and Spartanburg Water are working cooperatively on an ongoing study of Lake Bowen and Reservoir #1 to identify environmental factors that enhance or influence the production of geosmin in the source-water reservoirs. Spartanburg Water is using information from this study to develop management strategies to reduce (short-term solution) and prevent (long-term solution) geosmin occurrence. Spartanburg Water utility treats and distributes drinking water to the Spartanburg area of South Carolina. The drinking water sources for the area are Lake William C. Bowen (Lake Bowen) and Municipal Reservoir #1 (Reservoir #1), located north of Spartanburg. These reservoirs, which were formed by the impoundment of the South Pacolet River, were assessed in 2006 by the South Carolina Department of Health and Environmental Control (SCDHEC) as being fully supportive of all uses based on established criteria. Nonetheless, Spartanburg Water had noted periodic taste and odor problems due to the presence of geosmin, a naturally occurring compound in the source water. Geosmin is not harmful, but its presence in drinking water is aesthetically unpleasant.
Yan, Luchun; Liu, Jiemin; Jiang, Shen; Wu, Chuandong; Gao, Kewei
2017-07-13
The olfactory evaluation function (e.g., odor intensity rating) of e-nose is always one of the most challenging issues in researches about odor pollution monitoring. But odor is normally produced by a set of stimuli, and odor interactions among constituents significantly influenced their mixture's odor intensity. This study investigated the odor interaction principle in odor mixtures of aldehydes and esters, respectively. Then, a modified vector model (MVM) was proposed and it successfully demonstrated the similarity of the odor interaction pattern among odorants of the same type. Based on the regular interaction pattern, unlike a determined empirical model only fit for a specific odor mixture in conventional approaches, the MVM distinctly simplified the odor intensity prediction of odor mixtures. Furthermore, the MVM also provided a way of directly converting constituents' chemical concentrations to their mixture's odor intensity. By combining the MVM with usual data-processing algorithm of e-nose, a new e-nose system was established for an odor intensity rating. Compared with instrumental analysis and human assessor, it exhibited accuracy well in both quantitative analysis (Pearson correlation coefficient was 0.999 for individual aldehydes ( n = 12), 0.996 for their binary mixtures ( n = 36) and 0.990 for their ternary mixtures ( n = 60)) and odor intensity assessment (Pearson correlation coefficient was 0.980 for individual aldehydes ( n = 15), 0.973 for their binary mixtures ( n = 24), and 0.888 for their ternary mixtures ( n = 25)). Thus, the observed regular interaction pattern is considered an important foundation for accelerating extensive application of olfactory evaluation in odor pollution monitoring.
Tabor, Rico; Yaksi, Emre; Friedrich, Rainer W
2008-07-01
gamma-Aminobutyric acid (GABA)ergic synapses are thought to play pivotal roles in the processing of activity patterns in the olfactory bulb (OB), but their functions have been difficult to study during odor responses in the intact system. We pharmacologically manipulated GABA(A) and GABA(B) receptors in the OB of zebrafish and analysed the effects on odor responses of the output neurons, the mitral cells (MCs), by electrophysiological recordings and temporally deconvolved two-photon Ca2+ imaging. The blockade of GABA(B) receptors enhanced presynaptic Ca2+ influx into afferent axon terminals, and changed the amplitude and time course of a subset of MC responses, indicating that GABA(B) receptors have a modulatory influence on OB output activity. The blockade of GABA(A) receptors induced epileptiform firing, enhanced excitatory responses and abolished fast oscillations in the local field potential. Moreover, the topological reorganization and decorrelation of MC activity patterns during the initial phase of the response was perturbed. These results indicate that GABA(A) receptor-containing circuits participate in the balance of excitation and inhibition, the regulation of total OB output activity, the synchronization of odor-dependent neuronal ensembles, and the reorganization of odor-encoding activity patterns. GABA(A) and GABA(B) receptors are therefore differentially involved in multiple functions of neuronal circuits in the OB.
Haeger-Eugensson, Marie; Ferm, Martin; Elfman, Lena
2014-01-01
The interest in equestrian sports has increased substantially during the last decades, resulting in increased number of horse facilities around urban areas. In Sweden, new guidelines for safe distance have been decided based on the size of the horse facility (e.g., number of horses) and local conditions, such as topography and meteorology. There is therefore an increasing need to estimate dispersion of horse allergens to be used, for example, in the planning processes for new residential areas in the vicinity of horse facilities. The aim of this study was to develop a method for calculating short- and long-term emissions and dispersion of horse allergen and odor around horse facilities. First, a method was developed to estimate horse allergen and odor emissions at hourly resolution based on field measurements. Secondly, these emission factors were used to calculate concentrations of horse allergen and odor by using 3-D dispersion modeling. Results from these calculations showed that horse allergens spread up to about 200 m, after which concentration levels were very low (<2 U/m3). Approximately 10% of a study-group detected the smell of manure at 60m, while the majority—80%–90%—detected smell at 60 m or shorter distance from the manure heap. Modeling enabled horse allergen exposure concentrations to be determined with good time resolution. PMID:24690946
Influence of Body Odors and Gender on Perceived Genital Arousal.
Alves-Oliveira, Patrícia; Carvalho, Joana; Ferreira, Jacqueline; Alho, Laura; Nobre, Pedro; Olsson, Mats J; Soares, Sandra C
2018-04-01
Olfaction is often linked to mating behavior in nonhumans. Additionally, studies in mating behavior have shown that women seem to be more affected by odor cues than men. However, the relationship between odor cues and sexual response-specifically, sexual arousal-has not been studied yet. The aim of this study was to evaluate the impact of the exposure to human body odors (from individuals of the opposite gender) on perceived genital arousal, while these were presented concomitantly to sexually explicit video clips. Eighty university students (40 women) rated their perceived genital arousal (perceived degree of erection/genital lubrication) in response to an audiovisual sexual stimulus, while simultaneously exposed to a body odor from an opposite-gender donor or no odor. Participants also rated each odor sample's (body odor and no odor) perceived pleasantness, intensity, and familiarity. Findings indicated that odor condition had an effect on women's (but not men's) perceived genital arousal, with women showing higher levels of perceived genital arousal in the no odor condition. Also, results showed that women rated body odors as less pleasant than no odor. Notwithstanding, the odor ratings do not seem to explain the association between body odor and perceived genital arousal. The current results support the hypothesis that women, rather than men, are sensitive to odors in the context of sexual response. The findings of this study have relevance for the understanding of human sexuality with respect to chemosensory communication.
Boers, D; Geelen, L; Erbrink, H; Smit, L A M; Heederik, D; Hooiveld, M; Yzermans, C J; Huijbregts, M; Wouters, I M
2016-04-01
Odor annoyance is an important environmental stressor for neighboring residents of livestock farms and may affect their quality of life and health. However, little is known about the relation between odor exposure due to livestock farming and odor annoyance. Even more, the relation between odor exposure and odor annoyance is rather complicated due to variable responses among individuals to comparable exposure levels and a large number of factors (such as age, gender, education) that may affect the relation. In this study, we (1) investigated the relation between modeled odor exposure and odor annoyance; (2) investigated whether other factors can affect this relation; and (3) compared our dose-response relation to a dose-response relation established in a previous study carried out in the Netherlands, more than 10 years ago, in order to investigate changes in odor perception and appreciation over time. We used data from 582 respondents who participated in a questionnaire survey among neighboring residents of livestock farms in the south of the Netherlands. Odor annoyance was established by two close-ended questions in a questionnaire; odor exposure was estimated using the Stacks dispersion model. The results of our study indicate a statistically significant and positive relation between modeled odor exposure and reported odor annoyance from livestock farming (OR 1.92; 95 % CI 1.53-2.41). Furthermore, age, asthma, education and perceived air pollution in the environment are all related to odor annoyance, although they hardly affect the relation between estimated livestock odor exposure and reported odor annoyance. We also found relatively more odor annoyance reported among neighboring residents than in a previous study conducted in the Netherlands. We found a strong relation between modeled odor exposure and odor annoyance. However, due to some uncertainties and small number of studies on this topic, further research and replication of results is recommended.
Development switch in neural circuitry underlying odor-malaise learning.
Shionoya, Kiseko; Moriceau, Stephanie; Lunday, Lauren; Miner, Cathrine; Roth, Tania L; Sullivan, Regina M
2006-01-01
Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.
Synapsin Determines Memory Strength after Punishment- and Relief-Learning
Niewalda, Thomas; Michels, Birgit; Jungnickel, Roswitha; Diegelmann, Sören; Kleber, Jörg; Kähne, Thilo
2015-01-01
Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: “negative” memories for stimuli preceding them and “positive” memories for stimuli experienced at the moment of “relief.” Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training (“forward conditioning” of the odor), whereas after shock-odor training (“backward conditioning” of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences. PMID:25972175
Synapsin determines memory strength after punishment- and relief-learning.
Niewalda, Thomas; Michels, Birgit; Jungnickel, Roswitha; Diegelmann, Sören; Kleber, Jörg; Kähne, Thilo; Gerber, Bertram
2015-05-13
Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: "negative" memories for stimuli preceding them and "positive" memories for stimuli experienced at the moment of "relief." Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training ("forward conditioning" of the odor), whereas after shock-odor training ("backward conditioning" of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences. Copyright © 2015 Niewalda et al.
Martinec Nováková, Lenka; Plotěná, Dagmar; Roberts, S. Craig; Havlíček, Jan
2015-01-01
Hedonic ratings of odors and olfactory preferences are influenced by a number of modulating factors, such as prior experience and knowledge about an odor’s identity. The present study addresses the relationship between knowledge about an odor’s identity due to prior experience, assessed by means of a test of cued odor identification, and odor pleasantness ratings in children who exhibit ongoing olfactory learning. Ninety-one children aged 8–11 years rated the pleasantness of odors in the Sniffin’ Sticks test and, subsequently, took the odor identification test. A positive association between odor identification and pleasantness was found for two unpleasant food odors (garlic and fish): higher pleasantness ratings were exhibited by those participants who correctly identified these odors compared to those who failed to correctly identify them. However, we did not find a similar effect for any of the more pleasant odors. The results of this study suggest that pleasantness ratings of some odors may be modulated by the knowledge of their identity due to prior experience and that this relationship might be more evident in unpleasant odors. PMID:26029143
Graded Encoding of Food Odor Value in the Drosophila Brain
Beshel, Jennifer
2013-01-01
Odors are highly evocative, yet how and where in the brain odors derive meaning remains unknown. Our analysis of the Drosophila brain extends the role of a small number of hunger-sensing neurons to include food-odor value representation. In vivo two-photon calcium imaging shows the amplitude of food odor-evoked activity in neurons expressing Drosophila neuropeptide F (dNPF), the neuropeptide Y homolog, strongly correlates with food-odor attractiveness. Hunger elevates neural and behavioral responses to food odors only, although food odors that elicit attraction in the fed state also evoke heightened dNPF activity in fed flies. Inactivation of a subset of dNPF-expressing neurons or silencing dNPF receptors abolishes food-odor attractiveness, whereas genetically enhanced dNPF activity not only increases food-odor attractiveness but promotes attraction to aversive odors. Varying the amount of presented odor produces matching graded neural and behavioral curves, which can function to predict preference between odors. We thus demonstrate a possible motivationally scaled neural “value signal” accessible from uniquely identifiable cells. PMID:24089477
Cell-Based Odorant Sensor Array for Odor Discrimination Based on Insect Odorant Receptors.
Termtanasombat, Maneerat; Mitsuno, Hidefumi; Misawa, Nobuo; Yamahira, Shinya; Sakurai, Takeshi; Yamaguchi, Satoshi; Nagamune, Teruyuki; Kanzaki, Ryohei
2016-07-01
The olfactory system of living organisms can accurately discriminate numerous odors by recognizing the pattern of activation of several odorant receptors (ORs). Thus, development of an odorant sensor array based on multiple ORs presents the possibility of mimicking biological odor discrimination mechanisms. Recently, we developed novel odorant sensor elements with high sensitivity and selectivity based on insect OR-expressing Sf21 cells that respond to target odorants by displaying increased fluorescence intensity. Here we introduce the development of an odorant sensor array composed of several Sf21 cell lines expressing different ORs. In this study, an array pattern of four cell lines expressing Or13a, Or56a, BmOR1, and BmOR3 was successfully created using a patterned polydimethylsiloxane film template and cell-immobilizing reagents, termed biocompatible anchor for membrane (BAM). We demonstrated that BAM could create a clear pattern of Sf21 sensor cells without impacting their odorant-sensing performance. Our sensor array showed odorant-specific response patterns toward both odorant mixtures and single odorant stimuli, allowing us to visualize the presence of 1-octen-3-ol, geosmin, bombykol, and bombykal as an increased fluorescence intensity in the region of Or13a, Or56a, BmOR1, and BmOR3 cell lines, respectively. Therefore, we successfully developed a new methodology for creating a cell-based odorant sensor array that enables us to discriminate multiple target odorants. Our method might be expanded into the development of an odorant sensor capable of detecting a large range of environmental odorants that might become a promising tool used in various applications including the study of insect semiochemicals and food contamination.
Stable olfactory sensory neuron in vivo physiology during normal aging.
Kass, Marley D; Czarnecki, Lindsey A; McGann, John P
2018-05-08
Normal aging is associated with a number of smell impairments that are paralleled by age-dependent changes in the peripheral olfactory system, including decreases in olfactory sensory neurons (OSNs) and in the regenerative capacity of the epithelium. Thus, an age-dependent degradation of sensory input to the brain is one proposed mechanism for the loss of olfactory function in older populations. Here, we tested this hypothesis by performing in vivo optical neurophysiology in 6-, 12-, 18-, and 24-month-old mice. We visualized odor-evoked neurotransmitter release from populations of OSNs into olfactory bulb glomeruli, and found that these sensory inputs are actually quite stable during normal aging. Specifically, the magnitude and number of odor-evoked glomerular responses were comparable across all ages, and there was no effect of age on the sensitivity of OSN responses to odors or on the neural discriminability of different sensory maps. These results suggest that the brain's olfactory bulbs do not receive deteriorated input during aging and that local bulbar circuitry might adapt to maintain stable nerve input. Copyright © 2018 Elsevier Inc. All rights reserved.
Combinatorial effects of odorants on mouse behavior
Saraiva, Luis R.; Kondoh, Kunio; Ye, Xiaolan; Yoon, Kyoung-hye; Hernandez, Marcus; Buck, Linda B.
2016-01-01
The mechanisms by which odors induce instinctive behaviors are largely unknown. Odor detection in the mouse nose is mediated by >1, 000 different odorant receptors (ORs) and trace amine-associated receptors (TAARs). Odor perceptions are encoded combinatorially by ORs and can be altered by slight changes in the combination of activated receptors. However, the stereotyped nature of instinctive odor responses suggests the involvement of specific receptors and genetically programmed neural circuits relatively immune to extraneous odor stimuli and receptor inputs. Here, we report that, contrary to expectation, innate odor-induced behaviors can be context-dependent. First, different ligands for a given TAAR can vary in behavioral effect. Second, when combined, some attractive and aversive odorants neutralize one another’s behavioral effects. Both a TAAR ligand and a common odorant block aversion to a predator odor, indicating that this ability is not unique to TAARs and can extend to an aversive response of potential importance to survival. In vitro testing of single receptors with binary odorant mixtures indicates that behavioral blocking can occur without receptor antagonism in the nose. Moreover, genetic ablation of a single receptor prevents its cognate ligand from blocking predator odor aversion, indicating that the blocking requires sensory input from the receptor. Together, these findings indicate that innate odor-induced behaviors can depend on context, that signals from a single receptor can block innate odor aversion, and that instinctive behavioral responses to odors can be modulated by interactions in the brain among signals derived from different receptors. PMID:27208093
Masaoka, Yuri; Kawase, Akiko; Homma, Ikuo
2013-01-01
No previous report has described whether information regarding an odor used in aromatherapy has placebo effects. We investigated whether placebo analgesia was engendered by verbal information regarding the analgesic effects of an odor. Twelve of 24 subjects were provided with the information that a lavender odor would reduce pain (informed), whereas the other 12 subjects were not (not-informed). Concurrent with respiration recording, the subjects were administered a lavender-odor or no-odor treatment during application of painful stimulation to the forefinger. The subjects reported their experience of pain and its unpleasantness on a visual analogue scale after the painful stimulation. The lavender-odor treatment significantly alleviated pain and unpleasantness compared with the no-odor treatment in the informed (P < 0.01) and not-informed groups (P < 0.05). The no-odor treatment in the informed group significantly alleviated pain and unpleasantness compared with both the no-odor and lavender-odor treatments in the not-informed group (P < 0.05). Rapid and shallow breathing induced by the painful stimulation became slow and deep during the lavender-odor and no-odor treatments in both groups. Information regarding a lavender odor, the lavender odor itself, and slower breathing contributed to reduced perceptions of pain and unpleasantness during painful stimulation, suggesting that placebo effects significantly contribute to analgesia in aromatherapy. PMID:23840270
Novel cell-based odorant sensor elements based on insect odorant receptors.
Mitsuno, Hidefumi; Sakurai, Takeshi; Namiki, Shigehiro; Mitsuhashi, Hiroyuki; Kanzaki, Ryohei
2015-03-15
Development of cell-based odorant sensor elements combined not only high degree of sensitivity and selectivity but also long-term stability is crucial for their practical applications. Here we report the development of a novel cell-based odorant sensor element that sensitively and selectively detects odorants and displays increased fluorescent intensities over a long period of time. Our odorant sensor elements, based on Sf21 cell lines expressing insect odorant receptors, are sensitive to the level of several tens of parts per billion in solution, can selectively distinguish between different types of odorants based on the odorant selectivity intrinsic to the expressed receptors, and have response times of approximately 13s. Specifically, with the use of Sf21 cells and insect odorant receptors, we demonstrated that the established cell lines stably expressing insect odorant receptors are able to detect odorants with consistent responsiveness for at least 2 months, thus exceeding the short life-span normally associated with cell-based sensors. We also demonstrated the development of a compact odorant sensor chip by integrating the established insect cell lines into a microfluidic chip. The methodology we established in this study, in conjunction with the large repertoire of insect odorant receptors, will aid in the development of practical cell-based odorant sensors for various applications, including food administration and health management. Copyright © 2014 Elsevier B.V. All rights reserved.
77 FR 22381 - Odorant Fade in Railroad Tank Cars
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... can lead to the loss of odorant. 4. Facilities that load odorized LPG into tank cars take any other... diminished levels of odorant or no odorant present, represents significant safety risks. Absent sufficient... the LPG in the storage tanks at the construction site had virtually no odorant present, explaining why...
USDA-ARS?s Scientific Manuscript database
Livestock facilities have historically generated public concerns due to their emissions of odorous air and various chemical pollutants. Odor emission factors and identification of principal odorous chemicals are needed to better understand the problem. Applications of odor emission factors include i...
ERIC Educational Resources Information Center
Raineki, Charlis; Shionoya, Kiseko; Sander, Kristin; Sullivan, Regina M.
2009-01-01
Both odor-preference and odor-aversion learning occur in perinatal pups before the maturation of brain structures that support this learning in adults. To characterize the development of odor learning, we compared three learning paradigms: (1) odor-LiCl (0.3M; 1% body weight, ip) and (2) odor-1.2-mA shock (hindlimb, 1sec)--both of which…
Factors affecting the water odor caused by chloramines during drinking water disinfection.
Wang, An-Qi; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Gao, Ze-Chen; Liu, Zhi; Cao, Tong-Cheng; Gao, Nai-Yun
2018-10-15
Chloramine disinfection is one of the most common disinfection methods in drinking water treatment. In this study, the temporal variability of water odors during monochloramine auto-decomposition was investigated to elucidate the characteristics of odor problems caused by adopting chloramine disinfection in tap water. Odor intensities and dominant odorant contributions were determined using the flavor profile analysis (FPA) and odor active value (OAV), respectively. During auto-decomposition of monochloramine, Cl 2 /N molar ratio, pH, temperature, and the presence of NOM all affected odor intensity and odor temporal variation in drinking water. In general, decreasing pH from 8.5 to 6.0 led to increasing perceived odor intensity due to the formation of dichloramine. The major odorants responsible for chlorinous odor under acidic and non-acidic conditions were dichloramine and monochloramine, respectively. Chloraminated water with a Cl 2 /N molar ratio of 0.6 or NOM concentration <2 mg-C L -1 inhibited odor intensity. Furthermore, the influence of rechlorination on chlorinous odor intensity for chloraminated water should not be neglected. The results of this study will be beneficial for the control of chlorinous odors caused by chloramine disinfection in drinking water. Copyright © 2018 Elsevier B.V. All rights reserved.
Maras, Pamela M; Petrulis, Aras
2008-07-05
Rodent reproductive behavior relies heavily on odor processing, and evidence suggests that many odor-guided sexual behaviors are shaped by prior experience. We sought to determine if exposure to male odors during development is required for the adult expression of proceptive sexual behavior toward male odors in female Syrian hamsters. Exposure to male odors was restricted in naïve subjects by removing all male siblings from the litter at three to five days of age. Control litters were also culled, but included equal numbers of male and female pups. As adults, naïve females displayed investigatory preferences toward male odors in a Y-maze that were comparable to control females; this preference was observed whether contact with the odor stimuli was prevented of allowed. In contrast, naïve females vaginal scent-marked equally toward male and female volatile odors, suggesting an inability to target behavior toward sexually relevant odors. However, naïve females marked preferentially toward male odors when allowed to contact the odor stimuli. These results provide evidence for the experience-dependent development of vaginal marking behavior toward volatile components of sexual odors. Furthermore, they suggest that distinct mechanisms regulate the development of odor preferences and vaginal marking behavior in this species.
Individually identifiable body odors are produced by the gorilla and discriminated by humans.
Hepper, Peter G; Wells, Deborah L
2010-05-01
Many species produce odor cues that enable them to be identified individually, as well as providing other socially relevant information. Study of the role of odor cues in the social behavior of great apes is noticeable by its absence. Olfaction has been viewed as having little role in guiding behavior in these species. This study examined whether Western lowland gorillas produce an individually identifiable odor. Odor samples were obtained by placing cloths in the gorilla's den. A delayed matching to sample task was used with human participants (n = 100) to see if they were able to correctly match a target odor sample to a choice of either: 2 odors (the target sample and another, Experiment 1) and 6 odors (the target sample and 5 others, Experiment 2). Participants were correctly able to identify the target odor when given either 2 or 6 matches. Subjects made fewest errors when matching the odor of the silverback, whereas matching the odors of the young gorillas produced most errors. The results indicate that gorillas do produce individually identifiable body odors and introduce the possibility that odor cues may play a role in gorilla social behavior.
9 CFR 590.560 - Health and hygiene of personnel.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., including toilets, lavatories, lockers, and dressing rooms shall be adequate and meet State and local requirements for food processing plants. (b) Toilets and dressing rooms shall be kept clean and adequately ventilated to eliminate odors and kept adequately supplied with soap, towels, and tissues. Toilet rooms shall...
9 CFR 590.560 - Health and hygiene of personnel.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., including toilets, lavatories, lockers, and dressing rooms shall be adequate and meet State and local requirements for food processing plants. (b) Toilets and dressing rooms shall be kept clean and adequately ventilated to eliminate odors and kept adequately supplied with soap, towels, and tissues. Toilet rooms shall...
9 CFR 590.560 - Health and hygiene of personnel.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., including toilets, lavatories, lockers, and dressing rooms shall be adequate and meet State and local requirements for food processing plants. (b) Toilets and dressing rooms shall be kept clean and adequately ventilated to eliminate odors and kept adequately supplied with soap, towels, and tissues. Toilet rooms shall...
Odor and odorous chemical emissions from animal buildings: Part 3 - chemical emissions
USDA-ARS?s Scientific Manuscript database
This study was an add-on study to the National Air Emission Monitoring Study (NAEMS). The objective of this study was to measure odor emissions and corresponding concentrations and emissions of target odorous gases. Odor and odorous gas measurements at four NAEMS sites (dairy barns in Wisconsin-WI5B...
Odor and odorous chemical emissions from animal buildings: Part 3. Chemical emissions
USDA-ARS?s Scientific Manuscript database
The objective of this study was to measure the long-term odor emissions and corresponding concentrations and emissions of 20 odorous volatile organic compounds (VOCs). This study was an add-on study to the National Air Emission Monitoring Study (NAEMS). Odor and odorous gas measurements at four NAEM...
USDA-ARS?s Scientific Manuscript database
Livestock facilities have received numerous criticisms due to their emissions of odorous air and chemicals. Hence, there is a significant need for odor emission factors and identification of principle odorous chemicals. Odor emission factors are used as inputs to odor setback models, while chemica...
Functional identification and reconstitution of an odorant receptor in single olfactory neurons
Touhara, Kazushige; Sengoku, Shintaro; Inaki, Koichiro; Tsuboi, Akio; Hirono, Junzo; Sato, Takaaki; Sakano, Hitoshi; Haga, Tatsuya
1999-01-01
The olfactory system is remarkable in its capacity to discriminate a wide range of odorants through a series of transduction events initiated in olfactory receptor neurons. Each olfactory neuron is expected to express only a single odorant receptor gene that belongs to the G protein coupled receptor family. The ligand–receptor interaction, however, has not been clearly characterized. This study demonstrates the functional identification of olfactory receptor(s) for specific odorant(s) from single olfactory neurons by a combination of Ca2+-imaging and reverse transcription–coupled PCR analysis. First, a candidate odorant receptor was cloned from a single tissue-printed olfactory neuron that displayed odorant-induced Ca2+ increase. Next, recombinant adenovirus-mediated expression of the isolated receptor gene was established in the olfactory epithelium by using green fluorescent protein as a marker. The infected neurons elicited external Ca2+ entry when exposed to the odorant that originally was used to identify the receptor gene. Experiments performed to determine ligand specificity revealed that the odorant receptor recognized specific structural motifs within odorant molecules. The odorant receptor-mediated signal transduction appears to be reconstituted by this two-step approach: the receptor screening for given odorant(s) from single neurons and the functional expression of the receptor via recombinant adenovirus. The present approach should enable us to examine not only ligand specificity of an odorant receptor but also receptor specificity and diversity for a particular odorant of interest. PMID:10097159
Nilsson, Sara; Sjöberg, Johanna; Amundin, Mats; Hartmann, Constanze; Buettner, Andrea; Laska, Matthias
2014-01-01
Only little is known about whether single volatile compounds are as efficient in eliciting behavioral responses in animals as the whole complex mixture of a behaviorally relevant odor. Recent studies analysing the composition of volatiles in mammalian blood, an important prey-associated odor stimulus for predators, found the odorant trans-4,5-epoxy-(E)-2-decenal to evoke a typical "metallic, blood-like" odor quality in humans. We therefore assessed the behavior of captive Asian wild dogs (Cuon alpinus), African wild dogs (Lycaon pictus), South American bush dogs (Speothos venaticus), and Siberian tigers (Panthera tigris altaica) when presented with wooden logs that were impregnated either with mammalian blood or with the blood odor component trans-4,5-epoxy-(E)-2-decenal, and compared it to their behavior towards a fruity odor (iso-pentyl acetate) and a near-odorless solvent (diethyl phthalate) as control. We found that all four species displayed significantly more interactions with the odorized wooden logs such as sniffing, licking, biting, pawing, and toying, when they were impregnated with the two prey-associated odors compared to the two non-prey-associated odors. Most importantly, no significant differences were found in the number of interactions with the wooden logs impregnated with mammalian blood and the blood odor component in any of the four species. Only one of the four species, the South American bush dogs, displayed a significant decrease in the number of interactions with the odorized logs across the five sessions performed per odor stimulus. Taken together, the results demonstrate that a single blood odor component can be as efficient in eliciting behavioral responses in large carnivores as the odor of real blood, suggesting that trans-4,5-epoxy-(E)-2-decenal may be perceived by predators as a "character impact compound" of mammalian blood odor. Further, the results suggest that odorized wooden logs are a suitable manner of environmental enrichment for captive carnivores.
Lenochová, Pavlína; Vohnoutová, Pavla; Roberts, S. Craig; Oberzaucher, Elisabeth; Grammer, Karl; Havlíček, Jan
2012-01-01
Cross-culturally, fragrances are used to modulate body odor, but the psychology of fragrance choice has been largely overlooked. The prevalent view is that fragrances mask an individual's body odor and improve its pleasantness. In two experiments, we found positive effects of perfume on body odor perception. Importantly, however, this was modulated by significant interactions with individual odor donors. Fragrances thus appear to interact with body odor, creating an individually-specific odor mixture. In a third experiment, the odor mixture of an individual's body odor and their preferred perfume was perceived as more pleasant than a blend of the same body odor with a randomly-allocated perfume, even when there was no difference in pleasantness between the perfumes. This indicates that fragrance use extends beyond simple masking effects and that people choose perfumes that interact well with their own odor. Our results provide an explanation for the highly individual nature of perfume choice. PMID:22470479
Lenochová, Pavlína; Vohnoutová, Pavla; Roberts, S Craig; Oberzaucher, Elisabeth; Grammer, Karl; Havlíček, Jan
2012-01-01
Cross-culturally, fragrances are used to modulate body odor, but the psychology of fragrance choice has been largely overlooked. The prevalent view is that fragrances mask an individual's body odor and improve its pleasantness. In two experiments, we found positive effects of perfume on body odor perception. Importantly, however, this was modulated by significant interactions with individual odor donors. Fragrances thus appear to interact with body odor, creating an individually-specific odor mixture. In a third experiment, the odor mixture of an individual's body odor and their preferred perfume was perceived as more pleasant than a blend of the same body odor with a randomly-allocated perfume, even when there was no difference in pleasantness between the perfumes. This indicates that fragrance use extends beyond simple masking effects and that people choose perfumes that interact well with their own odor. Our results provide an explanation for the highly individual nature of perfume choice.
Addition of Olfactory Stimuli to Virtual Reality Simulations for Medical Training Applications
1996-11-01
surveyed and a working set of odorants were indentified or developed in sufficient quantities to support further testing. Extensive studies were performed...Olfactory Displays for HMD Systems 8 Ambulatory Olfactory HMD Display 11 Odor Display--Booth Environment 19 Odor Display in CAVE 20 Odor Survey and Odor...HMDs, it may be welcome in some scenarios such as those that might be used for training medics. Odorant Survey and Odor Development A second area of
Blocking adenylyl cyclase inhibits olfactory generator currents induced by "IP(3)-odors".
Chen, S; Lane, A P; Bock, R; Leinders-Zufall, T; Zufall, F
2000-07-01
Vertebrate olfactory receptor neurons (ORNs) transduce odor stimuli into electrical signals by means of an adenylyl cyclase/cAMP second messenger cascade, but it remains widely debated whether this cAMP cascade mediates transduction for all odorants or only certain odor classes. To address this problem, we have analyzed the generator currents induced by odors that failed to produce cAMP in previous biochemical assays but instead produced IP(3) ("IP(3)-odors"). We show that in single salamander ORNs, sensory responses to "cAMP-odors" and IP(3)-odors are not mutually exclusive but coexist in the same cells. The currents induced by IP(3)-odors exhibit identical biophysical properties as those induced by cAMP odors or direct activation of the cAMP cascade. By disrupting adenylyl cyclase to block cAMP formation using two potent antagonists of adenylyl cyclase, SQ22536 and MDL12330A, we show that this molecular step is necessary for the transduction of both odor classes. To assess whether these results are also applicable to mammals, we examine the electrophysiological responses to IP(3)-odors in intact mouse main olfactory epithelium (MOE) by recording field potentials. The results show that inhibition of adenylyl cyclase prevents EOG responses to both odor classes in mouse MOE, even when "hot spots" with heightened sensitivity to IP(3)-odors are examined.
Behbod, Behrooz; Parker, Erin M; Jones, Erin A; Bayleyegn, Tesfaye; Guarisco, John; Morrison, Melissa; McIntyre, Mary G; Knight, Monica; Eichold, Bert; Yip, Fuyuen
2014-01-01
In 2008, a lightning strike caused a leak of tert-butyl mercaptan from its storage tank at the Gulf South Natural Gas Pumping Station in Prichard, Alabama. On July 27, 2012, the Alabama Department of Public Health requested Centers for Disease Control and Prevention epidemiologic assistance investigating possible health effects resulting from airborne exposure to mercaptan from a contaminated groundwater spring, identified in January 2012. To assess the self-reported health effects in the community, to determine the scope of the reported medical services received, and to develop recommendations for prevention and response to future incidents. In September 2012, we performed a representative random sampling design survey of households, comparing reported exposures and health effects among residents living in 2 circular zones located within 1 and 2 miles from the contaminated source. Eight Mile community, Prichard, Alabama. We selected 204 adult residents of each household (≥ 18 years) to speak for all household members. Self-reported mercaptan odor exposure, physical and mental health outcomes, and medical-seeking practices, comparing residents in the 1- and 2-mile zones. In the past 6 months, 97.9% of respondents in the 1-mile zone and 77.6% in the 2-mile zone reported mercaptan odors. Odor severity was greater in the 1-mile zone, in which significantly more subjects reported exposures aggravating their physical and mental health including shortness of breath, eye irritations, and agitated behavior. Overall, 36.5% sought medical care for odor-related symptoms. Long-term odorous mercaptan exposures were reportedly associated with physical and psychological health complaints. Communication messages should include strategies to minimize exposures and advise those with cardiorespiratory conditions to have medications readily available. Health care practitioners should be provided information on mercaptan health effects and approaches to prevent exacerbating existing chronic diseases.
USDA-ARS?s Scientific Manuscript database
Simultaneous chemical and sensory analyses using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) for air samples collected at barn exhaust fans were used for quantification and ranking of odor impact of target odorous gases. Fifteen target odorous VOCs (odorants) were selected. Air sampl...
Graham, Jennifer L.; Ziegler, Andrew C.; Loving, Brian L.; Loftin, Keith A.
2012-01-01
Cyanobacteria cause a multitude of water-quality concerns, including the potential to produce toxins and taste-and-odor compounds. Toxins and taste-and-odor compounds may cause substantial economic and public health concerns and are of particular interest in lakes, reservoirs, and rivers that are used for drinking-water supply, recreation, or aquaculture. The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Water released from Milford Lake to the Kansas River during a toxic cyanobacterial bloom in late August 2011 prompted concerns about cyanobacteria and associated toxins and taste-and-odor compounds in downstream drinking-water supplies. During September and October 2011 water-quality samples were collected to characterize the transport of cyanobacteria and associated compounds from upstream reservoirs to the Kansas River. This study is one of the first to quantitatively document the transport of cyanobacteria and associated compounds during reservoir releases and improves understanding of the fate and transport of cyanotoxins and taste-and-odor compounds downstream from reservoirs. Milford Lake was the only reservoir in the study area with an ongoing cyanobacterial bloom during reservoir releases. Concentrations of cyanobacteria and associated toxins and taste-and-odor compounds in Milford Lake (upstream from the dam) were not necessarily indicative of outflow conditions (below the dam). Total microcystin concentrations, one of the most commonly occurring cyanobacterial toxins, in Milford Lake were 650 to 7,500 times higher than the Kansas Department of Health and Environment guidance level for a public health warning (20 micrograms per liter) for most of September 2011. By comparison, total microcystin concentrations in the Milford Lake outflow generally were less than 10 percent of the concentrations in surface accumulations, and never exceeded 20 micrograms per liter. The Republican River, downstream from Milford Lake, was the only Kansas River tributary with detectable microcystin concentrations throughout the study period, and concentrations exceeded 1 microgram per liter for most of September 2011. Microcystin was detected periodically in other tributaries, but concentrations were low (less than 0.3 micrograms per liter). In contrast, the taste-and-odor compounds geosmin and 2-methylisoborneol (MIB) were detected in all tributaries located immediately downstream from reservoirs and total concentrations generally exceeded the human detection threshold (5 to 10 nanograms per liter) from September through mid-October. Microcystin, geosmin, and MIB were not detected in the Smoky Hill River upstream from the confluence with the Republican River that forms the Kansas River. Within a week after initial reservoir releases, microcystin, geosmin, and MIB were detected throughout a 173-mile reach of the Kansas River; these compounds remained detectable throughout the reach until mid-October. Losses to groundwater when streamflows in the Kansas River were increasing indicate the potential for reservoir releases to affect groundwater quality as well as surface-water quality. Total microcystin concentrations in the Kansas River generally were highest within about 24 miles of the confluence of the Smoky Hill and Republican Rivers, and decreased downstream; concentrations exceeded 1 microgram per liter in the Kansas River upstream from Topeka during the first 2 weeks of September. Patterns in microcystin occurrence and concentration at Kansas River tributary and main-stem sites indicate that Milford Lake was the source of microcystin in the Kansas River; however, the source of taste-and-odor compounds was not as evident, possibly because multiple tributaries contributed taste-and-odor compounds to the Kansas River. Microcystin and taste-and-odor compounds co-occurred in 56 percent of samples collected, indicating co-occurrence was common. Despite frequent co-occurrence, the spatial and temporal patterns in microcystin, geosmin, and MIB were unique and did not necessarily match patterns in cyanobacterial abundance. Use of a single compound or cyanobacterial abundance alone cannot necessarily be used as an indicator of the presence or concentration of these compounds. Measured concentrations of cyanobacteria and associated compounds were substantially higher than expected concentrations based on simple dilution models at some sites and substantially lower at others, though spatial and temporal patterns were unique for individual compounds. Data were not collected in such a way to determine whether differences between measured and expected concentrations were statistically significant. Results, however, indicate that simple dilution models were not sufficient to describe the downstream transport of cyanobacteria and associated compounds in the Kansas River.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Shicheng; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433; Cai Lingshuang
2009-05-23
Characterization and quantification of livestock odorants is one of the most challenging analytical tasks because odor-causing gases are very reactive, polar and often present at very low concentrations in a complex matrix of less important or irrelevant gases. The objective of this research was to develop a novel analytical method for characterization of the livestock odorants including their odor character, odor intensity, and hedonic tone and to apply this method for quantitative analysis of the key odorants responsible for livestock odor. Sorbent tubes packed with Tenax TA were used for field sampling. The automated one-step thermal desorption module coupled withmore » multidimensional gas chromatography-mass spectrometry/olfactometry system was used for simultaneous chemical and odor analysis. Fifteen odorous VOCs and semi-VOCs identified from different livestock species operations were quantified. Method detection limits ranges from 40 pg for skatole to 3590 pg for acetic acid. In addition, odor character, odor intensity and hedonic tone associated with each of the target odorants are also analyzed simultaneously. We found that the mass of each VOCs in the sample correlates well with the log stimulus intensity. All of the correlation coefficients (R{sup 2}) are greater than 0.74, and the top 10 correlation coefficients were greater than 0.90.« less
[Perception of odor quality by Free Image-Association Test].
Ueno, Y
1992-10-01
A method was devised for evaluating odor quality. Subjects were requested to freely describe the images elicited by smelling odors. This test was named the "Free Image-Association Test (FIT)". The test was applied for 20 flavors of various foods, five odors from the standards of T&T olfactometer (Japanese standard olfactory test), butter of yak milk, and incense from Lamaism temples. The words for expressing imagery were analyzed by multidimensional scaling and cluster analysis. Seven clusters of odors were obtained. The feature of these clusters were quite similar to that of primary odors which have been suggested by previous studies. However, the clustering of odors can not be explained on the basis of the primary-odor theory, but the information processing theory originally proposed by Miller (1956). These results support the usefulness of the Free Image-Association Test for investigating odor perception based on the images associated with odors.
Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.
Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen
2017-11-07
Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.
Stevenson, Richard J; Mahmut, Mehmet K
2011-10-01
Odor "sweetness" may arise from experiencing odors and tastes together, resulting in a flavor memory that is later reaccessed by the odor. Forming a flavor memory may be impaired if the taste and odor elements are apparent during exposure, suggesting that configural processing may underpin learning. Using a new procedure, participants made actual flavor discriminations for one odor-taste pair (e.g., Taste A vs. Odor X-Taste A) and mock discriminations for another (e.g., Odor Y-Taste B vs. Odor Y-Taste B). Participants, who were successful at detecting the actual flavor discriminations, demonstrated equal amounts of learning for both odor-taste pairings. These results suggest that although a capacity to discriminate flavor into its elements may be necessary to support learning, whether participants experience a configural or elemental flavor representation may not.
Hydrogen sulfide release from dairy manure storages containing gypsum bedding
USDA-ARS?s Scientific Manuscript database
Recycled gypsum products can provide a cost-effective bedding alternative for dairy producers. Manufacturers report reduced odors, moisture and bacteria in the stall environment when compared to traditional bedding. Gypsum provides a sulfate source that can be converted to hydrogen sulfide under ana...
The ecology of carrion decomposition
USDA-ARS?s Scientific Manuscript database
Carrion, or the remains of dead animals, is something that most people would like to avoid. It is visually unpleasant, emits foul odors, and may be the source of numerous pathogens. Decomposition of carrion, however, provides a unique opportunity for scientists to investigate how nutrients cycle t...
Satellite Remote Sensing and Crowd Sourcing to Monitor and Predict Cyanobacteria Blooms
Cyanobacterial blooms occur worldwide and are associated with human respiratory irritation, undesirable taste and odor of potable water, increased drinking water treatment costs, loss of revenue from recreational use, and human illness as a result of ingestion or skin exposure du...
Detection, composition and treatment of volatile organic compounds from waste treatment plants.
Font, Xavier; Artola, Adriana; Sánchez, Antoni
2011-01-01
Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.
Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants
Font, Xavier; Artola, Adriana; Sánchez, Antoni
2011-01-01
Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835
Order of exposure to pleasant and unpleasant odors affects autonomic nervous system response.
Horii, Yuko; Nagai, Katsuya; Nakashima, Toshihiro
2013-04-15
When mammals are exposed to an odor, that odor is expected to elicit a physiological response in the autonomic nervous system. An unpleasant aversive odor causes non-invasive stress, while a pleasant odor promotes healing and relaxation in mammals. We hypothesized that pleasant odors might reduce a stress response previously induced by an aversive predator odor. Rats were thus exposed to pleasant and unpleasant odors in different orders to determine whether the order of odor exposure had an effect on the physiological response in the autonomic nervous system. The first trial examined autonomic nerve activity via sympathetic and parasympathetic nerve response while the second trial examined body temperature response. Initial exposure to a pleasant odor elicited a positive response and secondary exposure to an unpleasant odor elicited a negative response, as expected. However, we found that while initial exposure to an unpleasant odor elicited a negative stress response, subsequent secondary exposure to a pleasant odor not only did not alleviate that negative response, but actually amplified it. These findings were consistent for both the autonomic nerve activity response trial and the body temperature response trial. The trial results suggest that exposure to specific odors does not necessarily result in the expected physiological response and that the specific order of exposure plays an important role. Our study should provide new insights into our understanding of the physiological response in the autonomic nervous system related to odor memory and discrimination and point to areas that require further research. Copyright © 2013 Elsevier B.V. All rights reserved.
Choi, Il; Lee, Hyunjoo; Shin, Joungdu; Kim, Hyunook
2012-01-01
Sewer odors have been a concern to citizens of the Metropolitan Seoul region, which has installed combined sewer systems (CSSs) in 86% of its area. Although a variety of odorants are released from sewers, volatile sulfur compounds (VSCs) have been recognized as major ones. A number of technologies have been proposed to monitor or control odors from sewers. One of the most popular strategies adopted for the control of sewage odor is by applying a commercial odor-reducing agent into the sewer. In this study, the effectiveness of five different commercial odor-reducing agents (i.e., an odor masking agent, an alkaline solution, two microbial agents, and a chemical oxidant) was evaluated by continuously monitoring VSCs released from the sewer with an on-line total reduced sulfur (TRS) analyzer before and after each agent was sprayed into CSSs at five different locations of the city. In short, when the effectiveness of odor treatment was tested in the sewer system using five commercial odor reducing treatments, only the chemical oxidant was good enough to reduce the odor in terms of TRS levels measured before and after the application (p < 0.01). PMID:23223148
An odor interaction model of binary odorant mixtures by a partial differential equation method.
Yan, Luchun; Liu, Jiemin; Wang, Guihua; Wu, Chuandong
2014-07-09
A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE) method. Based on the measurement method (tangent-intercept method) of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture's odor intensity to the individual odorant's relative odor activity value (OAV). Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors) also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions.
Wasserberg, G; Kirsch, P; Rowton, E D
2014-06-01
A 3-chamber in-line olfactometer designed for use with sand flies is described and tested as a high-throughput method to screen honeys for attractiveness to Phlebotomus papatasi (four geographic isolates), P. duboscqi (two geographic isolates), and Lutzomyia longipalpis maintained in colonies at the Walter Reed Army Institute of Research. A diversity of unifloral honey odors were evaluated as a proxy for the natural floral odors that sand flies may use in orientation to floral sugar sources in the field. In the 3-chamber in-line olfactometer, the choice modules come directly off both sides of the release area instead of angling away as in the Y-tube olfactometer. Of the 25 honeys tested, five had a significant attraction for one or more of the sand fly isolates tested. This olfactometer and high-throughput method has utility for evaluating a diversity of natural materials with unknown complex odor blends that can then be down-selected for further evaluation in wind tunnels and/or field scenarios. © 2014 The Society for Vector Ecology.
Cerda-Molina, Ana Lilia; Hernández-López, Leonor; Chavira, Roberto; Cárdenas, Mario; Paez-Ponce, Denisse; Cervantes-De la Luz, Harry; Mondragón-Ceballos, Ricardo
2006-01-01
In mammalian species, social chemosignals are important in modulating endocrine reproductive functions. In nonhuman primates, previous studies have described a high frequency of mounting behavior by females in the follicular and periovulatory phases of the menstrual cycle. Stumptailed macaque females do not signal receptivity by means of sexual swellings, as do others macaques, therefore providing a good model in which to study chemical signaling of reproductive status. We exposed anesthetized stumptailed males to vaginal secretions of either late follicular or menses phase or to saline solution to determine the endocrine changes promoting male sexual behavior. In males exposed to follicular secretions, plasma testosterone concentrations were sustained up to 120 min after exposure. Such an effect was not observed in animals exposed to menses or saline odor sources. A luteinizing hormone surge, occurring 30 minutes after exposure to late follicular phase secretion swabs, preceded this sustained testosterone effect. The fact that late follicular scents induce sustained testosterone concentrations provides support to the idea that stumptailed males draw information concerning female reproductive status from the female's vaginal odor.
Analyses of volatile organic compounds from human skin
Gallagher, M.; Wysocki, C.J.; Leyden, J.J.; Spielman, A.I.; Sun, X.; Preti, G.
2008-01-01
Summary Background Human skin emits a variety of volatile metabolites, many of them odorous. Much previous work has focused upon chemical structure and biogenesis of metabolites produced in the axillae (underarms), which are a primary source of human body odour. Nonaxillary skin also harbours volatile metabolites, possibly with different biological origins than axillary odorants. Objectives To take inventory of the volatile organic compounds (VOCs) from the upper back and forearm skin, and assess their relative quantitative variation across 25 healthy subjects. Methods Two complementary sampling techniques were used to obtain comprehensive VOC profiles, viz., solid-phase micro extraction and solvent extraction. Analyses were performed using both gas chromatography/mass spectrometry and gas chromatography with flame photometric detection. Results Nearly 100 compounds were identified, some of which varied with age. The VOC profiles of the upper back and forearm within a subject were, for the most part, similar, although there were notable differences. Conclusions The natural variation in nonaxillary skin odorants described in this study provides a baseline of compounds we have identified from both endogenous and exogenous sources. Although complex, the profiles of volatile constituents suggest that the two body locations share a considerable number of compounds, but both quantitative and qualitative differences are present. In addition, quantitative changes due to ageing are also present. These data may provide future investigators of skin VOCs with a baseline against which any abnormalities can be viewed in searching for biomarkers of skin diseases. PMID:18637798
2017-01-01
Abstract Early sensory experience shapes the anatomy and function of sensory circuits. In the mouse olfactory bulb (OB), prenatal and early postnatal odorant exposure through odorized food (food/odorant pairing) not only increases the volume of activated glomeruli but also increases the number of mitral and tufted cells (M/TCs) connected to activated glomeruli. Given the importance of M/TCs in OB output and in mediating lateral inhibitory networks, increasing the number of M/TCs connected to a single glomerulus may significantly change odorant representation by increasing the total output of that glomerulus and/or by increasing the strength of lateral inhibition mediated by cells connected to the affected glomerulus. Here, we seek to understand the functional impact of this long-term odorant exposure paradigm on the population activity of mitral cells (MCs). We use viral expression of GCaMP6s to examine odor-evoked responses of MCs following prenatal and early postnatal odorant exposure to two dissimilar odorants, methyl salicylate (MS) and hexanal, which are both strong activators of glomeruli on the dorsal OB surface. Previous work suggests that odor familiarity may decrease odor-evoked MC response in rodents. However, we find that early food-based odorant exposure significantly changes MC responses in an unexpected way, resulting in broad increases in the amplitude, number, and reliability of excitatory MC responses across the dorsal OB. PMID:28955723
Natural gas odor level testing: Instruments and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberson, E.H.
1995-12-01
An odor in natural and LP gases is necessary. The statistics are overwhelming; when gas customers can smell a leak before the percentage of gas in air reaches a combustible mixture, the chances of an accident are greatly reduced. How do gas companies determine if there is sufficient odor reaching every gas customers home? Injection equipment is important. The rate and quality of odorant is important. Nevertheless, precision odorization alone does not guarantee that customers` homes always have gas with a readily detectable odor. To secure that goal, odor monitoring instruments are necessary.
Effect of fragrance use on discrimination of individual body odor.
Allen, Caroline; Havlíček, Jan; Roberts, S Craig
2015-01-01
Previous research suggests that artificial fragrances may be chosen to complement or enhance an individual's body odor, rather than simply masking it, and that this may create an odor blend with an emergent quality that is perceptually distinguishable from body odor or fragrance alone. From this, it can be predicted that a new emergent odor might be more easily identified than an individual's body odor in isolation. We used a triangle test paradigm to assess whether fragrance affects people's ability to distinguish between individual odors. Six male and six female donors provided axillary odor samples in three conditions (without fragrance, wearing their own fragrance, and wearing an assigned fragrance). In total, 296 female and 131 male participants selected the odd one from three odor samples (two from one donor, one from another; both of the same sex). We found that participants could discriminate between the odors at above chance levels in all three odor conditions. Olfactory identification ability (measured using Sniffin' Sticks) positively predicted discrimination performance, and sex differences in performance were also observed, with female raters being correct more often than men. Success rates were also higher for odors of male donors. Additionally, while performance was above chance in all conditions, individual odor discrimination varied across the three conditions. Discrimination rate was significantly higher in the "no fragrance" condition than either of the fragranced conditions. Importantly, however, discrimination rate was also significantly higher in the "own fragrance" condition than the "assigned fragrance" condition, suggesting that naturally occurring variance in body odor is more preserved when blended with fragrances that people choose for themselves, compared with other fragrances. Our data are consistent with the idea that fragrance choices are influenced by fragrance interactions with an individual's own body odor.
Effect of fragrance use on discrimination of individual body odor
Allen, Caroline; Havlíček, Jan; Roberts, S. Craig
2015-01-01
Previous research suggests that artificial fragrances may be chosen to complement or enhance an individual’s body odor, rather than simply masking it, and that this may create an odor blend with an emergent quality that is perceptually distinguishable from body odor or fragrance alone. From this, it can be predicted that a new emergent odor might be more easily identified than an individual’s body odor in isolation. We used a triangle test paradigm to assess whether fragrance affects people’s ability to distinguish between individual odors. Six male and six female donors provided axillary odor samples in three conditions (without fragrance, wearing their own fragrance, and wearing an assigned fragrance). In total, 296 female and 131 male participants selected the odd one from three odor samples (two from one donor, one from another; both of the same sex). We found that participants could discriminate between the odors at above chance levels in all three odor conditions. Olfactory identification ability (measured using Sniffin’ Sticks) positively predicted discrimination performance, and sex differences in performance were also observed, with female raters being correct more often than men. Success rates were also higher for odors of male donors. Additionally, while performance was above chance in all conditions, individual odor discrimination varied across the three conditions. Discrimination rate was significantly higher in the “no fragrance” condition than either of the fragranced conditions. Importantly, however, discrimination rate was also significantly higher in the “own fragrance” condition than the “assigned fragrance” condition, suggesting that naturally occurring variance in body odor is more preserved when blended with fragrances that people choose for themselves, compared with other fragrances. Our data are consistent with the idea that fragrance choices are influenced by fragrance interactions with an individual’s own body odor. PMID:26300812
Restrained eaters show altered brain response to food odor.
Kemmotsu, Nobuko; Murphy, Claire
2006-02-28
Do restrained and unrestrained eaters differ in their brain response to food odor? We addressed this question by examining restrained eaters' brain response to food (chocolate) and non-food (geraniol, floral) odors, both when odor was attended to and when ignored. Using olfactory event-related potentials (OERPs), we found that restrained eaters and controls responded similarly to the non-food odor; however, unlike controls, restrained eaters showed no increase in brain response to the food odor when they focused attention on it. Rather, restrained eaters showed attenuated OERP amplitudes to the food odor in both attended and ignored conditions, suggesting that the brain's response to attended food odor was abnormally suppressed.
Cognitive Facilitation Following Intentional Odor Exposure
Johnson, Andrew J.
2011-01-01
This paper reviews evidence that, in addition to incidental olfactory pollutants, intentional odor delivery can impact cognitive operations both positively and negatively. Evidence for cognitive facilitation/interference is reviewed alongside four potential explanations for odor-induced effects. It is concluded that the pharmacological properties of odors can induce changes in cognition. However, these effects can be accentuated/attenuated by the shift in mood following odor exposure, expectancy of cognitive effects, and cues to behavior via the contextual association with the odor. It is proposed that greater consideration is required in the intentional utilization of odors within both industrial and private locations, since differential effects are observed for odors with positive hedonic qualities. PMID:22163909
Olfactory receptor antagonism between odorants
Oka, Yuki; Omura, Masayo; Kataoka, Hiroshi; Touhara, Kazushige
2004-01-01
The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist–OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality. PMID:14685265
Evans, Andrew K.; Strassmann, Patrick S.; Lee, I-Ping; Sapolsky, Robert M.
2014-01-01
Toxoplasma gondii (T. gondii) is one of the world’s most successful brain parasites. T. gondii engages in parasite manipulation of host behavior and infection has been epidemiologically linked to numerous psychiatric disorders. Mechanisms by which T. gondii alters host behavior are not well understood, but neuroanatomical cyst presence and the localized host immune response to cysts are potential candidates. The aim of these studies was to test the hypothesis that T. gondii manipulation of specific host behaviors is dependent on neuroanatomical location of cysts in a time-dependent function post-infection. We examined neuroanatomical cyst distribution (53 forebrain regions) in infected rats after predator odor aversion behavior and anxiety-related behavior in the elevated plus maze and open field arena, across a 6-week time course. In addition, we examined evidence for microglial response to the parasite across the time course. Our findings demonstrate that while cysts are randomly distributed throughout the forebrain, individual variation in cyst localization, beginning 3 weeks post-infection, can explain individual variation in the effects of T. gondii on behavior. Additionally, not all infected rats develop cysts in the forebrain, and attenuation of predator odor aversion and changes in anxiety-related behavior are linked with cyst presence in specific forebrain areas. Finally, the immune response to cysts is striking. These data provide the foundation for testing hypotheses about proximate mechanisms by which T. gondii alters behavior in specific brain regions, including consequences of establishment of a homeostasis between T. gondii and the host immune response. PMID:24269877
Hot and Cold Smells: Odor-Temperature Associations across Cultures
Wnuk, Ewelina; de Valk, Josje M.; Huisman, John L. A.; Majid, Asifa
2017-01-01
It is often assumed odors are associated with hot and cold temperature, since odor processing may trigger thermal sensations, such as coolness in the case of mint. It is unknown, however, whether people make consistent temperature associations for a variety of everyday odors, and, if so, what determines them. Previous work investigating the bases of cross-modal associations suggests a number of possibilities, including universal forces (e.g., perception), as well as culture-specific forces (e.g., language and cultural beliefs). In this study, we examined odor-temperature associations in three cultures—Maniq (N = 11), Thai (N = 24), and Dutch (N = 24)—who differ with respect to their cultural preoccupation with odors, their odor lexicons, and their beliefs about the relationship of odors (and odor objects) to temperature. Participants matched 15 odors to temperature by touching cups filled with hot or cold water, and described the odors in their native language. The results showed no consistent associations among the Maniq, and only a handful of consistent associations between odor and temperature among the Thai and Dutch. The consistent associations differed across the two groups, arguing against their universality. Further analysis revealed cross-modal associations could not be explained by language, but could be the result of cultural beliefs. PMID:28848482
Elaborated Odor Test for Extended Exposure
NASA Technical Reports Server (NTRS)
Buchanan, Vanessa D.; Henry, Emily J.; Mast, Dion J.; Harper, Susana A.; Beeson, Harold D.; Tapia, Alma S.
2016-01-01
Concerns were raised when incidental exposure to a proprietary bonding material revealed the material had an irritating odor. The NASA-STD-6001B document describes a supplemental test method option for programs to evaluate materials with odor concerns (Test 6, Odor Assessment). In addition to the supplemental standard odor assessment with less than 10 seconds of exposure, the NASA White Sands Test Facility (WSTF) Materials Flight Acceptance Testing section was requested to perform an odor test with an extended duration to evaluate effects of an extended exposure and to more closely simulate realistic exposure scenarios. With approval from the NASA Johnson Space Center Industrial Hygienist, WSTF developed a 15-minute odor test method. WSTF performed this extended-duration odor test to evaluate the odor and physical effects of the bonding material configured between two aluminum plates, after the safety of the gas was verified via toxicity analysis per NASA-STD-6001B Test 7, Determination of Offgassed Products. During extended-duration testing, odor panel members were arranged near the test material in a small room with the air handlers and doors closed to minimize dilution. The odor panel members wafted gas toward themselves and recorded their individual assessments of odor and physical effects at various intervals during the 15-minute exposure and posttest. A posttest interview was conducted to obtain further information. Testing was effective in providing data for comparison and selection of an optimal offgassing and odor containment configuration. The developed test method for extended exposure is proposed as a useful tool for further evaluating materials with identified odors of concern if continued use of the material is anticipated.
Saive, Anne-Lise; Royet, Jean-Pierre; Ravel, Nadine; Thévenet, Marc; Garcia, Samuel; Plailly, Jane
2014-01-01
We behaviorally explore the link between olfaction, emotion and memory by testing the hypothesis that the emotion carried by odors facilitates the memory of specific unique events. To investigate this idea, we used a novel behavioral approach inspired by a paradigm developed by our team to study episodic memory in a controlled and as ecological as possible way in humans. The participants freely explored three unique and rich laboratory episodes; each episode consisted of three unfamiliar odors (What) positioned at three specific locations (Where) within a visual context (Which context). During the retrieval test, which occurred 24–72 h after the encoding, odors were used to trigger the retrieval of the complex episodes. The participants were proficient in recognizing the target odors among distractors and retrieving the visuospatial context in which they were encountered. The episodic nature of the task generated high and stable memory performances, which were accompanied by faster responses and slower and deeper breathing. Successful odor recognition and episodic memory were not related to differences in odor investigation at encoding. However, memory performances were influenced by the emotional content of the odors, regardless of odor valence, with both pleasant and unpleasant odors generating higher recognition and episodic retrieval than neutral odors. Finally, the present study also suggested that when the binding between the odors and the spatio-contextual features of the episode was successful, the odor recognition and the episodic retrieval collapsed into a unique memory process that began as soon as the participants smelled the odors. PMID:24936176
Body Odor Based Personality Judgments: The Effect of Fragranced Cosmetics
Sorokowska, Agnieszka; Sorokowski, Piotr; Havlíček, Jan
2016-01-01
People can accurately assess various personality traits of others based on body odor (BO) alone. Previous studies have shown that correlations between odor ratings and self-assessed personality dimensions are evident for assessments of neuroticism and dominance. Here, we tested differences between assessments based on natural body odor alone, without the use of cosmetics and assessments based on the body odor of people who were allowed to use cosmetics following their daily routine. Sixty-seven observers assessed samples of odors from 113 odor donors (each odor donor provided two samples – one with and one without cosmetic use); the donors provided their personality ratings, and the raters judged personality characteristics of the donors based on the provided odor samples. Correlations between observers’ ratings and self-rated neuroticism were stronger when raters assessed body odor in the natural body odor condition (natural BO condition; rs = 0.20) than in the cosmetics use condition (BO+cosmetics condition; rs = 0.15). Ratings of dominance significantly predicted self-assessed dominance in both conditions (rs = 0.34 for natural BO and rs = 0.21 for BO+cosmetics), whereas ratings of extraversion did not predict self-assessed extraversion in either condition. In addition, ratings of body odor attractiveness and pleasantness were significantly lower in natural BO condition than in BO+cosmetics condition, although the intensity of donors’ body odors was similar under both conditions. Our findings suggest that although olfaction seems to contribute to accurate first impression judgments of certain personality traits, cosmetic use can affect assessments of others based on body odor. PMID:27148138
Olfactory cortical adaptation facilitates detection of odors against background.
Kadohisa, Mikiko; Wilson, Donald A
2006-03-01
Detection and discrimination of odors generally, if not always, occurs against an odorous background. On any given inhalation, olfactory receptor neurons will be activated by features of both the target odorant and features of background stimuli. To identify a target odorant against a background therefore, the olfactory system must be capable of grouping a subset of features into an odor object distinct from the background. Our previous work has suggested that rapid homosynaptic depression of afferents to the anterior piriform cortex (aPCX) contributes to both cortical odor adaptation to prolonged stimulation and habituation of simple odor-evoked behaviors. We hypothesize here that this process may also contribute to figure-ground separation of a target odorant from background stimulation. Single-unit recordings were made from both mitral/tufted cells and aPCX neurons in urethan-anesthetized rats and mice. Single-unit responses to odorant stimuli and their binary mixtures were determined. One of the odorants was randomly selected as the background and presented for 50 s. Forty seconds after the onset of the background stimulus, the second target odorant was presented, producing a binary mixture. The results suggest that mitral/tufted cells continue to respond to the background odorant and, when the target odorant is presented, had response magnitudes similar to that evoked by the binary mixture. In contrast, aPCX neurons filter out the background stimulus while maintaining responses to the target stimulus. Thus the aPCX acts as a filter driven most strongly by changing stimuli, providing a potential mechanism for olfactory figure-ground separation and selective reading of olfactory bulb output.
Martinez, Luis A.; Petrulis, Aras
2013-01-01
Precopulatory behaviors that are preferentially directed towards opposite-sex conspecifics are critical for successful reproduction, particularly in species wherein the sexes live in isolation, such as Syrian hamsters (Mesocricetus auratus). In females, these behaviors include sexual odor preference and vaginal scent marking. The neural regulation of precopulatory behaviors is thought to involve a network of forebrain areas that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). Although MA and BNST are necessary for sexual odor preference and preferential vaginal marking to male odors, respectively, the role of MPOA in odor-guided female precopulatory behaviors is not well understood. To address this issue, female Syrian hamsters with bilateral, excitotoxic lesions of MPOA (MPOA-X) or sham lesions (SHAM) were tested for sexual odor investigation, scent marking, and lordosis. MPOA-X females did not investigate male odors more than female odors in an odor preference test, indicating that MPOA may be necessary for normal sexual odor preference in female hamsters. This loss of preference cannot be attributed to a sensory deficit, since MPOA-X females successfully discriminated male odors from female odors during an odor discrimination test. Surprisingly, no deficits in vaginal scent marking were observed in MPOA-X females, although these females did exhibit decreased overall levels of flank marking compared to SHAM females. Finally, all MPOA-X females exhibited lordosis appropriately. These results suggest that MPOA plays a critical role in the neural regulation of certain aspects of odor-guided precopulatory behaviors in female Syrian hamsters. PMID:23415835
Ritter, Simone M; Strick, Madelijn; Bos, Maarten W; van Baaren, Rick B; Dijksterhuis, Ap
2012-12-01
Both scientists and artists have suggested that sleep facilitates creativity, and this idea has received substantial empirical support. In the current study, we investigate whether one can actively enhance the beneficial effect of sleep on creativity by covertly reactivating the creativity task during sleep. Individuals' creative performance was compared after three different conditions: sleep-with-conditioned-odor; sleep-with-control-odor; or sleep-with-no-odor. In the evening prior to sleep, all participants were presented with a problem that required a creative solution. In the two odor conditions, a hidden scent-diffuser spread an odor while the problem was presented. In the sleep-with-conditioned-odor condition, task reactivation during sleep was induced by means of the odor that was also presented while participants were informed about the problem. In the sleep-with-control-odor condition, participants were exposed to a different odor during sleep than the one diffused during problem presentation. In the no odor condition, no odor was presented. After a night of sleep with the conditioned odor, participants were found to be: (i) more creative; and (ii) better able to select their most creative idea than participants who had been exposed to a control odor or no odor while sleeping. These findings suggest that we do not have to passively wait until we are hit by our creative muse while sleeping. Task reactivation during sleep can actively trigger creativity-related processes during sleep and thereby boost the beneficial effect of sleep on creativity. © 2012 European Sleep Research Society.
Chery, Romain; L'Heureux, Barbara; Bendahmane, Mounir; Renaud, Rémi; Martin, Claire; Pain, Frédéric; Gurden, Hirac
2011-01-01
In the brain, sensory stimulation activates distributed populations of neurons among functional modules which participate to the coding of the stimulus. Functional optical imaging techniques are advantageous to visualize the activation of these modules in sensory cortices with high spatial resolution. In this context, endogenous optical signals that arise from molecular mechanisms linked to neuroenergetics are valuable sources of contrast to record spatial maps of sensory stimuli over wide fields in the rodent brain. Here, we present two techniques based on changes of endogenous optical properties of the brain tissue during activation. First the intrinsic optical signals (IOS) are produced by a local alteration in red light reflectance due to: (i) absorption by changes in blood oxygenation level and blood volume (ii) photon scattering. The use of in vivo IOS to record spatial maps started in the mid 1980's with the observation of optical maps of whisker barrels in the rat and the orientation columns in the cat visual cortex1. IOS imaging of the surface of the rodent main olfactory bulb (OB) in response to odorants was later demonstrated by Larry Katz's group2. The second approach relies on flavoprotein autofluorescence signals (FAS) due to changes in the redox state of these mitochondrial metabolic intermediates. More precisely, the technique is based on the green fluorescence due to oxidized state of flavoproteins when the tissue is excited with blue light. Although such signals were probably among the first fluorescent molecules recorded for the study of brain activity by the pioneer studies of Britton Chances and colleagues3, it was not until recently that they have been used for mapping of brain activation in vivo. FAS imaging was first applied to the somatosensory cortex in rodents in response to hindpaw stimulation by Katsuei Shibuki's group4. The olfactory system is of central importance for the survival of the vast majority of living species because it allows efficient detection and identification of chemical substances in the environment (food, predators). The OB is the first relay of olfactory information processing in the brain. It receives afferent projections from the olfactory primary sensory neurons that detect volatile odorant molecules. Each sensory neuron expresses only one type of odorant receptor and neurons carrying the same type of receptor send their nerve processes to the same well-defined microregions of ˜100μm3 constituted of discrete neuropil, the olfactory glomerulus (Fig. 1). In the last decade, IOS imaging has fostered the functional exploration of the OB5, 6, 7 which has become one of the most studied sensory structures. The mapping of OB activity with FAS imaging has not been performed yet. Here, we show the successive steps of an efficient protocol for IOS and FAS imaging to map odor-evoked activities in the mouse OB. PMID:22064685
Topographic mapping--the olfactory system.
Imai, Takeshi; Sakano, Hitoshi; Vosshall, Leslie B
2010-08-01
Sensory systems must map accurate representations of the external world in the brain. Although the physical senses of touch and vision build topographic representations of the spatial coordinates of the body and the field of view, the chemical sense of olfaction maps discontinuous features of chemical space, comprising an extremely large number of possible odor stimuli. In both mammals and insects, olfactory circuits are wired according to the convergence of axons from sensory neurons expressing the same odorant receptor. Synapses are organized into distinctive spherical neuropils--the olfactory glomeruli--that connect sensory input with output neurons and local modulatory interneurons. Although there is a strong conservation of form in the olfactory maps of mammals and insects, they arise using divergent mechanisms. Olfactory glomeruli provide a unique solution to the problem of mapping discontinuous chemical space onto the brain.
Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system.
Liu, Wendy W; Wilson, Rachel I
2013-06-18
Glutamatergic neurons are abundant in the Drosophila central nervous system, but their physiological effects are largely unknown. In this study, we investigated the effects of glutamate in the Drosophila antennal lobe, the first relay in the olfactory system and a model circuit for understanding olfactory processing. In the antennal lobe, one-third of local neurons are glutamatergic. Using in vivo whole-cell patch clamp recordings, we found that many glutamatergic local neurons are broadly tuned to odors. Iontophoresed glutamate hyperpolarizes all major cell types in the antennal lobe, and this effect is blocked by picrotoxin or by transgenic RNAi-mediated knockdown of the GluClα gene, which encodes a glutamate-gated chloride channel. Moreover, antennal lobe neurons are inhibited by selective activation of glutamatergic local neurons using a nonnative genetically encoded cation channel. Finally, transgenic knockdown of GluClα in principal neurons disinhibits the odor responses of these neurons. Thus, glutamate acts as an inhibitory neurotransmitter in the antennal lobe, broadly similar to the role of GABA in this circuit. However, because glutamate release is concentrated between glomeruli, whereas GABA release is concentrated within glomeruli, these neurotransmitters may act on different spatial and temporal scales. Thus, the existence of two parallel inhibitory transmitter systems may increase the range and flexibility of synaptic inhibition.
Odor and odorous chemical emissions from animal buildings: Part 2. Odor emissions
USDA-ARS?s Scientific Manuscript database
This study was an add-on project to the National Air Emissions Monitoring Study (NAEMS) and focused on comprehensive measurement of odor emissions considering variations in seasons, animal types and olfactometry laboratories. Odor emissions from four of 14 NEAMS sites with nine barns/rooms (two dair...
Odor and odorous chemical emissions from animal buildings: Part 6.Odor activity value
USDA-ARS?s Scientific Manuscript database
There is a growing concern with air and odor emissions from agricultural facilities. A supplementary research project was conducted to complement the U.S. National Air Emissions Monitoring Study (NAEMS). The overall goal of the project was to establish odor and chemical emission factors for animal...
Subliminal smells can guide social preferences.
Li, Wen; Moallem, Isabel; Paller, Ken A; Gottfried, Jay A
2007-12-01
It is widely accepted that unconscious processes can modulate judgments and behavior, but do such influences affect one's daily interactions with other people? Given that olfactory information has relatively direct access to cortical and subcortical emotional circuits, we tested whether the affective content of subliminal odors alters social preferences. Participants rated the likeability of neutral faces after smelling pleasant, neutral, or unpleasant odors delivered below detection thresholds. Odor affect significantly shifted likeability ratings only for those participants lacking conscious awareness of the smells, as verified by chance-level trial-by-trial performance on an odor-detection task. Across participants, the magnitude of this priming effect decreased as sensitivity for odor detection increased. In contrast, heart rate responses tracked odor valence independently of odor awareness. These results indicate that social preferences are subject to influences from odors that escape awareness, whereas the availability of conscious odor information may disrupt such effects.
Maternal prefrontal cortex activation by newborn infant odors.
Nishitani, Shota; Kuwamoto, Saori; Takahira, Asuka; Miyamura, Tsunetake; Shinohara, Kazuyuki
2014-03-01
Mothers are attracted by infant cues of a variety of different modalities. To clarify the possible neural mechanisms underlying maternal attraction to infant odor cues, we used near-infrared spectroscopy to examine prefrontal cortex (PFC) activity during odor detection tasks in which 19 mothers and 19 nulliparous females (nonmothers) were presented with infant or adult male odors. They were instructed to make a judgment about whether they smelled an odor during each task. We estimated the PFC activity by measuring the relative oxyhemoglobin (oxyHb) concentrations. The results showed that while detecting the infant odors, bilateral PFC activities were increased in mothers but not in nonmothers. In contrast, adult male odors activated the PFC similarly in mothers and nonmothers. These findings suggest that maternal activation of the PFC in response to infant odors explains a part of the neural mechanisms for maternal attraction to infant odors.
Recollective experience in odor recognition: influences of adult age and familiarity.
Larsson, Maria; Oberg, Christina; Bäckman, Lars
2006-01-01
We examined recollective experience in odor memory as a function of age, intention to learn, and familiarity. Young and older adults studied a set of familiar and unfamiliar odors with incidental or intentional encoding instructions. At recognition, participants indicated whether their response was based on explicit recollection (remembering), a feeling of familiarity (knowing), or guessing. The results indicated no age-related differences in the distribution of experiential responses for unfamiliar odors. By contrast, for familiar odors the young demonstrated more explicit recollection than the older adults, who produced more "know" and "guess" responses. Intention to learn was unrelated to recollective experience. In addition, the observed age differences in "remember" responses for familiar odors were eliminated when odor naming was statistically controlled. This suggests that age-related deficits in activating specific odor knowledge (i.e., odor names) play an important role for age differences in recollective experience of olfactory information.
Human Odorant Reception in the Common Bed Bug, Cimex lectularius.
Liu, Feng; Liu, Nannan
2015-11-02
The common bed bug Cimex lectularius is a temporary ectoparasite on humans and currently resurgent in many developed countries. The ability of bed bugs to detect human odorants in the environment is critical for their host-seeking behavior. This study deciphered the chemical basis of host detection by investigating the neuronal response of olfactory sensilla to 104 human odorants using single sensillum recording and characterized the electro-physiological responses of bed bug odorant receptors to human odorants with the Xenopus expression system. The results showed that the D type of olfactory sensilla play a predominant role in detecting the human odorants tested. Different human odorants elicited different neuronal responses with different firing frequencies and temporal dynamics. Particularly, aldehydes and alcohols are the most effective stimuli in triggering strong response while none of the carboxylic acids showed a strong stimulation. Functional characterization of two bed bug odorant receptors and co-receptors in response to human odorants revealed their specific responses to the aldehyde human odorants. Taken together, the findings of this study not only provide exciting new insights into the human odorant detection of bed bugs, but also offer valuable information for developing new reagents (attractants or repellents) for the bed bug control.
Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb
Gschwend, Olivier; Beroud, Jonathan; Vincis, Roberto; Rodriguez, Ivan; Carleton, Alan
2016-01-01
Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on recordings performed in anesthetized preparations or used monomolecular odorants presented at arbitrary concentrations. In this study, we evaluated the lifetime and population sparseness evoked by natural odorants by capturing spike temporal patterning of neuronal assemblies instead of individual M/T tonic activity. Using functional imaging and tetrode recordings in awake mice, we show that natural odorants at their native concentrations are encoded by broad assemblies of M/T cells. While reducing odorant concentrations, we observed a reduced number of activated glomeruli representations and consequently a narrowing of M/T tuning curves. We conclude that natural odorants at their native concentrations recruit M/T cells with phasic rather than tonic activity. When encoding odorants in assemblies, M/T cells carry information about a vast number of odorants (lifetime sparseness). In addition, each natural odorant activates a broad M/T cell assembly (population sparseness). PMID:27824096
Human Odorant Reception in the Common Bed Bug, Cimex lectularius
Liu, Feng; Liu, Nannan
2015-01-01
The common bed bug Cimex lectularius is a temporary ectoparasite on humans and currently resurgent in many developed countries. The ability of bed bugs to detect human odorants in the environment is critical for their host-seeking behavior. This study deciphered the chemical basis of host detection by investigating the neuronal response of olfactory sensilla to 104 human odorants using single sensillum recording and characterized the electro-physiological responses of bed bug odorant receptors to human odorants with the Xenopus expression system. The results showed that the D type of olfactory sensilla play a predominant role in detecting the human odorants tested. Different human odorants elicited different neuronal responses with different firing frequencies and temporal dynamics. Particularly, aldehydes and alcohols are the most effective stimuli in triggering strong response while none of the carboxylic acids showed a strong stimulation. Functional characterization of two bed bug odorant receptors and co-receptors in response to human odorants revealed their specific responses to the aldehyde human odorants. Taken together, the findings of this study not only provide exciting new insights into the human odorant detection of bed bugs, but also offer valuable information for developing new reagents (attractants or repellents) for the bed bug control. PMID:26522967
Saive, Anne-Lise; Royet, Jean-Pierre; Plailly, Jane
2014-01-01
Odors are powerful cues that trigger episodic memories. However, in light of the amount of behavioral data describing the characteristics of episodic odor memory, the paucity of information available on the neural substrates of this function is startling. Furthermore, the diversity of experimental paradigms complicates the identification of a generic episodic odor memory network. We conduct a systematic review of the literature depicting the current state of the neural correlates of episodic odor memory in healthy humans by placing a focus on the experimental approaches. Functional neuroimaging data are introduced by a brief characterization of the memory processes investigated. We present and discuss laboratory-based approaches, such as odor recognition and odor associative memory, and autobiographical approaches, such as the evaluation of odor familiarity and odor-evoked autobiographical memory. We then suggest the development of new laboratory-ecological approaches allowing for the controlled encoding and retrieval of specific multidimensional events that could open up new prospects for the comprehension of episodic odor memory and its neural underpinnings. While large conceptual differences distinguish experimental approaches, the overview of the functional neuroimaging findings suggests relatively stable neural correlates of episodic odor memory. PMID:25071494
NASA Astrophysics Data System (ADS)
Elsharif, Shaimaa; Banerjee, Ashutosh; Buettner, Andrea
2015-10-01
Linalool 1 is an odorant that is commonly perceived as having a pleasant odor, but is also known to elicit physiological effects such as inducing calmness and enhancing sleep. However, no comprehensive studies are at hand to show which structural features are responsible for these prominent effects. Therefore, a total of six oxygenated derivatives were synthesized from both 1 and linalyl acetate 2, and were tested for their odor qualities and relative odor thresholds (OTs) in air. Linalool was found to be the most potent odorant among the investigated compounds, with an average OT of 3.2 ng/L, while the 8-hydroxylinalool derivative was the least odorous compound with an OT of 160 ng/L; 8-carboxylinalool was found to be odorless. The odorant 8-oxolinalyl acetate, which has very similar odor properties to linalool, was the most potent odorant besides linalool, exhibiting an OT of 5.9 ng/L. By comparison, 8-carboxylinalyl acetate had a similar OT (6.1 ng/L) as its corresponding 8-oxo derivative but exhibited divergent odor properties (fatty, greasy, musty). Overall, oxygenation on carbon 8 had a substantial effect on the aroma profiles of structural derivatives of linalool and linalyl acetate.
Identification of pleasant, neutral, and unpleasant odors in schizophrenia
Kamath, Vidyulata; Turetsky, Bruce I.; Moberg, Paul J.
2010-01-01
Recent work on odor hedonics in schizophrenia has indicated that patients display abnormalities in hedonic judgments of odors in comparison to healthy comparison participants. In the current study, identification accuracy for pleasant, neutral, and unpleasant odors in individuals with schizophrenia and healthy controls was examined. Thirty-three schizophrenia patients (63% male) and thirty-one healthy volunteers (65% male) were recruited. The groups were well matched on age, sex, and smoking status. Participants were administered the University of Pennsylvania Smell Identification Test, which was subsequently divided into 16 pleasant, 15 neutral, and 9 unpleasant items. Analysis of identification z-scores for pleasant, neutral, and unpleasant odors revealed a significant diagnosis by valence interaction. Post-hoc analysis revealed that schizophrenia participants made more identification errors on pleasant and neutral odors compared to healthy controls, with no differences observed for unpleasant odors. No effect was seen for sex. The findings from the current investigation suggest that odor identification accuracy in patients is influenced by odor valence. This pattern of results parallels a growing body of literature indicating that patients display aberrant pleasantness ratings for pleasant odors and highlights the need for additional research on the influence of odor valence on olfactory identification performance in individuals with schizophrenia. PMID:21239063
Soh, Zu; Nishikawa, Shinya; Kurita, Yuichi; Takiguchi, Noboru; Tsuji, Toshio
2016-01-01
To predict the odor quality of an odorant mixture, the interaction between odorants must be taken into account. Previously, an experiment in which mice discriminated between odorant mixtures identified a selective adaptation mechanism in the olfactory system. This paper proposes an olfactory model for odorant mixtures that can account for selective adaptation in terms of neural activity. The proposed model uses the spatial activity pattern of the mitral layer obtained from model simulations to predict the perceptual similarity between odors. Measured glomerular activity patterns are used as input to the model. The neural interaction between mitral cells and granular cells is then simulated, and a dissimilarity index between odors is defined using the activity patterns of the mitral layer. An odor set composed of three odorants is used to test the ability of the model. Simulations are performed based on the odor discrimination experiment on mice. As a result, we observe that part of the neural activity in the glomerular layer is enhanced in the mitral layer, whereas another part is suppressed. We find that the dissimilarity index strongly correlates with the odor discrimination rate of mice: r = 0.88 (p = 0.019). We conclude that our model has the ability to predict the perceptual similarity of odorant mixtures. In addition, the model also accounts for selective adaptation via the odor discrimination rate, and the enhancement and inhibition in the mitral layer may be related to this selective adaptation.
Lévy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments
NASA Astrophysics Data System (ADS)
Pasternak, Zohar; Bartumeus, Frederic; Grasso, Frank W.
2009-10-01
Locating chemical plumes in aquatic or terrestrial environments is important for many economic, conservation, security and health related human activities. The localization process is composed mainly of two phases: finding the chemical plume and then tracking it to its source. Plume tracking has been the subject of considerable study whereas plume finding has received little attention. We address here the latter issue, where the searching agent must find the plume in a region often many times larger than the plume and devoid of the relevant chemical cues. The probability of detecting the plume not only depends on the movements of the searching agent but also on the fluid mechanical regime, shaping plume intermittency in space and time; this is a basic, general problem when exploring for ephemeral resources (e.g. moving and/or concealing targets). Here we present a bio-inspired search strategy named Lévy-taxis that, under certain conditions, located odor plumes significantly faster and with a better success rate than other search strategies such as Lévy walks (LW), correlated random walks (CRW) and systematic zig-zag. These results are based on computer simulations which contain, for the first time ever, digitalized real-world water flow and chemical plume instead of their theoretical model approximations. Combining elements of LW and CRW, Lévy-taxis is particularly efficient for searching in flow-dominated environments: it adaptively controls the stochastic search pattern using environmental information (i.e. flow) that is available throughout the course of the search and shows correlation with the source providing the cues. This strategy finds natural application in real-world search missions, both by humans and autonomous robots, since it accomodates the stochastic nature of chemical mixing in turbulent flows. In addition, it may prove useful in the field of behavioral ecology, explaining and predicting the movement patterns of various animals searching for food or mates.
Regeneration of synapses in the olfactory pathway of locusts after antennal deafferentation.
Wasser, Hannah; Stern, Michael
2017-10-01
The olfactory pathway of the locust is capable of fast and precise regeneration on an anatomical level. Following deafferentation of the antenna either of young adult locusts, or of fifth instar nymphs, severed olfactory receptor neurons (ORNs) reinnervate the antennal lobe (AL) and arborize in AL microglomeruli. In the present study we tested whether these regenerated fibers establish functional synapses again. Intracellular recordings from AL projection neurons revealed that the first few odor stimulus evoked postsynaptic responses from regenerated ORNs from day 4-7 post crush on. On average, synaptic connections of regenerated afferents appeared faster in younger locusts operated as fifth instar nymphs than in adults. The proportions of response categories (excitatory vs. inhibitory) changed during regeneration, but were back to normal within 21 days. Odor-evoked oscillating extracellular local field potentials (LFP) were recorded in the mushroom body. These responses, absent after antennal nerve crush, reappeared, in a few animals as soon as 4 days post crush. Odor-induced oscillation patterns were restored within 7 days post crush. Both intra- and extracellular recordings indicate the capability of the locust olfactory system to re-establish synaptic contacts in the antennal lobe after antennal nerve lesion.
Breitfeld, Tino; Bruning, Johann E. A.; Inagaki, Hideaki; Takeuchi, Yukari; Kiyokawa, Yasushi; Fendt, Markus
2015-01-01
Rats emit an alarm pheromone in threatening situations. Exposure of rats to this alarm pheromone induces defensive behaviors, such as head out behavior, and increases c-Fos expression in brain areas involved in the mediation of defensive behaviors. One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST). The goal of the present study was to investigate if pharmacological inactivation of the aBNST by local microinjections of the GABAA receptor-agonist muscimol modulates alarm pheromone-induced defensive behaviors. We first established the behavioral paradigm of alarm pheromone-induced defensive behaviors in Sprague-Dawley rats in our laboratory. In a second experiment, we inactivated the aBNST, then exposed rats to one of four different odors (neck odor, female urine, alarm pheromone, fox urine) and tested the effects of the aBNST inactivation on the behavior in response to these odors. Our data show that temporary inactivation of the aBNST blocked head out behavior in response to the alarm pheromone. This indicates that the aBNST plays an important role in the mediation of the alarm pheromone-induced defensive behavior in rats. PMID:26441496
How the brain assigns a neural tag to arbitrary points in a high-dimensional space
NASA Astrophysics Data System (ADS)
Stevens, Charles
Brains in almost all organisms need to deal with very complex stimuli. For example, most mammals are very good at face recognition, and faces are very complex objects indeed. For example, modern face recognition software represents a face as a point in a 10,000 dimensional space. Every human must be able to learn to recognize any of the 7 billion faces in the world, and can recognize familiar faces after a display of the face is viewed for only a few hundred milliseconds. Because we do not understand how faces are assigned locations in a high-dimensional space by the brain, attacking the problem of how face recognition is accomplished is very difficult. But a much easier problem of the same sort can be studied for odor recognition. For the mouse, each odor is assigned a point in a 1000 dimensional space, and the fruit fly assigns any odor a location in only a 50 dimensional space. A fly has about 50 distinct types of odorant receptor neurons (ORNs), each of which produce nerve impulses at a specific rate for each different odor. This pattern of firing produced across 50 ORNs is called `a combinatorial odor code', and this code assigns every odor a point in a 50 dimensional space that is used to identify the odor. In order to learn the odor, the brain must alter the strength of synapses. The combinatorial code cannot itself by used to change synaptic strength because all odors use same neurons to form the code, and so all synapses would be changed for any odor and the odors could not be distinguished. In order to learn an odor, the brain must assign a set of neurons - the odor tag - that have the property that these neurons (1) should make use of all of the information available about the odor, and (2) insure that any two tags overlap as little as possible (so one odor does not modify synapses used by other odors). In the talk, I will explain how the olfactory system of both the fruit fly and the mouse produce a tag for each odor that has these two properties. Supported by NSF.
Emission of volatile organic compounds as affected by rate of application of cattle manure
USDA-ARS?s Scientific Manuscript database
Beef cattle manure can serve as a valuable nutrient source for crop production. However, emissions of volatile organic compounds (VOCs) following land application may pose a potential off-site odor concern. This study was conducted to evaluate the effects of land application method, N- application...
Emission of volatile organic compounds after land application of cattle manure
USDA-ARS?s Scientific Manuscript database
Beef cattle manure can serve as a valuable source of nutrients for crop production. However, emissions of volatile organic compounds (VOCs) following land application may pose an odor nuisance to downwind populations. This study was conducted to evaluate the effects of application method, diet, so...
Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of expos...
Air Pollution Aspects of Odorous Compounds.
ERIC Educational Resources Information Center
Sullivan, Ralph J.
This report deals with the less ubiquitous, but potentially harmful, contaminants that are in our atmosphere. Thirty such pollutants have been identified and available information has been summarized in a series of reports describing their sources, distribution, effects, and control technology for their abatement. A total of 27 reports have been…
Odor composition analysis and odor indicator selection during sewage sludge composting
Zhu, Yan-li; Zheng, Guo-di; Gao, Ding; Chen, Tong-bin; Wu, Fang-kun; Niu, Ming-jie; Zou, Ke-hua
2016-01-01
ABSTRACT On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography–mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Implications: Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities. PMID:27192607
Fujiwara, Masaya; Nitta, Asano; Chiba, Atsuhiko
2016-06-01
Our previous study in male rats demonstrated that bilateral administration of flutamide, an androgen receptor (AR) antagonist, into the posterodorsal medial amygdala (MePD) increased the time sniffing male odors to as high as that sniffing estrous odors, eliminating the preference for estrous odors over male odors. This made us speculate that under blockade of AR in the MePD, testosterone-derived estrogen acting on the same brain region arouses interest in male odors which is otherwise suppressed by concomitant action of androgen. In cyclic female rats, endogenous androgen has been thought to be involved in inhibitory regulation of estrogen-activated sexual behavior. Thus, in the present study, we investigated the possibility that in female rats the arousal of interest in male odors is also normally regulated by both estrogen and androgen acting on the MePD, as predicted by our previous study in male rats. Implantation of either the estrogen receptor blocker tamoxifen (TX) or a non-aromatizable androgen 5α-dihydrotestosterone (DHT) into the MePD of ovariectomized, estrogen-primed female rats eliminated preference for male odors over estrous odors by significantly decreasing the time sniffing male odors to as low as that sniffing estrous odors. The subsequent odor discrimination tests confirmed that the DHT and TX administration did not impair the ability to discriminate between male and estrous odors. These results suggest that in estrous female rats estrogen action in the MePD plays critical roles in the expression of the preference for male odors while androgen action in the same brain region interferes with the estrogen action. Copyright © 2016 Elsevier Inc. All rights reserved.
Isarida, Takeo; Sakai, Tetsuya; Kubota, Takayuki; Koga, Miho; Katayama, Yu; Isarida, Toshiko K
2014-04-01
The present study investigated context effects of incidental odors in free recall after a short retention interval (5 min). With a short retention interval, the results are not confounded by extraneous odors or encounters with the experimental odor and possible rehearsal during a long retention interval. A short study time condition (4 s per item), predicted not to be affected by adaptation to the odor, and a long study time condition (8 s per item) were used. Additionally, we introduced a new method for recovery from adaptation, where a dissimilar odor was briefly presented at the beginning of the retention interval, and we demonstrated the effectiveness of this technique. An incidental learning paradigm was used to prevent overshadowing from confounding the results. In three experiments, undergraduates (N = 200) incidentally studied words presented one-by-one and received a free recall test. Two pairs of odors and a third odor having different semantic-differential characteristics were selected from 14 familiar odors. One of the odors was presented during encoding, and during the test, the same odor (same-context condition) or the other odor within the pair (different-context condition) was presented. Without using a recovery-from-adaptation method, a significant odor-context effect appeared in the 4-s/item condition, but not in the 8-s/item condition. Using the recovery-from-adaptation method, context effects were found for both the 8- and the 4-s/item conditions. The size of the recovered odor-context effect did not change with study time. There were no serial position effects. Implications of the present findings are discussed.
Guidobaldi, F; Guerenstein, P G
2016-07-01
Triatomines, vectors of Chagas Disease, are hematophagous insects. Efforts have been made to develop synthetic attractants based on vertebrate odor-to lure them into traps. However, because those lures are not practical or have low capture efficiency, they are not in use in control programs. Therefore, more work is needed to reach a practical and efficient odor lure. Recently, a three-component, CO 2 -free, synthetic blend of vertebrate odor (consisting of ammonia, l-(+)-lactic acid, and hexanoic acid), known as Sweetscent (Biogents AG, Regensburg, Germany), was shown to attract and capture triatomines in the laboratory. In this study, using a trap olfactometer and an odor blend with constituents similar to those of Sweetscent (delivered from low-density polyethylene sachets) we found that the odorant ratios of the mixtures have a strong effect in the capture of triatomines. The blend with the most efficient combination of odorant ratios evoked ca. 81% capture in two relevant triatomine species. In the case of the most effective odor mixtures, we measured the odor mass emission for the three components of the mixture and therefore were able to estimate the odorant ratios emitted that were responsible for such a high capture performance. Thus, in those mixtures, pentanoic acid was the main component (ca. 65 %) followed by ammonia (ca. 28%) and, l(+)-lactic acid (ca. 7 %). Our results are encouraging as efficient, practical, and cheap odor baits to trap triatomines in the field would be within reach. The odor-delivery system used should be improved to increase stability of odor emission. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Odor composition analysis and odor indicator selection during sewage sludge composting.
Zhu, Yan-Li; Zheng, Guo-di; Gao, Ding; Chen, Tong-Bin; Wu, Fang-Kun; Niu, Ming-Jie; Zou, Ke-Hua
2016-09-01
On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography-mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities.
Martinez, Luis A; Petrulis, Aras
2013-04-01
Precopulatory behaviors that are preferentially directed towards opposite-sex conspecifics are critical for successful reproduction, particularly in species wherein the sexes live in isolation, such as Syrian hamsters (Mesocricetus auratus). In females, these behaviors include sexual odor preference and vaginal scent marking. The neural regulation of precopulatory behaviors is thought to involve a network of forebrain areas that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). Although MA and BNST are necessary for sexual odor preference and preferential vaginal marking to male odors, respectively, the role of MPOA in odor-guided female precopulatory behaviors is not well understood. To address this issue, female Syrian hamsters with bilateral, excitotoxic lesions of MPOA (MPOA-X) or sham lesions (SHAM) were tested for sexual odor investigation, scent marking, and lordosis. MPOA-X females did not investigate male odors more than female odors in an odor preference test, indicating that MPOA may be necessary for normal sexual odor preference in female hamsters. This loss of preference cannot be attributed to a sensory deficit, since MPOA-X females successfully discriminated male odors from female odors during an odor discrimination test. Surprisingly, no deficits in vaginal scent marking were observed in MPOA-X females, although these females did exhibit decreased overall levels of flank marking compared to SHAM females. Finally, all MPOA-X females exhibited lordosis appropriately. These results suggest that MPOA plays a critical role in the neural regulation of certain aspects of odor-guided precopulatory behaviors in female Syrian hamsters. Copyright © 2013 Elsevier Inc. All rights reserved.
The smell of age: perception and discrimination of body odors of different ages.
Mitro, Susanna; Gordon, Amy R; Olsson, Mats J; Lundström, Johan N
2012-01-01
Our natural body odor goes through several stages of age-dependent changes in chemical composition as we grow older. Similar changes have been reported for several animal species and are thought to facilitate age discrimination of an individual based on body odors, alone. We sought to determine whether humans are able to discriminate between body odor of humans of different ages. Body odors were sampled from three distinct age groups: Young (20-30 years old), Middle-age (45-55), and Old-age (75-95) individuals. Perceptual ratings and age discrimination performance were assessed in 41 young participants. There were significant differences in ratings of both intensity and pleasantness, where body odors from the Old-age group were rated as less intense and less unpleasant than body odors originating from Young and Middle-age donors. Participants were able to discriminate between age categories, with body odor from Old-age donors mediating the effect also after removing variance explained by intensity differences. Similarly, participants were able to correctly assign age labels to body odors originating from Old-age donors but not to body odors originating from other age groups. This experiment suggests that, akin to other animals, humans are able to discriminate age based on body odor alone and that this effect is mediated mainly by body odors emitted by individuals of old age.
The Smell of Age: Perception and Discrimination of Body Odors of Different Ages
Mitro, Susanna; Gordon, Amy R.; Olsson, Mats J.; Lundström, Johan N.
2012-01-01
Our natural body odor goes through several stages of age-dependent changes in chemical composition as we grow older. Similar changes have been reported for several animal species and are thought to facilitate age discrimination of an individual based on body odors, alone. We sought to determine whether humans are able to discriminate between body odor of humans of different ages. Body odors were sampled from three distinct age groups: Young (20–30 years old), Middle-age (45–55), and Old-age (75–95) individuals. Perceptual ratings and age discrimination performance were assessed in 41 young participants. There were significant differences in ratings of both intensity and pleasantness, where body odors from the Old-age group were rated as less intense and less unpleasant than body odors originating from Young and Middle-age donors. Participants were able to discriminate between age categories, with body odor from Old-age donors mediating the effect also after removing variance explained by intensity differences. Similarly, participants were able to correctly assign age labels to body odors originating from Old-age donors but not to body odors originating from other age groups. This experiment suggests that, akin to other animals, humans are able to discriminate age based on body odor alone and that this effect is mediated mainly by body odors emitted by individuals of old age. PMID:22666457
Principal Factors for High Performance of Odor and Methane degrading Biocover using Network Analysis
NASA Astrophysics Data System (ADS)
Jung, H.; Yun, J.; O, G. C.; Ryu, H. W.; Jeon, J. M.; Cho, K. S.
2016-12-01
Methane is 25 times more powerful greenhouse gas than carbon dioxide and plays an important role in global warming. Landfills are one of the biggest methane sources and have emitted 37% of anthropogenic methane in Korea. Applying biocovers in landfills is known to be efficient for the simultaneous mitigation of methane as well as odor which occurs severe civil claims. In this study, three pilot-scale biocovers (2.5mx5mx1m) were constructed in a sanitary landfill at Gwangyang, Korea to establish the optimal operational conditions of biocover. All biocovers are filled with soil, EG microbial agent, food waste compost, and perlite with different combination. Pilot-scale biocovers have been operated since January in this year for simultaneous removal of odor and methane. The concentrations of methane and odors such as ammonia, H2S, methyl mercaptane, methylsulfide, dimetyl disulfide, i-valeraldehyde, and styrene were measured at the inlet and outlet of biocovers each month using GC and HPLC for removal performance evaluation. The biocover with highest removal efficiency eliminated 98.4% of odor and 100.0% of methane. All removal efficiencies of odor measured during experiment are in 81.1 98.4% range, and those of methane are in 3.6 100.0%. Three months later after biocover construction, all biocovers with mixed packing material showed better methane degradation performance than the biocovers packed only with soil. The packing materials of biocovers were sampled during winter (January), spring (April) and summer (July), and their microbial communities were examined based on 16S rDNA using 454 pyrosequencing to detect microbial factors that affects the removal efficiency. Methanotrophs which are known as methane-degradable bacteria take 10 25% of microbial community in biocovers, and most of those found in biocovers are type methanothrophs. Network analysis is performed and principal factors for performance improvement of biocovers are derived. Based on this study, well-designed biocovers will be newly set up in the operational landfill with the consideration of derived principal factors for high efficiency. This research was supported by the Korea Ministry of Environment as a "Converging Technology Project (2015001640003)".
Odor and odorous chemical emissions from animal buildings: Part 2 - odor emissions
USDA-ARS?s Scientific Manuscript database
This study was an add-on project to the National Air Emissions Monitoring Study (NAEMS) and focused on comprehensive measurement of odor emissions. Odor emissions from two animal species (dairy and swine) from four sites with nine barns/rooms (two dairy barns in Wisconsin, two dairy barns and two sw...
Schwaighofer, Andreas; Pechlaner, Maria; Oostenbrink, Chris; Kotlowski, Caroline; Araman, Can; Mastrogiacomo, Rosa; Pelosi, Paolo; Knoll, Wolfgang; Nowak, Christoph; Larisika, Melanie
2014-04-18
Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant. Copyright © 2014 Elsevier Inc. All rights reserved.
Srinivasan, Rangesh; Sorial, George A
2011-01-01
Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinking water and are mainly caused by the presence of two semi-volatile compounds--2-methyl isoborneol (MIB) and geosmin. A review of these two taste and odor causing compounds in drinking water is presented. The sources for the formation of these compounds in water are discussed along with the health and regulatory implications. The recent developments in the analysis of MIB/geosmin in water which have allowed for rapid measurements in the nanogram per liter concentrations are also discussed. This review focuses on the relevant treatment alternatives, that are described in detail with emphasis on their respective advantages and problems associated with their implementation in a full-scale facility. Conventional treatment processes in water treatment plants, such as coagulation, sedimentation and chlorination have been found to be ineffective for removal of MIB/geosmin. Studies have shown powdered activated carbon, ozonation and biofiltration to be effective in treatment of these two compounds. Although some of these technologies are more effective and show more promise than the others, much work remains to be done to optimize these technologies so that they can be retrofitted or installed with minimal impact on the overall operation and effectiveness of the treatment system.
Burger, J; Boarman, W; Kurzava, L; Gochfeld, M
1991-01-01
The abilities of hatchling pine snakes (Pituophis melanoleucus) and king snakes (Lampropeltis getulus) to discriminate the chemical trails of pine and king snakes was investigated inY-maze experiments. Pine snakes were housed for 17 days either with shavings impregnated with pine snake odor, king snake odor, or no odor to test for the effect of experience on choice. Both pine and king snake hatchlings entered the arm with the pine snake odor and did not enter the arm with the king snake odor. The data support the hypothesis that hatchlings of both species can distinguish conspecific odors from other odors and that our manipulation of previous experience was without effect for pine snake hatchlings.
Predicting the response of olfactory sensory neurons to odor mixtures from single odor response
NASA Astrophysics Data System (ADS)
Marasco, Addolorata; de Paris, Alessandro; Migliore, Michele
2016-04-01
The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific olfactory receptor responses by manipulating mixtures in a mathematically predictable manner. This result is general and applies, independently of the number of odor components, to any olfactory sensory neuron type with a response curve that can be represented as a sigmoidal function of the odor concentration.
Schoenauer, Sebastian; Schieberle, Peter
2018-04-25
Furan-2-ylmethanethiol (2-furfurylthiol; 2-FFT, 1) is long-known as a key odorant in roast and ground coffee and was also previously identified in a wide range of thermally treated foods such as meat, bread, and roasted sesame seeds. Its unique coffee-like odor quality elicited at very low concentrations, and the fact that only a very few compounds showing a similar structure have previously been described in foods make 1 a suitable candidate for structure-odor activity studies. To gain insight into the structural features needed to evoke a coffee-like odor at low concentrations, 46 heterocyclic mercaptans and thio ethers were synthesized, 32 of them for the first time, and their odor qualities and odor thresholds were determined. A movement of the mercapto group to the 3-position kept the coffee-like aroma but led to an increase in odor threshold. A separation of the thiol group from the furan ring by an elongation of the carbon side chain caused a loss of the coffee-like odor and also led to an increase in odor thresholds, especially for ω-(furan-2-yl)alkane-1-thiols with six or seven carbon atoms in the side chain. A displacement of the furan ring by a thiophene ring had no significant influence on the odor properties of most of the compounds studied, but the newly synthesized longer-chain 1-(furan-2-yl)- and 1-(thiophene-2-yl)alkane-1-thiols elicited interesting passion fruit-like scents. In total, only 4 out of the 46 compounds also showed a coffee-like odor quality like 1, but none showed a lower odor threshold. Besides the odor attributes, also retention indices, mass spectra, and NMR data of the synthesized compounds were elaborated, which are helpful in possible future identification of these compounds in trace levels in foods or other materials.
Keeping their distance? Odor response patterns along the concentration range
Strauch, Martin; Ditzen, Mathias; Galizia, C. Giovanni
2012-01-01
We investigate the interplay of odor identity and concentration coding in the antennal lobe (AL) of the honeybee Apis mellifera. In this primary olfactory center of the honeybee brain, odors are encoded by the spatio-temporal response patterns of olfactory glomeruli. With rising odor concentration, further glomerular responses are recruited into the patterns, which affects distances between the patterns. Based on calcium-imaging recordings, we found that such pattern broadening renders distances between glomerular response patterns closer to chemical distances between the corresponding odor molecules. Our results offer an explanation for the honeybee's improved odor discrimination performance at higher odor concentrations. PMID:23087621
Sensory Characterization of Odors in Used Disposable Absorbent Incontinence Products
Widén, Heléne; Forsgren-Brusk, Ulla; Hall, Gunnar
2017-01-01
PURPOSE: The objectives of this study were to characterize the odors of used incontinence products by descriptive analysis and to define attributes to be used in the analysis. A further objective was to investigate to what extent the odor profiles of used incontinence products differed from each other and, if possible, to group these profiles into classes. SUBJECTS AND SETTING: Used incontinence products were collected from 14 residents with urinary incontinence living in geriatric nursing homes in the Gothenburg area, Sweden. METHODS: Pieces were cut from the wet area of used incontinence products. They were placed in glass bottles and kept frozen until odor analysis was completed. A trained panel consisting of 8 judges experienced in this area of investigation defined terminology for odor attributes. The intensities of these attributes in the used products were determined by descriptive odor analysis. Data were analyzed both by analysis of variance (ANOVA) followed by the Tukey post hoc test and by principal component analysis and cluster analysis. RESULTS: An odor wheel, with 10 descriptive attributes, was developed. The total odor intensity, and the intensities of the attributes, varied considerably between different, used incontinence products. The typical odors varied from “sweetish” to “urinal,” “ammonia,” and “smoked.” Cluster analysis showed that the used products, based on the quantitative odor data, could be divided into 5 odor classes with different profiles. CONCLUSIONS: The used products varied considerably in odor character and intensity. Findings suggest that odors in used absorptive products are caused by different types of compounds that may vary in concentration. PMID:28328646
Knaapila, Antti; Laaksonen, Oskar; Virtanen, Markus; Yang, Baoru; Lagström, Hanna; Sandell, Mari
2017-02-01
The primary dimension of odor is pleasantness, which is associated with a multitude of factors. We investigated how the pleasantness, familiarity, and identification of spice odors were associated with each other and with the use of the respective spice, overall use of herbs, and level of food neophobia. A total of 126 adults (93 women, 33 men; age 25-61 years, mean 39 years) rated the odors from 12 spices (oregano, anise, rosemary, mint, caraway, sage, thyme, cinnamon, fennel, marjoram, garlic, and clove) for pleasantness and familiarity, and completed a multiple-choice odor identification. Data on the use of specific spices, overall use of herbs, and Food Neophobia Scale score were collected using an online questionnaire. Familiar odors were mostly rated as pleasant (except garlic), whereas unfamiliar odors were rated as neutral (r = 0.63). We observed consistent and often significant trends that suggested the odor pleasantness and familiarity were positively associated with the correct odor identification, consumption of the respective spice, overall use of herbs, and food neophilia. Our results suggest that knowledge acquisition through repetitive exposure to spice odor with active attention may gradually increase the odor pleasantness within the framework set by the chemical characteristics of the aroma compound. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identification of pleasant, neutral, and unpleasant odors in schizophrenia.
Kamath, Vidyulata; Turetsky, Bruce I; Moberg, Paul J
2011-05-15
Recent work on odor hedonics in schizophrenia has indicated that patients display abnormalities in hedonic judgments of odors in comparison to healthy comparison participants. In the current study, identification accuracy for pleasant, neutral, and unpleasant odors in individuals with schizophrenia and healthy controls was examined. Thirty-three schizophrenia patients (63% male) and thirty-one healthy volunteers (65% male) were recruited. The groups were well matched on age, sex, and smoking status. Participants were administered the University of Pennsylvania Smell Identification Test, which was subsequently divided into 16 pleasant, 15 neutral, and 9 unpleasant items. Analysis of identification z-scores for pleasant, neutral, and unpleasant odors revealed a significant diagnosis by valence interaction. Post-hoc analysis revealed that schizophrenia participants made more identification errors on pleasant and neutral odors compared to healthy controls, with no differences observed for unpleasant odors. No effect was seen for sex. The findings from the current investigation suggest that odor identification accuracy in patients is influenced by odor valence. This pattern of results parallels a growing body of literature indicating that patients display aberrant pleasantness ratings for pleasant odors and highlights the need for additional research on the influence of odor valence on olfactory identification performance in individuals with schizophrenia. Copyright © 2010 Elsevier Ltd. All rights reserved.
Red junglefowl have individual body odors.
Karlsson, Anna-Carin; Jensen, Per; Elgland, Mathias; Laur, Katriann; Fyrner, Timmy; Konradsson, Peter; Laska, Matthias
2010-05-01
Olfaction may play an important role in regulating bird behavior, and has been suggested to be involved in feather-pecking. We investigated possible differences in the body odors of red junglefowl females by using an automated olfactometer which assessed the ability of trained mice to discriminate between the odors of uropygial gland secretions (the main carrier of potential individual odors in chickens) of six feather-pecked and six non-pecked birds. All mice were clearly able to discriminate between all individual red junglefowl odors, showing that each bird has an individual body odor. We analyzed whether it was more difficult to discriminate between the odors of two feather-pecked, or two non-pecked birds, than it was to discriminate between the odors of two randomly selected birds. This was not the case, suggesting that feather-pecked birds did not share a common odor signature. Analyses using gas chromatography and mass spectrometry showed that the composition of aliphatic carboxylic acids in uropygial gland secretions differed consistently between individuals. However, chemical composition did not vary according to feather-pecking status. We conclude that red junglefowl have individual body odors which appear to be largely based on differences in the relative abundance of aliphatic carboxylic acids, but there is no evidence of systematic differences between the body odors of pecked and non-pecked birds.
Lawson, M J; Craven, B A; Paterson, E G; Settles, G S
2012-07-01
Olfaction begins when an animal draws odorant-laden air into its nasal cavity by sniffing, thus transporting odorant molecules from the external environment to olfactory receptor neurons (ORNs) in the sensory region of the nose. In the dog and other macrosmatic mammals, ORNs are relegated to a recess in the rear of the nasal cavity that is comprised of a labyrinth of scroll-like airways. Evidence from recent studies suggests that nasal airflow patterns enhance olfactory sensitivity by efficiently delivering odorant molecules to the olfactory recess. Here, we simulate odorant transport and deposition during steady inspiration in an anatomically correct reconstructed model of the canine nasal cavity. Our simulations show that highly soluble odorants are deposited in the front of the olfactory recess along the dorsal meatus and nasal septum, whereas moderately soluble and insoluble odorants are more uniformly deposited throughout the entire olfactory recess. These results demonstrate that odorant deposition patterns correspond with the anatomical organization of ORNs in the olfactory recess. Specifically, ORNs that are sensitive to a particular class of odorants are located in regions where that class of odorants is deposited. The correlation of odorant deposition patterns with the anatomical organization of ORNs may partially explain macrosmia in the dog and other keen-scented species.
Health effects of indoor odorants.
Cone, J E; Shusterman, D
1991-01-01
People assess the quality of the air indoors primarily on the basis of its odors and on their perception of associated health risk. The major current contributors to indoor odorants are human occupant odors (body odor), environmental tobacco smoke, volatile building materials, bio-odorants (particularly mold and animal-derived materials), air fresheners, deodorants, and perfumes. These are most often present as complex mixtures, making measurement of the total odorant problem difficult. There is no current method of measuring human body odor, other than by human panel studies of expert judges of air quality. Human body odors have been quantitated in terms of the "olf" which is the amount of air pollution produced by the average person. Another quantitative unit of odorants is the "decipol," which is the perceived level of pollution produced by the average human ventilated by 10 L/sec of unpolluted air or its equivalent level of dissatisfaction from nonhuman air pollutants. The standard regulatory approach, focusing on individual constituents or chemicals, is not likely to be successful in adequately controlling odorants in indoor air. Besides the current approach of setting minimum ventilation standards to prevent health effects due to indoor air pollution, a standard based on the olf or decipol unit might be more efficacious as well as simpler to measure. PMID:1821378
Characterization of water quality in Bushy Park Reservoir, South Carolina, 2013–15
Conrads, Paul A.; Journey, Celeste A.; Petkewich, Matthew D.; Lanier, Timothy H.; Clark, Jimmy M.
2018-04-25
The Bushy Park Reservoir is the principal water supply for 400,000 people in the greater Charleston, South Carolina, area, which includes homes as well as businesses and industries in the Bushy Park Industrial Complex. Charleston Water System and the U.S. Geological Survey conducted a cooperative study during 2013–15 to assess the circulation of Bushy Park Reservoir and its effects on water-quality conditions, specifically, recurring taste-and-odor episodes. This report describes the water-quality data collected for the study that included a combination of discrete water-column sampling at seven locations in the reservoir and longitudinal water-quality profiling surveys of the reservoir and tributaries to characterize the temporal and spatial water-quality dynamics of Bushy Park Reservoir. Water-quality profiling surveys were conducted with an autonomous underwater vehicle equipped with a multiparameter water-quality-sonde bulkhead. Data collected by the autonomous underwater vehicle included water temperature, dissolved oxygen, pH, specific conductance, turbidity, total chlorophyll as fluorescence (estimate of algal biomass), and phycocyanin as fluorescence (estimate of cyanobacteria biomass) data.Characterization of the water-quality conditions in the reservoir included comparison to established State nutrient guidelines, identification of any spatial and seasonal variation in water-quality conditions and phytoplankton community structures, and assessment of the degree of influence of water-quality conditions related to Foster Creek and Durham Canal inflows, especially during periods of elevated taste-and-odor concentrations. Depth-profile and autonomous underwater vehicle survey data were used to identify areas within the reservoir where greater phytoplankton and cyanobacteria densities were most likely occurring.Water-quality survey results indicated that Bushy Park Reservoir tended to stratify thermally at a depth of about 20 feet from June to early October. The stratification was limited to the deeper portions of the reservoir near the dam and often dissipated within the reservoir near the CWS intake less than a mile upstream from the dam. Where thermally stratified, a corresponding depletion of dissolved oxygen also occurred at about the same depth and resulted in an anoxic hypolimnion below the 25-foot depth and an increase in specific conductance, likely due to re-mobilized metals and phosphorus under reducing conditions. In general, chlorophyll estimated from fluorescence exhibited some spatial variation, but no strong consistent pattern or “hot spot” was observed. Phycocyanin, estimated from relative fluorescence unit output as blue-green algae cell density, periodically seemed to be greater in the upper portion of the reservoir, but those differences may be attributed to increased turbidity and the potential change in phytoplankton community structure that affects fluorescence. Increased phycocyanin was observed at about the 10-foot depth during the summer months.A constant production of 2-methylisoborneol (MIB) near the dam and geosmin in the middle and upper portions of the reservoir appears to be occurring during the summer and early fall in the reservoir, but concentrations of these compounds tend to be between 10 and 15 nanograms per liter, which is at the Charleston Water System treatment threshold. At the Bushy Park Reservoir intake, the dominant taste-and-odor compound tended to be MIB, measured at a 2- or 3-to-1 ratio with geosmin during the summer and fall. During springtime episodes, however, when taste-and-odor compound concentrations typically are elevated above the Charleston Water System treatment threshold, the spatial distribution of geosmin concentrations greater than 15 nanograms per liter (28 to 38 nanograms per liter) was best explained by in situ production in the lower portion of the Bushy Park Reservoir near the dam rather than transport from Foster Creek. This pattern seems to indicate a possible shift in phytoplankton communities (or, at least, cyanobacteria communities) from MIB producers to geosmin producers.The spatial and seasonal assessment of water-quality conditions in Bushy Park Reservoir identified seasonal differences in water chemistry and spatial differences between the upper and lower portions of the reservoir that correspond to the location of elevated geosmin concentrations. On the basis of the spatial and seasonal assessment of actinomycetes concentrations compared to taste-and-odor compound concentrations, cyanobacteria production likely was the dominant source of the taste-and-odor episodes rather than actinomycetes. The lack of spatial and seasonal patterns in actinomycetes concentrations did not correspond to the springtime geosmin concentrations that were elevated above the Charleston Water System treatment threshold in the lower portion of the reservoir. Additionally, actinomycetes concentrations, although ubiquitous, had a median of about 9 and maximum of about 20 colonies per milliliter, which can be considered low for elevated taste-and-odor compound production. Nonetheless, the potential exists for actinomycetes to be a secondary source of taste-and-odor production and could explain some of the ubiquitous occurrence of low-level taste-and-odor production, such as MIB concentrations, observed throughout the summer and early fall months.When evaluated by biovolume, cyanobacteria were not the dominant phytoplankton group in Bushy Park Reservoir during the study period. Dolichospermum planctonicum (previously Anabaena planktonica ) was the dominant genera of the cyanobacteria group during spring periods. The geosmin-producing genera that were identified in the 2014 and 2015 spring communities in Bushy Park Reservoir were not observed in the 1999 and 2000 algal taxonomic data.A more robust examination of phytoplankton species was conducted by using a multivariate analysis that identified seasonal changes in phytoplankton community structure. These seasonal phytoplankton communities appeared to be explained by seasonal changes in water chemistry and may be responsible for episodes of taste-and-odor occurrence, especially geosmin. The most probable source of geosmin identified during the study was D. planctonicum.In a synoptic sampling event during a taste-and-odor episode in April 2015, cyanobacteria, not acinomycetes, also was indicated to be the more prevalent source of the geosmin. Although the Edisto River intake and its associated supply tunnel to the treatment facility had relatively high actinomycetes concentrations (130 and 140 colonies per milliliter, respectively) compared to the Bushy Park intake and tunnel (2 colonies per milliliter), corresponding geosmin concentrations were below 5 nanograms per liter for source water from the Edisto River intake and tunnel. Elevated geosmin concentrations above the Charleston Water System treatment threshold were identified in source waters from the Bushy Park Reservoir. The cyanobacteria community at the sampled sites in April 2015 was statistically similar to the community in the Bushy Park Reservoir in April 2014, when geosmin concentrations also were elevated. The only geosmin-producing genus identified at the Bushy Park intake, however, was D. planctonicum.
Age-Related Changes in Children's Hedonic Response to Male Body Odor.
ERIC Educational Resources Information Center
Stevenson, Richard J.; Repacholi, Betty M.
2003-01-01
Examined children's and adolescents' ability to identify male sweat and other odors and their rating of odors for liking. Found that only female adolescents could identify and disliked male sweat. When cued about odor identity, both male and female adolescents disliked male sweat more than children. Concluded that dislike for male sweat odor may…
9 CFR 311.20 - Sexual odor of swine.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Sexual odor of swine. 311.20 Section... Sexual odor of swine. (a) Carcasses of swine which give off a pronounced sexual odor shall be condemned. (b) The meat of swine carcasses which give off a sexual odor less than pronounced may be passed for...
9 CFR 311.20 - Sexual odor of swine.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Sexual odor of swine. 311.20 Section... Sexual odor of swine. (a) Carcasses of swine which give off a pronounced sexual odor shall be condemned. (b) The meat of swine carcasses which give off a sexual odor less than pronounced may be passed for...
9 CFR 311.20 - Sexual odor of swine.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Sexual odor of swine. 311.20 Section... Sexual odor of swine. (a) Carcasses of swine which give off a pronounced sexual odor shall be condemned. (b) The meat of swine carcasses which give off a sexual odor less than pronounced may be passed for...
9 CFR 311.20 - Sexual odor of swine.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Sexual odor of swine. 311.20 Section... Sexual odor of swine. (a) Carcasses of swine which give off a pronounced sexual odor shall be condemned. (b) The meat of swine carcasses which give off a sexual odor less than pronounced may be passed for...
USDA-ARS?s Scientific Manuscript database
Simultaneous chemical and sensory analysis based on gas chromatography-mass spectrometry-olfactometry (GC-MS-O) of air samples from livestock operations is a very useful approach for quantification of target odorous gases and also for ranking of odorous compounds. This information can help link spec...
Different thresholds for detection and discrimination of odors in the honey bee (Apis mellifera).
Wright, Geraldine A; Smith, Brian H
2004-02-01
Naturally occurring odors used by animals for mate recognition, food identification and other purposes must be detected at concentrations that vary across several orders of magnitude. Olfactory systems must therefore have the capacity to represent odors over a large range of concentrations regardless of dramatic changes in the salience, or perceived intensity, of a stimulus. The stability of the representation of an odor relative to other odors across concentration has not been extensively evaluated. We tested the ability of honey bees to discriminate pure odorants across a range of concentrations at and above their detection threshold. Our study showed that pure odorant compounds became progressively easier for honey bees to discriminate with increasing concentration. Discrimination is, therefore, a function of odorant concentration. We hypothesize that the recruitment of sensory cell populations across a range of concentrations may be important for odor coding, perhaps by changing its perceptual qualities or by increasing its salience against background stimuli, and that this mechanism is a general property of olfactory systems.
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination.
Lin, Andrew C; Bygrave, Alexei M; de Calignon, Alix; Lee, Tzumin; Miesenböck, Gero
2014-04-01
Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell-APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories.
Functional Neuronal Processing of Human Body Odors
Lundström, Johan N.; Olsson, Mats J.
2013-01-01
Body odors carry informational cues of great importance for individuals across a wide range of species, and signals hidden within the body odor cocktail are known to regulate several key behaviors in animals. For a long time, the notion that humans may be among these species has been dismissed. We now know, however, that each human has a unique odor signature that carries information related to his or her genetic makeup, as well as information about personal environmental variables, such as diet and hygiene. Although a substantial number of studies have investigated the behavioral effects of body odors, only a handful have studied central processing. Recent studies have, however, demonstrated that the human brain responds to fear signals hidden within the body odor cocktail, is able to extract kin specific signals, and processes body odors differently than other perceptually similar odors. In this chapter, we provide an overview of the current knowledge of how the human brain processes body odors and the potential importance these signals have for us in everyday life. PMID:20831940
Do trained dogs discriminate individual body odors of women better than those of men?
Jezierski, Tadeusz; Sobczyńska, Magdalena; Walczak, Marta; Gorecka-Bruzda, Aleksandra; Ensminger, John
2012-05-01
Scent identification lineups using dogs are a potentially valuable forensic tool, but have been dismissed by some critics because of cases where a false identification was shown to have occurred. It is not known, however, why dogs appear to make more false indications to the odors of some persons than of others. In this study, human genders were compared as to the degree their individual odors are distinguishable or "attractive" to dogs. Six dogs were trained to smell an individual's hand odor sample and then find the matching hand odor sample in a lineup of five odors. Using one-gender lineups and two-gender lineups with different gender ratios, it was found that dogs trained for the study identified individual women's hand odors more accurately than those of men. It is hypothesized that this is either because of differences in chemical compounds making discrimination of women's odors easier, or because of greater "odor attractiveness" of women's scents to dogs. © 2012 American Academy of Forensic Sciences.
Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph
2014-03-01
In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.
NASA Astrophysics Data System (ADS)
Juhlke, Florian; Lorber, Katja; Wagenstaller, Maria; Buettner, Andrea
2017-12-01
Chlorinated guaiacol derivatives are found in waste water of pulp mills using chlorine in the bleaching process of wood pulp. They can also be detected in fish tissue, possibly causing off-odors. To date, there is no systematic investigation on the odor properties of halogenated guaiacol derivatives. To close this gap, odor thresholds in air and odor qualities of 14 compounds were determined by gas chromatography-olfactometry. Overall, the investigated compounds elicited smells that are characteristic for guaiacol, namely smoky, sweet, vanilla-like, but also medicinal and plaster-like. Their odor thresholds in air were, however, very low, ranging from 0.00072 to 23 ng/Lair. The lowest thresholds were found for 5-chloro- and 5-bromoguaiacol, followed by 4,5-dichloro- and 6-chloroguaiacol. Moreover, some inter-individual differences in odor threshold values could be observed, with the highest variations having been recorded for the individual values of 5-iodo- and 4-bromoguaiacol.
Odor-identity dependent motor programs underlie behavioral responses to odors
Jung, Seung-Hye; Hueston, Catherine; Bhandawat, Vikas
2015-01-01
All animals use olfactory information to perform tasks essential to their survival. Odors typically activate multiple olfactory receptor neuron (ORN) classes and are therefore represented by the patterns of active ORNs. How the patterns of active ORN classes are decoded to drive behavior is under intense investigation. In this study, using Drosophila as a model system, we investigate the logic by which odors modulate locomotion. We designed a novel behavioral arena in which we could examine a fly’s locomotion under precisely controlled stimulus condition. In this arena, in response to similarly attractive odors, flies modulate their locomotion differently implying that odors have a more diverse effect on locomotion than was anticipated. Three features underlie odor-guided locomotion: First, in response to odors, flies modulate a surprisingly large number of motor parameters. Second, similarly attractive odors elicit changes in different motor programs. Third, different ORN classes modulate different subset of motor parameters. DOI: http://dx.doi.org/10.7554/eLife.11092.001 PMID:26439011
Brand, J M; Galask, R P
1986-11-01
The vaginal discharge of women with bacterial vaginosis often has a prominent fishy odor. Intensification of this fishy odor by the addition of strong base to the vaginal discharge suggests that it could be due to trimethylamine, the substance responsible for the characteristic odor of spoiling fish. Samples were collected from 11 women with a vaginal discharge having a fishy odor and from 10 women with no detectable odor. Gas chromatographic analysis of headspace samples of alkalinized vaginal discharges indicated the presence of trimethylamine in all 11 samples with the fishy odor but not in the other samples. The chemical identity of trimethylamine was confirmed by gas chromatography-mass spectrometry of headspace samples from two vaginal discharge samples. It is concluded that trimethylamine is the primary cause of the fishy odor associated with bacterial vaginosis.
Central insulin administration improves odor-cued reactivation of spatial memory in young men.
Brünner, Yvonne F; Kofoet, Anja; Benedict, Christian; Freiherr, Jessica
2015-01-01
Insulin receptors are ubiquitously found in the human brain, comprising the olfactory bulb, essential for odor processing, and the hippocampus, important for spatial memory processing. The present study aimed at examining if intranasal insulin, which is known to transiently increase brain insulin levels in humans, would improve odor-cued reactivation of spatial memory in young men. We applied a double-blind, placebo-controlled, counterbalanced within-subject design. The study was conducted at the research unit of a university hospital. Interventions/Participants/Main Outcome Measures: Following intranasal administration of either insulin (40 I.U.) or placebo, male subjects (n = 18) were exposed to eight odors. During each odor exposure, a green-colored field was presented on a 17-in. computer screen. During immediate recall (comprising 3 runs), the participants were re-exposed to each odor cue, and were asked to select the corresponding field (with visual feedback after each response). The delayed recall was scheduled ∼10 min later (without feedback). To test if insulin's putative effect on odor-place memory would be domain-specific, participants also performed a separate place and odor recognition task. Intranasal insulin improved the delayed but not immediate odor-cued recall of spatial memory. This effect was independent of odor type and in the absence of systemic side effects (eg, fasting plasma glucose levels remained unaltered). Place and odor recognition were unaffected by the insulin treatment. These findings suggest that acute intranasal insulin improves odor-cued reactivation of spatial memory in young men.
Do Valenced Odors and Trait Body Odor Disgust Affect Evaluation of Emotion in Dynamic Faces?
Syrjänen, Elmeri; Liuzza, Marco Tullio; Fischer, Håkan; Olofsson, Jonas K
2017-12-01
Disgust is a core emotion evolved to detect and avoid the ingestion of poisonous food as well as the contact with pathogens and other harmful agents. Previous research has shown that multisensory presentation of olfactory and visual information may strengthen the processing of disgust-relevant information. However, it is not known whether these findings extend to dynamic facial stimuli that changes from neutral to emotionally expressive, or if individual differences in trait body odor disgust may influence the processing of disgust-related information. In this preregistered study, we tested whether a classification of dynamic facial expressions as happy or disgusted, and an emotional evaluation of these facial expressions, would be affected by individual differences in body odor disgust sensitivity, and by exposure to a sweat-like, negatively valenced odor (valeric acid), as compared with a soap-like, positively valenced odor (lilac essence) or a no-odor control. Using Bayesian hypothesis testing, we found evidence that odors do not affect recognition of emotion in dynamic faces even when body odor disgust sensitivity was used as moderator. However, an exploratory analysis suggested that an unpleasant odor context may cause faster RTs for faces, independent of their emotional expression. Our results further our understanding of the scope and limits of odor effects on facial perception affect and suggest further studies should focus on reproducibility, specifying experimental circumstances where odor effects on facial expressions may be present versus absent.
Immunization alters body odor.
Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K
2014-04-10
Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.
Semantic networks for odors and colors in Alzheimer's disease.
Razani, Jill; Chan, Agnes; Nordin, Steven; Murphy, Claire
2010-05-01
Impairment in odor-naming ability and in verbal and visual semantic networks raised the hypothesis of a breakdown in the semantic network for odors in Alzheimer's disease (AD). The current study addressed this hypothesis. Twenty-four individuals, half patients with probable AD and half control participants, performed triadic-similarity judgments for odors and colors, separately, which, utilizing the multidimensional scaling (MDS) technique of individual difference scaling analysis (INDSCAL), generated two-dimensional configurations of similarity. The abilities to match odors and colors with written name labels were assessed to investigate disease-related differences in ability to identify and conceptualize the stimuli. In addition, responses on attribute-sorting tasks, requiring the odor and color perceptions to be categorized as one polarity of a certain dimension, were obtained to allow for objective interpretation of the MDS spatial maps. Whereas comparison subjects generated spatial maps based predominantly on relatively abstract characteristics, patients with AD classified odors on perceptual characteristics. The maps for patients with AD also showed disorganized groupings and loose associations between odors. Their normal configurations for colors imply that the patients were able to comprehend the task per se. The data for label matching and for attribute sorting provide further evidence for a disturbance in semantic odor memory in AD. The patients performed poorer than controls on both these odor tasks, implying that the ability to identify and/or conceptualize odors is impaired in AD. The results provide clear evidence for deterioration of the structure of semantic knowledge for odors in AD.
Ito, Yuriko; Kubota, Kikue
2005-01-01
The mechanism for the contribution of subthreshold aroma constituents to the overall jasmine tea odor impression was studied on the basis of a sensory evaluation. Binary model aqueous solutions containing the authentic odorants of a jasmine tea infusion, (E)-2-hexenyl hexanoate (I), (Z)-3-hexenol (II), and indole (III), were each prepared in a concentration below the odor threshold. Each solution had no aroma, but when 4-hexanolide replaced only 5% of each odorant, the odor intensity of each model solution was significantly strengthened. An astringent note and heavy note were recognized for each solution as the commonly perceived characteristics from the sensory evaluation. The concentration of 4-hexanolide added was also at the subthreshold level. The results suggest mutual interaction between odorants I, II, or III and 4-hexanolide. The effect on the overall odor sensation of a jasmine tea infusion by adding 4-hexanolide at a concentration below its odor threshold was also studied. In this case, the intensity of both the sweet and astringent notes was significantly strengthened in comparison with the odor impression of the original jasmine tea infusion. This phenomenon is considered to have been a synergistic effect between subthreshold odor compounds in the jasmine tea infusion. The results of this study clarify for the first time that the subthreshold aroma constituents play an important role in the characteristic flavor of a jasmine tea infusion.
Retronasal odor representations in the dorsal olfactory bulb of rats
Gautam, Shree Hari; Verhagen, Justus V.
2012-01-01
Animals perceive their olfactory environment not only from odors originating in the external world (orthonasal route) but also from odors released in the oral cavity while eating food (retronasal route). Retronasal olfaction is crucial for the perception of food flavor in humans. However, little is known about the retronasal stimulus coding in the brain. The most basic question is if and how route affects the odor representations at the level of the olfactory bulb (OB), where odor quality codes originate. We used optical calcium imaging of presynaptic dorsal OB responses to odorants in anesthetized rats to ask whether the rat OB could be activated retronasally, and how these responses compare to orthonasal responses under similar conditions. We further investigated the effects of specific odorant properties on orthoversus retronasal response patterns. We found that at a physiologically relevant flow rate retronasal odorants can effectively reach the olfactory receptor neurons, eliciting glomerular response patterns that grossly overlap with those of orthonasal responses, but differ from the orthonasal patterns in the response amplitude and temporal dynamics. Interestingly, such differences correlated well with specific odorant properties. Less volatile odorants yielded relatively smaller responses retronasally, but volatility did not affect relative temporal profiles. More polar odorants responded with relatively longer onset latency and time to peak retronasally, but polarity did not affect relative response magnitudes. These data provide insight into the early stages of retronasal stimulus coding and establish relationships between ortho- and retronasal odor representations in the rat OB. PMID:22674270
Complex Odor from Plants under Attack: Herbivore's Enemies React to the Whole, Not Its Parts
van Wijk, Michiel; de Bruijn, Paulien J. A.; Sabelis, Maurice W.
2011-01-01
Background Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported. PMID:21765908
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... body of your comment. If you send an email comment directly to EPA without going through http://www... comment, EPA recommends that you include your name and other contact information in the body of your... local resident notified SCDHEC that water from his well had a creosote odor and a foul taste. Other...
William P Shepherd; Brian T Sullivan
2017-01-01
Local outbreak risk for the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae),is forecast with a trapping survey conducted every spring throughout the southeastern United States. Traps baitedwith pine odors and components of the D. frontalis aggregation pheromone are used to obtain abundance estimates
Epac Activation Initiates Associative Odor Preference Memories in the Rat Pup
ERIC Educational Resources Information Center
Grimes, Matthew T.; Powell, Maria; Gutierrez, Sandra Mohammed; Darby-King, Andrea; Harley, Carolyn W.; McLean, John H.
2015-01-01
Here we examine the role of the exchange protein directly activated by cAMP (Epac) in ß-adrenergic-dependent associative odor preference learning in rat pups. Bulbar Epac agonist (8-pCPT-2-O-Me-cAMP, or 8-pCPT) infusions, paired with odor, initiated preference learning, which was selective for the paired odor. Interestingly, pairing odor with Epac…
[Specific odor component produced by Mycobacterium lepraemurium on Ogawa yolk medium].
Mori, T; Aishima, T
1992-11-01
When Mycobacterium lepraemurium is grown on the 1% Ogawa yolk medium, it produces a specific odor. This odor was not observed in other easily cultivable acid-fast bacilli. Therefore, identification of the components responsible for the specific odor produced by M. lepraemurium was attempted. The odor components were extracted for overnight with sterilized and distilled water from the Ogawa yolk medium on which M. lepraemurium had been cultivated for two months. The odor components in the extract was adsorbed on refined charcoal. After washing with distilled water for three times, the charcoal was dried. Then the odor components were eluted from the charcoal with ethanol and the eluate was condensed under nitrogen gas flow at 40 degrees C. The condensate was analyzed by Gas-Chromatography-Mass-Spectrum (GC-MS). Phenylethanol and phenylacetic acid were identified as major odor components. A mixture of authentic phenylacetic acid, its methyl and ethyl esters, smelled similar to the odor of cultivated medium of M. lepraemurium. Thus, phenylacetic acid was identified as the key odor component produced by M. lepraemurium. When initial isolation culture of M. lepraemurium from murine leproma was cultivated on the Ogawa yolk medium by adding phenylacetic acid, growth inhibition was brought by the compound.
Zarzo, Manuel
2015-06-01
Many authors have proposed different schemes of odor classification, which are useful to aid the complex task of describing smells. However, reaching a consensus on a particular classification seems difficult because our psychophysical space of odor description is a continuum and is not clustered into well-defined categories. An alternative approach is to describe the perceptual space of odors as a low-dimensional coordinate system. This idea was first proposed by Crocker and Henderson in 1927, who suggested using numeric profiles based on 4 dimensions: "fragrant," "acid," "burnt," and "caprylic." In the present work, the odor profiles of 144 aroma chemicals were compared by means of statistical regression with comparable numeric odor profiles obtained from 2 databases, enabling a plausible interpretation of the 4 dimensions. Based on the results and taking into account comparable 2D sensory maps of odor descriptors from the literature, a 3D sensory map (odor cube) has been drawn up to improve understanding of the similarities and dissimilarities of the odor descriptors most frequently used in fragrance chemistry. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Neshat, Hanieh; Jebreili, Mahnaz; Seyyedrasouli, Aleheh; Ghojazade, Morteza; Hosseini, Mohammad Bagher; Hamishehkar, Hamed
2016-06-01
Different studies have shown that the use of olfactory stimuli during painful medical procedures reduces infants' response to pain. The main purpose of the current study was to investigate the effect of breast milk odor and vanilla odor on premature infants' vital signs including heart rate and blood oxygen saturation during and after venipuncture. A total of 135 preterm infants were randomly selected and divided into three groups of control, vanilla odor, and breast milk odor. Infants in the breast milk group and the vanilla group were exposed to breast milk odor and vanilla odor from 5 minutes prior to sampling until 30 seconds after sampling. The results showed that breast milk odor has a significant effect on the changes of neonatal heart rate and blood oxygen saturation during and after venipuncture and decreased the variability of premature infants' heart rate and blood oxygen saturation. Vanilla odor has no significant effect on premature infants' heart rate and blood oxygen saturation. Breast milk odor can decrease the variability of premature infants' heart rate and blood oxygen saturation during and after venipuncture. Copyright © 2015. Published by Elsevier B.V.
Watanabe, Keiko; Masaoka, Yuri; Kawamura, Mitsuru; Yoshida, Masaki; Koiwa, Nobuyoshi; Yoshikawa, Akira; Kubota, Satomi; Ida, Masahiro; Ono, Kenjiro; Izumizaki, Masahiko
2018-01-01
Autobiographical odor memory (AM-odor) accompanied by a sense of realism of a specific memory elicits strong emotions. AM-odor differs from memory triggered by other sensory modalities, possibly because olfaction involves a unique sensory process. Here, we examined the orbitofrontal cortex (OFC), using functional magnetic resonance imaging (fMRI) to determine which OFC subregions are related to AM-odor. Both AM-odor and a control odor successively increased subjective ratings of comfortableness and pleasantness. Importantly, AM-odor also increased arousal levels and the vividness of memories, and was associated with a deep and slow breathing pattern. fMRI analysis indicated robust activation in the left posterior OFC (L-POFC). Connectivity between the POFC and whole brain regions was estimated using psychophysiological interaction analysis (PPI). We detected several trends in connectivity between L-POFC and bilateral precuneus, bilateral rostral dorsal anterior cingulate cortex (rdACC), and left parahippocampus, which will be useful for targeting our hypotheses for future investigations. The slow breathing observed in AM-odor was correlated with rdACC activation. Odor associated with emotionally significant autobiographical memories was accompanied by slow and deep breathing, possibly involving rdACC processing.
Direct nuclear magnetic resonance observation of odorant binding to mouse odorant receptor MOR244-3.
Burger, Jessica L; Jeerage, Kavita M; Bruno, Thomas J
2016-06-01
Mammals are able to perceive and differentiate a great number of structurally diverse odorants through the odorant's interaction with odorant receptors (ORs), proteins found within the cell membrane of olfactory sensory neurons. The natural gas industry has used human olfactory sensitivity to sulfur compounds (thiols, sulfides, etc.) to increase the safety of fuel gas transport, storage, and use through the odorization of this product. In the United States, mixtures of sulfur compounds are used, but the major constituent of odorant packages is 2-methylpropane-2-thiol, also known as tert-butyl mercaptan. It has been fundamentally challenging to understand olfaction and odorization due to the low affinity of odorous ligands to the ORs and the difficulty in expressing a sufficient number of OR proteins. Here, we directly observed the binding of tert-butyl mercaptan and another odiferous compound, cis-cyclooctene, to mouse OR MOR244-3 on living cells by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. This effort lays the groundwork for resolving molecular mechanisms responsible for ligand binding and resulting signaling, which in turn will lead to a clearer understanding of odorant recognition and competition. Published by Elsevier Inc.
Molecular receptive range variation among mouse odorant receptors for aliphatic carboxylic acids
Repicky, Sarah E.; Luetje, Charles W.
2009-01-01
The ability of mammals to identify and distinguish among many thousands of different odorants suggests a combinatorial use of odorant receptors, with each receptor detecting multiple odorants and each odorant interacting with multiple receptors. Numerous receptors may be devoted to the sampling of particularly important regions of odor space. Here we explore the similarities and differences in the molecular receptive ranges of four mouse odorant receptors (MOR23-1, MOR31-4, MOR32-11 and MOR40-4), which have previously been identified as receptors for aliphatic carboxylic acids. Each receptor was expressed in Xenopus oocytes, along with Gαolf and the cystic fibrosis transmembrane regulator to allow electrophysiological assay of receptor responses. We find that even though these receptors are relatively unrelated, there is extensive overlap among their receptive ranges. That is, these receptors sample a similar region of odor space. However, the receptive range of each receptor is unique. Thus, these receptors contribute to the depth of coverage of this small region of odor space. Such a group of receptors with overlapping, but distinct receptive ranges, may participate in making fine distinctions among complex mixtures of closely related odorant compounds. PMID:19166503
NASA Astrophysics Data System (ADS)
Koehl, M. A. R.
2016-02-01
When animals swim in marine habitats, the water through which they move is usually flowing. Therefore, an important part of understanding the physics of how animals swim in nature is determining how they interact with the fluctuating turbulent water currents in their environment. The research systems we have been using to address this question are microscopic marine animals swimming in turbulent, wavy water flow over spatially-complex communities of organisms growing on surfaces. Field measurements of water motion were used to design realistic turbulent flow in a laboratory wave-flume over different substrata, particle-image velocimetry was used to measure fine-scale, rapidly-varying water velocity vector fields, and planar laser-induced fluorescence was used to measure concentrations of chemical cues from the substratum. We used individual-based models of small animals swimming in this unsteady flow to determine how their trajectories and contacts with substrata were affected by their locomotion through the water, rotation by local shear, response to odors, and transport by ambient flow. We found that the shears, accelerations, and odor concentrations encountered by small swimmers fluctuate rapidly, with peaks much higher than mean values lasting fractions of a second. We identified ways in which the behavior of small, weak swimmers can bias how they are transported by ambient flow (e.g. sinking during brief encounters with shear or odor enhances settlement onto substrata below, whereas constant swimming enhances contact with surfaces above or beside larvae). Although microscopic organisms swim slowly relative to ambient water flow, their locomotory behavior in response to the rapidly-fluctuating shears and odors they encounter can affect where they are transported by ambient water movement.
Olfactory systems and neural circuits that modulate predator odor fear
Takahashi, Lorey K.
2014-01-01
When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear. PMID:24653685
Olfactory systems and neural circuits that modulate predator odor fear.
Takahashi, Lorey K
2014-01-01
When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear.
Martinez, Luis A; Petrulis, Aras
2011-11-01
Successful reproduction in vertebrates depends critically upon a suite of precopulatory behaviors that occur prior to mating. In Syrian hamsters (Mesocricetus auratus), these behaviors include vaginal scent marking and preferential investigation of male odors. The neural regulation of vaginal marking and opposite-sex odor preference likely involves an interconnected set of steroid-sensitive nuclei that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). For example, lesions of MA eliminate opposite-sex odor preference and reduce overall levels of vaginal marking, whereas lesions of MPOA decrease vaginal marking in response to male odors. Although BNST is densely interconnected with both MA and MPOA, little is known about the role of BNST in female precopulatory behaviors. To address this question, females received either bilateral, excitotoxic lesions of BNST (BNST-X) or sham lesions (SHAM), and were tested for scent marking and for investigatory responses to male and female odors. Whereas SHAM females vaginal marked more to male odors than female odors on two days of the estrous cycle, BNST-X females marked at equivalent levels to both odors. This deficit is not due to alterations in social odor investigation, as both BNST-X and SHAM females investigated male odors more than female odors. Finally, BNST lesions did not generally disrupt the cyclic changes in reproductive behaviors that occur across the estrous cycle. Taken together, these results demonstrate that BNST is critical for the normal expression of solicitational behaviors by females in response to male odor stimuli. Copyright © 2011 Elsevier Inc. All rights reserved.
Martinez, Luis A.; Petrulis, Aras
2011-01-01
Successful reproduction in vertebrates depends critically upon a suite of precopulatory behaviors that occur prior to mating. In Syrian hamsters (Mesocricetus auratus), these behaviors include vaginal scent marking and preferential investigation of male odors. The neural regulation of vaginal marking and opposite-sex odor preference likely involves an interconnected set of steroid-sensitive nuclei that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). For example, lesions of MA eliminate opposite-sex odor preference and reduce overall levels of vaginal marking, whereas lesions of MPOA decrease vaginal marking in response to male odors. Although BNST is densely interconnected with both MA and MPOA, little is known about the role of BNST in female precopulatory behaviors. To address this question, females received either bilateral, excitotoxic lesions of BNST (BNST-X) or sham lesions (SHAM), and were tested for scent marking and for investigatory responses to male and female odors. Whereas SHAM females vaginal marked more to male odors than female odors on two days of the estrous cycle, BNST-X females marked at equivalent levels to both odors. This deficit is not due to alterations in social odor investigation, as both BNST-X and SHAM females investigated male odors more than female odors. Finally, BNST lesions did not generally disrupt the cyclic changes in reproductive behaviors that occur across the estrous cycle. Taken together, these results demonstrate that BNST is critical for the normal expression of solicitational behaviors by females in response to male odor stimuli. PMID:21925504
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qamaruz-Zaman, N., E-mail: cenastaein@usm.my; Kun, Y.; Rosli, R.-N.
Highlights: • Approximately 50 g baking soda reduced odour concentration by 70%. • Reducing volatile acid concentration reduces odour concentration. • Ammonia has less effect on odour concentration. - Abstract: Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100 g per kg food waste) to control odour frommore » seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8 l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100 g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue.« less
Wintermann, Gloria-Beatrice; Donix, Markus; Joraschky, Peter; Gerber, Johannes; Petrowski, Katja
2013-01-01
Patients with Panic Disorder (PD) direct their attention towards potential threat, followed by panic attacks, and increased sweat production. Onés own anxiety sweat odor influences the attentional focus, and discrimination of threat or non-threat. Since olfactory projection areas overlap with neuronal areas of a panic-specific fear network, the present study investigated the neuronal processing of odors in general and of stress-related sweat odors in particular in patients with PD. A sample of 13 patients with PD with/ without agoraphobia and 13 age- and gender-matched healthy controls underwent an fMRI investigation during olfactory stimulation with their stress-related sweat odors (TSST, ergometry) as well as artificial odors (peach, artificial sweat) as non-fearful non-body odors. The two groups did not differ with respect to their olfactory identification ability. Independent of the kind of odor, the patients with PD showed activations in fronto-cortical areas in contrast to the healthy controls who showed activations in olfaction-related areas such as the amygdalae and the hippocampus. For artificial odors, the patients with PD showed a decreased neuronal activation of the thalamus, the posterior cingulate cortex and the anterior cingulate cortex. Under the presentation of sweat odor caused by ergometric exercise, the patients with PD showed an increased activation in the superior temporal gyrus, the supramarginal gyrus, and the cingulate cortex which was positively correlated with the severity of the psychopathology. For the sweat odor from the anxiety condition, the patients with PD showed an increased activation in the gyrus frontalis inferior, which was positively correlated with the severity of the psychopathology. The results suggest altered neuronal processing of olfactory stimuli in PD. Both artificial odors and stress-related body odors activate specific parts of a fear-network which is associated with an increased severity of the psychopathology.
Flight motor networks modulate primary olfactory processing in the moth Manduca sexta.
Chapman, Phillip D; Burkland, Rex; Bradley, Samual P; Houot, Benjamin; Bullman, Victoria; Dacks, Andrew M; Daly, Kevin C
2018-05-22
Nervous systems must distinguish sensory signals derived from an animal's own movements (reafference) from environmentally derived sources (exafference). To accomplish this, motor networks producing reafference transmit motor information, via a corollary discharge circuit (CDC), to affected sensory networks, modulating sensory function during behavior. While CDCs have been described in most sensory modalities, none have been observed projecting to an olfactory pathway. In moths, two mesothoracic to deutocerebral histaminergic neurons (MDHns) project from flight sensorimotor centers in the mesothoracic neuromere to the antennal lobe (AL), where they provide the sole source of histamine (HA), but whether they represent a CDC is unknown. We demonstrate that MDHn spiking activity is positively correlated with wing-motor output and increased before bouts of motor activity, suggesting that MDHns communicate global locomotor state, rather than providing a precisely timed motor copy. Within the AL, HA application sharpened entrainment of projection neuron responses to odor stimuli embedded within simulated wing-beat-induced flows, whereas MDHn axotomy or AL HA receptor (HA-r) blockade reduced entrainment. This finding is consistent with higher-order CDCs, as the MDHns enhanced rather than filtered entrainment of AL projection neurons. Finally, HA-r blockade increased odor detection and discrimination thresholds in behavior assays. These results establish MDHns as a CDC that modulates AL temporal resolution, enhancing odor-guided behavior. MDHns thus appear to represent a higher-order CDC to an insect olfactory pathway; this CDC's unique nature highlights the importance of motor-to-sensory signaling as a context-specific mechanism that fine-tunes sensory function. Copyright © 2018 the Author(s). Published by PNAS.
Semiquantitative determination of short-chain fatty acids in cane and beet sugars.
Batista, Rebecca B; Grimm, Casey C; Godshall, Mary An
2002-03-01
Some sugars, specifically white beet sugar and raw cane sugars, possess off-flavors and off-odors. Although not necessarily the source, the presence of short-chain fatty acids serves as an indicator of an off-odor problem in sugar. Solid-phase microextraction (SPME) is used to collect the volatile compounds from the headspace of sugar. The temperature, moisture, and type of SPME fiber are varied to optimize recovery. Sugars analyzed in the absence of water using an incubation temperature of 70 degrees C with a divinylbenzene-carboxen-polydimethylsiloxane fiber yield the most reproducible results. Data from depletion analyses report a recovery level of 38% for the first injection. The semiquantitative analysis of butyric acid is accomplished using injected standards to develop a calibration curve.
Effects of historically familiar and novel predator odors on the physiology of an introduced prey
Mella, Valentina S. A.; Cooper, Christine E.; Davies, Stephen J. J. F.
2016-01-01
Abstract Predator odors can elicit fear responses in prey and predator odor recognition is generally associated with physiological responses. Prey species are often more likely to respond to the odor of familiar rather than alien predators. However, predator naïvety in an introduced prey species has rarely been investigated. We examined the physiological response, as shown by changes in ventilatory variables, of an introduced terrestrial herbivore, the European rabbit Oryctolagus cuniculus, in Australia, to the odor of potential predators and to control odors (distilled water and horse), to explore if responses were limited to historical (cat and fox) predators, or extended to historically novel predators (snake and quoll). All odors except distilled water elicited a response, with rabbits showing long-term higher respiratory frequencies and lower tidal volumes after introduction of the odors, indicating an increase in alertness. However, the intensity of the rabbits’ reaction could not be directly linked to any pattern of response with respect to the history of predator–prey relationships. Rabbits exhibited significantly stronger reactions in response to both cat and quoll odors than they did to distilled water, but responses to horse, fox, and snake odor were similar to that of water. Our results show that the introduced rabbit can respond to both historical and novel predators in Australia, and suggest that shared evolutionary history is not necessarily a prerequisite to predator odor recognition. PMID:29491891
Effects of historically familiar and novel predator odors on the physiology of an introduced prey.
Mella, Valentina S A; Cooper, Christine E; Davies, Stephen J J F
2016-02-01
Predator odors can elicit fear responses in prey and predator odor recognition is generally associated with physiological responses. Prey species are often more likely to respond to the odor of familiar rather than alien predators. However, predator naïvety in an introduced prey species has rarely been investigated. We examined the physiological response, as shown by changes in ventilatory variables, of an introduced terrestrial herbivore, the European rabbit Oryctolagus cuniculus , in Australia, to the odor of potential predators and to control odors (distilled water and horse), to explore if responses were limited to historical (cat and fox) predators, or extended to historically novel predators (snake and quoll). All odors except distilled water elicited a response, with rabbits showing long-term higher respiratory frequencies and lower tidal volumes after introduction of the odors, indicating an increase in alertness. However, the intensity of the rabbits' reaction could not be directly linked to any pattern of response with respect to the history of predator-prey relationships. Rabbits exhibited significantly stronger reactions in response to both cat and quoll odors than they did to distilled water, but responses to horse, fox, and snake odor were similar to that of water. Our results show that the introduced rabbit can respond to both historical and novel predators in Australia, and suggest that shared evolutionary history is not necessarily a prerequisite to predator odor recognition.
Recognition of Bread Key Odorants by Using Polymer Coated QCMs
NASA Astrophysics Data System (ADS)
Nakai, Takashi; Kouno, Shinji; Hiruma, Naoya; Shuzo, Masaki; Delaunay, Jean-Jacques; Yamada, Ichiro
Polyisobutylene (PIB) polymer and methylphenylsiloxane (25%) diphenylsiloxane (75%) copolymer (OV25) were coated on Quartz Crystal Microbalance (QCM) sensors and used in recognition of bread key odorants. Representative compounds of key roasty odorants of bread were taken as 3-acetylpyridine and benzaldehyde, and representative key fatty odorants were hexanal and (E)-2-nonenal. Both OV25- and PIB-coated QCM fabricated sensors could detect concentration as low as 0.9 ppm of 3-acetylpyridine and 1.2 ppm of (E)-2-nonenal. The sensitivity to 3-acetylpyridine of the OV25-coated QCM was about 1000 times higher than that of ethanol, the major interference compound in bread key odorant analysis. Further, the OV25-coated QCM response was 5-6 times and 2-3 times larger than that of the PIB-coated QCM when exposed to roasty odorants and to fatty odorants, respectively. The difference in sensitivity of the OV25- and PIB-coated QCMs we fabricated made possible to discriminate roasty from fatty odorants as was evidenced by the odor recognition map representing the frequency shifts of the OV25-coated QCM against the frequency shift of the PIB-coated QCM. In conclusion, we found that the combination of an OV25-coated QCM and a PIB-coated QCM was successful in discriminating roasty odorants from fatty odorants at the ppm level.
An olfactory cocktail party: figure-ground segregation of odorants in rodents.
Rokni, Dan; Hemmelder, Vivian; Kapoor, Vikrant; Murthy, Venkatesh N
2014-09-01
In odorant-rich environments, animals must be able to detect specific odorants of interest against variable backgrounds. However, studies have found that both humans and rodents are poor at analyzing the components of odorant mixtures, suggesting that olfaction is a synthetic sense in which mixtures are perceived holistically. We found that mice could be easily trained to detect target odorants embedded in unpredictable and variable mixtures. To relate the behavioral performance to neural representation, we imaged the responses of olfactory bulb glomeruli to individual odors in mice expressing the Ca(2+) indicator GCaMP3 in olfactory receptor neurons. The difficulty of segregating the target from the background depended strongly on the extent of overlap between the glomerular responses to target and background odors. Our study indicates that the olfactory system has powerful analytic abilities that are constrained by the limits of combinatorial neural representation of odorants at the level of the olfactory receptors.
Design and analysis of a pilot scale biofiltration system for odorous air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, J.J.; Young, J.S.; Bottcher, R.W.
2000-02-01
Three pilot-scale biofilters and necessary peripheral equipment were built to clean odorous air from the pit of a swine gestation building at North Carolina State University. A computer measured temperatures, flow rates, and pressure drops. It also controlled and measured the moisture content of a biofilter medium comprised of a 3:1 mixture of yard waste compost to wood chips mixture (by volume). The system was evaluated to ensure that the biofilters would be useful for performing scientific experiments concerning the reduction of swine odor on future research projects. The capability of the biofilters to remove odor was measured using amore » cotton swatch absorption method and an odor panel. The average odor reductions measured by odor intensity, irritation intensity, and unpleasantness for five tests were 61%, 58%, and 84%, respectively. No significant differences in odor reduction performance were found between the biofilters.« less
The effects of passive smoking on olfaction in children.
Nageris, B; Hadar, T; Hansen, M C
2002-01-01
The effect of passive smoking on odor identification was studied in 10 children exposed to passive smoke at home. All had at least one parent who smoked at least one pack of cigarettes a day. The control group consisted of 10 children of nonsmoking parents. Ten odorants were tested: vinegar, ammonia, peppermint, roses, bleach, vanilla, cough drops, turpentine, licorice and mothballs. Each child was presented with five test trays containing all 10 odorants in random order. Of the total of 500 odors presented, the control group correctly identified 396 (79%) and the study group, 356 (71%) (p < 0.005). This work demonstrates that children exposed to passive smoke have difficulty identifying odors in comparison to children raised in relatively smoke-free environments. Since the study group tend to misidentify four of the 10 odorants tested--vanilla, roses, mothballs and cough drops--we suggest that these four odorants should suffice in testing odor identification in children.
Odors as cues for orientation to mothers by weanling Virginia opossums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, D.J.
1992-12-01
Three experiments were conducted to investigate whether whole-body and pouch odors facilitate social cohesion between young Virginia opossums and their mothers just prior to weaning. In experiment 1, young oriented toward plastic buckets containing their mothers, directing significantly higher levels of investigative behavior and more distress vocalizations toward them than toward buckets containing unrelated lactating females. In experiment 2, young oriented toward and investigated empty buckets containing whole-body odors of their mothers more than empty buckets containing odors of other females. Similarly, more investigative behavior was directed toward plastic bucket lids containing pouch odors from subjects mothers than toward pouchmore » odors from unrelated females in experiment 3. These results suggest that social odors help young didelphid marsupials maintain contact with their mothers, as in other mammals, and that whole-body and pouch gland odors are important chemical signals in this nongregarious species.« less
Heading which way? Y-maze chemical assays: not all crustaceans are alike
NASA Astrophysics Data System (ADS)
Kenning, Matthes; Lehmann, Philipp; Lindström, Magnus; Harzsch, Steffen
2015-09-01
In a world full of chemicals, many crustaceans rely on elaborate olfactory systems to guide behaviors related to finding food or to assess the presence of conspecifics and predators. We analyzed the responses of the isopod Saduria entomon to a range of stimuli by which the animal is likely to encounter in its natural habitat using a Y-maze bioassay. In order to document the efficiency of the experimental design, the same bioassay was used to test the behavior of the crayfish Procambarus fallax whose ability to track odors is well documented. The crayfish performed well in the Y-maze and were able to locate the source of a food-related odor with high fidelity. The isopod S. entomon reacted indifferently or with aversion to most of the stimuli applied. In 1800 trials, only four out of 15 different stimuli yielded statistically significant results, and only one odorant was found to be significantly attractive. The findings raise several questions whether the stimuli presented and/or the experimental setup used represents an ecologically relevant situation for S. entomon. In each instance, our experiments illustrate that established methods cannot be readily transferred from one species to another.
Blauvelt, David G.; Sato, Tomokazu F.; Wienisch, Martin; Murthy, Venkatesh N.
2013-01-01
The acquisition of olfactory information and its early processing in mammals are modulated by brain states through sniffing behavior and neural feedback. We imaged the spatiotemporal pattern of odor-evoked activity in a population of output neurons (mitral/tufted cells, MTCs) in the olfactory bulb (OB) of head-restrained mice expressing a genetically-encoded calcium indicator. The temporal dynamics of MTC population activity were relatively simple in anesthetized animals, but were highly variable in awake animals. However, the apparently irregular activity in awake animals could be predicted well using sniff timing measured externally, or inferred through fluctuations in the global responses of MTC population even without explicit knowledge of sniff times. The overall spatial pattern of activity was conserved across states, but odor responses had a diffuse spatial component in anesthetized mice that was less prominent during wakefulness. Multi-photon microscopy indicated that MTC lateral dendrites were the likely source of spatially disperse responses in the anesthetized animal. Our data demonstrate that the temporal and spatial dynamics of MTCs can be significantly modulated by behavioral state, and that the ensemble activity of MTCs can provide information about sniff timing to downstream circuits to help decode odor responses. PMID:23543674
ERIC Educational Resources Information Center
Calhoun-Haney, R.; Murphy, C.
2005-01-01
Individuals with the apolipoprotein E e4 genetic risk factor for Alzheimer's disease (AD) show deficits in olfactory function. The purpose of the present study was to examine longitudinally odor identification (odor ID), odor threshold, picture identification, and global cognitive status in allele positive (e4+) and negative (e4-) persons.…
Spatial and Temporal Changes in the Microbial Community in an Anaerobic Swine Waste Treatment Lagoon
USDA-ARS?s Scientific Manuscript database
Swine slurry is stored in pits beneath confinement buildings or in adjacent lagoons. This slurry is a valuable resource for crop fertilization and soil conditioning, but may also be a source of unpleasant odors. Microorganisms are crucial to all of the important processes that occur in anaerobic sto...
USDA-ARS?s Scientific Manuscript database
Swine slurry is stored in pits beneath confinement buildings or in adjacent lagoons. This slurry is a valuable resource for crop fertilization and soil conditioning, but may also be a source of unpleasant odors. Microorganisms are crucial to all of the important processes that occur in anaerobic sto...
USDA-ARS?s Scientific Manuscript database
Food emulsions are particularly susceptible to lipid oxidation, which leads to the formation of off-flavors and odors, and ultimately, shorter product shelf lives. Here we examine antioxidants for use in emulsions from a variety of different sources, including natural product extracts as well as rat...
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) excreted in urine by dairy cows can be potentially transformed to ammonia (NH3) and emitted to the atmosphere. Dairy production contributes to NH3 emission, which can create human respiratory problems and odor issues, reduces manure quality, and is an indirect source of nitrous oxide (N...
Differential Odor Sensitivity in PTSD: Implications for Treatment and Future Research
Cortese, Bernadette M.; Leslie, Kimberly; Uhde, Thomas W.
2015-01-01
Background Given that odors enhance the retrieval of autobiographical memories, induce physiological arousal, and trigger trauma-related flashbacks, it is reasonable to hypothesize that odors play a significant role in the pathophysiology of posttraumatic stress disorder (PTSD). For these reasons, this preliminary study sought to examine self-reported, odor-elicited distress in PTSD. Methods Combat veterans with (N=30) and without (N=22) PTSD and healthy controls (HC: N=21), completed an olfactory questionnaire that provided information on the hedonic valence of odors as well as their ability to elicit distress or relaxation. Results Two main findings were revealed: Compared to HC, CV+PTSD, but not CV-PTSD, reported a higher prevalence of distress to a limited number of select odors that included fuel (p=.004), blood (p=.02), gunpowder (p=.03), and burning hair (p=.02). In contrast to this increased sensitivity, a blunting effect was reported by both groups of veterans compared to HC that revealed lower rates of distress and relaxation in response to negative hedonic odors (p=.03) and positive hedonic odors (p<.001), respectively. Limitations The study is limited by its use of retrospective survey methods, whereas future investigations would benefit from laboratory measures taken prior, during, and after deployment. Conclusion The present findings suggest a complex role of olfaction in the biological functions of threat detection. Several theoretical models are discussed. One possible explanation for increased sensitivity to select odors with decreased sensitivity to other odors is the co-occurrence of attentional bias toward threat odors with selective ignoring of distractor odors. Working together, these processes may optimize survival. PMID:25845746
Levels-of-processing effects on a task of olfactory naming.
Royet, Jean-Pierre; Koenig, Olivier; Paugam-Moisy, Helene; Puzenat, Didier; Chasse, Jean-Luc
2004-02-01
The effects of odor processing were investigated at various analytical levels, from simple sensory analysis to deep or semantic analysis, on a subsequent task of odor naming. Students (106 women, 23.6 +/- 5.5 yr. old; 65 men, 25.1 +/- 7.1 yr. old) were tested. The experimental procedure included two successive sessions, a first session to characterize a set of 30 odors with criteria that used various depths of processing and a second session to name the odors as quickly as possible. Four processing conditions rated the odors using descriptors before naming the odor. The control condition did not rate the odors before naming. The processing conditions were based on lower-level olfactory judgments (superficial processing), higher-level olfactory-gustatory-somesthetic judgments (deep processing), and higher-level nonolfactory judgments (Deep-Control processing, with subjects rating odors with auditory and visual descriptors). One experimental condition successively grouped lower- and higher-level olfactory judgments (Superficial-Deep processing). A naming index which depended on response accuracy and the subjects' response time were calculated. Odor naming was modified for 18 out of 30 odorants as a function of the level of processing required. For 94.5% of significant variations, the scores for odor naming were higher following those tasks for which it was hypothesized that the necessary olfactory processing was carried out at a deeper level. Performance in the naming task was progressively improved as follows: no rating of odors, then superficial, deep-control, deep, and superficial-deep processings. These data show that the deepest olfactory encoding was later associated with progressively higher performance in naming.
Podduturi, Raju; Petersen, Mikael A; Mahmud, Sultan; Rahman, Md Mizanur; Jørgensen, Niels O G
2017-05-10
Geosmin and 2-methylisoborneol are the most recognized off-flavors in freshwater fish, but terpenes may also contribute off-flavor in fish. We identified six monoterpenes, 11 sesquiterpenes, and three terpene-related compounds in pangasius and tilapia from aquaculture farms in Bangladesh. The concentrations of most of the volatiles were below published odor thresholds, except for α-pinene, limonene, β-caryophyllene, α-humulene, and β-ionone in tilapia, and limonene and β-ionone in pangasius. To identify sources of the terpenes, terpene profiles of fish feed and phytoplankton in the ponds were analyzed. In feed and mustard cake (feed ingredient), five monoterpenes and two sesquiterpenes were identified, and five of these compounds were also detected in the fish. In phytoplankton, 11 monoterpenes were found and three also occurred in the fish. The higher number of terpenes common to both fish and feed, than to fish and phytoplankton, suggests that feed was a more abundant source of odor-active terpenes in the fish than phytoplankton.
Zamyadi, Arash; Sawade, Emma; Ho, Lionel; Newcombe, Gayle; Hofmann, Ron
2015-01-01
Cyanobacteria and their taste and odor (T&O) compounds are a growing concern in water sources globally. Geosmin and 2-methylisoborneol (MIB) are the most commonly detected T&O compounds associated with cyanobacterial presence in drinking water sources. The use of ultraviolet and hydrogen peroxide (H2O2) as an advanced oxidation treatment for T&O control is an emerging technology. However, residual H2O2 (>80% of the initial dose) has to be removed from water prior final disinfection. Recently, granular activated carbon (GAC) is used to remove H2O2 residual. The objective of this study is to assess the impact of H2O2 quenching and aging processes on GAC capacity for the removal of geosmin and MIB. Pilot columns with different types of GAC and presence/absence of H2O2 have been used for this study. H2O2 removal for the operational period of 6 months has no significant impact on GAC capacity to remove the geosmin and MIB from water. PMID:26462247
Zamyadi, Arash; Sawade, Emma; Ho, Lionel; Newcombe, Gayle; Hofmann, Ron
2015-01-01
Cyanobacteria and their taste and odor (T&O) compounds are a growing concern in water sources globally. Geosmin and 2-methylisoborneol (MIB) are the most commonly detected T&O compounds associated with cyanobacterial presence in drinking water sources. The use of ultraviolet and hydrogen peroxide (H2O2) as an advanced oxidation treatment for T&O control is an emerging technology. However, residual H2O2 (>80% of the initial dose) has to be removed from water prior final disinfection. Recently, granular activated carbon (GAC) is used to remove H2O2 residual. The objective of this study is to assess the impact of H2O2 quenching and aging processes on GAC capacity for the removal of geosmin and MIB. Pilot columns with different types of GAC and presence/absence of H2O2 have been used for this study. H2O2 removal for the operational period of 6 months has no significant impact on GAC capacity to remove the geosmin and MIB from water.
Glater, Elizabeth E.; Rockman, Matthew V.; Bargmann, Cornelia I.
2013-01-01
The nematode Caenorhabditis elegans can use olfaction to discriminate among different kinds of bacteria, its major food source. We asked how natural genetic variation contributes to choice behavior, focusing on differences in olfactory preference behavior between two wild-type C. elegans strains. The laboratory strain N2 strongly prefers the odor of Serratia marcescens, a soil bacterium that is pathogenic to C. elegans, to the odor of Escherichia coli, a commonly used laboratory food source. The divergent Hawaiian strain CB4856 has a weaker attraction to Serratia than the N2 strain, and this behavioral difference has a complex genetic basis. At least three quantitative trait loci (QTLs) from the CB4856 Hawaii strain (HW) with large effect sizes lead to reduced Serratia preference when introgressed into an N2 genetic background. These loci interact and have epistatic interactions with at least two antagonistic QTLs from HW that increase Serratia preference. The complex genetic architecture of this C. elegans trait is reminiscent of the architecture of mammalian metabolic and behavioral traits. PMID:24347628
Goubet, Nathalie; Durand, Karine; Schaal, Benoist; McCall, Daniel D
2018-02-01
We investigated the occurrence and underlying processes of odor-color associations in French and American 6- to 10-year-old children (n = 386) and adults (n = 137). Nine odorants were chosen according to their familiarity to either cultural group. Participants matched each odor with a color, gave hedonic and familiarity judgments, and identified each odor. By 6 years of age, children displayed culture-specific odor-color associations, but age differences were noted in the type of associations. Children and adults in both cultural groups shared common associations and formed associations that were unique to their environment, underscoring the importance of exposure learning in odor-color associations. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamauchi, Masahito; Matsumoto, Hirotaka; Yamada, Masayoshi; Yagi, Fumio; Murayama, Ryou; Yamaguchi, Yoshinori; Yamaguchi, Takashi
In this study, odor substances from mushroom culture media containing 'shochu' lees and starch wastes were identified and determined. It was apparent that in the media, acetoin, butyric acid and diacetyl were found as main odor substances, and mixed with some other ordor substances to produce unpleasant odor. The main substances disappeared with growth of mycelia. It was not likely that these ordor substances were degraded by extracellular enzymes but suggested that they were degraded by mycelia. Further it was found with the growth of mycelia that odor quality changed from rancid ordor (unpleasant ordor) to mushroom smell (pleasant odor) and the odor index was decreasing.
Barba, Carmen; Beno, Noelle; Guichard, Elisabeth; Thomas-Danguin, Thierry
2018-08-15
Gas chromatography/olfactometry-associated taste (GC/O-AT) analysis combined with mass spectrometry allowed identification of odorant compounds associated with taste attributes (sweet, salty, bitter and sour) in a multi-fruit juice. Nine compounds were selected for their odor-associated sweetness enhancement in a multi-fruit juice odor context using Olfactoscan and for their odor-induced sweet taste enhancement in sucrose solution and sugar-reduced fruit juice through sensory tests. Sweetness of the fruit juice odor was significantly enhanced by methyl 2-methylbutanoate, ethyl butanoate, ethyl 2-methylbutanoate and linalool; sweet perception was significantly enhanced in 7% sucrose solution by ethyl 2-methylbutanoate, furaneol and γ-decalactone, and in 32% sugar-reduced fruit juice by ethyl 2-methylbutanoate. GC/O-AT analysis is a novel, efficient approach to select odorants associated with a given taste. The further screening of taste-associated odorants by Olfactoscan helps to identify the most efficient odorants to enhance a target taste perception and may be used to find new ways to modulate taste perception in foods and beverages. Copyright © 2018 Elsevier Ltd. All rights reserved.
Identification of Odorant-Receptor Interactions by Global Mapping of the Human Odorome
Audouze, Karine; Tromelin, Anne; Le Bon, Anne Marie; Belloir, Christine; Petersen, Rasmus Koefoed; Kristiansen, Karsten; Brunak, Søren; Taboureau, Olivier
2014-01-01
The human olfactory system recognizes a broad spectrum of odorants using approximately 400 different olfactory receptors (hORs). Although significant improvements of heterologous expression systems used to study interactions between ORs and odorant molecules have been made, screening the olfactory repertoire of hORs remains a tremendous challenge. We therefore developed a chemical systems level approach based on protein-protein association network to investigate novel hOR-odorant relationships. Using this new approach, we proposed and validated new bioactivities for odorant molecules and OR2W1, OR51E1 and OR5P3. As it remains largely unknown how human perception of odorants influence or prevent diseases, we also developed an odorant-protein matrix to explore global relationships between chemicals, biological targets and disease susceptibilities. We successfully experimentally demonstrated interactions between odorants and the cannabinoid receptor 1 (CB1) and the peroxisome proliferator-activated receptor gamma (PPARγ). Overall, these results illustrate the potential of integrative systems chemical biology to explore the impact of odorant molecules on human health, i.e. human odorome. PMID:24695519
Functional neuronal processing of human body odors.
Lundström, Johan N; Olsson, Mats J
2010-01-01
Body odors carry informational cues of great importance for individuals across a wide range of species, and signals hidden within the body odor cocktail are known to regulate several key behaviors in animals. For a long time, the notion that humans may be among these species has been dismissed. We now know, however, that each human has a unique odor signature that carries information related to his or her genetic makeup, as well as information about personal environmental variables, such as diet and hygiene. Although a substantial number of studies have investigated the behavioral effects of body odors, only a handful have studied central processing. Recent studies have, however, demonstrated that the human brain responds to fear signals hidden within the body odor cocktail, is able to extract kin specific signals, and processes body odors differently than other perceptually similar odors. In this chapter, we provide an overview of the current knowledge of how the human brain processes body odors and the potential importance these signals have for us in everyday life. Copyright © 2010 Elsevier Inc. All rights reserved.
Odors as cues for the recall of words unrelated to odor.
Morgan, C L
1996-12-01
The effectiveness of an ambient odor as a retrieval cue for words unrelated to odor was investigated. After incidental learning of 40 adjectives, 40 participants were tested for recall during three unannounced recall phases (15 min., 48 hr., and 5 days). Participants in two control conditions learned with no odor present and either had no odor present during any recall phase or only during recall after 5 days. Participants in two conditions learned with an odor present and either had the odor present during recall only after 5 days or during recall both after 15 min. and after 5 days. Analyses indicated that, while participants in the control conditions recalled significantly less during each succeeding recall phase, recall by participants in the two experimental conditions did not decrease significantly. Recall by participants in the two experimental conditions was significantly higher during recall after 5 days (when the odor was reintroduced) than either control group. The addition of a salient cue during learning and retrieval facilitated recall more than the presence of constant environmental cues.
Odor from a chemical perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wray, T.K.
1995-06-01
Early odor-detection measurements categorized chemicals according to odor quality. Recent methods focus on the odor threshold, or the quantitative amount of a chemical in air that can be detected by the human sense of smell. Researchers characterize and quantify odor using an array of sensory and analytical procedures. Humans possess one of the dullest mammalian senses of smell; however, they can recognize about 10,000 distinct odors at concentrations ranging from less than 1 part per billion to several hundred thousand parts per million. Each time humans inhale, they chemically analyze microscopic pieces of the environment that make physical contact withmore » the nerves in their noses. Individual molecules travel up the nose to a sheet of moist, mucus-bathed tissue that consists of about 5 million smell-sensing, olfactory neurons. After dissolving in the mucus, odor molecules ``float`` into appropriately shaped receptor pockets. A series of cellular reactions then transmit impulses to the limbic system, hippocampus and, finally, the neocortex. Odor detection is an important defense mechanism. The author presents the odor thresholds for selected organic compounds, and other hazardous chemicals.« less
Muñoz-Abellán, C; Andero, R; Nadal, R; Armario, A
2008-09-01
Exposure of rodents to cats or certain cat odors results in long-term behavioral effects reminiscent of enhanced anxiety that have been considered to model post-traumatic stress disorder. However, other severe stressors such as tail-shock or immobilization in wooden boards (IMO) appear to induce shorter lasting changes in anxiety. In addition, there are controversial results regarding the effects of urine/feces odors. In the present work, we studied in two experiments the relationship between the degree of stress experienced by the animals during exposure to IMO, urine odors or fur odors (as assessed by hypothalamic-pituitary-adrenal activation and plasma glucose) and the short- and long-term behavioral consequences. In the first experiment, rats were individually exposed for 15 min to a novel environment (white large cages) containing either clean cat litter (controls) or litter soiled by cats (urine odors). Half of the rats in each condition were left to freely explore the environment whereas the others were subjected to immobilization (IMO) within the cages. Although ACTH, corticosterone and glucose responses to IMO were much stronger than those to the white cages with clean litter or urine odors (which did not differ from each other), no effect of treatments on anxiety-like behavior in the elevated plus-maze (EPM) were found one week later. However, previous IMO exposure did cause sensitization of the ACTH response to the EPM. In the second experiment, the response to white large cages containing either no odor (controls), litter soiled by cats (urine odor) or a cloth impregnated with cat odor (fur odor) was compared. Urine and fur odors elicited similar ACTH and corticosterone responses that were higher than those of controls, but plasma glucose levels were slightly higher in rats exposed to fur odor. When compared to controls, activity was only diminished in the novel cages containing fur odor. Similarly, fur odor-exposed rats, but not those exposed to urine odor, showed signs of enhanced anxiety in the EPM seven days later, although the ACTH response to the EPM was similar in the three groups. The present data demonstrate: (a) a marked dissociation between the degree of ACTH, corticosterone and glucose responses to stressors and their long-term anxiety-like effects; (b) that the type of cat odor is critical in determining the short-term and long-term physiological and behavioral consequences of exposure; and (c) that plasma ACTH released during brief exposure to the EPM does not appear to reflect anxiety-like behavior.
Functional imaging of cortical feedback projections to the olfactory bulb
Rothermel, Markus; Wachowiak, Matt
2014-01-01
Processing of sensory information is substantially shaped by centrifugal, or feedback, projections from higher cortical areas, yet the functional properties of these projections are poorly characterized. Here, we used genetically-encoded calcium sensors (GCaMPs) to functionally image activation of centrifugal projections targeting the olfactory bulb (OB). The OB receives massive centrifugal input from cortical areas but there has been as yet no characterization of their activity in vivo. We focused on projections to the OB from the anterior olfactory nucleus (AON), a major source of cortical feedback to the OB. We expressed GCaMP selectively in AON projection neurons using a mouse line expressing Cre recombinase (Cre) in these neurons and Cre-dependent viral vectors injected into AON, allowing us to image GCaMP fluorescence signals from their axon terminals in the OB. Electrical stimulation of AON evoked large fluorescence signals that could be imaged from the dorsal OB surface in vivo. Surprisingly, odorants also evoked large signals that were transient and coupled to odorant inhalation both in the anesthetized and awake mouse, suggesting that feedback from AON to the OB is rapid and robust across different brain states. The strength of AON feedback signals increased during wakefulness, suggesting a state-dependent modulation of cortical feedback to the OB. Two-photon GCaMP imaging revealed that different odorants activated different subsets of centrifugal AON axons and could elicit both excitation and suppression in different axons, indicating a surprising richness in the representation of odor information by cortical feedback to the OB. Finally, we found that activating neuromodulatory centers such as basal forebrain drove AON inputs to the OB independent of odorant stimulation. Our results point to the AON as a multifunctional cortical area that provides ongoing feedback to the OB and also serves as a descending relay for other neuromodulatory systems. PMID:25071454
Miller, D N; Berry, E D; Wells, J E; Ferrell, C L; Archibeque, S L; Freetly, H C
2006-09-01
Three beef cattle diets were assessed for their potential to produce odorous compounds from cattle feces excreted during the growing and finishing periods. Eight pens containing 51 steers of varying proportions of Brahman and MARC III genotypes were fed either a chopped bromegrass hay diet or a corn silage diet for a 119-d growing period. After the growing period, all steers were switched to the same high-corn finishing diet (high corn) and fed to a target weight of 560 kg (finishing period). Fecal slurries were prepared from a composite of fresh fecal pats collected in each pen during both periods and incubated anaerobically. In additional flasks, starch, protein, or cellulose was added to the composite fecal subsamples to determine the preferred substrates for fermentation and odorous compound production. The content and composition of the fermentation products varied both initially and during the incubation, depending on the diet fed to the steers. The corn silage and high corn feces had the greater initial content of VFA (381.0 and 524.4 micromol/g of DM, respectively) compared with the bromegrass feces (139.3 micromol/g of DM) and accumulated more VFA than the bromegrass feces during the incubation. l-Lactic acid and VFA accumulation in the high corn and corn silage feces was at the expense of starch, based on starch loss and the production of straight-chain VFA. In the bromegrass feces, accumulation of branched-chain VFA and aromatic compounds and the low starch availability indicated that the protein in the feces was the primary source for odorous compound production. Substrate additions confirmed these conclusions. We conclude that starch availability was the primary factor determining accumulation and composition of malodorous fermentation products, and when starch was unavailable, fecal microorganisms utilized protein.
The olfactory hole-board test in rats: a new paradigm to study aversion and preferences to odors
Wernecke, Kerstin E. A.; Fendt, Markus
2015-01-01
Odors of biological relevance (e.g., predator odors, sex odors) are known to effectively influence basic survival needs of rodents such as anti-predatory defensiveness and mating behaviors. Research focused on the effects of these odors on rats’ behavior mostly includes multi-trial paradigms where animals experience single odor exposures in subsequent, separated experimental sessions. In the present study, we introduce a modification of the olfactory hole-board test that allows studying the effects of different odors on rats’ behavior within single trials. First, we demonstrated that the corner holes of the hole-board were preferentially visited by rats. The placement of different odors under the corner holes changed this hole preference. We showed that holes with carnivore urine samples were avoided, while corner holes with female rat urine samples were preferred. Furthermore, corner holes with urine samples from a carnivore, herbivore, and omnivore were differentially visited indicating that rats can discriminate these odors. To test whether anxiolytic treatment specifically modulates the avoidance of carnivore urine holes, we treated rats with buspirone. Buspirone treatment completely abolished the avoidance of carnivore urine holes. Taken together, our findings indicate that the olfactory hole-board test is a valuable tool for measuring avoidance and preference responses to biologically relevant odors. PMID:26379516
Family scents: developmental changes in the perception of kin body odor?
Ferdenzi, Camille; Schaal, Benoist; Roberts, S Craig
2010-08-01
There is increasing evidence that human body odors are involved in adaptive behaviors, such as parental attachment in infants or partner choice in adults. The aim of the present study was to investigate changes in body-odor perception around puberty, a period largely ignored for odor-mediated behavioral changes, despite major changes in social needs and in odor emission and perception. Nine families with two children (8 pre-pubertal, aged 7-10, and 10 pubertal, aged 11-18) evaluated body odors of family members and unfamiliar individuals for pleasantness, intensity, and masculinity, and performed a recognition task. The hypothesized emergence of a parent-child mutual aversion for the odor of opposite-sex family members at puberty was not found, contradicting one of the few studies on the topic (Weisfeld et al., J. Exp. Child Psychol. 85:279-295, 2003). However, some developmental changes were observed, including reduced aversion for odor of the same-sex parent, and increased ability of adults, compared to children, to recognize odor of family members. Sex and personality (depressive and aggressive traits) also significantly influenced odor judgments. Further research with larger samples is needed to investigate the poorly explored issue of how olfactory perception of self and family members develops, and how it could correlate with normal reorganizations in social interactions at adolescence.
Nielsen, Birte L.; Rampin, Olivier; Meunier, Nicolas; Bombail, Vincent
2015-01-01
It has long been known that the behavior of an animal can be affected by odors from another species. Such interspecific effects of odorous compounds (allelochemics) are usually characterized according to who benefits (emitter, receiver, or both) and the odors categorized accordingly (allomones, kairomones, and synomones, respectively), which has its origin in the definition of pheromones, i.e., intraspecific communication via volatile compounds. When considering vertebrates, however, interspecific odor-based effects exist which do not fit well in this paradigm. Three aspects in particular do not encompass all interspecific semiochemical effects: one relates to the innateness of the behavioral response, another to the origin of the odor, and the third to the intent of the message. In this review we focus on vertebrates, and present examples of behavioral responses of animals to odors from other species with specific reference to these three aspects. Searching for a more useful classification of allelochemical effects we examine the relationship between the valence of odors (attractive through to aversive), and the relative contributions of learned and unconditioned (innate) behavioral responses to odors from other species. We propose that these two factors (odor valence and learning) may offer an alternative way to describe the nature of interspecific olfactory effects involving vertebrates compared to the current focus on who benefits. PMID:26161069
Cross-Cultural Color-Odor Associations
Levitan, Carmel A.; Ren, Jiana; Woods, Andy T.; Boesveldt, Sanne; Chan, Jason S.; McKenzie, Kirsten J.; Dodson, Michael; Levin, Jai A.; Leong, Christine X. R.; van den Bosch, Jasper J. F.
2014-01-01
Colors and odors are associated; for instance, people typically match the smell of strawberries to the color pink or red. These associations are forms of crossmodal correspondences. Recently, there has been discussion about the extent to which these correspondences arise for structural reasons (i.e., an inherent mapping between color and odor), statistical reasons (i.e., covariance in experience), and/or semantically-mediated reasons (i.e., stemming from language). The present study probed this question by testing color-odor correspondences in 6 different cultural groups (Dutch, Netherlands-residing-Chinese, German, Malay, Malaysian-Chinese, and US residents), using the same set of 14 odors and asking participants to make congruent and incongruent color choices for each odor. We found consistent patterns in color choices for each odor within each culture, showing that participants were making non-random color-odor matches. We used representational dissimilarity analysis to probe for variations in the patterns of color-odor associations across cultures; we found that US and German participants had the most similar patterns of associations, followed by German and Malay participants. The largest group differences were between Malay and Netherlands-resident Chinese participants and between Dutch and Malaysian-Chinese participants. We conclude that culture plays a role in color-odor crossmodal associations, which likely arise, at least in part, through experience. PMID:25007343
Hoenen, Matthias; Müller, Katharina; Pause, Bettina M.; Lübke, Katrin T.
2016-01-01
Aromatherapy claims that citrus essential oils exert mood lifting effects. Controlled studies, however, have yielded inconsistent results. Notably, studies so far did not control for odor pleasantness, although pleasantness is a critical determinant of emotional responses to odors. This study investigates mood lifting effects of d-(+)-limonene, the most prominent substance in citrus essential oils, with respect to odor quality judgments. Negative mood was induced within 78 participants using a helplessness paradigm (unsolvable social discrimination task). During this task, participants were continuously (mean duration: 19.5 min) exposed to d-(+)-limonene (n = 25), vanillin (n = 26), or diethyl phthalate (n = 27). Participants described their mood (Self-Assessment-Manikin, basic emotion ratings) and judged the odors’ quality (intensity, pleasantness, unpleasantness, familiarity) prior to and following the helplessness induction. The participants were in a less positive mood after the helplessness induction (p < 0.001), irrespective of the odor condition. Still, the more pleasant the participants judged the odors, the less effective the helplessness induction was in reducing happiness (p = 0.019). The results show no odor specific mood lifting effect of d-(+)-limonene, but indicate a positive effect of odor pleasantness on mood. The study highlights the necessity to evaluate odor judgments in aromatherapy research. PMID:26869973
El Haj, Mohamad; Gandolphe, Marie Charlotte; Gallouj, Karim; Kapogiannis, Dimitrios; Antoine, Pascal
2017-12-25
Research suggests that odors may serve as a potent cue for autobiographical retrieval. We tested this hypothesis in Alzheimer's disease (AD) and investigated whether odor-evoked autobiographical memory is an involuntary process that shares similarities with music-evoked autobiographical memory. Participants with mild AD and controls were asked to retrieve 2 personal memories after odor exposure, after music exposure, and in an odor-and music-free condition. AD participants showed better specificity, emotional experience, mental time travel, and retrieval time after odor and music exposure than in the control condition. Similar beneficial effects of odor and music exposure were observed for autobiographical characteristics (i.e., specificity, emotional experience, and mental time travel), except for retrieval time which was more improved after odor than after music exposure. Interestingly, regression analyses suggested executive involvement in memories evoked in the control condition but not in those evoked after music or odor exposure. These findings suggest the involuntary nature of odor-evoked autobiographical memory in AD. They also suggest that olfactory cuing could serve as a useful and ecologically valid tool to stimulate autobiographical memory, at least in the mild stage of the disease. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Odorants selectively activate distinct G protein subtypes in olfactory cilia.
Schandar, M; Laugwitz, K L; Boekhoff, I; Kroner, C; Gudermann, T; Schultz, G; Breer, H
1998-07-03
Chemoelectrical signal transduction in olfactory neurons appears to involve intracellular reaction cascades mediated by heterotrimeric GTP-binding proteins. In this study attempts were made to identify the G protein subtype(s) in olfactory cilia that are activated by the primary (odorant) signal. Antibodies directed against the alpha subunits of distinct G protein subtypes interfered specifically with second messenger reponses elicited by defined subsets of odorants; odor-induced cAMP-formation was attenuated by Galphas antibodies, whereas Galphao antibodies blocked odor-induced inositol 1,4, 5-trisphosphate (IP3) formation. Activation-dependent photolabeling of Galpha subunits with [alpha-32P]GTP azidoanilide followed by immunoprecipitation using subtype-specific antibodies enabled identification of particular individual G protein subtypes that were activated upon stimulation of isolated olfactory cilia by chemically distinct odorants. For example odorants that elicited a cAMP response resulted in labeling of a Galphas-like protein, whereas odorants that elicited an IP3 response led to the labeling of a Galphao-like protein. Since odorant-induced IP3 formation was also blocked by Gbeta antibodies, activation of olfactory phospholipase C might be mediated by betagamma subunits of a Go-like G protein. These results indicate that different subsets of odorants selectively trigger distinct reaction cascades and provide evidence for dual transduction pathways in olfactory signaling.
Conditioning Individual Mosquitoes to an Odor: Sex, Source, and Time
Sanford, Michelle R.; Tomberlin, Jeffery K.
2011-01-01
Olfactory conditioning of mosquitoes may have important implications for vector-pathogen-host dynamics. If mosquitoes learn about specific host attributes associated with pathogen infection, it may help to explain the heterogeneity of biting and disease patterns observed in the field. Sugar-feeding is a requirement for survival in both male and female mosquitoes. It provides a starting point for learning research in mosquitoes that avoids the confounding factors associated with the observer being a potential blood-host and has the capability to address certain areas of close-range mosquito learning behavior that have not previously been described. This study was designed to investigate the ability of the southern house mosquito, Culex quinquefasciatus Say to associate odor with a sugar-meal with emphasis on important experimental considerations of mosquito age (1.2 d old and 3–5 d old), sex (male and female), source (laboratory and wild), and the time between conditioning and testing (<5 min, 1 hr, 2.5 hr, 5 hr, 10 hr, and 24 hr). Mosquitoes were individually conditioned to an odor across these different experimental conditions. Details of the conditioning protocol are presented as well as the use of binary logistic regression to analyze the complex dataset generated from this experimental design. The results suggest that each of the experimental factors may be important in different ways. Both the source of the mosquitoes and sex of the mosquitoes had significant effects on conditioned responses. The largest effect on conditioning was observed in the lack of positive response following conditioning for females aged 3–5 d derived from a long established colony. Overall, this study provides a method for conditioning experiments involving individual mosquitoes at close range and provides for future discussion of the relevance and broader questions that can be asked of olfactory conditioning in mosquitoes. PMID:21887384
Potential for reduction of odorous compounds in swine manure through diet modification.
Sutton, A L; Kephart, K B; Verstegen, M W; Canh, T T; Hobbs, P J
1999-02-01
Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.
Activation of Neural Pathways Associated with Sexual Arousal in Non-Human Primates
Ferris, Craig F.; Snowdon, Charles T.; King, Jean A.; Sullivan, John M.; Ziegler, Toni E.; Olson, David P.; Schultz-Darken, Nancy J.; Tannenbaum, Pamela L.; Ludwig, Reinhold; Wu, Ziji; Einspanier, Almuth; Vaughan, J. Thomas; Duong, Timothy Q.
2006-01-01
Purpose To evaluate brain activity associated with sexual arousal, fully conscious male marmoset monkeys were imaged during presentation of odors that naturally elicit high levels of sexual activity and sexual motivation. Material and Methods Male monkeys were lightly anesthetized, secured in a head and body restrainer with a built-in birdcage resonator and positioned in a 9.4-Tesla spectrometer. When fully conscious, monkeys were presented with the odors of a novel receptive female or an ovariectomized monkey. Both odors were presented during an imaging trial and the presentation of odors was counterbalanced. Significant changes in both positive and negative BOLD signal were mapped and averaged. Results Periovulatory odors significantly increased positive BOLD signal in several cortical areas: the striatum, hippocampus, septum, periaqueductal gray, and cerebellum, in comparison with odors from ovariectomized monkeys. Conversely, negative BOLD signal was significantly increased in the temporal cortex, cingulate cortex, putamen, hippocampus, substantia nigra, medial preoptic area, and cerebellum with presentation of odors from ovariectomized marmosets as compared to periovulatory odors. A common neural circuit comprising the temporal and cingulate cortices, putamen, hippocampus, medial preoptic area, and cerebellum shared both the positive BOLD response to periovulatory odors and the negative BOLD response to odors of ovariectomized females. Conclusion These data suggest the odor-driven enhancement and suppression of sexual arousal affect neuronal activity in many of the same general brain areas. These areas included not only those associated with sexual activity, but also areas involved in emotional processing and reward. PMID:14745749
Pavlovian conditioning enhances resistance to disruption of dogs performing an odor discrimination.
Hall, Nathaniel J; Smith, David W; Wynne, Clive D L
2015-05-01
Domestic dogs are used to aid in the detection of a variety of substances such as narcotics and explosives. Under real-world detection situations there are many variables that may disrupt the dog's performance. Prior research on behavioral momentum theory suggests that higher rates of reinforcement produce greater resistance to disruption, and that this is heavily influenced by the stimulus-reinforcer relationship. The present study tests the Pavlovian interpretation of resistance to change using dogs engaged in an odor discrimination task. Dogs were trained on two odor discriminations that alternated every six trials akin to a multiple schedule in which the reinforcement probability for a correct response was always 1. Dogs then received several sessions of either odor Pavlovian conditioning to the S+ of one odor discrimination (Pavlovian group) or explicitly unpaired exposure to the S+ of one odor discrimination (Unpaired group). The remaining odor discrimination pair for each dog always remained an unexposed control. Resistance to disruption was assessed under presession feeding, a food-odor disruptor condition, and extinction, with baseline sessions intervening between disruption conditions. Equivalent baseline detection rates were observed across experimental groups and odorant pairs. Under disruption conditions, Pavlovian conditioning led to enhanced resistance to disruption of detection performance compared to the unexposed control odor discrimination. Unpaired odor conditioning did not influence resistance to disruption. These results suggest that changes in Pavlovian contingencies are sufficient to influence resistance to change. © Society for the Experimental Analysis of Behavior.
Feinberg, Leila M; Allen, Timothy A; Ly, Denise; Fortin, Norbert J
2012-01-01
The contributions of the hippocampus (HC) and perirhinal cortex (PER) to recognition memory are currently topics of debate in neuroscience. Here we used a rapidly-learned (seconds) spontaneous novel odor recognition paradigm to assess the effects of pre-training N-methyl-D-aspartate lesions to the HC or PER on odor recognition memory. We tested memory for both social and non-social odor stimuli. Social odors were acquired from conspecifics, while non-social odors were household spices. Conspecific odor stimuli are ethologically-relevant and have a high degree of overlapping features compared to non-social household spices. Various retention intervals (5 min, 20 min, 1h, 24h, or 48 h) were used between study and test phases, each with a unique odor pair, to assess changes in novelty preference over time. Consistent with findings in other paradigms, modalities, and species, we found that HC lesions yielded no significant recognition memory deficits. In contrast, PER lesions caused significant deficits for social odor recognition memory at long retention intervals, demonstrating a critical role for PER in long-term memory for social odors. PER lesions had no effect on memory for non-social odors. The results are consistent with a general role for PER in long-term recognition memory for stimuli that have a high degree of overlapping features, which must be distinguished by conjunctive representations. Copyright © 2011 Elsevier Inc. All rights reserved.
Children's hedonic judgments of cigarette smoke odor: effects of parental smoking and maternal mood.
Forestell, Catherine A; Mennella, Julie A
2005-12-01
Age-appropriate tasks were used to assess 3- to 8-year-old children's liking, identification, and preference for a variety of odors, including that of exhaled cigarette smoke. Children whose parents smoke took longer to decide whether they liked the cigarette odor and were significantly more likely to prefer the odor of cigarette to the neutral and unfamiliar odor of green tea compared with children of nonsmokers. Among children of smokers, relative preferences for the cigarette odor were related to maternal mood disturbance and depression scores. These findings suggest that some early learning about cigarette smoke odor is based on sensory experiences at home and anchors it to the emotional context in which their mothers smoke. ((c) 2005 APA, all rights reserved).
An odor flux model for cattle feedlots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ormerod, R.J.
1994-12-31
Odor nuisance associated with cattle feedlots has been an issue of major interest and concern to regulators, rural communities and the beef industry in Australia over the past decade. Methods of assessing the likely impacts of new feedlots on community odor exposure are still being developed, but in the past few years much has been learnt about the processes of odor generation, flux and dispersion as well as the acceptability of feedlot odor to exposed communities. This paper outlines a model which simulates the complex physical and chemical processes leading to odor emissions in a simple and practical framework. Themore » model, named BULSMEL, has been developed as a response to regulatory requirements for quantitative assessments of odor impact. It will continue to be refined as more data are gathered.« less
Impact of ambient odors on food intake, saliva production and appetite ratings.
Proserpio, Cristina; de Graaf, Cees; Laureati, Monica; Pagliarini, Ella; Boesveldt, Sanne
2017-05-15
The aim of this study was to investigate the effect of ambient odor exposure on appetite, salivation and food intake. 32 normal-weight young women (age: 21.4±5.3year; BMI: 21.7±1.9kg/m 2 ) attended five test sessions in a non-satiated state. Each participant was exposed to ambient odors (chocolate, beef, melon and cucumber), in a detectable but mild concentration, and to a control condition (no-odor exposure). During each condition, at different time points, participants rated appetite for 15 food products, and saliva was collected. After approximately 30min, ad libitum intake was measured providing a food (chocolate rice, high-energy dense product) that was congruent with one of the odors they were exposed to. A significant odor effect on food intake (p=0.034) and salivation (p=0.017) was found. Exposure to odors signaling high-energy dense products increased food intake (243.97±22.84g) compared to control condition (206.94±24.93g; p=0.03). Consistently, salivation was increased significantly during chocolate and beef exposure (mean: 0.494±0.050g) compared to control condition (0.417±0.05g; p=0.006). Even though odor exposure did not induce specific appetite for congruent products (p=0.634), appetite scores were significantly higher during odor exposure (p<0.0001) compared to the no-odor control condition and increased significantly over time (p=0.010). Exposure to food odors seems to drive behavioral and physiological responses involved in eating behavior, specifically for odors and foods that are high in energy density. This could have implications for steering food intake and ultimately influencing the nutritional status of people. Copyright © 2017 Elsevier Inc. All rights reserved.
Olfactory Sensitivity for Six Predator Odorants in CD-1 Mice, Human Subjects, and Spider Monkeys
Sarrafchi, Amir; Odhammer, Anna M. E.; Hernandez Salazar, Laura Teresa; Laska, Matthias
2013-01-01
Using a conditioning paradigm, we assessed the olfactory sensitivity of six CD-1 mice (Mus musculus) for six sulfur-containing odorants known to be components of the odors of natural predators of the mouse. With all six odorants, the mice discriminated concentrations <0.1 ppm (parts per million) from the solvent, and with five of the six odorants the best-scoring animals were even able to detect concentrations <1 ppt (parts per trillion). Four female spider monkeys (Ateles geoffroyi) and twelve human subjects (Homo sapiens) tested in parallel were found to detect the same six odorants at concentrations <0.01 ppm, and with four of the six odorants the best-scoring animals and subjects even detected concentrations <10 ppt. With all three species, the threshold values obtained here are generally lower than (or in the lower range of) those reported for other chemical classes tested previously, suggesting that sulfur-containing odorants may play a special role in olfaction. Across-species comparisons showed that the mice were significantly more sensitive than the human subjects and the spider monkeys with four of the six predator odorants. However, the human subjects were significantly more sensitive than the mice with the remaining two odorants. Human subjects and spider monkeys significantly differed in their sensitivity with only two of the six odorants. These comparisons lend further support to the notion that the number of functional olfactory receptor genes or the relative or absolute size of the olfactory bulbs are poor predictors of a species’ olfactory sensitivity. Analysis of odor structure–activity relationships showed that in both mice and human subjects the type of alkyl rest attached to a thietane and the type of oxygen moiety attached to a thiol significantly affected olfactory sensitivity. PMID:24278296
Wang, Juan; Li, Baizhan; Yang, Qin; Yu, Wei; Wang, Han; Norback, Dan; Sundell, Jan
2013-01-01
The prevalence of perceptions of odors and sensations of air humidity and sick building syndrome symptoms in domestic environments were studied using responses to a questionnaire on the home environment. Parents of 4530 1–8 year old children from randomly selected kindergartens in Chongqing, China participated. Stuffy odor, unpleasant odor, pungent odor, mold odor, tobacco smoke odor, humid air and dry air in the last three month (weekly or sometimes) was reported by 31.4%, 26.5%, 16.1%, 10.6%, 33.0%, 32.1% and 37.2% of the parents, respectively. The prevalence of parents’ SBS symptoms (weekly or sometimes) were: 78.7% for general symptoms, 74.3% for mucosal symptoms and 47.5% for skin symptoms. Multi-nominal regression analyses for associations between odors/sensations of air humidity and SBS symptoms showed that the odds ratio for “weekly” SBS symptoms were consistently higher than for “sometimes” SBS symptoms. Living near a main road or highway, redecoration, and new furniture were risk factors for perceptions of odors and sensations of humid air and dry air. Dampness related problems (mold spots, damp stains, water damage and condensation) were all risk factors for perceptions of odors and sensations of humid air and dry air, as was the presence of cockroaches, rats, and mosquitoes/flies, use of mosquito-repellent incense and incense. Protective factors included cleaning the child’s bedroom every day and frequently exposing bedding to sunshine. In conclusion, adults’ perceptions of odors and sensations of humid air and dry air are related to factors of the home environment and SBS symptoms are related to odor perceptions. PMID:23991107
Diagnostic Value of the Impairment of Olfaction in Parkinson's Disease
Casjens, Swaantje; Eckert, Angelika; Woitalla, Dirk; Ellrichmann, Gisa; Turewicz, Michael; Stephan, Christian; Eisenacher, Martin; May, Caroline; Meyer, Helmut E.; Brüning, Thomas; Pesch, Beate
2013-01-01
Background Olfactory impairment is increasingly recognized as an early symptom in the development of Parkinson's disease. Testing olfactory function is a non-invasive method but can be time-consuming which restricts its application in clinical settings and epidemiological studies. Here, we investigate odor identification as a supportive diagnostic tool for Parkinson's disease and estimate the performance of odor subsets to allow a more rapid testing of olfactory impairment. Methodology/Principal Findings Odor identification was assessed with 16 Sniffin' sticks in 148 Parkinson patients and 148 healthy controls. Risks of olfactory impairment were estimated with proportional odds models. Random forests were applied to classify Parkinson and non-Parkinson patients. Parkinson patients were rarely normosmic (identification of more than 12 odors; 16.8%) and identified on average seven odors whereas the reference group identified 12 odors and showed a higher prevalence of normosmy (31.1%). Parkinson patients with rigidity dominance had a twofold greater prevalence of olfactory impairment. Disease severity was associated with impairment of odor identification (per score point of the Hoehn and Yahr rating OR 1.87, 95% CI 1.26–2.77). Age-related impairment of olfaction showed a steeper gradient in Parkinson patients. Coffee, peppermint, and anise showed the largest difference in odor identification between Parkinson patients and controls. Random forests estimated a misclassification rate of 22.4% when comparing Parkinson patients with healthy controls using all 16 odors. A similar rate (23.8%) was observed when only the three aforementioned odors were applied. Conclusions/Significance Our findings indicate that testing odor identification can be a supportive diagnostic tool for Parkinson's disease. The application of only three odors performed well in discriminating Parkinson patients from controls, which can facilitate a wider application of this method as a point-of-care test. PMID:23696904
Default Mode Network (DMN) Deactivation during Odor-Visual Association
Karunanayaka, Prasanna R.; Wilson, Donald A.; Tobia, Michael J.; Martinez, Brittany; Meadowcroft, Mark; Eslinger, Paul J.; Yang, Qing X.
2017-01-01
Default mode network (DMN) deactivation has been shown to be functionally relevant for goal-directed cognition. In this study, we investigated the DMN’s role during olfactory processing using two complementary functional magnetic resonance imaging (fMRI) paradigms with identical timing, visual-cue stimulation and response monitoring protocols. Twenty-nine healthy, non-smoking, right-handed adults (mean age = 26±4 yrs., 16 females) completed an odor-visual association fMRI paradigm that had two alternating odor+visual and visual-only trial conditions. During odor+visual trials, a visual cue was presented simultaneously with an odor, while during visual-only trial conditions the same visual cue was presented alone. Eighteen of the 29 participants (mean age = 27.0 ± 6.0 yrs.,11 females) also took part in a control no-odor fMRI paradigm that consisted of visual-only trial conditions which were identical to the visual-only trials in the odor-visual association paradigm. We used Independent Component Analysis (ICA), extended unified structural equation modeling (euSEM), and psychophysiological interaction (PPI) to investigate the interplay between the DMN and olfactory network. In the odor-visual association paradigm, DMN deactivation was evoked by both the odor+visual and visual-only trial conditions. In contrast, the visual-only trials in the no-odor paradigm did not evoke consistent DMN deactivation. In the odor-visual association paradigm, the euSEM and PPI analyses identified a directed connectivity between the DMN and olfactory network which was significantly different between odor+visual and visual-only trial conditions. The results support a strong interaction between the DMN and olfactory network and highlights DMN’s role in task-evoked brain activity and behavioral responses during olfactory processing. PMID:27785847
Robin, O; Alaoui-Ismaïli, O; Dittmar, A; Vernet-Maury, E
1999-06-01
Subjective individual experiences seem to indicate that odors may form strong connections with memories, especially those charged with emotional significance. In the dental field, this could be the case with the odorant eugenol, responsible for the typical clinging odor impregnating the dental office. The odor of eugenol could evoke memories of unpleasant dental experiences and, therefore, negative feelings such as anxiety and fear, since eugenates (cements containing eugenol) are used in potentially painful restorative dentistry. This hypothesis was tested by evaluating the emotional impact of the odor of eugenol through autonomic nervous system (ANS) analysis. The simultaneous variations of six ANS parameters (two electrodermal, two thermovascular and two cardiorespiratory), induced by the inhalation of this odorant, were recorded on volunteer subjects. Vanillin (a pleasant odorant) and propionic acid (an unpleasant one) served as controls. After the experiment, subjects were asked to rate the pleasantness versus unpleasantness of each odorant on an 11-point hedonic scale. The patterns of autonomic responses, obtained for each odorant and each subject, were transcribed into one of the six basic emotions defined by Ekman et al. (happiness, surprise, sadness, fear, anger and disgust). Results were compared between two groups of subjects divided according to their dental experience (fearful and non-fearful dental care subjects) and showed significant differences only for eugenol. This odorant was rated as pleasant by non-fearful dental subjects but unpleasant by fearful dental subjects. The evoked autonomic responses were mainly associated with positive basic emotions (happiness and surprise) in non-fearful dental subjects and with negative basic emotions (fear, anger, disgust) in fearful dental subjects. These results suggest that eugenol can be responsible for different emotional states depending on the subjects' dental experience, which seems to confirm the potential role of odors as elicitors of emotional memories. This study also supports the possible influence of the ambient odor impregnating the dental office, strengthening a negative conditioning toward dental care in some anxious patients.
Petrulis, A; Alvarez, P; Eichenbaum, H
2005-01-01
Recognition of individual conspecifics is important for social behavior and requires the formation of memories for individually distinctive social signals. Individual recognition is often mediated by olfactory cues in mammals, especially nocturnal rodents such as golden hamsters. In hamsters, this form of recognition requires main olfactory system input to the lateral entorhinal cortex (LEnt). Here, we tested whether neurons in LEnt and the nearby ventral subiculum (VS) would show cellular correlates of this natural form of recognition memory. Two hundred ninety single neurons were recorded from both superficial (SE) and deep layers of LEnt (DE) and VS while male hamsters investigated volatile odorants from female vaginal secretions. Many neurons encoded differences between female's odors with many discriminating between odors from different individual females but not between different odor samples from the same female. Other neurons discriminated between odor samples from one female and generalized across collections from other females. LEnt and VS neurons showed enhanced or suppressed cellular activity during investigation of previously presented odors and in response to novel odors. A majority of SE neurons decreased firing to odor repetition and increased activity to novel odors. In contrast, DE neurons often showed suppressed activity in response to novel odors. Thus, neurons in LEnt and VS of male hamsters encode information that is critical for the identification and recognition of individual females by odor cues. This study reveals cellular mechanisms in LEnt and VS that may mediate a natural form of recognition memory in hamsters. These neuronal responses were similar to those observed in rats and monkeys during performance in standard recognition memory tasks. Consequently, the present data extend our understanding of the cellular basis for recognition memory and suggest that individual recognition requires similar neural mechanisms as those employed in laboratory tests of recognition memory.
Wright, Lisa D; Muir, Katherine E; Perrot, Tara S
2013-07-01
In order to characterize the short- and long-term effects of repeated stressor exposure during adolescence, and to compare the effects of using two sources of cat odor as stressor stimuli, male and female adolescent rats (postnatal day (PND) ∼ 38-46) were exposed on five occasions to either a control stimulus, a cloth stimulus containing cat hair/dander, or a section of cat collar previously worn by a cat. Relative to control stimulus exposure, activity was suppressed and defensive behavior enhanced during exposure to either cat odor stimulus (most pervasively in rats exposed to the collar). Only cloth-exposed rats showed elevated levels of corticosterone (CORT), and only after repeated stressor exposure, but interestingly, rats exposed to the collar stimulus during adolescence continued to show increased behavioral indices of anxiety in adulthood. In this group, the time an individual spent in physical contact with a cagemate during the final adolescent exposure was negatively related to stress-induced CORT output in adulthood, which suggests that greater use of social support during adolescent stress may facilitate adult behavioral coping, without necessitating increased CORT release. These findings demonstrate that adolescent male and female rats respond defensively to cat odor stimuli across repeated exposures and that exposure to such stressors during adolescence can augment adult anxiety-like behavior in similar stressful conditions. These findings also suggest a potential role for social behavior during adolescent stressor exposure in mediating long-term outcomes. Copyright © 2012 Wiley Periodicals, Inc.
Different odor tests contribute differently to the evaluation of olfactory loss.
Lötsch, Jörn; Reichmann, Heinz; Hummel, Thomas
2008-01-01
In a clinical context, the importance of the sense of smell has increasingly been recognized, for example, in terms of the evaluation of neurodegenerative disorders. In this study, 2 strategies of olfactory testing, a simple one and a more complex one, were compared with respect to their suitability to assess olfactory dysfunction. Odor threshold (T), discrimination (D), and identification (I) were assessed in a control sample of 916 males and 1160 females, aged 6-90 years, and in 81 men and 21 women, aged 38-80 years, suffering from idiopathic Parkinson's disease (IPD). Sums of the 3 subtest results T, D, and I yielded threshold discrimination identification (TDI) scores reflecting olfactory function. Sensitivity of any of the 3 subtests to confirm the diagnosis established by the composite TDI score was assessed separately for each test. Principal component analyses were applied to determine any common source of variance among the 3 specific subtests. Sensitivities of the subtests to provide the diagnosis established by the composite TDI score were 64% (T), 56% (D), and 47% (I), respectively. In IPD patients, each of the subtests provided the correct diagnosis (sensitivity >90%), as olfaction was impaired in 99% of the patient group. Two principal components emerged in both controls and IPD patients, with eigenvalues >0.5. The first component received high loadings from all factors. The second component received high loadings from odor threshold, whereas loadings from odor discrimination and identification were much smaller. In conclusion, combined testing of several components of olfaction, especially including assessment of thresholds, provides the most significant approach to the diagnosis of smell loss.
Instrumental measurement of odour nuisance in city agglomeration using electronic nose
NASA Astrophysics Data System (ADS)
Szulczyński, Bartosz; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek
2018-01-01
The paper describes an operation principle of odour nuisance monitoring network in a city agglomeration. Moreover, it presents the results of investigation on ambient air quality with respect to odour obtained during six-month period. The investigation was carried out using a network comprised of six prototypes of electronic nose and Nasal Ranger field olfactometers employed as a reference method. The monitoring network consisted of two measurement stations localized in a vicinity of crude oil processing plant and four stations localized near the main emitters of volatile odorous compounds such as sewage treatment plant, municipal landfill, phosphatic fertilizer production plant. The electronic nose prototype was equipped with a set of six semiconductor sensors by FIGARO Co. and one PID-type sensor. The field olfactometers were utilized for determination of mean concentration of odorants and for calibration of the electronic nose prototypes in order to provide their proper operation. Mean monthly values of odour concentration depended on the site of measurement and on meteorological parameters. They were within 0 - 6.0 ou/m3 range. Performed investigations revealed the possibility of electronic nose instrument application as a tool for monitoring of odour nuisance.
Long-Term Memory for Odors: Influences of Familiarity and Identification Across 64 Days
Jönsson, Fredrik U.; Willander, Johan; Sikström, Sverker; Larsson, Maria
2015-01-01
Few studies have investigated long-term odor recognition memory, although some early observations suggested that the forgetting rate of olfactory representations is slower than for other sensory modalities. This study investigated recognition memory across 64 days for high and low familiar odors and faces. Memory was assessed in 83 young participants at 4 occasions; immediate, 4, 16, and 64 days after encoding. The results indicated significant forgetting for odors and faces across the 64 days. The forgetting functions for the 2 modalities were not fundamentally different. Moreover, high familiar odors and faces were better remembered than low familiar ones, indicating an important role of semantic knowledge on recognition proficiency for both modalities. Although odor recognition was significantly better than chance at the 64 days testing, memory for the low familiar odors was relatively poor. Also, the results indicated that odor identification consistency across sessions, irrespective of accuracy, was positively related to successful recognition. PMID:25740304
Staples, Lauren G
2010-11-01
Prey animals such as rats display innate defensive responses when exposed to the odor of a predator, providing a valuable means of studying the neurobiology of anxiety. While the unconditioned behavioral and neural responses to a single predator odor exposure have been well documented, the paradigm can also be used to study learning-dependent adaptations that occur following repeated exposure to a stressor or associated stimuli. In developing preclinical models for human anxiety disorders this is advantageous, as anxiety disorders seldom involve a single acute experience of anxiety, but rather are chronic and/or recurring illnesses. Part 1 of this review summarizes current research on the three most commonly used predator-related odors: cat odor, ferret odor, and trimethylthiazoline (a component of fox odor). Part 2 reviews the learning-based behavioral and neural adaptations that underlie predator odor-induced context conditioning, one-trial tolerance, sensitization, habituation and dishabituation. Copyright © 2010 Elsevier Inc. All rights reserved.
Varlet, Vincent; Serot, Thierry; Cardinal, Mireille; Knockaert, Camille; Prost, Carole
2007-05-30
The volatile compounds of salmon fillets smoked according to four smoked generation techniques (smoldering, thermostated plates, friction, and liquid smoke) were investigated. The main odor-active compounds were identified by gas chromatography coupled with olfactometry and mass spectrometry. Only the odorant volatile compounds detected by at least six judges (out of eight) were identified as potent odorants. Phenolic compounds and guaiacol derivatives were the most detected compounds in the olfactometric profile whatever the smoking process and could constitute the smoky odorant skeleton of these products. They were recovered in the aromatic extracts of salmon smoked by smoldering and by friction, which were characterized by 18 and 25 odor-active compounds, respectively. Furannic compounds were more detected in products smoked with thermostated plates characterized by 26 odorants compounds. Finally, the 27 odorants of products treated with liquid smoke were significantly different from the three others techniques applying wood pyrolysis because pyridine derivatives and lipid oxidation products were perceived in the aroma profile.
Odor intensity and characterization of jet exhaust and chemical analytical measurements
NASA Technical Reports Server (NTRS)
Kendall, D. A.; Levins, P. L.
1973-01-01
Odor and chemical analyses were carried out on the exhaust samples from a J-57 combustor can operated over a range of inlet conditions, and with several fuel types and nozzle modifications. The odor characteristics and total intensity of odor for each exhaust were determined over a range of dilutions to allow for a least squares determination of the intensity at 1,000 to 1 dilutions. Analytical measures included the concentration of total hydrocarbons and the concentrations of aromatic organic species and oxygenated organic species from collected samples which were taken concurrently. A correlation was found between the concentration of the odorous oxygenated fraction and the total intensity of aroma. Inlet operating conditions and nozzle modifications which increase the efficiency of combustion as measured by exhaust gas analyses reduce the odor intensity and the quantity of oxygenates in the exhaust. The type of fuel burned altered the intensity of odor in relation to the quantity of oxygenates produced and, in some instances, changed the odor character.
Odor Discrimination in Drosophila: From Neural Population Codes to Behavior
Parnas, Moshe; Lin, Andrew C.; Huetteroth, Wolf; Miesenböck, Gero
2013-01-01
Summary Taking advantage of the well-characterized olfactory system of Drosophila, we derive a simple quantitative relationship between patterns of odorant receptor activation, the resulting internal representations of odors, and odor discrimination. Second-order excitatory and inhibitory projection neurons (ePNs and iPNs) convey olfactory information to the lateral horn, a brain region implicated in innate odor-driven behaviors. We show that the distance between ePN activity patterns is the main determinant of a fly’s spontaneous discrimination behavior. Manipulations that silence subsets of ePNs have graded behavioral consequences, and effect sizes are predicted by changes in ePN distances. ePN distances predict only innate, not learned, behavior because the latter engages the mushroom body, which enables differentiated responses to even very similar odors. Inhibition from iPNs, which scales with olfactory stimulus strength, enhances innate discrimination of closely related odors, by imposing a high-pass filter on transmitter release from ePN terminals that increases the distance between odor representations. PMID:24012006
Tokitomo, Yukiko; Steinhaus, Martin; Büttner, Andrea; Schieberle, Peter
2005-07-01
By application of aroma extract dilution analysis (AEDA) to an aroma distillate prepared from fresh pineapple using solvent-assisted flavor evaporation (SAFE), 29 odor-active compounds were detected in the flavor dilution (FD) factor range of 2 to 4,096. Quantitative measurements performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAVs) of 12 selected odorants revealed the following compounds as key odorants in fresh pineapple flavor: 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDF; sweet, pineapple-like, caramel-like), ethyl 2-methylpropanoate (fruity), ethyl 2-methylbutanoate (fruity) followed by methyl 2-methylbutanoate (fruity, apple-like) and 1-(E,Z)-3,5-undecatriene (fresh, pineapple-like). A mixture of these 12 odorants in concentrations equal to those in the fresh pineapple resulted in an odor profile similar to that of the fresh juice. Furthermore, the results of omission tests using the model mixture showed that HDF and ethyl 2-methylbutanoate are character impact odorants in fresh pineapple.
Kong, Xin; Liu, Jianguo; Ren, Lianhai; Song, Minying; Wang, Xiaowei; Ni, Zhe; Nie, Xiaoqin
2015-10-01
Odorous gas emission characteristic along with the successive processes of a typical full-scale food waste (FW) anaerobic digestion plant in China was investigated in September and January. Seasonal variations in pollutant concentration and principal component analysis (PCA) showed markedly different characteristics between the two months. However, the main reason for the seasonal difference at the sorting process differed from the reason for the seasonal difference at other treatment units. Most odorous volatile organic compound (VOC) concentrations tested near an anaerobic digestion tank were similar and low in both months. Odor indices, including odor contribution (OC) and odor activity value (OAV) of various odorants, were further calculated to evaluate the malodor degree and contribution to the nuisance smell of any odorant. Brought about by people's different dietary habits, H2S and sulfocompounds were found to be dominant contributors to the large total OVA in the January test. By contrast, oxygenated organic compounds played an important role on the sum of OVA in September.
Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex
Roland, Benjamin; Deneux, Thomas; Franks, Kevin M; Bathellier, Brice; Fleischmann, Alexander
2017-01-01
Olfactory perception and behaviors critically depend on the ability to identify an odor across a wide range of concentrations. Here, we use calcium imaging to determine how odor identity is encoded in olfactory cortex. We find that, despite considerable trial-to-trial variability, odor identity can accurately be decoded from ensembles of co-active neurons that are distributed across piriform cortex without any apparent spatial organization. However, piriform response patterns change substantially over a 100-fold change in odor concentration, apparently degrading the population representation of odor identity. We show that this problem can be resolved by decoding odor identity from a subpopulation of concentration-invariant piriform neurons. These concentration-invariant neurons are overrepresented in piriform cortex but not in olfactory bulb mitral and tufted cells. We therefore propose that distinct perceptual features of odors are encoded in independent subnetworks of neurons in the olfactory cortex. DOI: http://dx.doi.org/10.7554/eLife.26337.001 PMID:28489003
Determination of Phenols and Trimethylamine in Industrial Effluents
NASA Technical Reports Server (NTRS)
Levaggi, D. A.; Feldstein, M.
1971-01-01
For regulatory purposes to control certain odorous compounds the analysis of phenols and trimethylamines in industrial effluents is necessary. The Bay Area Air Pollution Control District laboratory has been determining these gases by gas chromatographic techniques. The procedures for sample collection, preparation for analysis and determination are described in detail. Typical data from various sources showing the effect of proposed regulations is shown. Extensive sampling and usage of these procedures has shown them to be accurate, reliable and suitable to all types of source effluents.
Markó, Gábor; Novák, Ildikó; Bernáth, Jeno; Altbäcker, Vilmos
2011-07-01
Chemical polymorphism may contribute to variation in browsing damage by mammalian herbivores. Earlier, we demonstrated that essential oil concentration in juniper, Juniperus communis, was negatively associated with herbivore browsing. The aim of the present study was to characterize the volatile chemical composition of browsed and non-browsed J. communis. By using either gas chromatography with flame ionization detection (GC-FID) or an electronic nose device, we could separate sheep-browsed or non-browsed juniper shrubs by their essential oil pattern and complex odor matrix. The main components of the essential oil from J. communis were monoterpenes. We distinguished three chemotypes, dominated either by α-pinene, sabinene, or δ-3-carene. Shrubs belonging to the α-pinene- or sabinene-dominated groups were browsed, whereas all individuals with the δ-3-carene chemotype were unused by the local herbivores. The electronic nose also separated the browsed and non-browsed shrubs indicating that their odor matrix could guide sheep browsing. Responses of sheep could integrate the post-ingestive effects of plant secondary metabolites with sensory experience that stems from odor-phytotoxin interactions. Chemotype diversity could increase the survival rate in the present population of J. communis as certain shrubs could benefit from relatively better chemical protection against the herbivores.
Odor Coding by a Mammalian Receptor Repertoire
Saito, Harumi; Chi, Qiuyi; Zhuang, Hanyi; Matsunami, Hiro; Mainland, Joel D.
2009-01-01
Deciphering olfactory encoding requires a thorough description of the ligands that activate each odorant receptor (OR). In mammalian systems, however, ligands are known for fewer than 50 of over 1400 human and mouse ORs, greatly limiting our understanding of olfactory coding. We performed high-throughput screening of 93 odorants against 464 ORs expressed in heterologous cells and identified agonists for 52 mouse and 10 human ORs. We used the resulting interaction profiles to develop a predictive model relating physicochemical odorant properties, OR sequences, and their interactions. Our results provide a basis for translating odorants into receptor neuron responses and unraveling mammalian odor coding. PMID:19261596
Smelling Anxiety Chemosignals Impairs Clinical Performance of Dental Students.
Singh, Preet Bano; Young, Alix; Lind, Synnøve; Leegaard, Marie Cathinka; Capuozzo, Alessandra; Parma, Valentina
2018-05-15
Despite the fact that human body odors can transfer anxiety-related signals, the impact of such signals in real-life situations is scant. In this study, the effects of anxiety chemosignals on the performance of dental students operating on simulation units, wearing t-shirts imbued with human sweat and masked with eugenol were tested. Twenty-four 4th year dental students (17F) donated their body odors in two sessions (Anxiety and Rest). Twenty-four normosmic, sex- and age-matched test subjects who were3rd year dental students performed three dental procedures while smelling masked anxiety body odors, masked rest body odors or masker alone. The intensity and pleasantness ratings showed that the test subjects could not report perceptual differences between the odor conditions. When exposed to masked anxiety body odors the test subject's dental performance was significantly worse than when they were exposed to masked rest body odors and masker alone, indicating that their performance was modulated by exposure to the emotional tone of the odor. These findings call for a careful evaluation of the anxiety-inducing effects of body odors in performance-related tasks and provide the first ecological evaluation of human anxiety chemosignal communication.
The Impact of Stress on Odor Perception.
Hoenen, Matthias; Wolf, Oliver T; Pause, Bettina M
2017-01-01
The olfactory system and emotional systems are highly intervened and share common neuronal structures. The current study investigates whether emotional (e.g., anger and fear) and physiological (saliva cortisol) stress responses are associated with odor identification ability and hedonic odor judgments (intensity, pleasantness, and unpleasantness). Nineteen men participated in the modified Trier Social Stress Test (TSST) and a control session (cycling on a stationary bike). The physiological arousal was similar in both sessions. In each session, participants' odor identification score was assessed using the University of Pennsylvania Smell Identification Test, and their transient mood was recorded on the dimensions of valence, arousal, anger, and anxiety. Multivariate regression analyses show that an increase of cortisol in the TSST session (as compared with the control session) is associated with better odor identification performance (β = .491) and higher odor intensity ratings (β = .562). However, increased anger in the TSST session (as compared with the control session) is associated with lower odor identification performance (β = -.482). The study shows divergent effects of the emotional and the physiological stress responses, indicating that an increase of cortisol is associated with better odor identification performance, whereas increased anger is associated with poorer odor identification performance.
Habitat odor can alleviate innate stress responses in mice.
Matsukawa, Mutsumi; Imada, Masato; Aizawa, Shin; Sato, Takaaki
2016-01-15
Predatory odors, which can induce innate fear and stress responses in prey species, are frequently used in the development of animal models for several psychiatric diseases including post-traumatic stress disorder (PTSD) following a life-threatening event. We have previously shown that odors can be divided into at least three types; odors that act as (1) innate stressors, (2) as innate relaxants, or (3) have no innate effects on stress responses. Here, we attempted to verify whether an artificial odor, which had no innate effect on predatory odor-induced stress, could alleviate stress if experienced in early life as a habitat odor. In the current study, we demonstrated that the innate responses were changed to counteract stress following a postnatal experience. Moreover, we suggest that inhibitory circuits involved in stress-related neuronal networks and the concentrations of norepinephrine in the hippocampus may be crucial in alleviating stress induced by the predatory odor. Overall, these findings may be important for understanding the mechanisms involved in differential odor responses and also for the development of pharmacotherapeutic interventions that can alleviate stress in illnesses like PTSD. Copyright © 2015 Elsevier B.V. All rights reserved.
Brattoli, Magda; Cisternino, Ezia; Dambruoso, Paolo Rosario; de Gennaro, Gianluigi; Giungato, Pasquale; Mazzone, Antonio; Palmisani, Jolanda; Tutino, Maria
2013-01-01
The gas chromatography-olfactometry (GC-O) technique couples traditional gas chromatographic analysis with sensory detection in order to study complex mixtures of odorous substances and to identify odor active compounds. The GC-O technique is already widely used for the evaluation of food aromas and its application in environmental fields is increasing, thus moving the odor emission assessment from the solely olfactometric evaluations to the characterization of the volatile components responsible for odor nuisance. The aim of this paper is to describe the state of the art of gas chromatography-olfactometry methodology, considering the different approaches regarding the operational conditions and the different methods for evaluating the olfactometric detection of odor compounds. The potentials of GC-O are described highlighting the improvements in this methodology relative to other conventional approaches used for odor detection, such as sensoristic, sensorial and the traditional gas chromatographic methods. The paper also provides an examination of the different fields of application of the GC-O, principally related to fragrances and food aromas, odor nuisance produced by anthropic activities and odorous compounds emitted by materials and medical applications. PMID:24316571
Kumazawa, Kenji; Kaneko, Shu; Nishimura, Osamu
2013-12-11
The aroma concentrates of two types of raw miso (traditional Japanese fermented soybean paste) were prepared by combining solid phase extraction (SPE) and solvent-assisted flavor evaporation (SAFE) techniques. The aroma extract dilution analysis (AEDA) applied to the volatile fraction revealed 39 odor-active peaks with FD factors between 4(1) and 4(8). Among the perceived odorants, 32 odorants were identified or tentatively identified from the 39 odor-active peaks, and the newly identified odorants for the miso were half of them. Furthermore, by comparison of the FD factors between the raw miso and heat-processed miso, it was found that one increasing odorant (methional) and three decreasing odorants (1-octen-3-one, (Z)-1,5-octadien-3-one, and trans-4,5-epoxy-(E)-2-decenal) contributed to the flavor change during the heat processing. This finding suggested that the flavor change in the raw miso during heat processing is attributed to relatively few odorant changes. In addition, it was assumed that the amino acids included in the miso have a significant influence on the remarkable disappearance of the three decreasing odorants.
No oral-cavity-only discrimination of purely olfactory odorants.
Stephenson, Dejaimenay; Halpern, Bruce P
2009-02-01
The purely olfactory odorants coumarin, octanoic acid, phenylethyl alcohol, and vanillin had been found to be consistently identified when presented retronasally but could not be identified when presented oral-cavity only (OCO). However, OCO discrimination of these odorants was not tested. Consequently, it remained possible that the oral cavity trigeminal system might provide sufficient information to differentiate these purely olfactory odorants. To evaluate this, 20 participants attempted to discriminate vapor-phase coumarin, octanoic acid, phenylethyl alcohol, and vanillin and, as a control, the trigeminal stimulus peppermint extract, from their glycerin solvent, all presented OCO. None of the purely olfactory odorants could be discriminated OCO, but, as expected, peppermint extract was consistently discriminated. This inability to discriminate clarifies and expands the previous report of lack of OCO identification of purely olfactory odorants. Taken together with prior data, these results suggest that the oral cavity trigeminal system is fully unresponsive to these odorants in vapor phase and that coumarin, octanoic acid, phenylethyl alcohol, and vanillin are indeed purely olfactory stimuli. The OCO discrimination of peppermint extract demonstrated that the absence of discrimination for the purely olfactory odorants was odorant dependent and confirmed that the oral cavity trigeminal system will provide differential response information to some vapor-phase stimuli.
Fresh squeezed orange juice odor: a review.
Perez-Cacho, Pilar Ruiz; Rouseff, Russell L
2008-08-01
Fresh orange juice is a highly desirable but unstable product. This review examines analytical findings, odor activity, and variations due to cultivar, sampling methods, manner of juicing, plus possible enzymatic and microbial artifacts. Initial attempts to characterize orange juice odor were based on volatile quantitation and overemphasized the importance of high concentration volatiles. Although over 300 volatiles have been reported from GC-MS analytical studies, this review presents 36 consensus aroma active components from GC-olfactometry studies consisting of 14 aldehydes, 7 esters, 5 terpenes, 6 alcohols, and 4 ketones. Most are trace (microg/L) components. (+)-Limonene is an essential component in orange juice odor although its exact function is still uncertain. Total amounts of volatiles in mechanically squeezed juices are three to 10 times greater than hand-squeezed juices because of elevated peel oil levels. Elevated peel oil changes the relative proportion of several key odorants. Odor active components from solvent extraction studies differ from those collected using headspace techniques as they include volatiles with low vapor pressure such as vanillin. Some reported odorants such as 2,3-butanedione are microbial contamination artifacts. Orange juice odor models confirm that fresh orange aroma is complex as the most successful models contain 23 odorants.
Yoshioka, N; Kurata, K; Takahashi, T; Ariizumi, M; Mori, T; Fujisawa, H; Kameyama, N; Okuyama, Y
2018-06-13
Body odor is mainly caused by secreted sweat. Although sweat is almost odorless immediately after secretion, decomposition or denaturation of components contained in sweat by bacteria on the skin surface contributes to unpleasant body odor. Body odor is due to various substances and aldehydes are primarily detected in body odor [1-4]. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Alliesthesia is greater for odors of fatty foods than of non-fat foods.
Plailly, Jane; Luangraj, Ninhda; Nicklaus, Sophie; Issanchou, Sylvie; Royet, Jean-Pierre; Sulmont-Rossé, Claire
2011-12-01
Alliesthesia is the modulation of the rewarding value of a stimulus according to the internal state (hungry or satiated). This study aimed to evaluate this phenomenon as a function of the nature of the stimulus (odors evoking edible and non-edible items, and the food odors evoking fatty and non-fat foods) and to compare the effectiveness of two reward evaluations (measures of pleasantness and appetence) to reveal alliesthesia. The results showed that both fatty and non-fat food odors were judged as less pleasant and less appetent when the subjects were satiated than when they were hungry, whereas no such difference was observed for non-food odors. There was a greater decrease in appetence than there was in pleasantness. Moreover, the decrease in appetence was greater for fatty than for non-fat food odors, whereas the decrease in pleasantness was similar for both fatty and non-fat food odors. Our study allows for the definition of a more comprehensive pattern of alliesthesia based on odor category. It demonstrates that alliesthesia is specific to food odors and that it is more pronounced when odors are associated with fatty rather than non-fat foods. It also reveals that an appetence measure is more sensitive than a pleasantness measure for describing an acute reward modulation process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Enhancement of Retronasal Odors by Taste
Nachtigal, Danielle; Hammond, Samuel; Lim, Juyun
2012-01-01
Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste (“sweet,” “sour,” “salty,” and “bitter”) and odor (“other”) intensity for aqueous samples of 3 tastants (sucrose, NaCl, and citric acid) and 3 odorants (vanillin, citral, and furaneol), both alone and in taste–odor mixtures. The results showed that sucrose, but not the other taste stimuli, significantly increased the perceived intensity of all 3 odors. Enhancement of tastes by odors was inconsistent and generally weaker than enhancement of odors by sucrose. A second experiment used a flavored beverage and a custard dessert to test whether the findings from the first experiment would hold for the perception of actual foods. Adding sucrose significantly enhanced the intensity of “cherry” and “vanilla” flavors, whereas adding vanillin did not significantly enhance the intensity of sweetness. It is proposed that enhancement of retronasal odors by a sweet stimulus results from an adaptive sensory mechanism that serves to increase the salience of the flavor of nutritive foods. PMID:21798851
The impact of expertise in olfaction
Royet, Jean-Pierre; Plailly, Jane; Saive, Anne-Lise; Veyrac, Alexandra; Delon-Martin, Chantal
2013-01-01
Olfactory expertise remains poorly understood, most likely because experts in odor, such as perfumers, sommeliers, and oenologists, are much rarer than experts in other modalities, such as musicians or sportsmen. In this review, we address the specificities of odor expertise in both odor experts and in a priori untrained individuals who have undergone specific olfactory training in the frame of an experiment, such as repeated exposure to odors or associative learning. Until the 21st century, only the behavioral effects of olfactory training of untrained control individuals had been reported, revealing an improvement of olfactory performance in terms of sensitivity, discrimination, memory, and identification. Behavioral studies of odor experts have been scarce, with inconsistent or inconclusive results. Recently, the development of cerebral imaging techniques has enabled the identification of brain areas and neural networks involved in odor processing, revealing functional and structural modifications as a function of experience. The behavioral approach to odor expertise has also evolved. Researchers have particularly focused on odor mental imagery, which is characteristic of odor experts, because this ability is absent in the average person but is part of a perfumer’s professional practice. This review summarizes behavioral, functional, and structural findings on odor expertise. These data are compared with those obtained using animals subjected to prolonged olfactory exposure or to olfactory-enriched environments and are discussed in the context of functional and structural plasticity. PMID:24379793
Post-eclosion odor experience modifies olfactory receptor neuron coding in Drosophila
Iyengar, Atulya; Chakraborty, Tuhin Subhra; Goswami, Sarit Pati; Wu, Chun-Fang; Siddiqi, Obaid
2010-01-01
Olfactory responses of Drosophila undergo pronounced changes after eclosion. The flies develop attraction to odors to which they are exposed and aversion to other odors. Behavioral adaptation is correlated with changes in the firing pattern of olfactory receptor neurons (ORNs). In this article, we present an information-theoretic analysis of the firing pattern of ORNs. Flies reared in a synthetic odorless medium were transferred after eclosion to three different media: (i) a synthetic medium relatively devoid of odor cues, (ii) synthetic medium infused with a single odorant, and (iii) complex cornmeal medium rich in odors. Recordings were made from an identified sensillum (type II), and the Jensen–Shannon divergence (DJS) was used to assess quantitatively the differences between ensemble spike responses to different odors. Analysis shows that prolonged exposure to ethyl acetate and several related esters increases sensitivity to these esters but does not improve the ability of the fly to distinguish between them. Flies exposed to cornmeal display varied sensitivity to these odorants and at the same time develop greater capacity to distinguish between odors. Deprivation of odor experience on an odorless synthetic medium leads to a loss of both sensitivity and acuity. Rich olfactory experience thus helps to shape the ORNs response and enhances its discriminative power. The experiments presented here demonstrate an experience-dependent adaptation at the level of the receptor neuron. PMID:20448199
Post-eclosion odor experience modifies olfactory receptor neuron coding in Drosophila.
Iyengar, Atulya; Chakraborty, Tuhin Subhra; Goswami, Sarit Pati; Wu, Chun-Fang; Siddiqi, Obaid
2010-05-25
Olfactory responses of Drosophila undergo pronounced changes after eclosion. The flies develop attraction to odors to which they are exposed and aversion to other odors. Behavioral adaptation is correlated with changes in the firing pattern of olfactory receptor neurons (ORNs). In this article, we present an information-theoretic analysis of the firing pattern of ORNs. Flies reared in a synthetic odorless medium were transferred after eclosion to three different media: (i) a synthetic medium relatively devoid of odor cues, (ii) synthetic medium infused with a single odorant, and (iii) complex cornmeal medium rich in odors. Recordings were made from an identified sensillum (type II), and the Jensen-Shannon divergence (D(JS)) was used to assess quantitatively the differences between ensemble spike responses to different odors. Analysis shows that prolonged exposure to ethyl acetate and several related esters increases sensitivity to these esters but does not improve the ability of the fly to distinguish between them. Flies exposed to cornmeal display varied sensitivity to these odorants and at the same time develop greater capacity to distinguish between odors. Deprivation of odor experience on an odorless synthetic medium leads to a loss of both sensitivity and acuity. Rich olfactory experience thus helps to shape the ORNs response and enhances its discriminative power. The experiments presented here demonstrate an experience-dependent adaptation at the level of the receptor neuron.
Effects of odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves.
Zhou, Lanxi; Ohata, Motoko; Arihara, Keizo
2016-06-15
Effects of the odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves were investigated in the present study. Equimolar solutions of glucose and glycine were adjusted to pH 7 and pH 9 and heated at 90 °C for 30 min. The odor generated from the glycine/glucose Maillard reaction significantly decreased negative moods. Its effects on brainwaves differed according to pH; alpha brainwave distribution was increased after inhalation of the odor generated at pH 7, whereas it was decreased by the odor generated at pH 9. The effects on mood and brainwaves were also measured after inhalation of model solutions, which comprised of potent odorants determined by aroma extract dilution analysis (AEDA), and the results were similar to those obtained with the Maillard reaction samples. Therefore, odors constructed by potent odorants could influence human mood and brainwaves. Among all potent odorants, 2,3-dimethylpyrazine and 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) were identified as the strongest, and high pH values resulted in higher yields of these odorants. Furthermore, DMHF was identified as the putative agent responsible for the decrease in alpha brainwave distribution after smelling the pH-9 Maillard reaction sample since higher concentrations of DMHF resulted in a similar effect.
Recognition of the Component Odors in Mixtures
Fletcher, Dane B; Hettinger, Thomas P
2017-01-01
Abstract Natural olfactory stimuli are volatile-chemical mixtures in which relative perceptual saliencies determine which odor-components are identified. Odor identification also depends on rapid selective adaptation, as shown for 4 odor stimuli in an earlier experimental simulation of natural conditions. Adapt-test pairs of mixtures of water-soluble, distinct odor stimuli with chemical features in common were studied. Identification decreased for adapted components but increased for unadapted mixture-suppressed components, showing compound identities were retained, not degraded to individual molecular features. Four additional odor stimuli, 1 with 2 perceptible odor notes, and an added “water-adapted” control tested whether this finding would generalize to other 4-compound sets. Selective adaptation of mixtures of the compounds (odors): 3 mM benzaldehyde (cherry), 5 mM maltol (caramel), 1 mM guaiacol (smoke), and 4 mM methyl anthranilate (grape-smoke) again reciprocally unmasked odors of mixture-suppressed components in 2-, 3-, and 4-component mixtures with 2 exceptions. The cherry note of “benzaldehyde” (itself) and the shared note of “methyl anthranilate and guaiacol” (together) were more readily identified. The pervasive mixture-component dominance and dynamic perceptual salience may be mediated through peripheral adaptation and central mutual inhibition of neural responses. Originating in individual olfactory receptor variants, it limits odor identification and provides analytic properties for momentary recognition of a few remaining mixture-components. PMID:28641388
Mice with a "monoclonal nose": perturbations in an olfactory map impair odor discrimination.
Fleischmann, Alexander; Shykind, Benjamin M; Sosulski, Dara L; Franks, Kevin M; Glinka, Meredith E; Mei, Dan Feng; Sun, Yonghua; Kirkland, Jennifer; Mendelsohn, Monica; Albers, Mark W; Axel, Richard
2008-12-26
We have altered the neural representation of odors in the brain by generating a mouse with a "monoclonal nose" in which greater than 95% of the sensory neurons express a single odorant receptor, M71. As a consequence, the frequency of sensory neurons expressing endogenous receptor genes is reduced 20-fold. We observe that these mice can smell, but odor discrimination and performance in associative olfactory learning tasks are impaired. However, these mice cannot detect the M71 ligand acetophenone despite the observation that virtually all sensory neurons and glomeruli are activated by this odor. The M71 transgenic mice readily detect other odors in the presence of acetophenone. These observations have implications for how receptor activation in the periphery is represented in the brain and how these representations encode odors.
Blue petrels recognize the odor of their egg.
Leclaire, Sarah; Bourret, Vincent; Bonadonna, Francesco
2017-09-01
Most studies on avian olfactory communication have focused on mate choice, and the importance of olfaction in subsequent nesting stages has been poorly explored. In particular, the role of olfactory cues in egg recognition has received little attention, despite eggs potentially being spread with parental odorous secretions known to elicit individual discrimination. Here, we used behavioral choice tests to determine whether female blue petrels ( Halobaena caerulea ) can discriminate the odor of their own egg from the odor of a conspecific egg. Females preferentially approached the odor of their own egg, suggesting that blue petrels can recognize their own egg using odor cues. This finding raises the question of the adaptive value of this mechanism, and may inspire further research on odor-based egg discrimination in species suffering brood parasitism. © 2017. Published by The Company of Biologists Ltd.
Emotion experienced during encoding enhances odor retrieval cue effectiveness.
Herz, R S
1997-01-01
Emotional potentiation may be a key variable in the formation of odor-associated memory. Two experiments were conducted in which a distinctive ambient odor was present or absent during encoding and retrieval sessions and subjects were in an anxious or neutral mood during encoding. Subjects' mood at retrieval was not manipulated. The laboratory mood induction used in Experiment 1 suggested that anxiety might increase the effectiveness of an odor retrieval cue. This trend was confirmed in Experiment 2 by capturing a naturally stressful situation. Subjects who had an ambient odor cue available and were in a preexam state during encoding recalled more words than subjects in any other group. These data are evidence that heightened emotion experienced during encoding with an ambient odor can enhance the effectiveness of an odor as a cue to memory.
Insect odorant receptors are molecular targets of the insect repellent DEET.
Ditzen, Mathias; Pellegrino, Maurizio; Vosshall, Leslie B
2008-03-28
DEET (N,N-diethyl-meta-toluamide) is the world's most widely used topical insect repellent, with broad effectiveness against most insects. Its mechanism of action and molecular target remain unknown. Here, we show that DEET blocks electrophysiological responses of olfactory sensory neurons to attractive odors in Anopheles gambiae and Drosophila melanogaster. DEET inhibits behavioral attraction to food odors in Drosophila, and this inhibition requires the highly conserved olfactory co-receptor OR83b. DEET inhibits odor-evoked currents mediated by the insect odorant receptor complex, comprising a ligand-binding subunit and OR83b. We conclude that DEET masks host odor by inhibiting subsets of heteromeric insect odorant receptors that require the OR83b co-receptor. The identification of candidate molecular targets for the action of DEET may aid in the design of safer and more effective insect repellents.
A salty-congruent odor enhances saltiness: functional magnetic resonance imaging study.
Seo, Han-Seok; Iannilli, Emilia; Hummel, Cornelia; Okazaki, Yoshiro; Buschhüter, Dorothee; Gerber, Johannes; Krammer, Gerhard E; van Lengerich, Bernhard; Hummel, Thomas
2013-01-01
Excessive intake of dietary salt (sodium chloride) may increase the risk of chronic diseases. Accordingly, various strategies to reduce salt intake have been conducted. This study aimed to investigate whether a salty-congruent odor can enhance saltiness on the basis of psychophysical (Experiment 1) and neuroanatomical levels (Experiment 2). In Experiment 1, after receiving one of six stimulus conditions: three odor conditions (odorless air, congruent, or incongruent odor) by two concentrations (low or high) of either salty or sweet taste solution, participants were asked to rate taste intensity and pleasantness. In Experiment 2, participants received the same stimuli during the functional magnetic resonance imaging scan. In Experiment 1, compared with an incongruent odor and/or odorless air, a congruent odor enhanced not only taste intensity but also either pleasantness of sweetness or unpleasantness of saltiness. In Experiment 2, a salty-congruent combination of odor and taste produced significantly higher neuronal activations in brain regions associated with odor-taste integration (e.g., insula, frontal operculum, anterior cingulate cortex, and orbitofrontal cortex) than an incongruent combination and/or odorless air with taste solution. In addition, the congruent odor-induced saltiness enhancement was more pronounced in the low-concentrated tastant than in the high-concentrated one. In conclusion, this study demonstrates the congruent odor-induced saltiness enhancement on the basis of psychophysical and neuroanatomical results. These findings support an alternative strategy to reduce excessive salt intake by adding salty-congruent aroma to sodium reduced food. However, there are open questions regarding the salty-congruent odor-induced taste unpleasantness. Copyright © 2011 Wiley Periodicals, Inc.
Body odors promote automatic imitation in autism.
Parma, Valentina; Bulgheroni, Maria; Tirindelli, Roberto; Castiello, Umberto
2013-08-01
Autism spectrum disorders comprise a range of neurodevelopmental pathologies characterized, among other symptoms, by impaired social interactions. Individuals with this diagnosis are reported to often identify people by repetitively sniffing pieces of clothing or the body odor of family members. Since body odors are known to initiate and mediate many different social behaviors, smelling the body odor of a family member might constitute a sensory-based action promoting social contact. In light of this, we hypothesized that the body odor of a family member would facilitate the appearance of automatic imitation, an essential social skill known to be impaired in autism. We recruited 20 autistic and 20 typically developing children. Body odors were collected from the children's mothers' axillae. A child observed a model (their mother or a stranger mother) execute (or not) a reach-to-grasp action toward an object. Subsequently, she performed the same action. The object was imbued with the child's mother's odor, a stranger mother's odor, or no odor. The actions were videotaped, and movement time was calculated post hoc via a digitalization technique. Automatic imitation effects-expressed in terms of total movement time reduction-appear in autistic children only when exposed to objects paired with their own mother's odor. The maternal odor, which conveys a social message otherwise neglected, helps autistic children to covertly imitate the actions of others. Our results represent a starting point holding theoretical and practical relevance for the development of new strategies to enhance communication and social behavior among autistic individuals. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
The Odor Context Facilitates the Perception of Low-Intensity Facial Expressions of Emotion
Leleu, Arnaud; Demily, Caroline; Franck, Nicolas; Durand, Karine; Schaal, Benoist; Baudouin, Jean-Yves
2015-01-01
It has been established that the recognition of facial expressions integrates contextual information. In this study, we aimed to clarify the influence of contextual odors. The participants were asked to match a target face varying in expression intensity with non-ambiguous expressive faces. Intensity variations in the target faces were designed by morphing expressive faces with neutral faces. In addition, the influence of verbal information was assessed by providing half the participants with the emotion names. Odor cues were manipulated by placing participants in a pleasant (strawberry), aversive (butyric acid), or no-odor control context. The results showed two main effects of the odor context. First, the minimum amount of visual information required to perceive an expression was lowered when the odor context was emotionally congruent: happiness was correctly perceived at lower intensities in the faces displayed in the pleasant odor context, and the same phenomenon occurred for disgust and anger in the aversive odor context. Second, the odor context influenced the false perception of expressions that were not used in target faces, with distinct patterns according to the presence of emotion names. When emotion names were provided, the aversive odor context decreased intrusions for disgust ambiguous faces but increased them for anger. When the emotion names were not provided, this effect did not occur and the pleasant odor context elicited an overall increase in intrusions for negative expressions. We conclude that olfaction plays a role in the way facial expressions are perceived in interaction with other contextual influences such as verbal information. PMID:26390036
Recovery of agricultural odors and odorous compounds from polyvinyl fluoride film bags
USDA-ARS?s Scientific Manuscript database
Accurate sampling methods are necessary when quantifying odor and volatile organic compound emissions at agricultural facilities. The commonly accepted methodology in the U.S. has been to collect odor samples in polyvinyl fluoride bags (PVF, brand name Tedlar®) and, subsequently, analyze with human ...
The Enantioselectivity of Odor Sensation: Some Examples for Undergraduate Chemistry Courses
ERIC Educational Resources Information Center
Kraft, Philip; Mannschreck, Albrecht
2010-01-01
This article discusses seven chiral odorants that demonstrate the enantioselectivity of odor sensation: carvone, Celery Ketone, camphor, Florhydral, 3-methyl-3-sulfanylhexan-1-ol, muscone, and methyl jasmonate. After a general introduction of the odorant-receptor interaction and the combinatorial code of olfaction, the olfactory properties of the…
Chavez, C; Coufal, C D; Carey, J B; Lacey, R E; Beier, R C; Zahn, J A
2004-06-01
The impact of different Met sources on broiler fecal odor volatiles was determined by evaluating the types of sulfur compounds produced in broiler excreta. Two experiments were conducted using straight-run broiler chicks randomly distributed in battery cages, with 3 replicate pens of 16 birds each. The treatment groups were 1) dry Met hydroxy analogue (dry MetHA), 2) sodium methioninate aqueous solution (NaMet), 3) liquid Met hydroxy analogue (Liq MetHA), 4) D,L- Met, and 5) no supplemental Met (control group). The Met activities of each Met source were 52, 45.9, 88, and 98%, respectively. All diets were formulated to contain either 0.8% (experiment 1) total Met activity or 0.5% Met activity in the starter and 0.38% Met activity in the grower (experiment 2) (except the control group, 0.35% Met activity), but otherwise met NRC nutrient requirements (NRC, 1994). Diets were fed ad libitum from d 1 to 6 wk of age. There were no significant differences in BW among the treatments. All excreta were collected in litter pans lined with aluminum foil. In experiment 1, at wk 6, broiler excreta were collected for a 24-h period, and 4.5 g of broiler excreta from each treatment group was collected into 15-mL headspace vials. Samples were analyzed by gas chromatography/mass spectrometry (GC/MS). The volatile sulfur compounds that were identified and quantified in the broiler excreta were H2S, carbonyl sulfide (COS), methyl mercaptan (CH3SH), dimethyl disulfide (CH3SSCH3), and dimethyl trisulfide (CH3SSSCH3). The NaMet treatment group had significantly higher concentrations of H2S, COS, and CH3SSCH3 compared with all other treatment groups. The Liq MetHA group had significantly lower concentrations of H2S, COS, CH3SH, and CH3SSCH3 compared with the other treatment groups. The dry MetHA group significantly had the highest concentration of CH4SH. The D,L-Met treatment group had the significantly highest concentration of CH3SSSCH3 and the lowest concentration of H2S. The control group had the significantly lowest concentrations of CH3SH, CH3SSCH3, and CH3SSSCH3 compared with the other treatment groups. In experiment 2, at wk 6, an electronic nose was used to evaluate 15 air samples per treatment group. In addition, 15 air samples (containing 6 to 8 L of air in a Tedlar bag, 3 samples per treatment group) were collected for odor evaluation by a sensory panel. Electronic nose sensor data revealed that volatile compounds in broiler excreta from the control group were significantly different from the other 4 treatment groups. Evaluation of the air samples by a sensory panel determined that there was a statistically significant difference in odor threshold detection between the control group and the other treatment groups. The dilutions to threshold of control group, NaMet, dry MetHA, Liq MetHA, and D,L-Met were 350, 492, 568, 496, and 526 odor units, respectively. These findings demonstrate that dietary Met sources significantly influenced odorous volatile concentrations in broiler excreta.
Remote sensing of the energetic status of plants and ecosystems: optical and odorous signals
NASA Astrophysics Data System (ADS)
Penuelas, J.; Bartrons, M.; Llusia, J.; Filella, I.
2016-12-01
The optical and odorous signals emitted by plants and ecosystems present consistent relationships. They offer promising prospects for continuous local and global monitoring of the energetic status of plants and ecosystems, and therefore of their processing of energy and matter. We will discuss how the energetic status of plants (and ecosystems) resulting from the balance between the supply and demand of reducing power can be assessed biochemically, by the cellular NADPH/NADP ratio, optically, by using the photochemical reflectance index and sun-induced fluorescence as indicators of the dissipation of excess energy and associated physiological processes, and "odorously", by the emission of volatile organic compounds such as isoprenoids, as indicators of an excess of reducing equivalents and also of enhancement of protective converging physiological processes. These signals thus provide information on the energetic status, associated health status, and the functioning of plants and ecosystems. We will present the links among the three signals and will especially discuss the possibility of remotely sense the optical signals linked to carbon uptake and VOCs exchange by plants and ecosystems. These signals and their integration may have multiple applications for environmental and agricultural monitoring, for example, by extending the spatial coverage of carbon-flux and VOCs emission observations to most places and times, and/or for improving the process-based modeling of carbon fixation and isoprenoid emissions from terrestrial vegetation on plant, ecosystemic and global scales. Considerable challenges remain for a wide-scale and routine implementation of these biochemical, optical, and odorous signals for ecosystemic and/or agronomic monitoring and modeling, but its interest for making further steps forward in global ecology, agricultural applications, global carbon cycle, atmospheric science, and earth science warrants further research efforts in this line.