Off-axis reflective optical apparatus
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor); Leary, David F. (Inventor); Mammini, Paul V. (Inventor)
2005-01-01
Embodiments of the present invention are directed to a simple apparatus and a convenient and accurate method of mounting the components to form an off-axis reflective optical apparatus such as a collimator. In one embodiment, an off-axis reflective optical apparatus comprises a mounting block having a ferrule holder support surface and an off-axis reflector support surface which is generally perpendicular to the ferrule holder support surface. An optical reflector is mounted on the off-axis reflector support surface and has a reflected beam centerline. The optical reflector has a conic reflective surface and a conic center. A ferrule holder is mounted on the ferrule holder support surface. The ferrule holder provides a ferrule for coupling to an optical fiber and orienting a fiber tip of the optical fiber along a fiber axis toward the optical reflector. The fiber axis is nonparallel to the reflected beam centerline. Prior to mounting the optical reflector to the off-axis reflector support surface and prior to mounting the ferrule holder to the ferrule holder support surface, the optical reflector is movable on the off-axis reflector surface and the ferrule holder is movable on the ferrule holder support surface to align the conic center of the optical reflector with respect to the fiber tip of the optical fiber, and the apparatus has at least one of the following features: (1) the optical reflector is movable on the off-axis reflector support surface to adjust a focus of the fiber tip with respect to the optical reflector, and (2) the ferrule holder is movable on the ferrule holder support surface to adjust the focus of the fiber tip with respect to the optical reflector.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.
2007-01-01
The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial implications are discussed for constituent and architecture design to improve the directional cracking of SiC/SiC CMC components with MI matrices.
Effects of off-axis loading on the tensile behavior of a ceramic-matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, C.S.; Evans, A.G.
A 0{degree}/90{degree} ceramic-matrix composite (CMC) comprised of Nicalon fibers in magnesium aluminosilicate (MAS) has been loaded in tension in three orientations relative to the fiber direction: 0, 30, and 45{degree}. The off-axis loaded samples exhibit inelastic deformation at appreciably lower stresses than samples loads at 0{degree}. Matrix cracking governs the inelastic strains in all orientations. But, important differences in the morphologies and sequencing of the cracks account for the differences in the stress levels. Off-axis failure also occurs at substantially lower stresses than on-axis failure. On-axis composite failure is governed by fiber fracture, but off-axis failure involves matrix-crack coalescence. Tomore » facilitate interpretation and modeling of these behaviors, the interface friction and debond stresses have been determined from hysteresis measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bie, B. X.; Huang, J. Y.; Fan, D.
Uniaxial tensile experiments are conducted on a T700 carbon fiber/epoxy composite along various offaxis angles. Stressestrain curves are measured along with strain fields mapped via synchrotron x-ray digital image correlation, as well as computerized tomography. Elastic modulus and tensile strength decrease with increasing off-axis angles, while fracture strain exhibits a nonmonotonic trend as a combined result of tensile strength decrease and fracture mode transition. At high off-axis angles, strain field mapping demonstrates distinct tensile and shear strain localizations and deformation bands approximately along the fiber directions, while deformation is mainly achieved via continuous growth of tensile strain at low off-axismore » angles. Roughness of fracture planes decreases exponentially as the off-axis angle increases. The stressestrain curves, strain fields, tomography and fractographs show consistent features, and reveal a fracture mode transition from mainly tension (fiber fracture) to in-plane shear (interface debonding).« less
Fracture modes in off-axis fiber composites
NASA Technical Reports Server (NTRS)
Sinclair, J. H.; Chamis, C. C.
1978-01-01
Criteria were developed for identifying, characterizing, and quantifying fracture modes in high-modulus graphite-fiber/resin unidirectional composites subjected to off-axis tensile loading. Procedures are described which use sensitivity analyses and off-axis data to determine the uniaxial strength of fiber composites. It was found that off-axis composites fail by three fracture modes which produce unique fracture surface characteristics. The stress that dominates each fracture mode and the load angle range of its dominance can be identified. Linear composite mechanics is adequate to describe quantitatively the mechanical behavior of off-axis composites. The uniaxial strengths predicted from off-axis data are comparable to these measured in uniaxial tests.
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1978-01-01
Finite element analyses were performed to investigate theoretically the effects of in-plane and out-of-plane eccentricities, bending or twisting, and thickness nonuniformity on the axial stress and strain variations across the width of off-axis specimens. The results are compared with measured data and are also used to assess the effects of these eccentricities on the fracture stress of off-axis fiber composites. Guidelines for detecting and minimizing the presence of eccentricities are described.
Off-axis ultraviolet-written thin-core fiber Bragg grating for directional bending measurements
NASA Astrophysics Data System (ADS)
Zhang, Lisong; Qiao, Xueguang; Liu, Qinpeng; Shao, Min; Jiang, Youhua; Huang, Dong
2018-03-01
A directional bending sensor based on thin-core fiber Bragg grating is proposed and demonstrated experimentally. It is inscribed by off-center technique and exposed by 193 nm ArF excimer laser through a phase mask. A series of cladding modes are excited and their intensities are enhanced to about 10 dB. The formation mechanism of those cladding modes is discussed and analyzed. The intensities of these cladding mode resonances is detected for bending and direction with maximum sensitivity 1.93 dB/m1 at 0° to - 1 . 95 dB/m1 at 180°under the curvature varied from 0 m-1to 2.5 m-1. The sensitivity of surrounding temperature is 11.3pm/°C ranging from 25 °C to 60 °C. This all-fiber structure has a great advantage for fiber orientation identification sensor with more convenient manufacture and needless de-localize FBGs.
The effects of eccentricities on the fracture of off-axis fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1978-01-01
Finite element analyses were performed to investigate theoretically the effects of in-plane and out-of plane eccentricities, bending or twisting, and thickness nonuniformity on the axial stress and strain variations across the width of off-axis specimens. The results are compared with measured data and are also used to access the effects of these eccentricities on the fracture stress of off-axis fiber composites. Guidelines for detecting and minimizing the presence of eccentricities are described.
NASA Technical Reports Server (NTRS)
Sinclair, J. H.; Chamis, C. C.
1977-01-01
The mechanical behavior, fracture surfaces, and fracture modes of unidirectional high-modulus graphite-fiber/epoxy composites subjected to off-axis tensile loads were investigated experimentally. The investigation included the generation of stress-strain-to-fracture data and scanning electron microscope studies of the fractured surfaces. The results led to the identification of fracture modes and distinct fracture surface characteristics for off-axis tensile loading. The results also led to the formulation of critical for identifying and characterizing these fracture modes and their associated fracture surfaces. The results presented and discussed herein were used in the theoretical investigation and comparisons described in Part 2. These results should also provide a good foundation for identifying, characterizing, and quantifying fracture modes in both off-axis and angle-plied laminates.
Buckling Modes of Structural Elements of Off-Axis Fiber-Reinforced Plastics
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Polyakova, N. V.; Kholmogorov, S. A.; Shishov, M. A.
2018-05-01
The structures of two types of unidirectional fiber-reinforced composites — with an ELUR-P carbon fiber tape, an XT-118 cold-cure binder with an HSE 180 REM prepreg, and a hot-cure binder — were investigated. The diameters of fibers and fiber bundles (threads) of both the types of composites were measured, and their mutual arrangement was examined both in the semifinished products (in the uncured state) and in the finished composites. The defects characteristic of both the types of binder and manufacturing technique were detected in the cured composites. Based on an analysis of the results obtained, linearized problems on the internal multiscale buckling modes of an individual fiber (with and without account of its interaction with the surrounding matrix) or of a fiber bundle are formulated. In the initial atate, these structural elements of the fibrous composites are in a subcritical (unperturbed) state under the action of shear stresses and tension (compression) in the transverse direction. Such an initial stress state is formed in them in tension and compression tests on flat specimens made of off-axis-reinforced composites with straight fibers. To formulate the problems, the equations derived earlier from a consistent variant of geometrically nonlinear equations of elasticity theory by reducing them to the one-dimensional equations of the theory of straight rods on the basis of a refined Timoshenko shear model with account of tensile-compressive strains in the transverse direction are used. It is shown that, in loading test specimens, a continuous rearrangement of composite structure can occur due to the realization and continuous change of internal buckling modes as the wave-formation parameter varies continuously, which apparently explain the decrease revealed in the tangential shear modulus of the fibrous composites with increasing shear strains.
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1978-01-01
The mechanical behavior and stresses inducing fracture modes of unidirectional high-modulus graphite-fiber/epoxy composites subjected to off-axis tensile loads were investigated theoretically. The investigation included the use of composite mechanics, combined-stress failure criteria, and finite-element stress analysis. The results are compared with experimental data and led to the formulation of criteria and convenient plotting procedures for identifying, characterizing, and quantifying these fracture modes.
An Orthotropic Model for Composite Materials in EPIC
2014-06-06
directions, and fails the material by eliminating the deviatoric stresses when any of the plastic strain components reaches its user-supplied critical...the directions of the fibers, especially in comparison to the non-linear stress -strain curves obtained from off-axis tensile tests. A somewhat...increment in Cauchy stress ; and is the tensor of elastic moduli. In EPIC, this equation is implemented via central differences because the velocity
Geometric phase due to orbit-orbit interaction: rotating LP11 modes in a two-mode fiber
NASA Astrophysics Data System (ADS)
Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.
2017-10-01
Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit-orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.
Deep Broad-Band Infrared Nulling Using A Single-Mode Fiber Beam Combiner and Baseline Rotation
NASA Technical Reports Server (NTRS)
Mennesson, Bertrand; Haguenauer, P.; Serabyn, E.; Liewer, K.
2006-01-01
The basic advantage of single-mode fibers for deep nulling applications resides in their spatial filtering ability, and has now long been known. However, and as suggested more recently, a single-mode fiber can also be used for direct coherent recombination of spatially separated beams, i.e. in a 'multi-axial' nulling scheme. After the first successful demonstration of deep (<2e-6) visible LASER nulls using this technique (Haguenauer & Serabyn, Applied Optics 2006), we decided to work on an infrared extension for ground based astronomical observations, e.g. using two or more off-axis sub-apertures of a large ground based telescope. In preparation for such a system, we built and tested a laboratory infrared fiber nuller working in a wavelength regime where atmospheric turbulence can be efficiently corrected, over a pass band (approx.1.5 to 1.8 micron) broad enough to provide reasonable sensitivity. In addition, since no snapshot images are readily accessible with a (single) fiber nuller, we also tested baseline rotation as an approach to detect off-axis companions while keeping a central null. This modulation technique is identical to the baseline rotation envisioned for the TPF-I space mission. Within this context, we report here on early laboratory results showing deep stable broad-band dual polarization infrared nulls <5e-4 (currently limited by detector noise), and visible LASER nulls better than 3e-4 over a 360 degree rotation of the baseline. While further work will take place in the laboratory to achieve deeper stable broad-band nulls and test off-axis sources detection through rotation, the emphasis will be put on bringing such a system to a telescope as soon as possible. Detection capability at the 500:1 contrast ratio in the K band (2.2 microns) seem readily accessible within 50-100 mas of the optical axis, even with a first generation system mounted on a >5m AO equipped telescope such as the Palomar Hale 200 inch, the Keck, Subaru or Gemini telescopes.
Measurement of Poisson's ratio of nonmetallic materials by laser holographic interferometry
NASA Astrophysics Data System (ADS)
Zhu, Jian T.
1991-12-01
By means of the off-axis collimated plane wave coherent light arrangement and a loading device by pure bending, Poisson's ratio values of CFRP (carbon fiber-reinforced plactics plates, lay-up 0 degree(s), 90 degree(s)), GFRP (glass fiber-reinforced plactics plates, radial direction) and PMMA (polymethyl methacrylate, x, y direction) have been measured. In virtue of this study, the ministry standard for the Ministry of Aeronautical Industry (Testing method for the measurement of Poisson's ratio of non-metallic by laser holographic interferometry) has been published. The measurement process is fast and simple. The measuring results are reliable and accurate.
Determination of the technical constants of laminates in oblique directions
NASA Technical Reports Server (NTRS)
Vidouse, F.
1979-01-01
An off-axis tensile test theory based on Hooke's Law is applied to glass fiber reinforced laminates. A corrective parameter dependent on the characteristics of the strain gauge used is introduced by testing machines set up for isotropic materials. Theoretical results for a variety of strain gauges are compared with those obtained by a finite element method and with experimental results obtained on laminates reinforced with glass.
Price, Jeffery R.; Bingham, Philip R.
2005-11-08
Systems and methods are described for rapid acquisition of fused off-axis illumination direct-to-digital holography. A method of recording a plurality of off-axis object illuminated spatially heterodyne holograms, each of the off-axis object illuminated spatially heterodyne holograms including spatially heterodyne fringes for Fourier analysis, includes digitally recording, with a first illumination source of an interferometer, a first off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording, with a second illumination source of the interferometer, a second off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.
Nonlinear elastic effects on the energy flux deviation of ultrasonic waves in gr/ep composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1992-01-01
The effects of nonlinear elasticity on energy flux deviation in undirectional gr/ep composites are examined. The shift in the flux deviation is modeled using acoustoelasticity theory and the second- and third-order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress are considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3), while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1). For both conditions, the change in the energy flux deviation angle from the condition of zero applied stress is computed over the range of propagation directions of 0 to 60 deg from the fiber axis at two-degree intervals. A positive flux deviation angle implies the energy deviates away from the fiber direction toward the x1 axis, while a negative deviation means that the energy deviates toward the fibers. Over this range of fiber orientation angles, the energy of the quasi-longitudinal and pure mode transverse waves deviates toward the fibers, while that of the quasi-transverse mode deviates away from the fibers.
Determination of fiber-matrix interface failure parameters from off-axis tests
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1993-01-01
Critical fiber-matrix (FM) interface strength parameters were determined using a micromechanics-based approach together with failure data from off-axis tension (OAT) tests. The ply stresses at failure for a range of off-axis angles were used as input to a micromechanics analysis that was performed using the personal computer-based MICSTRAN code. FM interface stresses at the failure loads were calculated for both the square and the diamond array models. A simple procedure was developed to determine which array had the more severe FM interface stresses and the location of these critical stresses on the interface. For the cases analyzed, critical FM interface stresses were found to occur with the square array model and were located at a point where adjacent fibers were closest together. The critical FM interface stresses were used together with the Tsai-Wu failure theory to determine a failure criterion for the FM interface. This criterion was then used to predict the onset of ply cracking in angle-ply laminates for a range of laminate angles. Predictions for the onset of ply cracking in angle-ply laminates agreed with the test data trends.
Damage and failure behavior of metal matrix composites under biaxial loads
NASA Astrophysics Data System (ADS)
Kirkpatrick, Steven Wayne
Metal matrix composites (MMCs) are being considered for increased use in structures that require the ductility and damage tolerance of the metal matrix and the enhanced strength and creep resistance at elevated temperatures of high performance fibers. Particularly promising for advanced aerospace engines and airframes are SiC fiber/titanium matrix composites (TMCs). A large program was undertaken in the Air Force to characterize the deformation and failure behaviors of TMCs and to develop computational models that can be used for component design. The effort reported here focused on a SiC SCS-6/Timetal 21S composite under biaxial loading conditions. Biaxial loading conditions are important because multiaxial stresses have been shown to influence the strength and ductility of engineering materials and, in general, structural components are subjected to multiaxial loads. The TMC material response, including stress-strain curves and failure surfaces, was measured using a combination of off-axis uniaxial tension and compression tests and biaxial cruciform tests. The off-axis tests produce combinations of in-plane tension, compression, and shear stresses, the mix of which are controlled by the relative angle between the fiber and specimen axes. The biaxial cruciform tests allowed independent control over the tensile or compressive loads in the fiber and transverse directions. The results of these characterization tests were used to develop a microstructural constitutive model and failure criteria. The basis of the micromechanical constitutive model is a representative unit volume of the MMC with a periodic array of fibers. The representative unit volume is divided into a fiber and three matrix cells for which the microstructural equilibrium and compatibility equations can be analyzed. The resulting constitutive model and associated failure criteria can be used to predict the material behavior under general loading conditions.
Measurement of multiaxial ply strength by an off-axis flexure test
NASA Technical Reports Server (NTRS)
Crews, John H., Jr.; Naik, Rajiv A.
1992-01-01
An off-axis flexure (OAF) test was performed to measure ply strength under multiaxial stress states. This test involves unidirectional off-axis specimens loaded in bending, using an apparatus that allows these anisotropic specimens to twist as well as flex without the complications of a resisting torque. A 3D finite element stress analysis verified that simple beam theory could be used to compute the specimen bending stresses at failure. Unidirectional graphite/epoxy specimens with fiber angles ranging from 90 deg to 15 deg have combined normal and shear stresses on their failure planes that are typical of 45 deg plies in structural laminates. Tests for a range of stress states with AS4/3501-6 specimens showed that both normal and shear stresses on the failure plane influenced cracking resistance. This OAF test may prove to be useful for generating data needed to predict ply cracking in composite structures and may also provide an approach for studying fiber-matrix interface failures under stress states typical of structures.
High strain rate properties of off-axis composite laminates, part 2
NASA Technical Reports Server (NTRS)
Daniel, I. M.
1991-01-01
Unidirectional off-axis graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens were loaded by internal pressure with the tensile stress at 22.5, 30, and 45 degrees relative to the fiber direction. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all three laminates of both materials the modulus and strength increase sharply with strain rate, reaching values roughly 100, 150, and 200 percent higher than corresponding static values for the 22.5(sub 8), 30(sub 8), and 45(sub 8) degree laminates, respectively. In the case of ultimate strain no definite trends could be established, but the maximum deviation from the average of any value for any strain rate was less than 18 percent.
Off-axis illumination direct-to-digital holography
Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.
2004-06-08
Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.
Integrated Design and Analysis Tools for Reduced Weight, Affordable Fiber Steered Composites
2004-09-15
110 3.3.5 FEA Package: MSC/PATRAN and MSC/ NASTRAN ...3.10 APPENDIX D: FIBER STEERING CONCEPTUAL DESIGN OF PRELIMINARY STUDIES USING MSC/ NASTRAN SOL 200...and Boundary Conditions ......................................................... 366 Figure 5.3.10 Nastran Analysis Results for Off-Axis Flaws
Accelerated characterization of graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Griffith, W. I.; Morris, D. H.; Brinson, H. F.
1980-01-01
A method to predict the long term compliance of unidirectional off-axis laminates from short term laboratory tests is presented. The method uses an orthotropic transformation equation and the time-stress-temperature superposition principle. Short term tests are used to construct master curves for two off-axis unidirectional laminates with fiber angles of 10 and 90 degrees. Analytical predictions of long term compliance for 30 and 60 degrees laminates are made. Comparisons with experimental data are also given.
Transverse Cracking in a Fiber Reinforced Ceramic Matrix Composite
1990-12-01
failure if the off-axis ply was very thin. Wang and Parvizi- Majidi (3) investigated transverse cracking in Nicalon/CAS, a ceramic composite with silicon...the off-axis ply was very thin. 7 Wang and Parvizi- Majidi (3) investigated transverse I cracking in Nicalon/CAS, a ceramic composite with silicon...were quite 3 prevalent in the three lay-ups with the 900 plies in the center, less so in the 0/90/04/90/0 lay-up. Wang and Parvizi- Majidi also
Accelerated characterization of graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Griffith, W. I.; Morris, D. H.; Brinson, H. F.
1980-01-01
A method to predict the long-term compliance of unidirectional off-axis laminates from short-term laboratory tests is presented. The method uses an orthotropic transformation equation and the time-stress-temperature superposition principle. Short-term tests are used to construct master curves for two off-axis unidirectional laminates with fiber angles of 10 deg and 90 deg. In addition, analytical predictions of long-term compliance for 30 deg and 60 deg laminates are made. Comparisons with experimental data are also given.
Eliminating crystals in non-oxide optical fiber preforms and optical fibers
NASA Technical Reports Server (NTRS)
LaPointe, Michael R. (Inventor); Tucker, Dennis S. (Inventor)
2010-01-01
A method is provided for eliminating crystals in non-oxide optical fiber preforms as well as optical fibers drawn therefrom. The optical-fiber-drawing axis of the preform is aligned with the force of gravity. A magnetic field is applied to the preform as it is heated to at least a melting temperature thereof. The magnetic field is applied in a direction that is parallel to the preform's optical-fiber-drawing axis. The preform is then cooled to a temperature that is less than a glass transition temperature of the preform while the preform is maintained in the magnetic field. When the processed preform is to have an optical fiber drawn therefrom, the preform's optical-fiber-drawing axis is again aligned with the force of gravity and a magnetic field is again applied along the axis as the optical fiber is drawn from the preform.
Guided waves and defect scattering in metal matrix composite plates
NASA Technical Reports Server (NTRS)
Datta, Subhendu K.; Bratton, Robert L.; Shah, Arvind H.
1989-01-01
Guided Rayleigh-Lamb waves in a continuous graphite fiber reinforced magnesium plate has been studied. The interest in this material arises from its high thermal stability and because it provides high strength-to-weight ratio. Previous studies have shown that for wavelengths much larger than the fiber diameters and spacing, the material can be characterized as transversely isotropic with the symmetry axis aligned with the fiber direction. Because of the high longitudinal stiffness of the graphite fibers, the material shows strong anisotropy, with very high modulus in the fiber direction. For this reason, dispersion of guided waves is strongly influenced by the deviation of the direction of propagation from the symmetry axis. Results are given for propagation in different directions and for scattering of antiplane shear waves by surface-breaking cracks and delaminations.
Ten Deg Off-Axis Test for Shear Properties in Fiber Composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1977-01-01
A combined theoretical and experimental investigation was conducted to assess the suitability of the 10 deg off-axis tensile test specimen for the intralaminar shear characterization of unidirectional composites. Composite mechanics, a combined-stress failure criterion, and a finite variation across the specimen width and the relative stress and strain magnitudes at the 10 deg plane. Strain gages were used to measure the strain variation across the specimen width at specimen midlength and near the end tabs. Specimens from Mod-I/epoxy, T-300/epoxy, and S-glass/epoxy were used in the experimental program. It was found that the 10 deg off-axis tensile test specimen is suitable for intralaminar shear characterization, and it is recommended that it should be considered as a possible standard test specimen for such a characterization.
Integrated mechanics for the passive damping of polymer-matrix composites and composite structures
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, Christos C.
1991-01-01
Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).
Content-based fused off-axis object illumination direct-to-digital holography
Price, Jeffery R.
2006-05-02
Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.
Density profile and fiber alignment in fiberboard from three southern hardwoods
George E. Woodson
1977-01-01
Density profile and fiber orientation were evaluated for their effects on selected mechanical properties of medium density fiberboard. Bending MOE and modulus of rigidity were predicted from density profiles established by x-ray radiography. Orthotropic ratios ranged from 1.19 to 2.32 for electrically aligned fiberboards from three southern hardwoods. Off-axis tensile...
Acquisition and replay systems for direct-to-digital holography and holovision
Thomas, Clarence E.; Hanson, Gregory R.
2003-02-25
Improvements to the acquisition and replay systems for direct-to-digital holography and holovision are described. A method of recording an off-axis hologram includes: splitting a laser beam into an object beam and a reference beam; reflecting the reference beam from a reference beam mirror; reflecting the object beam from an illumination beamsplitter; passing the object beam through an objective lens; reflecting the object beam from an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form an off-axis hologram; digitally recording the off-axis hologram; and transforming the off-axis hologram in accordance with a Fourier transform to obtain a set of results. A method of writing an off-axis hologram includes: passing a laser beam through a spatial light modulator; and focusing the laser beam at a focal plane of a photorefractive crystal to impose a holographic diffraction grating pattern on the photorefractive crystal. A method of replaying an off-axis hologram includes: illuminating a photorefractive crystal having a holographic diffraction grating with a replay beam.
NASA Technical Reports Server (NTRS)
Graham, C. D., Jr.; Pope, D. P.; Kulkarni, S.; Wolf, M.
1978-01-01
The hot workability of polycrystalline silicon was studied. Uniaxail stress-strain curves are given for strain rates in the range of .0001 to .1/sec and temperatures from 1100 to 1380 C. At the highest strain rates at 1380 C axial strains in excess of 20% were easily obtainable without cracking. After deformations of 36%, recrystallization was completed within 0.1 hr at 1380 C. When the recrystallization was complete, there was still a small volume fraction of unrecyrstallized material which appeared very stable and may degrade the electronic properties of the bulk materials. Texture measurements showed that the as-produced vapor deposited polycrystalline rods have a 110 fiber texture with the 110 direction parallel to the growth direction and no preferred orientation about this axis. Upon axial compression perpendicular to the growth direction, the former 110 fiber axis changed to 111 and the compression axis became 110 . Recrystallization changed the texture to 110 along the former fiber axis and to 100 along the compression axis.
Modeling creep behavior of fiber composites
NASA Technical Reports Server (NTRS)
Chen, J. L.; Sun, C. T.
1988-01-01
A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.
NASA Astrophysics Data System (ADS)
Miura, Sadahiko; Honjo, Hiroaki; Kinoshita, Keizo; Tokutome, Keiichi; Koike, Hiroaki; Ikeda, Shoji; Endoh, Tetsuo; Ohno, Hideo
2015-04-01
Perpendicular-anisotropy magnetic tunnel junctions (MTJs) were prepared on four substrate geometries, i.e., directly on the axis of the bottom electrode contact, directly off the axis of the bottom electrode contact, on the axis of the bottom electrode contact with a polished bottom electrode, and off the axis of the bottom electrode contact with a polished bottom electrode. Electrical shorts were observed for direct on-axis geometry at a certain extent, whereas there were no electrical shorts for the other three geometries. The MR ratio/σR, JC0, and thermal stability factor of the devices for polish on-axis geometry were almost the same as those for polish off-axis geometry. From TEM observations of the polish on-axis device, the interface between the bottom contact and the base electrode was determined to be rough, whereas the MgO barrier layer was determined to be smooth, indicating that the polish process was effective for smooth magnetic tunnel junction fabrication over the bottom contact. MTJs for polish on-axis geometry eliminated the base electrode resistance and increased the magnetoresistance ratio. This technology contributes to the higher density of spin transfer torque magnetic random access memory.
Ten deg off-axis tensile test for intralaminar shear characterization of fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1976-01-01
A combined theoretical and experimental investigation was conducted to assess the suitability of the 10 deg off-axis tensile test specimen for the intralaminar shear characterization of unidirectional composites. Composite mechanics, a combined-stress failure criterion, and a finite element analysis were used to determine theoretically the stress-strain variation across the specimen width and the relative stress and strain magnitudes at the 10 deg plane. Strain gages were used to measure the strain variation across the specimen width at specimen midlength and near the end tabs. Specimens from Mod-I/epoxy, T-300/epoxy, and S-glass/epoxy were used in the experimental program. It was found that the 10 deg off-axis tensile test specimen is suitable for intralaminar shear characterization and it is recommended that it should be considered as a possible standard test specimen for such a characterization.
Analytical and Experimental Characterization of Thick-Section Fiber-Metal Laminates
2013-06-01
individual metal layers as loading increases. The off-axis deformation properties of the prepreg layers were modeled by using equivalent constraint models...the degraded stiffness of the prepreg layer is found. At each loading step the stiffness properties of individual layers are calculated. These...predicts stress-strain curves on-axis, additional work is needed to study the local interactions between metal and prepreg layers as damage occurs in each
SU-F-T-425: Head-Scatter Off-Axis for FFF Megavoltage Photon Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, T; Penjweini, R; Dimofte, A
Purpose: Head-scatter photons inside a clinical accelerator cause the output to change with collimator setting. On the central-axis, this contribution is well-described by output factor in air (or head-scatter factor). However, a few studies have examined this component at off-axis points. Methods: We define the head-scatter off-axis ratio, HOA, as the ratio of the water kerma in air due to head-scatter photons at the off-axis position x to the water kerma from direct primary photons on the central axis: HOA(cx,cy,xy) = (Q(cx,cy,x) – QP(cx,cy,x))/QP(cx,cy,0), where Q(cx, cy,x), QP(cx,cy,x) are charges measured by an ionization chamber in a miniphantom for collimatormore » setting cx × cy and cx × 3 cm, respectively, at off-axis point x. “Direct primary” is those photons that come from the source without interactions in the intervening structures. Results: We measured HOA for two energies (6XFFF and 6X) along X and Y jaw directions for various collimator settings. The shape of HOA has well defined penumbra for collimator setting larger than 10 × 10 cm2. Conclusion: The narrow gaussian component is interpreted as the source of photons scattered in the flattening filter and the primary collimator. The broad component is attributed to photons scattered in the secondary (variable) collimators. By a direct comparison between 6X and 6XFFF beams, we can confirm that the second component is indeed coming from collimator jaws and identify the parts coming from the primary collimator and the flattening filter, respectively.« less
Point Spread Function of ASTRO-H Soft X-Ray Telescope (SXT)
NASA Technical Reports Server (NTRS)
Hayashi, Takayuki; Sato, Toshiki; Kikuchi, Naomichi; Iizuka, Ryo; Maeda, Yoshitomo; Ishida, Manabu; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; Mori, Hideyuki;
2016-01-01
ASTRO-H (Hitomi) satellite equips two Soft X-ray Telescopes (SXTs), one of which (SXT-S) is coupled to Soft-X-ray Spectrometer (SXS) while the other (SXT-I) is coupled to Soft X-ray Imager (SXI). Although SXTs are lightweight of approximately 42 kgmodule1 and have large on-axis effective area (EA) of approximately 450 cm(exp 2) at 4.5 keV module(sub 1) by themselves, their angular resolutions are moderate approximately 1.2 arcmin in half power diameter. The amount of contamination into the SXS FOV (3.05 times 3.05 arcmin(exp 2) from nearby sources was measured in the ground-based calibration at the beamline in Institute of Space and Astronautical Science. The contamination at 4.5 keV were measured with sources distant from the SXS center by one width of the FOV in perpendicular and diagonal directions, that is, 3 and 4.5 arcmin-off, respectively. The average EA of the contamination in the four directions with the 3 and 4.5 arcmin-off were measured to be 2 and 0.6% of the on-axis EA of 412 cm (exp) for the SXS FOV, respectively. The contamination from a source distant by two FOV widths in a diagonal direction, that is, 8.6 arcmin-off was measured to be 0.1% of the on-axis at 4.5 keV. The contamination amounts were also measured at 1.5 keV and 8.0 keV which indicated that the ratio of the contamination EA to that of on-axis hardly depended on the source energy. The off-axis SXT-I images from 4.5 to 27 arcmin were acquired at intervals of -4.5 arcmin for the SXI FOV of 38 times 38 arcmin(exp 2). The image shrinked as the off-axis angle increased. Above 13.5 arcmin of off-angle, a stray appeared around the image center in the off-axis direction. As for the on-axis image, a ring-shaped stray appeared at the edge of SXI of approximately 18 arcmin distant from the image center.
Three-Dimensional High Fidelity Progressive Failure Damage Modeling of NCF Composites
NASA Technical Reports Server (NTRS)
Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid G.; Satyanarayana, Arunkumar; Bogert, Philip B.
2017-01-01
Performance prediction of off-axis laminates is of significant interest in designing composite structures for energy absorption. Phenomenological models available in most of the commercial programs, where the fiber and resin properties are smeared, are very efficient for large scale structural analysis, but lack the ability to model the complex nonlinear behavior of the resin and fail to capture the complex load transfer mechanisms between the fiber and the resin matrix. On the other hand, high fidelity mesoscale models, where the fiber tows and matrix regions are explicitly modeled, have the ability to account for the complex behavior in each of the constituents of the composite. However, creating a finite element model of a larger scale composite component could be very time consuming and computationally very expensive. In the present study, a three-dimensional mesoscale model of non-crimp composite laminates was developed for various laminate schemes. The resin material was modeled as an elastic-plastic material with nonlinear hardening. The fiber tows were modeled with an orthotropic material model with brittle failure. In parallel, new stress based failure criteria combined with several damage evolution laws for matrix stresses were proposed for a phenomenological model. The results from both the mesoscale and phenomenological models were compared with the experiments for a variety of off-axis laminates.
Spatially-resolved probing of biological phantoms by point-radiance spectroscopy
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.
2011-03-01
Interstitial fiber-optic based strategies for therapy monitoring and assessment rely on detecting treatment-induced changes in the light distribution in biological tissues. We present an optical technique to identify spectrally and spatially specific tissue chromophores in highly scattering turbid media. Typical optical sensors measure non-directional light intensity (i.e. fluence) and require fiber translation (i.e. 3-5 positions), which is difficult to implement clinically. Point radiance spectroscopy is based on directional light collection (i.e. radiance) at a single point with a side-firing fiber that can be rotated up to 360°. A side firing fiber accepts light within a well-defined solid angle thus potentially providing an improved spatial resolution. Experimental measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43° cleaved fiber (i.e. radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid (i.e. scattering medium). Light was collected at 1-5° increments through 360°-segment. Gold nanoparticles, placed into a 3.5 mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a non-invasive optical modality for prostate cancer monitoring.
Improved Strength and Toughness of Carbon Woven Fabric Composites with Functionalized MWCNTs
Soliman, Eslam; Kandil, Usama; Reda Taha, Mahmoud
2014-01-01
This investigation examines the role of carboxyl functionalized multi-walled carbon nanotubes (COOH-MWCNTs) in the on- and off-axis flexure and the shear responses of thin carbon woven fabric composite plates. The chemically functionalized COOH-MWCNTs were used to fabricate epoxy nanocomposites and, subsequently, carbon woven fabric plates to be tested on flexure and shear. In addition to the neat epoxy, three loadings of COOH-MWCNTs were examined: 0.5 wt%, 1.0 wt% and 1.5 wt% of epoxy. While no significant statistical difference in the flexure response of the on-axis specimens was observed, significant increases in the flexure strength, modulus and toughness of the off-axis specimens were observed. The average increase in flexure strength and flexure modulus with the addition of 1.5 wt% COOH-MWCNTs improved by 28% and 19%, respectively. Finite element modeling is used to demonstrate fiber domination in on-axis flexure behavior and matrix domination in off-axis flexure behavior. Furthermore, the 1.5 wt% COOH-MWCNTs increased the toughness of carbon woven composites tested on shear by 33%. Microstructural investigation using Fourier Transform Infrared Spectroscopy (FTIR) proves the existence of chemical bonds between the COOH-MWCNTs and the epoxy matrix. PMID:28788698
NASA Technical Reports Server (NTRS)
Sinclair, J. H.
1980-01-01
Angelplied laminates of high modulus graphite fiber/epoxy were studied in several ply configurations at various tensile loading angles to the zero ply direction in order to determine the effects of ply orientations on tensile properties, fracture modes, and fracture surface characteristics of the various plies. It was found that fracture modes in the plies of angleplied laminates can be characterized by scanning electron microscope observation. The characteristics for a given fracture mode are similar to those for the same fracture mode in unidirectional specimens. However, no simple load angle range can be associated with a given fracture mode.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Matcher, Stephen J.
2013-03-01
We report on a new calibration technique that permits the accurate extraction of sample Jones matrix and hence fast-axis orientation by using fiber-based polarization-sensitive optical coherence tomography (PS-OCT) that is completely based on non polarization maintaining fiber such as SMF-28. In this technique, two quarter waveplates are used to completely specify the parameters of the system fibers in the sample arm so that the Jones matrix of the sample can be determined directly. The device was validated on measurements of a quarter waveplate and an equine tendon sample by a single-mode fiber-based swept-source PS-OCT system.
Holographic line field en-face OCT with digital adaptive optics in the retina in vivo.
Ginner, Laurin; Schmoll, Tilman; Kumar, Abhishek; Salas, Matthias; Pricoupenko, Nastassia; Wurster, Lara M; Leitgeb, Rainer A
2018-02-01
We demonstrate a high-resolution line field en-face time domain optical coherence tomography (OCT) system using an off-axis holography configuration. Line field en-face OCT produces high speed en-face images at rates of up to 100 Hz. The high frame rate favors good phase stability across the lateral field-of-view which is indispensable for digital adaptive optics (DAO). Human retinal structures are acquired in-vivo with a broadband light source at 840 nm, and line rates of 10 kHz to 100 kHz. Structures of different retinal layers, such as photoreceptors, capillaries, and nerve fibers are visualized with high resolution of 2.8 µm and 5.5 µm in lateral directions. Subaperture based DAO is successfully applied to increase the visibility of cone-photoreceptors and nerve fibers. Furthermore, en-face Doppler OCT maps are generated based on calculating the differential phase shifts between recorded lines.
Wide acceptance angle, high concentration ratio, optical collector
NASA Technical Reports Server (NTRS)
Kruer, Mark Arthur (Inventor)
1990-01-01
The invention is directed to an optical collector requiring a wide acceptance angle, and a high concentration ratio. The invention is particularly adapted for use in solar collectors of cassegrain design. The optical collector system includes a parabolic circular concave primary mirror and a hyperbolic circular convex secondary mirror. The primary mirror includes a circular hole located at its center wherein a solar collector is located. The mirrored surface of the secondary mirror has three distinct zones: a center circle, an on-axis annulus, and an off-axis section. The parabolic shape of the primary mirror is chosen so that the primary mirror reflects light entering the system on-axis onto the on-axis annulus. A substantial amount of light entering the system off-axis is reflected by the primary mirror onto either the off-axis section or onto the center circle. Subsequently, the off-axis sections reflect the off-axis light toward the solar collector. Thus, off-axis light is captured which would otherwise be lost to the system. The novelty of the system appears to lie in the configuration of the primary mirror which focuses off-axis light onto an annular portion of the secondary mirror to enable capture thereof. This feature results in wide acceptance angle and a high concentration ratio, and also compensates for the effects of non-specular reflection, and enables a cassegrain configuration to be used where such characteristics are required.
Photoacoustic shock wave emission and cavitation from structured optical fiber tips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadzadeh, M.; Gonzalez-Avila, S. R.; Ohl, C. D., E-mail: cdohl@ntu.edu.sg
Photoacoustic waves generated at the tip of an optical fiber consist of a compressive shock wave followed by tensile diffraction waves. These tensile waves overlap along the fiber axis and form a cloud of cavitation bubbles. We demonstrate that shaping the fiber tip through micromachining alters the number and direction of the emitted waves and cavitation clouds. Shock wave emission and cavitation patterns from five distinctively shaped fiber tips have been studied experimentally and compared to a linear wave propagation model. In particular, multiple shock wave emission and generation of strong tension away from the fiber axis have been realizedmore » using modified fiber tips. These altered waveforms may be applied for novel microsurgery protocols, such as fiber-based histotripsy, by utilizing bubble-shock wave interaction.« less
Correlation of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor
NASA Technical Reports Server (NTRS)
Vary, A.; Lark, R. F.
1978-01-01
An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A stress wave factor was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), 0 deg + or - 45 deg/0 deg symmetrical, and + or - 45 deg] symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.
Girshovitz, Pinhas; Frenklach, Irena; Shaked, Natan T
2015-11-01
We propose a new portable imaging configuration that can double the field of view (FOV) of existing off-axis interferometric imaging setups, including broadband off-axis interferometers. This configuration is attached at the output port of the off-axis interferometer and optically creates a multiplexed interferogram on the digital camera, which is composed of two off-axis interferograms with straight fringes at orthogonal directions. Each of these interferograms contains a different FOV of the imaged sample. Due to the separation of these two FOVs in the spatial-frequency domain, they can be fully reconstructed separately, while obtaining two complex wavefronts from the sample at once. Since the optically multiplexed off-axis interferogram is recorded by the camera in a single exposure, fast dynamics can be recorded with a doubled imaging area. We used this technique for quantitative phase microscopy of biological samples with extended FOV. We demonstrate attaching the proposed module to a diffractive phase microscopy interferometer, illuminated by a broadband light source. The biological samples used for the experimental demonstrations include microscopic diatom shells, cancer cells, and flowing blood cells.
Park, B Hyle; Pierce, Mark C; Cense, Barry; de Boer, Johannes F
2005-10-01
We present a generalized analysis of fiber-based polarization-sensitive optical coherence tomography with an emphasis on determination of sample optic axis orientation. The polarization properties of a fiber-based system can cause an overall rotation in a Poincaré sphere representation such that the plane of possible measured sample optic axes for linear birefringence and diattenuation no longer lies in the QU-plane. The optic axis orientation can be recovered as an angle on this rotated plane, subject to an offset and overall indeterminacy in sign such that only the magnitude, but not the direction, of a change in orientation can be determined. We discuss the accuracy of optic axis determination due to a fundamental limit on the accuracy with which a polarization state can be determined as a function of signal-to-noise ratio.
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.
2011-07-01
Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.
Grabtchak, Serge; Palmer, Tyler J; Whelan, William M
2011-07-01
Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ∼43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.
An endochronic theory for transversely isotropic fibrous composites
NASA Technical Reports Server (NTRS)
Pindera, M. J.; Herakovich, C. T.
1981-01-01
A rational methodology of modelling both nonlinear and elastic dissipative response of transversely isotropic fibrous composites is developed and illustrated with the aid of the observed response of graphite-polyimide off-axis coupons. The methodology is based on the internal variable formalism employed within the text of classical irreversible thermodynamics and entails extension of Valanis' endochronic theory to transversely isotropic media. Applicability of the theory to prediction of various response characteristics of fibrous composites is illustrated by accurately modelling such often observed phenomena as: stiffening reversible behavior along fiber direction; dissipative response in shear and transverse tension characterized by power-laws with different hardening exponents; permanent strain accumulation; nonlinear unloading and reloading; and stress-interaction effects.
Measurement of νμ and νe Events in an Off-Axis Horn-Focused Neutrino Beam
NASA Astrophysics Data System (ADS)
Adamson, P.; Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Bishai, M.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Choudhary, B. C.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Gallagher, H. R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Harris, D.; Hart, T. L.; Hawker, E.; Hylen, J.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kopp, S.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Loiacono, L.; Louis, W. C.; Marchionni, A.; Mahn, K. B. M.; Marsh, W.; McGregor, G.; Messier, M. D.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, J. K.; Nelson, R. H.; Nguyen, V. T.; Nienaber, P.; Nowak, J. A.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smart, W.; Smith, D.; Sodeberg, M.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Vahle, P.; van de Water, R.; Viren, B.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Yumiceva, F. X.; Zeller, G. P.; Zimmerman, E. D.; Zwaska, R.
2009-05-01
We report the first observation of off-axis neutrino interactions in the MiniBooNE detector from the NuMI beam line at Fermilab. The MiniBooNE detector is located 745 m from the NuMI production target, at 110 mrad angle (6.3°) with respect to the NuMI beam axis. Samples of charged-current quasielastic νμ and νe interactions are analyzed and found to be in agreement with expectation. This provides a direct verification of the expected pion and kaon contributions to the neutrino flux and validates the modeling of the NuMI off-axis beam.
Temperature-dependent tensile and shear response of graphite/aluminum
NASA Technical Reports Server (NTRS)
Fujita, T.; Pindera, M. J.; Herakovich, C. T.
1987-01-01
The thermo-mechanical response of unidirectional P100 graphite fiber/6061 aluminum matrix composites was investigated at four temperatures:-150, +75, +250, and +500 F. Two types of tests, off-axis tension and losipescu shear, were used to obtain the desired properties. Good experimental-theoretical correlation was obtained for Exx, vxy, and G12. It is shown that E11 is temperature independent, but E22, v12, and G12 generally decrease with increasing temperature. Compared with rather high longitudinal strength, very low transverse strength was obtained for the graphite/aluminum. The poor transverse strength is believed to be due to the low interfacial bond strength in this material. The strength decrease significantly with increasing temperature. The tensile response at various temperatures is greatly affected by the residual stresses caused by the mismatch in the coefficients of thermal expansion of fibers and matrix. The degradation of the aluminum matrix properties at higher temperatures has a deleterious effect on composite properties. The composite has a very low coefficient of thermal expansion in the fiber direction.
Seng, Frederick; Yang, Zhenchao; King, Rex; Shumway, LeGrand; Stan, Nikola; Hammond, Alec; Warnick, Karl F; Schultz, Stephen
2017-06-10
This work introduces a passive dipole antenna integrated into the packaging of a slab-coupled optical sensor to enhance the directional sensitivity of electro-optic electric field measurements parallel to the fiber axis. Using the passive integrated dipole antenna described in this work, a sensor that can typically only sense fields transverse to the fiber direction is able to sense a 1.25 kV/m field along the fiber direction with a gain of 17.5. This is verified through simulation and experiment.
Expected neutrino fluence from short Gamma-Ray Burst 170817A and off-axis angle constraints
NASA Astrophysics Data System (ADS)
Biehl, D.; Heinze, J.; Winter, W.
2018-05-01
We compute the expected neutrino fluence from SGRB 170817A, associated with the gravitational wave event GW 170817, directly based on Fermi observations in two scenarios: structured jet and off-axis (observed) top-hat jet. While the expected neutrino fluence for the structured jet case is very small, large off-axis angles imply high radiation densities in the jet, which can enhance the neutrino production efficiency. In the most optimistic allowed scenario, the neutrino fluence can reach only 10-4 of the sensitivity of the neutrino telescopes. We furthermore demonstrate that the fact that gamma-rays can escape limits the baryonic loading (energy in protons versus photons) and the off-axis angle for the internal shock scenario. In particular, for a baryonic loading of 10, the off-axis angle is more strongly constrained by the baryonic loading than by the time delay between the gravitational wave event and the onset of the gamma-ray emission.
Measurement of vortex flow fields
NASA Technical Reports Server (NTRS)
Mcdevitt, T. Kevin; Ambur, Todd A.; Orngard, Gary M.; Owen, F. Kevin
1992-01-01
A 3-D laser fluorescence anemometer (LFA) was designed, built, and demonstrated for use in the Langley 16 x 24 inch Water Tunnel. Innovative optical design flexibility combined with compact and portable data acquisition and control systems were incorporated into the instrument. This will allow its use by NASA in other test facilities. A versatile fiber optic system facilities normal and off-axis laser beam alignment, removes mirror losses and improves laser safety. This added optical flexibility will also enable simple adaptation for use in the adjacent jet facility. New proprietary concepts in transmitting color separation, light collection, and novel prism separation of the scattered light was also designed and built into the system. Off-axis beam traverse and alignment complexity led to the requirement for a specialized, programmable transverse controller, and the inclusion of an additional traverse for the off-axis arm. To meet this challenge, an 'in-house' prototype unit was designed and built and traverse control software developed specifically for the water tunnel traverse applications. A specialized data acquisition interface was also required. This was designed and built for the LFA system.
Effects of Aeroelastic Tailoring on Anisotropic Composite Material Beam Models of Helicopter Blades
1989-05-01
34 means that a layer of material at some distance above a structural midsurface reference location has the identical ply thickness, angular orientation...and material properties as that of a lamina at an identical distance below the midsurface [1]. If the fibers are placed off-axis in the upper and
The fatigue life study of polyphenylene sulfide composites filled with continuous glass fibers
NASA Astrophysics Data System (ADS)
Ye, Junjie; Hong, Yun; Wang, Yongkun; Zhai, Zhi; Shi, Baoquan; Chen, Xuefeng
2018-04-01
In this study, an effective microscopic model is proposed to investigate the fatigue life of composites containing continuous glass fibers, which is surrounded by polyphenylene sulfide (PPS) matrix materials. The representative volume element is discretized by parametric elements. Moreover, the microscopic model is established by employing the relation between average surface displacements and average surface tractions. Based on the experimental data, the required fatigue failure parameters of the PPS are determined. Two different fiber arrangements are considered for comparisons. Numerical analyses indicated that the square edge packing provides a more accuracy. In addition, microscopic structural parameters (fiber volume fraction, fiber off-axis angle) effect on the fatigue life of Glass/PPS composites is further discussed. It is revealed that fiber strength degradation effects on the fatigue life of continuous fiber-reinforced composites can be ignored.
Radial-firing optical fiber tip containing conical-shaped air-pocket for biomedical applications.
Lee, Seung Ho; Ryu, Yong-Tak; Son, Dong Hoon; Jeong, Seongmook; Kim, Youngwoong; Ju, Seongmin; Kim, Bok Hyeon; Han, Won-Taek
2015-08-10
We report a novel radial-firing optical fiber tip containing a conical-shaped air-pocket fabricated by deforming a hollow optical fiber using electric arc-discharge process. The hollow optical fiber was fusion spliced with a conventional optical fiber, simultaneously deforming into the intagliated conical-shaped region along the longitudinal fiber-axis of the fiber due to the gradual collapse of the cavity of the hollow optical fiber. Then the distal-end of the hollow optical fiber was sealed by the additional arc-discharge in order to obstruct the inflow of an external bio-substance or liquid to the inner air surface during the surgical operations, resulting in the formation of encased air-pocket in the silica glass fiber. Due to the total internal reflection of the laser beam at the conical-shaped air surface, the laser beam (λ = 632.8 nm) was deflected to the circumferential direction up to 87 degree with respect to the fiber-axis.
Numerical simulations of fast-axis instability of vector solitons in mode-locked fiber lasers.
Du, Yueqing; Shu, Xuewen; Cheng, Peiyun
2017-01-23
We demonstrate the fast-axis instability in mode-locked fiber lasers numerically for the first time. We find that the energy of the fast mode will be transferred to the slow mode when the strong pump strength makes the soliton period short. A nearly linearly polarized vector soliton along the slow-axis could be generated under certain cavity parameters. The final polarization of the vector soliton is related to the initial polarization of the seed pulse. Two regimes of energy exchanging between the slow mode and the fast mode are explored and the direction of the energy flow between two modes depends on the phase difference. The dip-type sidebands are found to be intrinsic characteristics of the mode-locked fiber lasers under high pulse energy.
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Lark, R. F.; Sinclair, J. H.
1977-01-01
An integrated theory is developed for predicting the hydrothermomechanical (HDTM) response of fiber composite components. The integrated theory is based on a combined theoretical and experimental investigation. In addition to predicting the HDTM response of components, the theory is structured to assess the combined hydrothermal effects on the mechanical properties of unidirectional composites loaded along the material axis and off-axis, and those of angleplied laminates. The theory developed predicts values which are in good agreement with measured data at the micromechanics, macromechanics, laminate analysis and structural analysis levels.
2007-05-01
general, off axis imaging can cause distortion and astigmatism in the image if proper precautions are not taken. In this case, the lens selection... astigmatism into the optical system. This astigmatism takes the form of a blurring in each image directed away from the optical axis. This blurring...is non-trivial and makes particle identification nearly impossible. Images of particles from two of the off axis cameras with the astigmatism present
Effect of Off-Axis Screw Insertion, Insertion Torque, and Plate Contouring on Locked Screw Strength
Gallagher, Bethany; Silva, Matthew J.; Ricci, William M.
2015-01-01
Objectives This study quantifies the effects of insertion torque, off-axis screw angulation, and plate contouring on the strength of locking plate constructs. Methods Groups of locking screws (n = 6–11 screws) were inserted at 50%, 100%, 150%, and 200% of the manufacturer-recommended torque (3.2 Nm) into locking compression plates at various angles: orthogonal (control), 5-degree angle off-axis, and 10-degree angle off-axis. Screws were loaded to failure by a transverse force (parallel to the plate) either in the same (“+”) or opposite direction (“−”) of the initial screw angulation. Separately, locking plates were bent to 5 and 10-degree angles, with the bend apex at a screw hole. Locking screws inserted orthogonally into the apex hole at 100% torque were loaded to failure. Results Orthogonal insertion resulted in the highest average load to failure, 2577 ± 141 N (range, 2413–2778 N), whereas any off-axis insertion significantly weakened constructs (165–1285 N, at 100% torque) (P < 0.05). For “+” loading, torque beyond 100% did not increase strength, but 50% torque reduced screw strength (P < 0.05). Loading in the “−” direction consistently resulted in higher strengths than “+” loading (P < 0.05). Plate contouring of 5-degree angle did not significantly change screw strength compared with straight plates but contouring of 10-degree angle significantly reduced load to failure (P < 0.05). Conclusions To maximize the screw plate interface strength, locking screws should be inserted without cross-threading. The mechanical stability of locked screws is significantly compromised by loose insertion, off-axis insertion, or severe distortion of the locking mechanism. PMID:24343255
NASA Technical Reports Server (NTRS)
Scola, D. A.
1982-01-01
Bisimide amines (BIAs), which are presently used as curing agents in a state-of-the-art epoxy resin, are oligomeric and polymeric mixtures. A series of composites consisting of the novel BIA-cured epoxy resin reinforced with Celion 6000 graphite fibers were fabricated and evaluated, and the ten-degree, off-axis uniaxial tensile and shear properties of these composites were determined. The use of the intralaminar shear strain-to-failure was used in the calculation of resin shear strain-to-failure. Study results indicate that several of these novel composite systems exhibit shear strain properties that are superior to those of the control composite system of the present experiments, which employed a sulfone curing agent.
Material properties of CorCap passive cardiac support device.
Chitsaz, Sam; Wenk, Jonathan F; Ge, Liang; Wisneski, Andrew; Mookhoek, Aart; Ratcliffe, Mark B; Guccione, Julius M; Tseng, Elaine E
2013-01-01
Myocardial function deteriorates during ventricular remodeling in patients with congestive heart failure (HF). Ventricular restraint therapy using a cardiac support device (CSD) is designed to reduce the amount of stress inside the dilated ventricles, which in turn halts remodeling. However, as an open mesh surrounding the heart, it is unknown what the mechanical properties of the CSD are in different fiber orientations. Composite specimens of CorCap (Acorn Cardiovascular, Inc, St. Paul, MN) CSD fabric and silicone were constructed in different fiber orientations and tested on a custom-built biaxial stretcher. Silicone controls were made and stretched to detect the parameters of the matrix. CSD coefficients were calculated using the composite and silicone matrix stress-strain data. Stiffness in different fiber orientations was determined. Silicone specimens exerted a linear behavior, with stiffness of 2.57 MPa. For the composites with 1 fiber set aligned with respect to the stretch axes, stiffness in the direction of the aligned fiber set was higher than that in the cross-fiber direction (14.39 MPa versus 5.66 MPa), indicating greater compliance in the cross-fiber direction. When the orientation of the fiber sets in the composite were matched to the expected clinical orientation of the implanted CorCap, the stiffness in the circumferential axis (with respect to the heart) was greater than in the longitudinal axis (10.55 MPa versus 9.70 MPa). The mechanical properties of the CorCap demonstrate directionality with greater stiffness circumferentially than longitudinally. Implantation of the CorCap clinically should take into account the directionality of the biomechanics to optimize ventricular restraint. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature
NASA Astrophysics Data System (ADS)
Wilkinson, M. P.; Ruggles-Wrenn, M. B.
2017-12-01
Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.
NASA Astrophysics Data System (ADS)
Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong
2017-12-01
As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.
Analysis of off-axis incoherent digital holographic microscopy
NASA Astrophysics Data System (ADS)
Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro
2017-05-01
Off-axis incoherent digital holography that enables single-shot three-dimensional (3D) distribution is introduced in the paper. Conventional fluorescence microscopy images 3D fields by sectioning, this prevents instant imaging of fast reactions of living cells. In order to realize digital holography from incoherent light, we adapted common path configuration to achieve the best temporal coherence. And by introducing gratings, we shifted the direction of each light to achieve off-axis interference. Simulations and preliminary experiments using LED light have confirmed the results. We expect to use this method to realize 3D phase imaging and fluorescent imaging at the same time from the same biological sample.
Solar C: Scatter-Free Observatory for Limb Active Regions and Coronae
NASA Technical Reports Server (NTRS)
2004-01-01
The SOLARC observatory is a 0.5m off-axis reflecting coronagraph. NASA SRT funding has allowed the completion of this telescope facility, which we believe is now the world's largest operational coronagraph. We have achieved our proposal goals both in the development of the new technology for this facility and in the demonstration of its scientific and educational potential: 1) The SOLARC engineering development was successful and has spawned other similar instruments. The off-axis design of ATST (a new 4m telescope) has benefited from the SOLARC development. The off-axis 1.6m NST facility at BBSO is also now under construction and will be the world's largest solar disk observing telescope until ATST is completed. Both of these telescope designs are derivatives of the SOLARC 0.5m off-axis. Some of this technical development is described in the publications. 2) The most important scientific goal of SOLARC has been to demonstrate that coronal magnetic fields can be measured using infrared spectropolarimetry techniques. With the completion of the optical fiber-bundle imaging spectropolarimeter we have measured the coronal field strength with a sensitivity to the line-of-sight field component of 2G at 150,OOOkm above the limb. We believe this capability opens new opportunities for space weather, and coronal physics research. In particular we have demonstrated a new tool for understanding the effect of the Sun on the terrestrial space environment. A paper reporting these results has recently been submitted to the Astrophysical Journal Letters.
Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy.
Yang, Haoqi; Jiang, Shaohua; Fang, Hong; Hu, Xiaowu; Duan, Gaigai; Hou, Haoqing
2018-07-05
Quantitative explanation on the improved mechanical properties of aligned electrospun polyimide (PI) nanofibers as the increased imidization temperatures is highly required. In this work, polarized FT-IR spectroscopy is applied to solve this problem. Based on the polarized FT-IR spectroscopy and the molecular model in the fibers, the length of the repeat unit of PI molecule, the angle between the fiber axis and the symmetric stretching direction of carbonyl group on the imide ring, and the angle between the PI molecular axis and fiber axis are all investigated. The Mark-Howink equation is used to calculate the number-average molar mass of PI molecules. The orientation states of PI molecules in the electrospun nanofibers are studied from the number-average molar mass of PI molecules and the average fiber diameter. Quantitative analysis of the orientation factor of PI molecules in the electrospun nanofibers is performed by polarized FT-IR spectroscopy. Copyright © 2018 Elsevier B.V. All rights reserved.
Compression failure of angle-ply laminates
NASA Technical Reports Server (NTRS)
Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.
1991-01-01
The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single parameter, such as a ratio of wave amplitude to wave length, to describe waviness in a laminate would be inaccurate. Throughout, results for AS4/3502, studied previously, are included for comparison. At low off-axis angles, the AS4/3502 material system was found to be less sensitive to layer waviness than IM7/8551-7a. Analytical predictions were also obtained for laminates with waviness in only some of the layers. For this type of waviness, laminate compression strength could also be considered a function of which layers in the laminate were wavy, and where those wavy layers were. Overall, the geometrically nonlinear model correlates well with experimental results.
Wang, Jing; Quach, Andy; Brasch, Megan E; Turner, Christopher E; Henderson, James H
2017-09-01
In vitro biomaterial models have enabled advances in understanding the role of extracellular matrix (ECM) architecture in the control of cell motility and polarity. Most models are, however, static and cannot mimic dynamic aspects of in vivo ECM remodeling and function. To address this limitation, we present an electrospun shape memory polymer scaffold that can change fiber alignment on command under cytocompatible conditions. Cellular response was studied using the human fibrosarcoma cell line HT-1080 and the murine mesenchymal stem cell line C3H/10T1/2. The results demonstrate successful on-command on/off switching of cell polarized motility and alignment. Decrease in fiber alignment causes a change from polarized motility along the direction of fiber alignment to non-polarized motility and from aligned to unaligned morphology, while increase in fiber alignment causes a change from non-polarized to polarized motility along the direction of fiber alignment and from unaligned to aligned morphology. In addition, the findings are consistent with the hypothesis that increased fiber alignment causes increased cell velocity, while decreased fiber alignment causes decreased cell velocity. On-command on/off switching of cell polarized motility and alignment is anticipated to enable new study of directed cell motility in tumor metastasis, in cell homing, and in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.
2011-03-01
We describe a fiber-based variable-incidence-angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3-D optical axis of birefringent biological tissues. Single-plane VIAPS- OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fiber on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fiber. A proposed algorithm based on the angle between Stokes vectors on the Poincaré sphere is confirmed to work for all settings of the sample arm fiber. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.
Calculating broad neutron resonances in a cut-off Woods-Saxon potential
NASA Astrophysics Data System (ADS)
Baran, Á.; Noszály, Cs.; Salamon, P.; Vertse, T.
2015-07-01
In a cut-off Woods-Saxon (CWS) potential with realistic depth S -matrix poles being far from the imaginary wave number axis form a sequence where the distances of the consecutive resonances are inversely proportional with the cut-off radius value, which is an unphysical parameter. Other poles lying closer to the imaginary wave number axis might have trajectories with irregular shapes as the depth of the potential increases. Poles being close repel each other, and their repulsion is responsible for the changes of the directions of the corresponding trajectories. The repulsion might cause that certain resonances become antibound and later resonances again when they collide on the imaginary axis. The interaction is extremely sensitive to the cut-off radius value, which is an apparent handicap of the CWS potential.
In-vitro perforation of the round window membrane via direct 3-D printed microneedles.
Aksit, Aykut; Arteaga, Daniel N; Arriaga, Miguel; Wang, Xun; Watanabe, Hirobumi; Kasza, Karen E; Lalwani, Anil K; Kysar, Jeffrey W
2018-06-08
The cochlea, or inner ear, is a space fully enclosed within the temporal bone of the skull, except for two membrane-covered portals connecting it to the middle ear space. One of these portals is the round window, which is covered by the Round Window Membrane (RWM). A longstanding clinical goal is to reliably and precisely deliver therapeutics into the cochlea to treat a plethora of auditory and vestibular disorders. Standard of care for several difficult-to-treat diseases calls for injection of a therapeutic substance through the tympanic membrane into the middle ear space, after which a portion of the substance diffuses across the RWM into the cochlea. The efficacy of this technique is limited by an inconsistent rate of molecular transport across the RWM. A solution to this problem involves the introduction of one or more microscopic perforations through the RWM to enhance the rate and reliability of diffusive transport. This paper reports the use of direct 3D printing via Two-Photon Polymerization (2PP) lithography to fabricate ultra-sharp polymer microneedles specifically designed to perforate the RWM. The microneedle has tip radius of 500 nm and shank radius of 50 μ m, and perforates the guinea pig RWM with a mean force of 1.19 mN. The resulting perforations performed in vitro are lens-shaped with major axis equal to the microneedle shank diameter and minor axis about 25% of the major axis, with mean area 1670 μ m 2 . The major axis is aligned with the direction of the connective fibers within the RWM. The fibers were separated along their axes without ripping or tearing of the RWM suggesting the main failure mechanism to be fiber-to-fiber decohesion. The small perforation area along with fiber-to-fiber decohesion are promising indicators that the perforations would heal readily following in vivo experiments. These results establish a foundation for the use of Two-Photon Polymerization lithography as a means to fabricate microneedles to perforate the RWM and other similar membranes.
NASA Astrophysics Data System (ADS)
van Eerten, Hendrik; Zhang, Weiqun; MacFadyen, Andrew
2010-10-01
Starting as highly relativistic collimated jets, gamma-ray burst outflows gradually slow down and become nonrelativistic spherical blast waves. Although detailed analytical solutions describing the afterglow emission received by an on-axis observer during both the early and late phases of the outflow evolution exist, a calculation of the received flux during the intermediate phase and for an off-axis observer requires either a more simplified analytical model or direct numerical simulations of the outflow dynamics. In this paper, we present light curves for off-axis observers covering the long-term evolution of the blast wave, calculated from a high-resolution two-dimensional relativistic hydrodynamics simulation using a synchrotron radiation model. We compare our results to earlier analytical work and calculate the consequence of the observer angle with respect to the jet axis both for the detection of orphan afterglows and for jet break fits to the observational data. We confirm earlier results in the literature finding that only a very small number of local type Ibc supernovae can harbor an orphan afterglow. For off-axis observers, the observable jet break can be delayed up to several weeks, potentially leading to overestimation of the beaming-corrected total energy. In addition we find that, when using our off-axis light curves to create synthetic Swift X-ray data, jet breaks are likely to remain hidden in the data.
NASA Technical Reports Server (NTRS)
Bizon, P. T.; Dreshfield, R. L.; Calfo, F. D.
1979-01-01
The effect of off-axis directionally solidified (DS) grain growth on thermal fatigue life of Mar-M 247 alloy was evaluated. Uncoated conventionally cast as well as DS wedge bars were cycled in a burner rig between 1070 C and room temperature. The longitudinal axis and leading edge of the specimen coincided. As the angle between the specimen longitudinal axis and growth axis increased, the thermal fatigue life decreased for both the uncoated and aluminide-coated bars. Life increases of about 50 cycles for the DS conditions were attributed to coating. The decrease in thermal fatigue life with increasing angle is primarily attributed to the increase in modulus of elasticity with increasing angle and not to the intersection of DS grain boundaries with the specimen leading edge. The thermal fatigue cracks were observed to be transgranular in the DS material. Limited tensile and stress-rupture properties of conventionally cast and off-axis DS Mar-M 247 alloy are also presented.
NASA Technical Reports Server (NTRS)
Haguenauer, Pierre; Serabyn, Eugene; Bloemhof, Eric E.; Troy, Mitchell; Wallace, James K.; Koresko, Chris D.; Mennesson, Bertrand
2005-01-01
Direct detection of planets around nearby stars requires the development of high-contrast imaging techniques because of the high difference between their respective fluxes. This led us to test a new coronagraphic approach based on the use of phase mask instead of dark occulting ones. Combined with high-level wavefront correction on an unobscured off-axis section of a large telescope, this method allows imaging very close to the star. Calculations indicate that for a given ground-based on-axis telescope, use of such an off-axis coronagraph provides a near-neighbor detection capability superior to that of a traditional coronagraph utilizing the full telescope aperture. Setting up a laboratory experiment working in near infrared allowed us to demonstrate the principle of the method, and a rejection of 2000:1 has already been achieved.
NASA Astrophysics Data System (ADS)
Tingley, Daniel Arthur
The reinforcement of wood and wood composite structural products to improve their mechanical properties has been in practice for many years. Recently, the use of high-strength fiber-reinforced plastic (FRP) as a reinforcement in such applications has been commercialized. The reinforcement is manufactured using a standard pultrusion process or alternatively a sheet-forming process commonly referred to as "pulforming". The high-modulus fibers are predominately unidirectional, although off-axis fibers are often used to enhance off-axis properties. The fibers used are either of a single type or multiple types, which are called "hybrids". Unidirectional, single, and hybrid fiber FRP physical properties and characteristics were compared to wood. Full-scale reinforced glulams were tested. Aramid-reinforced plastics (ARP) used as tensile reinforcements were found to be superior in strength applications to other types of FRP made with fiber, such as carbon and fiberglass. Carbon/aramid-reinforced plastic (CARP) was shown to be superior in both modulus and strength design situations. Fiberglass was shown to be suitable only in hybrid situations with another fiber such as aramid or carbon and only in limited use situations where modulus was a design criteria. The testing and analysis showed that the global response of reinforced glulam beams is controlled by localized strength variations in the wood such as slope of grain, knots, finger joints, etc. in the tensile zone. The elemental tensile strains in the extreme wood tensile laminae, due to global applied loads, were found to be well below the strain at failure in clear wood samples recovered from the failure area. Two areas affecting the relationship between the wood and the FRP were investigated: compatibility of the wood and FRP materials and interface characteristics between the wood and FRP. The optimum strain value at yield point for an FRP was assessed to be slightly higher than the clear wood value in tension for a species/grade to be reinforced. The effects of localized strength variations in the tensile wood laminae adjacent to the FRP were found to be the predominate cause of failure in full-scale reinforced glulams with less than 1.5% by cross section reinforcement.
NASA Astrophysics Data System (ADS)
Deng, Dongdong; Jiao, Peifeng; Shou, Guofa; Xia, Ling
2009-10-01
Myocardial electrical excitation propagation is anisotropic, with the most rapid spread of current along the direction of the long axis of the fiber. Fiber orientation is also an important determinant of myocardial mechanics. So myocardial fiber orientations are very important to heart modeling and simulation. Accurately construction of myocardial fiber orientations, however, is still a challenge. The purpose of this paper is to construct a heart geometrical model with myocardial fiber orientations based on CT and 3D laser scanned pictures. The iterative closest points (ICP) algorithms were used to register the fiber orientations with the heart geometry.
Kittrell, W. Carter; Wang, Yuhuang; Kim, Myung Jong; Hauge, Robert H.; Smalley, Richard E.; Marek leg, Irene Morin
2010-06-01
The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.
Tensile behavior of glass/ceramic composite materials at elevated temperatures
NASA Technical Reports Server (NTRS)
Mandell, J. F.; Grande, D. H.; Jacobs, J.
1987-01-01
This paper describes the tensile behavior of high-temperature composite materials containing continuous Nicalon ceramic fiber reinforcement and glass and glass/ceramic matrices. The longitudinal properties of these materials can approach theoretical expectations for brittle matrix composites, failing at a strength and ultimate strain level consistent with those of the fibers. The brittle, high-modulus matrices result in a nonlinear stress-strain curve due to the onset of stable matrix cracking at 10 to 30 percent of the fiber strain to failure, and at strains below this range in off-axis plies. Current fibers and matrices can provide attractive properties well above 1000 C, but composites experience embrittlement in oxidizing atmospheres at 800 to 1000 C due to oxidation of a carbon interface reaction layer.The oxidation effect greatly increases the interface bond strength, causing composite embrittlement.
Colomb, Tristan; Dürr, Florian; Cuche, Etienne; Marquet, Pierre; Limberger, Hans G; Salathé, René-Paul; Depeursinge, Christian
2005-07-20
We present a digital holographic microscope that permits one to image polarization state. This technique results from the coupling of digital holographic microscopy and polarization digital holography. The interference between two orthogonally polarized reference waves and the wave transmitted by a microscopic sample, magnified by a microscope objective, is recorded on a CCD camera. The off-axis geometry permits one to reconstruct separately from this single hologram two wavefronts that are used to image the object-wave Jones vector. We applied this technique to image the birefringence of a bent fiber. To evaluate the precision of the phase-difference measurement, the birefringence induced by internal stress in an optical fiber is measured and compared to the birefringence profile captured by a standard method, which had been developed to obtain high-resolution birefringence profiles of optical fibers.
Multi-Axis Thrust Measurements of the EO-1 Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Arrington, Lynn A.; Haag, Thomas W.
1999-01-01
Pulsed plasma thrusters are low thrust propulsive devices which have a high specific impulse at low power. A pulsed plasma thruster is currently scheduled to fly as an experiment on NASA's Earth Observing-1 satellite mission. The pulsed plasma thruster will be used to replace one of the reaction wheels. As part of the qualification testing of the thruster it is necessary to determine the nominal thrust as a function of charge energy. These data will be used to determine control algorithms. Testing was first completed on a breadboard pulsed plasma thruster to determine nominal or primary axis thrust and associated propellant mass consumption as a function of energy and then later to determine if any significant off-axis thrust component existed. On conclusion that there was a significant off-axis thrust component with the bread-board in the direction of the anode electrode, the test matrix was expanded on the flight hardware to include thrust measurements along all three orthogonal axes. Similar off-axis components were found with the flight unit.
Optical readout of displacements of nanowires along two mutually perpendicular directions
NASA Astrophysics Data System (ADS)
Fu, Chenghua
2017-05-01
Nanowires are good force transducers due to their low mass. The singleness of the direction of the motion detection in a certain system is an existing limitation, and to overcome the limitation is the key point in this article. Optical methods, such as polarized light interferometry and light scattering, are generally used for detecting the displacement of nanowires. Typically, either light interference or light scattering is considered when relating the displacement of a nanowire with the photodetector's measurements. In this work, we consider both the light interference along the optical axis and light scattering perpendicular to the optical axis of a micro-lens fiber optic interferometer. Identifying the displacement along the two directions and the corresponding vibration conversion efficiency coefficients for the nanowire is a significant part of our study. Our analysis shows that the optimal working point of the micro-lens fiber optic interferometer can realize the detection of displacement along the optical axis without the disturbance coming from the motion perpendicular to the optical axis, and vice versa. We use Mie scattering theory to calculate the scattering light for the reason that the size of the nanowire is comparable to the wavelength of light. Our results could provide a guide for optical readout experiments of the displacement of nanowires.
Mechanics of damping for fiber composite laminates including hygro-thermal effects
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, C. C.
1989-01-01
An integrated mechanics theory has been developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.
Mechanics of damping for fiber composite laminates including hygro-thermal effects
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, Christos C.
1989-01-01
An integrated mechanics theory was developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.
A 3D scanning laser endoscope architecture utilizing a circular piezoelectric membrane
NASA Astrophysics Data System (ADS)
Khayatzadeh, Ramin; Çivitci, Fehmi; Ferhanoğlu, Onur
2017-12-01
A piezo-scanning fiber endoscopic device architecture is proposed for 3D imaging or ablation. The endoscopic device consists of a piezoelectric membrane that is placed perpendicular to the optical axis, a fiber optic cable that extends out from and actuated by the piezoelectric membrane, and one or multiple lenses for beam delivery and collection. Unlike its counterparts that utilize piezoelectric cylinders for fiber actuation, the proposed architecture offers quasi-static actuation in the axial direction along with resonant actuation in the lateral directions forming a 3D scanning pattern, allowing adjustment of the focus plane. The actuation of the four-quadrant piezoelectric membrane involves driving of two orthogonal electrodes with AC signals for lateral scanning, while simultaneously driving all electrodes for axial scanning and focus adjustment. We have characterized piezoelectric membranes (5 -15mm diameter) with varying sizes to monitor axial displacement behavior with respect to applied DC voltage. We also demonstrate simultaneous lateral and axial actuation on a resolution target, and observe the change of lateral resolution on a selected plane through performing 1D cross-sectional images, as an indicator of focal shift through axial actuation. Based on experimental results, we identify the optical and geometrical parameters for optimal 3D imaging of tissue samples. Our findings reveal that a simple piezoelectric membrane, having comparable dimensions and drive voltage requirement with off-the-shelf MEMS scanner chips, offers tissue epithelial imaging with sub-cellular resolution.
Advanced one-dimensional optical strain measurement system, phase 4
NASA Technical Reports Server (NTRS)
Lant, Christian T.
1992-01-01
An improved version of the speckle-shift strain measurement system was developed. The system uses a two-dimensional sensor array to maintain speckle correlation in the presence of large off-axis rigid body motions. A digital signal processor (DSP) is used to calculate strains at a rate near the RS-170 camera frame rate. Strain measurements were demonstrated on small diameter wires and fibers used in composite materials research. Accurate values of Young's modulus were measured on tungsten wires, and silicon carbide and sapphire fibers. This optical technique has measured surface strains at specimen temperatures above 750 C and has shown the potential for measurements at much higher temperatures.
NASA Astrophysics Data System (ADS)
Ma, Chaojie; Di, Jianglei; Li, Ying; Xiao, Fajun; Zhang, Jiwei; Liu, Kaihui; Bai, Xuedong; Zhao, Jianlin
2018-06-01
We demonstrate, for the first time, the rotational memory effect of a multimode fiber (MMF) based on digital optical phase conjugation (DOPC) to achieve multiple-spot focusing. An implementation interferometer is used to address the challenging alignments in DOPC. By rotating the acquired phase conjugate pattern, rotational scanning through a MMF could be achieved by recording a single off-axis hologram. The generation of two focal spots through a MMF is also demonstrated by combining the rotational memory effect with the superposition principle. The results may be useful for ultrafast scanning imaging and optical manipulation of multiple objects through a MMF.
Influence of stress interaction on the behavior of off-axis unidirectional composites
NASA Technical Reports Server (NTRS)
Pindera, M. J.; Herakovich, C. T.
1980-01-01
The yield function for plane stress of a transversely isotropic composite lamina consisting of stiff, linearly elastic fibers and a von Mises matrix material is formulated in terms of Hill's elastic stress concentration factors and a single plastic constraint parameter. The above are subsequently evaluated on the basis of observed average lamina and constituent response for the Avco 5505 boron epoxy system. It is shown that inclusion of residual stresses in the yield function together with the incorporation of Dubey and Hillier's concept of generalized yield stress for anisotropic media in the constitutive equation correctly predicts the trends observed in experiments. The incorporation of the strong axial stress interaction necessary to predict the correct trends in the shear response is directly traced to the high residual axial stresses in the matrix induced during fabrication of the composite.
Absolute Scale Quantitative Off-Axis Electron Holography at Atomic Resolution
NASA Astrophysics Data System (ADS)
Winkler, Florian; Barthel, Juri; Tavabi, Amir H.; Borghardt, Sven; Kardynal, Beata E.; Dunin-Borkowski, Rafal E.
2018-04-01
An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe2 flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.
Micromechanics thermal stress analysis of composites for space structure applications
NASA Technical Reports Server (NTRS)
Bowles, David E.
1991-01-01
This paper presents results from a finite element micromechanics analysis of thermally induced stresses in composites at cryogenic temperatures typical of spacecraft operating environments. The influence of microstructural geometry, constituent and interphase properties, and laminate orientation were investigated. Stress field results indicated that significant matrix stresses occur in composites exposed to typical spacecraft thermal excursions; these stresses varied with laminate orientation and circumferential position around the fiber. The major difference in the predicted response of unidirectional and multidirectional laminates was the presence of tensile radial stresses, at the fiber/matrix interface, in multidirectional laminates with off-axis ply angles greater than 15 deg. The predicted damage initiation temperatures and modes were in good agreement with experimental data for both low (207 GPa) and high (517 GPa) modulus carbon fiber/epoxy composites.
NASA Technical Reports Server (NTRS)
Dickman, J. D.; Angelaki, D. E.
1999-01-01
During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.
NASA Technical Reports Server (NTRS)
Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.
1991-01-01
Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.; Ochoa, Ozden O.
1990-01-01
A better understanding of the factors that affect the semi-circular edge-notched compressive strength is developed, and the associated failure mode(s) of thermoplastic composite laminates with multidirectional stacking sequences are identified. The primary variables in this investigation are the resin nonlinear shear constitutive behavior, stacking sequence (orientation of plies adjacent to the 0 degree plies), resin-rich regions between the 0 degree plies and the off-axis supporting plies, fiber/matrix interfacial bond strength, and initial fiber waviness. Two thermoplastic composite material systems are used in this investigation. The materials are the commercial APC-2 (AS4/PEEK) and a poor interface experimental material, AU4U/PEEK, designed for this investigation. Notched compression specimens are studied at 21, 77, and 132 C. Geometric and material nonlinear two-dimensional finite element analysis is used to model the initiation of fiber microbuckling of both the ideal straight fiber and the more realistic initially wavy fiber. The effects of free surface, fiber constitutive properties, matrix constitutive behavior, initial fiber curvature, and fiber/matrix interfacial bond strength on fiber microbuckling initiation strain levels are considered.
Impetus of composite mechanics on test methods for fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1978-01-01
The impetus of composite mechanics on composite test methods and/or on interpreting test results is described by using examples from composite micromechanics, composite macromechanics and laminate theory. The specific examples included contributions such as criteria for selecting resin matrices for improved composite strength, the 10 deg off-axis tensile test, criteria for configuring hybrids and superhybrids for improved impact resistance and the reduced bending rigidities concept for buckling and vibration analyses.
Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Liang; Wang, Kuiru; Yu, Chongxiu; Lu, Chao; Tam, Hwa Yaw; Wai, P K A
2017-05-01
In this Letter, polarization-dependent intermodal four-wave mixing (FWM) is demonstrated experimentally in a birefringent multimode photonic crystal fiber (BM-PCF) designed and fabricated in-house. Femtosecond pump pulses at wavelengths ∼800 nm polarized along one of the principal axes of the BM-PCF are coupled into a normal dispersion region away from the zero-dispersion wavelengths of the fundamental guided mode of the BM-PCF. Anti-Stokes and Stokes waves are generated in the 2nd guided mode at visible and near-infrared wavelengths, respectively. For pump pulses at an average input power of 500 mW polarized along the slow axis, the conversion efficiencies ηas and ηs of the anti-Stokes and Stokes waves generated at wavelengths 579.7 and 1290.4 nm are 19% and 14%, respectively. For pump pulses polarized along the fast axis, the corresponding ηas and ηs at 530.4 and 1627 nm are 23% and 18%, respectively. We also observed that fiber bending and intermodal walk-off have a small effect on the polarization-dependent intermodal FWM-based frequency conversion process.
Nonlinear Elastic Effects on the Energy Flux Deviation of Ultrasonic Waves in GR/EP Composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1992-01-01
In isotropic materials, the direction of the energy flux (energy per unit time per unit area) of an ultrasonic plane wave is always along the same direction as the normal to the wave front. In anisotropic materials, however, this is true only along symmetry directions. Along other directions, the energy flux of the wave deviates from the intended direction of propagation. This phenomenon is known as energy flux deviation and is illustrated. The direction of the energy flux is dependent on the elastic coefficients of the material. This effect has been demonstrated in many anisotropic crystalline materials. In transparent quartz crystals, Schlieren photographs have been obtained which allow visualization of the ultrasonic waves and the energy flux deviation. The energy flux deviation in graphite/epoxy (gr/ep) composite materials can be quite large because of their high anisotropy. The flux deviation angle has been calculated for unidirectional gr/ep composites as a function of both fiber orientation and fiber volume content. Experimental measurements have also been made in unidirectional composites. It has been further demonstrated that changes in composite materials which alter the elastic properties such as moisture absorption by the matrix or fiber degradation, can be detected nondestructively by measurements of the energy flux shift. In this research, the effects of nonlinear elasticity on energy flux deviation in unidirectional gr/ep composites were studied. Because of elastic nonlinearity, the angle of the energy flux deviation was shown to be a function of applied stress. This shift in flux deviation was modeled using acoustoelastic theory and the previously measured second and third order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress were considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3) while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1).
One-dimensional nanowires of pseudoboehmite (aluminum oxyhydroxide γ-AlOOH)
Iijima, Sumio; Yumura, Takashi; Liu, Zheng
2016-01-01
We report the discovery of a 1D crystalline structure of aluminum oxyhydroxide. It was found in a commercial product of fibrous pseudoboehmite (PB), γ-AlOOH, synthesized easily with low cost. The thinnest fiber found was a ribbon-like structure of only two layers of an Al–O octahedral double sheet having a submicrometer length along its c axis and 0.68-nm thickness along its b axis. This thickness is only slightly larger than half of the lattice parameter of the b-axis unit cell of the boehmite crystal (b/2 = 0.61 nm). Moreover, interlayer splittings having an average width of 1 nm inside the fibrous PB are found. These wider interlayer spaces may have intercalation of water, which is suggested by density functional theory (DFT) calculation. The fibers appear to grow as almost isolated individual filaments in aqueous Al-hydroxide sols and the growth direction of fibrous PB is always along its c axis. PMID:27708158
Mechanical property characterization of intraply hybrid composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Lark, R. F.; Sinclair, J. H.
1979-01-01
An investigation of the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix hybridized with secondary S-glass or Kevlar 49 fiber composites is presented. The specimen stress-strain behavior was determined, showing that mechanical properties of intraply hybrid composites can be measured with available methods such as the ten-degree off-axis test for intralaminar shear, and conventional tests for tensile, flexure, and Izod impact properties. The results also showed that combinations of high modulus graphite/S-glass/epoxy matrix composites exist which yield intraply hybrid laminates with the best 'balanced' properties, and that the translation efficiency of mechanical properties from the constituent composites to intraply hybrids may be assessed with a simple equation.
Spherulitic (c-axis) Growth for Terrestrial (Mauna Kea, Hawaii) and Martian Hematite "blueberries"
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.; Morris, R. V.
2006-01-01
Hematite concentrations observed by Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor were considered a possible indicator for aqueous processes on Mars. Observations made by Opportunity show that the hematite at Meridiani Planum is present as spherules ( blueberries) and their fragments. The internal structure of the hematite spherules is not discernable at the resolution limit (approx.30 m/pixel) of Opportunity s Microscopic Imager (MI). A terrestrial analog for martian hematite spherules are spherules from hydrothermally altered and sulfate-rich tephra from the summit region of Mauna Kea volcano, Hawaii. The objective of this study is to determine the crystal growth fabric of the Mauna Kea hematite spherules using transmission electron microscopy (TEM) techniques and to relate that crystalline fabric to the observed TES signature of Meridiani Planum "blueberries." TEM analysis of Mauna Kea spherules exhibited a radial growth pattern consisting of "fibrous" hematite with the c-axis of hematite particles aligned along the elongation direction of the hematite fibers. The individual fibers appear to be made of coalesced nano-particles of hematite arranged with their c-axis oriented radially to form a spherical structure. Lattice fringes suggest long-range order across particles and along fibers. According to interpretations of thermal emission spectra for Meridian Planum hematite, the absence of a band at approx. 390/cm implies a geometry where c-face emission dominates. Because the c-face is perpendicular to the c-axis, this is precisely the geometry for the Mauna Kea spherules because the c-axis is aligned parallel to their radial growth direction. Therefore, we conclude as a working hypothesis that the martian spherules also have radial, c-axis growth pattern on a scale that is too small to be detected by the MER MI. Furthermore, by analogy with the Mauna Kea spherules, the martian blueberries could have formed during hydrothermal alteration of basaltic precursors under acid-sulfate conditions.
New generation fiber reinforced polymer composites incorporating carbon nanotubes
NASA Astrophysics Data System (ADS)
Soliman, Eslam
The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.
Microbend fiber-optic chemical sensor
Weiss, Jonathan D.
2002-01-01
A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.
Testing the TPF Interferometry Approach before Launch
NASA Technical Reports Server (NTRS)
Serabyn, Eugene; Mennesson, Bertrand
2006-01-01
One way to directly detect nearby extra-solar planets is via their thermal infrared emission, and with this goal in mind, both NASA and ESA are investigating cryogenic infrared interferometers. Common to both agencies' approaches to faint off-axis source detection near bright stars is the use of a rotating nulling interferometer, such as the Terrestrial Planet Finder interferometer (TPF-I), or Darwin. In this approach, the central star is nulled, while the emission from off-axis sources is transmitted and modulated by the rotation of the off-axis fringes. Because of the high contrasts involved, and the novelty of the measurement technique, it is essential to gain experience with this technique before launch. Here we describe a simple ground-based experiment that can test the essential aspects of the TPF signal measurement and image reconstruction approaches by generating a rotating interferometric baseline within the pupil of a large singleaperture telescope. This approach can mimic potential space-based interferometric configurations, and allow the extraction of signals from off-axis sources using the same algorithms proposed for the space-based missions. This approach should thus allow for testing of the applicability of proposed signal extraction algorithms for the detection of single and multiple near-neighbor companions...
All-fiber 3D vector displacement (bending) sensor based on an eccentric FBG.
Bao, Weijia; Rong, Qiangzhou; Chen, Fengyi; Qiao, Xueguang
2018-04-02
We demonstrate a fiber-optic 3D vector displacement sensor based on the monitoring of Bragg reflection from an eccentric grating inscribed in a depressed-cladding fiber using the femtosecond laser side-illumination and phase-mask technique. The compact sensing probe consists of a short section of depressed cladding fiber (DCF) containing eccentrically positioned fiber Bragg gratings. The eccentric grating breaks the cylindrical symmetry of the fiber cross-section and further has bending orientation-dependence. The generated fundamental resonance is strongly sensitive to bending of the fiber, and the direction of the bending plane can be determined from its responses. When integrated with axis strain monitoring, the sensor achieves a 3D vector displacement measurement via simple geometric analysis.
An analysis of fiber-matrix interface failure stresses for a range of ply stress states
NASA Technical Reports Server (NTRS)
Crews, J. H.; Naik, R. A.; Lubowinski, S. J.
1993-01-01
A graphite/bismaleimide laminate was prepared without the usual fiber treatment and was tested over a wide range of stress states to measure its ply cracking strength. These tests were conducted using off-axis flexure specimens and produced fiber-matrix interface failure data over a correspondingly wide range of interface stress states. The absence of fiber treatment, weakened the fiber-matrix interfaces and allowed these tests to be conducted at load levels that did not yield the matrix. An elastic micromechanics computer code was used to calculate the fiber-matrix interface stresses at failure. Two different fiber-array models (square and diamond) were used in these calculations to analyze the effects of fiber arrangement as well as stress state on the critical interface stresses at failure. This study showed that both fiber-array models were needed to analyze interface stresses over the range of stress states. A linear equation provided a close fit to these critical stress combinations and, thereby, provided a fiber-matrix interface failure criterion. These results suggest that prediction procedures for laminate ply cracking can be based on micromechanics stress analyses and appropriate fiber-matrix interface failure criteria. However, typical structural laminates may require elastoplastic stress analysis procedures that account for matrix yielding, especially for shear-dominated ply stress states.
Optics ellipticity performance of an unobscured off-axis space telescope.
Zeng, Fei; Zhang, Xin; Zhang, Jianping; Shi, Guangwei; Wu, Hongbo
2014-10-20
With the development of astronomy, more and more attention is paid to the survey of dark matter. Dark matter cannot be seen directly but can be detected by weak gravitational lensing measurement. Ellipticity is an important parameter used to define the shape of a galaxy. Galaxy ellipticity changes with weak gravitational lensing and nonideal optics. With our design of an unobscured off-axis telescope, we implement the simulation and calculation of optics ellipticity. With an accurate model of optics PSF, the characteristic of ellipticity is modeled and analyzed. It is shown that with good optical design, the full field ellipticity can be quite small. The spatial ellipticity change can be modeled by cubic interpolation with very high accuracy. We also modeled the ellipticity variance with time and analyzed the tolerance. It is shown that the unobscured off-axis telescope has good ellipticity performance and fulfills the requirement of dark matter survey.
Transversely polarized source cladding for an optical fiber
NASA Technical Reports Server (NTRS)
Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)
1994-01-01
An optical fiber comprising a fiber core having a longitudinal symmetry axis is provided. An active cladding surrounds a portion of the fiber core and comprises light-producing sources which emit light in response to chemical or light excitation. The cladding sources are oriented transversely with respect to the longitudinal axis of the fiber core. This polarization results in a superior power efficiency compared to active cladding sources that are randomly polarized or longitudinally polarized parallel with the longitudinal symmetry axis.
NASA Technical Reports Server (NTRS)
Wang, Gang; Banks, Curtis E.
2015-01-01
This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while using reduced number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor in a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves and they are oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It is shown that the PM-FBG sensor system is able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acousto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications.
NASA Technical Reports Server (NTRS)
Wang, Gag; Banks, Curtis E.
2016-01-01
This report discusses the guided Lamb wave sensing using polarization-maintaining (PM) fiber Bragg grating (PM-FBG) sensor. The goal is to apply the PM-FBG sensor system to composite structural health monitoring (SHM) applications in order to realize directivity and multi-axis strain sensing capabilities while reducing the number of sensors. Comprehensive experiments were conducted to evaluate the performance of the PM-FBG sensor attached to a composite panel structure under different actuation frequencies and locations. Three Macro-Fiber-Composite (MFC) piezoelectric actuators were used to generate guided Lamb waves that were oriented at 0, 45, and 90 degrees with respect to PM-FBG axial direction, respectively. The actuation frequency was varied from 20kHz to 200kHz. It was shown that the PM-FBG sensor system was able to detect high-speed ultrasound waves and capture the characteristics under different actuation conditions. Both longitudinal and lateral strain components in the order of nano-strain were determined based on the reflective intensity measurement data from fast and slow axis of the PM fiber. It must be emphasized that this is the first attempt to investigate acouto-ultrasonic sensing using PM-FBG sensor. This could lead to a new sensing approach in the SHM applications. Nomenclature.
Sakakibara, Keita; Chithra, Parayalil; Das, Bidisa; Mori, Taizo; Akada, Misaho; Labuta, Jan; Tsuruoka, Tohru; Maji, Subrata; Furumi, Seiichi; Shrestha, Lok Kumar; Hill, Jonathan P; Acharya, Somobrata; Ariga, Katsuhiko; Ajayaghosh, Ayyappanpillai
2014-06-18
Linear π-gelators self-assemble into entangled fibers in which the molecules are arranged perpendicular to the fiber long axis. However, orientation of gelator molecules in a direction parallel to the long axes of the one-dimensional (1-D) structures remains challenging. Herein we demonstrate that, at the air-water interface, an oligo(p-phenylenevinylene)-derived π-gelator forms aligned nanorods of 340 ± 120 nm length and 34 ± 5 nm width, in which the gelator molecules are reoriented parallel to the long axis of the rods. The orientation change of the molecules results in distinct excited-state properties upon local photoexcitation, as evidenced by near-field scanning optical microscopy. A detailed understanding of the mechanism by which excitation energy migrates through these 1-D molecular assemblies might help in the design of supramolecular structures with improved charge-transport properties.
Levillain, A; Orhant, M; Turquier, F; Hoc, T
2016-08-01
The linea alba is a complex structure commonly involved in hernia formation. Knowledge of its mechanical behavior is essential to design suitable meshes and reduce the risk of recurrence. The aim of this study was to investigate the relationships between the mechanical properties of the linea alba and the organization of collagen and elastin fibers. For that purpose, longitudinal and transversal samples were removed from four porcine and three human linea alba, to perform tensile tests under a biphotonic confocal microscope, in each direction. Microscopic observation revealed a tissue composed of two layers, made of transversal collagen fibers in the dorsal side and oblique collagen fibers in the ventral side. This particular architecture led to an anisotropic mechanical behavior, with higher stress in the transversal direction. During loading, oblique fibers of the ventral layer reoriented toward the tensile axis in both directions, while fibers of the dorsal layer remained in the transversal direction. This rotation of oblique fibers progressively increased the stiffness of the tissue and induced a non-linear stress-stretch relation. Elastin fibers formed a layer covering the collagen fibers and followed their movement, suggesting that they ensure their elastic recoil. All of these results demonstrated the strong relationships between the microstructure and the mechanical behavior of the linea alba. Copyright © 2016 Elsevier Ltd. All rights reserved.
1989-01-01
prestrained Nitinol (an alloy of nickel and titanium) wires are embedded in an off-axis position in the graphite fiber reinforced epoxy composite beam... Nitinol ) alloy. Shape memory alloys have been applied to a number of items including connectors and heat engines, but have usually found application in... nitinol wire; the design includes prevention from ancillary jams. Miwa (1985) discusses the use of SMA actuator to sequential robotic control of multiple
Self-Powered Active Sensor with Concentric Topography of Piezoelectric Fibers
NASA Astrophysics Data System (ADS)
Fuh, Yiin Kuen; Huang, Zih Ming; Wang, Bo Sheng; Li, Shan Chien
2017-01-01
In this study, we demonstrated a flexible and self-powered sensor based on piezoelectric fibers in the diameter range of nano- and micro-scales. Our work is distinctively different from previous electrospinning research; we fabricated this apparatus precisely via near-field electrospinning which has a spectacular performance to harvest mechanical deformation in arbitrary direction and a novel concentrically circular topography. There are many piezoelectric devices based on electrospinning polymeric fibers. However, the fibers were mostly patterned in parallel lines and they could be actuated in limited direction only. To overcome this predicament, we re-arranged the parallel alignment into concentric circle pattern which made it possible to collect the mechanical energy whenever the deformation is along same axis or not. Despite the change of topography, the output voltage and current could still reach to 5 V and 400 nA, respectively, despite the mechanical deformation was from different direction. This new arbitrarily directional piezoelectric generator with concentrically circular topography (PGCT) allowed the piezoelectric device to harvest more mechanical energy than the one-directional alignment fiber-based devices, and this PGCT could perform even better output which promised more versatile and efficient using as a wearable electronics or sensor.
Self-Powered Active Sensor with Concentric Topography of Piezoelectric Fibers.
Fuh, Yiin Kuen; Huang, Zih Ming; Wang, Bo Sheng; Li, Shan Chien
2017-12-01
In this study, we demonstrated a flexible and self-powered sensor based on piezoelectric fibers in the diameter range of nano- and micro-scales. Our work is distinctively different from previous electrospinning research; we fabricated this apparatus precisely via near-field electrospinning which has a spectacular performance to harvest mechanical deformation in arbitrary direction and a novel concentrically circular topography. There are many piezoelectric devices based on electrospinning polymeric fibers. However, the fibers were mostly patterned in parallel lines and they could be actuated in limited direction only. To overcome this predicament, we re-arranged the parallel alignment into concentric circle pattern which made it possible to collect the mechanical energy whenever the deformation is along same axis or not. Despite the change of topography, the output voltage and current could still reach to 5 V and 400 nA, respectively, despite the mechanical deformation was from different direction. This new arbitrarily directional piezoelectric generator with concentrically circular topography (PGCT) allowed the piezoelectric device to harvest more mechanical energy than the one-directional alignment fiber-based devices, and this PGCT could perform even better output which promised more versatile and efficient using as a wearable electronics or sensor.
Transmission Electron Microscopy of Bombyx Mori Silk Fibers
NASA Astrophysics Data System (ADS)
Shen, Y.; Martin, D. C.
1997-03-01
The microstructure of B. Mori silk fibers before and after degumming was examined by TEM, selected area electron diffraction (SAED), WAXS and low voltage SEM. SEM micrographs of the neat cocoon revealed a network of pairs of twisting filaments. After degumming, there were only individual filaments showing a surface texture consistent with an oriented fibrillar structure in the fiber interior. WAXS patterns confirmed the oriented beta-sheet crystal structure common to silkworm and spider silks. Low dose SAED results were fully consistent with the WAXS data, and revealed that the crystallographic texture did not vary significantly across the fiber diameter. TEM observations of microtomed fiber cross sections indicated a somewhat irregular shape, and also revealed a 0.5-2 micron sericin coating which was removed by the degumming process. TEM observations of the degummed silk fiber showed banded features with a characteristic spacing of nominally 600 nm along the fiber axis. These bands were oriented in a roughly parabolic or V-shape pointing along one axis within a given fiber. We hypothesize that this orientation is induced by the extrusion during the spinning process. Equatorial DF images revealed that axial and lateral sizes of the β-sheet crystallites in silk fibroin ranged from 20 to 170 nm and from 1 to 24 nm, respectively. Crazes developed in the degummed silk fiber parallel to the fiber direction. The formation of these crazes suggests that there are significant lateral interactions between fibrils in silk fibers.
Fiber-optic annular detector array for large depth of field photoacoustic macroscopy.
Bauer-Marschallinger, Johannes; Höllinger, Astrid; Jakoby, Bernhard; Burgholzer, Peter; Berer, Thomas
2017-03-01
We report on a novel imaging system for large depth of field photoacoustic scanning macroscopy. Instead of commonly used piezoelectric transducers, fiber-optic based ultrasound detection is applied. The optical fibers are shaped into rings and mainly receive ultrasonic signals stemming from the ring symmetry axes. Four concentric fiber-optic rings with varying diameters are used in order to increase the image quality. Imaging artifacts, originating from the off-axis sensitivity of the rings, are reduced by coherence weighting. We discuss the working principle of the system and present experimental results on tissue mimicking phantoms. The lateral resolution is estimated to be below 200 μm at a depth of 1.5 cm and below 230 μm at a depth of 4.5 cm. The minimum detectable pressure is in the order of 3 Pa. The introduced method has the potential to provide larger imaging depths than acoustic resolution photoacoustic microscopy and an imaging resolution similar to that of photoacoustic computed tomography.
Linear and Non-Linear Response of Liquid and Solid Particles to Energetic Radiation
1991-03-11
for particle 2 located on the + x6 axis (perpendicular to the beam propagation axis) one diameter surface-to-surface from particle 1 (i 12 = 4.0, Obd2 ...axis direction. Off is the far field scattering angle relative to the beam propagation axis. Obd2 is the orientation angle of particle 2 relative to...Particle 2 in the Xb - Zb plane and positioned one diameter surface-to-surface from particle 1 (P12 = 4.0). a.) Obd2 = 00, b.) Obd2 = 30 ° , c.) ebd
Flow cytometry without alignment of collection optics.
Sitton, Greg; Srienc, Friedrich
2009-12-01
This study describes the performance of a new waveguide flow cell constructed from Teflon AF (TFC) and the potential use of fiber optic splitters to replace collection objectives and dichroic mirrors. The TFC has the unique optical property that the refractive index of the polymer is lower than water and therefore, water filled TFC behaves and functions as a liquid core waveguide. Thus, as cells flow through the TFC and are illuminated by a laser orthogonal to the flow direction, scattered and fluorescent light is directed down the axis of the TFC to a fiber optic. The total signal in the fiber optic is then split into multiple fibers by fiber optic splitters to enable measurement of signal intensities at different wavelengths. Optical filters are placed at the terminus of each fiber before measurement of specific wavelengths by a PMT. The constructed system was used to measure DNA content of CHO and yeast cells. Polystyrene beads were used for alignment and to assess the performance of the system. Polystyrene beads were observed to produce light scattering signals with unique bimodal characteristics dependent on the direction of flow relative to the collecting fiber optic.
A continuous process to align electrospun nanofibers into parallel and crossed arrays
NASA Astrophysics Data System (ADS)
Laudenslager, Michael J.; Sigmund, Wolfgang M.
2013-04-01
Electrical, optical, and mechanical properties of nanofibers are strongly affected by their orientation. Electrospinning is a nanofiber processing technique that typically produces nonwoven meshes of randomly oriented fibers. While several alignment techniques exist, they are only able to produce either a very thin layer of aligned fibers or larger quantities of fibers with less control over their alignment and orientation. The technique presented herein fills the gap between these two methods allowing one to produce thick meshes of highly oriented nanofibers. In addition, this technique is not limited to collection of fibers along a single axis. Modifications to the basic setup allow collection of crossed fibers without stopping and repositioning the apparatus. The technique works for a range of fiber sizes. In this study, fiber diameters ranged from 100 nm to 1 micron. This allows a few fibers at a time to rapidly deposit in alternating directions creating an almost woven structure. These aligned nanofibers have the potential to improve the performance of energy storage and thermoelectric devices and hold great promise for directed cell growth applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahraman, R.; Mandell, J.F.; Deibert, M.C.
Cracking parallel to the fibers in off-axis plies is usually the initial form of damage in composite laminates. This cracking process has been associated with the (transverse) fracture toughness, defined by the critical strain energy release rate, G{sub Ic}. The measurement of G{sub Ic} provides basic information about the transverse crack resistance. In this study, the utility of the double torsion (DT) test technique to determine G{sub Ic} in a glass-ceramic matrix composite (Nicalon/CAS-II) at temperatures up to 1,000 C has been demonstrated. G{sub Ic} did decrease moderately with increasing temperature (as does the bulk matrix); however, no evidence ofmore » an interphase oxidizing effect on crack growth (parallel to the fibers) could be found. The inevitable misalignment of fibers in the material was not very efficient at bridging the crack in the DT specimens, in contrast to the significant matrix crack interactions with the fibers reported for other geometries such as double cantilever beam and flexure specimens.« less
Growing Crystaline Sapphire Fibers By Laser Heated Pedestal Techiques
Phomsakha, Vongvilay; Chang, Robert S. F.; Djeu, Nicholas I.
1997-03-04
An improved system and process for growing crystal fibers comprising a means for creating a laser beam having a substantially constant intensity profile through its cross sectional area, means for directing the laser beam at a portion of solid feed material located within a fiber growth chamber to form molten feed material, means to support a seed fiber above the molten feed material, means to translate the seed fiber towards and away from the molten feed material so that the seed fiber can make contact with the molten feed material, fuse to the molten feed material and then be withdrawn away from the molten feed material whereby the molten feed material is drawn off in the form of a crystal fiber. The means for creating a laser beam having a substantially constant intensity profile through its cross sectional area includes transforming a previously generated laser beam having a conventional gaussian intensity profile through its cross sectional area into a laser beam having a substantially constant intensity profile through its cross sectional area by passing the previously generated laser beam through a graded reflectivity mirror. The means for directing the laser beam at a portion of solid feed material is configured to direct the laser beam at a target zone which contains the molten feed material and a portion of crystal fiber drawn off the molten feed material by the seed fiber. The means to support the seed fiber above the molten feed material is positioned at a predetermined height above the molten feed material. This predetermined height provides the seed fiber with sufficient length and sufficient resiliency so that surface tension in the molten feed material can move the seed fiber to the center of the molten feed material irrespective of where the seed fiber makes contact with the molten feed material. The internal atmosphere of the fiber growth chamber is composed substantially of Helium gas.
3-DOF Force-Sensing Motorized Micro-Forceps for Robot-Assisted Vitreoretinal Surgery
Gonenc, Berk; Chamani, Alireza; Handa, James; Gehlbach, Peter; Taylor, Russell H.; Iordachita, Iulian
2017-01-01
In vitreoretinal surgery, membrane peeling is a prototypical task where a layer of fibrous tissue is delaminated off the retina with a micro-forceps by applying very fine forces that are mostly imperceptible to the surgeon. Previously we developed sensitized ophthalmic surgery tools based on fiber Bragg grating (FBG) strain sensors, which were shown to precisely detect forces at the instrument’s tip in two degrees of freedom perpendicular to the tool axis. This paper presents a new design that employs an additional sensor to capture also the tensile force along the tool axis. The grasping functionality is provided via a compact motorized unit. To compute forces, we investigate two distinct fitting methods: a linear regression and a nonlinear fitting based on second-order Bernstein polynomials. We carry out experiments to test the repeatability of sensor outputs, calibrate the sensor and validate its performance. Results demonstrate sensor wavelength repeatability within 2 pm. Although the linear method provides sufficient accuracy in measuring transverse forces, in the axial direction it produces a root mean square (rms) error over 3 mN even for a confined magnitude and direction of forces. On the other hand, the nonlinear method provides a more consistent and accurate measurement of both the transverse and axial forces for the entire force range (0–25 mN). Validation including random samples shows that our tool with the nonlinear force computation method can predict 3-D forces with an rms error under 0.15 mN in the transverse plane and within 2 mN accuracy in the axial direction. PMID:28736508
Three-axis force sensor with fiber Bragg grating.
Hyundo Choi; Yoan Lim; Junhyung Kim
2017-07-01
Haptic feedback is critical for many surgical tasks, and it replicates force reflections at the surgical site. To meet the force reflection requirements, we propose a force sensor with an optical fiber Bragg grating (FBG) for robotic surgery. The force sensor can calculate three directional forces of an instrument from the strain of three FBGs, even under electromagnetic interference. A flexible ring-shape structure connects an instrument tip and fiber strain gages to sense three directional force. And a stopper mechanism is added in the structure to avoid plastic deformation under unexpected large force on the instrument tip. The proposed sensor is experimentally verified to have a sensing range from -12 N to 12 N, and its sensitivity was less than 0.06 N.
Off-axis targets maximize bearing Fisher Information in broadband active sonar.
Kloepper, Laura N; Buck, John R; Liu, Yang; Nachtigall, Paul E
2018-01-01
Broadband active sonar systems estimate range from time delay and velocity from Doppler shift. Relatively little attention has been paid to how the received echo spectrum encodes information about the bearing of an object. This letter derives the bearing Fisher Information encoded in the frequency dependent transmitter beampattern. This leads to a counter-intuitive result: directing the sonar beam so that a target of interest is slightly off-axis maximizes the bearing information about the target. Beam aim data from a dolphin biosonar experiment agree closely with the angle predicted to maximize bearing information.
NASA Astrophysics Data System (ADS)
Ugryumova, Nadezhda; Gangnus, Sergei V.; Matcher, Stephen J.
2006-08-01
Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.
A Microstructure Study on an AZ31 Magnesium Alloy Tube after Hot Metal Gas Forming Process
NASA Astrophysics Data System (ADS)
Liu, Yi; Wu, Xin
2007-06-01
An AZ31 magnesium alloy tube has been deformed by the hot metal gas forming (HMGF) technique. Microstructures before and after deformation have been investigated by using Electron Backscattered Diffraction (EBSD) and Electron Microscopy. Due to the inhomogeneous distribution by induction heating, there is a temperature gradient distribution along the tube axis. Accordingly, the deformation mechanism is also different. In the middle area of deformation zone where the temperature is ˜410 °C, almost no twinning has been found, whereas at the edge areas of deformation zone where the temperature is ˜200 °C, a high density of twins has been found. EBSD experiments show a weak (0001) fiber texture along the radial direction of the tube before and after deformation in the high-temperature zone. EBSD experiments on the low temperature deformation region were not successful due to the high stored energy. Schmid factor analysis on the EBSD data shows that, despite the (0001) fiber texture, there are still many grains favoring basal slip along both the axis direction and hoop direction.
Arc fusion splicing of photonic crystal fibers to standard single mode fibers
NASA Astrophysics Data System (ADS)
Borzycki, Krzysztof; Kobelke, Jens; Schuster, Kay; Wójcik, Jan
2010-04-01
Coupling a photonic crystal fiber (PCF) to measuring instruments or optical subsystems is often done by splicing it to short lengths of single mode fiber (SMF) used for interconnections, as SMF is standardized, widely available and compatible with most fiber optic components and measuring instruments. This paper presents procedures and results of loss measurements during fusion splicing of five PCFs tested at NIT laboratory within activities of COST Action 299 "FIDES". Investigated silica-based fibers had 80-200 μm cladding diameter and were designed as single mode. A standard splicing machine designed for telecom fibers was used, but splicing procedure and arc power were tailored to each PCF. Splice loss varied between 0.7 and 2.8 dB at 1550 nm. Splices protected with heat-shrinkable sleeves served well for gripping fibers during mechanical tests and survived temperature cycling from -30°C to +70°C with stable loss. Collapse of holes in the PCF was limited by reducing fusion time to 0.2-0.5 s; additional measures included reduction of discharge power and shifting SMF-PCF contact point away from the axis of electrodes. Unfortunately, short fusion time sometimes precluded proper smoothing of glass surface, leading to a trade-off between splice loss and strength.
Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator
NASA Astrophysics Data System (ADS)
Feng, Li-shuang; Wang, Kai; Jiao, Hong-chen; Wang, Jun-jie; Liu, Dan-ni; Yang, Zhao-hua
2018-01-01
A novel hybrid air-core photonic band-gap fiber (PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10-8/°C, which is typically 16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope (SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.
NASA Astrophysics Data System (ADS)
Valyaev, A. B.; Krivoshlykov, S. G.
1989-06-01
It is shown that the problem of investigating the mode composition of a partly coherent radiation beam in a randomly inhomogeneous medium can be reduced to a study of evolution of the energy of individual modes and of the coefficients of correlations between the modes. General expressions are obtained for the coupling coefficients of modes in a parabolic waveguide with a random microbending of the axis and an analysis is made of their evolution as a function of the excitation conditions. An estimate is obtained of the distance in which a steady-state energy distribution between the modes is established. Explicit expressions are obtained for the correlation function in the case when a waveguide is excited by off-axial Gaussian beams or Gauss-Hermite modes.
NASA Technical Reports Server (NTRS)
Varshney, Usha; Eichelberger, B. Davis, III
1995-01-01
This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.
Advances in sapphire optical fiber sensors
NASA Technical Reports Server (NTRS)
Wang, Anbo; Wang, George Z.; Gollapudi, Sridhar; May, Russell G.; Murphy, Kent A.; Claus, Richard O.
1993-01-01
We describe the development and testing of two sapphire fiber sensor designs intended for use in high temperature environments. The first is a birefringence-balanced polarimetric sapphire fiber sensor. In this sensor, two single crystal sapphire rods, acting as the birefringence sensing element, are connected to each other in such a way that the slow axis of the first rod is aligned along with the fast axis of the second rod, and the fast axis of the first rod is along the slow axis of the second rod. This sensor has been demonstrated for measurement of temperature up to 1500 C. The second is a sapphire-fiber-based intrinsic interferometric sensor. In this sensor, a length of uncoated, unclad, structural-graded multimode sapphire fiber is fusion spliced to a singlemode silica fiber to form a Fabry-Perot cavity. The reflections from the silica-to-sapphire fiber splice and the free endface of the sapphire fiber give rise to the interfering fringe output. This sensor has been demonstrated for the measurement of temperature above 1510 C, and a resolution of 0.1 C has been obtained.
Off-axis points encoding/decoding with orbital angular momentum spectrum
Chu, Jiaqi; Chu, Daping; Smithwitck, Quinn
2017-01-01
Encoding/decoding off-axis points with discrete orbital angular momentum (OAM) modes is investigated. On-axis Laguerre-Gaussian (LG) beams are expanded into off-axis OAM spectra, with which off-axis points are encoded. The influence of the mode and the displacement of the LG beam on the spread of the OAM spectrum is analysed. The results show that not only the conventional on-axis point, but also off-axis points, can be encoded and decoded with OAM of light. This is confirmed experimentally. The analytical result here provides a solid foundation to use OAM modes to encode two-dimensional high density information for multiplexing and to analyse the effect of mis-alignment in practical OAM applications. PMID:28272543
Erdemir, Ahmet; Piazza, Stephen J
2002-06-01
The lever arm of the ground reaction force (GRF) about the talocrural joint axis is a functionally important indicator of the nature of foot loading. Walking initiation experiments (ten subjects; age, 23-29 years) were completed to demonstrate that rotational foot placement is a possible strategy to specify the lever arm. Externally-rotated foot placement resulted in larger lever arms during push-off. A computer simulation of push-off revealed that a decreased lever arm reduces the plantarflexion moment necessary to maintain a constant forward velocity, while increasing the required plantarflexion velocity. Shortening of the foot thus diminishes the muscular force demand but also requires high muscle fiber shortening velocities that may limit the force generating capacity of plantar flexors. Decreased plantar flexion moment and slow walking previously noted in partial-foot amputees may result from shortened lever arms in this manner.
Distortion definition and correction in off-axis systems
NASA Astrophysics Data System (ADS)
Da Deppo, Vania; Simioni, Emanuele; Naletto, Giampiero; Cremonese, Gabriele
2015-09-01
Off-axis optical configurations are becoming more and more used in a variety of applications, in particular they are the most preferred solution for cameras devoted to Solar System planets and small bodies (i.e. asteroids and comets) study. Off-axis designs, being devoid of central obstruction, are able to guarantee better PSF and MTF performance, and thus higher contrast imaging capabilities with respect to classical on-axis designs. In particular they are suitable for observing extended targets with intrinsic low contrast features, or scenes where a high dynamical signal range is present. Classical distortion theory is able to well describe the performance of the on-axis systems, but it has to be adapted for the off-axis case. A proper way to deal with off-axis distortion definition is thus needed together with dedicated techniques to accurately measure and hence remove the distortion effects present in the acquired images. In this paper, a review of the distortion definition for off-axis systems will be given. In particular the method adopted by the authors to deal with the distortion related issues (definition, measure, removal) in some off-axis instruments will be described in detail.
Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites
NASA Technical Reports Server (NTRS)
Grande, D. H.; Mandell, J. F.; Hong, K. C. C.
1988-01-01
An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.
Design of Off-Axis PIAACMC Mirrors
NASA Technical Reports Server (NTRS)
Pluzhnik, Eugene; Guyon, Olivier; Belikov, Ruslan; Kern, Brian; Bendek, Eduardo
2015-01-01
The Phase-Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) provides an efficient way to control diffraction propagation effects caused by the central obstruction/segmented mirrors of the telescope. PIAACMC can be optimized in a way that takes into account both chromatic diffraction effects caused by the telescope obstructed aperture and tip/tilt sensitivity of the coronagraph. As a result, unlike classic PIAA, the PIAACMC mirror shapes are often slightly asymmetric even for an on-axis configuration and require more care in calculating off-axis shapes when an off-axis configuration is preferred. A method to design off-axis PIAA mirror shapes given an on-axis mirror design is presented. The algorithm is based on geometrical ray tracing and is able to calculate off-axis PIAA mirror shapes for an arbitrary geometry of the input and output beams. The method is demonstrated using the third generation PIAACMC design for WFIRST-AFTA (Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets) telescope. Geometrical optics design issues related to the off-axis diffraction propagation effects are also discussed.
Quantitative DIC microscopy using an off-axis self-interference approach.
Fu, Dan; Oh, Seungeun; Choi, Wonshik; Yamauchi, Toyohiko; Dorn, August; Yaqoob, Zahid; Dasari, Ramachandra R; Feld, Michael S
2010-07-15
Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference. The digital holography algorithm is applied to obtain quantitative phase gradients in orthogonal directions, which leads to a quantitative phase image through a spiral integration of the phase gradients. This method is practically simple to implement on any standard microscope without stringent requirements on polarization optics. Optical sectioning can be obtained through enlarged illumination NA.
Gigantic transverse voltage induced via off-diagonal thermoelectric effect in CaxCoO2 thin films
NASA Astrophysics Data System (ADS)
Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Adachi, Hideaki; Yamada, Yuka
2010-07-01
Gigantic transverse voltages exceeding several tens volt have been observed in CaxCoO2 thin films with tilted c-axis orientation upon illumination of nanosecond laser pulses. The voltage signals were highly anisotropic within the film surface showing close relation with the c-axis tilt direction. The magnitude and the decay time of the voltage strongly depended on the film thickness. These results confirm that the large laser-induced voltage originates from a phenomenon termed the off-diagonal thermoelectric effect, by which a film out-of-plane temperature gradient leads to generation of a film in-plane voltage.
2002-07-01
spectral components remain co-polarized. We confirmed that this was the case by passing the continuum through a polarizing beam splitter . The...propagation direction through polarization beam splitters and aligned along the other axis of the fiber. Co-propagating control and signal pulses...amplifier, PBS = polarization beam splitter . Figure 8. Eye diagram of header processor. This is the trace of the eye diagrams taken with the setup of Fig
NASA Technical Reports Server (NTRS)
Arnold, William, Sr.; Stahl, H Philip
2017-01-01
This design study was conducted to support the HABEX project. There are a number of companion papers at this conference which go into detail on what all the HABEX goals are. The objective of this paper is to establish a baseline primary mirror design which satisfies the following structural related requirements. The designs in this study have a high TRL (Technology Readiness Level), realistic manufacturing limits and performance in line with the HABEX mission. A secondary goal of the study was to evaluate a number competing criteria for the selection. Questions such as differences in the on axis versus off axis static and dynamic response to disturbances. This study concentrates on the structural behavior, companion papers cover thermal and long term stability aspects of the problem.
Ray, Mark D.; Sedlacek, Arthur J.
2003-08-19
A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, Kyle K.; Hermann, Thomas M.; Locke, James
2005-11-01
Anisotropic carbon/glass hybrid composite laminates have been fabricated, tested, and analyzed. The laminates have been fabricated using vacuum-assisted resin transfer molding (VARTM). Five fiber complexes and a two-part epoxy resin system have been used in the study to fabricate panels of twenty different laminate constructions. These panels have been subjected to physical testing to measure density, fiber volume fraction, and void fraction. Coupons machined from these panels have also been subjected to mechanical testing to measure elastic properties and strength of the laminates using tensile, compressive, transverse tensile, and in-plane shear tests. Interlaminar shear strength has also been measured. Out-of-planemore » displacement, axial strain, transverse strain, and inplane shear strain have also been measured using photogrammetry data obtained during edgewise compression tests. The test data have been reduced to characterize the elastic properties and strength of the laminates. Constraints imposed by test fixtures might be expected to affect measurements of the moduli of anisotropic materials; classical lamination theory has been used to assess the magnitude of such effects and correct the experimental data for the same. The tensile moduli generally correlate well with experiment without correction and indicate that factors other than end constraints dominate. The results suggest that shear moduli of the anisotropic materials are affected by end constraints. Classical lamination theory has also been used to characterize the level of extension-shear coupling in the anisotropic laminates. Three factors affecting the coupling have been examined: the volume fraction of unbalanced off-axis layers, the angle of the off-axis layers, and the composition of the fibers (i.e., carbon or glass) used as the axial reinforcement. The results indicate that extension/shear coupling is maximized with the least loss in axial tensile stiffness by using carbon fibers oriented 15{sup o} from the long axis for approximately two-thirds of the laminate volume (discounting skin layers), with reinforcing carbon fibers oriented axially comprising the remaining one-third of the volume. Finite element analysis of each laminate has been performed to examine first ply failure. Three failure criteria--maximum stress, maximum strain, and Tsai-Wu--have been compared. Failure predicted by all three criteria proves generally conservative, with the stress-based criteria the most conservative. For laminates that respond nonlinearly to loading, large error is observed in the prediction of failure using maximum strain as the criterion. This report documents the methods and results in two volumes. Volume 1 contains descriptions of the laminates, their fabrication and testing, the methods of analysis, the results, and the conclusions and recommendations. Volume 2 contains a comprehensive summary of the individual test results for all laminates.« less
Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George
2016-01-01
Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles. PMID:27121137
NASA Astrophysics Data System (ADS)
Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George
2016-04-01
Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles.
Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement.
Liu, Ye; Wang, D N; Chen, W P
2016-12-02
Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.
Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement
NASA Astrophysics Data System (ADS)
Liu, Ye; Wang, D. N.; Chen, W. P.
2016-12-01
Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.
NASA Astrophysics Data System (ADS)
Gillooly, A.; Webb, A. S.; Favero, F. C.; Bouchan, T.; Cooper, L. J.; Read, D.; Hill, M.
2017-02-01
An ytterbium (Yb) doped polarizing fiber is demonstrated. The fiber offers the opportunity to build all-fiber lasers with single polarization output and without the need for free-space polarizing components. Traditional single polarization fiber lasers utilize polarization-maintaining (PM) gain fiber with a single polarization stimulation signal. Whilst this results in an approximation to a single polarization laser, the spontaneous emission from the unstimulated polarization state limits the polarization extinction ratio (PER). The PER is further limited as the stimulated signal is prone to crosstalk. Furthermore, controlling amplitude modulation of the stimulated signal is critical for maximizing the peak power of an optical pulse, particularly for high energy lasers. If light is allowed to leak in to the unstimulated axis it will travel at a different velocity to the stimulated axis and can cross-couple back into the signal axis, creating an interference effect which leads to amplitude modulation on the signal pulse. Single-polarization Yb-doped fiber ensures that light on the fast axis is constantly attenuated; ensuring that light on the unstimulated axis cannot propagate and thus cannot degrade the PER or create amplitude modulation. In this paper we report on, to the best of our knowledge, the first demonstration of a single polarization Yb-doped bowtie optical fiber manufactured using a combination of Modified Chemical Vapor Deposition (MCVD) and rare-earth solution doping technology. The fiber has a single-polarization window of 80nm at the operating wavelength of 1060nm and a PER of >18dB. The fabrication and characterization of the fiber is reported.
High-precision processing and detection of the high-caliber off-axis aspheric mirror
NASA Astrophysics Data System (ADS)
Dai, Chen; Li, Ang; Xu, Lingdi; Zhang, Yingjie
2017-10-01
To achieve the efficient, controllable, digital processing and high-precision detection of the high-caliber off-axis aspheric mirror, meeting the high-level development needs of the modern high-resolution, large field of space optical remote sensing camera, we carried out the research on high precision machining and testing technology of off-axis aspheric mirror. First, we forming the off-axis aspheric sample with diameter of 574mm × 302mm by milling it with milling machine, and then the intelligent robot equipment was used for off-axis aspheric high precision polishing. Surface detection of the sample will be proceed with the off-axis aspheric contact contour detection technology and offaxis non-spherical surface interference detection technology after its fine polishing using ion beam equipment. The final surface accuracy RMS is 12nm.
Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,
Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocitymore » of (9200 {+-} 600) m/s.« less
Creep of plain weave polymer matrix composites
NASA Astrophysics Data System (ADS)
Gupta, Abhishek
Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the composites, was experimentally evaluated for time periods ranging from 1--120 hours under both loading conditions. The composite showed increase in creep with increase in temperature and stress. Creep of composite increased with increase in angle of loading, from 1% under on-axis loading to 31% under off-axis loading, within the tested time window. The experimental creep data for plain weave composites were superposed using TTSP (Time Temperature Superposition Principle) to obtain a master curve of experimental data extending to several years and was compared with model predictions to validate the model. The experimental and model results were found in good agreement within an error range of +/-1-3% under both loading conditions. A parametric study was also conducted to understand the effect of microstructure of plain weave composites on its on-axis and off-axis creep. Generation of knowledge in this area is also "first". Additionally, this thesis generated knowledge on time-dependent damage m woven composites and its effect on creep and tensile properties and their prediction.
Photoacoustic imaging of prostate brachytherapy seeds with transurethral light delivery
NASA Astrophysics Data System (ADS)
Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Song, Danny Y.; Boctor, Emad M.
2014-03-01
We present a novel approach to photoacoustic imaging of prostate brachytherapy seeds utilizing an existing urinary catheter for transurethral light delivery. Two canine prostates were surgically implanted with brachyther- apy seeds under transrectal ultrasound guidance. One prostate was excised shortly after euthanasia and fixed in gelatin. The second prostate was imaged in the native tissue environment shortly after euthanasia. A urinary catheter was inserted in the urethra of each prostate. A 1-mm core diameter optical fiber coupled to a 1064 nm Nd:YAG laser was inserted into the urinary catheter. Light from the fiber was either directed mostly parallel to the fiber axis (i.e. end-fire fire) or mostly 90° to the fiber axis (i.e. side-fire fiber). An Ultrasonix SonixTouch scanner, transrectal ultrasound probe with curvilinear (BPC8-4) and linear (BPL9-5) arrays, and DAQ unit were utilized for synchronized laser light emission and photoacoustic signal acquisition. The implanted brachytherapy seeds were visualized at radial distances of 6-16 mm from the catheter. Multiple brachytherapy seeds were si- multaneously visualized with each array of the transrectal probe using both delay-and-sum (DAS) and short-lag spatial coherence (SLSC) beamforming. This work is the first to demonstrate the feasibility of photoacoustic imaging of prostate brachytherapy seeds using a transurethral light delivery method.
Study on properties of CFRP fabricated by VA-RTM process
NASA Astrophysics Data System (ADS)
Jeoung, Sun Kyoung; Hwang, Ye Jin; Lee, Hyun Wook; Son, Soon Keun; Kim, Hyung Sik; Ha, Jin Uk
2016-03-01
Carbon fiber reinforced plastics (CFRP) have a lot of attention from industry and academia due to its excellent mechanical property. It has been used for aircraft, automotive and so on, since it can replace metallic materials and reduce total weight with increased physical properties. However, the manufacturing process and the material cost are still challenging to be commercialized in the automotive market. Therefore, many researchers are trying to minimize materials and process cost for broadening their applications. In this study, thermoset epoxy resins were used for binder of CFRP. Epoxy resins were investigated in order to figure out optimized curing speed under vacuum assisted resin transfer molding (VARTM) processing condition. Mechanical properties of CFRP with different carbon fiber orientation and woven carbon fiber were compared to mathematically simulated results. In order to develop the application of automobile component, reliability tests of CFRP were carried out. Tensile strength of CFRP is increased when the orientation angle between fiber and axis of load was decreased (90°→ 0°). It is considered that epoxy and carbon fiber absorbed the tensile energy because the orientation of fiber and the load bearing are matched with axis direction. In addition, the CFRP automobile engine hood was fabricated by VARTM process. Drop weight impact tests (20kg & 100kg weight) were carried out in order to simulate crash performance of CFRP engine hoods.
Optical bending sensor using distributed feedback solid state dye lasers on optical fiber.
Kubota, Hiroyuki; Oomi, Soichiro; Yoshioka, Hiroaki; Watanabe, Hirofumi; Oki, Yuji
2012-07-02
Novel type of optical fiber sensor was proposed and demonstrated. The print-like fabrication technique fabricates multiple distributed feedback solid state dye lasers on a polymeric optical fiber (POF) with tapered coupling. This multi-active-sidecore structure was easily fabricated and provides multiple functions. Mounting the lasers on the same point of a multimode POF demonstrated a bending radius sensitivity of 20 m without any supports. Two axis directional sensing without cross talk was also confirmed. A more complicated mounting formation can demonstrate a twisted POF. The temperature property of the sensor was also studied, and elimination of the temperature influence was experimentally attained.
Interface structure for hub and mass attachment in flywheel rotors
Deteresa, S.J.; Groves, S.E.
1998-06-02
An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.
Interface structure for hub and mass attachment in flywheel rotors
Deteresa, Steven J.; Groves, Scott E.
1998-06-02
An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.
Hollow fiber clinostat for simulating microgravity in cell culture
NASA Technical Reports Server (NTRS)
Rhodes, Percy H. (Inventor); Miller, Teresa Y. (Inventor); Snyder, Robert S. (Inventor)
1992-01-01
A clinostat for simulating microgravity on cell systems carried in a fiber fixedly mounted in a rotatable culture vessel is disclosed. The clinostat is rotated horizontally along its longitudinal axis to simulate microgravity or vertically as a control response. Cells are injected into the fiber and the ends of the fiber are sealed and secured to spaced end pieces of a fiber holder assembly which consists of the end pieces, a hollow fiber, a culture vessel, and a tension spring with three alignment pins. The tension spring is positioned around the culture vessel with its ends abutting the end pieces for alignment of the spring. After the fiber is secured, the spring is decompressed to maintain tension on the fiber while it is being rotated. This assures that the fiber remains aligned along the axis of rotation. The fiber assembly is placed in the culture vessel and culture medium is added. The culture vessel is then inserted into the rotatable portion of the clinostat and subjected to rotate at selected rpms. The internal diameter of the hollow fiber determines the distance the cells are from the axis of rotation.
Modeling stiffness loss in boron/aluminum below the fatigue limit
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1982-01-01
Boron/aluminum can develop significant internal matrix cracking when fatigued. These matrix cracks can result in a 40 percent secant modulus loss in some laminates, even when fatigued below the fatigue limit. It is shown that the same amount of fatigue damage will develop during stress or strain-controlled tests. Stacking sequence has little influence on secant modulus loss. The secant modulus loss in unidirectional composites is small, whereas the losses are substantial in laminates containing off-axis plies. A simple analysis is presented that predicts unnotched laminate secant modulus loss due to fatigue. The analysis is based upon the elastic modulus and Poisson's ratio of the fiber and matrix, fiber volume fraction, fiber orientations, and the cyclic-hardened yield stress of the matrix material. Excellent agreement was achieved between model predictions and experimental results. With this model, designers can project the material stiffness loss for design load or strain levels and assess the feasibility of its use in stiffness-critical parts.
Off-axis astigmatism in the isolated chicken crystalline lens.
Maier, Felix; Wahl, Siegfried; Schaeffel, Frank
2016-12-01
The chicken eye was previously found to have little off-axis astigmatism which is not explained by its special corneal shape but rather by the optical properties of the crystalline lens. To learn more about lens design, we studied off-axis astigmatism in the chicken lens in situ and compared it to a glass lens of similar power but with homogenous refractive index. After euthanasia, enucleated eye balls were cut in the equatorial plane right behind the scleral ossicles. The anterior segment was placed in a water-filled chamber. Several thin laser beams were projected in two perpendicular meridians through the lens under various eccentricities and the focal lengths were determined. Off-axis astigmatism across the horizontal visual field was determined as the differences in power in the two meridians. The same procedure was used for the glass lens. On-axis, the chicken crystalline lens had slightly more power in the vertical than in the horizontal meridian (-2.8±0.7D (SEM)). Astigmatism flipped sign and increased with eccentricity to reach +6.1±2.1D (SEM) at 33.5deg off-axis, as expected from off-axis astigmatism. Even though this value appears high, it was still 2.5 times lower than in the glass lens. A ZEMAX model of a lens with a homogeneous index and with surface profiles taken of the natural chicken lens revealed even higher levels of off-axis astigmatism. Obviously, the natural chicken lens displays much less off-axis astigmatism than a glass lens with similar power. Since its shape does not explain the low off-axis astigmatism, it must be due to a refined internal refractive index structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Interferometric fiber optic displacement sensor
Farah, J.
1999-04-06
A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 23 figs.
Interferometric fiber optic displacement sensor
Farah, J.
1995-05-30
A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 29 figs.
Interferometric fiber optic displacement sensor
Farah, John
1995-01-01
A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.
Interferometric fiber optic displacement sensor
Farah, John
1999-01-01
A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.
NASA Astrophysics Data System (ADS)
Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun
2013-03-01
The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.
Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.
Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo
2013-07-15
We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.
NASA Astrophysics Data System (ADS)
Zuraski, Steven M.; Fiorino, Steven T.; Beecher, Elizabeth A.; Figlewski, Nathan M.; Schmidt, Jason D.; McCrae, Jack E.
2016-10-01
The Photometry Analysis and Optical Tracking and Evaluation System (PANOPTES) Quad Axis Telescope is a unique four axis mount Ritchey-Chretien 24 inch telescope capable of tracking objects through the zenith without axes rotation delay (no Dead Zone). This paper describes enhancement components added to the quad axis mount telescope that will enable measurements supporting novel research and field testing focused on `three-dimensional' characterization of turbulent atmospheres, mitigation techniques, and new sensing modalities. These all support research and operational techniques relating to astronomical imaging and electro-optical propagation though the atmosphere, relative to sub-meter class telescopes in humid, continental environments. This effort will use custom designed and commercial off the shelf hardware; sub-system components discussed will include a wavefront sensor system, a co-aligned beam launch system, and a fiber coupled research laser. The wavefront sensing system has the ability to take measurements from a dynamic altitude adjustable laser beacon scattering spot, a key concept that enables rapid turbulence structure parameter measurements over an altitude varied integrated atmospheric volume. The sub-components are integrated with the overall goal of measuring a height-resolved volumetric profile for the atmospheric turbulence structure parameter at the site, and developing mobile techniques for such measurements. The design concept, part selection optimization, baseline component lab testing, and initial field measurements, will be discussed in the main sections of this paper. This project is a collaborative effort between the Air Force Research Labs Sensors Directorate and the Air Force Institute of Technology Center for Directed Energy.
Field experiment of 800× off-axis XR-Köhler concentrator module on a carousel tracker
NASA Astrophysics Data System (ADS)
Yamada, Noboru; Okamoto, Kazuya; Ijiro, Toshikazu; Suzuki, Takao; Maemura, Toshihiko; Kawaguchi, Takashi; Takahashi, Hiroshi; Sato, Takashi; Hernandez, Maikel; Benitez, Pablo; Chaves, Julio; Cvetkovic, Aleksandra; Vilaplana, Juan; Mohedano, Ruben; Mendes-Lopes, Joao; Miñano, Juan Carlos
2013-09-01
This paper presents the design and preliminary experimental results of a concentrator-type photovoltaic module based on a free-form off-axis 800×XR-Köhler concentrator. The off-axis XR-Köhler concentrator is one of the advanced concentrators that perform high concentration with a large acceptance angle and excellent irradiance uniformity on a solar cell. As a result of on-sun characterization of the unglazed single-cell unit test rig, the temperature-corrected DC module efficiency was 32.2% at 25 °C without an anti-reflective (AR) coating on the secondary optics, and the acceptance angle was more than ±1.0°. In addition, the non-corrected DC efficiency of an individual cell in a glazed 8-cell unit module mounted on a carousel tracking system was measured. The individual efficiency deviated in the range of 24.3-27.4%, owing to the mirror shape and alignment errors. The resultant series-connected efficiency was approximately 25% at direct normal irradiation (DNI) of 770 W/m2.
NASA Astrophysics Data System (ADS)
Tsai, Ko-Fan; Chu, Shu-Chun
2018-03-01
This study proposes a complete and unified method for selective excitation of any specified nearly nondiffracting Helmholtz-Gauss (HzG) beam in end-pumped solid-state digital lasers. Four types of the HzG beams: cosine-Gauss beams, Bessel-Gauss beams, Mathieu-Gauss beams, and, in particular, parabolic-Gauss beams are successfully demonstrated to be generated with the proposed methods. To the best of the authors’ knowledge, parabolic-Gauss beams have not yet been directly generated from any kind of laser system. The numerical results of this study show that one can successfully achieve any lasing HzG beams directly from the solid-state digital lasers with only added control of the laser gain transverse position provided by off-axis end pumping. This study also presents a practical digital laser set-up for easily manipulating off-axis pumping in order to achieve the control of the laser gain transverse gain position in digital lasers. The reported results in this study provide advancement of digital lasers in dynamically generating nondiffracting beams. The control of the digital laser cavity gain position creates the possibility of achieving real-time selection of more laser modes in digital lasers, and it is worth further investigation in the future.
Analysis of nodal aberration properties in off-axis freeform system design.
Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao
2016-08-20
Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.
NASA Astrophysics Data System (ADS)
Fritsche, Haro; Müller, Norbert; Ferrario, Fabio; Fetissow, Sebastian; Grohe, Andreas; Hagen, Thomas; Steger, Ronny; Katzemaikat, Tristan; Ashkenasi, David; Gries, Wolfgang
2017-02-01
We report the first direct diode laser module integrated with a trepanning optic for remote oscillation welding. The trepanning optic is assembled with a collimated DirectProcess 900 laser engine. This modular laser is based on single emitters and beam combiners to achieve fiber coupled modules with a beam parameter product or BPP < 8 mm mrad at all power levels up to 1 kW, as well as free space collimated outputs with even lower BPP. The initial design consists in vertically stacking several diodes in the fast axis which leads to a rectangular output of about 100 W with BPP of <3.5 mm*mrad in the fast axis and <5 mm*mrad in the slow axis. Next, further power scaling is accomplished by polarization combining and wavelength multiplexing yielding high optical efficiencies of more than 80% and resulting in a building block module with over 500 W launched into a 100 μm fiber with 0.15 NA. The beam profile of the free space module remains rectangular, with a nearly flat top and conserves the beam parameter product of the original vertical stack without the power loss of fiber coupling. The 500 W building blocks feature a highly flexible emitting wavelength bandwidth. New wavelengths can be configured by simply exchanging parts and without modifying the production process. This design principle provides the option to adapt the wavelength configuration to match a broad set of applications, from the UV to the visible and to the far IR depending on the commercial availability of laser diodes. This opens numerous additional applications like laser pumping, scientific and medical applications, as well as materials processing applications such as cutting and welding of copper aluminum or steel. Furthermore, the module's short lead lengths enable very short pulses. Integrated with electronics, the module's pulse width can be adjusted from micro-seconds to cw mode operation by simple software commands. An optical setup can be directly attached instead of a fiber to the laser module thanks to its modular design. This paper's experimental results are based on a trepanning optic attached to the laser module. Alltogether the setup approximately fits in a shoe box and weighs less than 20 kg which allows for direct mounting onto a 3D-gantry system. The oscillating weld performance of the 500 W direct diode laser utilizing a novel trepanning optic is discussed for its application to aluminum/aluminum and aluminum/copper joints.
Rivlin-Etzion, Michal; Zhou, Kaili; Wei, Wei; Elstrott, Justin; Nguyen, Phong L.; Barres, Ben; Huberman, Andrew D.; Feller, Marla B.
2011-01-01
On-Off direction selective retinal ganglion cells (DSGCs) encode the axis of visual motion. They respond strongly to an object moving in a preferred direction and weakly to an object moving in the opposite, ‘null’, direction. Historically, On-Off DSGCs were classified into 4 subtypes according to their directional preference (anterior, posterior, superior or inferior). Here, we compare two genetically identified populations of On-Off DSGCs: DRD4-DSGCs and TRHR-DSGCs. We find that although both populations are tuned for posterior motion, they can be distinguished by a variety of physiological and anatomical criteria. First, the directional tuning of TRHR-DSGCs is broader than that of DRD4-DSGCs. Second, whereas both populations project similarly to the dorsal lateral geniculate nucleus, they project differently to the ventral lateral geniculate nucleus and the superior colliculus. Moreover, TRHR-DSGCs, but not DRD4-DSGCs, also project to the zona incerta, a thalamic area not previously known to receive direction-tuned visual information. Our findings reveal unexpected diversity among mouse On-Off DSGC subtypes that uniquely process and convey image motion to the brain. PMID:21677160
Fatigue of notched fiber composite laminates. Part 1: Analytical model
NASA Technical Reports Server (NTRS)
Mclaughlin, P. V., Jr.; Kulkarni, S. V.; Huang, S. N.; Rosen, B. W.
1975-01-01
A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given.
NASA Astrophysics Data System (ADS)
Saroch, Akanksha; Jha, Pallavi
2017-12-01
This paper deals with a two-dimensional simulation study of terahertz radiation emission in the wake of circularly polarized laser pulses propagating in uniformly magnetized plasma, using the XOOPIC code. The external magnetic field is applied along the direction of propagation of the laser pulse. It is seen that linearly polarized terahertz radiation is emitted off-axis, along the propagation direction, in plasma. This emitted radiation is also seen to be transmitted in vacuum. Simulation studies reveal that no such radiation is generated on-axis for the given configuration.
NASA Astrophysics Data System (ADS)
Yadav, Sonu; Ghosh, Soumen; Bose, Sayak; Barada, Kshitish K.; Pal, Rabindranath; Chattopadhyay, Prabal K.
2018-04-01
Experimentally, the density profile in the magnetic nozzle of a helicon antenna based plasma device is seen to be modified from being centrally peaked to that of hollow nature as the external magnetic field is increased. It occurs above a characteristic field value when the ions become magnetized in the expansion chamber. The density profile in the source chamber behind the nozzle, however, remains peaked on-axis irrespective of the magnetic field. The electron temperature there is observed to be hollow and this nature is carried to the expansion chamber along the field line. In the electron energy distribution near the off axis peak location, a high energy tail exists. Rotation of these tail electrons in the azimuthal direction due to the gradient-B drift in the expansion chamber leads to an additional off-axis ionization and forms the hollow density profile. It seems that if the ions are not magnetized, then the off-axially produced additional plasma is not confined and the density profile retains the on-axis peak nature. The present experiment successfully demonstrates how the knowledge of the ion magnetization together with tail electrons significantly contributes to the design of an efficient helicon plasma based thruster.
Polarization characteristics of double-clad elliptical fibers.
Zhang, F; Lit, J W
1990-12-20
A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.
Lab-on-Fiber biosensing for cancer biomarker detection
NASA Astrophysics Data System (ADS)
Ricciardi, A.; Severino, R.; Quero, G.; Carotenuto, B.; Consales, M.; Crescitelli, A.; Esposito, E.; Ruvo, M.; Sandomenico, A.; Borriello, A.; Giordano, M.; Sansone, L.; Granata, Carmine; Cutolo, A.; Cusano, A.
2015-09-01
This work deals with a novel Lab-on-Fiber biosensor able to detect in real time thyroid carcinomas biomarkers. The device is based on a gold nanostructure supporting localized surface plasmon resonances (LSPR) directly fabricated on the fiber tip by means of electron beam lithography and lift-off process. Following a suitable chemical and biological functionalization of the sensing area, human Thyroglobulin has been detected at nanomolar concentrations. Also, compatibility with full baseline restoration, achieved through biomarkers/bioreceptors dissociation, has been demonstrated.
Piezo-phototronic UV/visible photosensing with optical-fiber-nanowire hybridized structures.
Wang, Zhaona; Yu, Ruomeng; Pan, Caofeng; Liu, Ying; Ding, Yong; Wang, Zhong Lin
2015-03-04
An optical-fiber-nanowire hybridized UV-visible photodetector (PD) is reported. The PD is designed to allow direct integration in optical communication systems without requiring the use of couplers via fiber-welding technology. The PD works in two modes: axial and off-axial illumination mode. By using the piezo-phototronic effect, the performance of the PD is enhanced/optimized by up to 718% in sensitivity and 2067% in photoresponsivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel high-brightness fiber coupled diode laser device
NASA Astrophysics Data System (ADS)
Haag, Matthias; Köhler, Bernd; Biesenbach, Jens; Brand, Thomas
2007-02-01
High brightness becomes more and more important in diode laser applications for fiber laser pumping and materials processing. For OEM customers fiber coupled devices have great advantages over direct beam modules: the fiber exit is a standardized interface, beam guiding is easy with nearly unlimited flexibility. In addition to the transport function the fiber serves as homogenizer: the beam profile of the laser radiation emitted from a fiber is symmetrical with highly repeatable beam quality and pointing stability. However, efficient fiber coupling requires an adaption of the slow-axis beam quality to the fiber requirements. Diode laser systems based on standard 10mm bars usually employ beam transformation systems to rearrange the highly asymmetrical beam of the laser bar or laser stack. These beam transformation systems (prism arrays, lens arrays, fiber bundles etc.) are expensive and become inefficient with increasing complexity. This is especially true for high power devices with small fiber diameters. On the other hand, systems based on single emitters are claimed to have good potential in cost reduction. Brightness of the inevitable fiber bundles, though, is limited due to inherent fill-factor losses. At DILAS a novel diode laser device has been developed combining the advantages of diode bars and single emitters: high brightness at high reliability with single emitter cost structure. Heart of the device is a specially tailored laser bar (T-Bar), which epitaxial and lateral structure was designed such that only standard fast- and slow-axis collimator lenses are required to couple the beam into a 200μm fiber. Up to 30 of these T-Bars of one wavelength can be combined to reach a total of > 500W ex fiber in the first step. Going to a power level of today's single emitter diodes even 1kW ex 200μm fiber can be expected.
Study on off-axis detection of pulsed laser in atmosphere
NASA Astrophysics Data System (ADS)
Liang, Weiwei
2018-02-01
Laser communication, designation, and ranging are point to point and have a high degree of specificity, current laser detection, such as laser warning receiver system, could detect the scattering laser from the off-axis distance by scattering track on natural aerosols, which is helpful to locate the laser source. However, the intensity of the scattering laser is extremely weak and affected by many factors, in order to evaluate the detection characteristic, a simplified model of off-axis detection for scattering laser in the lower atmosphere based on the Mie scattering theory is presented in this paper, the performances of the off-axis laser detection in different conditions such as off-axis distance, visibility, incidence angle, and delay time are investigated.
NASA Astrophysics Data System (ADS)
Perfit, M. R.; Walters, R. L.
2014-12-01
High spatial density geochemical data sets from the N-EPR and S-JdFR are used to re-evaluate the across-axis geochemical variations in major and trace elements at mid-ocean ridges (MORs). At two axial melt lens (AML) segments, north and south, at the 9-10°N EPR, N-MORB MgO varies across-axis from the most primitive above the AML to more evolved away from the axis. This trend is distinct at the northern (magmatically more robust) segment with an axial MgO range of 8-9 wt% and off-axis (>2km) range of 6.5-8 wt%. This decrease is also reflected in E-MORB MgO variation. There is more variability at the southern segment but, off-axis progression to more evolved MgO is still evident. Interestingly, the Cleft segment, JdFR, displays similar geochemical behavior to the EPR with an axial MgO range of 7-8.5 wt% and off-axis (>2km) range of 6-7.5 wt%. EPR geochemical studies over the past 30 years have described models of upper crustal accumulation ranging from eruptions limited to the axis, to temporal variation in the composition of magma in the AML, to multiple eruption sites across the ridge crest and flanks (<5km). Eruptions limited to the axis, with topographically controlled flow off-axis, cannot reproduce the observed off-axis change to more evolved N-MORB. Time-dependence could explain one instance of evolved lavas off-axis but, similar geochemical behavior is observed at two separate AML segments. Multiple instances of consistent compositional variability at multiple AML segments, and at different ridges, point to a common process of crustal accretion at MORs. In light of recent geophysical discoveries of Off-axis AMLs (OAMLs) at the EPR and JdFR, we propose that the trend of more evolved lavas for the majority of N-MORB lavas with distance from the axis is controlled by thermal distribution in the underlying crystal mush zone (CMZ). Higher magma flux beneath the axis facilitates higher temperatures and high porosity melt pathways, reducing crustal residence times, and erupting more primitive lava compositions. OAMLs at the edges of the CMZ, where it is cooler, feed more evolved off-axis eruptions. Lower magma flux at the edges increases crustal residence time and the extent to which magmas crystallize. OAMLs outside of the CMZ host magmas that may escaped any central mixing and erupt a greater range of compositions.
Shear transfer in concrete reinforced with carbon fibers
NASA Astrophysics Data System (ADS)
El-Mokadem, Khaled Mounir
2001-10-01
Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.
King, Mark; Hau, Agnes; Blenkinsop, Glen
2017-07-01
Recreational tennis players tend to have higher incidence of tennis elbow, and this has been hypothesised to be related to one-handed backhand technique and off-centre ball impacts on the racket face. This study aimed to investigate for a range of participants the effect of off-longitudinal axis and off-lateral axis ball-racket impact locations on racket and forearm joint angle changes immediately following impact in one-handed tennis backhand groundstrokes. Three-dimensional racket and wrist angular kinematic data were recorded for 14 university tennis players each performing 30 "flat" one-handed backhand groundstrokes. Off-longitudinal axis ball-racket impact locations explained over 70% of the variation in racket rotation about the longitudinal axis and wrist flexion/extension angles during the 30 ms immediately following impact. Off-lateral axis ball-racket impact locations had a less clear cut influence on racket and forearm rotations. Specifically off-longitudinal impacts below the longitudinal axis forced the wrist into flexion for all participants with there being between 11° and 32° of forced wrist flexion for an off-longitudinal axis impact that was 1 ball diameter away from the midline. This study has confirmed that off-longitudinal impacts below the longitudinal axis contribute to forced wrist flexion and eccentric stretch of the wrist extensors and there can be large differences in the amount of forced wrist flexion from individual to individual and between strokes with different impact locations.
Sienko, K H; Balkwill, M D; Oddsson, L I E; Wall, C
2008-01-01
Single-axis vibrotactile feedback of trunk tilt provided in real-time has previously been shown to significantly reduce the root-mean-square (RMS) trunk sway in subjects with vestibular loss during single-axis perturbation. This research examines the effect of multi-directional vibrotactile feedback on postural sway during continuous multi-directional surface perturbations when the subjects' eyes are closed. Eight subjects with vestibular loss donned a multi-axis feedback device that mapped body tilt estimates onto their torsos with a 3-row by 16-column array of tactile actuators (tactors). Tactor row indicated tilt magnitude and tactor column indicated tilt direction. Root-mean-square trunk tilt, elliptical fits to trunk sway trajectory areas, percentage of time spent outside a no vibrotactile feedback zone, RMS center of pressure, and anchoring index parameters indicating intersegmental coordination were used to assess the efficacy of the multi-directional vibrotactile balance aid. Four tactor display configurations in addition to the tactors off configuration were evaluated. Subjects had significantly reduced RMS trunk sway, significantly smaller elliptical fits of the trajectory area, and spent significantly less time outside of the no feedback zone in the tactors on versus the tactors off configuration. Among the displays evaluated in this study, there was not an optimal tactor column configuration for standing tasks involving continuous surface perturbations. Furthermore, subjects performed worse when erroneous information was displayed. Therefore, a spatial resolution of 90 degrees (4 columns) seems to be as effective as a spatial resolution of 22.5 degrees (16 columns) for control of standing.
Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.
Araújo, Michelle O; Krešić, Ivor; Kaiser, Robin; Guerin, William
2016-08-12
Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.
NASA Astrophysics Data System (ADS)
An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg
2015-03-01
We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.
Sutapun, Boonsong; Somboonkaew, Armote; Amarit, Ratthasart; Chanhorm, Sataporn
2015-01-01
This work describes a new design of a fiber-optic confocal probe suitable for measuring the central thicknesses of small-radius optical lenses or similar objects. The proposed confocal probe utilizes an integrated camera that functions as a shape-encoded position-sensing device. The confocal signal for thickness measurement and beam-shape data for off-axis measurement can be simultaneously acquired using the proposed probe. Placing the probe’s focal point off-center relative to a sample’s vertex produces a non-circular image at the camera’s image plane that closely resembles an ellipse for small displacements. We were able to precisely position the confocal probe’s focal point relative to the vertex point of a ball lens with a radius of 2.5 mm, with a lateral resolution of 1.2 µm. The reflected beam shape based on partial blocking by an aperture was analyzed and verified experimentally. The proposed confocal probe offers a low-cost, high-precision technique, an alternative to a high-cost three-dimensional surface profiler, for tight quality control of small optical lenses during the manufacturing process. PMID:25871720
An alignment method for mammographic X-ray spectroscopy under clinical conditions.
Miyajima, S; Imagawa, K; Matsumoto, M
2002-09-01
This paper describes an alignment method for mammographic X-ray spectroscopy under clinical conditions. A pinhole, a fluorescent screen, a laser device and the case for a detector are used for alignment of the focal spot, a collimator and a detector. The method determines the line between the focal spot and the point of interest in an X-ray field radiographically. The method allows alignment for both central axis and off-axis directions.
Direct transfer of metallic photonic structures onto end facets of optical fibers
NASA Astrophysics Data System (ADS)
Zhang, Xinping; Liu, Feifei; Lin, Yuanhai
2016-07-01
We present a flexible approach to transfer metallic photonic crystals (MPCs) onto end facets of optical fibers. The MPCs were initially fabricated on a glass substrate with a spacer layer of indium tin oxide (ITO), which was used as a buffer layer in the transferring process. The fiber ends were firstly welded on the top surface of the MPCs by a drop of polymer solution after the solvent evaporated. The ITO layer was then etched by hydrochloric acid (HCl), so that the MPCs got off the substrate and were transferred to the fiber ends. Alternatively, the MPCs may be also etched off the substrate first by immersing the sample in HCl. The ultra-thin MPC sheet consisting of gold nanolines interlaced with photoresist gratings was then transferred to cap the fiber ends. In the later approach, we can choose which side of the MPCs to be used as the contact with the fiber facet. Such methods enabled convenient nanostructuring on optical fiber tips and achieving miniaturized MPC devices with compact integration, extending significantly applications of MPCs. In particular, the fabrications presented in this manuscript enrich the lab-on-fiber engineering techniques and the resultant devices have potential applications in remote sensing and detection systems.
Cazac, V; Meshalkin, A; Achimova, E; Abashkin, V; Katkovnik, V; Shevkunov, I; Claus, D; Pedrini, G
2018-01-20
Surface relief gratings and refractive index gratings are formed by direct holographic recording in amorphous chalcogenide nanomultilayer structures As 2 S 3 -Se and thin films As 2 S 3 . The evolution of the grating parameters, such as the modulation of refractive index and relief depth in dependence of the holographic exposure, is investigated. Off-axis digital holographic microscopy is applied for the measurement of the photoinduced phase gratings. For the high-accuracy reconstruction of the wavefront (amplitude and phase) transmitted by the fabricated gratings, we used a computational technique based on the sparse modeling of phase and amplitude. Both topography and refractive index maps of recorded gratings are revealed. Their separated contribution in diffraction efficiency is estimated.
O`Rourke, P.E.; Livingston, R.R.
1995-03-28
A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.
O'Rourke, Patrick E.; Livingston, Ronald R.
1995-01-01
A fiber optic probe for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers.
Zimmerley, Maxwell; Younger, Rebecca; Valenton, Tiffany; Oertel, David C.; Ward, Jimmie L.; Potma, Eric O.
2012-01-01
Coherent anti-Stokes Raman scattering (CARS) microscopy is combined with spontaneous Raman scattering microspectroscopy and second harmonic generation (SHG) microscopy to interrogate the molecular alignment in dry and hydrated cellulose fibers. Two types of cellulose were investigated: natural cellulose I in cotton fibers and regenerated cellulose II in rayon fibers. On the basis of the orientation of the methylene symmetric stretching vibration, the molecular alignment of cellulose microfibrils is found to be conserved on the micrometer scale. Whereas the molecular orientation in cotton shows modest variability along the fiber, the alignment of the cellulose units in rayon is highly consistent throughout the fiber. The ordered alignment is retained upon fiber hydration. Upon hydration of the cellulose fibers, an anisotropic electronic contribution is observed, which indicates an ordered incorporation of water molecules into the fiber structure. The third-order and second-order electronic polarizability of cellulose I are directed along the axis of the polyglucan chain. No second-order optical response is observed in cellulose II, supporting the antiparallel arrangement of the polyglucan chains in regenerated cellulose. PMID:20684644
Polymer based nanocomposites with nanofibers and exfoliated clay
NASA Technical Reports Server (NTRS)
Meador, Michael A.; Reneker, Darrell H.
2005-01-01
Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.
Optomechanical stability design of space optical mapping camera
NASA Astrophysics Data System (ADS)
Li, Fuqiang; Cai, Weijun; Zhang, Fengqin; Li, Na; Fan, Junjie
2018-01-01
According to the interior orientation elements and imaging quality requirements of mapping application to mapping camera and combined with off-axis three-mirror anastigmat(TMA) system, high optomechanical stability design of a space optical mapping camera is introduced in this paper. The configuration is a coaxial TMA system used in off-axis situation. Firstly, the overall optical arrangement is described., and an overview of the optomechanical packaging is provided. Zerodurglass, carbon fiber composite and carbon-fiber reinforced silicon carbon (C/SiC) are widely used in the optomechanical structure, because their low coefficient of thermal expansion (CTE) can reduce the thermal sensitivity of the mirrors and focal plane. Flexible and unloading support are used in reflector and camera supporting structure. Epoxy structural adhesives is used for bonding optics to metal structure is also introduced in this paper. The primary mirror is mounted by means of three-point ball joint flexures system, which is attach to the back of the mirror. Then, In order to predict flexural displacements due to gravity, static finite element analysis (FEA) is performed on the primary mirror. The optical performance peak-to-valley (PV) and root-mean-square (RMS) wavefront errors are detected before and after assemble. Also, the dynamic finite element analysis(FEA) of the whole optical arrangement is carried out as to investigate the performance of optomechanical. Finally, in order to evaluate the stability of the design, the thermal vacuum test and vibration test are carried out and the Modulation Transfer Function (MTF) and elements of interior orientation are presented as the evaluation index. Before and after the thermal vacuum test and vibration test, the MTF, focal distance and position of the principal point of optical system are measured and the result is as expected.
The Musculature of Coleoid Cephalopod Arms and Tentacles
Kier, William M.
2016-01-01
The regeneration of coleoid cephalopod arms and tentacles is a common occurrence, recognized since Aristotle. The complexity of the arrangement of the muscle and connective tissues of these appendages make them of great interest for research on regeneration. They lack rigid skeletal elements and consist of a three-dimensional array of muscle fibers, relying on a type of skeletal support system called a muscular hydrostat. Support and movement in the arms and tentacles depends on the fact that muscle tissue resists volume change. The basic principle of function is straightforward; because the volume of the appendage is essentially constant, a decrease in one dimension must result in an increase in another dimension. Since the muscle fibers are arranged in three mutually perpendicular directions, all three dimensions can be actively controlled and thus a remarkable diversity of movements and deformations can be produced. In the arms and tentacles of coleoids, three main muscle orientations are observed: (1) transverse muscle fibers arranged in planes perpendicular to the longitudinal axis; (2) longitudinal muscle fibers typically arranged in bundles parallel to the longitudinal axis; and (3) helical or obliquely arranged layers of muscle fibers, arranged in both right- and left-handed helixes. By selective activation of these muscle groups, elongation, shortening, bending, torsion and stiffening of the appendage can be produced. The predominant muscle fiber type is obliquely striated. Cross-striated fibers are found only in the transverse muscle mass of the prey capture tentacles of squid and cuttlefish. These fibers have unusually short myofilaments and sarcomeres, generating the high shortening velocity required for rapid elongation of the tentacles. It is likely that coleoid cephalopods use ultrastructural modifications rather than tissue-specific myosin isoforms to tune contraction velocities. PMID:26925401
Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery.
Queirós, António; Amorim-de-Sousa, Ana; Lopes-Ferreira, Daniela; Villa-Collar, César; Gutiérrez, Ángel Ramón; González-Méijome, José Manuel
2018-01-01
To characterize the axial and off-axis refraction across four meridians of the retina in myopic eyes before and after Orthokeratology (OK) and LASIK surgery. Sixty right eyes with a spherical equivalent (M) between - 0.75 to - 5.25 D (cylinder <- 1.00 D) underwent LASIK (n = 26) or OK (n = 34) to treat myopia. Axial and off-axis refraction were measured with an open-field autorefractometer before and after stabilized treatments. Off-axis measurements were obtained for the horizontal (35° nasal and temporal retina) and vertical (15° superior and inferior retina) meridians, and for two oblique directions (45-225° and 135-315°) up to 20° of eccentricity. The refractive profile was addressed as relative peripheral refractive error (RPRE). OK and LASIK post-treatment results showed an increase of myopic relative refraction at several eccentric locations. At the four meridians evaluated, the M component of the pre-treatment RPRE values was not statistically different ( p > 0.05) from the post-treatment RPRE within 30° and 20° of the central visual field after LASIK and OK, respectively. These results demonstrated that the treatment zone warrants an optimal central field of vision. The present study gives an overview of RPRE after refractive corneal reshaping treatments (OK and LASIK) across vertical, horizontal and two oblique meridians together. This allows a 3D representation of RPRE at the retina and shows that the myopic shift induced by both treatments is more relevant in horizontal directions.
Rotational relaxation time as unifying time scale for polymer and fiber drag reduction
NASA Astrophysics Data System (ADS)
Boelens, A. M. P.; Muthukumar, M.
2016-05-01
Using hybrid direct numerical simulation plus Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers.
Rotational relaxation time as unifying time scale for polymer and fiber drag reduction.
Boelens, A M P; Muthukumar, M
2016-05-01
Using hybrid direct numerical simulation plus Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers.
Fiber-type dosimeter with improved illuminator
Fox, Richard J.
1987-01-01
A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.
Off-axis Doas Measurements At Observatoire De Haute Provence During 2001
NASA Astrophysics Data System (ADS)
Roozendael, M. Van; de Mazière, M.; Fayt, C.; Hendrick, F.; Hermans, C.
Since December 2000, a ground-based off-axis DOAS spectrometer has been operated by BIRA-IASB in the South of France at the Observatoire de Haute Provence (OHP, 44°N). The design of the instrument allows automated observations of the scattered light alternatively in the zenith direction and at 10° above the horizon (off-axis geometry). The spectrometer is polarised and follows the azimuth of the sun. Its temperature is regulated and it is equipped with a Princeton Instruments/ Hammamatsu cooled diode array detector. Observations are made every 5 minutes in the 320-390 nm range. The analysis of the spectra recorded between January and December 2001 demonstrates the sensitivity of the measurements to tropospheric contents of NO2, HCHO, O3 and BrO. Results show a large seasonality in the HCHO content with maximum values in summer. The tropospheric BrO column is found to be stable over the year in the range of approximately 1.5-2 x1013 molec/cm2, roughly consistent with GOME observations at Northern mid-latitudes. Large increases of the BrO concentration are observed in summer likely due to local pollution in the vicinity of the station.
Petra, Anastasia I; Panagiotidou, Smaro; Hatziagelaki, Erifili; Stewart, Julia M; Conti, Pio; Theoharides, Theoharis C
2015-05-01
Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.
Wide acceptance angle, high concentration ratio, optical collector
NASA Technical Reports Server (NTRS)
Kruer, Mark A. (Inventor)
1991-01-01
A cassegrain optical system provides improved collection of off-axis light yet is still characterized by a high concentration ratio. The optical system includes a primary mirror for collecting incoming light and reflecting the light to a secondary mirror which, in turn, reflects the light to a solar cell or other radiation collection device. The primary mirror reflects incoming on-axis light onto an annular section of the secondary mirror and results in the reflection of a substantial amount of incoming off-axis light onto the remainder of the secondary mirror. Thus light which would otherwise be lost to the system will be captured by the collector. Furthermore, the off-axis sections of the secondary mirror may be of a different geometrical shape than the on-axis annular section so as to optimize the amount of off-axis light collected.
Kwon, J.; Bowers, M. L.; Brandes, M. C.; ...
2015-02-26
In this paper, directionally solidified (DS) NiAl–Mo eutectic composites were strained to plastic strain values ranging from 0% to 12% to investigate the origin of the previously observed stochastic versus deterministic mechanical behaviors of Mo-alloy micropillars in terms of the development of dislocation structures at different pre-strain levels. The DS composites consist of long, [1 0 0] single-crystal Mo-alloy fibers with approximately square cross-sections embedded in a [1 0 0] single-crystal NiAl matrix. Scanning transmission electron microscopy (STEM) and computational stress state analysis were conducted for the current study. STEM of the as-grown samples (without pre-straining) reveal no dislocations inmore » the investigated Mo-alloy fibers. In the NiAl matrix, on the other hand, a(1 0 0)-type dislocations exist in two orthogonal orientations: along the [1 0 0] Mo fiber axis, and wrapped around the fiber axis. They presumably form to accommodate the different thermal contractions of the two phases during cool down after eutectic solidification. At intermediate pre-strain levels (4–8%), a/2(1 1 1)-type dislocations are present in the Mo-alloy fibers and the pre-existing dislocations in the NiAl matrix seem to be swept toward the interphase boundary. Some of the dislocations in the Mo-alloy fibers appear to be transformed from a(1 0 0)-type dislocations present in the NiAl matrix. Subsequently, the transformed dislocations in the fibers propagate through the NiAl matrix as a(1 1 1) dislocations and aid in initiating additional slip bands in adjacent fibers. Thereafter, co-deformation presumably occurs by (1 1 1) slip in both phases. With a further increase in the pre-strain level (>10%), multiple a/2(1 1 1)-type dislocations are observed in many locations in the Mo-alloy fibers. Interactions between these systems upon subsequent deformation could lead to stable junctions and persistent dislocation sources. Finally, the transition from stochastic to deterministic, bulk-like behavior in sub-micron Mo-alloy pillars may therefore be related to an increasing number of multiple a(1 1 1) dislocation systems within the Mo fibers with increasing pre-strain, considering that the bulk-like behavior is governed by the forest hardening of these junctions.« less
Li, Zexiao; Liu, Xianlei; Fang, Fengzhou; Zhang, Xiaodong; Zeng, Zhen; Zhu, Linlin; Yan, Ning
2018-03-19
Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.
NASA Astrophysics Data System (ADS)
Gao, Lingyu; Li, Xinghua; Guo, Qianrui; Quan, Jing; Hu, Zhengyue; Su, Zhikun; Zhang, Dong; Liu, Peilu; Li, Haopeng
2018-01-01
The internal structure of off-axis three-mirror system is commonly complex. The mirror installation error in assembly always affects the imaging line-of-sight and further degrades the image quality. Due to the complexity of the optical path in off-axis three-mirror optical system, the straightforward theoretical analysis on the variations of imaging line-of-sight is extremely difficult. In order to simplify the theoretical analysis, an equivalent single-mirror system is proposed and presented in this paper. In addition, the mathematical model of single-mirror system is established and the accurate expressions of imaging coordinate are derived. Utilizing the simulation software ZEMAX, off-axis three-mirror model and single-mirror model are both established. By adjusting the position of mirror and simulating the line-of-sight rotation of optical system, the variations of imaging coordinates are clearly observed. The final simulation results include: in off-axis three-mirror system, the varying sensitivity of the imaging coordinate to the rotation of line-of-sight is approximately 30 um/″; in single-mirror system, the varying sensitivity of the imaging coordinate to the rotation of line-of-sight is 31.5 um/″. Compared to the simulation results of the off-axis three-mirror model, the 5% relative error of single-mirror model analysis highly satisfies the requirement of equivalent analysis and also verifies its validity. This paper presents a new method to analyze the installation error of the mirror in the off-axis three-mirror system influencing on the imaging line-of-sight. Moreover, the off-axis three-mirror model is totally equivalent to the single-mirror model in theoretical analysis.
Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam.
Fang, Zhao-Xiang; Chen, Yue; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De; Zhang, An-Qi; Zhao, Hong-Ze; Wang, Pei
2018-03-19
Photons in an optical vortex usually carry orbital angular momentum, which boosts the application of the micro-rotation of absorbing particles and quantum information encoding. Such photons propagate along a straight line in free space or follow a curved trace once guided by an optical fiber. Teleportation of an optical vortex using a beam with non-diffraction and self-healing is quite challenging. We demonstrate the manipulation of the propagation trace of an optical vortex with a symmetric Airy beam (SAB) and found that the SAB experiences self-rotation with the implementation of a topological phase structure of coaxial vortex. Slight misalignment of the vortex and the SAB enables the guiding of the vortex into one of the self-accelerating channels. Multiple off-axis vortices embedded in SAB are also demonstrated to follow the trajectory of the major lobe for the SAB beam. The Poynting vector for the beams proves the direction of the energy flow corresponding to the intensity distribution. Hence, we anticipate that the proposed vortex symmetric Airy beam (VSAB) will provide new possibilities for optical manipulation and optical communication.
Development of an Input Suite for an Orthotropic Composite Material Model
NASA Technical Reports Server (NTRS)
Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther
2017-01-01
An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.
NASA Astrophysics Data System (ADS)
Verdoni, A. P.; Denker, C.; Varsik, J. R.; Shumko, S.; Nenow, J.; Coulter, R.
2007-09-01
The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5° Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).
A quasi-linear control theory analysis of timesharing skills
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Gottlieb, G. L.
1977-01-01
The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation.
Analysis of scattering by a linear chain of spherical inclusions in an optical fiber
NASA Astrophysics Data System (ADS)
Chremmos, Ioannis D.; Uzunoglu, Nikolaos K.
2006-12-01
The scattering by a linear chain of spherical dielectric inclusions, embedded along the axis of an optical fiber, is analyzed using a rigorous integral equation formulation, based on the dyadic Green's function theory. The coupled electric field integral equations are solved by applying the Galerkin technique with Mie-type expansion of the field inside the spheres in terms of spherical waves. The analysis extends the previously studied case of a single spherical inhomogeneity inside a fiber to the multisphere-scattering case, by utilizing the classic translational addition theorems for spherical waves in order to analytically extract the direct-intersphere-coupling coefficients. Results for the transmitted and reflected power, on incidence of the fundamental HE11 mode, are presented for several cases.
NASA Astrophysics Data System (ADS)
White, S. M.; Lee, A. J.; Rubin, K. H.
2015-12-01
Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active hydrothermal vents at either site. While these results do not support the idea of on-going and widespread volcanic activity associated with O-AMLs, a comprehensive survey may reveal smaller pockets of activity. A viable alternative is that off-axis activity is sparse and sporadic, perhaps focused by faults that tap into O-AML heat, and that O-AMLs warrant further investigation.
NASA Astrophysics Data System (ADS)
West, A. J.; Torres, M. A.; Nealson, K. H.
2014-12-01
Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active hydrothermal vents at either site. While these results do not support the idea of on-going and widespread volcanic activity associated with O-AMLs, a comprehensive survey may reveal smaller pockets of activity. A viable alternative is that off-axis activity is sparse and sporadic, perhaps focused by faults that tap into O-AML heat, and that O-AMLs warrant further investigation.
Lg Attenuation Anisotropy Across the Western US
NASA Astrophysics Data System (ADS)
Phillips, W. S.; Rowe, C. A.; Stead, R. J.; Begnaud, M. L.
2017-12-01
The USArray has allowed us to map seismic attenuation of local and regional phases to unprecedented spatial extent and resolution. Following standard mantle Pn velocity anisotropy methods, we have incorporated azimuthal anisotropy into our tomographic inversion of high-frequency Lg amplitudes. The Lg is a crustal shear phase made up of many trapped modes, thus results can be considered to be crustal averages. Azimuthal anisotropy reduces residual variance by just over 10% for 1.5-3 Hz Lg. We observe a median anisotropic variation of 12%, and a high of 50% in the Salton Trough. Low attenuation (high-Q) directions run parallel to topographic fabric and major strike slip faults in tectonically active areas, and often run parallel to mantle shear wave splitting directions in stable regions. Tradeoffs are of concern, and synthetic tests show that elongated attenuation anomalies will produce anisotropy artifacts, but of factors 2-3 times lower than observations. In particular, the strength of a long, narrow high-Q anomaly will trade off with high-Q directions parallel to the long axis, while an elongated low-Q anomaly will trade off with high-Q directions perpendicular to the long axis. We observe an elongated low-Q anomaly associated with the Walker Lane; however, observed high-Q directions run parallel to the long axis of this anomaly, opposite to the tradeoff effect, supporting the anisotropic observation, and implying that the effect may be underestimated. Further, we observe an elongated high-Q anomaly associated with the Great Valley and Sierra Nevada that runs across the long axis, again opposite to the tradeoff effect. This study was performed using waveforms, event locations and phase picks made available by IRIS, NEIC and ANF, and processing was done using semi-automated means, thus this is a technique that can be applied quickly to study crustal anisotropy over large areas when appropriate station density is available.
Four-mirror extreme ultraviolet (EUV) lithography projection system
Cohen, Simon J; Jeong, Hwan J; Shafer, David R
2000-01-01
The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.
Harris, Breanna N; Carr, James A
2016-05-01
Maintaining energy balance and reproducing are important for fitness, yet animals have evolved mechanisms by which the hypothalamus-pituitary-adrenal/interrenal (HPA/HPI) axis can shut these activities off. While HPA/HPI axis inhibition of feeding and reproduction may have evolved as a predator defense, to date there has been no review across taxa of the causal evidence for such a relationship. Here we review the literature on this topic by addressing evidence for three predictions: that exposure to predators decreases reproduction and feeding, that exposure to predators activates the HPA/HPI axis, and that predator-induced activation of the HPA/HPI axis inhibits foraging and reproduction. Weight of evidence indicates that exposure to predator cues inhibits several aspects of foraging and reproduction. While the evidence from fish and mammals supports the hypothesis that predator cues activate the HPA/HPI axis, the existing data in other vertebrate taxa are equivocal. A causal role for the HPA axis in predator-induced suppression of feeding and reproduction has not been demonstrated to date, although many studies report correlative relationships between HPA activity and reproduction and/or feeding. Manipulation of HPA/HPI axis signaling will be required in future studies to demonstrate direct mediation of predator-induced inhibition of feeding and reproduction. Understanding the circuitry linking sensory pathways to their control of the HPA/HPI axis also is needed. Finally, the role that fear and anxiety pathways play in the response of the HPA axis to predator cues is needed to better understand the role that predators have played in shaping anxiety related behaviors in all species, including humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Methods for slow axis beam quality improvement of high power broad area diode lasers
NASA Astrophysics Data System (ADS)
An, Haiyan; Xiong, Yihan; Jiang, Ching-Long J.; Schmidt, Berthold; Treusch, Georg
2014-03-01
For high brightness direct diode laser systems, it is of fundamental importance to improve the slow axis beam quality of the incorporated laser diodes regardless what beam combining technology is applied. To further advance our products in terms of increased brightness at a high power level, we must optimize the slow axis beam quality despite the far field blooming at high current levels. The later is caused predominantly by the built-in index step in combination with the thermal lens effect. Most of the methods for beam quality improvements reported in publications sacrifice the device efficiency and reliable output power. In order to improve the beam quality as well as maintain the efficiency and reliable output power, we investigated methods of influencing local heat generation to reduce the thermal gradient across the slow axis direction, optimizing the built-in index step and discriminating high order modes. Based on our findings, we have combined different methods in our new device design. Subsequently, the beam parameter product (BPP) of a 10% fill factor bar has improved by approximately 30% at 7 W/emitter without efficiency penalty. This technology has enabled fiber coupled high brightness multi-kilowatt direct diode laser systems. In this paper, we will elaborate on the methods used as well as the results achieved.
New method for calculating the coupling coefficient in graded index optical fibers
NASA Astrophysics Data System (ADS)
Savović, Svetislav; Djordjevich, Alexandar
2018-05-01
A simple method is proposed for determining the mode coupling coefficient D in graded index multimode optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber length z as the Gaussian launching modal power distribution changes, with the Gaussian input light distribution centered along the graded index optical fiber axis (θ0 = 0) without radial offset (r0 = 0). A similar method we previously proposed for calculating the coupling coefficient D in a step-index multimode optical fibers where the output angular power distributions P(θ, z) for one fiber length z with the Gaussian input light distribution launched centrally along the step-index optical fiber axis (θ0 = 0) is needed to be known.
Shear properties of pultruded fiber reinforced polymer composite materials
NASA Astrophysics Data System (ADS)
Seo, J. H.; Kim, S. H.; Ok, D. M.; An, D. J.; Yoon, S. J.
2018-06-01
This paper focuses on the mechanical properties of PFRP composite materials. Especially, relationship between shear property and the other mechanical properties of PFRP composite materials is investigated through comparison between experimental and theoretical results. The shear property of PFRP composite specimen is calculated from the theoretical equations which were suggested in previous studies. In addition, comparison between the shear property determined by the tensile test and the shear property calculated from theoretical equations is conducted and discussed. It was found that the theoretically predicted shear modulus of elasticity considering contiguity is close to the shear modulus of elasticity obtained by the 45° off-axis tensile test.
NASA Astrophysics Data System (ADS)
Garichev, V. P.; Krivoshlykov, S. G.; Jahn, I.-U.
1990-08-01
An experimental investigation was made of energy transfer between the lowest axially symmetric modes in a multimode graded-index fiber waveguide as a function of the amplitude of periodic bending of its axis. Selective excitation and detection of given modes in a waveguide was induced with the aid of synthesized holograms. The experimental curves were in satisfactory agreement with the results of a theoretical calculation and confirmed that the sensitivity of a mode to bending of the axis of a graded-index waveguide increased on increase in the mode number.
Zhang, Dongdong; Huang, Yaxin; Zhao, Qilin; Li, Fei; Gao, Yifeng
2014-01-01
A novel hybrid FRP-aluminum truss system has been employed in a two-rut modular bridge superstructure composed of twin inverted triangular trusses. The actual flexural behavior of a one-rut truss has been previously investigated under the on-axis loading test; however, the structural performance of the one-rut truss subjected to an off-axis load is still not fully understood. In this paper, a geometrical linear finite element model is introduced and validated by the on-axis loading test; the structural performance of the one-rut truss subjected to off-axis load was numerically obtained; the dissimilarities of the structural performance between the two different loading cases are investigated in detail. The results indicated that (1) the structural behavior of the off-axis load differs from that of the on-axis load, and the off-axis load is the critical loading condition controlling the structural performance of the triangular truss; (2) under the off-axis load, the FRP trussed members and connectors bear certain out-of-plane bending moments and are subjected to a complicated stress state; and (3) the stress state of these members does not match that of the initial design, and optimization for the redesign of these members is needed, especially for the pretightened teeth connectors. PMID:25254254
Measuring the charge density of a tapered optical fiber using trapped microparticles.
Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji
2016-03-07
We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.
Thermally induced stresses and deformations in angle-ply composite tubes
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Rousseau, Carl Q.
1987-01-01
Cure-induced uniform temperature change effects on the stresses, axial expansion, and thermally-induced twist of four specific angle-ply tube designs are discussed with a view to the tubes' use as major space structure components. The stresses and deformations in the tubes are studied as a function of the four designs, the off-axis angle, and the single-material and hybrid reinforcing-material construction used. It is found that tube design has a minor influence on the stresses, axial stiffness, and axial thermal expansion characteristics, which are more directly a function of off-axis angle and material selection; tube design is, however, the primary influence in the definition of thermally-induced twist and torsional stiffness characteristics. None of the designs is free of thermally induced twist.
NASA Astrophysics Data System (ADS)
Hasenclever, Jörg; Rüpke, Lars; Theissen-Krah, Sonja; Morgan, Jason
2016-04-01
We use 3-D numerical models of hydrothermal fluid flow to assess the magnitude and spatial distribution of hydrothermal mass and energy fluxes within the upper and lower oceanic crust. A better understanding of the hydrothermal flow pattern (e.g. predominantly on-axis above the axial melt lens vs. predominantly off-axis and ridge-perpendicular over the entire crustal thickness) is essential for quantifying the volume of oceanic crust exposed to high-temperature fluid flow and the associated leaching and redistribution of economically interesting metals. The initial setup of all 3-D models is based on our previous 2-D studies (Theissen-Krah et al., 2011), in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these 2-D calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data at the East Pacific Rise. Our reference 3-D model for hydrothermal flow at fast-spreading ridges predicts the existence of a hybrid hydrothermal system (Hasenclever et al., 2014) with two interacting flow components that are controlled by different physical mechanisms. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle-ductile transition. About ˜60% of the discharging fluid mass is replenished on-axis by warm (up to 300oC) recharge flow surrounding the hot thermal plumes. The remaining ˜40%, however, occurs as colder and broader recharge up to several kilometres away from the ridge axis that feeds hot (500-700oC) deep off-axis flow in the lower crust towards the ridge. Both flow components merge above the melt lens to feed ridge-centred vent sites. In a suite of 3-D model calculations we vary the isotropic crustal permeability to quantify its influence on on-axis vs. off-axis hydrothermal fluxes as well as on along-axis hydrothermal activity. We also explore the effect of anisotropic permeability that is likely to be a feature of the diking region above the melt lens where the repeated emplacement of meter-size dikes should lead to higher permeability in vertical and along-ridge direction and to lower permeability across the ridge. We further study the effect of along-ridge depth-variations of the axial melt lens on the distribution of hydrothermal vent sites.
Mechanoelectric feedback in a model of the passively inflated left ventricle.
Vetter, F J; McCulloch, A D
2001-05-01
Mechanoelectric feedback has been described in isolated cells and intact ventricular myocardium, but the mechanical stimulus that governs mechanosensitive channel activity in intact tissue is unknown. To study the interaction of myocardial mechanics and electrophysiology in multiple dimensions, we used a finite element model of the rabbit ventricles to simulate electrical propagation through passively loaded myocardium. Electrical propagation was simulated using the collocation-Galerkin finite element method. A stretch-dependent current was added in parallel to the ionic currents in the Beeler-Reuter ventricular action potential model. We investigated different mechanical coupling parameters to simulate stretch-dependent conductance modulated by either fiber strain, cross-fiber strain, or a combination of the two. In response to pressure loading, the conductance model governed by fiber strain alone reproduced the epicardial decrease in action potential amplitude as observed in experimental preparations of the passively loaded rabbit heart. The model governed by only cross-fiber strain reproduced the transmural gradient in action potential amplitude as observed in working canine heart experiments, but failed to predict a sufficient decrease in amplitude at the epicardium. Only the model governed by both fiber and cross-fiber strain reproduced the epicardial and transmural changes in action potential amplitude similar to experimental observations. In addition, dispersion of action potential duration nearly doubled with the same model. These results suggest that changes in action potential characteristics may be due not only to length changes along the long axis direction of the myofiber, but also due to deformation in the plane transverse to the fiber axis. The model provides a framework for investigating how cellular biophysics affect the function of the intact ventricles.
Size and Location of Defects at the Coupling Interface Affect Lithotripter Performance
Li, Guangyan; Williams, James C.; Pishchalnikov, Yuri A.; Liu, Ziyue; McAteer, James A.
2012-01-01
OBJECTIVE To determine how the size and location of coupling defects caught between the therapy head of a lithotripter and the skin of a surrogate patient (acoustic window of a test chamber) affect the features of shock waves responsible for stone breakage. METHODS Model defects were placed in the coupling gel between the therapy head of a Dornier Compact-S electromagnetic lithotripter and the Mylar window of a water-filled coupling test system. A fiber-optic hydrophone was used to measure acoustic pressures and map the lateral dimensions of the focal zone of the lithotripter. The effect of coupling conditions on stone breakage was assessed using Gypsum model stones. RESULTS Stone breakage decreased in proportion to the area of the coupling defect; a centrally located defect blocking only 18% of the transmission area reduced stone breakage by an average of almost 30%. The effect on stone breakage was greater for defects located on-axis and decreased as the defect was moved laterally; an 18% defect located near the periphery of the coupling window (2.0 cm off-axis) reduced stone breakage by only ~15% compared to when coupling was completely unobstructed. Defects centered within the coupling window acted to narrow the focal width of the lithotripter; an 8.2% defect reduced the focal width ~30% compared to no obstruction (4.4 mm versus 6.5 mm). Coupling defects located slightly off center disrupted the symmetry of the acoustic field; an 18% defect positioned 1.0 cm off-axis shifted the focus of maximum positive pressure ~1.0 mm laterally. Defects on and off-axis imposed a significant reduction in the energy density of shock waves across the focal zone. CONCLUSIONS In addition to blocking the transmission of shock wave energy, coupling defects also disrupt the properties of shock waves that play a role in stone breakage, including the focal width of the lithotripter and the symmetry of the acoustic field; the effect is dependent on the size and location of defects, with defects near the center of the coupling window having the greatest effect. These data emphasize the importance of eliminating air pockets from the coupling interface, particularly defects located near the center of the coupling window. PMID:22938566
Porous protective solid phase micro-extractor sheath
Andresen, Brian D.; Randich, Erik
2005-03-29
A porous protective sheath for active extraction media used in solid phase microextraction (SPME). The sheath permits exposure of the media to the environment without the necessity of extending a fragile coated fiber from a protective tube or needle. Subsequently, the sheath can pierce and seal with GC-MS septums, allowing direct injection of samples into inlet ports of analytical equipment. Use of the porous protective sheath, within which the active extraction media is contained, mitigates the problems of: 1) fiber breakage while the fiber is extended during sampling, 2) active media coating loss caused by physical contact of the bare fiber with the sampling environment; and 3) coating slough-off during fiber extension and retraction operations caused by rubbing action between the fiber and protective needle or tube.
Optical data communication: fundamentals and future directions
NASA Astrophysics Data System (ADS)
DeCusatis, Casimer M.
1998-12-01
An overview of optical data communications is provided, beginning with a brief history and discussion of the unique requirements that distinguish this subfield from related areas such as telecommunications. Each of the major datacom standards is then discussed, including the physical layer specification, distances and data rates, fiber and connector types, data frame structures, and network considerations. These standards can be categorized by their prevailing applications, either storage [Enterprise System Connection, Fiber Channel Connection, and Fiber Channel], coupling (Fiber Channel), or networking [Fiber Distributed Data Interface, Gigabit Ethernet, and asynchronous transfer mode/synchronous optical network]. We also present some emerging technologies and their applications, including parallel optical interconnects, plastic optical fiber, wavelength multiplexing, and free- space optical links. We conclude with some cost/performance trade-offs and predictions of future bandwidth trends.
NASA Astrophysics Data System (ADS)
Gallheber, B.-C.; Klein, O.; Fischer, M.; Schreck, M.
2017-06-01
In the present study, systematic correlations were revealed between the propagation direction of threading dislocations, the off-axis growth conditions, and the stress state of heteroepitaxial diamond on Ir/YSZ/Si(111). Measurements of the strain tensor ɛ ⃡ by X-ray diffraction and the subsequent calculation of the tensor of intrinsic stress σ ⃡ showed stress-free samples as well as symmetric biaxial stress states for on-axis samples. Transmission electron microscopy (TEM) lamellas were prepared for plan-view studies along the [ 1 ¯ 1 ¯ 1 ¯ ] direction and for cross-section investigations along the [11 2 ¯ ] and [1 1 ¯ 0] zone axes. For samples grown on-axis with parameters which avoid the formation of intrinsic stress, the majority of dislocations have line vectors clearly aligned along [111]. A sudden change to conditions that promote stress formation is correlated with an abrupt bending of the dislocations away from [111]. This behaviour is in nice agreement with the predictions of a model that attributes formation of intrinsic stress to an effective climb of dislocations. Further growth experiments under off-axis conditions revealed the generation of stress states with pronounced in-plane anisotropy of several Gigapascal. Their formation is attributed to the combined action of two basic processes, i.e., the step flow driven dislocation tilting and the temperature dependent effective climb of dislocations. Again, our interpretation is supported by the dislocation propagation derived from TEM observations.
Finneran, James J; Branstetter, Brian K; Houser, Dorian S; Moore, Patrick W; Mulsow, Jason; Martin, Cameron; Perisho, Shaun
2014-10-01
Previous measurements of toothed whale echolocation transmission beam patterns have utilized few hydrophones and have therefore been limited to fine angular resolution only near the principal axis or poor resolution over larger azimuthal ranges. In this study, a circular, horizontal planar array of 35 hydrophones was used to measure a dolphin's transmission beam pattern with 5° to 10° resolution at azimuths from -150° to +150°. Beam patterns and directivity indices were calculated from both the peak-peak sound pressure and the energy flux density. The emitted pulse became smaller in amplitude and progressively distorted as it was recorded farther off the principal axis. Beyond ±30° to 40°, the off-axis signal consisted of two distinct pulses whose difference in time of arrival increased with the absolute value of the azimuthal angle. A simple model suggests that the second pulse is best explained as a reflection from internal structures in the dolphin's head, and does not implicate the use of a second sound source. Click energy was also more directional at the higher source levels utilized at longer ranges, where the center frequency was elevated compared to that of the lower amplitude clicks used at shorter range.
NASA Astrophysics Data System (ADS)
Bowman, Cheryl Lynne
Titanium composites reinforced with SiC fibers in a uniaxial direction are being considered for various high temperature applications which require high specific strength or stiffness in the primary loading direction. However the very low tensile and creep strength of these composites in the transverse direction (loading perpendicular to the fiber axis) limits their use in many practical applications. Recent advances in composite fabrication techniques have provided not only better control of fiber volume fraction and distribution, but also the ability to control the relative fiber placement. The goal of this research was produce continuously reinforced SiC/Ti composites with precise fiber arrangement in order to ascertain the significance of fiber arrangements on transverse mechanical properties. In this study, TIMETAL 21S and Ti-6-4 composites reinforced with SCS-6 SiC fibers were produced with six distinct fiber placement arrangements. The effect of fiber placement on uniaxial tensile and creep behaviors was assessed and the results compared to analytical predictions. Consistent with analytical predictions, the fiber arrangements used in this study did not significantly change the longitudinal tensile behavior, but differences were obtained in the transverse loading response. For example, a diamond (non-equilateral triangle) fiber packing was found to have a higher transverse ultimate tensile strength and better transverse creep resistance than a rectangular fiber packing arrangement for a given volume fraction and fiber spacing (within-ply vs. between-ply). Initially this result appeared to be in contrast to previous computational and analytical simulations which predicted more favorable mechanical behavior for rectangular-type arrangements. However, this experimental/predictive conflict was resolved, in part, by simply defining a fiber spacing ratio which could describe both rectangular type and diamond-type arrangements. The computationally efficient Micromechanical Analysis Code based on the Generalized Method of Cells captured the correct behavior trends for these fiber arrangements and thus can be used to estimate the optimum fiber arrangement for a given materials system. Although this research utilized SiC/titanium alloy composites, the results should be relevant to any composite with a continuous reinforcement, a ductile matrix, and a finite fiber/matrix interfacial bond strength.
Malaligned dynamic anterior cervical plate: a biomechanical analysis of effectiveness.
Lawrence, Brandon D; Patel, Alpesh A; Guss, Andrew; Ryan Spiker, W; Brodke, Darrel S
2014-12-01
Biomechanical evaluation. To evaluate the kinematic and load-sharing differences of dynamic anterior cervical plates when placed in-line at 0° and off-axis at 20°. The use of dynamic anterior cervical plating systems has recently gained popularity due to the theoretical benefit of improved load sharing with graft subsidence. Occasionally, due to anatomical restraints, the anterior cervical plate may be placed off-axis in the coronal plane. This may potentially decrease the dynamization capability of the plate, leading to less load sharing and potentially decreased fusion rates. The purpose of this study was to comprehensively evaluate the kinematic and load-sharing differences of a dynamic plate placed in-line versus off-axis in the coronal plane. Thirteen fresh-frozen human cadaveric cervical spines (C2-T1) were used. Nondestructive range-of-motion testing was performed with a pneumatically controlled spine simulator in flexion/extension, lateral bending, and axial rotation using the OptoTrak motion measurement system. A C5 corpectomy was performed, and a custom interbody spacer with an integrated load cell collected load-sharing data under axial compression at varying loads. A dynamic anterior cervical plate was placed in-line at 0° and then off-axis at 20°. Testing conditions ensued using a full-length spacer, followed by simulated subsidence by removing 10% of the height of the original spacer. There were no kinematic differences noted in the in-line model versus the off-axis model. After simulated subsidence, the small decreases in stiffness and increases in motion were similar whether the plate was placed in-line or off-axis in all 3 planes of motion. There were also no significant differences in the load-sharing characteristics of the in-line plate versus the off-axis plate in either the full-length model or the subsided interbody model. This study suggests that off-axis dynamic plate positioning does not significantly impact construct kinematics or graft load sharing. As such, we do not recommend removal or repositioning of an off-axis placed dynamic plate because the kinematic and load-sharing biomechanical properties are similar. N/A.
Proposed framework for thermomechanical life modeling of metal matrix composites
NASA Technical Reports Server (NTRS)
Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.
1993-01-01
The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed framework.
Microwave focusing with uniaxially symmetric gradient index metamaterials
NASA Astrophysics Data System (ADS)
Wheeland, Sara; Sternberg, Oren; Perez, Israel; Rockway, John D.
2016-09-01
Previous efforts to create a metamaterial lens in the microwave X band frequency range focused on the development of a device with biaxial symmetry. This allows for focusing solely along the central axis of propagation. For applications involving wave direction or energy diversion, focusing may be required off the central axis. This work explores a metamaterial device with uniaxial symmetry, namely in the direction of propagation. Ray-trace optimization and full-wave finite element simulations contribute to the design of the lens. By changing the placement of the focus, we achieve further control of the focus parameters. While the present work uses coils, the unit cell can consist of any structure or material.
Mauldin, F William; Owen, Kevin; Tiouririne, Mohamed; Hossack, John A
2012-06-01
The portability, low cost, and non-ionizing radiation associated with medical ultrasound suggest that it has potential as a superior alternative to X-ray for bone imaging. However, when conventional ultrasound imaging systems are used for bone imaging, clinical acceptance is frequently limited by artifacts derived from reflections occurring away from the main axis of the acoustic beam. In this paper, the physical source of off-axis artifacts and the effect of transducer geometry on these artifacts are investigated in simulation and experimental studies. In agreement with diffraction theory, the sampled linear-array geometry possessed increased off-axis energy compared with single-element piston geometry, and therefore, exhibited greater levels of artifact signal. Simulation and experimental results demonstrated that the linear-array geometry exhibited increased artifact signal when the center frequency increased, when energy off-axis to the main acoustic beam (i.e., grating lobes) was perpendicularly incident upon off-axis surfaces, and when off-axis surfaces were specular rather than diffusive. The simulation model used to simulate specular reflections was validated experimentally and a correlation coefficient of 0.97 between experimental and simulated peak reflection contrast was observed. In ex vivo experiments, the piston geometry yielded 4 and 6.2 dB average contrast improvement compared with the linear array when imaging the spinous process and interlaminar space of an animal spine, respectively. This work indicates that off-axis reflections are a major source of ultrasound image artifacts, particularly in environments comprising specular reflecting (i.e., bone or bone-like) objects. Transducer geometries with reduced sensitivity to off-axis surface reflections, such as a piston transducer geometry, yield significant reductions in image artifact.
Device for translating negative film image to a line scan
Dutton, G.W.
1998-05-19
A negative film reader records high-resolution optical density changes across negative film radiographic images to allow precise image dimensions to be determined. A laser light source capable of high-resolution focusing is passed through an intensity control filter, focused by a lens, and reflected off a mirror to focus in the plane of the negative film. The light transmitted through the film is collected by a second lens and directed to a photo diode detector which senses the transmitted intensity. The output of the photo diode signal amplifier is sent to the Y-axis input of an X-Y recorder. The film sample is transported in a plane perpendicular to the beam axis by means of a slide. The film position is monitored, with the signal amplified and recorded as the X-axis on the X-Y recorder. The linear dimensions and positions of image components can be determined by direct measurement of the amplified recording.
Photographic simulation of off-axis blurring due to chromatic aberration in spectacle lenses.
Doroslovački, Pavle; Guyton, David L
2015-02-01
Spectacle lens materials of high refractive index (nd) tend to have high chromatic dispersion (low Abbé number [V]), which may contribute to visual blurring with oblique viewing. A patient who noted off-axis blurring with new high-refractive-index spectacle lenses prompted us to do a photographic simulation of the off-axis aberrations in 3 readily available spectacle lens materials, CR-39 (nd = 1.50), polyurethane (nd = 1.60), and polycarbonate (nd = 1.59). Both chromatic and monochromatic aberrations were found to cause off-axis image degradation. Chromatic aberration was more prominent in the higher-index materials (especially polycarbonate), whereas the lower-index CR-39 had more astigmatism of oblique incidence. It is important to consider off-axis aberrations when a patient complains of otherwise unexplained blurred vision with a new pair of spectacle lenses, especially given the increasing promotion of high-refractive-index materials with high chromatic dispersion. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
THE ABUNDANCE OF X-SHAPED RADIO SOURCES. I. VLA SURVEY OF 52 SOURCES WITH OFF-AXIS DISTORTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, David H.; Cohen, Jake P.; Lu, Jing
Cheung identified a sample of 100 candidate X-shaped radio galaxies using the NRAO FIRST survey; these are small-axial-ratio extended radio sources with off-axis emission. Here, we present radio images of 52 of these sources that have been made from archival Very Large Array data with resolution of about 1″. Fifty-one of the 52 were observed at 1.4 GHz, 7 were observed at 1.4 and 5 GHz, and 1 was observed only at 5 GHz. We also present overlays of the Sloan Digital Sky Survey red images for 48 of the sources, and DSS II overlays for the remainder. Optical counterpartsmore » have been identified for most sources, but there remain a few empty fields. Our higher resolution VLA images along with FIRST survey images of the sources in the sample reveal that extended extragalactic radio sources with small axial ratios are largely (60%) cases of double radio sources with twin lobes that have off-axis extensions, usually with inversion-symmetric structure. The available radio images indicate that at most 20% of sources might be genuine X-shaped radio sources that could have formed by a restarting of beams in a new direction following an interruption and axis flip. The remaining 20% are in neither of these categories. The implications of this result for the gravitational wave background are discussed in Roberts et al.« less
Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges.
Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars H; Morgan, Jason P; Iyer, Karthik; Petersen, Sven; Devey, Colin W
2014-04-24
Hydrothermal flow at oceanic spreading centres accounts for about ten per cent of all heat flux in the oceans and controls the thermal structure of young oceanic plates. It also influences ocean and crustal chemistry, provides a basis for chemosynthetic ecosystems, and has formed massive sulphide ore deposits throughout Earth's history. Despite this, how and under what conditions heat is extracted, in particular from the lower crust, remains largely unclear. Here we present high-resolution, whole-crust, two- and three-dimensional simulations of hydrothermal flow beneath fast-spreading ridges that predict the existence of two interacting flow components, controlled by different physical mechanisms, that merge above the melt lens to feed ridge-centred vent sites. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle-ductile transition. About 60 per cent of the discharging fluid mass is replenished on-axis by warm (up to 300 degrees Celsius) recharge flow surrounding the hot thermal plumes, and the remaining 40 per cent or so occurs as colder and broader recharge up to several kilometres away from the axis that feeds hot (500-700 degrees Celsius) deep-rooted off-axis flow towards the ridge. Despite its lower contribution to the total mass flux, this deep off-axis flow carries about 70 per cent of the thermal energy released at the ridge axis. This combination of two flow components explains the seismically determined thermal structure of the crust and reconciles previously incompatible models favouring either shallower on-axis or deeper off-axis hydrothermal circulation.
JPEG 2000-based compression of fringe patterns for digital holographic microscopy
NASA Astrophysics Data System (ADS)
Blinder, David; Bruylants, Tim; Ottevaere, Heidi; Munteanu, Adrian; Schelkens, Peter
2014-12-01
With the advent of modern computing and imaging technologies, digital holography is becoming widespread in various scientific disciplines such as microscopy, interferometry, surface shape measurements, vibration analysis, data encoding, and certification. Therefore, designing an efficient data representation technology is of particular importance. Off-axis holograms have very different signal properties with respect to regular imagery, because they represent a recorded interference pattern with its energy biased toward the high-frequency bands. This causes traditional images' coders, which assume an underlying 1/f2 power spectral density distribution, to perform suboptimally for this type of imagery. We propose a JPEG 2000-based codec framework that provides a generic architecture suitable for the compression of many types of off-axis holograms. This framework has a JPEG 2000 codec at its core, extended with (1) fully arbitrary wavelet decomposition styles and (2) directional wavelet transforms. Using this codec, we report significant improvements in coding performance for off-axis holography relative to the conventional JPEG 2000 standard, with Bjøntegaard delta-peak signal-to-noise ratio improvements ranging from 1.3 to 11.6 dB for lossy compression in the 0.125 to 2.00 bpp range and bit-rate reductions of up to 1.6 bpp for lossless compression.
Rapid amyloid fiber formation from the fast-folding WW domain FBP28.
Ferguson, Neil; Berriman, John; Petrovich, Miriana; Sharpe, Timothy D; Finch, John T; Fersht, Alan R
2003-08-19
The WW domains are small proteins that contain a three-stranded, antiparallel beta-sheet. The 40-residue murine FBP28 WW domain rapidly formed twirling ribbon-like fibrils at physiological temperature and pH, with morphology typical of amyloid fibrils. These ribbons were unusually wide and well ordered, making them highly suitable for structural studies. Their x-ray and electron-diffraction patterns displayed the characteristic amyloid fiber 0.47-nm reflection of the cross-beta diffraction signature. Both conventional and electron cryomicroscopy showed clearly that the ribbons were composed of many 2.5-nm-wide subfilaments that ran parallel to the long axis of the fiber. There was a region of lower density along the center of each filament. Lateral association of these filaments generated twisted, often interlinked, sheets up to 40 nm wide and many microns in length. The pitch of the helix varied from 60 to 320 nm, depending on the width of the ribbon. The wild-type FBP28 fibers were formed under conditions in which multiexponential folding kinetics is observed in other studies and which was attributed to a change in the mechanism of folding. It is more likely that those phases result from initial events in the off-pathway aggregation observed here.
Mapping local anisotropy axis for scattering media using backscattering Mueller matrix imaging
NASA Astrophysics Data System (ADS)
He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Guo, Yihong; He, Yonghong; Ma, Hui
2014-03-01
Mueller matrix imaging techniques can be used to detect the micro-structure variations of superficial biological tissues, including the sizes and shapes of cells, the structures in cells, and the densities of the organelles. Many tissues contain anisotropic fibrous micro-structures, such as collagen fibers, elastin fibers, and muscle fibers. Changes of these fibrous structures are potentially good indicators for some pathological variations. In this paper, we propose a quantitative analysis technique based on Mueller matrix for mapping local anisotropy axis of scattering media. By conducting both experiments on silk sample and Monte Carlo simulation based on the sphere-cylinder scattering model (SCSM), we extract anisotropy axis parameters from different backscattering Mueller matrix elements. Moreover, we testify the possible applications of these parameters for biological tissues. The preliminary experimental results of human cancerous samples show that, these parameters are capable to map the local axis of fibers. Since many pathological changes including early stage cancers affect the well aligned structures for tissues, the experimental results indicate that these parameters can be used as potential tools in clinical applications for biomedical diagnosis purposes.
Assessing off-taraget impacts of herbicide drift on plants
Plants and plant communities provide vital economic services including production of food and fiber crops for direct human consumption and ecosystem services including wildlife habitat and cycling of nutrients and energy. These services can be impacted if herbicides drift from t...
Crystallography of Alumina-YAG-Eutectic
NASA Technical Reports Server (NTRS)
Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.
2000-01-01
Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.
NASA Technical Reports Server (NTRS)
Arnold, William R.; Stahl, H. Philip
2017-01-01
An extensive trade study was conducted to evaluate primary mirror substrate design architectures for the HabEx mission baseline 4-meter off-axis telescope. The study’s purpose is not to produce a final design, but rather to established a design methodology for matching the mirror’s properties (mass and stiffness) with the mission’s optical performance specifications (static dynamic wavefront error, WFE). The study systematically compares the effect of proven design elements (closed-back vs. open-back vs. partial-back; meniscus vs. flat back vs. shaped back; etc.), which can be implemented with proven space mirror materials (ULE and Zerodur), on static and dynamic WFE. Additionally, the study compares static and dynamic WFE of each substrate point design integrated onto three and six point mounts.
A note about Gaussian statistics on a sphere
NASA Astrophysics Data System (ADS)
Chave, Alan D.
2015-11-01
The statistics of directional data on a sphere can be modelled either using the Fisher distribution that is conditioned on the magnitude being unity, in which case the sample space is confined to the unit sphere, or using the latitude-longitude marginal distribution derived from a trivariate Gaussian model that places no constraint on the magnitude. These two distributions are derived from first principles and compared. The Fisher distribution more closely approximates the uniform distribution on a sphere for a given small value of the concentration parameter, while the latitude-longitude marginal distribution is always slightly larger than the Fisher distribution at small off-axis angles for large values of the concentration parameter. Asymptotic analysis shows that the two distributions only become equivalent in the limit of large concentration parameter and very small off-axis angle.
NASA Astrophysics Data System (ADS)
Arnold, William R.; Stahl, H. Philip
2017-09-01
An extensive trade study was conducted to evaluate primary mirror substrate design architectures for the HabEx mission baseline 4-meter off-axis telescope. The study's purpose is not to produce a final design, but rather to established a design methodology for matching the mirror's properties (mass and stiffness) with the mission's optical performance specifications (static dynamic wavefront error, WFE). The study systematically compares the effect of proven design elements (closed-back vs open-back vs partial-back; meniscus vs flat back vs shaped back; etc.), which can be implemented with proven space mirror materials (ULE and Zerodur), on static and dynamic WFE. Additionally, the study compares static and dynamic WFE of each substrate point design integrated onto three and six point mounts.
Nuclear microscopy of diffuse plaques in the brains of transgenic mice
NASA Astrophysics Data System (ADS)
Rajendran, Reshmi; Ren, Minqin; Casadesus, Gemma; Smith, Mark A.; Perry, George; Huang, En; Ong, Wei Yi; Halliwell, Barry; Watt, Frank
2005-04-01
Using nuclear microscopy, extracellular diffuse amyloid deposits in fresh unstained brain tissue from Alzheimer's disease transgenic mice Tg2576 have been identified and analyzed for trace element content. Off-axis scanning transmission ion microscopy (STIM) images can be obtained which are similar to the images produced using direct STIM. Since the proton beam current required for off-axis STIM is compatible with PIXE and RBS, we can identify the plaque location and analyze for trace elements simultaneously. Analysis of the diffuse plaques showed an increase in the transition metals iron and zinc compared with the surrounding area of comparable areal density. This supports the theory that redox interactions between Aβ and metals could be at the heart of a pathological feedback system wherein Aβ amyloidosis and oxidative stress promote each other, possibly via Fenton chemistry.
Apparatus and method for producing an artificial gravitational field
NASA Technical Reports Server (NTRS)
Mccanna, Jason (Inventor)
1993-01-01
An apparatus and method is disclosed for producing an artificial gravitational field in a spacecraft by rotating the same around a spin axis. The centrifugal force thereby created acts as an artificial gravitational force. The apparatus includes an engine which produces a drive force offset from the spin axis to drive the spacecraft towards a destination. The engine is also used as a counterbalance for a crew cabin for rotation of the spacecraft. Mass of the spacecraft, which may include either the engine or crew cabin, is shifted such that the centrifugal force acting on that mass is no longer directed through the center of mass of the craft. This off-center centrifugal force creates a moment that counterbalances the moment produced by the off-center drive force to eliminate unwanted rotation which would otherwise be precipitated by the offset drive force.
Tettamanti, Federico; Viblanc, Vincent A.
2014-01-01
During the rut, polygynous ungulates gather in mixed groups of individuals of different sex and age. Group social composition, which may vary on a daily basis, is likely to have strong influences on individual’s time-budget, with emerging properties at the group-level. To date, few studies have considered the influence of group composition on male and female behavioral time budget in mating groups. Focusing on a wild population of Alpine ibex, we investigated the influence of group composition (adult sex ratio, the proportion of dominant to subordinate males, and group size) on three behavioral axes obtained by Principal Components Analysis, describing male and female group time-budget. For both sexes, the first behavioral axis discerned a trade-off between grazing and standing/vigilance behavior. In females, group vigilance behavior increased with increasingly male-biased sex ratio, whereas in males, the effect of adult sex ratio on standing/vigilance behavior depended on the relative proportion of dominant males in the mating group. The second axis characterized courtship and male-male agonistic behavior in males, and moving and male-directed agonistic behavior in females. Mating group composition did not substantially influence this axis in males. However, moving and male-directed agonistic behavior increased at highly biased sex ratios (quadratic effect) in females. Finally, the third axis highlighted a trade-off between moving and lying behavior in males, and distinguished moving and female-female agonistic behavior from lying behavior in females. For males, those behaviors were influenced by a complex interaction between group size and adult sex ratio, whereas in females, moving and female-female agonistic behaviors increased in a quadratic fashion at highly biased sex ratios, and also increased with increasing group size. Our results reveal complex behavioral trade-offs depending on group composition in the Alpine ibex, and emphasize the importance of social factors in influencing behavioral time-budgets of wild ungulates during the rut. PMID:24416453
Off Axis Growth of Strontium Titanate Films with High Dielectric Constant Tuning and Low Loss
2003-04-03
80309, U.S.A. ABSTRACT We have measured the nonlinear dielectric properties of strontium titanate (STO) thin films grown on neodymium gallate (NGO...and lanthanum aluminate (LAO) substrates. The films prepared by off-axis pulsed laser deposition were characterized by their dielectric constant and...performed on the films prepared with the off axis growth. EXPERIMENTAL Pulsed laser deposition (PLD) was used to deposit STO films on lanthanum
Haldar, Raktim; Banik, Abhik D; Varshney, Shailendra K
2014-09-22
In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.
Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components
NASA Astrophysics Data System (ADS)
Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.
2011-10-01
The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.
Mechanical Anisotropy of Rat Aortic Smooth Muscle Cells Decreases with Their Contraction
NASA Astrophysics Data System (ADS)
Nagayama, Kazuaki; Matsumoto, Takeo
Tensile properties of smooth muscle cells freshly isolated from rat thoracic aortas (FSMCs) in their major and minor axes were measured using a laboratory-made micro tensile tester. The relationship between the tension applied to a cell and its elongation was obtained in untreated cells and those treated with 10-5M serotonin to induce contraction. An initial stiffness of untreated FSMCs, normalized by their initial cross-sectional area perpendicular to the stretch direction, was significantly higher in the major axis (14.8±4.3kPa, mean±SEM, n=5) than the minor axis (2.8±1.0kPa, n=5). The stiffness increased significantly in response to the contraction, but the increase was much higher in the minor axis (59.0±9.4kPa, n=4) than in the major (88.1±13.3kPa, n=4). The difference between the two directions was insignificant in the contracted state. Observations of the morphology of actin filaments with a confocal laser scanning microscope in untreated FSMCs revealed that they were long fibers running almost parallel to the major axis, while those in contracted cells showed an aggregated structure without a preferential direction. These results may indicate that anisotropy in untreated FSMCs is caused by the anisotropic alignment of their actin filaments, and that such anisotropy disappears in response to actin filament reorganization caused by the contraction.
Diamond Machining of an Off-Axis Biconic Aspherical Mirror
NASA Technical Reports Server (NTRS)
Ohl, Raymond G.; Preuss, Werner; Sohn, Alex; MacKenty, John
2009-01-01
Two diamond-machining methods have been developed as part of an effort to design and fabricate an off-axis, biconic ellipsoidal, concave aluminum mirror for an infrared spectrometer at the Kitt Peak National Observatory. Beyond this initial application, the methods can be expected to enable satisfaction of requirements for future instrument mirrors having increasingly complex (including asymmetrical), precise shapes that, heretofore, could not readily be fabricated by diamond machining or, in some cases, could not be fabricated at all. In the initial application, the mirror is prescribed, in terms of Cartesian coordinates x and y, by aperture dimensions of 94 by 76 mm, placements of -2 mm off axis in x and 227 mm off axis in y, an x radius of curvature of 377 mm, a y radius of curvature of 407 mm, an x conic constant of 0.078, and a y conic constant of 0.127. The aspect ratio of the mirror blank is about 6. One common, "diamond machining" process uses single-point diamond turning (SPDT). However, it is impossible to generate the required off-axis, biconic ellipsoidal shape by conventional SPDT because (1) rotational symmetry is an essential element of conventional SPDT and (2) the present off-axis biconic mirror shape lacks rotational symmetry. Following conventional practice, it would be necessary to make this mirror from a glass blank by computer-controlled polishing, which costs more than diamond machining and yields a mirror that is more difficult to mount to a metal bench. One of the two present diamond machining methods involves the use of an SPDT machine equipped with a fast tool servo (FTS). The SPDT machine is programmed to follow the rotationally symmetric asphere that best fits the desired off-axis, biconic ellipsoidal surface. The FTS is actuated in synchronism with the rotation of the SPDT machine to generate the difference between the desired surface and the best-fit rotationally symmetric asphere. In order to minimize the required stroke of the FTS, the blanks were positioned at a large off-axis distance and angle, and the axis of the FTS was not parallel to the axis of the spindle of the SPDT machine. The spindle was rotated at a speed of 120 rpm, and the maximum FTS speed was 8.2 mm/s.
Electromagnetic scattering by a uniaxial anisotropic sphere located in an off-axis Bessel beam.
Qu, Tan; Wu, Zhen-Sen; Shang, Qing-Chao; Li, Zheng-Jun; Bai, Lu
2013-08-01
Electromagnetic scattering of a zero-order Bessel beam by an anisotropic spherical particle in the off-axis configuration is investigated. Based on the spherical vector wave functions, the expansion expression of the zero-order Bessel beam is derived, and its convergence is numerically discussed in detail. Utilizing the tangential continuity of the electromagnetic fields, the expressions of scattering coefficients are given. The effects of the conical angle of the wave vector components of the zero-order Bessel beam, the ratio of the radius of the sphere to the central spot radius of the zero-order Bessel beam, the shift of the beam waist center position along both the x and y axes, the permittivity and permeability tensor elements, and the loss of the sphere on the radar cross section (RCS) are numerically analyzed. It is revealed that the maximum RCS appears in the conical direction or neighboring direction when the sphere is illuminated by a zero-order Bessel beam. Furthermore, the RCS will decrease and the symmetry is broken with the shift of the beam waist center.
Liu, Changgeng; Thapa, Damber; Yao, Xincheng
2017-01-01
Guidestar hologram based digital adaptive optics (DAO) is one recently emerging active imaging modality. It records each complex distorted line field reflected or scattered from the sample by an off-axis digital hologram, measures the optical aberration from a separate off-axis digital guidestar hologram, and removes the optical aberration from the distorted line fields by numerical processing. In previously demonstrated DAO systems, the optical aberration was directly retrieved from the guidestar hologram by taking its Fourier transform and extracting the phase term. For the direct retrieval method (DRM), when the sample is not coincident with the guidestar focal plane, the accuracy of the optical aberration retrieved by DRM undergoes a fast decay, leading to quality deterioration of corrected images. To tackle this problem, we explore here an image metrics-based iterative method (MIM) to retrieve the optical aberration from the guidestar hologram. Using an aberrated objective lens and scattering samples, we demonstrate that MIM can improve the accuracy of the retrieved aberrations from both focused and defocused guidestar holograms, compared to DRM, to improve the robustness of the DAO. PMID:28380937
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hee Jung; Department of Biomedical Engineering, Seoul National University, Seoul; Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul
2015-01-01
To investigate how accurately treatment planning systems (TPSs) account for the tongue-and-groove (TG) effect, Monte Carlo (MC) simulations and radiochromic film (RCF) measurements were performed for comparison with TPS results. Two commercial TPSs computed the TG effect for Varian Millennium 120 multileaf collimator (MLC). The TG effect on off-axis dose profile at 3 depths of solid water was estimated as the maximum depth and the full width at half maximum (FWHM) of the dose dip at an interleaf position. When compared with the off-axis dose of open field, the maximum depth of the dose dip for MC and RCF rangedmore » from 10.1% to 20.6%; the maximum depth of the dose dip gradually decreased by up to 8.7% with increasing depths of 1.5 to 10 cm and also by up to 4.1% with increasing off-axis distances of 0 to 13 cm. However, TPS results showed at most a 2.7% decrease for the same depth range and a negligible variation for the same off-axis distances. The FWHM of the dose dip was approximately 0.19 cm for MC and 0.17 cm for RCF, but 0.30 cm for Eclipse TPS and 0.45 cm for Pinnacle TPS. Accordingly, the integrated value of TG dose dip for TPS was larger than that for MC and RCF and almost invariant along the depths and off-axis distances. We concluded that the TG dependence on depth and off-axis doses shown in the MC and RCF results could not be appropriately modeled by the TPS versions in this study.« less
Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows
NASA Astrophysics Data System (ADS)
MacFadyen, Andrew
2010-01-01
The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.
Experimental Validation Techniques for the Heleeos Off-Axis Laser Propagation Model
2010-03-01
EXPERIMENTAL VALIDATION TECHNIQUES FOR THE HELEEOS OFF-AXIS LASER PROPAGATION MODEL THESIS John Haiducek, 1st Lt, USAF AFIT/GAP/ENP/10-M07 DEPARTMENT...Department of Defense, or the United States Government. AFIT/GAP/ENP/10-M07 EXPERIMENTAL VALIDATION TECHNIQUES FOR THE HELEEOS OFF-AXIS LASER ...BS, Physics 1st Lt, USAF March 2010 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GAP/ENP/10-M07 Abstract The High Energy Laser End-to-End
2011-11-01
ply unidirectional carbon/epoxy laminates [0]12 were fabricated from the prepreg tape of P3252-20 (TORAY). They were laid up by hand and cured in...Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature Takafumi Suzuki 1 and...Development of an engineering model for predicting the off-axis ratcheting behavior of a unidirectional CFRP laminate has been attempted. For this purpose
Ridge-crossing mantle plumes and gaps in tracks
NASA Astrophysics Data System (ADS)
Sleep, Norman H.
2002-12-01
Hot spot tracks approach, cross, and leave ridge axes. The complications of this process make it difficult to determine the track followed by a plume and the evolution of its vigor. When a plume is sufficiently near the ridge axis, buoyant plume material flows along the base of the lithosphere toward the axis, forming an on-axis hot spot. The track of the on-axis hot spot is a symmetric V on both plates and an unreliable indication of the path followed by the plume. Aseismic ridges form more or less along flowlines from a plume to a ridge axis when channels form at the base of the lithosphere. A dynamic effect is that off-axis hot spots appear to shut off at the time that an on-axis hot spot becomes active along an axis-approaching track. This produces a gap in the obvious track and a jump of the hot spot to the ridge axis. The gap results from the effects of ponded plume material on intraplate (membrane) stress. Membrane tension lets dikes ascend efficiently to produce obvious tracks of edifices. An off-axis hot spot shuts down when the plume is sufficiently near the ridge axis that plume material flows there, putting the nearby lithosphere above the plume into compression, preventing dikes. In addition, the off-axis thickness of plume material, which produces membrane tension, decreases as the slope of the base of the lithosphere increases beneath young lithosphere. Slow spreading rates favor gaps produced in this way. Gaps are observed near both fast and slow ridges.
Propagation dynamics of off-axis symmetrical and asymmetrical vortices embedded in flat-topped beams
NASA Astrophysics Data System (ADS)
Zhang, Xu; Wang, Haiyan
2017-11-01
In this paper, propagation dynamics of off-axis symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams have been explored numerically based on rigorous scalar diffraction theory. The distribution properties of phase and intensity play an important role in driving the propagation dynamics of OVs. Numerical results show that the single off-axis vortex moves in a straight line. The displacement of the single off-axis vortex becomes smaller, when either the order of flatness N and the beam size ω0are increased or the off-axis displacement d is decreased. In addition, the phase singularities of high order vortex beams can be split after propagating a certain distance. It is also demonstrated that the movement of OVs are closely related with the spatial symmetrical or asymmetrical distribution of vortex singularities field. Multiple symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams can interact and rotate. The investment of the propagation dynamics of OVs may have many applications in optical micro-manipulation and optical tweezers.
Curved channel MCP improvement program
NASA Technical Reports Server (NTRS)
Laprade, Bruce N.; Corbett, Michael B.
1987-01-01
Blowholes and blemishes were determined to start at two stages of manufacturing. Sperical blowholes resulted from trapped gas between the high melting temperature bond glass and the MCP wafer. During thermal processing, the trapped gas expanded and displaced the softened channel glass to form a spherical inclusion. This defect was eliminated by grinding the prefritted bond wafer and channel plate wafer to a flatness which ensured intimate contact prior to fusion. Elliptical blowholes or blemishes were introduced during the fiber draw stage. Contaminants trapped between the core bar and clad tubing volatized providing large quantities of expanding gas. These pockets of gas became elongated to an ellipsoidal shape during fiber draw. Special cleanliness procedures were developed for the grinding, polishing, and acid etching of core bars. Improvements in channel curvature fabrication were implemented. The design of the shearing fixture was evaluated. A new design was developed which eliminated an off-axis moment. The shearing furnace design was evaluated. Steady state thermal conditions instead of thermal transient conditions were determined to reduce curvature nonuniformity.
Stone retropulsion during holmium:YAG lithotripsy.
Lee, Ho; Ryan, R Tres; Teichman, Joel M H; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Welch, A J
2003-03-01
We modeled retropulsion during holmium:YAG lithotripsy on the conservation of momentum, whereby the force of ejected fragment debris off of the calculous surface should equal the force of retropulsion displacing the stone. We tested the hypothesis that retropulsion occurs as a result of ejected stone debris. Uniform calculous phantoms were irradiated with holmium:YAG energy in air and in water. Optical fiber diameter and pulse energy were varied. Motion of the phantom was monitored with high speed video imaging. Laser induced crater volume and geometry were characterized by optical coherence tomography. To determine the direction of plume laser burn paper was irradiated at various incident angles. Retropulsion was greater for phantoms irradiated in air versus water. Retropulsion increased as fiber diameter increased and as pulse energy increased (p <0.001). Crater volumes increased as pulse energy increased (p <0.05) and generally increased as fiber diameter increased. Crater geometry was wide and shallow for larger fibers, and narrow and deeper for smaller fibers. The ejected plume propagated in the direction normal to the burn paper surface regardless of the laser incident angle. Retropulsion increases as pulse energy and optical fiber diameter increase. Vector analysis of the ejected plume and crater geometry explains increased retropulsion using larger optical fibers. Holmium:YAG lithotripsy should be performed with small optical fibers to limit retropulsion.
Nonlinear Deformation Behavior of New Braided Composites with Six-axis Yarn Orientations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, H.-C.; Yu, W.-R.; Guo, Z.
The braiding technology is one of fabrication methods that can produce three-dimensional fiber preforms. Braided composites have many advantages over other two-dimensional composites such as no delamination, high impact and fatigue properties, near-net shape preform, etc. Due to the undulated yarns in the braided preforms, however, their axial stiffness is lower than that of uni-directional or woven composites. To improve the axial stiffness, the longitudinal axial yarns were already introduced along with the braiding axis (five-axis braiding technology). In this study, we developed a new braided structure using six-axis braiding technology. In addition to braiding and longitudinal axial yarns, transversemore » axial yarn was introduced. New braided composites, so called six-axis braiding composites, were manufactured using ultra high molecular weight polyethylene and epoxy resin and their mechanical properties were characterized. To investigate the mechanical performance of these braided composites according to their manufacturing conditions, a numerical analysis was performed using their unit-cell modeling and finite element analysis. In the analysis the nonlinear deformation behavior will be included.« less
Free-standing membrane polymer laser on the end of an optical fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Tianrui, E-mail: trzhai@bjut.edu.cn, E-mail: zhangxinping@bjut.edu.cn; Li, Songtao; Hu, Yujie
2016-01-25
One- and two-dimensional distributed feedback cavities were constructed on free-standing polymer membranes using spin-coating and lift-off techniques. Low threshold lasing was generated through feedback amplification when the 290-nm membrane device was optically pumped, which was attributed to the strong confinement mechanism provided by the active waveguide layer without a substrate. The free-standing membrane polymer laser is flexible and can be transplanted. Single- and dual-wavelength fiber lasers were achieved by directly attaching the membrane polymer laser on the optical fiber end face. This technique provides potential to fabricate polymer lasers on surfaces with arbitrary shapes.
Off-axis spectral beam combining of Bragg reflection waveguide photonic crystal diode lasers
NASA Astrophysics Data System (ADS)
Sun, Fangyuan; Wang, Lijie; Zhao, Yufei; Hou, Guanyu; Shu, Shili; Zhang, Jun; Peng, Hangyu; Tian, Sicong; Tong, Cunzhu; Wang, Lijun
2018-06-01
The spectral beam combining (SBC) of Bragg reflection waveguide photonic crystal (BRW-PC) diode lasers was studied for the first time. An off-axis feedback system was constructed using a stripe mirror and a spatial filter to control beam quality in the external cavity. It was found that the BRW-PC diode lasers with a low divergence and a circular beam provided a simplified and cost-effective SBC. The off-axis feedback broke the beam quality limit of a single element, and an M 2 factor of 3.8 times lower than that of a single emitter in the slow axis was demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenee-Bluhm, P.; Rhinefrank, Ken
The overarching project objective is to demonstrate the feasibility of using an innovative PowerTake-Off (PTO) Module in Columbia Power's utility-scale wave energy converter (WEC). The PTO Module uniquely combines a large-diameter, direct-drive, rotary permanent magnet generator; a patent-pending rail-bearing system; and a corrosion-resistant fiber-reinforced-plastic structure
Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111)
NASA Astrophysics Data System (ADS)
Gallheber, B.-C.; Fischer, M.; Mayr, M.; Straub, J.; Schreck, M.
2018-06-01
Basic understanding of the fundamental processes in crystal growth as well as the structural quality of diamond synthesized by chemical vapour deposition on iridium surfaces has reached a high level for samples with (001) orientation. Diamond deposition on the alternative (111) surface is generally more challenging but of appreciable technological interest, too. In the present work, heteroepitaxy of diamond on Ir/YSZ/Si(111) with different off-axis angles and directions has been studied. During the growth of the first microns, strong and complex intrinsic stress states were rapidly formed. They restricted the range of suitable temperatures in this study to values between 830 °C and 970 °C. At low-stress conditions, the maximum growth rates were about 1 μm/h. They facilitated long-time processes which yielded pronounced structural improvements with minimum values of 0.08° for the azimuthal mosaic spread, 4 × 107 cm-2 for the dislocation density and 1.8 cm-1 for the Raman line width. This refinement is even faster than on (001) growth surfaces. It indicates substantial differences between the two crystal directions in terms of merging of mosaic blocks and annihilation of dislocations. Crystals with a thickness of up to 330 μm have been grown. The correlation of photoluminescence and μ-Raman tomograms with topography data also revealed fundamental differences in the off-axis growth between (001) and (111) orientation. Finally, the analysis of the microscopic structures at the growth surface provided the base for a model that can conclusively explain the intriguing reversal of stress tensor anisotropy caused by a simple inversion in sign of the off-axis angle.
1997-11-01
Expanded subset of the illustration to clarify the locus of the off-axis end point of retinal stimulation for correct accommodation. 55 Figure...12c. Expanded illustration to clarify the locus of the off -axis end point of retinal stimulation for myopic accommodation. 55 Figure 12d...Expanded illustration to clarify the locus of the off -axis end point of retinal stimulation for hyperopic accommodation. 56 Figure 13. Simplified
Polarization/Spatial Combining of Laser-Diode Pump Beams
NASA Technical Reports Server (NTRS)
Gelsinger, Paul; Liu, Duncan
2008-01-01
A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.
NASA Astrophysics Data System (ADS)
Chapman, Thomas; Brady, Christopher
2007-04-01
Soldiers involved in urban operations are at a higher risk of receiving a bullet or fragment wound to the head or face compared to other parts of their body. One reason for this vulnerability is the need for the soldier to expose their head when looking and shooting from behind cover. Research conducted by DSTO Australia, using weapon-mounted cameras, has validated the concept of off-axis shooting but has emphasized the requirement for a system that closely integrates with both the soldier and his weapon. A system was required that would not adversely effect the usability, utility or accuracy of the weapon. Several Concept Demonstrators were developed over a two-year period and the result of this development is the Off-Axis Viewing Device (OAVD). The OAVD is an un-powered sighting attachment that integrates with a red dot reflex sight and enables the soldier to scan for and engage targets from a position of cover. The image from the weapon's scope is transmitted through the OAVD's periscopic mirror system to the soldier. Mounted directly behind the sight, the OAVD can also be swiveled to a redundant position on the side of the weapon to allow normal on-axis use of the sight. The OAVD can be rotated back into place behind the sight with one hand, or removed and stored in the soldier's webbing. In May 2004, a rapid acquisition program was initiated to develop the concept to an in-service capability and the OAVD is currently being deployed with the Australian Defence Force.
Wellbore inertial directional surveying system
Andreas, Ronald D.; Heck, G. Michael; Kohler, Stewart M.; Watts, Alfred C.
1991-01-01
A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, L. C., E-mail: lcparsons@mun.ca; Andrews, G. T., E-mail: tandrews@mun.ca
2014-07-21
Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the foldedmore » longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.« less
Robustness of an artificially tailored fisheye imaging system with a curvilinear image surface
NASA Astrophysics Data System (ADS)
Lee, Gil Ju; Nam, Won Il; Song, Young Min
2017-11-01
Curved image sensors inspired by animal and insect eyes have provided a new development direction in next-generation digital cameras. It is known that natural fish eyes afford an extremely wide field of view (FOV) imaging due to the geometrical properties of the spherical lens and hemispherical retina. However, its inherent drawbacks, such as the low off-axis illumination and the fabrication difficulty of a 'dome-like' hemispherical imager, limit the development of bio-inspired wide FOV cameras. Here, a new type of fisheye imaging system is introduced that has simple lens configurations with a curvilinear image surface, while maintaining high off-axis illumination and a wide FOV. Moreover, through comparisons with commercial conventional fisheye designs, it is determined that the volume and required number of optical elements of the proposed design is practical while capturing the fundamental optical performances. Detailed design guidelines for tailoring the proposed optic system are also discussed.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1996-01-01
1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED).
Binocular Coordination of the Human Vestibulo-Ocular Reflex during Off-axis Pitch Rotation
NASA Technical Reports Server (NTRS)
Wood, S. J.; Reschke, M. F.; Kaufman, G. D.; Black, F. O.; Paloski, W. H.
2006-01-01
Head movements in the sagittal pitch plane typically involve off-axis rotation requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and translational motion relative to visual targets of interest. The purpose of this study was to compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis rotation (canal and otolith cues). Methods. Eleven human subjects were oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis either aligned with the axis of rotation or offset by 50 cm. In a second set of measurements, twelve subjects were also tested during sinusoidally varying centrifugation over the same frequency range. The modulation of vertical and horizontal vergence ocular responses was measured with a binocular videography system. Results. Off-axis pitch rotation enhanced the vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency. Discussion. These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency. At the lower frequencies, tilt otolith-ocular responses compensate for declining canal input. At higher frequencies, translational otolith-ocular reflexes compensate for declining visual contributions to the kinematic demands required for fixating near targets.
Colorless ONU implementation for WDM-PON using direct-detection optical OFDM
NASA Astrophysics Data System (ADS)
Feng, Min; Luo, Qing-long; Bai, Cheng-lin
2013-03-01
A novel architecture for the colorless optical network unit (ONU) is proposed and experimentally demonstrated with direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM). In this architecture, polarization-division multiplexing is used to reduce the cost at ONU. In optical line terminal (OLT), quadrature amplitude modulation (QAM) intensity-modulated OFDM signal with x-polarization at 10 Gbit/s is transmitted as downstream. At each ONU, the optical OFDM signal is demodulated with direct detection, and γ-polarization signal is modulated for upstream on-off keying (OOK) data at 5 Gbit/s. Simulation results show that the power penalty is negligible for both optical OFDM downstream and the on-off keying upstream signals after over 50 km single-mode fiber (SMF) transmission.
Cholinergic innervation of the chick basilar papilla.
Zidanic, Michael
2002-04-01
Antibodies directed against choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine (ACh) and a specific marker of cholinergic neurons, were used to label axons and nerve terminals of efferent fibers that innervate the chick basilar papilla (BP). Two morphologically distinct populations of cholinergic fibers were labeled and classified according to the region of the BP they innervated. The inferior efferent system was composed of thick fibers that coursed radially across the basilar membrane in small fascicles, gave off small branches that innervated short hair cells with large cup-like endings, and continued past the inferior edge of the BP to ramify extensively in the hyaline cell area. The superior efferent system was made up of a group of thin fibers that remained in the superior half of the epithelium and innervated tall hair cells with bouton endings. Both inferior and superior efferent fibers richly innervated the basal two thirds of the BP. However, the apical quarter of the chick BP was virtually devoid of efferent innervation except for a few fibers that gave off bouton endings around the peripheral edges. The distribution of ChAT-positive efferent endings appeared very similar to the population of efferent endings that labeled with synapsin antisera. Double labeling with ChAT and synapsin antibodies showed that the two markers colocalized in all nerve terminals that were identified in BP whole-mounts and frozen sections. These results strongly suggest that all of the efferent fibers that innervate the chick BP are cholinergic. Copyright 2002 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Cromar, P. F.
1984-12-01
In this thesis results are presented from a study of the off-axis X and Gamma radiation field caused by a highly relativistic electron beam in liquid Nitrogen at various path lengths out to 2 radiation lengths. The off-axis dose in Silicon was calculated using electron/photon transport code CYLTRAN and measured using thermal luminescent dosimeters (TLD's). Calculations were performed on a CDC-7600 computer ar Los Alamos National Laboratory and measurements were made using the Naval Postgraduate School 100 Mev Linac. Comparison of the results is made and CYLTRAN is found to be in agreement with experimentally measured values. The CYLTRAN results are extended to the off-axis dose caused by a 100 Mev electron beam in air at Standard Temperature and Pressure (STP).
Single-shot dual-wavelength in-line and off-axis hybrid digital holography
NASA Astrophysics Data System (ADS)
Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie
2018-02-01
We propose an in-line and off-axis hybrid holographic real-time imaging technique. The in-line and off-axis digital holograms are generated simultaneously by two lasers with different wavelengths, and they are recorded using a color camera with a single shot. The reconstruction is carried using an iterative algorithm in which the initial input is designed to include the intensity of the in-line hologram and the approximate phase distributions obtained from the off-axis hologram. In this way, the complex field in the object plane and the output by the iterative procedure can produce higher quality amplitude and phase images compared to traditional iterative phase retrieval. The performance of the technique has been demonstrated by acquiring the amplitude and phase images of a green lacewing's wing and a living moon jellyfish.
Design of a stabilized, compact gimbal for space-based free space optical communications (FSOC)
NASA Astrophysics Data System (ADS)
Cline, A.; Shubert, P.; McNally, J.; Jacka, N.; Pierson, R.
2017-02-01
Data transmits via optical communications through fibers at 10's of Terabits per second. Given the recent rapid explosion for bandwidth and competing demand for radio frequency (RF) spectrum allocations among differing interests, the need for space-based free space optical communications (FSOC) systems is ever increasing. FSOC systems offer advantages of higher data rates, smaller size and weight, narrower beam divergence, and lower power than RF systems. Lightweight, small form factor, and high performance two-axis gimbals are of strong interest for satellite FSOC applications. Small gimbal and optical terminal designs are important for widespread implementation of optical communications systems; in particular, for satellite-to-satellite crosslinks where the advantages of more secure communications links (Lower Probability of Intercept (LPI)/Lower Probability of Detect (LPD)) are very important. We developed design concepts for a small gimbal focusing on the use of commercial off-the-shelf (COTS) subsystems to establish their feasible implementation against the pointing stabilization, size, weight and power (SWaP), and performance challenges. The design drivers for the gimbal were weight, the elevation and azimuth field of regards, the form factor envelope (1U CubeSats), 100 μrad pointing accuracy, and 10 degrees per second slew capability. Innovations required in this development included a continuous fiber passed through an Azimuth Fiber Wrap and Elevation Fiber Wrap, overcoming typical mechanical and stress related limitations encountered with fiber optic cable wraps. In this presentation, we describe the configuration trades and design of such a gimbal.
Optical fiber design and the trapping of Cerenkov radiation.
Law, S H; Fleming, S C; Suchowerska, N; McKenzie, D R
2006-12-20
Cerenkov radiation is generated in optical fibers immersed in radiation fields and can interfere with signal transmission. We develop a theory for predicting the intensity of Cerenkov radiation generated within the core of a multimode optical fiber by using a ray optic approach and use it to make predictions of the intensity of radiation transmitted down the fiber in propagating modes. The intensity transmitted down the fiber is found to be dominated by bound rays with a contribution from tunneling rays. It is confirmed that for relativistic particles the intensity of the radiation that is transmitted along the fiber is a function of the angle between the particle beam and the fiber axis. The angle of peak intensity is found to be a function of the fiber refractive index difference as well as the core refractive index, with larger refractive index differences shifting the peak significantly toward lower angles. The angular range of the distribution is also significantly increased in both directions by increasing the fiber refractive index difference. The intensity of the radiation is found to be proportional to the cube of the fiber core radius in addition to its dependence on refractive index difference. As the particle energy is reduced into the nonrelativistic range the entire distribution is shifted toward lower angles. Recommendations on minimizing the quantity of Cerenkov light transmitted in the fiber optic system in a radiation field are given.
Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond
2016-09-20
This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.
Burkhart, Timothy A; Andrews, David M
2010-08-01
The effectiveness of wrist guards and modifying elbow posture for reducing impact-induced accelerations at the wrist and elbow, for the purpose of decreasing upper extremity injury risk during forward fall arrest, has not yet been documented in living people. A seated human pendulum was used to simulate the impact conditions consistent with landing on outstretched arms during a forward fall. Accelerometers measured the wrist and elbow response characteristics of 28 subjects following impacts with and without a wrist guard, and with elbows straight or slightly bent. Overall, the wrist guard was very effective, with significant reductions in peak accelerations at the elbow in the axial and off-axis directions, and in the off-axis direction at the wrist by almost 50%. The effect of elbow posture as an intervention strategy was mixed; a change in magnitude and direction of the acceleration response was documented at the elbow, while there was little effect at the wrist. Unique evidence was presented in support of wrist guard use in activities like in-line skating where impacts to the hands are common. The elbow response clearly shows that more proximal anatomical structures also need to be monitored when assessing the effectiveness of injury prevention strategies.
Off-axis beam dynamics in rf-gun-based electron photoinjectors
Huang, R.; Mitchell, Chad; Papadopoulos, C.; ...
2016-11-22
The need to operate an rf-gun-based electron photoinjector with a beam emitted away from the cathode center can occur under various circumstances. First, in some cases the cathode can be affected by ion back-bombardment that progressively reduces the quantum efficiency (QE) in its center, making off-axis operation mandatory; second, in some cases the drive laser intensity can be sufficiently high to generate QE depletion in the cathode area illuminated by the laser, forcing off-axis operation; last, in cathodes with nonuniform QE distribution it could be convenient to operate off axis to exploit a better QE. However, operation in this modemore » may lead to growth of the projected transverse beam emittances due to correlations between the transverse and longitudinal degrees of freedom that are introduced within the gun and downstream rf cavities. A strategy is described to mitigate this emittance growth by allowing the beam to propagate along a carefully tuned off-axis trajectory in downstream rf cavities to remove the time-dependent rf kicks introduced in the gun. Along this trajectory, short range wakefields do not degrade the emittance, and long range wakefields degrade the emittance for very high repetition rate only.« less
Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED
NASA Astrophysics Data System (ADS)
Guo, Rongli; Wang, Fan; Hu, Xiaoying; Yang, Wenqian
2017-11-01
Off-axis digital holographic interferometry with the light source of a light emitting diode (LED) is presented and its application for quantitative phase imaging in a large range with low noise is demonstrated. The scheme is implemented in a grating based Mach-Zehnder interferometer. To achieve off-axis interferometry, firstly, the collimated beam emitted from an LED is diffracted into multiple orders by a grating and they are split into two copies by a beam splitter; secondly, in the object arm the zero order of one copy is filtered in the Fourier plane and is reshaped to illuminate the sample, while in the reference arm one of its first order of another copy is selected to serve as the reference beam, and then an off-axis hologram can be obtained at the image plane. The main advantage stemming from an LED illumination is its high spatial phase resolution, due to the subdued speckle effect. The off-axis geometry enables one-shot recording of the hologram in the millisecond scale. The utility of the proposed setup is illustrated with measurements of a resolution target and part of a wing of green-lacewing, and dynamic evaporation process of an ethanol film.
Off-axis beam dynamics in rf-gun-based electron photoinjectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, R.; Mitchell, Chad; Papadopoulos, C.
The need to operate an rf-gun-based electron photoinjector with a beam emitted away from the cathode center can occur under various circumstances. First, in some cases the cathode can be affected by ion back-bombardment that progressively reduces the quantum efficiency (QE) in its center, making off-axis operation mandatory; second, in some cases the drive laser intensity can be sufficiently high to generate QE depletion in the cathode area illuminated by the laser, forcing off-axis operation; last, in cathodes with nonuniform QE distribution it could be convenient to operate off axis to exploit a better QE. However, operation in this modemore » may lead to growth of the projected transverse beam emittances due to correlations between the transverse and longitudinal degrees of freedom that are introduced within the gun and downstream rf cavities. A strategy is described to mitigate this emittance growth by allowing the beam to propagate along a carefully tuned off-axis trajectory in downstream rf cavities to remove the time-dependent rf kicks introduced in the gun. Along this trajectory, short range wakefields do not degrade the emittance, and long range wakefields degrade the emittance for very high repetition rate only.« less
Extremely Soft X-Ray Flash as the Indicator of Off-axis Orphan GRB Afterglow
NASA Astrophysics Data System (ADS)
Urata, Yuji; Huang, Kuiyun; Yamazaki, Ryo; Sakamoto, Takanori
2015-06-01
We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRB) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak energy of the prompt spectrum {E}{obs}{src}, (2) redshift measurements, and (3) multicolor observations of an earlier (or brightening) phase. XRF 020903 was the only sample selected on the basis of these criteria. A complete optical multicolor afterglow light curve of XRF 020903 obtained from archived data and photometric results in the literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle (0.21 rad, which is twice the jet opening half-angle, {θ }{jet}) can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis orphan GRB afterglow light curves. Events with a larger viewing angle (\\gt ∼ 2{θ }{jet}) could be discovered using an 8 m class telescope with wide-field imagers such as the Subaru Hyper-Suprime-Cam and the Large Synoptic Survey Telescope.
Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.
Oborn, B M; Dowdell, S; Metcalfe, P E; Crozier, S; Mohan, R; Keall, P J
2015-05-01
This paper investigates, via magnetic modeling and Monte Carlo simulation, the ability to deliver proton beams to the treatment zone inside a split-bore MRI-guided proton therapy system. Field maps from a split-bore 1 T MRI-Linac system are used as input to geant4 Monte Carlo simulations which model the trajectory of proton beams during their paths to the isocenter of the treatment area. Both inline (along the MRI bore) and perpendicular (through the split-bore gap) orientations are simulated. Monoenergetic parallel and diverging beams of energy 90, 195, and 300 MeV starting from 1.5 and 5 m above isocenter are modeled. A phase space file detailing a 2D calibration pattern is used to set the particle starting positions, and their spatial location as they cross isocenter is recorded. No beam scattering, collimation, or modulation of the proton beams is modeled. In the inline orientation, the radial symmetry of the solenoidal style fringe field acts to rotate the protons around the beam's central axis. For protons starting at 1.5 m from isocenter, this rotation is 19° (90 MeV) and 9.8° (300 MeV). A minor focusing toward the beam's central axis is also seen, but only significant, i.e., 2 mm shift at 150 mm off-axis, for 90 MeV protons. For the perpendicular orientation, the main MRI field and near fringe field act as the strongest to deflect the protons in a consistent direction. When starting from 1.5 m above isocenter shifts of 135 mm (90 MeV) and 65 mm (300 MeV) were observed. Further to this, off-axis protons are slightly deflected toward or away from the central axis in the direction perpendicular to the main deflection direction. This leads to a distortion of the phase space pattern, not just a shift. This distortion increases from zero at the central axis to 10 mm (90 MeV) and 5 mm (300 MeV) for a proton 150 mm off-axis. In both orientations, there is a small but subtle difference in the deflection and distortion pattern between protons fired parallel to the beam axis and those fired from a point source. This is indicative of the 3D spatially variant nature of the MRI fringe field. For the first time, accurate magnetic and Monte Carlo modeling have been used to assess the transport of generic proton beams toward a 1 T split-bore MRI. Significant rotation is observed in the inline orientation, while more complex deflection and distortion are seen in the perpendicular orientation. The results of this study suggest that due to the complexity and energy-dependent nature of the magnetic deflection and distortion, the pencil beam scanning method will be the only choice for delivering a therapeutic proton beam inside a potential MRI-guided proton therapy system in either the inline or perpendicular orientation. Further to this, significant correction strategies will be required to account for the MRI fringe fields.
Novel theory for propagation of tilted Gaussian beam through aligned optical system
NASA Astrophysics Data System (ADS)
Xia, Lei; Gao, Yunguo; Han, Xudong
2017-03-01
A novel theory for tilted beam propagation is established in this paper. By setting the propagation direction of the tilted beam as the new optical axis, we establish a virtual optical system that is aligned with the new optical axis. Within the first order approximation of the tilt and off-axis, the propagation of the tilted beam is studied in the virtual system instead of the actual system. To achieve more accurate optical field distributions of tilted Gaussian beams, a complete diffraction integral for a misaligned optical system is derived by using the matrix theory with angular momentums. The theory demonstrates that a tilted TEM00 Gaussian beam passing through an aligned optical element transforms into a decentered Gaussian beam along the propagation direction. The deviations between the peak intensity axis of the decentered Gaussian beam and the new optical axis have linear relationships with the misalignments in the virtual system. ZEMAX simulation of a tilted beam through a thick lens exposed to air shows that the errors between the simulation results and theoretical calculations of the position deviations are less than 2‰ when the misalignments εx, εy, εx', εy' are in the range of [-0.5, 0.5] mm and [-0.5, 0.5]°.
Apparatus using the FARADAY effect to locate the magnetic axis of quadrupole magnets
NASA Astrophysics Data System (ADS)
Le Bars, Josette
1994-07-01
A development using magneto-optic sensors is underway for the location of the magnetic center of long, small aperture, superconducting quadrupole magnets. The paper will describe the measuring methods and the preliminary results which have been obtained with gradients from 2.5 T/m to 10 T/m. The sensors are made of magneto-optic garnets using the Faraday effect which changes an incident beam of linearly polarized light into a transmitted beam of elliptically polarized light. An optical fiber bundle (phi less than 20 micron) carries the incident light to a polarized film, put above the magneto optic sensor. An analyzer film collects the transmitted light. A second optic fiber bundle carries this light toward a visual (microscope, video camera) or analogic data acquisition system. Furthermore, a level is associated with these crystals to determine the gravity direction. The 'mole' is moving along the axis of a warm bore tube when the magnet is superconducting. The present results are promising for measuring quadrupoles of much higher gradients, up to 100 T/m.
A direct-view customer-oriented digital holographic camera
NASA Astrophysics Data System (ADS)
Besaga, Vira R.; Gerhardt, Nils C.; Maksimyak, Peter P.; Hofmann, Martin R.
2018-01-01
In this paper, we propose a direct-view digital holographic camera system consisting mostly of customer-oriented components. The camera system is based on standard photographic units such as camera sensor and objective and is adapted to operate under off-axis external white-light illumination. The common-path geometry of the holographic module of the system ensures direct-view operation. The system can operate in both self-reference and self-interference modes. As a proof of system operability, we present reconstructed amplitude and phase information of a test sample.
Transverse strain measurements using fiber optic grating based sensors
NASA Technical Reports Server (NTRS)
Udd, Eric (Inventor)
1998-01-01
A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.
A micrographic study of bending failure in five thermoplastic/carbon fiber composite laminates
NASA Technical Reports Server (NTRS)
Yurgartis, S. W.; Sternstein, S. S.
1987-01-01
The local deformation and failure sequences of five thermoplastic matrix composites were microscopically observed while bending the samples in a small fixture attached to a microscope stage. The themoplastics are polycarbonate, polysulfone, polyphenylsulfide, polyethersulfone, and polyetheretherketone. Comparison was made to an epoxy matrix composite, 5208/T-300. Laminates tested are (0/90) sub 2S, with outer ply fibers parallel to the beam axis. Four point bending was used at a typical span-to-thickness ratio of 39:1. It was found that all of the thermoplastic composites failed by abrupt longitudinal compression buckling of the outer ply. Very little precursory damage was observed. Micrographs reveal typical fiber kinking associated with longitudinal compression failure. Curved fracture surfaces on the fibers suggest they failed in bending rather than direct compression. Delamination was suppressed in the thermoplastic composites, and the delamination that did occur was found to be the result of compression buckling, rather than visa-versa. Microbuckling also caused other subsequent damage such as ply splitting, transverse ply shear failure, fiber tensile failure, and transverse ply cracking.
Rheologic effects of crystal preferred orientation in upper mantle flow near plate boundaries
NASA Astrophysics Data System (ADS)
Blackman, Donna; Castelnau, Olivier; Dawson, Paul; Boyce, Donald
2016-04-01
Observations of anisotropy provide insight into upper mantle processes. Flow-induced mineral alignment provides a link between mantle deformation patterns and seismic anisotropy. Our study focuses on the rheologic effects of crystal preferred orientation (CPO), which develops during mantle flow, in order to assess whether corresponding anisotropic viscosity could significantly impact the pattern of flow. We employ a coupled nonlinear numerical method to link CPO and the flow model via a local viscosity tensor field that quantifies the stress/strain-rate response of a textured mineral aggregate. For a given flow field, the CPO is computed along streamlines using a self-consistent texture model and is then used to update the viscosity tensor field. The new viscosity tensor field defines the local properties for the next flow computation. This iteration produces a coupled nonlinear model for which seismic signatures can be predicted. Results thus far confirm that CPO can impact flow pattern by altering rheology in directionally-dependent ways, particularly in regions of high flow gradient. Multiple iterations run for an initial, linear stress/strain-rate case (power law exponent n=1) converge to a flow field and CPO distribution that are modestly different from the reference, scalar viscosity case. Upwelling rates directly below the spreading axis are slightly reduced and flow is focused somewhat toward the axis. Predicted seismic anisotropy differences are modest. P-wave anisotropy is a few percent greater in the flow 'corner', near the spreading axis, below the lithosphere and extending 40-100 km off axis. Predicted S-wave splitting differences would be below seafloor measurement limits. Calculations with non-linear stress/strain-rate relation, which is more realistic for olivine, indicate that effects are stronger than for the linear case. For n=2-3, the distribution and strength of CPO for the first iteration are greater than for n=1, although the fast seismic axis directions are similar. The greatest difference in CPO for the nonlinear cases develop at the flow 'corner' at depths of 10-30 km and 20-100 km off-axis. J index values up to 10% greater than the linear case are predicted near the lithosphere base in that region. Viscosity tensor components are notably altered in the nonlinear cases. Iterations between the texture and flow calculations for the non-linear cases are underway this winter; results will be reported in the presentation.
Off-Axis Seamount Lavas at 8°20' N Span the Entire Range of East Pacific Rise MORB Compositions
NASA Astrophysics Data System (ADS)
Anderson, M.; Wanless, V. D.; Perfit, M. R.; Gregg, P. M.; Fornari, D. J.; McCully, E.; Ridley, W. I.
2017-12-01
Lavas erupted at off-axis seamounts can provide a window into mantle heterogeneity and melting systematics that are not easily observed on-axis at fast-spreading mid-ocean ridges (MORs), where melts are efficiently mixed and homogenized within shallow axial magma chambers. To investigate off-axis magmatism, we systematically mapped the 8°20' N seamount chain in November of 2016 on R/V Atlantis using shipboard EM122 multibeam system and AUV Sentry. This 160-km long chain of off-axis seamounts and ridges is located perpendicular to the ridge axis, west of the East Pacific Rise (EPR) and north of the Siqueiros Fracture Zone. The high-resolution surface and AUV-based multibeam and AUV sidescan maps are combined with geochemical analyses of 300 basalt samples, collected using HOV Alvin and dredging, to evaluate magmatic plumbing and sources off-axis. Preliminary major and trace element concentrations reveal remarkable geochemical heterogeneity (including both normal and enriched basalt compositions) across the entire seamount chain and within individual seamounts. For example, (La/Sm)N contents span the entire range of known values for basalts from northern Pacific MORs and seamounts (0.45—2.76). MgO contents vary from 10.25 to 4.56 wt. % across the seamount chain and by as much as 3.61 wt. % from volcanic features sampled at an individual seamount (Beryl). Additionally, K2O/TiO2 ratios range from 4.9 to 61.3 across the seamount chain, and by as much as 54.4 at a single seamount (Beryl), indicating heterogeneous mantle sources or variable extents of melting occur at both regional and local scales. We combine the geochemical results and bathymetric maps with petrologic models to evaluate extents and depths of fractional crystallization and mantle melting in the off-axis environment.
Stable operating regime for traveling wave devices
Carlsten, Bruce E.
2000-01-01
Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.
Xiao, Senbo; Xiao, Shijun; Gräter, Frauke
2013-06-14
Stacking of β-sheets results in a protein super secondary structure with remarkable mechanical properties. β-Stacks are the determinants of a silk fiber's resilience and are also the building blocks of amyloid fibrils. While both silk and amyloid-type crystals are known to feature a high resistance against rupture, their structural and mechanical similarities and particularities are yet to be fully understood. Here, we systematically compare the rupture force and stiffness of amyloid and spider silk poly-alanine β-stacks of comparable sizes using Molecular Dynamics simulations. We identify the direction of force application as the primary determinant of the rupture strength; β-sheets in silk are orientated along the fiber axis, i.e. the pulling direction, and consequently require high forces in the several nanoNewton range for shearing β-strands apart, while β-sheets in amyloid are oriented vertically to the fiber, allowing a zipper-like rupture at sub-nanoNewton forces. A secondary factor rendering amyloid β-stacks softer and weaker than their spider silk counterparts is the sub-optimal side-chain packing between β-sheets due to the sequence variations of amyloid-forming proteins as opposed to the perfectly packed poly-alanine β-sheets of silk. Taken together, amyloid fibers can reach the stiffness of silk fibers in spite of their softer and weaker β-sheet arrangement as they are missing a softening amorphous matrix.
NASA Astrophysics Data System (ADS)
Tomonari, Mutsumi; Ookubo, Norio; Takada, Toshikazu
1995-04-01
The first-order hyperpolarizability components, βzzz and βzxx, for C 2v molecules (the z axis being the principal axis) are analyzed after simplified sum-over-states calculations. Compared with p-nitroaniline (PNA), βzxx is three times enhanced by x-extended π conjugation realized by a bulky substrate in 9-amino-10-nitroanthracene (ANA) and by multiple substitutions in 1,5-diamino-2,4-dinitrobenzene (DDB). While ANA shows βzzz unchanged because its z-directed charge transfer (CT) is similar to PNA, DDB has a β zzz1/3 of PNA, which is reduced by two weak CTs introduced by two ortho-positioned donor-acceptor pairs on both sides of the z axis.
NASA Astrophysics Data System (ADS)
Ma, H. P.; Jin, Y. Q.; Ha, Y. W.; Liu, L. H.
2006-10-01
Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system.
On possible plume-guided seismic waves
Julian, B.R.; Evans, J.R.
2010-01-01
Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband seismometers makes searching for these waves possible.
Russ, M; Shankar, A; Setlur Nagesh, S V; Ionita, C N; Bednarek, D R; Rudin, S
2017-02-11
The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.
NASA Astrophysics Data System (ADS)
Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.
2017-03-01
The high-resolution requirements for neuro-endovascular image-guided interventions (EIGIs) necessitate the use of a small focal-spot size; however, the maximum tube output limits for such small focal-spot sizes may not enable sufficient x-ray fluence after attenuation through the human head to support the desired image quality. This may necessitate the use of a larger focal spot, thus contributing to the overall reduction in resolution. A method for creating a higher-output small effective focal spot based on the line-focus principle has been demonstrated and characterized. By tilting the C-arm gantry, the anode-side of the x-ray field-of-view is accessible using a detector placed off-axis. This tilted central axis diminishes the resultant focal spot size in the anode-cathode direction by the tangent of the effective anode angle, allowing a medium focal spot to be used in place of a small focal spot with minimal losses in resolution but with increased tube output. Images were acquired of two different objects at the central axis, and with the C-arm tilted away from the central axis at 1° increments from 0°-7°. With standard collimation settings, only 6° was accessible, but using asymmetric extended collimation a maximum of 7° was accessed for enhanced comparisons. All objects were positioned perpendicular to the anode-cathode direction and images were compared qualitatively. The increasing advantage of the off-axis focal spots was quantitatively evidenced at each subsequent angle using the Generalized Measured-Relative Object Detectability metric (GM-ROD). This anode-tilt method is a simple and robust way of increasing tube output for a small field-of-view detector without diminishing the overall apparent resolution for neuro-EIGIs.
Thermal Characterization of Carbon Fiber-Reinforced Carbon Composites
NASA Astrophysics Data System (ADS)
Macias, J. D.; Bante-Guerra, J.; Cervantes-Alvarez, F.; Rodrìguez-Gattorno, G.; Arés-Muzio, O.; Romero-Paredes, H.; Arancibia-Bulnes, C. A.; Ramos-Sánchez, V.; Villafán-Vidales, H. I.; Ordonez-Miranda, J.; Li Voti, R.; Alvarado-Gil, J. J.
2018-04-01
Carbon fiber-reinforced carbon (C/C) composites consist in a carbon matrix holding carbon or graphite fibers together, whose physical properties are determined not only by those of their individual components, but also by the layer buildup and the material preparation and processing. The complex structure of C/C composites along with the fiber orientation provide an effective means for tailoring their mechanical, electrical, and thermal properties. In this work, we use the Laser Flash Technique to measure the thermal diffusivity and thermal conductivity of C/C composites made up of laminates of weaved bundles of carbon fibers, forming a regular and repeated orthogonal pattern, embedded in a graphite matrix. Our experimental data show that: i) the cross-plane thermal conductivity remains practically constant around (5.3 ± 0.4) W·m-1 K-1, within the temperature range from 370 K to 1700 K. ii) The thermal diffusivity and thermal conductivity along the cross-plane direction to the fibers axis is about five times smaller than the corresponding ones in the laminates plane. iii) The measured cross-plane thermal conductivity is well described by a theoretical model that considers both the conductive and radiative thermal contributions of the effective thermal conductivity.
NASA Astrophysics Data System (ADS)
Ren, Fang; Li, Juhao; Wu, Zhongying; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin
2017-01-01
We propose three-mode mode-division-multiplexing passive optical network (MDM-PON) based on low mode-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). The FMF with step-index profile is designed and fabricated for effectively three-independent-spatial-mode transmission and low mode-crosstalk for MDM-PON transmission. The all-fiber mode MUX/DEMUX are composed of cascaded mode selective couplers (MSCs), which simultaneously multiplex or demultiplex multiple modes. Based on the low mode-crosstalk of the FMF and all-fiber mode MUX/DEMUX, each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing a different optical linearly polarized (LP) spatial mode in MDM-PON system. We experimentally demonstrate MDM-PON transmission of three independent-spatial-modes over 12-km FMF with 10-Gb/s optical on-off keying (OOK) signal and direct detection.
Savin, Adriana; Steigmann, Rozina; Bruma, Alina; Šturm, Roman
2015-01-01
This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000. PMID:26151206
NASA Technical Reports Server (NTRS)
Bowman, K.; Worden, H.; Beer, R.
1999-01-01
Spectra measured by off-axis detectors in a high-resolution Fourier transform spectrometer (FTS) are characterized by frequency scaling, asymmetry and broadening of their line shape, and self-apodization in the corresponding interferogram.
Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays.
Zheng, Guoxing; Liu, Guogen; Kenney, Mitchell Guy; Li, Zile; He, Ping'an; Li, Song; Ren, Zhi; Deng, Qiling
2016-03-21
Since the transmission of anisotropic nano-structures is sensitive to the polarisation of an incident beam, a novel polarising beam splitter (PBS) based on silicon nanobrick arrays is proposed. With careful design of such structures, an incident beam with polarisation direction aligned with the long axis of the nanobrick is almost totally reflected (~98.5%), whilst that along the short axis is nearly totally transmitted (~94.3%). More importantly, by simply changing the width of the nanobrick we can shift the peak response wavelength from 1460 nm to 1625 nm, covering S, C and L bands of the fiber telecommunications windows. The silicon nanobrick-based PBS can find applications in many fields which require ultracompactness, high efficiency, and compatibility with semiconductor industry technologies.
Spatial Combining of Laser-Diode Beams for Pumping an NPRO
NASA Technical Reports Server (NTRS)
Gelsinger, Paul; Liu, Duncan; Mulder, Jerry; Aguayo, Francisco
2008-01-01
A free-space optical beam combiner now undergoing development makes it possible to use the outputs of multiple multimode laser diodes to pump a neodymium-doped yttrium aluminum garnet (Nd:YAG) non-planar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, a Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained in this article, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. To minimize coupling loss, one must ensure that the NA (approximately equal to 0.3) of the combined laser-diode beams is less than the NA of the fiber. The A(Omega) of the laser-diode beam in the slow-axis plane is 1/1.3 as large as that of the fiber. This A(Omega) is small enough to enable efficient coupling of light into the optical fiber, but too large for combining of beams in the slow-axis plane. Therefore, a pair of cylindrical lenses is used to cancel the slow-axis plane magnification introduced by the on-cylindrical lenses used to effect magnification in the fast-axis plane.
Off-axis full-field swept-source optical coherence tomography using holographic refocusing
NASA Astrophysics Data System (ADS)
Hillmann, Dierck; Franke, Gesa; Hinkel, Laura; Bonin, Tim; Koch, Peter; Hüttmann, Gereon
2013-03-01
We demonstrate a full-field swept-source OCT using an off-axis geometry of the reference illumination. By using holographic refocusing techniques, a uniform lateral resolution is achieved over the measurement depth of approximately 80 Rayleigh lengths. Compared to a standard on-axis setup, artifacts and autocorrelation signals are suppressed and the measurement depth is doubled by resolving the complex conjugate ambiguity. Holographic refocusing was done efficiently by Fourier-domain resampling as demonstrated before in inverse scattering and holoscopy. It allowed to reconstruct a complete volume with about 10μm resolution over the complete measurement depth of more than 10mm. Off-axis full-field swept-source OCT enables high measurement depths, spanning many Rayleigh lengths with reduced artifacts.
Effects of shear coupling on shear properties of wood
Jen Y. Liu
2000-01-01
Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...
Optical diffraction tomography: accuracy of an off-axis reconstruction
NASA Astrophysics Data System (ADS)
Kostencka, Julianna; Kozacki, Tomasz
2014-05-01
Optical diffraction tomography is an increasingly popular method that allows for reconstruction of three-dimensional refractive index distribution of semi-transparent samples using multiple measurements of an optical field transmitted through the sample for various illumination directions. The process of assembly of the angular measurements is usually performed with one of two methods: filtered backprojection (FBPJ) or filtered backpropagation (FBPP) tomographic reconstruction algorithm. The former approach, although conceptually very simple, provides an accurate reconstruction for the object regions located close to the plane of focus. However, since FBPJ ignores diffraction, its use for spatially extended structures is arguable. According to the theory of scattering, more precise restoration of a 3D structure shall be achieved with the FBPP algorithm, which unlike the former approach incorporates diffraction. It is believed that with this method one is allowed to obtain a high accuracy reconstruction in a large measurement volume exceeding depth of focus of an imaging system. However, some studies have suggested that a considerable improvement of the FBPP results can be achieved with prior propagation of the transmitted fields back to the centre of the object. This, supposedly, enables reduction of errors due to approximated diffraction formulas used in FBPP. In our view this finding casts doubt on quality of the FBPP reconstruction in the regions far from the rotation axis. The objective of this paper is to investigate limitation of the FBPP algorithm in terms of an off-axis reconstruction and compare its performance with the FBPJ approach. Moreover, in this work we propose some modifications to the FBPP algorithm that allow for more precise restoration of a sample structure in off-axis locations. The research is based on extensive numerical simulations supported with wave-propagation method.
NASA Technical Reports Server (NTRS)
Seo, Byoung-Joon; Nissly, Carl; Troy, Mitchell; Angeli, George
2010-01-01
The Normalized Point Source Sensitivity (PSSN) has previously been defined and analyzed as an On-Axis seeing-limited telescope performance metric. In this paper, we expand the scope of the PSSN definition to include Off-Axis field of view (FoV) points and apply this generalized metric for performance evaluation of the Thirty Meter Telescope (TMT). We first propose various possible choices for the PSSN definition and select one as our baseline. We show that our baseline metric has useful properties including the multiplicative feature even when considering Off-Axis FoV points, which has proven to be useful for optimizing the telescope error budget. Various TMT optical errors are considered for the performance evaluation including segment alignment and phasing, segment surface figures, temperature, and gravity, whose On-Axis PSSN values have previously been published by our group.
NASA Astrophysics Data System (ADS)
Malykin, G. B.; Pozdnyakova, V. I.
2018-03-01
A linear transformation of orthogonal polarization modes in coiled optical spun-fibers with strong unperturbed linear birefringence, which causes the emergence of the dependences of the integrated elliptical birefringence and the ellipticity and azimuth of the major axis of the ellipse, as well as the polarization state of radiation (PSR), on the length of optical fiber has been considered. Optical spun-fibers are subjected to a strong mechanical twisting, which is frozen into the structure of the optical fiber upon cooling, in the process of being drawn out from the workpiece. Since the values of the local polarization parameters of coiled spunwaveguides vary according to a rather complex law, the calculations were carried out by numerical modeling of the parameters of the Jones matrices. Since the rotation speed of the axes of the birefringence is constant on a relatively short segment of a coiled optical spun-fiber in the accompanying torsion (helical) coordinate system, the so-called "Ginzburg helical polarization modes" (GHPMs)—two mutually orthogonal ellipses with the opposite directions of traversal, the axis of which rotate relative to the fixed coordinate system uniformly and unidirectionally—are approximately the local normal polarization modes of such optical fiber. It has been shown that, despite the fact that the unperturbed linear birefringence of the spun-fibers significantly exceeds the linear birefringence, which is caused by the winding on a coil, the integral birefringence of an extended segment of such a fiber coincides in order of magnitude with the linear birefringence, which is caused by the winding on the coil, and the integral polarization modes tend asymptotically to circular ones. It has been also shown that the values of the circular birefringence of twisted single-mode fibers, which were calculated in a nonrotating and torsion helical coordinate systems, differ significantly. It has been shown that the polarization phenomena occur in the process of linear transformation of local polarization modes, which lead to small quasi-harmonic oscillations of the birefringence integral parameters of the optical spun-fibers, which depend on their length, and the period of these oscillations is approximately equal to half of the effective period of polarization beating.
Winkler, Florian; Tavabi, Amir H; Barthel, Juri; Duchamp, Martial; Yucelen, Emrah; Borghardt, Sven; Kardynal, Beata E; Dunin-Borkowski, Rafal E
2017-07-01
The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe 2 is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe 2 from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe 2 of 18.9±0.8V, which is 12% lower than the value calculated from neutral atom scattering factors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Bonesi, Marco; Matcher, Stephen J.
2008-02-01
Polarization-sensitive optical coherence tomography has been used to solve fast-axis fibre orientation in three dimension space. Previously we have demonstrated that the apparent variations in polar angle orientation of collagen fibers along sagittal ridge of equine third metacarpophalangeal joint exist. A quantitative method based on multiple angles of illumination has been proposed to determine the polar angle of the collagen fibers. This method however ignored the full 3D structure by assuming that the collagen fibers long-axis lay within the plane of incidence. A new quantitative method based on the theory of light propagation in uniaxial materials is described which avoids this assumption. To test this method we have performed control experiments on a sample of equine tendon (this tissue has well defined c-axis lying along the long-axis of the tendon). Several samples of tendon were cut to achieve a planar surface inclined at -20° to the long axis. Additional 30° rotation provided non-zero azimuthal angle. The surface was then imaged using incident beam angles -40°, -20°, 0, +20°, +40° in two orthogonal planes. Values for both the polar and azimuthal angles were then derived using a numerical optimisation procedure. Results agreed qualitatively with the nominal values but suggested that the accuracy was limited by our method of determining the apparent birefringence.
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Matcher, Stephen J.
2007-02-01
Polarization-sensitive optical coherence tomography has been used to solve fast-axis fibre orientation in three dimension space. Previously we have demonstrated that the apparent variations in polar angle orientation of collagen fibers along sagittal ridge of equine third metacarpophalangeal joint exist. A quantitative method based on multiple angles of illumination has been proposed to determine the polar angle of the collagen fibers. This method however ignored the full 3-D structure by assuming that the collagen fibers long-axis lay within the plane of incidence. A new quantitative method based on the theory of light propagation in uniaxial materials is described which avoids this assumption. To test this method we have performed control experiments on a sample of equine tendon (this tissue has well defined c-axis lying along the long-axis of the tendon). Several samples of tendon were cut to achieve a planar surface inclined at -20° to the long axis. Additional 30° rotation provided non-zero azimuthal angle. The surface was then imaged using incident beam angles -40°, -20°, 0, +20°, +40° in two orthogonal planes. Values for both the polar and azimuthal angles were then derived using a numerical optimisation procedure. Results agreed qualitatively with the nominal values but suggested that the accuracy was limited by our method of determining the apparent birefringence.
A two-dimensional matrix correction for off-axis portal dose prediction errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Daniel W.; Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263; Kumaraswamy, Lalith
2013-05-15
Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ['An effective correction algorithm for off-axis portal dosimetry errors,' Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axismore » prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in the 1D correction case, the 2D algorithm leaves the portal dosimetry process virtually unchanged in the central portion of the detector, and thus these correction algorithms are not needed for centrally located fields of moderate size (at least, in the case of 6 MV beam energy).Conclusion: The 2D correction improves the portal dosimetry results for those fields for which the 1D correction proves insufficient, especially in the inplane, off-axis regions of the detector. This 2D correction neglects the relatively smaller discrepancies that may be caused by backscatter from nonuniform machine components downstream from the detecting layer.« less
Mesoporous ZrO2 fibers with enhanced surface area and the application as recyclable absorbent
NASA Astrophysics Data System (ADS)
Yu, Zhichao; Liu, Benxue; Zhou, Haifeng; Feng, Cong; Wang, Xinqiang; Yuan, Kangkang; Gan, Xinzhu; Zhu, Luyi; Zhang, Guanghui; Xu, Dong
2017-03-01
Highly crystalline mesoporous zirconia fibers with high surface area have been prepared by the use of electrospinning combined with precursors method. The obtained precursor fibers were treated in water steam and directly in air at different temperature respectively. Compared with the direct calcination in air, the water steam cannot only promote the crystallization of ZrO2 but also effectively remove off the organics and prevent the pore structure collapse. Moreover, through adding hydrochloric acid to modify the solution pH value, the obtained t-ZrO2 fibers treated in water steam at 300 °C have high surface area and large pore volume of 232.70 m2 g-1 and 0.36 cm3 g-1. The formation mechanism of the mesostucture was studied and the schematic was represented. Compared with the previous reports of mesoporous ZrO2 fibers, the as-synthesized materials exhibited the high crystallinity, large surface area and the long-range order mesostructure.The adsorption of Congo red indicates that the samples have a high adsorption capacity of 103.46 mg g-1 and long-periodic repeated availability.
Apparatus and method for increasing the bandwidth of a laser beam
Wilcox, Russell B.
1992-01-01
A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.
Gao, Fan; Zhou, Shiwei; Li, Xiang; Fu, Songnian; Deng, Lei; Tang, Ming; Liu, Deming; Yang, Qi
2017-04-03
We experimentally demonstrate 2 × 64 Gb/s PAM-4 transmission over a 70 km standard single-mode fiber (SSMF) using two O-band 18G-class directly modulated lasers (DMLs). Only one praseodymium-doped fiber amplifier (PDFA) at the receiver side is used to compensate the transmission loss. Meanwhile, transmission impairments are compensated by a sparse Volterra filter (SVF) equalizer, which can achieve similar system performance but with half the computational complexity (CC), in comparison with a traditional VF equalizer. Finally, we optimize the insignificant factor (IF) of SVF to identify the trade-off between the transmission performance and the CC. Thus, the redundancy of individual SVF kernels can be reasonably removed.
Spaggiari, S; Baruffi, S; Macchi, E; Traversa, M; Arisi, G; Taccardi, B
1986-11-01
We tried to establish whether some of the manifestations of electrical anisotropy previously observed on the canine ventricular epicardium during the spread of excitation were also present during repolarization, with the appropriate polarity. To this end we determined the potential distribution on the ventricular surface of exposed dog hearts during ventricular excitation and repolarization. The ventricles were paced by means of epicardial or intramural electrodes. During the early stages of ventricular excitation following epicardial pacing we observed typical, previously described potential patterns, with negative, elliptical equipotential lines surrounding the pacing site, and two maxima aligned along the direction of subepicardial fibers. Intramural pacing gave rise to similar patterns. The axis joining the maxima, however, was oriented along the direction of intramural fibers. The repolarization potential pattern relating to epicardial excitation exhibited some features similar to those observed during the spread of excitation, namely the presence of families of elliptical equipotential lines around the pacing site, with pairs of potential extrema along the major or minor axes of the ellipses or both. The location of the extrema and the distribution of the epicardial potential gradients during repolarization suggested the presence of anisotropic current generators mainly oriented along the direction of deep myocardial fibers, with some contribution from more superficial sources which were oriented along the direction of subepicardial fibers. Deep stimulation elicited more complicated epicardial patterns whose interpretation is still obscure. We conclude that the electrical anisotropy of the heart affects the distribution of repolarization potentials and probably the strength of electrical generators during ventricular repolarization.
Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy
NASA Technical Reports Server (NTRS)
Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.
2014-01-01
The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions. Contrast extinction analysis of these dislocation lines reveals they are edge type basal plane dislocations that track the growth direction. Polytype phase transition and stacking faults were observed by high-resolution TEM (HRTEM), in agreement with SWBXT and Raman scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Fifield, Leonard S.; Kijewski, Seth A.
2015-01-29
During the first quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Autodesk delivered a new research version of ASMI to PNNL. This version includes the improved 3D fiber orientation solver, and the reduced order model (ROM) for fiber length distribution using the proper orthogonal decomposition (POD) implemented in the mid-plane, dual-domain and 3D solvers. 2) Autodesk coordinated a conference paper with PNNL reporting ASMI mid-plane fiber orientation predictions compared with the measured data for two PlastiComp plaques. This paper was accepted for presentation at the 2015 Society for Plastics Engineers (SPE) ANTEC conference.more » 3) The University of Illinois (Prof. Tucker) assisted team members from Purdue with fiber orientation measurement techniques, including interpretation of off-axis cross sections. 4) The University of Illinois assisted Autodesk team members with software implementation of the POD approach for fiber length modeling, and with fiber orientation modeling. 5) The University of Illinois co-authored in the SPE ANTEC paper, participated with the team in discussions of plaque data and model results, and participated in the definition of go/no-go experiments and data. 6) Purdue University (Purdue) conducted fiber orientation measurements for 3 PlastiComp plaques: fast-fill 30wt% LCF/PP center-gated, fast-fill 50wt% LCF/PA66 edge-gated and fast-fill 50wt% LCF/PA66 center-gated plaques, and delivered the fiber orientation data for these plaques at the selected locations (named A, B, and C) to PNNL. However, the data for the fast-fill 50wt% LCF/PA66 edge-gated plaque exhibited unusual variations and could not be used for the model validation. Purdue will re-measure fiber orientation for this plaque. 7) Based on discussions with the University of Illinois Purdue explained the ambiguity in the measurements of the fiber orientation components. 8) PNNL discussed with team members to establish a go/no-go decision plan for the project and submitted the established plan to DOE. 9) PNNL performed ASMI mid-plane analyses for the fast-fill center-gated 30wt% LCF/PP and 50wt% LCF/PA66 plaques and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. 10) Based on discussions with the University of Illinois and Autodesk, PNNL proposed a procedure to adjust fiber orientation data for Location A of the center-gated plaques so that the data can be expressed and interpreted in the flow/cross-flow direction coordinate system. 11) PNNL tested the new ASMI version received from Autodesk, examined and discussed 3D fiber orientation predictions for PlastiComp plaques. 12) PlastiComp, Inc. (PlastiComp), Toyota Research Institute North America (Toyota) and Magna Exteriors and Interiors Corp. (Magna) participated in discussions with team members on the go/no-go plan and the issues related to fiber length measurements. Toyota continued the discussion with Magna on tool modification for molding the complex part in order to achieve the target fiber length in the part.« less
Optical-Fiber Fluorosensors With Polarized Light Sources
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1995-01-01
Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).
Direct measurement of magnetic flux compression on the Z pulsed-power accelerator
NASA Astrophysics Data System (ADS)
McBride, R. D.; Bliss, D. E.; Martin, M. R.; Jennings, C. A.; Lamppa, D. C.; Dolan, D. H.; Lemke, R. W.; Rovang, D. C.; Rochau, G. A.; Cuneo, M. E.; Sinars, D. B.; Intrator, T. P.; Weber, T. E.
2016-10-01
We report on the progress made to date for directly measuring magnetic flux compression on Z. Each experiment consisted of an initially solid aluminum liner (a cylindrical tube), which was imploded using Z's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-20-T axial seed field, Bz(0), supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by Bz(t) =Bz (0)×[R(0)/R(t)]2, where R is the liner's inner surface radius. With perfect flux conservation, Bz and dBz/dt values exceeding 104 T and 1012 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields directly. We report on our latest efforts to do so using a fiber-optic-based Faraday rotation diagnostic, where the magneto-active portion of the sensor is made from terbium-doped optical fiber. We have now used this diagnostic to measure a flux-compressed magnetic field to over 600 T prior to the imploding liner hitting the on-axis fiber housing. This project was funded in part by Sandia's LDRD program and US DOE-NNSA contract DE-AC04-94AL85000.
Schachar, R A; Solin, S A
1975-05-01
Intact bovine lenses have been studied using the polarized Raman spectroscopic technique. A brief theoretical and experimental review of Raman spectroscopy is presented. From the dependence of the Raman depolarization ratio on the propagation direction of the incident radiation we have determined that the uniaxial qualities of the lens result from microscopic anisotropy and have established the quantitative positional correlation of specific chemical bonds with respect to the lens optic axis. In particular, the hydrogen bonded linear CONH groups of the antiparallel beta-pleated sheet are preferentially oriented in directions orthogonal to the lens optic axis. The Raman spectra of intact lenses do not exhibit bands at positions characteristic of either the alpha-helix or the random coil protein structure. The antiparallel beta-pleated sheet protein microstructure and the lens fiber cross-sectional macrostructure exhibit a remarkable similarity. This similarity may be causal and is consistent with the protein concentration of the lens, the birefringent properties observed by both Lenhard and Brewster, the CONH bond angle distribution with respect to the optic axis, and the lens anatomy. It is suggested that cortical cataracts are caused by fluctuations in protein orientational order.
Diode lasers optimized in brightness for fiber laser pumping
NASA Astrophysics Data System (ADS)
Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.
2018-02-01
In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.
Highly sensitive rotation sensing based on orthogonal fiber-optic structures
NASA Astrophysics Data System (ADS)
Yang, Yi; Wang, Zi-nan; Xu, Lian-yu; Wang, Cui-yun; Jia, Lei; Yu, Xiao-qi; Shao, Shan; Li, Zheng-bin
2011-08-01
In traditional fiber-optic gyroscopes (FOG), the polarization state of counter propagating waves is critically controlled, and only the mode polarized along one particular direction survives. This is important for a traditional single mode fiber gyroscope as the requirement of reciprocity. However, there are some fatal defects such as low accuracy and poor bias stability in traditional structures. In this paper, based on the idea of polarization multiplexing, a double-polarization structure is put forward and experimentally studied. In highly birefringent fibers or standard single mode fibers with induced anisotropy, two orthogonal polarization modes can be used at the same time. Therefore, in polarization maintaining fibers (PMF), each pair of counter propagating beams preserve reciprocity within their own polarization state. Two series of sensing results are gotten in the fast and slow axes in PMF. The two sensing results have their own systematic drifts and the correlation of random noise in them is approximately zero. So, beams in fast and slow axes work as two independent and orthogonal gyroscopes. In this way, amount of information is doubled, providing opportunity to eliminate noise and improve sensitivity. Theoretically, this double-polarization structure can achieve a sensitivity of 10-18 deg/h. Computer simulation demonstrates that random noise and systematic drifts are largely reduced in this novel structure. In experiment, a forty-hour stability test targeting the earth's rotation velocity is carried out. Experiment result shows that the orthogonal fiber-optic structure has two big advantages compared with traditional ones. Firstly, the structure gets true value without any bias correction in any axis and even time-varying bias does not affect the acquisition of true value. The unbiasedness makes the structure very attractive when sudden disturbances or temperature drifts existing in working environment. Secondly, the structure lowers bias for more than two orders and enhances bias stability for an order higher (compared with single axis result), achieving a bias stability of 0.01 deg/h. The evidences from all aspects convincingly show that the orthogonal fiber-optic structure is robust against environmental disturbance and material defects, achieving high stability and sensitivity.
Guo, Shuguang; Zhang, Jun; Wang, Lei; Nelson, J Stuart; Chen, Zhongping
2004-09-01
Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient mathematical tool, is used to represent an optical element and simplify the algorithm. Experimental results with beef tendon and rabbit tendon and muscle show that this technique has promising potential for imaging the birefringent structure of multiple-layer samples with varying optical axes.
NASA Astrophysics Data System (ADS)
Goering, Rolf; Hoefer, Bernd; Kraeplin, Anke; Schreiber, Peter; Kley, Ernst-Bernhard; Schmeisser, Volkmar
1999-04-01
A novel technique, the so-called skew ray imaging concept, has been developed for beam transformation of high power diode laser bars. It leads to beam circularization with optimum brightness conservation. This concept uses two key microoptical components: a fast axis collimator microlens (FAC) of high isoplanatism and a special array of beam deflecting elements, the number of which corresponds to the single emitter number of the diode laser. Using this concept of skew ray imaging in a modified form, prototypes of pumping sources for visible fiber laser have been developed and built up. Several watts of optical power have been focused into a small spot of 25 micrometers with a numerical aperture of 0.35. GRIN cylindrical microlenses with 0.1 mm focal length and diffractive blazed gratings as redirector have been used. The grating periods of the redirector sections have been between 8 and 100 (mu) M. They have been produced by e-beam direct writing in resist. After optimization of the fabrication process the diffraction efficiencies of al sections have been beyond 86 percent with good reproducibility. Special techniques have been sued for system integration. The FAC microlenses have been attached to a copper lens holder with a subsequent gluing process of the holder to the laser diode heatsink. A UV-curable adhesive with extremely low shrinkage has been selected. The redirector element has been integrated with an additional possibility for lateral adjustment in order to compensate minor residual walk-off effects of the microlens when the laser power is varied from zero to maximum. A very compact pumping source of 3 inches X 1 inch X 1 inch dimensions has been realized with 5 W optical power in the desired spot. First diode pumped fiber laser operation in the visible has been demonstrated with this source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding
2012-08-15
Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receivingmore » a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.« less
Micromachined mirrors for raster-scanning displays and optical fiber switches
NASA Astrophysics Data System (ADS)
Hagelin, Paul Merritt
Micromachines and micro-optics have the potential to shrink the size and cost of free-space optical systems, enabling a new generation of high-performance, compact projection displays and telecommunications equipment. In raster-scanning displays and optical fiber switches, a free-space optical beam can interact with multiple tilt- up micromirrors fabricated on a single substrate. The size, rotation angle, and flatness of the mirror surfaces determine the number of pixels in a raster-display or ports in an optical switch. Single-chip and two-chip optical raster display systems demonstrate static mirror curvature correction, an integrated electronic driver board, and dynamic micromirror performance. Correction for curvature caused by a stress gradient in the micromirror leads to resolution of 102 by 119 pixels in the single-chip display. The optical design of the two-chip display features in-situ mirror curvature measurement and adjustable image magnification with a single output lens. An electronic driver board synchronizes modulation of the optical source with micromirror actuation for the display of images. Dynamic off-axis mirror motion is shown to have minimal influence on resolution. The confocal switch, a free-space optical fiber cross- connect, incorporates micromirrors having a design similar to the image-refresh scanner. Two micromirror arrays redirect optical beams from an input fiber array to the output fibers. The switch architecture supports simultaneous switching of multiple wavelength channels. A 2x2 switch configuration, using single-mode optical fiber at 1550 mn, is demonstrated with insertion loss of -4.2 dB and cross-talk of -50.5 dB. The micromirrors have sufficient size and angular range for scaling to a 32x32 cross-connect switch that has low insertion-loss and low cross-talk.
Lan, Hsiao-Chin; Hsiao, Hsu-Liang; Chang, Chia-Chi; Hsu, Chih-Hung; Wang, Chih-Ming; Wu, Mount-Learn
2009-11-09
A monolithically integrated micro-optical element consisting of a diffractive optical element (DOE) and a silicon-based 45 degrees micro-reflector is experimentally demonstrated to facilitate the optical alignment of non-coplanar fiber-to-fiber coupling. The slanted 45 degrees reflector with a depth of 216 microm is fabricated on a (100) silicon wafer by anisotropic wet etching. The DOE with a diameter of 174.2 microm and a focal length of 150 microm is formed by means of dry etching. Such a compact device is suitable for the optical micro-system to deflect the incident light by 90 degrees and to focus it on the image plane simultaneously. The measured light pattern with a spot size of 15 microm has a good agreement with the simulated result of the elliptic-symmetry DOE with an off-axis design for eliminating the strongly astigmatic aberration. The coupling efficiency is enhanced over 10-folds of the case without a DOE on the 45 degrees micro-reflector. This device would facilitate the optical alignment of non-coplanar light coupling and further miniaturize the volume of microsystem.
Two classes of capillary optical fibers: refractive and photonic
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2008-11-01
This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.
SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY
2016-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031
Brightness-enhanced high-efficiency single emitters for fiber laser pumping
NASA Astrophysics Data System (ADS)
Yanson, Dan; Rappaport, Noam; Shamay, Moshe; Cohen, Shalom; Berk, Yuri; Klumel, Genadi; Don, Yaroslav; Peleg, Ophir; Levy, Moshe
2013-02-01
Reliable single emitters delivering <10W in the 9xx nm spectral range, are common energy sources for fiber laser pumps. The brightness (radiance) of a single emitter, which connotes the angular concentration of the emitted energy, is just as important a parameter as the output power alone for fiber coupling applications. We report on the development of high-brightness single emitters that demonstrate <12W output with 60% wall-plug efficiency and a lateral emission angle that is compatible with coupling into 0.15 NA delivery fiber. Using a purpose developed active laser model, simulation of far-field patterns in the lateral (slow) axis can be performed for different epitaxial wafer structures. By optimizing both the wafer and chip designs, we have both increased the device efficiency and improved the slow-axis divergence in high-current operation. Device reliability data are presented. The next-generation emitters will be integrated in SCD's NEON fiber pump modules to upgrade the pump output towards higher ex-fiber powers with high efficiency.
Chen, Jianjun; Cui, Jicheng; Yao, Xuefeng; Liu, Jianan; Sun, Ci
2018-04-01
To solve the problem where the actual grating aperture decreases with an increasing scanning angle during the scanning of a three-grating monochromator, we propose an off-axis assembly method for the worm gear turntable that makes it possible to suppress this aperture reduction. We simulated and compared the traditional assembly method with the off-axis assembly method in the three-grating monochromator. Results show that the actual grating aperture can be improved by the off-axis assembly method. In fact, for any one of the three gratings, when the monochromator outputs the longest wavelength in the corresponding wavelength band, the actual grating aperture increases by 45.93%. Over the entire monochromator output band, the actual grating aperture increased by an average of 32.56% and can thus improve the monochromator's output energy. Improvement of the actual grating aperture can also reduce the stray light intensity in the monochromator and improve its output signal-to-noise ratio.
Off-axis mirror fabrication from spherical surfaces under mechanical stress
NASA Astrophysics Data System (ADS)
Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Percino-Zacarías, M. E.; Granados-Agustín, Fermin-Salomon
2013-09-01
The preliminary results in the fabrication of off-axis optical surfaces are presented. The propose using the conventional polishing method and with the surface under mechanical stress at its edges. It starts fabricating a spherical surface using ZERODUR® optical glass with the conventional polishing method, the surface is deformed by applying tension and/or compression at the surface edges using a specially designed mechanical mount. To know the necessary deformation, the interferogram of the deformed surface is analyzed in real time with a ZYGO® Mark II Fizeau type interferometer, the mechanical stress is applied until obtain the inverse interferogram associated to the off-axis surface that we need to fabricate. Polishing process is carried out again until obtain a spherical surface, then mechanical stress in the edges are removed and compares the actual interferogram with the theoretical associated to the off-axis surface. To analyze the resulting interferograms of the surface we used the phase shifting analysis method by using a piezoelectric phase-shifter and Durango® interferometry software from Diffraction International™.
Transverse load sensor based on Mach-Zehnder interferometer constructed by a bowknot type taper
NASA Astrophysics Data System (ADS)
Lou, Weimin; Shentu, Fengying; Wang, Youqing; Shen, Changyu; Dong, Xinyong
2018-01-01
A transverse load fiber sensor based on Mach-Zehnder interferometer constructed by a Bowknot-type taper between a single mode fiber (SMF) and a polarization maintaining fiber (PMF) was proposed. Due to the polarization maintaining fiber's birefringence, intensities of the two peaks which are corresponding to the fast and slow axis modes changed with the transverse load applied on the PMF. The experimental results showed that the structure with a 2 cm-long PMF has the sensitivities of 104.52 and -102.94 dB/(N/mm) for the fast and slow axis spectral dip wavelengths of 1485 and 1545 nm in the interference pattern, respectively, which are almost 7 times higher than that of the current similar existing transverse load sensor.
Compensating the intensity fall-off effect in cone-beam tomography by an empirical weight formula.
Chen, Zikuan; Calhoun, Vince D; Chang, Shengjiang
2008-11-10
The Feldkamp-David-Kress (FDK) algorithm is widely adopted for cone-beam reconstruction due to its one-dimensional filtered backprojection structure and parallel implementation. In a reconstruction volume, the conspicuous cone-beam artifact manifests as intensity fall-off along the longitudinal direction (the gantry rotation axis). This effect is inherent to circular cone-beam tomography due to the fact that a cone-beam dataset acquired from circular scanning fails to meet the data sufficiency condition for volume reconstruction. Upon observations of the intensity fall-off phenomenon associated with the FDK reconstruction of a ball phantom, we propose an empirical weight formula to compensate for the fall-off degradation. Specifically, a reciprocal cosine can be used to compensate the voxel values along longitudinal direction during three-dimensional backprojection reconstruction, in particular for boosting the values of voxels at positions with large cone angles. The intensity degradation within the z plane, albeit insignificant, can also be compensated by using the same weight formula through a parameter for radial distance dependence. Computer simulations and phantom experiments are presented to demonstrate the compensation effectiveness of the fall-off effect inherent in circular cone-beam tomography.
Astronomical Near-neighbor Detection with a Four-quadrant Phase Mask (FQPM) Coronagraph
NASA Technical Reports Server (NTRS)
Haguenauer, Pierre; Serabyn, Eugene; Mennesson, Bertrand; Wallace, James K.; Gappinger, Robert O.; Troy, Mitchell; Bloemhof, Eric E.; Moore, Jim; Koresko, Chris D.
2006-01-01
Direct detection of planets around nearby stars requires the development of high-contrast imaging techniques, because of their very different respective fluxes. We thus investigated the innovative coronagraphic approach based on the use of a four-quadrant phase mask (FQPM). Simulations showed that, combined with high-level wavefront correction on an unobscured off-axis section of a large telescope, this method allows high-contrast imaging very close to stars, with detection capability superior to that of a traditional coronagraph. A FQPM instrument was thus built to test the feasibility of near-neighbor observations with our new off-axis approach on a ground-based telescope. In June 2005, we deployed our instrument to the Palomar 200-inch telescope, using existing facilities as much as possible for rapid implementation. In these initial observations, using data processing techniques specific to FQPM coronagraphs, we reached extinction levels of the order of 200:1. Here we discuss our simulations and on-sky results obtained so far.
NASA Astrophysics Data System (ADS)
Song, Dongsheng; Li, Zi-An; Caron, Jan; Kovács, András; Tian, Huanfang; Jin, Chiming; Du, Haifeng; Tian, Mingliang; Li, Jianqi; Zhu, Jing; Dunin-Borkowski, Rafal E.
2018-04-01
Whereas theoretical investigations have revealed the significant influence of magnetic surface and edge states on Skyrmonic spin texture in chiral magnets, experimental studies of such chiral states remain elusive. Here, we study chiral edge states in an FeGe nanostripe experimentally using off-axis electron holography. Our results reveal the magnetic-field-driven formation of chiral edge states and their penetration lengths at 95 and 240 K. We determine values of saturation magnetization MS by analyzing the projected in-plane magnetization distributions of helices and Skyrmions. Values of MS inferred for Skyrmions are lower by a few percent than those for helices. We attribute this difference to the presence of chiral surface states, which are predicted theoretically in a three-dimensional Skyrmion model. Our experiments provide direct quantitative measurements of magnetic chiral boundary states and highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.
X-ray beam transfer between hollow fibers for long-distance transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Yoshihito, E-mail: tanaka@sci.u-hyogo.ac.jp; Matsushita, Ryuki; Shiraishi, Ryutaro
2016-07-27
Fiber optics for controlling the x-ray beam trajectory has been examined at the synchrotron facility of SPring-8. Up to now, we have achieved beam deflection by several tens of milli-radian and axis shift of around 75 mm with a 1.5 m-long flexible hollow glass capillary. The achievable beam deflecting angle, axis shift, and timing delay are, in principle, proportional to the length, the square of length and the cube of length, respectively. Thus, for further applications, requiring larger beam shift and pulse delay, longer fibers are indispensable. In order to achieve long-distance transport using the fiber, we thus examined themore » connection transferring x-rays between fibers in an experimental hutch. The acceptance angle at the input end and the throughput efficiency of the second fiber is consistent with the consideration of the output beam divergence of the first fiber. The enhancement of the transfer efficiency is also discussed for the cases of a closer joint and the use of a refractive lens as a coupler.« less
Material removal rate fiber optic corrosion sensor
NASA Astrophysics Data System (ADS)
Trego, Angela; Haugse, Eric D.; Udd, Eric
1998-09-01
Fiber Bragg grating sensors generally consist of a single grating written in a low-birefringent optical fiber. The wavelength shift of the peak in the reflected spectrum from these sensors can be used to measure a single component of strain or a change in temperature [Lawrence, 1997]. Fibers are also available with a significant enough birefringence to maintain the polarization state along great lengths and through many turns. This 'polarization maintaining' fiber is commercially available through several companies and in several configurations (including different cladding material and wavelength shift). The grating usually extends approximately 3 mm - 5 m in length. Udd gives a detailed explanation of fiber optics, Bragg gratings and birefringence [Udd, 1991]. As light from an LED is passed through the fiber, only the wavelength consistent with the grating period will be reflected back towards the source. All other wavelengths will pass through. The reflected spectrum will shift as the fiber is strained along its axis at the grating location. Strain or temperature changes at any other location have negligible effect on the wavelength encoded data output. When the Fiber Bragg grating single-axis sensor (termed fiber hereafter) is strained transversely the wavelength will separate into two distinct peaks according to a mathematical relationship defined by Lawrence and Nelson [Lawrence, Nelson et al. 96]. Using these Fiber Bragg grating fibers a corrosion sensor which measures the rate of material was developed. The principle behind this newly developed corrosion sensor is to pre-stress the fiber with a known load. The load is applied by inducing a uniform hoop stress through pressure fitted cylinders around the fiber. This induced stress creates a broadening of the reflected spectrum until the bifurcation of the reflected intensity peaks is distinguishable. As the material from the outer cylinder corrodes away the applied stress will be relieved. Finally, when no load is achieved, the reflected spectrum will have a single peak centered around the nominal Bragg grating wavelength. If a polarizing-maintaining 3-axis grating is used then the sensor would be even more sensitive, having two distinct peaks in each wavelength regime which shift.
Fracture resistance of simulated immature teeth after different intra-radicular treatments.
Sivieri-Araujo, Gustavo; Tanomaru-Filho, Mario; Guerreiro-Tanomaru, Juliane Maria; Bortoluzzi, Eduardo Antunes; Jorge, Érica Gouveia; Reis, José Maurício Dos Santos Nunes
2015-01-01
The aim of this study was to evaluate the fracture resistance of simulated immature teeth after different intra-radicular treatments. Crowns and roots of bovine incisors were cut transversally and removed to simulate immature teeth. Root canal preparation and flaring were performed using a bur in crown-apex and apex-crown direction. The samples were distributed into 5 groups (n=10): Positive control (PoC) - no root canal flaring or filling; Negative control (NeC) - teeth were sectioned and their root canals were flared; Direct anatomical glass fiber post (RaP) - #2 Reforpost main glass fiber post relined with composite resin; Double tapered conical glass fiber posts (ExP) - #3 Exacto glass fiber post; and #2 Reforpost main glass fiber + Reforpin accessory glass fiber posts (RrP). In RaP, ExP and RrP, 4.0-mm apical plugs were done with MTA Angelus. The specimens were embedded in polystyrene resin inside cylinders and the periodontal ligament was simulated with a polyether-based impression material. The specimens were submitted to compressive fracture strength test (0.5 mm/min at 135° relative to the long axis of the tooth) in a servo-hydraulic mechanical testing machine MTS 810. Data were subjected to one-way ANOVA and Dunnett's C or Tukey's tests (α=0.05). The control groups (PoC and NeC) showed lower fracture strength than the experimental groups. NeC presented the lowest resistance and ExP presented the highest resistance among the experimental groups. The flaring procedures produced a detrimental effect on the fracture resistance of the bovine teeth. Glass fiber intra-radicular posts increased significantly the fracture resistance of simulated immature teeth.
Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust
NASA Astrophysics Data System (ADS)
Farahat, Navah X.; Archer, David; Abbot, Dorian S.
2017-08-01
Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.
Optical spectral sweep comb liquid flow rate sensor.
Shen, Changyu; Lian, Xiaokang; Kavungal, Vishnu; Zhong, Chuan; Liu, Dejun; Semenova, Yuliya; Farrell, Gerald; Albert, Jacques; Donegan, John F
2018-02-15
In microfluidic chip applications, the flow rate plays an important role. Here we propose a simple liquid flow rate sensor by using a tilted fiber Bragg grating (TFBG) as the sensing element. As the water flows in the vicinity of the TFBG along the fiber axis direction, the TFBG's spectrum changes due to its contact with water. By comparing the time-swept spectra of the TFBG in water to that of the TFBG with water flowing over it, a spectral sweep comb was formed, and the flow rate can be detected by selecting a suitable sweeping frequency. The proposed sensor has a high Q-value of over 17,000 for the lower rate and a large detectable range from 0.0058 mm/s to 3.2 mm/s. And the calculated corresponding lower detectable flow rate of 0.03 nL/s is 3 orders magnitude better than that of the current fiber flowmeter. Meanwhile, the proposed sensor has the temperature self-compensation function for the variation of the external temperature. We believe that this simple configuration will open a research direction of the TFBG-deriving theory and configuration for lower flow rate measurements for microfluidic chip applications.
NASA Technical Reports Server (NTRS)
Dhadwal, Harbans S. (Inventor)
1992-01-01
A system for determining the physical properties of materials through the use of dynamic light scattering is disclosed. The system includes a probe, a laser source for directing a laser beam into the probe, and a photodetector for converting scattered light detected by the probe into electrical signals. The probe includes at least one optical fiber connected to the laser source and a second optical fiber connected to the photodetector. Each of the fibers may adjoin a gradient index microlens which is capable of providing a collimated laser beam into a scattering medium. The position of the second optical fiber with respect to the optical axis of the probe determines whether homodyne or self-beating detection is provided. Self-beating detection may be provided without a gradient index microlens. This allows a very small probe to be constructed which is insertable through a hypodermic needle or the like into a droplet extending from such a needle. A method of detecting scattered light through the use of a collimated, Gaussian laser beam is also provided. A method for controlling the waist and divergence of the optical field emanating from the free end of an optical fiber is also provided.
Feng, Yuan; Okamoto, Ruth J.; Namani, Ravi; Genin, Guy M.; Bayly, Philip V.
2013-01-01
White matter in the brain is structurally anisotropic, consisting largely of bundles of aligned, myelin-sheathed axonal fibers. White matter is believed to be mechanically anisotropic as well. Specifically, transverse isotropy is expected locally, with the plane of isotropy normal to the local mean fiber direction. Suitable material models involve strain energy density functions that depend on the I4 and I5 pseudo-invariants of the Cauchy–Green strain tensor to account for the effects of relatively stiff fibers. The pseudo-invariant I4 is the square of the stretch ratio in the fiber direction; I5 contains contributions of shear strain in planes parallel to the fiber axis. Most, if not all, published models of white matter depend on I4 but not on I5. Here, we explore the small strain limits of these models in the context of experimental measurements that probe these dependencies. Models in which strain energy depends on I4 but not I5 can capture differences in Young’s (tensile) moduli, but will not exhibit differences in shear moduli for loading parallel and normal to the mean direction of axons. We show experimentally, using a combination of shear and asymmetric indentation tests, that white matter does exhibit such differences in both tensile and shear moduli. Indentation tests were interpreted through inverse fitting of finite element models in the limit of small strains. Results highlight that: (1) hyperelastic models of transversely isotropic tissues such as white matter should include contributions of both the I4 and I5 strain pseudo-invariants; and (2) behavior in the small strain regime can usefully guide the choice and initial parameterization of more general material models of white matter. PMID:23680651
Compression-induced texture change in NiMnGa-polymer composites observed by synchrotron radiation
NASA Astrophysics Data System (ADS)
Scheerbaum, Nils; Hinz, Dietrich; Gutfleisch, Oliver; Skrotzki, Werner; Schultz, Ludwig
2007-05-01
Composites consisting of magnetic shape memory (MSM) particles embedded in a polyester matrix were prepared. Single-crystalline MSM particles were obtained by mortar grinding of melt-extracted and subsequently annealed Ni50.9Mn27.1Ga22.0 (at. %) fibers. The crystal structure of the martensite is tetragonal (5M) with c
Prompt and Afterglow Emission from Short GRB Cocoons
NASA Astrophysics Data System (ADS)
Morsony, Brian; Lazzati, Davide; López-Cámara, Diego; Workman, Jared; Moskal, Jeremiah; Cantiello, Matteo; Perna, Rosalba
2018-01-01
We present simulations of short GRB jets that create a wide cocoon of mildly relativistic material surrounding the narrow, highly relativistic jet. We model the prompt and afterglow emission from the jet and cocoon at a range of observer angles relative to the jet axis. Even far off axis, prompt X-ray and gamma-ray emission from the cocoon may be detectable by FERMI GBM out to several 10’s of Mpc. Afterglow emission off-axis is dominated by cocoon material at early times (hours - days). The afterglow should be detectable at a wide range of frequencies (radio, optical, X-ray) for a large fraction of off-axis short GRBs within 200 Mpc, the detection range of aLIGO at design sensitivity. Given recent events, cocoon emission may be very important in the future for localizing LIGO-detected neutron star mergers.
Zhang, Mingjun; Chen, Genyu; Zhou, Yu; Li, Shichun
2013-08-26
Keyhole formation is a prerequisite for deep penetration laser welding. Understanding of the keyhole dynamics is essential to improve the stability of the keyhole. Direct observation of the keyhole during deep penetration laser welding of a modified "sandwich" specimen with a 10 kW fiber laser is presented. A distinct keyhole wall and liquid motion along the wall are observed directly for the first time. The moving liquid "shelf" on the front keyhole wall and the accompanying hydrodynamic and vapor phenomena are observed simultaneously. Micro-droplets torn off the keyhole wall and the resultant bursts of vapor are also visualized. The hydrodynamics on the keyhole wall has a dominant effect on the weld defects. The emission spectrum inside the keyhole is captured accurately using a spectrometer to calculate the characteristics of the keyhole plasma plume.
Extreme Ultraviolet Solar Images Televised In-Flight with a Rocket-Borne SEC Vidicon System.
Tousey, R; Limansky, I
1972-05-01
A TV image of the entire sun while an importance 2N solar flare was in progress was recorded in the extreme ultraviolet (XUV) radiation band 171-630 A and transmitted to ground from an Aerobee-150 rocket on 4 November 1969 using S-band telemetry. The camera tube was a Westinghouse Electric Corporation SEC vidicon, with its fiber optic faceplate coated with an XUV to visible conversion layer of p-quaterphenyl. The XUV passband was produced by three 1000-A thick aluminum filters in series together with the platinized reflecting surface of the off-axis paraboloid that imaged the sun. A number of images were recorded with integration times between 1/30 see and 2 sec. Reconstruction of pictures was enhanced by combining several to reduce the noise.
Eddy Current Rail Inspection Using AC Bridge Techniques.
Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng
2013-01-01
AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method.
NASA Astrophysics Data System (ADS)
Briais, Anne; Barrère, Fabienne; Boulart, Cédric; Ceuleneer, Georges; Ferreira, Nicolas; Hanan, Barry; Hémond, Christophe; Macleod, Sarah; Maia, Marcia; Maillard, Agnès; Merkuryev, Sergey; Park, Sung-Hyun; Révillon, Sidonie; Ruellan, Etienne; Schohn, Alexandre; Watson, Sally; Yang, Yun-Seok
2016-04-01
We present observations of the South-East Indian Ridge (SEIR) collected during the STORM cruise (South Tasmania Ocean Ridge and Mantle) on the N/O L'Atalante early 2015. The SEIR between Australia and Antarctica displays large variations of axial morphology despite an almost constant intermediate spreading rate. The Australia-Antarctic Discordance (AAD) between 120°E and 128°E is a section of the mid-ocean ridge where the magma budget is abnormally low, and which marks the boundary between Indian and Pacific mantle domains with distinct geochemical isotopic compositions. The STORM project focuses on the area east of the discordance from 128 to 140°E, where gravity highs observed on satellite-derived maps of the flanks of the SEIR reveal numerous volcanic seamounts. A major objective of the STORM cruise was to test the hypothesis of a mantle flow from the Pacific to the Indian domains. We collected multibeam bathymetry and magnetic data between 136 and 138°E to map off-axis volcanic ridges up to 10 Ma-old crust. We mapped the SEIR axis between 129 and 140°E, and the northern part of the George V transform fault. We collected rock samples on seamounts and in the transform fault, basaltic glass samples along the ridge axis, and near-bottom samples and in-situ measurements in the water column. Our observations reveal that the off-axis seamounts form near the SEIR axis, are not associated to off-axis deformation of the ocean floor, and are often located near the traces of ridge axis discontinuities. We also observe a general shallowing of the ridge axis from the AAD to the George V TF and the presence of robust axial segments near the transform fault. Our new data allow us to describe the complex evolution of the transform fault system. They also permit to locate new hydrothermal systems along the ridge axis.
Low-NA fiber laser pumps powered by high-brightness single emitters
NASA Astrophysics Data System (ADS)
Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya
2015-03-01
Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed high-brightness NEON multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber enabling low-NA power delivery to a customer's fiber laser network. Brightness-enhanced single emitters are engineered with ultra-low divergence for compatibility with the low-NA delivery fiber, with the latest emitters delivering 14 W with 95% of the slow-axis energy contained within an NA of 0.09. The reduced slow-axis divergence is achieved with an optimized epitaxial design, where the peak optical intensity is reduced to both lessen filamentation within the laser cavity and reduce the power density on the output facet thus increasing the emitter reliability. The low mode filling of the fiber allows it to be coiled with diameters down to 70 mm at full operating power despite the small NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules. 50W fiber pump products at 915, 950 and 975 nm wavelengths are presented, including a wavelengthstabilized version at 976 nm.
Cross-fiber Bragg grating transducer
NASA Technical Reports Server (NTRS)
Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)
2000-01-01
A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.
Petermann, Holger; Sander, Martin
2013-04-01
Since the 19th century, identification of muscle attachment sites on bones has been important for muscle reconstructions, especially in fossil tetrapods, and therefore has been the subject of numerous biological and paleontological studies. At the microscopic level, in histological thin sections, the only features that can be used reliably for identifying tendon-bone or muscle-tendon-bone interactions are Sharpey's fibers. Muscles, however, do not only attach to the bone indirectly with tendons, but also directly. Previous studies failed to provide new indicators for muscle attachment, or to address the question of whether muscles with direct attachment can be identified histologically. However, histological identification of direct muscle attachments is important because these attachments do not leave visible marks (e.g. scars and rugosities) on the bone surface. We dissected the right hind limb and mapped the muscle attachment sites on the femur of one rabbit (Oryctolagus cuniculus), one Alligator mississippiensis, and one turkey (Meleagris cuniculus). We then extracted the femur and prepared four histological thin sections for the rabbit and the turkey and five histological thin sections for the alligator. Sharpey's fibers, vascular canal orientation, and a frayed periosteal margin can be indicators for indirect but also direct muscle attachment. Sharpey's fibers can be oriented to the cutting plane of the thin section at high angles, and two Sharpey's fibers orientations can occur in one area, possibly indicating a secondary force axis. However, only about 60% of mapped muscle attachment sites could be detected in thin sections, and frequently histological features suggestive of muscle attachment occurred outside mapped sites. While these insights should improve our ability to successfully identify and reconstruct muscles in extinct species, they also show the limitations of this approach. © 2013 The Authors Journal of Anatomy © 2013 Anatomical Society.
Petermann, Holger; Sander, Martin
2013-01-01
Since the 19th century, identification of muscle attachment sites on bones has been important for muscle reconstructions, especially in fossil tetrapods, and therefore has been the subject of numerous biological and paleontological studies. At the microscopic level, in histological thin sections, the only features that can be used reliably for identifying tendon–bone or muscle–tendon-bone interactions are Sharpey's fibers. Muscles, however, do not only attach to the bone indirectly with tendons, but also directly. Previous studies failed to provide new indicators for muscle attachment, or to address the question of whether muscles with direct attachment can be identified histologically. However, histological identification of direct muscle attachments is important because these attachments do not leave visible marks (e.g. scars and rugosities) on the bone surface. We dissected the right hind limb and mapped the muscle attachment sites on the femur of one rabbit (Oryctolagus cuniculus), one Alligator mississippiensis, and one turkey (Meleagris cuniculus). We then extracted the femur and prepared four histological thin sections for the rabbit and the turkey and five histological thin sections for the alligator. Sharpey's fibers, vascular canal orientation, and a frayed periosteal margin can be indicators for indirect but also direct muscle attachment. Sharpey's fibers can be oriented to the cutting plane of the thin section at high angles, and two Sharpey's fibers orientations can occur in one area, possibly indicating a secondary force axis. However, only about 60% of mapped muscle attachment sites could be detected in thin sections, and frequently histological features suggestive of muscle attachment occurred outside mapped sites. While these insights should improve our ability to successfully identify and reconstruct muscles in extinct species, they also show the limitations of this approach. PMID:23439026
Direct emission of chirality controllable femtosecond LG01 vortex beam
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, S.; Yang, H.; Xie, J.; Jiang, S.; Feng, G.; Zhou, S.
2018-05-01
Direct emission of a chirality controllable ultrafast LG01 mode vortex optical beam from a conventional z-type cavity design SESAM (SEmiconductor Saturable Absorber Mirror) mode locked LD pumped Yb:Phosphate laser has been demonstrated. A clean 360 fs vortex beam of ˜45.7 mW output power has been achieved. A radial shear interferometer has been built to determine the phase singularity and the wavefront helicity of the ultrafast output laser. Theoretically, it is found that the LG01 vortex beam is obtained via the combination effect of diagonal HG10 mode generation by off-axis pumping and the controllable Gouy phase difference between HG10 and HG01 modes in the sagittal and tangential planes. The chirality of the LG01 mode can be manipulated by the pump position to the original point of the laser cavity optical axis.
NASA Astrophysics Data System (ADS)
Li, Jia; Shen, Hua; Zhu, Rihong; Gao, Jinming; Sun, Yue; Wang, Jinsong; Li, Bo
2018-06-01
The precision of the measurements of aspheric and freeform surfaces remains the primary factor restrict their manufacture and application. One effective means of measuring such surfaces involves using reference or probe beams with angle modulation, such as tilted-wave-interferometer (TWI). It is necessary to improve the measurement efficiency by obtaining the optimum point source array for different pieces before TWI measurements. For purpose of forming a point source array based on the gradients of different surfaces under test, we established a mathematical model describing the relationship between the point source array and the test surface. However, the optimal point sources are irregularly distributed. In order to achieve a flexible point source array according to the gradient of test surface, a novel interference setup using fiber array is proposed in which every point source can be independently controlled on and off. Simulations and the actual measurement examples of two different surfaces are given in this paper to verify the mathematical model. Finally, we performed an experiment of testing an off-axis ellipsoidal surface that proved the validity of the proposed interference system.
Bourdin, C; Bock, O
2006-11-20
The ability of our sensorimotor system to adapt to changing and complex environmental demands has been under experimental scrutiny for more than a century. Previous works have shown that aimed arm movements adapt quickly and completely to Coriolis force, but incompletely to the combination of Coriolis and centrifugal forces without visual cues. Two hypotheses may be advanced to explain this discrepancy: the workspace-exploration hypothesis, and the degraded-proprioception hypothesis. The aim of this study was to distinguish between the above two alternatives by comparing adaptive improvement during off-axis rotation in subjects pointing at one, three or seven different targets in complete darkness. Two main results emerge: (a) off-axis rotation led initially to errors in the direction of Coriolis force and in the opposite direction of the centrifugal force; (b) the size of the visited workspace has no effect on the way the subjects adapt to a multi-force environment. The lack of a target-number effect and the persistence of lateral errors in the pointing movements performed during rotation of the platform, support the degraded-proprioception rather than the workspace-exploration hypothesis of adaptation to a multi-force environment.
Morphology of the core fibrous layer of the cetacean tail fluke.
Gough, William T; Fish, Frank E; Wainwright, Dylan K; Bart-Smith, Hilary
2018-06-01
The cetacean tail fluke blades are not supported by any vertebral elements. Instead, the majority of the blades are composed of a densely packed collagenous fiber matrix known as the core layer. Fluke blades from six species of odontocete cetaceans were examined to compare the morphology and orientation of fibers at different locations along the spanwise and chordwise fluke blade axes. The general fiber morphology was consistent with a three-dimensional structure comprised of two-dimensional sheets of fibers aligned tightly in a laminated configuration along the spanwise axis. The laminated configuration of the fluke blades helps to maintain spanwise rigidity while allowing partial flexibility during swimming. When viewing the chordwise sectional face at the leading edge and mid-chord regions, fibers displayed a crossing pattern. This configuration relates to bending and structural support of the fluke blade. The trailing edge core was found to have parallel fibers arranged more dorso-ventrally. The fiber morphology of the fluke blades was dorso-ventrally symmetrical and similar in all species except the pygmy sperm whale (Kogia breviceps), which was found to have additional core layer fiber bundles running along the span of the fluke blade. These additional fibers may increase stiffness of the structure by resisting tension along their long spanwise axis. © 2018 Wiley Periodicals, Inc.
1984-12-01
radiation lengths. The off-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured using thermal luminescent...various path lengths out to 2 radiation lengths. The cff-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured... using thermal luminescent dosimeters (TLD’s). Calculations were performed on a CDC-7600 computer at Los Alamos National Laboratory and measurements
Pulsed ultrasonic stir welding method
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2013-01-01
A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.
Second harmonic generation of off axial vortex beam in the case of walk-off effect
NASA Astrophysics Data System (ADS)
Chen, Shunyi; Ding, Panfeng; Pu, Jixiong
2016-07-01
Process of off axial vortex beam propagating in negative uniaxial crystal is investigated in this work. Firstly, we get the formulae of the normalized electric field and calculate the location of vortices for second harmonic beam in two type of phase matching. Then, numerical analysis verifies that the intensity distribution and location of vortices of the first order original vortex beam depend on the walk-off angle and off axial magnitude. It is shown that, in type I phase matching, the distribution of vortices is symmetrical about the horizontal axis, the separation distance increases as the off axial magnitude increases or the off axial magnitude deceases. However, in type II phase matching, the vortices are symmetrical along with some vertical axis, and increase of the walk-off angle or off axial magnitude leads to larger separation distance. Finally, the case of high order original off axial vortex beam is also investigated.
Saito, Kenta; Arai, Yoshiyuki; Zhang, Jize; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu
2011-01-01
Laser-scanning confocal microscopy has been employed for exploring structures at subcellular, cellular and tissue level in three dimensions. To acquire the confocal image, a coherent light source, such as laser, is generally required in conventional single-point scanning microscopy. The illuminating beam must be focused onto a small spot with diffraction-limited size, and this determines the spatial resolution of the microscopy system. In contrast, multipoint scanning confocal microscopy using a Nipkow disk enables the use of an incoherent light source. We previously demonstrated successful application of a 100 W mercury arc lamp as a light source for the Yokogawa confocal scanner unit in which a microlens array was coupled with a Nipkow disk to focus the collimated incident light onto a pinhole (Saito et al., Cell Struct. Funct., 33: 133-141, 2008). However, transmission efficiency of incident light through the pinhole array was low because off-axis light, the major component of the incident light, was blocked by the non-aperture area of the disk. To improve transmission efficiency, we propose an optical system in which off-axis light is able to be transmitted through pinholes surrounding the pinhole located on the optical axis of the collimator lens. This optical system facilitates the use of not only the on-axis but also the off-axis light such that the available incident light is considerably improved. As a result, we apply the proposed system to high-speed confocal and multicolor imaging both with a satisfactory signal-to-noise ratio.
The food-gut human axis: the effects of diet on gut microbiota and metabolome.
De Angelis, Maria; Garruti, Gabriella; Minervini, Fabio; Bonfrate, Leonilde; Portincasa, Piero; Gobbetti, Marco
2017-04-27
Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influences the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
OFF-AXIS THERMAL AND SYNCHROTRON EMISSION FOR SHORT GAMMA RAY BURST
NASA Astrophysics Data System (ADS)
Xie, Xiaoyi
2018-01-01
We present light curves of photospheric and synchrotron emission from a relativistic jet propagating through the ejecta cloud of a neutron star merger. We use a moving-mesh relativistic hydrodynamics code with adaptive mesh refinement to compute the continuous evolution of jet over 13 orders of magnitude in radius from the scale of the central merger engine all the way through the late afterglow phase. As the jet propagates through the cloud it forms a hot cocoon surrounding the jet core. We find that the photospheric emission released by the hot cocoon is bright for on-axis observers and is detectable for off-axis observers at a wide range of observing angles for sufficiently close sources. As the jet and cocoon drive an external shock into the surrounding medium we compute synchrotron light curves and find bright emission for off-axis observers which differs from top-hat Blandford-McKee jets, especially for lower explosion energies.
Orbital Verification of the CXO High-Resolution Mirror Assembly Alignment and Vignetting
NASA Technical Reports Server (NTRS)
Gaetz, T. J.; Jerius, D.; Edgar, R. J.; VanSpeybroeck, L. P.; Schwartz, D. A.; Markevitch, M.; Schulz, N. S.
2000-01-01
Prior to launch, the High Resolution Mirror Assembly (HRMA) of the Chandra X-ray Observatory underwent extensive ground testing at the X-ray Calibration Facility (XRCF) at the Marshall Space Flight Center in Huntsville. Observations made during the post-launch Orbital Activation and Calibration period, allow the on-orbit condition of the X-ray optics to be assessed. Based on these ground-based and on-orbit data, we examine the alignment of the x-ray optics based on the PSF, and the boresight and alignment of the optical axis alignment relative to the detectors. We examine the vignetting and the single reflection ghost suppression properties of the telescope. Slight imperfections in alignment lead to a small azimuthal dependence of the off-axis area; the morphology of off-axis images also shows an additional small azimuthal dependence varying as 1/2 the off-axis azimuth angle.
Design and Characterization of a Three-Axis Hall Effect-Based Soft Skin Sensor
Tomo, Tito Pradhono; Somlor, Sophon; Schmitz, Alexander; Jamone, Lorenzo; Huang, Weijie; Kristanto, Harris; Sugano, Shigeki
2016-01-01
This paper presents an easy means to produce a 3-axis Hall effect–based skin sensor for robotic applications. It uses an off-the-shelf chip and is physically small and provides digital output. Furthermore, the sensor has a soft exterior for safe interactions with the environment; in particular it uses soft silicone with about an 8 mm thickness. Tests were performed to evaluate the drift due to temperature changes, and a compensation using the integral temperature sensor was implemented. Furthermore, the hysteresis and the crosstalk between the 3-axis measurements were evaluated. The sensor is able to detect minimal forces of about 1 gf. The sensor was calibrated and results with total forces up to 1450 gf in the normal and tangential directions of the sensor are presented. The test revealed that the sensor is able to measure the different components of the force vector. PMID:27070604
Design and Characterization of a Three-Axis Hall Effect-Based Soft Skin Sensor.
Tomo, Tito Pradhono; Somlor, Sophon; Schmitz, Alexander; Jamone, Lorenzo; Huang, Weijie; Kristanto, Harris; Sugano, Shigeki
2016-04-07
This paper presents an easy means to produce a 3-axis Hall effect-based skin sensor for robotic applications. It uses an off-the-shelf chip and is physically small and provides digital output. Furthermore, the sensor has a soft exterior for safe interactions with the environment; in particular it uses soft silicone with about an 8 mm thickness. Tests were performed to evaluate the drift due to temperature changes, and a compensation using the integral temperature sensor was implemented. Furthermore, the hysteresis and the crosstalk between the 3-axis measurements were evaluated. The sensor is able to detect minimal forces of about 1 gf. The sensor was calibrated and results with total forces up to 1450 gf in the normal and tangential directions of the sensor are presented. The test revealed that the sensor is able to measure the different components of the force vector.
Shaping off-axis metallic membrane reflectors using optimal boundary shapes and inelastic strains
NASA Technical Reports Server (NTRS)
White, C. V.; Dragovan, M.
2004-01-01
This paper will describe a novel concept for constructing off-axis membrane reflector surfaces. Membrane reflectors have been extensively studied, including investigations into inflated lenticular architectures, shaping by spin casting, shaping using electrostatic forces, and shaping by evacuating behind a membrane surface stretched between circular or annular-shaped supports.
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Lindsay, Sean S.
2011-01-01
Crystalline silicates in comets are a product of the condensation in the hot inner regions (T > or approx. equals 1400 K [1]) of our proto-planetary disk or annealing at somewhat lower temperatures (T > or approx. equals 1000-1200 K) [2, 3, 4] in shocks coupled with disk evolutionary processes that include radial transport of crystals from their formation locations out to the cold outer regions where comet nuclei formed. The grain shape of forsterite (crystals) could be indicative of their formation pathways at high temperatures through vapor-solid condensation or at lower temperatures through vapor-liquid-solid formation and growth [5, 6, 7]. Experiments demonstrate that crystals that formed from a rapidly cooled highly supersaturated silicate vapor are characterized by bulky, platy, columnar/needle and droplet shapes for values of temperature and supersaturation, T and sigma, of 1000-1450 C and < 97, 700-1000 C and 97-161, 580-820 C and 131-230, and <500 C and > 230, respectively [7]. The experimental columnar/needle shapes, which form by vapor-liquid-solid at lower temperatures (<820 C), are extended stacks of plates, where the extension is not correlated with an axial direction: columnar/needles may be extended in the c-axis or a-axis direction, can change directions, and/or are off-kilter or a bit askew extending in a combination of the a- and c-axis direction.
Phononic band gap and mechanical anisotropy in spider silk
NASA Astrophysics Data System (ADS)
Papadopoulos, Periklis; Gomopoulos, Nikos; Kremer, Friedrich; Fytas, George
2010-03-01
Spider dragline silk is a semi-crystalline biopolymer exhibiting superior properties compared to synthetic polymers with similar chemical structure, such as polyamides. This is ascribed to the hierarchical nanostructure that is created in the spinning duct. During this process the aqueous solution of the two protein constituents of dragline silk is crystallized, while the macromolecules maintain their high orientation, leading to a high value of the Young's modulus (in the order of 10 GPa) along the fiber. We employed spontaneous Brillouin light scattering to measure the longitudinal modulus (M//,,M) along the two symmetry directions of the native fiber with increased (decreased) pre-strain created by stretching (supercontracting after hydration). A strong mechanical anisotropy is found; at about 18% strain M///M˜5. Most important, an unexpected finding is the first observation of a unidirectional hypersonic phononic band gap in biological structures. This relates to the existence of a strain-dependent correlation length of the mechanical modulus in the submicron range along the fiber axis.
Tsai, Liang-Ching; Lee, Song Joo; Yang, Aaron J.; Ren, Yupeng; Press, Joel M.; Zhang, Li-Qun
2014-01-01
Objective To examine whether an off-axis elliptical training program reduces pain and improves knee function in individuals with patellofemoral pain (PFP). Design Controlled laboratory study, pre-test-post-test. Setting University rehabilitation center. Participants Twelve adult subjects with PFP. Interventions Subjects with PFP completed an exercise program consisting of 18 sessions of lower extremity off-axis training using a custom-made elliptical trainer that allows frontal-plane sliding and transverse-plane pivoting of the footplates. Main Outcome Measures Changes in knee pain and function post-training and 6 weeks following training were evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) scores. Lower extremity off-axis control was assessed by pivoting and sliding instability, calculated as the root mean square (RMS) of the footplate pivoting angle and sliding distance during elliptical exercise. Subjects’ single-leg hop distance and proprioception in detecting lower extremity pivoting motion were also evaluated. Results Subjects reported significantly greater KOOS and IKDC scores (increased by 12–18 points) and hop distance (increased by 0.2 m) following training. A significant decrease in the pivoting and sliding RMS was also observed following training. Additionally, subjects with PFP demonstrated improved pivoting proprioception when tested under a minimum-weight-bearing position. Conclusions An off-axis elliptical training program was effective in enhancing lower extremity neuromuscular control on the frontal and transverse planes, reducing pain and improving knee function in persons with PFP. PMID:25591131
IR Spectrometer Using 90-Degree Off-Axis Parabolic Mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert M. Malone, Ian J. McKenna
2008-03-01
A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light Source at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolicmore » mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement single-point pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.« less
IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan
2008-09-02
A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the secondmore » parabolic mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.« less
Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons
NASA Technical Reports Server (NTRS)
Dickman, J. D.
1996-01-01
Rotational head motion in vertebrates is detected by the semicircular canal system, whose innervating primary afferent fibers carry information about movement in specific head planes. The semicircular canals have been qualitatively examined over a number of years, and the canal planes have been quantitatively characterized in several animal species. The present study first determined the geometric relationship between individual semicircular canals and between the canals and the stereotactic head planes in pigeons. Stereotactic measurements of multiple points along the circumference of the bony canals were taken, and the measured points fitted with a three-dimensional planar surface. Direction normals to the plane's surface were calculated and used to define angles between semicircular canal pairs. Because of the unusual shape of the anterior semicircular canals in pigeons, two planes, a major and a minor, were fitted to the canal's course. Calculated angle values for all canals indicated that the horizontal and posterior semicircular canals are nearly orthogonal, but the anterior canals have substantial deviations from orthogonality with other canal planes. Next, the responses of the afferent fibers that innervate each of the semicircular canals to 0.5 Hz sinusoidal rotation about an earth-vertical axis were obtained. The head orientation relative to the rotation axis was systematically varied so that directions of maximum sensitivity for each canal afferent could be determined. These sensitivity vectors were then compared with the canal plane direction normals. The afferents that innervated specific semicircular canals formed homogeneous clusters of sensitivity vectors in different head planes. The horizontal and posterior afferents had average sensitivity vectors that were largely co-incident with the innervated canal plane direction normals. Anterior canal afferents, however, appeared to synthesize contributions from the major and minor plane components of the bony canal structure to produce a resultant sensitivity vector that was positioned between the canal planes. Calculated angles between the average canal afferent sensitivity vectors revealed that direction orthogonality is preserved at the afferent signal level, even though deviations from canal plane orthogonality exist.
Architecture of GnRH-Gonadotrope-Vasculature Reveals a Dual Mode of Gonadotropin Regulation in Fish.
Golan, Matan; Zelinger, Einat; Zohar, Yonathan; Levavi-Sivan, Berta
2015-11-01
The function and components of the hypothalamic-pituitary axis are conserved among vertebrates; however, in fish, a neuroglandular mode of delivery (direct contact between axons and endocrine cells) was considered dominant, whereas in tetrapods hypothalamic signals are relayed to their targets via the hypophysial portal blood system (neurovascular delivery mode). By using a transgenic zebrafish model we studied the functional and anatomical aspects of gonadotrope regulation thus revisiting the existing model. FSH cells were found to be situated close to the vasculature whereas the compact organization of LH cells prevented direct contact of all cells with the circulation. GnRH3 fibers formed multiple boutons upon reaching the pituitary, but most of these structures were located in the neurohypophysis rather than adjacent to gonadotropes. A close association was observed between FSH cells and GnRH3 boutons, but only a fifth of the LH cells were in direct contact with GnRH3 axons, suggesting that FSH cells are more directly regulated than LH cells. GnRH3 fibers closely followed the vasculature in the neurohypophysis and formed numerous boutons along these tracts. These vessels were found to be permeable to relatively large molecules, suggesting the uptake of GnRH3 peptides. Our findings have important implications regarding the differential regulation of LH and FSH and contradict the accepted notion that fish pituitary cells are mostly regulated directly by hypothalamic fibers. Instead, we provide evidence that zebrafish apply a dual mode of gonadotrope regulation by GnRH3 that combines both neuroglandular and neurovascular components.
NASA Astrophysics Data System (ADS)
Grün, H.; Paltauf, G.; Haltmeier, M.; Burgholzer, P.
2007-07-01
Photoacoustic imaging is based on the generation of acoustic waves in a semitransparent sample (e.g. soft tissue) after illumination with short pulses of light or radio waves. The goal is to recover the spatial distribution of absorbed energy density inside the sample from acoustic pressure signals measured outside the sample (photoacoustic inverse problem). If the acoustic pressure outside the illuminated sample is measured with a large-aperture detector, the signal at a certain time is given by an integral of the generated acoustic pressure distribution over an area that is determined by the shape of the detector. For example a planar detector measures the projections of the initial pressure distribution over planes parallel to the detector plane, which is the Radon transform of the initial pressure distribution. Stable and exact three-dimensional imaging with planar integrating detector requires measurements in all directions of space and so the receiver plane has to be rotated to cover the entire detection surface. We have recently presented a simpler set-up for exact imaging which requires only a single rotation axis and therefor the fragmentation of the area detector into line detectors perpendicular to the rotation axis. Using a two-dimensional reconstruction method and applying the inverse two-dimensional Radon transform afterwards gives an exact reconstruction of the three-dimensional sample with this set-up. In order to achieve high resolution, a fiber based Fabry-Perot interferometer is used. It is a single mode fiber with two fiber bragg gratings on both ends of the line detector. Thermal shifts and vibrations are compensated by frequency locking of the laser. The high resolution and the good performance of this integrating line detector has been demonstrated by photoacoustic measurements with line grid samples and phantoms using a model-based time reversal method for image reconstruction. The time reversed pressure field can be calculated directly by retransmitting the measured pressure on the detector positions in a reversed temporal order.
Development of vibration isolation platform for low amplitude vibration
NASA Astrophysics Data System (ADS)
Lee, Dae-Oen; Park, Geeyong; Han, Jae-Hung
2014-03-01
The performance of high precision payloads on board a satellite is extremely sensitive to vibration. Although vibration environment of a satellite on orbit is very gentle compared to the launch environment, even a low amplitude vibration disturbances generated by reaction wheel assembly, cryocoolers, etc may cause serious problems in performing tasks such as capturing high resolution images. The most commonly taken approach to protect sensitive payloads from performance degrading vibration is application of vibration isolator. In this paper, development of vibration isolation platform for low amplitude vibration is discussed. Firstly, single axis vibration isolator is developed by adapting three parameter model using bellows and viscous fluid. The isolation performance of the developed single axis isolator is evaluated by measuring force transmissibility. The measured transmissibility shows that both the low Q-factor (about 2) and the high roll-off rate (about -40 dB/dec) are achieved with the developed isolator. Then, six single axis isolators are combined to form Stewart platform in cubic configuration to provide multi-axis vibration isolation. The isolation performance of the developed multi-axis isolator is evaluated using a simple prototype reaction wheel model in which wheel imbalance is the major source of vibration. The transmitted force without vibration isolator is measured and compared with the transmitted force with vibration isolator. More than 20 dB reduction of the X and Y direction (radial direction of flywheel) disturbance is observed for rotating wheel speed of 100 Hz and higher.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooney, K; Yaddanapudi, S; Mutic, S
2015-06-15
Purpose: To identify the beam profile parameters that can be used to detect energy changes in a flattening filter-free photon beams. Methods: Flattening filter-free beam profiles (inline, crossline, and diagonals) were measured for multiple field sizes (25×25cm and 10×10cm) at 6MV on a clinical system (Truebeam, Varian Medical Systems Palo Alto CA). Profiles were acquired for baseline energy and detuned beams by changing the bending magnet current (BMC), above and below baseline. The following profile parameters were measured: flatness (off-axis ratio at 80% of field size), symmetry, uniformity, slope, and the off-axis ratio (OAR) at several off-axis distances. Tolerance valuesmore » were determined from repeated measurements. Each parameter was evaluated for sensitivity to the induced beam changes, and the minimum detectable BMC change was calculated for each parameter by calculating the change in BMC that would Result in a change in the parameter above the measurement tolerance. Results: Tolerance values for the parameters were-Flatness≤0.1%; Symmetry≤0.4%; Uniformity≤0.01%; Slope≤ 0.001%/mm. The measurements made with a field size of 25cm and a depth of d=1.5cm showed the greatest sensitivity to bending magnet current variations. Uniformity had the highest sensitivity, able to detect a change in BMC of BMC=0.02A. The OARs and slope were sensitive to the magnitude and direction of BMC change. The sensitivity in the flatness parameter was BMC=0.04A; slope was sensitive to BMC=0.05A. The sensitivity decreased for OARs measured closer to central axis-BMC(8cm)=0.23A; BMC(5cm)=0.47A; BMC(2cm)=1.35A. Symmetry was not sensitive to changes in BMC. Conclusion: These tests allow for better QA of FFF beams by setting tolerance levels to beam parameter baseline values which reflect variations in machine calibration. Uniformity is most sensitive to BMC changes, while OARs provide information about magnitude and direction of miscalibration. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.« less
Correlating off-axis tension tests to shear modulus of wood-based panels
Edmond P. Saliklis; Robert H. Falk
2000-01-01
The weakness of existing relationships correlating off-axis modulus of elasticity E q to shear modulus G 12 for wood composite panels is demonstrated through presentation of extensive experimental data. A new relationship is proposed that performs better than existing equations found in the literature. This relationship can be manipulated to calculate the shear modulus...
Study on imaging spectrometer with smile and keystone eliminated
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Yu, Kun; Zhang, Jun
2017-03-01
The formulas of image height in two-dimensional field about Gaussian and tilted imaging system of grating-based imaging spectrometer instrument (GISI) are deduced firstly, and the determined expressions of smile and keystone of GISI are obtained. It is proposed to correct the smile with off-axis lens, and the elimination effect of the smile is studied by means of spatial ray tracing. By controlling the degree of off-axis and the distribution of focal power of the off-axis lens, the long-wave infrared imaging spectrometer with well-eliminated smile and keystone is designed. The maximum of smile and keystone at working wavelengths in all fields of view are less than 8.57 μm and 13.33 μm, respectively.
Observation of hole accumulation in Ge/Si core/shell nanowires using off-axis electron holography.
Li, Luying; Smith, David J; Dailey, Eric; Madras, Prashanth; Drucker, Jeff; McCartney, Martha R
2011-02-09
Hole accumulation in Ge/Si core/shell nanowires (NWs) has been observed and quantified using off-axis electron holography and other electron microscopy techniques. The epitaxial [110]-oriented Ge/Si core/shell NWs were grown on Si (111) substrates by chemical vapor deposition through the vapor-liquid-solid growth mechanism. High-angle annular-dark-field scanning transmission electron microscopy images and off-axis electron holograms were obtained from specific NWs. The excess phase shifts measured by electron holography across the NWs indicated the presence of holes inside the Ge cores. Calculations based on a simplified coaxial cylindrical model gave hole densities of (0.4 ± 0.2) /nm(3) in the core regions.
Thermoplastic coating of carbon fibers
NASA Technical Reports Server (NTRS)
Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.
1989-01-01
A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.
Formation of Polarized Beams in Chains of Dielectric Spheres and Cylinders
2013-10-15
Three different types of coupling to the PFMs. (a) Collimated rays, (b) spherical emitter, and (c) a multimode fiber inserted inside a hollow waveguide...oscillating along the (a) y axis and (b) z axis. (c) The intensity profiles of the focused beams calculated 0.62 μm away from the tip of the end cylinder...ray. In a geometrical optics limit (D ≫ 10λ) the results are not depen- dent on D and λ. (b) d HWG Fiber (c) S Polarizer+Detectors (a) x z y Fig. 3
Garcia, Ernest J; Polosky, Marc A
2013-05-21
An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.
Steerable vertical to horizontal energy transducer for mobile robots
Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.
2001-01-01
The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.
Seafloor spreading on the Amsterdam-St. Paul hotspot plateau
NASA Astrophysics Data System (ADS)
Conder, James A.; Scheirer, Daniel S.; Forsyth, Donald W.
2000-04-01
The Amsterdam-St. Paul (ASP) platform on the intermediate rate Southeast Indian Ridge (SEIR) is the only oceanic hotspot plateau outside the Atlantic Ocean containing an active, mid-ocean ridge spreading axis. Because the ASP hotspot is small and remotely located, it has been relatively unstudied, and the ridge axis location in many places near the ASP plateau was previously unknown or ambiguous. We mapped the SEIR out to 1 Ma crust (Jaramillo anomaly) both on and near the ASP platform. We located the spreading center to within a few kilometers, based on side-scan sonar reflectivity. Recent off-platform magnetic anomalies and lineated abyssal hill topography are consistent with a simple spreading history. Off-platform full spreading rates increase from ˜63 km/Myr on segment H to the north of the platform to ˜65.5 km/Myr on segment K to the south. In contrast, inversions of seafloor magnetization based on uniform and variable thickness magnetic source layers reflect a complex on-platform tectonic history with ridge jumps, off-axis volcanism, and propagating rifts. On one section of the ASP plateau the spreading location has stabilized and is beginning to rift the plateau apart, generating symmetric magnetic anomalies and lineated topography for the last several hundred thousand years. The larger, more stable, spreading segments of the ASP platform are aligned with major volcanic edifices, suggesting that along-axis magma flow away from plume-fed centers is an important influence on spreading geometry. Many complex tectonic features observed on the ASP plateau, such as ridge jumps, en echelon, oblique spreading centers, and transforms oblique to the spreading direction, are comparable to features observed on Iceland. The similarities suggest that moderate crustal thickening at an intermediate rate spreading center may have similar effects to pronounced thickening at a slow rate spreading center.
Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam
2015-03-01
Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode Imore » loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.« less
High frequency capacitance-voltage characteristics of thermally grown SiO2 films on beta-SiC
NASA Technical Reports Server (NTRS)
Tang, S. M.; Berry, W. B.; Kwor, R.; Zeller, M. V.; Matus, L. G.
1990-01-01
Silicon dioxide films grown under dry and wet oxidation environment on beta-SiC films have been studied. The beta-SiC films had been heteroepitaxially grown on both on-axis and 2-deg off-axis (001) Si substrates. Capacitance-voltage and conductance-voltage characteristics of metal-oxide-semiconductor structures were measured in a frequency range of 10 kHz to 1 MHz. From these measurements, the interface trap density and the effective fixed oxide charge density were observed to be generally lower for off-axis samples.
On the maximum off-axis gain of symmetrical pencil-beam antennas
NASA Technical Reports Server (NTRS)
Sawitz, P. H.
1977-01-01
For a general class of symmetrical pencil-beam antennas, the gain at a given off-axis angle can be maximized by choosing the proper antenna size. The maximum gain at the given angle relative to the on-axis gain is independent of the given angle and dependent only on the main-beam pattern. It is computed here for four commonly used gain functions. Its value, in all cases, is close to 4 dB. This result is important in the definition of service areas for communication and broadcast satellites.
Endurance testing of downstream cathodes on a low-power MPD thruster
NASA Technical Reports Server (NTRS)
Burkhart, J. A.; Rose, J. R.
1974-01-01
A low-power MPD thruster with downstream cathode was tested for endurance with a series of hollow cathode designs. Failure modes and failure mechanisms were identified. A new hollow cathode (with rod inserts) has emerged which shows promise for long life. The downstream positioning of the cathode was also changed from an on-axis location to an off-axis location. Data are presented for a 1332-hour life test of this new hollow cathode located at the new off-axis location. Xenon propellant was used.
Sambudi, Nonni Soraya; Kim, Minjeong G; Park, Seung Bin
2016-03-01
The electrospun fibers consist of backbone fibers and nano-branch network are synthesized by loading of ellipsoidal calcium carbonate in the mixture of chitosan/poly(vinyl alcohol) (PVA) followed by electrospinning. The synthesized ellipsoidal calcium carbonate is in submicron size (730.7±152.4 nm for long axis and 212.6±51.3 nm for short axis). The electrospun backbone fibers experience an increasing in diameter by loading of calcium carbonate from 71.5±23.4 nm to 281.9±51.2 nm. The diameters of branch fibers in the web-network range from 15 nm to 65 nm with most distributions of fibers are in 30-35 nm. Calcium carbonate acts as reinforcing agent to improve the mechanical properties of fibers. The optimum value of Young's modulus is found at the incorporation of 3 wt.% of calcium carbonate in chitosan/PVA fibers, which is enhanced from 15.7±3 MPa to 432.4±94.3 MPa. On the other hand, the ultimate stress of fibers experiences a decrease. This result shows that the fiber network undergoes changes from flexible to more stiff by the inclusion of calcium carbonate. The thermal analysis results show that the crystallinity of polymer is changed by the existence of calcium carbonate in the fiber network. The immersion of fibers in simulated body fluid (SBF) results in the formation of apatite on the surface of fibers. Copyright © 2015 Elsevier B.V. All rights reserved.
Two-point motional Stark effect diagnostic for Madison Symmetric Torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, J.; Den Hartog, D. J.; Caspary, K. J.
2010-10-15
A high-precision spectral motional Stark effect (MSE) diagnostic provides internal magnetic field measurements for Madison Symmetric Torus (MST) plasmas. Currently, MST uses two spatial views - on the magnetic axis and on the midminor (off-axis) radius, the latter added recently. A new analysis scheme has been developed to infer both the pitch angle and the magnitude of the magnetic field from MSE spectra. Systematic errors are reduced by using atomic data from atomic data and analysis structure in the fit. Reconstructed current density and safety factor profiles are more strongly and globally constrained with the addition of the off-axis radiusmore » measurement than with the on-axis one only.« less
The effect of surface conditions on the work function of insulators and semiconductors
NASA Technical Reports Server (NTRS)
George, A.
1973-01-01
Ionization energies of organic semiconductors were determined using single crystals of the material. The theory of the method is essentially that of Millikan's oil drop experiment. The technique employed in the experiment is based on the electrostatic method of balancing a charged particle in an electric field against the force of gravity for different excitation energies above the threshold value, and from an estimate of the balancing voltages, read off the ionization energy from the intercept of the energy axis in a plot wavelength corresponding to the balancing potential for the incident radiation of wavelength. In the modified technique which is adopted in the present experimental investigation, a small single crystal is suspended by a fine quartz fiber between two vertical capacitor plates to which a suitable high voltage is applied.
Off-axis current drive and real-time control of current profile in JT-60U
NASA Astrophysics Data System (ADS)
Suzuki, T.; Ide, S.; Oikawa, T.; Fujita, T.; Ishikawa, M.; Seki, M.; Matsunaga, G.; Hatae, T.; Naito, O.; Hamamatsu, K.; Sueoka, M.; Hosoyama, H.; Nakazato, M.; JT-60 Team
2008-04-01
Aiming at optimization of current profile in high-β plasmas for higher confinement and stability, a real-time control system of the minimum of the safety factor (qmin) using the off-axis current drive has been developed. The off-axis current drive can raise the safety factor in the centre and help to avoid instability that limits the performance of the plasma. The system controls the injection power of lower-hybrid waves, and hence its off-axis driven current in order to control qmin. The real-time control of qmin is demonstrated in a high-β plasma, where qmin follows the temporally changing reference qmin,ref from 1.3 to 1.7. Applying the control to another high-β discharge (βN = 1.7, βp = 1.5) with m/n = 2/1 neo-classical tearing mode (NTM), qmin was raised above 2 and the NTM was suppressed. The stored energy increased by 16% with the NTM suppressed, since the resonant rational surface was eliminated. For the future use for current profile control, current density profile for off-axis neutral beam current drive (NBCD) is for the first time measured, using the motional Stark effect diagnostic. Spatially localized NBCD profile was clearly observed at the normalized minor radius ρ of about 0.6-0.8. The location was also confirmed by multi-chordal neutron emission profile measurement. The total amount of the measured beam driven current was consistent with the theoretical calculation using the ACCOME code. The CD location in the calculation was inward shifted than the measurement.
Vectorial structures of linear-polarized Butterfly-Gauss vortex beams in the far zone
NASA Astrophysics Data System (ADS)
Cheng, Ke; Zhou, Yan; Lu, Gang; Yao, Na; Zhong, Xianqiong
2018-05-01
By introducing the Butterfly catastrophe to optics, the far-zone vectorial structures of Butterfly-Gauss beam with vortex and non-vortex are studied using the angular spectrum representation and stationary phase method. The influence of topological charge, linear-polarized angle, off-axis distance and scaling length on the far-zone vectorial structures, especially in the Poynting vector and angular momentum density of the corresponding beam is emphasized. The results show that the embedded optical vortex at source plane lead to special dark zones in the far zone, where the number of dark zone equals the absolute value of topological charge of optical vortex. Furthermore, the symmetry and direction of the special dark zones can be controlled by off-axis distance and scaling length, respectively. The linear-polarized angle adjusts only the Poynting vectors of TE and TM terms, but it does not affect those of whole beam. Finally, the vectorial expressions also indicate that the total angular momentum density is certainly zero owing to the far-zone stable structures rather than rotation behaviors.
Braaf, Boy; Vermeer, Koenraad A.; de Groot, Mattijs; Vienola, Kari V.; de Boer, Johannes F.
2014-01-01
In polarization-sensitive optical coherence tomography (PS-OCT) the use of single-mode fibers causes unpredictable polarization distortions which can result in increased noise levels and erroneous changes in calculated polarization parameters. In the current paper this problem is addressed by a new Jones matrix analysis method that measures and corrects system polarization distortions as a function of wavenumber by spectral analysis of the sample surface polarization state and deeper located birefringent tissue structures. This method was implemented on a passive-component depth-multiplexed swept-source PS-OCT system at 1040 nm which was theoretically modeled using Jones matrix calculus. High-resolution B-scan images are presented of the double-pass phase retardation, diattenuation, and relative optic axis orientation to show the benefits of the new analysis method for in vivo imaging of the human retina. The correction of system polarization distortions yielded reduced phase retardation noise, and better estimates of the diattenuation and the relative optic axis orientation in weakly birefringent tissues. The clinical potential of the system is shown by en face visualization of the phase retardation and optic axis orientation of the retinal nerve fiber layer in a healthy volunteer and a glaucoma patient with nerve fiber loss. PMID:25136498
NASA Astrophysics Data System (ADS)
Yamamoto, R.; Hino, R.; Kido, M.; Osada, Y.; Honsho, C.
2017-12-01
Since postseismic deformation across 2011 Tohoku-oki Earthquake is strongly affected by viscoelastic relaxation, it is difficult to identify postseismic slip from onshore (e.g. GNSS) and offshore (e.g. GPS-Acoustic: GPS-A) observations. To track postseismic slip directly, we installed acoustic ranging instruments across the axis of the central Japan Trench, off-Miyagi, near the region of large coseismic motion (>50 m) happened during 2011 Tohoku-oki Earthquake.Direct Path Ranging (DPR) measures two-way travel time between a pair of transponders settled on the seafloor. Baseline length can be obtained from calculating travel time and sound velocity which is corrected for time-varying temperature and pressure beforehand. We further made correction for the motion of acoustic elements due to attitude changes of the instruments. Baseline changes can be detected precisely by periodic ranging during observation.We have conducted observations during three times (2013, 2014 - 2015, and 2015 - 2016), and revealed that no significant shortenings across the trench axis took place. It follows that no shallow postseismic slip had occurred off-Miyagi, at least from 2013 to 2016. We examined the accuracy of baseline length measurements and can observed 1.0 ppm (1.0 mm for 1 km baseline) errors, which is small enough. Our results are consistent with the postseismic slip distribution model based on GPS-A observations.Acknowledgements: This research is supported by JSPS KAKENHI (26000002). The installation and recovery of instruments were executed during R/V Kairei (KR13-09; KR15-15), R/V Hakuho-maru (KH-13-05; KH-17-J02), R/V Shinsei-maru (KS-14-17; KS-15-03; KS-16-14).
Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells.
Wang, Juan; Petefish, Joseph W; Hillier, Andrew C; Schneider, Ian C
2015-01-01
Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.
Analysis of off-axis tension test of wood specimens
Jen Y. Liu
2002-01-01
This paper presents a stress analysis of the off-axis tension test of clear wood specimens based on orthotropic elasticity theory. The effects of Poisson's ratio and shear coupling coefficient on stress distribution are analyzed in detail. The analysis also provides a theoretical foundation for the selection of a 10° grain angle in wood specimens for the...
High aperture off-axis parabolic mirror applied in digital holographic microscopy
NASA Astrophysics Data System (ADS)
Kalenkov, Georgy S.; Kalenkov, Sergey G.; Shtanko, Alexander E.
2018-04-01
An optical scheme of recording digital holograms of micro-objects based on high numerical aperture off-axis parabolic mirror forming a high aperture reference wave is suggested. Registration of digital holograms based on the proposed optical scheme is confirmed experimentally. Application of the proposed approach for hyperspectral holograms registration of micro-objects in incoherent light is discussed.
Raman microprobe analysis of single ramie fiber during mercerization
Akira Isogai; Umesh P. Agarwal; Rajai H. Atalla
2003-01-01
The Raman microprobe technique was applied to structural analysis of single ramie fibers during mercerization. Polarized laser beam was irradiated on a ramie fiber in 0-30 % NaOD/D2O with the electric vector at 0 or 90° to the fiber axis, and Raman spectra thus obtained were studied in relation to the concentration of NaOD in D2O. Conversion of -OH to -OD in ramie...
Integrated Optofluidic Multimaterial Fibers
NASA Astrophysics Data System (ADS)
Stolyarov, Alexander Mark
The creation of integrated microphotonic devices requires a challenging assembly of optically and electrically disparate materials into complex geometries with nanometer-scale precision. These challenges are typically addressed by mature wafer-based fabrication methods, which while versatile, are limited to low-aspect-ratio structures and by the inherent complexity of sequential processing steps. Multimaterial preform-to-fiber drawing methods on the other hand present unique opportunities for realizing optical and optoelectronic devices of extended length. Importantly, these methods allow for monolithic integration of all the constituent device components into complex architectures. My research has focused on addressing the challenges and opportunities associated with microfluidic multimaterial fiber structures and devices. Specifically: (1) A photonic bandgap (PBG) fiber is demonstrated for single mode transmission at 1.55 microm with 4 dB/m losses. This fiber transmits laser pulses with peak powers of 13.5 MW. (Chapter 2) (2) A microfluidic fiber laser, characterized by purely radia l emission is demonstrated. The laser cavity is formed by an axially invariant, 17-period annular PBG structure with a unit cell thickness of 160nm. This laser is distinct from traditional lasers with cylindrically symmetric emission, which rely almost exclusively on whispering gallery modes, characterized by tangential wavevectors. (Chapter 4) (3) An array of independently-controlled liquid-crystal microchannels flanked by viscous conductors is integrated in the fiber cladding and encircles the PBG laser cavity in (2). The interplay between the radially-emitting laser and these liquid-crystal modulators enables controlled directional emission around a full azimuthal angular range. (Chapter 4) (4) The electric potential profile along the length of the electrodes in (3) is characterized and found to depend on frequency. This frequency dependence presents a new means to tune the transversely-directed transmission at a given location along the fiber axis. (Chapter 5) (5) A chemical sensing system is created within a fiber. By integrating a chemiluminescent peroxide-sensing material into the hollow core of a PBG fiber, a limit-of-detection of 300 ppb for peroxide vapors is achieved. (Chapter 3)
NASA Astrophysics Data System (ADS)
Malyutin, A. A.
2007-03-01
Modes of a laser with plano-spherical degenerate and nondegenerate resonators are calculated upon diode pumping producing the Gaussian gain distribution in the active medium. Axially symmetric and off-axis pumpings are considered. It is shown that in the first case the lowest Hermite-Gaussian mode is excited with the largest weight both in the degenerate and nondegenerate resonator if the pump level is sufficiently high or the characteristic size wg of the amplifying region greatly exceeds the mode radius w0. The high-order Ince-Gaussian modes are excited upon weak off-axis pumping in the nondegenerate resonator both in the absence and presence of the symmetry of the gain distribution with respect to the resonator axis. It is found that when the level of off-axis symmetric pumping of the resonator is high enough, modes with the parameters of the TEM00 mode periodically propagating over a closed path in the resonator can exist. The explanation of this effect is given.
Sparsity based terahertz reflective off-axis digital holography
NASA Astrophysics Data System (ADS)
Wan, Min; Muniraj, Inbarasan; Malallah, Ra'ed; Zhao, Liang; Ryle, James P.; Rong, Lu; Healy, John J.; Wang, Dayong; Sheridan, John T.
2017-05-01
Terahertz radiation lies between the microwave and infrared regions in the electromagnetic spectrum. Emitted frequencies range from 0.1 to 10 THz with corresponding wavelengths ranging from 30 μm to 3 mm. In this paper, a continuous-wave Terahertz off-axis digital holographic system is described. A Gaussian fitting method and image normalisation techniques were employed on the recorded hologram to improve the image resolution. A synthesised contrast enhanced hologram is then digitally constructed. Numerical reconstruction is achieved using the angular spectrum method of the filtered off-axis hologram. A sparsity based compression technique is introduced before numerical data reconstruction in order to reduce the dataset required for hologram reconstruction. Results prove that a tiny amount of sparse dataset is sufficient in order to reconstruct the hologram with good image quality.
Orzó, László
2015-06-29
Retrieving correct phase information from an in-line hologram is difficult as the object wave field and the diffractions of the zero order and the conjugate object term overlap. The existing iterative numerical phase retrieval methods are slow, especially in the case of high Fresnel number systems. Conversely, the reconstruction of the object wave field from an off-axis hologram is simple, but due to the applied spatial frequency filtering the achievable resolution is confined. Here, a new, high-speed algorithm is introduced that efficiently incorporates the data of an auxiliary off-axis hologram in the phase retrieval of the corresponding in-line hologram. The efficiency of the introduced combined phase retrieval method is demonstrated by simulated and measured holograms.
Remotely readable fiber optic compass
Migliori, Albert; Swift, Gregory W.; Garrett, Steven L.
1986-01-01
A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.
Remotely readable fiber optic compass
Migliori, A.; Swift, G.W.; Garrett, S.L.
1985-04-30
A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.
Lim, Jun; Park, So Yeong; Huang, Jung Yun; Han, Sung Mi; Kim, Hong-Tae
2013-01-01
We developed an off-axis-illuminated zone-plate-based hard x-ray Zernike phase-contrast microscope beamline at Pohang Light Source. Owing to condenser optics-free and off-axis illumination, a large field of view was achieved. The pinhole-type Zernike phase plate affords high-contrast images of a cell with minimal artifacts such as the shade-off and halo effects. The setup, including the optics and the alignment, is simple and easy, and allows faster and easier imaging of large bio-samples.
Super-Strong, Super-Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers.
Wang, Sha; Jiang, Feng; Xu, Xu; Kuang, Yudi; Fu, Kun; Hitz, Emily; Hu, Liangbing
2017-09-01
With their impressive properties such as remarkable unit tensile strength, modulus, and resistance to heat, flame, and chemical agents that normally degrade conventional macrofibers, high-performance macrofibers are now widely used in various fields including aerospace, biomedical, civil engineering, construction, protective apparel, geotextile, and electronic areas. Those macrofibers with a diameter of tens to hundreds of micrometers are typically derived from polymers, gel spun fibers, modified carbon fibers, carbon-nanotube fibers, ceramic fibers, and synthetic vitreous fibers. Cellulose nanofibers are promising building blocks for future high-performance biomaterials and textiles due to their high ultimate strength and stiffness resulting from a highly ordered orientation along the fiber axis. For the first time, an effective fabrication method is successfully applied for high-performance macrofibers involving a wet-drawing and wet-twisting process of ultralong bacterial cellulose nanofibers. The resulting bacterial cellulose macrofibers yield record high tensile strength (826 MPa) and Young's modulus (65.7 GPa) owing to the large length and the alignment of nanofibers along fiber axis. When normalized by weight, the specific tensile strength of the macrofiber is as high as 598 MPa g -1 cm 3 , which is even substantially stronger than the novel lightweight steel (227 MPa g -1 cm 3 ). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nishida, Masahiro; Nakayama, Kento; Sakota, Daisuke; Kosaka, Ryo; Maruyama, Osamu; Kawaguchi, Yasuo; Kuwana, Katsuyuki; Yamane, Takashi
2016-06-01
The effect of the flow path geometry of the impeller on the lift-off and tilt of the rotational axis of the impeller against the hydrodynamic force was investigated in a centrifugal blood pump with an impeller supported by a single-contact pivot bearing. Four types of impeller were compared: the FR model with the flow path having both front and rear cutouts on the tip, the F model with the flow path having only a front cutout, the R model with only a rear cutout, and the N model with a straight flow path. First, the axial thrust and the movement about the pivot point, which was loaded on the surface of the impeller, were calculated using computational fluid dynamics (CFD) analysis. Next, the lift-off point and the tilt of the rotational axis of the impeller were measured experimentally. The CFD analysis showed that the axial thrust increased gently in the FR and R models as the flow rate increased, whereas it increased drastically in the F and N models. This difference in axial thrust was likely from the higher pressure caused by the smaller circumferential velocity in the gap between the top surface of the impeller and the casing in the FR and R models than in the F and N models, which was caused by the rear cutout. These results corresponded with the experimental results showing that the impellers lifted off in the F and N models as the flow rate increased, whereas it did not in the FR and R models. Conversely, the movement about the pivot point increased in the direction opposite the side with the pump outlet as the flow rate increased. However, the tilt of the rotational axis of the impeller, which oriented away from the pump outlet, was less than 0.8° in any model under any conditions, and was considered to negligibly affect the rotational attitude of the impeller. These results confirm that a rear cutout prevents lift-off of the impeller caused by a decrease in the axial thrust. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
West, S. C.; Burge, J. H.; Cuerden, B.; Davison, W.; Hagen, J.; Martin, H. M.; Tuell, M. T.; Zhao, C.; Zobrist, T.
2010-07-01
The Giant Magellan Telescope has a 25 meter f/0.7 near-parabolic primary mirror constructed from seven 8.4 meter diameter segments. Several aspects of the interferometric optical test used to guide polishing of the six off-axis segments go beyond the demonstrated state of the art in optical testing. The null corrector is created from two obliquelyilluminated spherical mirrors combined with a computer-generated hologram (the measurement hologram). The larger mirror is 3.75 m in diameter and is supported at the top of a test tower, 23.5 m above the GMT segment. Its size rules out a direct validation of the wavefront produced by the null corrector. We can, however, use a reference hologram placed at an intermediate focus between the two spherical mirrors to measure the wavefront produced by the measurement hologram and the first mirror. This reference hologram is aligned to match the wavefront and thereby becomes the alignment reference for the rest of the system. The position and orientation of the reference hologram, the 3.75 m mirror and the GMT segment are measured with a dedicated laser tracker, leading to an alignment accuracy of about 100 microns over the 24 m dimensions of the test. In addition to the interferometer that measures the GMT segment, a separate interferometer at the center of curvature of the 3.75 m sphere monitors its figure simultaneously with the GMT measurement, allowing active correction and compensation for residual errors. We describe the details of the design, alignment, and use of this unique off-axis optical test.
HabEx Optical Telescope Concepts: Design and Performance Analysis
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; NASA MSFC HabEx Telescope Design Team
2018-01-01
The Habitable-Exoplanet Imaging Mission (HabEx) engineering study team has been tasked by NASA with developing a compelling and feasible exoplanet direct imaging concept as part of the 2020 Decadal Survey. This paper summarizes design concepts for two off-axis unobscured telescope concepts: a 4-meter monolithic aperture and a 6-meter segmented aperutre. HabEx telescopes are designed for launch vehicle accommodation. Analysis includes prediction of on-orbit dynamic structural and thermal optical performance.
NASA Technical Reports Server (NTRS)
Tabata, T.; Oki, T.; Yamada, H.; Abe, M.; Onose, Y.; Thomas, J. D.
2000-01-01
BACKGROUND: Tissue Doppler imaging (TDI) is a recently developed technique that allows the instantaneous measurement of intrinsic regional myocardial motion velocity. Pulsed TDI is capable of separately assessing left ventricular (LV) regional motion velocity caused by circumferential and longitudinal fiber contraction. This particular feature of function is still controversial in patients with hypertrophic cardiomyopathy (HC). METHODS: To better characterize intrinsic circumferential and longitudinal LV systolic myocardial function in HC, we used pulsed TDI to measure short- and long-axis LV motion velocities, respectively. The subendocardial motion velocity patterns at the middle of the LV posterior wall (PW) and ventricular septum (IVS) in LV parasternal and apical long-axis views were recorded by pulsed TDI in 19 patients with nonobstructive HC and in 21 normal controls (NC). RESULTS: Peak short- and long-axis systolic subendocardial velocities in both the LV PW and IVS were significantly smaller in the HC group than in the NC group, and the time to peak velocity was significantly delayed. Furthermore, peak PW systolic velocity was significantly greater along the long axis than along the short axis in the NC group (8.8 +/- 1.5 cm/s vs 8.2 +/- 1.4 cm/s, P <.05), whereas the opposite was observed in the HC group (6.1 +/- 1.2 cm/s vs 7.5 +/- 1.0 cm/s, P <.0001). No significant differences were found in either group between the long- and short-axis IVS velocities (HC: 5.9 +/- 1.4 cm/s vs 5.5 +/- 1.3 cm/s; NC: 7.8 +/- 1.3 cm/s vs 7.9 +/- 1.6 cm/s). CONCLUSIONS: By using the capability of pulsed TDI for the evaluation of intrinsic myocardial velocity instantaneously in a specific region and direction, we found impairment of LV myocardial systolic function in patients with HC not only in the hypertrophied IVS but also in the nonhypertrophied LV PW. We also found a greater decrease in LV PW velocities along the long axis than the short axis, suggesting greater impairment of long-axis contraction in patients with HC. Because our HC patients did not appear to have excessive intracavitary pressure, these results suggest that the relatively normal-appearing PW is directly affected by the HC pathologic process.
Code of Federal Regulations, 2013 CFR
2013-10-01
... feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a) This section applies to all applications for earth station licenses in the 17/24 GHz BSS frequency...
Code of Federal Regulations, 2011 CFR
2011-10-01
... feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a) This section applies to all applications for earth station licenses in the 17/24 GHz BSS frequency...
Code of Federal Regulations, 2012 CFR
2012-10-01
... feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a) This section applies to all applications for earth station licenses in the 17/24 GHz BSS frequency...
Code of Federal Regulations, 2010 CFR
2010-10-01
... feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL....223 Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. (a) This section applies to all applications for earth station licenses in the 17/24 GHz BSS frequency...
Optically-gated Non-latched High Gain Power Device
2008-11-21
parameters such as power conversion efficiency, dv/dt and di/dt stress on PSD and electromagnetic noise emission spectrum, which depend directly on the...4. EXPERIMENTAL STUDIES ON OTPT AND OPTICAL INTENSITY MODULATION OF OTPT PARAMETERS 33 4.1 Optical source, driver, and fiber details 33 4.2...off dynamics characterizations 36 4.5. Optical intensity modulation of OTPT parameters 37 5. EXPERIMENTAL STUDIES ON HYBRID OTPT-PSD AND OPTICAL
Refraction of sound by a shear layer - Experimental assessment
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amiet, R. K.
1979-01-01
An experimental study was conducted to determine the refraction angle and amplitude changes associated with sound transmission through a circular, open jet shear layer. Both on-axis and off-axis acoustic source locations were used. Source frequency varied from 1 kHz to 10 kHz while freestream Mach number varied from 0.1 to 0.4. The experimental results were compared with an existing refraction theory which was extended to account for off-axis source positions. A simple experiment was also conducted to assess the importance of turbulence scattering between 1 kHz and 25 kHz.
Production of Internal Transport Barriers via self-generated flows in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Fiore, Catherine L.
2011-10-01
New results suggest that changes observed in the intrinsic toroidal rotation influence ITB formation in Alcator C-Mod that arise when the resonance for ICRF minority heating is positioned off-axis at or outside of the plasma half-radius. These ITBs form in a reactor relevant regime, without particle or momentum injection, with Ti ~Te, and with monotonic q profiles (qmin < 1). C-Mod H-mode plasmas exhibit strong intrinsic co-current rotation that increases with increasing stored energy without external drive. With the resonance position off-axis, the rotation decreases in the center of the plasma resulting in a radial rotation profile with a central well which deepens and moves farther off-axis when the ICRF resonance is at the plasma half-radius. This profile results in strong ExB shear (>1.5x105 Rad/sec) in the region where the ITB foot is observed. The self generated ExB shearing increases rapidly after the H-mode transition in off-axis ICRF heated discharges, before other profile changes are observed. Gyrokinetic analyses indicate that this spontaneous shearing rate is comparable to the linear ITG growth rate at the ITB location and may be responsible for stabilizing the underlying turbulence. Detailed measurement of the ion temperature demonstrates that the radial profile also flattens as the ICRF resonance position moves off axis. This decreases R/LTi in the barrier region, lessening the drive for the ITG turbulence and the resulting particle transport. The reduction in particle transport resulting from increase in core stability allows the neoclassical pinch to peak the density and pressure on axis. This suggests that spontaneous rotation is a potential tool for plasma profile control in reactor plasmas. The experimental results and corresponding gyrokinetic study will be presented. US-DoE DE-FC02-99ER54512 and DE-FG03-96ER54373.
Islam, Md Anamul; Sundaraj, Kenneth; Ahmad, R Badlishah; Sundaraj, Sebastian; Ahamed, Nizam Uddin; Ali, Md Asraf
2014-01-01
In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity. The aim of the present study was two-fold: i) to quantify the level of crosstalk in the mechanomyographic (MMG) signals from the longitudinal (Lo), lateral (La) and transverse (Tr) axes of the extensor digitorum (ED), extensor carpi ulnaris (ECU) and flexor carpi ulnaris (FCU) muscles during isometric wrist flexion (WF) and extension (WE), radial (RD) and ulnar (UD) deviations; and ii) to analyze whether the three-directional MMG signals influence the level of crosstalk between the muscle groups during these wrist postures. Twenty, healthy right-handed men (mean ± SD: age = 26.7±3.83 y; height = 174.47±6.3 cm; mass = 72.79±14.36 kg) participated in this study. During each wrist posture, the MMG signals propagated through the axes of the muscles were detected using three separate tri-axial accelerometers. The x-axis, y-axis, and z-axis of the sensor were placed in the Lo, La, and Tr directions with respect to muscle fibers. The peak cross-correlations were used to quantify the proportion of crosstalk between the different muscle groups. The average level of crosstalk in the MMG signals generated by the muscle groups ranged from: 34.28-69.69% for the Lo axis, 27.32-52.55% for the La axis and 11.38-25.55% for the Tr axis for all participants and their wrist postures. The Tr axes between the muscle groups showed significantly smaller crosstalk values for all wrist postures [F (2, 38) = 14-63, p<0.05, η2 = 0.416-0.769]. The results may be applied in the field of human movement research, especially for the examination of muscle mechanics during various types of the wrist postures.
Chen, Ming; He, Jing; Tang, Jin; Wu, Xian; Chen, Lin
2014-07-28
In this paper, a FPGAs-based real-time adaptively modulated 256/64/16QAM-encoded base-band OFDM transceiver with a high spectral efficiency up to 5.76bit/s/Hz is successfully developed, and experimentally demonstrated in a simple intensity-modulated direct-detection optical communication system. Experimental results show that it is feasible to transmit a raw signal bit rate of 7.19Gbps adaptively modulated real-time optical OFDM signal over 20km and 50km single mode fibers (SMFs). The performance comparison between real-time and off-line digital signal processing is performed, and the results show that there is a negligible power penalty. In addition, to obtain the best transmission performance, direct-current (DC) bias voltage for MZM and launch power into optical fiber links are explored in the real-time optical OFDM systems.
NASA Astrophysics Data System (ADS)
Maia, M.; Briais, A.; Barrere, F.; Boulart, C.; Ceuleneer, G.; Ferreira, N.; Hanan, B. B.; Hemond, C.; MacLeod, S.; Maillard, A. L.; Merkuryev, S. A.; Park, S. H.; Revillon, S.; Ruellan, E.; Schohn, A.; Watson, S. J.; Yang, Y. S.
2015-12-01
We present observations of the South-East Indian Ridge (SEIR) collected during the STORM cruise (South Tasmania Ocean Ridge and Mantle) on the N/O L'Atalante early 2015. The SEIR between Australia and Antarctica displays large variations of axial morphology despite an almost constant intermediate spreading rate. The Australia-Antarctic Discordance (AAD) between 120°E and 128°E is a section of the mid-ocean ridge where the magma budget is abnormally low, and which marks the boundary between Indian and Pacific mantle domains with distinct geochemical isotopic compositions. The STORM project focuses on the area east of the discordance from 128 to 140°E, where gravity highs observed on satellite-derived maps of the flanks of the SEIR reveal numerous volcanic seamounts. A major objective of the STORM cruise was to test the hypothesis of a mantle flow from the Pacific to the Indian domains. We collected multibeam bathymetry and magnetic data between 136 and 138°E to map off-axis volcanic ridges up to 10 Ma-old crust. We mapped the SEIR axis between 129 and 140°E, and the northern part of the George V transform fault. We collected rock samples on seamounts and in the transform fault, basaltic glass samples along the ridge axis, and near-bottom samples and in-situ measurements in the water column. Our observations reveal that the off-axis seamounts form near the SEIR axis, and are not associated to off-axis deformation of the ocean floor. They show a general shallowing of the ridge axis from the AAD to the George V TF and the presence of robust axial segments near the transform fault. They allow us to describe the complex evolution of the transform fault system. They also permit to locate new hydrothermal systems along the ridge axis. STORM cruise scientific party: F. Barrere, C. Boulart, G. Ceuleneer, N. Ferreira, B. Hanan, C. Hémond, S. Macleod, M. Maia, A. Maillard, S. Merkuryev, S.H. Park, S. Révillon, E. Ruellan, A. Schohn, S. Watson, and Y.S. Yang.
Fos-defined activity in rat brainstem following centripetal acceleration.
Kaufman, G D; Anderson, J H; Beitz, A J
1992-11-01
To identify rat brainstem nuclei involved in the initial, short-term response to a change in gravito-inertial force, adult Long-Evans rats were rotated in the horizontal plane for 90 min in complete darkness after they were eccentrically positioned off the axis of rotation (off-axis) causing a centripetal acceleration of 2 g. Neural activation was defined by the brainstem distribution of the c-fos primary response gene protein, Fos, using immunohistochemistry. The Fos labeling in off-axis animals was compared with that of control animals who were rotated on the axis of rotation (on-axis) with no centripetal acceleration, or who were restrained but not rotated. In the off-axis animals there was a significant labeling of neurons: in the inferior, medial, and y-group subnuclei of the vestibular complex; in subnuclei of the inferior olive, especially the dorsomedial cell column; in midbrain nuclei, including the interstitial nucleus of Cajal, nucleus of Darkschewitsch, Edinger-Westphal nucleus, and dorsolateral periaqueductal gray; in autonomic centers including the solitary nucleus, area postrema, and locus coeruleus; and in reticular nuclei including the lateral reticular nucleus and the lateral parabrachial nucleus. Also, there was greater Fos expression in the dorsomedial cell column, the principal inferior olive subnuclei, inferior vestibular nucleus, the dorsolateral central gray, and the locus coeruleus in animals who had their heads restrained compared to animals whose heads were not restrained. As one control, the vestibular neuroepithelium was destroyed by injecting sodium arsanilate into the middle ear, bilaterally. This resulted in a complete lack of Fos labeling in the vestibular nuclei and the inferior olive, and a significant reduction in labeling in other nuclei in the off-axis condition, indicating that these nuclei have a significant labyrinth-sensitive component to their Fos labeling. The data indicate that several novel brainstem regions, including the dorsomedial cell column of the inferior olive and the periaqueductal gray, as well as more traditional brainstem nuclei including vestibular and oculomotor related nuclei, respond to otolith activation during a sustained centripetal acceleration.
Electron-spin-resonance studies of vapor-grown carbon fibers
NASA Technical Reports Server (NTRS)
Marshik, B.; Meyer, D.; Apple, T.
1987-01-01
The effects of annealing temperature and fiber diameter on the degree of disorder of vapor-grown carbon fibers were investigated by analyzing the electron-spin-resonance (ESR) line shapes of fibers annealed at six various temperatures up to 3375 K. The diameter of fibers, grown from methane gas, ranged from 10 to 140 microns with most fibers between 20 and 50 microns. It was found that the degree of disorder of vapor-grown fibers decreases upon annealing to higher temperature; standard angular deviation between the fiber axis and the crystallite basal planes could vary from 35 deg (for annealing temperature of 2275 K) to 12 deg (for 3375 K). With respect to fiber diameter, order parameters were found to be higher for fibers of smaller diameters.
Twelve Channel Optical Fiber Connector Assembly: From Commercial Off the Shelf to Space Flight Use
NASA Technical Reports Server (NTRS)
Ott, Melaine N.
1998-01-01
The commercial off the shelf (COTS) twelve channel optical fiber MTP array connector and ribbon cable assembly is being validated for space flight use and the results of this study to date are presented here. The interconnection system implemented for the Parallel Fiber Optic Data Bus (PFODB) physical layer will include a 100/140 micron diameter optical fiber in the cable configuration among other enhancements. As part of this investigation, the COTS 62.5/125 microns optical fiber cable assembly has been characterized for space environment performance as a baseline for improving the performance of the 100/140 micron diameter ribbon cable for the Parallel FODB application. Presented here are the testing and results of random vibration and thermal environmental characterization of this commercial off the shelf (COTS) MTP twelve channel ribbon cable assembly. This paper is the first in a series of papers which will characterize and document the performance of Parallel FODB's physical layer from COTS to space flight worthy.
Ankle-foot orthosis bending axis influences running mechanics.
Russell Esposito, Elizabeth; Ranz, Ellyn C; Schmidtbauer, Kelly A; Neptune, Richard R; Wilken, Jason M
2017-07-01
Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher impact activities such as running, providing clinicians and researchers limited information to guide the development of objective prescription guidelines. The proximal location of the bending axis may directly influence energy storage and return and resulting running mechanics. The purpose of this study was to determine if the location of an AFO's bending axis influences running mechanics. Marker and force data were recorded as 12 participants with lower extremity weakness ran overground while wearing a passive-dynamic AFO with posterior struts manufactured with central (middle) and off-centered (high and low) bending axes. Lower extremity joint angles, moments, powers, and ground reaction forces were calculated and compared between limbs and across bending axis conditions. Bending axis produced relatively small but significant changes. Ankle range of motion increased as the bending axis shifted distally (p<0.003). Peak ankle power absorption was greater in the low axis than high (p=0.013), and peak power generation was greater in the low condition than middle or high conditions (p<0.009). Half of the participants preferred the middle bending axis, four preferred low and two preferred high. Overall, if greater ankle range of motion is tolerated, a low bending axis provides power and propulsive benefits during running, although individual preference and physical ability should also be considered. Published by Elsevier B.V.
Tsai, Liang-Ching; Ren, Yupeng; Gaebler-Spira, Deborah J; Revivo, Gadi A; Zhang, Li-Qun
2017-07-01
This preliminary study examined the effects of off-axis elliptical training on reducing transverse-plane gait deviations and improving gait function in 8 individuals with cerebral palsy (CP) (15.5 ± 4.1 years) who completed an training program using a custom-made elliptical trainer that allows transverse-plane pivoting of the footplates during exercise. Lower-extremity off-axis control during elliptical exercise was evaluated by quantifying the root-mean-square and maximal angular displacement of the footplate pivoting angle. Lower-extremity pivoting strength was assessed. Gait function and balance were evaluated using 10-m walk test, 6-minute-walk test, and Pediatric Balance Scale. Toe-in angles during gait were quantified. Participants with CP demonstrated a significant decrease in the pivoting angle (root mean square and maximal angular displacement; effect size, 1.00-2.00) and increase in the lower-extremity pivoting strength (effect size = 0.91-1.09) after training. Reduced 10-m walk test time (11.9 ± 3.7 seconds vs. 10.8 ± 3.0 seconds; P = 0.004; effect size = 1.46), increased Pediatric Balance Scale score (43.6 ± 12.9 vs. 45.6 ± 10.8; P = 0.042; effect size = 0.79), and decreased toe-in angle (3.7 ± 10.5 degrees vs. 0.7 ± 11.7 degrees; P = 0.011; effect size = 1.22) were observed after training. We present an intervention to challenge lower-extremity off-axis control during a weight-bearing and functional activity for individuals with CP. Our preliminary findings suggest that this intervention was effective in enhancing off-axis control, gait function, and balance and reducing in-toeing gait in persons with CP.
NASA Astrophysics Data System (ADS)
Kirneva, N. A.; Razumova, K. A.; Pochelon, A.; Behn, R.; Coda, S.; Curchod, L.; Duval, B. P.; Goodman, T. P.; Labit, B.; Karpushov, A. N.; Rancic, M.; Sauter, O.; Silva, M.; TCV Team
2012-01-01
Scenarios with different electron cyclotron heating power profile distributions and widths were compared for the first time in experiments on the Tokamak à Configuration Variable (TCV). The heating profile was changed from shot to shot over a wide range from localized on-axis, with normalized minor radius half-width at half maximum σ1/2 ~ 0.1, up to a widely distributed heating power profile with σ1/2 ~ 0.4 and finally to a profile peaked far off-axis. The global confinement, MHD activity, density, temperature and electron pressure profile evolution were compared. In particular, the energy confinement properties of discharges with localized on-axis heating and distributed on-axis heating were very similar, with degradation close to that predicted by the ITER L-mode scaling; in the case of off-axis heating, on the other hand, the confinement degradation was even stronger.
Visual Costs of the Inhomogeneity of Luminance and Contrast by Viewing LCD-TFT Screens Off-Axis.
Ziefle, Martina; Groeger, Thomas; Sommer, Dietmar
2003-01-01
In this study the anisotropic characteristics of TFT-LCD (Thin-Film-Transistor-Liquid Crystal Display) screens were examined. Anisotropy occurs as the distribution of luminance and contrast changes over the screen surface due to different viewing angles. On the basis of detailed photometric measurements the detection performance in a visual reaction task was measured in different viewing conditions. Viewing angle (0 degrees, frontal view; 30 degrees, off-axis; 50 degrees, off-axis) as well as ambient lighting (a dark or illuminated room) were varied. Reaction times and accuracy of detection performance were recorded. Results showed TFT's anisotropy to be a crucial factor deteriorating performance. With an increasing viewing angle performance decreased. It is concluded that TFT's anisotropy is a limiting factor for overall suitability and usefulness of this new display technology.
A hydrostatic stress-dependent anisotropic model of viscoplasticity
NASA Technical Reports Server (NTRS)
Robinson, D. N.; Tao, Q.; Verrilli, M. J.
1994-01-01
A hydrostatic stress-dependent, anisotropic model of viscoplasticity is formulated as an extension of Bodner's model. This represents a further extension of the isotropic Bodner model over that made to anisotropy by Robinson and MitiKavuma. Account is made of the inelastic deformation that can occur in metallic composites under hydrostatic stress. A procedure for determining the material parameters is identified that is virtually identical to the established characterization procedure for the original Bodner model. Characterization can be achieved using longitudinal/transverse tensile and shear tests and hydrostatic stress tests; alternatively, four off-axis tensile tests can be used. Conditions for a yield stress minimum under off-axis tension are discussed. The model is applied to a W/Cu composite; characterization is made using off-axis tensile data generated at NASA Lewis Research Center (LeRC).
Anxiety and the aging brain: stressed out over p53?
Scrable, Heidi; Burns-Cusato, Melissa; Medrano, Silvia
2009-12-01
We propose a model in which cell loss in the aging brain is seen as a root cause of behavioral changes that compromise quality of life, including the onset of generalized anxiety disorder, in elderly individuals. According to this model, as stem cells in neurogenic regions of the adult brain lose regenerative capacity, worn-out, dead, or damaged neurons fail to be replaced, leaving gaps in function. As most replacement involves inhibitory interneurons, either directly or indirectly, the net result is the acquisition over time of a hyper-excitable state. The stress axis is subserved by all three neurogenic regions in the adult brain, making it particularly susceptible to these age-dependent changes. We outline a molecular mechanism by which hyper-excitation of the stress axis in turn activates the tumor suppressor p53. This reinforces the loss of stem cell proliferative capacity and interferes with the feedback mechanism by which the glucocorticoid receptor turns off neuroendocrine pathways and resets the axis.
Zarei, Vahhab; Liu, Chao J; Claeson, Amy A; Akkin, Taner; Barocas, Victor H
2017-08-01
The lumbar facet capsular ligament (FCL) primarily consists of aligned type I collagen fibers that are mainly oriented across the joint. The aim of this study was to characterize and incorporate in-plane local fiber structure into a multiscale finite element model to predict the mechanical response of the FCL during in vitro mechanical tests, accounting for the heterogeneity in different scales. Characterization was accomplished by using entire-domain polarization-sensitive optical coherence tomography to measure the fiber structure of cadaveric lumbar FCLs ([Formula: see text]). Our imaging results showed that fibers in the lumbar FCL have a highly heterogeneous distribution and are neither isotropic nor completely aligned. The averaged fiber orientation was [Formula: see text] ([Formula: see text] in the inferior region and [Formula: see text] in the middle and superior regions), with respect to lateral-medial direction (superior-medial to inferior-lateral). These imaging data were used to construct heterogeneous structural models, which were then used to predict experimental gross force-strain behavior and the strain distribution during equibiaxial and strip biaxial tests. For equibiaxial loading, the structural model fit the experimental data well but underestimated the lateral-medial forces by [Formula: see text]16% on average. We also observed pronounced heterogeneity in the strain field, with stretch ratios for different elements along the lateral-medial axis of sample typically ranging from about 0.95 to 1.25 during a 12% strip biaxial stretch in the lateral-medial direction. This work highlights the multiscale structural and mechanical heterogeneity of the lumbar FCL, which is significant both in terms of injury prediction and microstructural constituents' (e.g., neurons) behavior.
Liger-Belair, Gérard; Topgaard, Daniel; Voisin, Cédric; Jeandet, Philippe
2004-05-11
In this paper, the transversal diffusion coefficient D perpendicular of CO2 dissolved molecules through the wall of a hydrated cellulose fiber was approached, from the liquid bulk diffusion coefficient of CO2 dissolved molecules modified by an obstruction factor. The porous network between the cellulose microfibrils of the fiber wall was assumed being saturated with liquid. We retrieved information from previous NMR experiments on the self-diffusion of water in cellulose fibers to reach an order of magnitude for the transversal diffusion coefficient of CO2 molecules through the fiber wall. A value of about D perpendicular approximately 0.2D0 was proposed, D0 being the diffusion coefficient of CO2 molecules in the liquid bulk. Because most of bubble nucleation sites in a glass poured with carbonated beverage are cellulose fibers cast off from paper or cloth which floated from the surrounding air, or remaining from the wiping process, this result directly applies to the kinetics of carbon dioxide bubble formation from champagne and sparkling wines. If the cellulose fiber wall was impermeable with regard to CO2 dissolved molecules, it was suggested that the kinetics of bubbling would be about three times less than it is.
Zero-gravity growth of NaF-NaCl eutectics in the NASA Skylab program
NASA Technical Reports Server (NTRS)
Yue, A. S.; Allen, F. G.; Yu, J. G.
1976-01-01
Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, were produced in space and on earth. The production of continuous fibers in a eutectic mixture is attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It is shown that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis. A new concept is advanced to explain the phenomenon of transmittance versus far infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelengths is known. Experimental data are in agreement with the theoretical prediction.
Radius of Curvature of Off-Axis Paraboloids
NASA Technical Reports Server (NTRS)
Robinson, Brian; Reardon, Patrick; Hadaway, James; Geary, Joseph; Russell, Kevin (Technical Monitor)
2002-01-01
We present several methods for measuring the vertex radius of curvature of off-axis paraboloidal mirrors. One is based on least-squares fitting of interferometer output, one on comparison of sagittal and tangential radii of curvature, and another on measurement of displacement of the nulled test article from the ideal reference wave. Each method defines radius of curvature differently and, as a consequence, produces its own sort of errors.
2013-11-27
lar to the slow axis appear yellow [19]. To observe the morphology of aligned collagen fibril, fibers were dehydrated via graded series of ethanols (70...Invitrogen) displayed prolifer- ating cell numbers. 2.5. Effect of aligned collagen–NP fibers on cell morphology and proliferation (7 days’ culture) A...loaded with PDGF than in the well with fibers that contained only empty NPs (control). 3.5. ADSCs cell proliferation and morphology on aligned collagen–NP
Lindstrøm, C A; Adli, E; Allen, J M; An, W; Beekman, C; Clarke, C I; Clayton, C E; Corde, S; Doche, A; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; O'Shea, B D; Vafaei-Najafabadi, N; Yakimenko, V
2018-03-23
Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.
NASA Astrophysics Data System (ADS)
Lindstrøm, C. A.; Adli, E.; Allen, J. M.; An, W.; Beekman, C.; Clarke, C. I.; Clayton, C. E.; Corde, S.; Doche, A.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; O'Shea, B. D.; Vafaei-Najafabadi, N.; Yakimenko, V.
2018-03-01
Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.
Magnetoelectric effect in concentric quantum rings induced by shallow donor
NASA Astrophysics Data System (ADS)
Escorcia, R.; García, L. F.; Mikhailov, I. D.
2018-05-01
We study the alteration of the magnetic and electric properties induced by the off-axis donor in a double InAs/GaAs concentric quantum ring. To this end we consider a model of an axially symmetrical ring-like nanostructure with double rim, in which the thickness of the InAs thin layer is varied smoothly in the radial direction. The energies and of contour plots of the density of charge for low-lying levels we find by using the adiabatic approximation and the double Fourier-Bessel series expansion method and the Kane model. Our results reveal a possibility of the formation of a giant dipole momentum induced by the in-plane electric field, which in addition can be altered by of the external magnetic field applied along the symmetry axis.
Thermal Conductivity of Ultem(TradeMark)/Carbon Nanofiller Blends
NASA Technical Reports Server (NTRS)
Ghose, S.; Watson, K. A.; Delozier, D. M.; Working, D. C.; Connell, J. W.; Smith, J. G., Jr.; Sun, Y. P.; Lin, Y.
2006-01-01
In an effort to improve polymer thermal conductivity (TC), Ultem(TradeMark) 1000 was compounded with nano-fillers of carbon allotropes. Ultem(TradeMark) 1000 was selected since it is both solution and melt processable. As-received and modified multiwalled carbon nanotubes (MWCNTs), vapor grown carbon nanofibers (CNF) and expanded graphite (EG) were investigated. MWCNTs were modified by functionalizing the surface through oxidization with concentrated acids, mixing with an alkyl bromide, and addition of alkyl and phosphorus compounds after initial treatment with n-butyl lithium. Functionalization was performed to improve the TC compatibility between the resin and MWCNTs. It was postulated that this may provide an improved interface between the MWCNT and the polymer which would result in enhanced TC. The nano-fillers were mixed with Ultem(TradeMark) 1000 in the melt and in solution at concentrations ranging from 5 to 40 wt%. Ribbons were extruded from the blends to form samples where the nano-fillers were aligned to some degree in the extrusion direction. Samples were also fabricated by compression molding resulting in random orientation of the nano-fillers. Thermal properties of the samples were evaluated by Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analyzer (TGA). Tensile properties of aligned samples were determined at room temperature. The specimens were cut from the ribbons in the extrusion direction; hence the nano-fillers are somewhat aligned in the direction of stress. Typically it was observed that melt mixed samples exhibited superior mechanical properties compared to solution mixed samples. As expected, increased filler loading led to increased modulus and decreased elongation with respect to the neat polymer. The degree of dispersion and alignment of the nano-fillers was determined by high-resolution scanning electron microscopy (HRSEM). HRSEM of the ribbons revealed that the MWCNTs and CNFs were predominantly aligned in the flow direction. The TC of the samples was measured using a Nanoflash(TradeMark) instrument. Since the MWCNTs and CNF are anisotropic, the TC was expected to be different in the longitudinal (parallel to the nanotube and fiber axis) and transverse (perpendicular to the nanotube and fiber axis) directions. The extruded ribbons provided samples for transverse TC measurements. However, to determine the TC in the longitudinal direction, the ribbons needed to be stacked and molded under 1.7 MPa and 270 C. Samples were then obtained by cutting the molded block with a diamond saw. The largest TC improvement was achieved for aligned samples when the measurement was performed in the direction of MWCNT and CNF alignment (i.e. longitudinal axis). Unaligned samples also showed a significant improvement in TC and may be potentially useful in applications when it is not possible to align the nano-filler. The results of this study will be presented.
CALISTO: A Cryogenic Far-Infrared/Submillimeter Observatory
NASA Technical Reports Server (NTRS)
Goldsmith, P. F.; Bradford, C. M.; Dragovan, M.; Khayatian, B.; Huffenberger, K.; O'Dwyer, I. J.; Gorski, K.; Yorke, H. W.; Zmuidzinas, J.; Paine, C.;
2007-01-01
We present a design for a cryogenically cooled large aperture telescope for far-infrared astronomy in the wavelength range 30 micrometers to 300 micrometers. The Cryogenic Aperture Large Infrared Space Telescope Observatory, or CALISTO, is based on an off-axis Gregorian telescope having a 4 m by 6 m primary reflector. This can be launched using an Atlas V 511, with the only optical deployment required being a simple hinged rotation of the secondary reflector. The off-axis design, which includes a cold stop, offers exceptionally good performance in terms of high efficiency and minimum coupling of radiation incident from angles far off the direction of maximum response. This means that strong astronomical sources, such as the Milky Way and zodiacal dust in the plane of the solar system, add very little to the background. The entire optical system is cooled to 4 K to make its emission less than even this low level of astronomical emission. Assuming that detector technology can be improved to the point where detector noise is less than that of the astronomical background, we anticipate unprecedented low values of system noise equivalent power, in the vicinity of 10(exp -19) WHz(exp -0.5), through CALISTO's operating range. This will enable a variety of new astronomical investigations ranging from studies of objects in the outer solar system to tracing the evolution of galaxies in the universe throughout cosmic time.
Bassan, M; Cavalleri, A; De Laurentis, M; De Marchi, F; De Rosa, R; Di Fiore, L; Dolesi, R; Finetti, N; Garufi, F; Grado, A; Hueller, M; Marconi, L; Milano, L; Pucacco, G; Stanga, R; Visco, M; Vitale, S; Weber, W J
2016-02-05
A torsion pendulum with 2 soft degrees of freedom (DOFs), realized by off-axis cascading two torsion fibers, has been built and operated. This instrument helps characterize the geodesic motion of a test mass for LISA Pathfinder or any other free-fall space mission, providing information on cross talk and other effects that cannot be detected when monitoring a single DOF. We show that it is possible to simultaneously measure both the residual force and the residual torque acting on a quasifree test mass. As an example of the investigations that a double pendulum allows, we report the measurement of the force-to-torque cross talk, i.e., the amount of actuation signal, produced by applying a force on the suspended test mass, that leaks into the rotational DOF, detected by measuring the corresponding (unwanted) torque.
Pan, Li; Cao, Jujiang; Liu, Min; Fu, Weiwei
2017-11-30
High speed data transmission rotating connector system for signal high-speed transmission used in the fixed end and rotating end, it is one of the core component in the CT system. This paper involves structure design and analysis of the retaining ring in the CT high speed data transmission rotating connector system based on the principle of off-axis free space optical transmission. According to the problem of the actual engineering application of space limitations, optical fiber fixed and collimator installation location, we designed the structure of the retaining ring. Using the static analysis function of ANSYS Workbench, it verifies rationality and safety of the strength of retaining ring structure. And based on modal analysis function of ANSYS Workbench, it evaluates the effect of the retaining ring on the stability of the system date transmission, and provides theoretical basis for the feasibility of the structure in practical application.
Patterning of Spiral Structure on Optical Fiber by Focused-Ion-Beam Etching
NASA Astrophysics Data System (ADS)
Mekaru, Harutaka; Yano, Takayuki
2012-06-01
We produce patterns on minute and curved surfaces of optical fibers, and develop a processing technology for fabricating sensors, antennas, electrical circuits, and other devices on such patterned surfaces by metallization. A three-dimensional processing technology can be used to fabricate a spiral coil on the surface of cylindrical quartz materials, and then the microcoils can also be applied to capillaries of micro-fluid devices, as well as to receiver coils connected to a catheter and an endoscope of nuclear magnetic resonance imaging (MRI) systems used in imaging blood vessels. To create a spiral line pattern with a small linewidth on a full-circumference surface of an optical fiber, focused-ion-beam (FIB) etching was employed. Here, a simple rotation stage comprising a dc motor and an LR3 battery was built. However, during the development of a prototype rotation stage before finalizing a large-scale remodelling of our FIB etching system, a technical problem was encountered where a spiral line could not be processed without running into breaks and notches in the features. It turned out that the problem was caused by axis blur resulting from an eccentric spinning (or wobbling) of the axis of the fiber caused by its unrestrained free end. The problem was solved by installing a rotation guide and an axis suppression device onto the rotation stage. Using this improved rotation stage. we succeeded in the seamless patterning of 1-µm-wide features on the full-circumference surface of a 250-µm-diameter quartz optical fiber (QOF) by FIB etching.
Apparatus and method for combining light from two or more fibers into a single fiber
Klingsporn, Paul Edward
2007-02-20
An apparatus and method for combining light signals carried on a plurality of input fibers onto a single receiving fiber with a high degree of efficiency. The apparatus broadly comprises the receiving fiber and a plurality of input fiber-lens assemblies, with each fiber lens assembly including an input fiber; a collimating lens interposed between the input fiber and the receiving fiber and adapted to collimate the light signal; and a focusing lens interposed between the collimating lens and the receiving fiber and adapted to focus the collimated light signal onto the face of the receiving fiber. The components of each fiber-lens assembly are oriented along an optic axis that is inclined relative to the receiving fiber, with the inclination angle depending at least in part on the input fiber's numerical aperture and the focal lengths and diameters of the collimating and focusing lenses.
Apparatus and method for combining light from two or more fibers into a single fiber
Klingsporn, Paul Edward
2006-03-14
An apparatus and method for combining light signals carried on a plurality of input fibers onto a single receiving fiber with a high degree of efficiency. The apparatus broadly comprises the receiving fiber and a plurality of input fiber-lens assemblies, with each fiber lens assembly including an input fiber; a collimating lens interposed between the input fiber and the receiving fiber and adapted to collimate the light signal; and a focusing lens interposed between the collimating lens and the receiving fiber and adapted to focus the collimated light signal onto the face of the receiving fiber. The components of each fiber-lens assembly are oriented along an optic axis that is inclined relative to the receiving fiber, with the inclination angle depending at least in part on the input fiber's numerical aperture and the focal lengths and diameters of the collimating and focusing lenses.
Driver-witness electron beam acceleration in dielectric mm-scale capillaries
NASA Astrophysics Data System (ADS)
Lekomtsev, K.; Aryshev, A.; Tishchenko, A. A.; Shevelev, M.; Lyapin, A.; Boogert, S.; Karataev, P.; Terunuma, N.; Urakawa, J.
2018-05-01
We investigated a corrugated mm-scale capillary as a compact accelerating structure in the driver-witness acceleration scheme, and suggested a methodology to measure the acceleration of the witness bunch. The accelerating fields produced by the driver bunch and the energy spread of the witness bunch in a corrugated capillary and in a capillary with a constant inner radius were measured and simulated for both on-axis and off-axis beam propagation. Our simulations predicted a change in the accelerating field structure for the corrugated capillary. Also, an approximately twofold increase of the witness bunch energy gain on the first accelerating cycle was expected for both capillaries for the off-axis beam propagation. These results were confirmed in the experiment, and the maximum measured acceleration of 170 keV /m at 20 pC driver beam charge was achieved for off-axis beam propagation. The driver bunch showed an increase in energy spread of up to 11%, depending on the capillary geometry and beam propagation, with a suppression of the longitudinal energy spread in the witness bunch of up to 15%.
Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne
2014-04-25
We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840 eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.
The role of turbulent suppression in the triggering ITBs on C-Mod
NASA Astrophysics Data System (ADS)
Zhurovich, K.; Fiore, C. L.; Ernst, D. R.; Bonoli, P. T.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Marmar, E. S.; Mikkelsen, D. R.; Phillips, P.; Rice, J. E.
2007-11-01
Internal transport barriers can be routinely produced in C-Mod steady EDA H-mode plasmas by applying ICRF at |r/a|>= 0.5. Access to the off-axis ICRF heated ITBs may be understood within the paradigm of marginal stability. Analysis of the Te profiles shows a decrease of R/LTe in the ITB region as the RF resonance is moved off axis. Ti profiles broaden as the ICRF power deposition changes from on-axis to off-axis. TRANSP calculations of the Ti profiles support this trend. Linear GS2 calculations do not reveal any difference in ETG growth rate profiles for ITB vs. non-ITB discharges. However, they do show that the region of stability to ITG modes widens as the ICRF resonance is moved outward. Non-linear simulations show that the outward turbulent particle flux exceeds the Ware pinch by factor of 2 in the outer plasma region. Reducing the temperature gradient significantly decreases the diffusive flux and allows the Ware pinch to peak the density profile. Details of these experiments and simulations will be presented.
Method of manufacturing fibrous hemostatic bandages
Larsen, Gustavo; Spretz, Ruben; Velarde-Ortiz, Raffet
2012-09-04
A method of manufacturing a sturdy and pliable fibrous hemostatic dressing by making fibers that maximally expose surface area per unit weight of active ingredients as a means for aiding in the clot forming process and as a means of minimizing waste of active ingredients. The method uses a rotating object to spin off a liquid biocompatible fiber precursor, which is added at its center. Fibers formed then deposit on a collector located at a distance from the rotating object creating a fiber layer on the collector. An electrical potential difference is maintained between the rotating disk and the collector. Then, a liquid procoagulation species is introduced at the center of the rotating disk such that it spins off the rotating disk and coats the fibers.
A Z-axis recumbent rotating device for use in parabolic flight
NASA Technical Reports Server (NTRS)
Graybiel, A.; Miller, E. F., II
1976-01-01
A prototype apparatus for exposing persons to rotation about their Z-axis in parabolic flight is described. Although it resembles earth-horizontal axis devices, added features are its strength and portability, and the fiber glass 'couch' with adjustable elements providing support and restraint. Even under ground-based conditions, this device provides unique opportunities for investigations involving not only canalicular and macular mechanoreceptors, but also touch, pressure, and kinesthetic receptor systems.
Towards mid-infrared fiber-optic devices and systems for sensing, mapping and imaging
NASA Astrophysics Data System (ADS)
Jayasuriya, D.; Wilson, B.; Furniss, D.; Tang, Z.; Barney, E.; Benson, T. M.; Seddon, A. B.
2016-03-01
Novel chalcogenide glass-based fiber opens up the mid-infrared (MIR) range for real-time monitoring and control in medical diagnostics and chemical processing. Fibers with long wavelength cut-off are of interest here. Sulfide, selenide and telluride based chalcogenide glass are candidates, but there are differences in their glass forming region, thermal stability and in the short and long wavelength cut-off positions. In general sulfide and selenide glasses have greater glass stability, but shorter long-wavelength cut-off edge, compared to telluride glasses; selenide-telluride glasses are a good compromise. Low optical loss selenide-telluride based long wavelength fibers could play a substantial role in improving medical diagnostic systems, chemical sensing, and processing, and in security and agriculture. For biological tissue, the molecular finger print lies between ~3-15 μm wavelengths in the MIR region. Using MIR spectral mapping, information about diseased tissue may be obtained with improved accuracy and in vivo using bright broadband MIR super-continuum generation (SCG) fiber sources and low optical loss fiber for routing. The Ge-As-Se-Te chalcogenide glass system is a potential candidate for both MIR SCG and passive-routing fiber, with good thermal stability, wide intrinsic transparency from ~1.5 to 20 μm and low phonon energy. This paper investigates Ge-As-Se-Te glass system pairs for developing high numerical aperture (NA) small-core, step-index optical fiber for MIR SCG and low NA passive step-index optical fiber for an in vivo fiber probe. Control of fiber geometry of small-core optical fiber and methods of producing the glass material are also included in this paper.
Unidirectional Core-Shell Hybrids for Concrete Reinforcement - A preliminary Study
1994-02-01
angle with respect to the rebar longitudinal axis. 14. SUBJECT TERMS 115. WNUMER OF PAGES FRP, rebar , concrete , fibers, carbon fibers, glass fibers...structures. The main cause of deterioration is concrete cracking and corrosion of steel reinforcement exposed to the marine environment and aggressive...agents such as deicing salts for bridges and pavements . To prevent this corrosion , galvanized and epoxy-coated steel reinforcing bars are currently being
Clad fiber capacitor and method of making same
Tuncer, Enis
2013-11-26
A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; a ductile, electrically conductive sleeve positioned over the cladding. One or more of the preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.
Clad fiber capacitor and method of making same
Tuncer, Enis
2012-12-11
A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.
Gallagher, Philip M; Touchberry, Chad D; Teson, Kelli; McCabe, Everlee; Tehel, Michelle; Wacker, Michael J
2013-05-01
The effects of resistance exercise on fiber-type-specific expression of insulin-like growth factor I receptor (IGF-1R) and glucose transporter 4 (GLUT4) was determined in 6 healthy males. The expression of both genes increased in Type I fibers (p < 0.05), but only GLUT4 increased (p < 0.05) in Type II fibers. These data demonstrates that an acute bout of resistance exercise can up-regulate mechanisms of glucose uptake in slow and fast-twitch fibers, but the IGF signaling axis may not be as effective in fast-twitch fibers.
NASA Astrophysics Data System (ADS)
Miao, Yinping; Ma, Xixi; He, Yong; Zhang, Hongmin; Yang, Xiaoping; Yao, Jianquan
2017-01-01
An all-solid waveguide array fiber (WAF) is one kind of special microstructured optical fiber in which the higher-index rods are periodically distributed in a low-index silica host to form the transverse two-dimensional photonic crystal. In this paper, one kind of multidimensional microstructured optical fiber photonic device is proposed by using electric arc discharge method to fabricate periodic tapers along the fiber axis. By tuning the applied magnetic field intensity, the propagation characteristics of the all-solid WAF integrated with magnetic fluid are periodically modulated in both radial and axial directions. Experimental results show that the wavelength changes little while the transmission loss increases for an applied magnetic field intensity range from 0 to 500 Oe. The magnetic field sensitivity is 0.055 dB/Oe within the linear range from 50 to 300 Oe. Meanwhile, the all-solid WAF has very similar thermal expansion coefficient for both high- and low-refractive index glasses, and thermal drifts have a little effect on the mode profile. The results show that the temperature-induced transmission loss is <0.3 dB from 26°C to 44°C. Further tuning coherent coupling of waveguides and controlling light propagation, the all-solid WAF would be found great potential applications to develop new micro-nano photonic devices for optical communications and optical sensing applications.
NASA Technical Reports Server (NTRS)
Myrick, Thomas M. (Inventor)
2003-01-01
A mechanism for breaking off and retaining a core sample of a drill drilled into a ground substrate has an outer drill tube and an inner core break-off tube sleeved inside the drill tube. The break-off tube breaks off and retains the core sample by a varying geometric relationship of inner and outer diameters with the drill tube. The inside diameter (ID) of the drill tube is offset by a given amount with respect to its outer diameter (OD). Similarly, the outside diameter (OD) of the break-off tube is offset by the same amount with respect to its inner diameter (ID). When the break-off tube and drill tube are in one rotational alignment, the two offsets cancel each other such that the drill can operate the two tubes together in alignment with the drill axis. When the tubes are rotated 180 degrees to another positional alignment, the two offsets add together causing the core sample in the break-off tube to be displaced from the drill axis and applying shear forces to break off the core sample.
Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6
NASA Astrophysics Data System (ADS)
Lin, Zhisheng; Lohmann, Mark; Ali, Zulfikhar A.; Tang, Chi; Li, Junxue; Xing, Wenyu; Zhong, Jiangnan; Jia, Shuang; Han, Wei; Coh, Sinisa; Beyermann, Ward; Shi, Jing
2018-05-01
The anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy-axis direction of the magnetization is inferred from the AMR saturation feature in the presence and absence of an applied pressure. At zero applied pressure, the easy axis is along the c direction or perpendicular to the layer. Upon application of a hydrostatic pressure > 1 GPa, the uniaxial anisotropy switches to easy-plane anisotropy which drives the equilibrium magnetization from the c axis to the a b plane at zero magnetic field, which amounts to a giant magnetic anisotropy energy change (> 100%). As the temperature is increased across the Curie temperature, the characteristic AMR effect gradually decreases and disappears. Our first-principles calculations confirm the giant magnetic anisotropy energy change with moderate pressure and assign its origin to the increased off-site spin-orbit interaction of Te atoms due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation transition is very rare in three-dimensional ferromagnets, but it may be common to other layered ferromagnets with similar crystal structures to CGT, and therefore offers a unique way to control magnetic anisotropy.
Conformal Stereotactic Radiosurgery With Multileaf Collimation.
1992-01-01
Hartmann, W. Schlegel, V. Sturm, B. Kober, 0. Pastyr, W.J. Lorenz, "Cerebral radiation surgery using moving field irradiation at a linear ac ...Kober, 0. Pastyr, W.J. Lorenz, "Cerebral radiation surgery using moving field irradiation at a linear ac - celerator facility," Int. J. Radiation...scattered photons), off-axis ratios (for points off of the central axis of the incident beam), percent depth dose or tissue maximum ratio (to ac - count for
Fabrication, Testing, Coating and Alignment of Fast Segmented Optics
2006-05-25
mirror segment, a 100 mm thick Zerodur mirror blank was purchased from Schott. Figure 2 shows the segment and its support for polishing and testing in...Polishing large off-axis segments of fast primary mirrors 2. Testing large segments in an off-axis geometry 3. Alignment of multiple segments of a large... mirror 4. Coatings that reflect high-intensity light without distorting the substrate These technologies are critical because of several unique
Thin glass shells for AO: from plano to off-axis aspherics
NASA Astrophysics Data System (ADS)
Harel, Emmanuelle; Anretar, Alain; Antelme, Jean-Pierre; Caillon, Stéphane; Dussourd, Adrien; Foucaud, Guillaume; Jaury, Hervé; Roure, Océane; William, Jean-Philippe; Wuillaume, Philippe; Ruch, Eric; Geyl, Roland
2016-07-01
Reosc has been working on thin glass shells for many years and was recently selected by ESO for the production of the E-ELT M4 mirror thin glass shells. Previously Reosc also produced the aspheric thin shell for the VLT-M2 AO Facility. Based on this experience we will discuss how off axis thin glass shells can be made for the next generation AO systems like the GMT one.
Off-axis impact of unidirectional composites with cracks: Dynamic stress intensification
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1979-01-01
The dynamic response of unidirectional composites under off axis (angle loading) impact is analyzed by assuming that the composite contains an initial flaw in the matrix material. The analytical method utilizes Fourier transform for the space variable and Laplace transform for the time variable. The off axis impact is separated into two parts, one being symmetric and the other skew-symmetric with reference to the crack plane. Transient boundary conditions of normal and shear tractions are applied to a crack embedded in the matrix of the unidirectional composite. The two boundary conditions are solved independently and the results superimposed. Mathematically, these conditions reduce the problem to a system of dual integral equations which are solved in the Laplace transform plane for the transformation of the dynamic stress intensity factor. The time inversion is carried out numerically for various combinations of the material properties of the composite and the results are displayed graphically.
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Paloski, W. H. (Principal Investigator)
2002-01-01
The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.
A dual-porosity reactive-transport model of off-axis hydrothermal systems
NASA Astrophysics Data System (ADS)
Farahat, N. X.; Abbot, D. S.; Archer, D. E.
2017-12-01
We built a dual-porosity reactive-transport 2D numerical model of off-axis pillow basalt alteration. An "outer chamber" full of porous glassy material supports significant seawater flushing, and an "inner chamber", which represents the more crystalline interior of a pillow, supports diffusive alteration. Hydrothermal fluids in the two chambers interact, and the two chambers are coupled to 2D flows. In a few million years of low-temperature alteration, the dual-porosity model predicts progressive stages of alteration that have been observed in drilled crust. A single-porosity model, with all else being equal, does not predict alteration stages as well. The dual-chamber model also does a better job than the single-chamber model at predicting the types of minerals expected in off-axis environments. We validate the model's ability to reproduce observations by configuring it to represent a thoroughly-studied transect of the Juan de Fuca Ridge eastern flank.
Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali
2018-01-15
A dual-off-axis pumping scheme is presented to generate wavelength-tunable high-order Hermite-Gaussian (HG) modes in Yb:CaGdAlO 4 lasers. The mode and wavelength can be actively controlled by the off-axis displacements and pump power. The purities of the output HG modes are quantified by intensity distributions and the measured M 2 values. The highest order reaches m=15 for stable HG m,0 mode, and wavelength-tunable width is about 10 nm. Moreover, through externally converting the HG m,0 modes, the vortex beams carrying orbital angular momentum (OAM) with a large OAM-tunable range from ±1ℏ to ±15ℏ are produced. This work is effective for largely scaling the spectral and OAM tunable ranges of optical vortex beams.
Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter
Das, Bhargab; Yelleswarapu, Chandra S; Rao, DVGLN
2012-01-01
We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography. PMID:23109732
Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing.
Sha, Bei; Liu, Xuan; Ge, Xiao-Lu; Guo, Cheng-Shan
2014-09-22
A method for fast reconstruction of off-axis digital holograms based on digital multiplexing algorithm is proposed. Instead of the existed angular multiplexing (AM), the new method utilizes a spatial multiplexing (SM) algorithm, in which four off-axis holograms recorded in sequence are synthesized into one SM function through multiplying each hologram with a tilted plane wave and then adding them up. In comparison with the conventional methods, the SM algorithm simplifies two-dimensional (2-D) Fourier transforms (FTs) of four N*N arrays into a 1.25-D FTs of one N*N arrays. Experimental results demonstrate that, using the SM algorithm, the computational efficiency can be improved and the reconstructed wavefronts keep the same quality as those retrieved based on the existed AM method. This algorithm may be useful in design of a fast preview system of dynamic wavefront imaging in digital holography.
Averaging scheme for atomic resolution off-axis electron holograms.
Niermann, T; Lehmann, M
2014-08-01
All micrographs are limited by shot-noise, which is intrinsic to the detection process of electrons. For beam insensitive specimen this limitation can in principle easily be circumvented by prolonged exposure times. However, in the high-resolution regime several instrumental instabilities limit the applicable exposure time. Particularly in the case of off-axis holography the holograms are highly sensitive to the position and voltage of the electron-optical biprism. We present a novel reconstruction algorithm to average series of off-axis holograms while compensating for specimen drift, biprism drift, drift of biprism voltage, and drift of defocus, which all might cause problematic changes from exposure to exposure. We show an application of the algorithm utilizing also the possibilities of double biprism holography, which results in a high quality exit-wave reconstruction with 75 pm resolution at a very high signal-to-noise ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.
Design of off-axis four-mirror optical system without obscuration based on free-form surface
NASA Astrophysics Data System (ADS)
Huang, Chenxu; Liu, Xin
2015-11-01
With the development of modern military technology, the requirements of airborne electro-optical search and tracking system are increasing on target detection and recognition. However, traditional off-axis three-mirror system couldn't meet the requirements for reducing weight and compacting size in some circumstances. Based on Seidel aberration theory, by restricting the aberration functions, the optical system could achieve initial construction parameters. During the designing process, decenters and tilts of mirrors were adjusted continuously to eliminate the obscurations. To balance off-axis aberration and increase angle of view, the free-form mirror was introduced into the optical system. Then an unobstructed optical system with effective focal length of 100 mm, FOV of 16°×16°, and relative aperture as F/7 is designed. The results show that the system structure is compact, with imaging qualities approaching diffraction limit.
Aligning Arrays of Lenses and Single-Mode Optical Fibers
NASA Technical Reports Server (NTRS)
Liu, Duncan
2004-01-01
A procedure now under development is intended to enable the precise alignment of sheet arrays of microscopic lenses with the end faces of a coherent bundle of as many as 1,000 single-mode optical fibers packed closely in a regular array (see Figure 1). In the original application that prompted this development, the precise assembly of lenses and optical fibers serves as a single-mode spatial filter for a visible-light nulling interferometer. The precision of alignment must be sufficient to limit any remaining wavefront error to a root-mean-square value of less than 1/10 of a wavelength of light. This wavefront-error limit translates to requirements to (1) ensure uniformity of both the lens and fiber arrays, (2) ensure that the lateral distance from the central axis of each lens and the corresponding optical fiber is no more than a fraction of a micron, (3) angularly align the lens-sheet planes and the fiber-bundle end faces to within a few arc seconds, and (4) axially align the lenses and the fiber-bundle end faces to within tens of microns of the focal distance. Figure 2 depicts the apparatus used in the alignment procedure. The beam of light from a Zygo (or equivalent) interferometer is first compressed by a ratio of 20:1 so that upon its return to the interferometer, the beam will be magnified enough to enable measurement of wavefront quality. The apparatus includes relay lenses that enable imaging of the arrays of microscopic lenses in a charge-coupled-device (CCD) camera that is part of the interferometer. One of the arrays of microscopic lenses is mounted on a 6-axis stage, in proximity to the front face of the bundle of optical fibers. The bundle is mounted on a separate stage. A mirror is attached to the back face of the bundle of optical fibers for retroreflection of light. When a microscopic lens and a fiber are aligned with each other, the affected portion of the light is reflected back by the mirror, recollimated by the microscopic lens, transmitted through the relay lenses and the beam compressor/expander, then split so that half goes to a detector and half to the interferometer. The output of the detector is used as a feedback control signal for the six-axis stage to effect alignment.
Fiber-optic three axis magnetometer prototype development
NASA Technical Reports Server (NTRS)
Wang, Thomas D.; Mccomb, David G.; Kingston, Bradley R.; Dube, C. Michael; Poehls, Kenneth A.; Wanser, Keith
1989-01-01
The goal of this research program was to develop a high sensitivity, fiber optic, interferometric, three-axis magnetometer for interplanetary spacecraft applications. Dynamics Technology, Inc. (DTI) has successfully integrated a low noise, high bandwidth interferometer with high sensitivity metallic glass transducers. Also, DTI has developed sophisticated signal processing electronics and complete data acquisition, filtering, and display software. The sensor was packaged in a compact, low power and weight unit which facilitates deployment. The magnetic field sensor had subgamma sensitivity and a dynamic range of 10(exp 5) gamma in a 10 Hz bandwidth. Furthermore, the vector instrument exhibited the lowest noise level when only one axis was in operation. A system noise level of 1 gamma rms was observed in a 1 Hz bandwidth. However, with the other two channels operating, the noise level increased by about one order of magnitude. Higher system noise was attributed to cross-channel interference among the dither fields.
Optimization of coronagraph design for segmented aperture telescopes
NASA Astrophysics Data System (ADS)
Jewell, Jeffrey; Ruane, Garreth; Shaklan, Stuart; Mawet, Dimitri; Redding, Dave
2017-09-01
The goal of directly imaging Earth-like planets in the habitable zone of other stars has motivated the design of coronagraphs for use with large segmented aperture space telescopes. In order to achieve an optimal trade-off between planet light throughput and diffracted starlight suppression, we consider coronagraphs comprised of a stage of phase control implemented with deformable mirrors (or other optical elements), pupil plane apodization masks (gray scale or complex valued), and focal plane masks (either amplitude only or complex-valued, including phase only such as the vector vortex coronagraph). The optimization of these optical elements, with the goal of achieving 10 or more orders of magnitude in the suppression of on-axis (starlight) diffracted light, represents a challenging non-convex optimization problem with a nonlinear dependence on control degrees of freedom. We develop a new algorithmic approach to the design optimization problem, which we call the "Auxiliary Field Optimization" (AFO) algorithm. The central idea of the algorithm is to embed the original optimization problem, for either phase or amplitude (apodization) in various planes of the coronagraph, into a problem containing additional degrees of freedom, specifically fictitious "auxiliary" electric fields which serve as targets to inform the variation of our phase or amplitude parameters leading to good feasible designs. We present the algorithm, discuss details of its numerical implementation, and prove convergence to local minima of the objective function (here taken to be the intensity of the on-axis source in a "dark hole" region in the science focal plane). Finally, we present results showing application of the algorithm to both unobscured off-axis and obscured on-axis segmented telescope aperture designs. The application of the AFO algorithm to the coronagraph design problem has produced solutions which are capable of directly imaging planets in the habitable zone, provided end-to-end telescope system stability requirements can be met. Ongoing work includes advances of the AFO algorithm reported here to design in additional robustness to a resolved star, and other phase or amplitude aberrations to be encountered in a real segmented aperture space telescope.
Chauvin, K McManus; Asner, G P; Martin, R E; Kress, W J; Wright, S J; Field, C B
2018-03-01
Trade-offs among plant functional traits indicate diversity in plant strategies of growth and survival. The leaf economics spectrum (LES) reflects a trade-off between short-term carbon gain and long-term leaf persistence. A related trade-off, between foliar growth and anti-herbivore defense, occurs among plants growing in contrasting resource regimes, but it is unclear whether this trade-off is maintained within plant communities, where resource gradients are minimized. The LES and the growth-defense trade-off involve related traits, but the extent to which these trade-off dimensions are correlated is poorly understood. We assessed the relationship between leaf economic and anti-herbivore defense traits among sunlit foliage of 345 canopy trees in 83 species on Barro Colorado Island, Panama. We quantified ten traits related to resource allocation and defense, and identified patterns of trait co-variation using multivariate ordination. We tested whether traits and ordination axes were correlated with patterns of phylogenetic relatedness, juvenile demographic trade-offs, or topo-edaphic variation. Two independent axes described ~ 60% of the variation among canopy trees. Axis 1 revealed a trade-off between leaf nutritional and structural investment, consistent with the LES. Physical defense traits were largely oriented along this axis. Axis 2 revealed a trade-off between investments in phenolic defenses versus other foliar defenses, which we term the leaf defense spectrum. Phylogenetic relationships and topo-edaphic variation largely did not explain trait co-variation. Our results suggest that some trade-offs among the growth and defense traits of outer-canopy trees may be captured by the LES, while others may occur along additional resource allocation dimensions.
NASA Astrophysics Data System (ADS)
Li, Xi; Glisic, Branko
2016-04-01
By definition, the neutral axis of a loaded composite beam structure is the curve along which the section experiences zero bending strain. When no axial loading is present, the location of the neutral axis passes through the centroid of stiffness of the beam cross-section. In the presence of damage, the centroid of stiffness, as well as the neutral axis, shift from the healthy position. The concept of neutral axis can be widely applied to all beam-like structures. According to literature, a change in location of the neutral axis can be associated with damage in the corresponding cross-section. In this paper, the movement of neutral axis near locations of minute damage in a composite bridge structure was studied using finite element analysis and experimental results. The finite element model was developed based on a physical scale model of a composite simply-supported structure with controlled minute damage in the reinforced concrete deck. The structure was equipped with long-gauge fiber optic strain and temperature sensors at a healthy reference location as well as two locations of damage. A total of 12 strain sensors were installed during construction and used to monitor the structure during various loading events. This paper aims to explain previous experimental results which showed that the observed positions of neutral axis near damage locations were higher than the predicted healthy locations in some loading events. Analysis has shown that finite element analysis has potential to simulate and explain the physical behavior of the test structure.
Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle
NASA Astrophysics Data System (ADS)
Lian, Kun; Heng, Khee-Hang
2001-09-01
This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.
Izewska, Joanna; Georg, Dietmar; Bera, Pranabes; Thwaites, David; Arib, Mehenna; Saravi, Margarita; Sergieva, Katia; Li, Kaibao; Yip, Fernando Garcia; Mahant, Ashok Kumar; Bulski, Wojciech
2007-07-01
A strategy for national TLD audit programmes has been developed by the International Atomic Energy Agency (IAEA). It involves progression through three sequential dosimetry audit steps. The first step audits are for the beam output in reference conditions for high-energy photon beams. The second step audits are for the dose in reference and non-reference conditions on the beam axis for photon and electron beams. The third step audits involve measurements of the dose in reference, and non-reference conditions off-axis for open and wedged symmetric and asymmetric fields for photon beams. Through a co-ordinated research project the IAEA developed the methodology to extend the scope of national TLD auditing activities to more complex audit measurements for regular fields. Based on the IAEA standard TLD holder for high-energy photon beams, a TLD holder was developed with horizontal arm to enable measurements 5cm off the central axis. Basic correction factors were determined for the holder in the energy range between Co-60 and 25MV photon beams. New procedures were developed for the TLD irradiation in hospitals. The off-axis measurement methodology for photon beams was tested in a multi-national pilot study. The statistical distribution of dosimetric parameters (off-axis ratios for open and wedge beam profiles, output factors, wedge transmission factors) checked in 146 measurements was 0.999+/-0.012. The methodology of TLD audits in non-reference conditions with a modified IAEA TLD holder has been shown to be feasible.
Cheremkhin, Pavel A; Kurbatova, Ekaterina A
2018-01-01
Compression of digital holograms can significantly help with the storage of objects and data in 2D and 3D form, its transmission, and its reconstruction. Compression of standard images by methods based on wavelets allows high compression ratios (up to 20-50 times) with minimum losses of quality. In the case of digital holograms, application of wavelets directly does not allow high values of compression to be obtained. However, additional preprocessing and postprocessing can afford significant compression of holograms and the acceptable quality of reconstructed images. In this paper application of wavelet transforms for compression of off-axis digital holograms are considered. The combined technique based on zero- and twin-order elimination, wavelet compression of the amplitude and phase components of the obtained Fourier spectrum, and further additional compression of wavelet coefficients by thresholding and quantization is considered. Numerical experiments on reconstruction of images from the compressed holograms are performed. The comparative analysis of applicability of various wavelets and methods of additional compression of wavelet coefficients is performed. Optimum parameters of compression of holograms by the methods can be estimated. Sizes of holographic information were decreased up to 190 times.
Improved particle position accuracy from off-axis holograms using a Chebyshev model.
Öhman, Johan; Sjödahl, Mikael
2018-01-01
Side scattered light from micrometer-sized particles is recorded using an off-axis digital holographic setup. From holograms, a volume is reconstructed with information about both intensity and phase. Finding particle positions is non-trivial, since poor axial resolution elongates particles in the reconstruction. To overcome this problem, the reconstructed wavefront around a particle is used to find the axial position. The method is based on the change in the sign of the curvature around the true particle position plane. The wavefront curvature is directly linked to the phase response in the reconstruction. In this paper we propose a new method of estimating the curvature based on a parametric model. The model is based on Chebyshev polynomials and is fit to the phase anomaly and compared to a plane wave in the reconstructed volume. From the model coefficients, it is possible to find particle locations. Simulated results show increased performance in the presence of noise, compared to the use of finite difference methods. The standard deviation is decreased from 3-39 μm to 6-10 μm for varying noise levels. Experimental results show a corresponding improvement where the standard deviation is decreased from 18 μm to 13 μm.
Fair comparison of complexity between a multi-band CAP and DMT for data center interconnects.
Wei, J L; Sanchez, C; Giacoumidis, E
2017-10-01
We present, to the best of our knowledge, the first known detailed analysis and fair comparison of complexity of a 56 Gb/s multi-band carrierless amplitude and phase (CAP) and discrete multi-tone (DMT) over 80 km dispersion compensation fiber-free single-mode fiber links based on intensity modulation and direct detection for data center interconnects. We show that the matched finite impulse response filters and inverse fast Fourier transform (IFFT)/FFT take the majority of the complexity of the multi-band CAP and DMT, respectively. The choice of the multi-band CAP sub-band count and the DMT IFFT/FFT size makes significant impact on the system complexity or performance, and trade-off must be considered.
Antony, Bhavna J; Stetson, Paul F; Abramoff, Michael D; Lee, Kyungmoo; Colijn, Johanna M; Buitendijk, Gabriëlle H S; Klaver, Caroline C W; Roorda, Austin; Lujan, Brandon J
2015-07-01
Off-axis acquisition of spectral domain optical coherence tomography (SDOCT) images has been shown to increase total retinal thickness (TRT) measurements. We analyzed the reproducibility of TRT measurements obtained using either the retinal pigment epithelium (RPE) or Bruch's membrane as reference surfaces in off-axis scans intentionally acquired through multiple pupil positions. Five volumetric SDOCT scans of the macula were obtained from one eye of 25 normal subjects. One scan was acquired through a central pupil position, while subsequent scans were acquired through four peripheral pupil positions. The internal limiting membrane, the RPE, and Bruch's membrane were segmented using automated approaches. These volumes were registered to each other and the TRT was evaluated in 9 Early Treatment of Diabetic Retinopathy Study (ETDRS) regions. The reproducibility of the TRT obtained using the RPE was computed using the mean difference, coefficient of variation (CV), and the intraclass correlation coefficient (ICC), and compared to those obtained using Bruch's membrane as the reference surface. A secondary set of 1545 SDOCT scans was also analyzed in order to gauge the incidence of off-axis scans in a typical acquisition environment. The photoreceptor tips were dimmer in off-axis images, which affected the RPE segmentation. The overall mean TRT difference and CV obtained using the RPE were 7.04 ± 4.31 μm and 1.46%, respectively, whereas Bruch's membrane was 1.16 ± 1.00 μm and 0.32%, respectively. The ICCs at the subfoveal TRT were 0.982 and 0.999, respectively. Forty-one percent of the scans in the secondary set showed large tilts (> 6%). RPE segmentation is confounded by its proximity to the interdigitation zone, a structure strongly affected by the optical Stiles-Crawford effect. Bruch's membrane, however, is unaffected leading to a more robust segmentation that is less dependent upon pupil position. The way in which OCT images are acquired can independently affect the accuracy of automated retinal thickness measurements. Assessment of scan angle in a clinical dataset demonstrates that off-axis scans are common, which emphasizes the need for caution when relying on automated thickness parameters when this component of scan acquisition is not controlled for.
PREVAIL: IBM's e-beam technology for next generation lithography
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans C.
2000-07-01
PREVAIL - Projection Reduction Exposure with Variable Axis Immersion Lenses represents the high throughput e-beam projection approach to NGL which IBM is pursuing in cooperation with Nikon Corporation as alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam so that the beam effectively remains on axis. The resist images obtained with the Proof-of-Concept (POC) system demonstrate that PREVAIL effectively eliminates off- axis aberrations affecting both resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulomb interaction.
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans
1999-12-01
Projection reduction exposure with variable axis immersion lenses (PREVAIL) represents the high throughput e-beam projection approach to next generation lithography (NGL), which IBM is pursuing in cooperation with Nikon Corporation as an alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam, so that the beam effectively remains on axis. The resist images obtained with the proof-of-concept (POC) system demonstrate that PREVAIL effectively eliminates off-axis aberrations affecting both the resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield, and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulombinteraction.
NASA Technical Reports Server (NTRS)
Burkholder, R. J.; Chuang, C. W.; Pathak, P. H.
1987-01-01
The EM backscatter from a two-dimensional S-shaped inlet cavity is analyzed using three different techniques, namely a hybrid combination of asymptotic high frequency and modal methods, an integral equation method, and the geometrical optics ray method, respectively. This inlet has a thin absorber coating on its perfectly conducting inner walls and the planar interior termination is made perfectly conducting. The effect of the absorber on the inner wall is treated via a perturbation scheme in the hybrid approach where it is assumed that the loss is sufficiently small for the method to be valid. The results are compared with the backscatter from a straight inlet cavity to evaluate the effect of offsetting the termination in the S-bend configuration such that it is not visible from the open end of the inlet. The envelope of the backscatter pattern for the straight inlet is always seen to peak around the forward axis due to the large return from the directly visible termination, and the pattern envelope tapers off away from the forward axis. Offsetting the termination causes the envelope of the backscatter pattern to flatten out, thereby reducing the return near the forward axis by several dB. The absorber coating reduces the pattern level of the straight inlet in directions away from the forward axis but has little effect on the peak near the axis; furthermore, the absorber coating is seen to consistently reduce the backscatter from the S-bend inlet for almost all incidence angles. The hybrid method gives excellent agreement with experimental data and with the integral equation solution, whereas, the geometrical optics ray tracing method is able to generally predict the average of the bachscatter pattern but not the pattern details.
A MEMS torsion magnetic sensor with reflective blazed grating integration
NASA Astrophysics Data System (ADS)
Long, Liang; Zhong, Shaolong
2016-07-01
A novel magnetic sensor based on a permanent magnet and blazed grating is presented in this paper. The magnetic field is detected by measuring the diffracted wavelength of the blazed grating which is changed by the torsion motion of a torsion sensitive micro-electromechanical system (MEMS) structure with a permanent magnet attached. A V-shape grating structure is obtained by wet etching on a (1 0 0) SOI substrate. When the magnet is magnetized in different directions, the in-plane or out-of-plane magnetic field is detected by a sensor. The MEMS magnetic sensor with a permanent magnet is fabricated after analytical design and bulk micromachining processes. The magnetic-sensing capability of the sensor is tested by fiber-optic detection system. The result shows the sensitivities of the in-plane and out-of-plane magnetic fields are 3.6 pm μT-1 and 5.7 pm μT-1, respectively. Due to utilization of the permanent magnet and fiber-optic detection, the sensor shows excellent capability of covering the high-resolution detection of low-frequency signals. In addition, the sensitive direction of the magnetic sensor can be easily switched by varying the magnetized direction of the permanent magnet, which offers a simple way to achieve tri-axis magnetic sensor application.
Fiber optics welder having movable aligning mirror
Higgins, Robert W.; Robichaud, Roger E.
1981-01-01
A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.
Higgins, R.W.; Robichaud, R.E.
A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.