Sample records for off-beam cloud lidar

  1. Scattering of laser light - more than just smoke and mirrors

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Love, Stephen; Cahalan, Robert

    2004-01-01

    A short course on off-beam cloud lidar is given. Specific topics addressed include: motivation and goal of off-beam cloud lidar; diffusion physics; numeric amalysis; and validity of the diffusion approximation. A demo of the process is included.

  2. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging lidar

    NASA Astrophysics Data System (ADS)

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry; Ho, Cheng

    2002-09-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data on various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  3. THOR: Cloud Thickness from Off beam Lidar Returns

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; McGill, Matthew; Kolasinski, John; Varnai, Tamas; Yetzer, Ken

    2004-01-01

    Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z > 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.

  4. Cloud Thickness from Offbeam Returns (THOR) Validation Campaign on NASA's P3B Over the ARM/SGP

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Physical thickness of a cloud layer, sometimes multiple cloud layers, is a crucial controller of solar heating of the Earth- atmosphere system, which drives the convective processes that produce storm systems. Yet clouds of average optical thickness are opaque to conventional lidar, so their thickness is well estimated only by combining a lidar above and another below cloud, or a radar and lidar on the same side, dual facilities not widely available. Here we report initial observations of a new airborne multiple field of view lidar, capable of determining physical thickness of cloud layers from time signatures of off-beam returns from a I kHz micropulse lidar at 540 rim. For a single layer, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. This halo method requires cloud optical thickness exceeding 2, and improves with cloud thickness, thus complimenting conventional lidar, which cannot penetrate thick clouds. Results are presented from March 25, 2002, when THOR flew a butterfly pattern over the ARM site at 8.3 km, above a thin ice cloud at 5 km, and a thick boundary-layer stratus deck with top at 1.3 km, as shown by THOR channel 1, and a base at about 0.3 km as shown by the ground-based MPL. Additional information is included in the original extended abstract.

  5. Development of Multi-Field of view-Multiple-Scattering-Polarization Lidar : analysis of angular resolved backscattered signals

    NASA Astrophysics Data System (ADS)

    Makino, T.; Okamoto, H.; Sato, K.; Tanaka, K.; Nishizawa, T.; Sugimoto, N.; Matsui, I.; Jin, Y.; Uchiyama, A.; Kudo, R.

    2014-12-01

    We have developed a new type of ground-based lidar, Multi-Field of view-Multiple-Scattering-Polarization Lidar (MFMSPL), to analyze multiple scattering contribution due to low-level clouds. One issue of the ground based lidar is the limitation of optical thickness of about 3 due to the strong attenuation in the lidar signals so that only the cloud bottom part can be observed. In order to overcome the problem, we have proposed the MFMSPL that has been designed to observe similar degree of multiple scattering contribution expected from space-borne lidar CALIOP on CALIPSO satellite. The system consists of eight detectors; four telescopes for parallel channels and four for perpendicular channels. The four pairs of telescope have been mounted with four different off-beam angles, ranging from -5 to 35mrad, where the angle is defined as the one between the direction of laser beam and the direction of telescope. Consequently, similar large foot print (100m) as CALIOP can be achieved in the MFMSPL observations when the altitude of clouds is located at about 1km. The use of multi-field of views enables to measure depolarization ratio from optically thick clouds. The outer receivers attached with larger angles generally detect backscattered signals from clouds located at upper altitudes due to the enhanced multiple scattering compared with the inner receiver that detects signals only from cloud bottom portions. Therefore the information of cloud microphysics from optically thicker regions is expected by the MFMSPL observations compared with the conventional lidar with small FOV. The MFMSPL have been continuously operated in Tsukuba, Japan since June 2014.Initial analyses have indicated expected performances from the theoretical estimation by backward Monte-Carlo simulations. The depolarization ratio from deeper part of the clouds detected by the receiver with large off-beam angle showed much larger values than those from the one with small angle. The calibration procedures and summary of initial observations will be presented. The observed data obtained by the MFMSPL will be used to develop and evaluate the retrieval algorithms for cloud microphysics applied to the CALIOP data.

  6. Wide Angle Imaging Lidar (WAIL): Theory of Operation and Results from Cross-Platform Validation at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Polonsky, I. N.; Davis, A. B.; Love, S. P.

    2004-05-01

    WAIL was designed to determine physical and geometrical characteristics of optically thick clouds using the off-beam component of the lidar return that can be accurately modeled within the 3D photon diffusion approximation. The theory shows that the WAIL signal depends not only on the cloud optical characteristics (phase function, extinction and scattering coefficients) but also on the outer thickness of the cloud layer. This makes it possible to estimate the mean optical and geometrical thicknesses of the cloud. The comparison with Monte Carlo simulation demonstrates the high accuracy of the diffusion approximation for moderately to very dense clouds. During operation WAIL is able to collect a complete data set from a cloud every few minutes, with averaging over horizontal scale of a kilometer or so. In order to validate WAIL's ability to deliver cloud properties, the LANL instrument was deployed as a part of the THickness from Off-beam Returns (THOR) validation IOP. The goal was to probe clouds above the SGP CART site at night in March 2002 from below (WAIL and ARM instruments) and from NASA's P3 aircraft (carrying THOR, the GSFC counterpart of WAIL) flying above the clouds. The permanent cloud instruments we used to compare with the results obtained from WAIL were ARM's laser ceilometer, micro-pulse lidar (MPL), millimeter-wavelength cloud radar (MMCR), and micro-wave radiometer (MWR). The comparison shows that, in spite of an unusually low cloud ceiling, an unfavorable observation condition for WAIL's present configuration, cloud properties obtained from the new instrument are in good agreement with their counterparts obtained by other instruments. So WAIL can duplicate, at least for single-layer clouds, the cloud products of the MWR and MMCR together. But WAIL does this with green laser light, which is far more representative than microwaves of photon transport processes at work in the climate system.

  7. The link between outgoing longwave radiation and the altitude at which a spaceborne lidar beam is fully attenuated

    NASA Astrophysics Data System (ADS)

    Vaillant de Guélis, Thibault; Chepfer, Hélène; Noel, Vincent; Guzman, Rodrigo; Dubuisson, Philippe; Winker, David M.; Kato, Seiji

    2017-12-01

    According to climate model simulations, the changing altitude of middle and high clouds is the dominant contributor to the positive global mean longwave cloud feedback. Nevertheless, the mechanisms of this longwave cloud altitude feedback and its magnitude have not yet been verified by observations. Accurate, stable, and long-term observations of a metric-characterizing cloud vertical distribution that are related to the longwave cloud radiative effect are needed to achieve a better understanding of the mechanism of longwave cloud altitude feedback. This study shows that the direct measurement of the altitude of atmospheric lidar opacity is a good candidate for the necessary observational metric. The opacity altitude is the level at which a spaceborne lidar beam is fully attenuated when probing an opaque cloud. By combining this altitude with the direct lidar measurement of the cloud-top altitude, we derive the effective radiative temperature of opaque clouds which linearly drives (as we will show) the outgoing longwave radiation. We find that, for an opaque cloud, a cloud temperature change of 1 K modifies its cloud radiative effect by 2 W m-2. Similarly, the longwave cloud radiative effect of optically thin clouds can be derived from their top and base altitudes and an estimate of their emissivity. We show with radiative transfer simulations that these relationships hold true at single atmospheric column scale, on the scale of the Clouds and the Earth's Radiant Energy System (CERES) instantaneous footprint, and at monthly mean 2° × 2° scale. Opaque clouds cover 35 % of the ice-free ocean and contribute to 73 % of the global mean cloud radiative effect. Thin-cloud coverage is 36 % and contributes 27 % of the global mean cloud radiative effect. The link between outgoing longwave radiation and the altitude at which a spaceborne lidar beam is fully attenuated provides a simple formulation of the cloud radiative effect in the longwave domain and so helps us to understand the longwave cloud altitude feedback mechanism.

  8. Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System

    NASA Astrophysics Data System (ADS)

    Nouiraa, H.; Deschaud, J. E.; Goulettea, F.

    2016-06-01

    LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters for the corrected model, and we are able to give a confidence value for the calibration parameters found. Optimization results on both synthetic and real data are presented.

  9. A study of marine stratocumulus using lidar and other FIRE aircraft observations

    NASA Technical Reports Server (NTRS)

    Jensen, Jorgen B.; Lenschow, Donald H.

    1990-01-01

    The National Center for Atmospheric Research (NCAR) airborne infrared lidar system (NAILS) used in the 1987 First ISCCP Regional Experiment (FIRE) off the coast of California is a 10.6 microns wavelength carbon dioxide lidar system constructed by Ron Schwiesow and co-workers at NCAR. The lidar is particularly well suited for detailed observations of cloud shapes; i.e., height of cloud top (when flying above cloud and looking down) and cloud base (when flying below cloud and looking up) along the flight path. A brief summary of the lidar design characteristics is given. The lidar height resolution of plus or minus 3 m allows for the distance between the aircraft and cloud edge to be determined with this accuracy; however, the duration of the emitted pulse is approximately 3 microseconds, which corresponds to a 500 m pulse length. Therefore, variations in backscatter intensities within the clouds can normally not be resolved. Hence the main parameter obtainable from the lidar is distance to cloud; in some cases the cloud depth can also be determined. During FIRE the lidar was operational on 7 of the 10 Electra flights, and data were taken when the distance between cloud and aircraft (minimum range) was at least 500 m. The lidar was usually operated at 8 Hz, which at a flight speed of 100 m s(-1) translates into a horizontal resolution of about 12 m. The backscatter as function of time (equivalent to distance) for each laser pulse is stored in digital form on magnetic tape. Currently, three independent variables are available to the investigators on the FIRE Electra data tapes: lidar range to cloud, strength of return (relative power), and pulse width of return, which is related to penetration depth.

  10. Macrophysical Properties of Tropical Cirrus Clouds from the CALIPSO Satellite and from Ground-based Micropulse and Raman Lidars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-08-27

    Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia site are compared from the Cloud-Aerosol Lidar and In- frared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while themore » MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cy- cle is significantly different than zero only below about 11 km; where it is the opposite sign (i.e. more clouds during the daytime). For cirrus geomet- rical thickness, the MPL and CALIPSO observations agree well and both datasets have signficantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the vast im- provement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds as well as a valuable ground-based lidar dataset for the validation of CALIPSO observations and to help im- prove our understanding of tropical cirrus clouds.« less

  11. Cirrus properties deduced from CO2 lidar observations of zenith-enhanced backscatter from oriented crystals

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.

    1993-01-01

    Many lidar researchers have occasionally observed zenith-enhanced backscatter (ZEB) from middle and high clouds. The ZEB signature consists of strong backscatter when the lidar is pointed directly at zenith and a dramatic decline in backscatter as the zenith angle dips slightly off zenith. Mirror-like reflection from horizontal facets of oriented crystals (especially plates) is generally accepted as the cause. It was found during a 3-year observation program that approximately 50 percent of ice clouds had ZEB, regardless of cloud height. The orientation of crystals and the ZEB they cause are important to study and understand for several reasons. First, radiative transfer in clouds with oriented crystals is different than if the same particles were randomly oriented. Second, crystal growth depends partly on the orientation of the particles. Third, ZEB measurements may provide useful information about cirrus microphysical and radiative properties. Finally, the remarkable effect of ZEB on lidar signals should be understood in order to properly interpret lidar data.

  12. Ice particle morphology and microphysical properties of cirrus clouds inferred from combined CALIOP-IIR measurements

    NASA Astrophysics Data System (ADS)

    Saito, Masanori; Iwabuchi, Hironobu; Yang, Ping; Tang, Guanglin; King, Michael D.; Sekiguchi, Miho

    2017-04-01

    Ice particle morphology and microphysical properties of cirrus clouds are essential for assessing radiative forcing associated with these clouds. We develop an optimal estimation-based algorithm to infer cirrus cloud optical thickness (COT), cloud effective radius (CER), plate fraction including quasi-horizontally oriented plates (HOPs), and the degree of surface roughness from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Infrared Imaging Radiometer (IIR) on the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) platform. A simple but realistic ice particle model is used, and the relevant bulk optical properties are computed using state-of-the-art light-scattering computational capabilities. Rigorous estimation of uncertainties related to surface properties, atmospheric gases, and cloud heterogeneity is performed. The results based on the present method show that COTs are quite consistent with other satellite products and CERs essentially agree with the other counterparts. A 1 month global analysis for April 2007, in which CALIPSO off-nadir angle is 0.3°, shows that the HOP has significant temperature-dependence and is critical to the lidar ratio when cloud temperature is warmer than -40°C. The lidar ratio is calculated from the bulk optical properties based on the inferred parameters, showing robust temperature dependence. The median lidar ratio of cirrus clouds is 27-31 sr over the globe.

  13. Micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  14. Progress in interpreting CO2 lidar signatures to obtain cirrus microphysical and optical properties

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.

    1993-01-01

    One cloud/radiation issue at FIRE 2 that has been addressed by the CO2 lidar team is the zenith-enhanced backscatter (ZEB) signature from oriented crystals. A second topic is narrow-beam optical depth measurements using CO2 lidar. This paper describes the theoretical models we have developed for these phenomena and the data-processing algorithms derived from them.

  15. Finnish Meteorological Institute Doppler Lidar

    DOE Data Explorer

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  16. Improving Scene Classifications with Combined Active/Passive Measurements

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Rodier, S.; Vaughan, M.; McGill, M.

    The uncertainties in cloud and aerosol physical properties derived from passive instruments such as MODIS are not insignificant And the uncertainty increases when the optical depths decrease Lidar observations do much better for the thin clouds and aerosols Unfortunately space-based lidar measurements such as the one onboard CALIPSO satellites are limited to nadir view only and thus have limited spatial coverage To produce climatologically meaningful thin cloud and aerosol data products it is necessary to combine the spatial coverage of MODIS with the highly sensitive CALIPSO lidar measurements Can we improving the quality of cloud and aerosol remote sensing data products by extending the knowledge about thin clouds and aerosols learned from CALIPSO-type of lidar measurements to a larger portion of the off-nadir MODIS-like multi-spectral pixels To answer the question we studied the collocated Cloud Physics Lidar CPL with Modis-Airborne-Simulation MAS observations and established an effective data fusion technique that will be applied in the combined CALIPSO MODIS cloud aerosol product algorithms This technique performs k-mean and Kohonen self-organized map cluster analysis on the entire swath of MAS data as well as on the combined CPL MAS data at the nadir track Interestingly the clusters generated from the two approaches are almost identical It indicates that the MAS multi-spectral data may have already captured most of the cloud and aerosol scene types such as cloud ice water phase multi-layer information aerosols

  17. The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research

    NASA Technical Reports Server (NTRS)

    Platt, C. M.; Young, S. A.; Carswell, A. I.; Pal, S. R.; Mccormick, M. P.; Winker, D. M.; Delguasta, M.; Stefanutti, L.; Eberhard, W. L.; Hardesty, M.

    1994-01-01

    The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and April-July 1991, with intensive 30-day periods being selected within the two time intervals. Data are being archived at NASA Langley Research Center and, once there, are readily available to the international scientific community. This article describes the scale of the study in terms of its international involvement and in the range of data being recorded. Lidar observations of cloud height and backscatter coefficient have been taken from a number of ground-based stations spread around the globe. Solar shortwave and infrared longwave fluxes and infrared beam radiance have been measured at the surface wherever possible. The observations have been tailored to occur around the overpass times of the NOAA weather satellites. This article describes in some detail the various retrieval methods used to obtain results on cloud-base height, extinction coefficient, and infrared emittance, paying particular attention to the uncertainties involved.

  18. Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture

    PubMed Central

    Hämmerle, Martin; Höfle, Bernhard

    2014-01-01

    3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up. PMID:25521383

  19. A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment

    PubMed Central

    Liu, Jian; Liang, Huawei; Wang, Zhiling; Chen, Xiangcheng

    2015-01-01

    The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing. PMID:26404290

  20. Multi-wavelength dual polarisation lidar for monitoring precipitation process in the cloud seeding technique

    NASA Astrophysics Data System (ADS)

    Sudhakar, P.; Sheela, K. Anitha; Ramakrishna Rao, D.; Malladi, Satyanarayana

    2016-05-01

    In recent years weather modification activities are being pursued in many countries through cloud seeding techniques to facilitate the increased and timely precipitation from the clouds. In order to induce and accelerate the precipitation process clouds are artificially seeded with suitable materials like silver iodide, sodium chloride or other hygroscopic materials. The success of cloud seeding can be predicted with confidence if the precipitation process involving aerosol, the ice water balance, water vapor content and size of the seeding material in relation to aerosol in the cloud is monitored in real time and optimized. A project on the enhancement of rain fall through cloud seeding is being implemented jointly with Kerala State Electricity Board Ltd. Trivandrum, Kerala, India at the catchment areas of the reservoir of one of the Hydro electric projects. The dual polarization lidar is being used to monitor and measure the microphysical properties, the extinction coefficient, size distribution and related parameters of the clouds. The lidar makes use of the Mie, Rayleigh and Raman scattering techniques for the various measurement proposed. The measurements with the dual polarization lidar as above are being carried out in real time to obtain the various parameters during cloud seeding operations. In this paper we present the details of the multi-wavelength dual polarization lidar being used and the methodology to monitor the various cloud parameters involved in the precipitation process. The necessary retrieval algorithms for deriving the microphysical properties of clouds, aerosols characteristics and water vapor profiles are incorporated as a software package working under Lab-view for online and off line analysis. Details on the simulation studies and the theoretical model developed in this regard for the optimization of various parameters are discussed.

  1. Optical and morphological properties of Cirrus clouds determined by the high spectral resolution lidar during FIRE

    NASA Technical Reports Server (NTRS)

    Grund, Christian John; Eloranta, Edwin W.

    1990-01-01

    Cirrus clouds reflect incoming solar radiation and trap outgoing terrestrial radiation; therefore, accurate estimation of the global energy balance depends upon knowledge of the optical and physical properties of these clouds. Scattering and absorption by cirrus clouds affect measurements made by many satellite-borne and ground based remote sensors. Scattering of ambient light by the cloud, and thermal emissions from the cloud can increase measurement background noise. Multiple scattering processes can adversely affect the divergence of optical beams propagating through these clouds. Determination of the optical thickness and the vertical and horizontal extent of cirrus clouds is necessary to the evaluation of all of these effects. Lidar can be an effective tool for investigating these properties. During the FIRE cirrus IFO in Oct. to Nov. 1986, the High Spectral Resolution Lidar (HSRL) was operated from a rooftop site on the campus of the University of Wisconsin at Madison, Wisconsin. Approximately 124 hours of fall season data were acquired under a variety of cloud optical thickness conditions. Since the IFO, the HSRL data set was expanded by more than 63.5 hours of additional data acquired during all seasons. Measurements are presented for the range in optical thickness and backscattering phase function of the cirrus clouds, as well as contour maps of extinction corrected backscatter cross sections indicating cloud morphology. Color enhanced images of range-time indicator (RTI) displays a variety of cirrus clouds with approximately 30 sec time resolution are presented. The importance of extinction correction on the interpretation of cloud height and structure from lidar observations of optically thick cirrus are demonstrated.

  2. Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli

    2012-01-01

    An overview of space-based lidar systems is presented. from the first laser altimeter on APOLLO 15 mission in 1971 to the Mercury Laser Altimeter on MESSENGER mission currently in orbit, and those currently under development. Lidar, which stands for Light Detection And Ranging, is a powerful tool in remote sensing from space. Compared to radars, lidars operate at a much shorter wavelength with a much narrower beam and much smaller transmitter and receiver. Compared to passive remote sensing instruments. lidars carry their own light sources and can continue measuring day and night. and over polar regions. There are mainly two types of lidars depending on the types of measurements. lidars that are designed to measure the distance and properties of hard targets are often called laser rangers or laser altimeters. They are used to obtain the surface elevation and global shape of a planet from the laser pulse time-of-night and the spacecraft orbit position. lidars that are designed to measure the backscattering and absorption of a volume scatter, such as clouds and aerosols, are often just called lidars and categorized by their measurements. such as cloud and aerosol lidar, wind lidar, CO2 lidar, and so on. The advantages of space-based lidar systems over ground based lidars are the abilities of global coverage and continuous measurements.

  3. Light Detection and Ranging (LIDAR) From Space - Laser Altimeters

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli

    2016-01-01

    Light detection and ranging, or lidar, is like radar but atoptical wavelengths. The principle of operation and theirapplications in remote sensing are similar. Lidars havemany advantages over radars in instrument designs andapplications because of the much shorter laser wavelengthsand narrower beams. The lidar transmitters and receiveroptics are much smaller than radar antenna dishes. Thespatial resolution of lidar measurement is much finer thanthat of radar because of the much smaller footprint size onground. Lidar measurements usually give a better temporalresolution because the laser pulses can be much narrowerthan radio frequency (RF) signals. The major limitation oflidar is the ability to penetrate clouds and ground surfaces.

  4. Fusion of multi-temporal Airborne Snow Observatory (ASO) lidar data for mountainous vegetation ecosystems studies.

    NASA Astrophysics Data System (ADS)

    Ferraz, A.; Painter, T. H.; Saatchi, S.; Bormann, K. J.

    2016-12-01

    Fusion of multi-temporal Airborne Snow Observatory (ASO) lidar data for mountainous vegetation ecosystems studies The NASA Jet Propulsion Laboratory developed the Airborne Snow Observatory (ASO), a coupled scanning lidar system and imaging spectrometer, to quantify the spatial distribution of snow volume and dynamics over mountains watersheds (Painter et al., 2015). To do this, ASO weekly over-flights mountainous areas during snowfall and snowmelt seasons. In addition, there are additional flights in snow-off conditions to calculate Digital Terrain Models (DTM). In this study, we focus on the reliability of ASO lidar data to characterize the 3D forest vegetation structure. The density of a single point cloud acquisition is of nearly 1 pt/m2, which is not optimal to properly characterize vegetation. However, ASO covers a given study site up to 14 times a year that enables computing a high-resolution point cloud by merging single acquisitions. In this study, we present a method to automatically register ASO multi-temporal lidar 3D point clouds. Although flight specifications do not change between acquisition dates, lidar datasets might have significant planimetric shifts due to inaccuracies in platform trajectory estimation introduced by the GPS system and drifts of the IMU. There are a large number of methodologies that address the problem of 3D data registration (Gressin et al., 2013). Briefly, they look for common primitive features in both datasets such as buildings corners, structures like electric poles, DTM breaklines or deformations. However, they are not suited for our experiment. First, single acquisition point clouds have low density that makes the extraction of primitive features difficult. Second, the landscape significantly changes between flights due to snowfall and snowmelt. Therefore, we developed a method to automatically register point clouds using tree apexes as keypoints because they are features that are supposed to experience little change during winter season. We applied the method to 14 lidar datasets (12 snow-on and 2 snow-off) acquired over the Tuolumne River Basin (California) in the year of 2014. To assess the reliability of the merged point cloud, we analyze the quality of vegetation related products such as canopy height models (CHM) and vertical vegetation profiles.

  5. Study of mixed phase clouds over west Africa: Ice-crystal corner reflection effects observed with a two-wavelength polarization lidar

    NASA Astrophysics Data System (ADS)

    Veselovskii, Igor; Goloub, Philippe; Podvin, Thierry; Tanre, Didier; Ansmann, Albert; Korenskiy, Michail; Borovoi, Anatoli; Hu, Qiaoyun; Bovchaliuk, Valentin; Whiteman, David N.

    2018-04-01

    Lidar sounding is used for the analysis of possible contribution of the corner reflection (CR) effect to the total backscattering in case of ice crystals. Our study is based on observations of mixed phase clouds performed during the SHADOW campaign in Senegal. Mie-Raman lidar allows measurements at 355 nm and 532 nm at 43 dg. off-zenith angle, so the extinction and backscattering Ångström exponents can be evaluated. In some measurements we observed the positive values of backscattering Ångström exponent, which can be attributed to the corner reflection by horizontally oriented ice plates.

  6. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering

    USGS Publications Warehouse

    DeWitt, Jessica D.; Warner, Timothy A.; Chirico, Peter G.; Bergstresser, Sarah E.

    2017-01-01

    For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.

  7. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  8. Challenges in the Development of a Self-Calibrating Network of Ceilometers.

    NASA Astrophysics Data System (ADS)

    Hervo, Maxime; Wagner, Frank; Mattis, Ina; Baars, Holger; Haefele, Alexander

    2015-04-01

    There are more than 700 Automatic Lidars and Ceilometers (ALCs) currently operating in Europe. Modern ceilometers can do more than simply measure the cloud base height. They can also measure aerosol layers like volcanic ash, Saharan dust or aerosols within the planetary boundary layer. In the frame of E-PROFILE, which is part of EUMETNET, a European network of automatic lidars and ceilometers will be set up exploiting this new capability. To be able to monitor the evolution of aerosol layers over a large spatial scale, the measurements need to be consistent from one site to another. Currently, most of the instruments do not provide calibrated, only relative measurements. Thus, it is necessary to calibrate the instruments to develop a consistent product for all the instruments from various network and to combine them in an European Network like E-PROFILE. As it is not possible to use an external reference (like a sun photometer or a Raman Lidar) to calibrate all the ALCs in the E-PROFILE network, it is necessary to use a self-calibration algorithm. Two calibration methods have been identified which are suited for automated use in a network: the Rayleigh and the liquid cloud calibration methods In the Rayleigh method, backscatter signals from molecules (this is the Rayleigh signal) can be measured and used to calculate the lidar constant (Wiegner et al. 2012). At the wavelength used for most ceilometers, this signal is weak and can be easily measured only during cloud-free nights. However, with the new algorithm implemented in the frame of the TOPROF COST Action, the Rayleigh calibration was successfully performed on a CHM15k for more than 50% of the nights from October 2013 to September 2014. This method was validated against two reference instruments, the collocated EARLINET PollyXT lidar and the CALIPSO space-borne lidar. The lidar constant was on average within 5.5% compare to the lidar constant determined by the EARLINET lidar. It confirms the validity of the self-calibration method. For 3 CALIPSO overpasses the agreement was on average 20.0%. It is less accurate due to the large uncertainties of CALIPSO data close to the surface. In opposition to the Rayleigh method, Cloud calibration method uses the complete attenuation of the transmitter beam by a liquid water cloud to calculate the lidar constant (O'Connor 2004). The main challenge is the selection of accurately measured water clouds. These clouds should not contain any ice crystals and the detector should not get into saturation. The first problem is especially important during winter time and the second problem is especially important for low clouds. Furthermore the overlap function should be known accurately, especially when the water cloud is located at a distance where the overlap between laser beam and telescope field-of-view is still incomplete. In the E-PROFILE pilot network, the Rayleigh calibration is already performed automatically. This demonstration network maked available, in real time, calibrated ALC measurements from 8 instruments of 4 different types in 6 countries. In collaboration with TOPROF and 20 national weathers services, E-PROFILE will provide, in 2017, near real time ALC measurements in most of Europe.

  9. DC-8 Scanning Lidar Characterization of Aircraft Contrails and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Oseberg, Terje E.

    1998-01-01

    An angular-scanning large-aperture (36 cm) backscatter lidar was developed and deployed on the NASA DC-8 research aircraft as part of the SUCCESS (Subsonic Aircraft: Contrail and Cloud Effects Special Study) program. The lidar viewing direction could be scanned continuously during aircraft flight from vertically upward to forward to vertically downward, or the viewing could be at fixed angles. Real-time pictorial displays generated from the lidar signatures were broadcast on the DC-8 video network and used to locate clouds and contrails above, ahead of, and below the DC-8 to depict their spatial structure and to help select DC-8 altitudes for achieving optimum sampling by onboard in situ sensors. Several lidar receiver systems and real-time data displays were evaluated to help extend in situ data into vertical dimensions and to help establish possible lidar configurations and applications on future missions. Digital lidar signatures were recorded on 8 mm Exabyte tape and generated real-time displays were recorded on 8mm video tape. The digital records were transcribed in a common format to compact disks to facilitate data analysis and delivery to SUCCESS participants. Data selected from the real-time display video recordings were processed for publication-quality displays incorporating several standard lidar data corrections. Data examples are presented that illustrate: (1) correlation with particulate, gas, and radiometric measurements made by onboard sensors, (2) discrimination and identification between contrails observed by onboard sensors, (3) high-altitude (13 km) scattering layer that exhibits greatly enhanced vertical backscatter relative to off-vertical backscatter, and (4) mapping of vertical distributions of individual precipitating ice crystals and their capture by cloud layers. An angular scan plotting program was developed that accounts for DC-8 pitch and velocity.

  10. ESA's spaceborne lidar mission ADM-Aeolus; project status and preparations for launch

    NASA Astrophysics Data System (ADS)

    Straume, Anne Grete; Elfving, Anders; Wernham, Denny; de Bruin, Frank; Kanitz, Thomas; Schuettemeyer, Dirk; Bismarck, Jonas von; Buscaglione, Fabio; Lecrenier, O.; McGoldrick, Phil

    2018-04-01

    ESA's Doppler Wind lidar mission, the Atmospheric Dynamics Mission (ADM-Aeolus, hereafter abbreviated to Aeolus), was chosen as an Earth Explorer Core mission within the Living Planet Programme in 1999. It shall demonstrate the potential of space-based Doppler Wind lidars for operational measurements of wind profiles and their use in Numerical Weather Prediction (NWP) and climate research. Spin-off products are profiles of cloud and aerosol optical properties. Aeolus carries the novel Doppler Wind lidar instrument ALADIN. The mission prime is Airbus Defence & Space UK (ADS-UK), and the instrument prime is Airbus Defence & Space France (ADS-F).

  11. Case Study Analyses of the SUCCESS DC-8 Scanning Lidar Database

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.

    2000-01-01

    Under project SUCCESS (Subsonic Aircraft Contrail and Cloud Effects Special Study) funded by the Atmospheric Effects of Aviation Program, SRI International (SRI) developed an angular scanning backscatter lidar for operation on the NASA DC-8 research aircraft and deployed the scanning lidar during the SUCCESS field campaign. The primary purpose of the lidar was to generate real-time video displays of clouds and contrails above, ahead of, and below the DC-8 as a means to help position the aircraft for optimum cloud and contrail sampling by onboard in situ sensors, and to help extend the geometrical domain of the in situ sampling records. A large, relatively complex lidar database was collected and several data examples were processed to illustrate the value of the lidar data for interpreting the other data records collected during SUCCESS. These data examples were used to develop a journal publication for the special SUCCESS Geophysical Research Letters issue. The data examples justified data analyses of a larger part of the DC-8 lidar database and is the objective of the current study. Efficient processing of the SUCCESS DC-8 scanning lidar database required substantial effort to enhance hardware and software components of the data system that was used for the initial analyses. MATLAB instructions are used to generate altitude and distance color-coded lidar displays corrected for effects introduced by aircraft pitch and forward movement during an angular scan time interval. Onboard in situ sensor atmospheric measurements are propagated to distances ahead of the DC-8 using recorded aircraft velocity so that they can be plotted on the lidar displays for comparison with lidar remotely observed aerosol distributions. Resulting lidar and in situ sensor polar scan displays over extended sampling intervals are integrated into a time series movie format for 36 case studies. Contrails and clouds were detected to ranges of 15 km by the forward-viewing angular scanning lidar and were progressively mapped as the aircraft approached and penetrated them. Near aircraft lidar observations were much better correlated with in situ sensor observations than lidar observations at greater distances ahead of the aircraft. The major cause of this difference was thought to be the about 2 deg. offset of the lidar viewing direction from the flight direction. Contrail spatial distributions were not of the quality obtainable from ground-based lidar observations. This results because contrails tend to become horizontally stratified, vertical distance between angular lidar observations increases with increased distance from the aircraft, and erratic aircraft motions during an angular scan. The most useful lidar observations were made with lidar viewing directions of vertically upward or vertically downward. These provided real-time information on aircraft altitudes to achieve optimum in situ cloud and contrail sampling. At sampling altitudes, the forward viewing angular scanning observations were useful for fine-tuning the aircraft altitude for cloud and contrail penetration. Best information on cloud and contrail properties were obtained from vertically directed lidar observations as the aircraft performed a series of upward and downward penetrations of contrails. This operational mode was especially well suited for lidar and radiometric evaluation of cloud and contrail optical and radiative properties. The vertical viewing lidar detected ice crystals thought to be precipitating from an aircraft contrail and their scavenging by a cirrus cloud layer. The lidar display indicates that the crystals are effective for increasing cirrus cloud density. Vertical angular scanning observations can evaluate the sharp decrease in lidar backscatter for small off-vertical viewing directions that result from horizontally aligned ice crystals and perhaps can provide additional information on crystal shapes. The about 2 deg. offset of the lidar viewing direction from the flight direction is thought to have greatly degraded the forward-viewing angular scanning observations and this mode of operation was not fully evaluated. However, the reasoning for this capability remains valid and the angular scan presentations collected during this program justifies modification of the lidar pod for true forward direction lidar viewing during future cloud and contrail studies.

  12. Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Herzfeld, Ute Christina; McDonald, Brian W.; Neumann, Thomas Allen; Wallin, Bruce F.; Neumann, Thomas A.; Markus, Thorsten; Brenner, Anita; Field, Christopher

    2014-01-01

    NASA's Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission is a decadal survey mission (2016 launch). The mission objectives are to measure land ice elevation, sea ice freeboard, and changes in these variables, as well as to collect measurements over vegetation to facilitate canopy height determination. Two innovative components will characterize the ICESat-2 lidar: 1) collection of elevation data by a multibeam system and 2) application of micropulse lidar (photon-counting) technology. A photon-counting altimeter yields clouds of discrete points, resulting from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of the returned points to reflectors of interest. The objective of this paper is to derive an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2 data, based on airborne observations with a Sigma Space micropulse lidar. The mathematical algorithm uses spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors, and geostatistical classification parameters and hyperparameters. Validation shows that ground and canopy elevation, and hence canopy height, can be expected to be observable with high accuracy by ICESat-2 for all expected beam energies considered for instrument design (93.01%-99.57% correctly selected points for a beam with expected return of 0.93 mean signals per shot (msp), and 72.85%-98.68% for 0.48 msp). The algorithm derived here is generally applicable for elevation determination from photoncounting lidar altimeter data collected over forested areas, land ice, sea ice, and land surfaces, as well as for cloud detection.

  13. An Innovative Concept for Spacebased Lidar Measurement of Ocean Carbon Biomass

    NASA Technical Reports Server (NTRS)

    Hu, Yongxiang; Behrenfeld, Michael; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; hide

    2015-01-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30Âdeg off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  14. Using high resolution Lidar data from SnowEx to characterize the sensitivity of snow depth retrievals to point-cloud density and vegetation

    NASA Astrophysics Data System (ADS)

    Patterson, V. M.; Bormann, K.; Deems, J. S.; Painter, T. H.

    2017-12-01

    The NASA SnowEx campaign conducted in 2016 and 2017 provides a rich source of high-resolution Lidar data from JPL's Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) combined with extensive in-situ measurements in two key areas in Colorado: Grand Mesa and Senator Beck. While the uncertainty in the 50m snow depth retrievals from NASA's ASO been estimated at 1-2cm in non-vegetated exposed areas (Painter et al., 2016), the impact of forest cover and point-cloud density on ASO snow lidar depth retrievals is relatively unknown. Dense forest canopies are known to reduce lidar penetration and ground strikes thus affecting the elevation surface retrieved from in the forest. Using high-resolution lidar point cloud data from the ASO SnowEx campaigns (26pt/m2) we applied a series of data decimations (up to 90% point reduction) to the point cloud data to quantify the relationship between vegetation, ground point density, resulting snow-off and snow-on surface elevations and finally snow depth. We observed non-linear reductions in lidar ground point density in forested areas that were strongly correlated to structural forest cover metrics. Previously, the impacts of these data decimations on a small study area in Grand Mesa showed a sharp increase in under-canopy surface elevation errors of -0.18m when ground point densities were reduced to 1.5pt/m2. In this study, we expanded the evaluation to the more topographically challenging Senator Beck basin, have conducted analysis along a vegetation gradient and are considering snow the impacts of snow depth rather than snow-off surface elevation. Preliminary analysis suggest that snow depth retrievals inferred from airborne lidar elevation differentials may systematically underestimate snow depth in forests where canopy density exceeds 1.75 and where tree heights exceed 5m. These results provide a basis from which to identify areas that may suffer from vegetation-induced biases in surface elevation models and snow depths derived from airborne lidar data, and help quantify expected spatial distributions of errors in the snow depth that can be used to improve the accuracy of ASO basin-scale depth and water equivalent products.

  15. Measurements of the Vertical Structure of Aerosols and Clouds Over the Ocean Using Micro-Pulse LIDAR Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Spinhirne, James D.; Campbell, James R.; Berkoff, Timothy A.; Bates, David; Starr, David OC. (Technical Monitor)

    2001-01-01

    The determination of the vertical distribution of aerosols and clouds over the ocean is needed for accurate retrievals of ocean color from satellites observations. The presence of absorbing aerosol layers, especially at altitudes above the boundary layer, has been shown to influence the calculation of ocean color. Also, satellite data must be correctly screened for the presence of clouds, particularly cirrus, in order to measure ocean color. One instrument capable of providing this information is a lidar, which uses pulses of laser light to profile the vertical distribution of aerosol and cloud layers in the atmosphere. However, lidar systems prior to the 1990s were large, expensive, and not eye-safe which made them unsuitable for cruise deployments. During the 1990s the first small, autonomous, and eye-safe lidar system became available: the micro-pulse lidar, or MPL. The MPL is a compact and eye-safe lidar system capable of determining the range of aerosols and clouds by firing a short pulse of laser light (523 nm) and measuring the time-of-flight from pulse transmission to reception of a returned signal. The returned signal is a function of time, converted into range using the speed of light, and is proportional to the amount of light backscattered by atmospheric molecules (Rayleigh scattering), aerosols, and clouds. The MPL achieves ANSI eye-safe standards by sending laser pulses at low energy (micro-J) and expanding the beam to 20.32 cm in diameter. A fast pulse-repetition-frequency (2500 Hz) is used to achieve a good signal-to-noise, despite the low output energy. The MPL has a small field-of-view (< 100 micro-rad) and signals received with the instrument do not contain multiple scattering effects. The MPL has been used successfully at a number of long-term sites and also in several field experiments around the world.

  16. Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products

    NASA Astrophysics Data System (ADS)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.

    2017-08-01

    Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (<1 km) cloud occurrences in CCCM are larger over tropical oceans because the CCCM algorithm uses a more relaxed threshold of cloud-aerosol discrimination score for CALIPSO Vertical Feature Mask product. In contrast, midlevel (1-8 km) cloud occurrences in GEOPROF-LIDAR are larger than CCCM at high latitudes (>40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.

  17. Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS

    NASA Astrophysics Data System (ADS)

    Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.

    2014-05-01

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.

  18. Observations of specular reflective particles and layers in crystal clouds.

    PubMed

    Balin, Yurii S; Kaul, Bruno V; Kokhanenko, Grigorii P; Penner, Ioganes E

    2011-03-28

    In the present article, results of observations of high crystal clouds with high spatial and temporal resolution using the ground-based polarization LOSA-S lidar are described. Cases of occurrence of specularly reflective layers formed by particles oriented predominantly in the horizontal plane are demonstrated. Results of measuring echo-signal depolarization are compared for linear and circular polarization states of the initial laser beam.

  19. Voxel-Based 3-D Tree Modeling from Lidar Images for Extracting Tree Structual Information

    NASA Astrophysics Data System (ADS)

    Hosoi, F.

    2014-12-01

    Recently, lidar (light detection and ranging) has been used to extracting tree structural information. Portable scanning lidar systems can capture the complex shape of individual trees as a 3-D point-cloud image. 3-D tree models reproduced from the lidar-derived 3-D image can be used to estimate tree structural parameters. We have proposed the voxel-based 3-D modeling for extracting tree structural parameters. One of the tree parameters derived from the voxel modeling is leaf area density (LAD). We refer to the method as the voxel-based canopy profiling (VCP) method. In this method, several measurement points surrounding the canopy and optimally inclined laser beams are adopted for full laser beam illumination of whole canopy up to the internal. From obtained lidar image, the 3-D information is reproduced as the voxel attributes in the 3-D voxel array. Based on the voxel attributes, contact frequency of laser beams on leaves is computed and LAD in each horizontal layer is obtained. This method offered accurate LAD estimation for individual trees and woody canopy trees. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Based on the estimation results, we proposed an index named laser beam coverage index, Ω, which relates to the lidar's laser beam settings and a laser beam attenuation factor. It was shown that this index can be used for adjusting measurement set-up of lidar systems and also used for explaining the LAD estimation error using different types of lidar systems. Moreover, we proposed a method to estimate woody material volume as another application of the voxel tree modeling. In this method, voxel solid model of a target tree was produced from the lidar image, which is composed of consecutive voxels that filled the outer surface and the interior of the stem and large branches. From the model, the woody material volume of any part of the target tree can be directly calculated easily by counting the number of corresponding voxels and multiplying the result by the per-voxel volume.

  20. Phoenix Lidar Operation Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of the Canadian-built meteorological station's lidar, which was successfully activated on Sol 2. The animation shows how the lidar is activated by first opening its dust cover, then emitting rapid pulses of light (resembling a brilliant green laser) into the Martian atmosphere. Some of the light then bounces off particles in the atmosphere, and is reflected back down to the lidar's telescope. This allows the lidar to detect dust, clouds and fog.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Comparison of Cloud and Aerosol Detection between CERES Edition 3 Cloud Mask and CALIPSO Version 2 Data Products

    NASA Astrophysics Data System (ADS)

    Trepte, Qing; Minnis, Patrick; Sun-Mack, Sunny; Trepte, Charles

    Clouds and aerosol play important roles in the global climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a crucial first step in determining their influence on surface and top-of-atmosphere radiative fluxes. This paper presents a comparison analysis of a new version of the Clouds and Earth's Radiant Energy System (CERES) Edition 3 cloud detection algorithms using Aqua MODIS data with the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Version 2 Vertical Feature Mask (VFM). Improvements in CERES Edition 3 cloud mask include dust detection, thin cirrus tests, enhanced low cloud detection at night, and a smoother transition from mid-latitude to polar regions. For the CALIPSO Version 2 data set, changes to the lidar calibration can result in significant improvements to its identification of optically thick aerosol layers. The Aqua and CALIPSO satellites, part of the A-train satellite constellation, provide a unique opportunity for validating passive sensor cloud and aerosol detection using an active sensor. In this paper, individual comparison cases will be discussed for different types of clouds and aerosols over various surfaces, for daytime and nighttime conditions, and for regions ranging from the tropics to the poles. Examples will include an assessment of the CERES detection algorithm for optically thin cirrus, marine stratus, and polar night clouds as well as its ability to characterize Saharan dust plumes off the African coast. With the CALIPSO lidar's unique ability to probe the vertical structure of clouds and aerosol layers, it provides an excellent validation data set for cloud detection algorithms, especially for polar nighttime clouds.

  2. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy profiles occurring 94 percent of the time during the ER-2 flights. One to three cloud layers were common, with the average calculated at 2.03 layers per profile. The upper troposphere had a cloud frequency generally over 30%, reaching 42 percent near 13 km during the study. There were regional differences. The Caribbean was much clearer than the Pacific regions. Land had a much higher frequency of high clouds than ocean areas. One region just south and west of Panama had a high probability of clouds below 15 km altitude with the frequency never dropping below 25% and reaching a maximum of 60% at 11-13 km altitude. These cloud statistics will help characterize the cloud volume for TC4 scientists as they try to understand the complexities of the tropical atmosphere.

  3. Cloud Optical Depth Retrievals from Solar Background "signal" of Micropulse Lidars

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, A.; Wiscombe, W.; Valencia, S.; Welton, E. J.

    2007-01-01

    Pulsed lidars are commonly used to retrieve vertical distributions of cloud and aerosol layers. It is widely believed that lidar cloud retrievals (other than cloud base altitude) are limited to optically thin clouds. Here we demonstrate that lidars can retrieve optical depths of thick clouds using solar background light as a signal, rather than (as now) merely a noise to be subtracted. Validations against other instruments show that retrieved cloud optical depths agree within 10-15% for overcast stratus and broken clouds. In fact, for broken cloud situations one can retrieve not only the aerosol properties in clear-sky periods using lidar signals, but also the optical depth of thick clouds in cloudy periods using solar background signals. This indicates that, in general, it may be possible to retrieve both aerosol and cloud properties using a single lidar. Thus, lidar observations have great untapped potential to study interactions between clouds and aerosols.

  4. Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data

    NASA Technical Reports Server (NTRS)

    Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.

    2007-01-01

    Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for constraining the use of the passive retrieval data in models and for improving the accuracy of the retrievals.

  5. Time Resolved 3-D Mapping of Atmospheric Aerosols and Clouds During the Recent ARM Water Vapor IOP

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary; Miller, David; Wilkerson, Thomas; Andrus, Ionio; Starr, David OC. (Technical Monitor)

    2001-01-01

    The HARLIE lidar was deployed at the ARM SGP site in north central Oklahoma and recorded over 100 hours of data on 16 days between 17 September and 6 October 2000 during the recent Water Vapor Intensive Operating Period (IOP). Placed in a ground-based trailer for upward looking scanning measurements of clouds and aerosols, HARLIE provided a unique record of time-resolved atmospheric backscatter at 1 micron wavelength. The conical scanning lidar images atmospheric backscatter along the surface of an inverted 90 degree (full angle) cone up to an altitude of 20 km. 360 degree scans having spatial resolutions of 20 meters in the vertical and 1 degree in azimuth were obtained every 36 seconds. Various boundary layer and cloud parameters are derived from the lidar data, as well as atmospheric wind vectors where there is Sufficiently resolved structure that can be traced moving through the surface described by the scanning laser beam. Comparison of HARLIE measured winds with radiosonde measured winds validates the accuracy of this new technique for remotely measuring atmospheric winds without Doppler information.

  6. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  7. Remote detection and recognition of bio-aerosols by laser-induced fluorescense lidar: practical implementation and field tests

    NASA Astrophysics Data System (ADS)

    Boreysho, Anatoly; Savin, Andrey; Morozov, Alexey; Konyaev, Maxim; Konovalov, Konstantin

    2007-06-01

    Recognition of aerosol clouds material at some significant distance is now a key requirement for the wide range of applications. The elastic backscatter lidar have demonstrated high capabilities in aerosol remote detection, cloud real-time mapping at very long distances for low-concentration natural aerosols as well as artificial ones [1]. However, recognition ability is required to make them more relevant. Laser-induced fluorescence (LIF) looks very promising with respect to the recognition problem. New approach based on mobile lidar complex [2] equipped by spectrally-and range-resolved LIF-sensor is described as well as some results of field tests. The LIF-sensor consists of four-harmonics Nd:YAG laser equipped by an output expander to provide final beam divergence <1 mrad, 500-mm aspheric Cassegrain-type multi-wavelength receiving telescope, set of single-element receivers for measurement of the elastic backscatter radiation, and multi-element receiver with monochromator for spectrally-resolved LIF measurements. The system is equipped by 2-axis scanning mirror and variable-FOV video-camera collimated with the lidar scanning direction. The LIF-lidar is mounted on a truck-based platform (20-feet container) as a part of multi-purpose mobile lidar complex and adjusted for field conditions.

  8. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  9. New single-aircraft integrated atmospheric observation capabilities

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2011-12-01

    Improving current weather and climate model capabilities requires better understandings of many atmospheric processes. Thus, advancing atmospheric observation capabilities has been regarded as the highest imperatives to advance the atmospheric science in the 21st century. Under the NSF CAREER support, we focus on developing new airborne observation capabilities through the developments of new instrumentations and the single-aircraft integration of multiple remote sensors with in situ probes. Two compact Wyoming cloud lidars were built to work together with a 183 GHz microwave radiometer, a multi-beam Wyoming cloud radar and in situ probes for cloud studies. The synergy of these remote sensor measurements allows us to better resolve the vertical structure of cloud microphysical properties and cloud scale dynamics. Together with detailed in situ data for aerosol, cloud, water vapor and dynamics, we developed the most advanced observational capability to study cloud-scale properties and processes from a single aircraft (Fig. 1). A compact Raman lidar was also built to work together with in situ sampling to characterize boundary layer aerosol and water vapor distributions for many important atmospheric processes studies, such as, air-sea interaction and convective initialization. Case studies will be presented to illustrate these new observation capabilities.

  10. MABEL Photon-Counting Laser Altimetry Data in Alaska for ICESat-2 Simulations and Development

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly; Neumann, T. A.; Amundson, M.; Kavanaugh, J. L.; Moussavi, M. S.; Walsh, K. M.; Cook, W. B.; Markus, T.

    2016-01-01

    Multiple Altimeter Beam Experimental Lidar (MABEL) maps Alaskan crevasses in detail, using 50 of the expected along-track Advanced Topographic Laser Altimeter System (ATLAS) signal-photon densities over summer ice sheets. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) along-track data density, and spatial data density due to the multiple-beam strategy, will provide a new dataset to mid-latitude alpine glacier researchers.

  11. An overview of NASA's ASCENDS Mission's Lidar Measurement Requirements

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Browell, E. V.; Menzies, R. T.; Lin, B.; Spiers, G. D.; Ismail, S.

    2014-12-01

    The objectives of NASA's ASCENDS mission are to improve the knowledge of global CO2 sources and sinks by precisely measuring the tropospheric column abundance of atmospheric CO2 and O2. The mission will use a continuously operating nadir-pointed integrated path differential absorption (IPDA) lidar in a polar orbit. The lidar offers a number of important new capabilities and will measure atmospheric CO2 globally over a wide range of challenging conditions, including at night, at high latitudes, through hazy and thin cloud conditions, and to cloud tops. The laser source enables a measurement of range, so that the absorption path length to the scattering surface will be always accurately known. The lidar approach also measures consistently in a nadir-zenith path and the narrow laser linewidth allows weighting the measurement to the lower troposphere. Using these measurements with atmospheric and flux models will allow improved estimates of CO2 fluxes and hence better understanding of the processes that exchange CO2 between the surface and atmosphere. The ASCENDS formulation team has developed a preliminary set of requirements for the lidar measurements. These were developed based on experience gained from the numerous ASCENDS airborne campaigns that have used different candidate lidar measurement techniques. They also take into account the complexity of making precise measurement of atmospheric gas columns when viewing the Earth from space. Some of the complicating factors are the widely varying reflectance and topographic heights of the Earth's land and ocean surfaces, the variety of cloud types, and the degree of cloud and aerosol absorption and scattering in the atmosphere. The requirements address the precision and bias in the measured column mixing ratio, the dynamic range of the expected surface reflected signal, the along-track sampling resolution, measurements made through thin clouds, measurements to forested and slope surfaces, range precision, measurements to cloud tops, knowledge of the laser spot position, and off-nadir pointing. These requirements are independent of the measurement approach, and are consistent with the initial mission simulation studies performed by the formulation team. This presentation will summarize the requirements along with examples that have guided their selection.

  12. A cloud masking algorithm for EARLINET lidar systems

    NASA Astrophysics Data System (ADS)

    Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina

    2015-04-01

    Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.

  13. Aerosol and cloud properties derived from hyperspectral transmitted light in the southeast Atlantic sampled during field campaign deployments in 2016 and 2017

    NASA Astrophysics Data System (ADS)

    LeBlanc, S. E.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Pistone, K.; Karol, Y.; Schmidt, S.; Cochrane, S.; Chen, H.; Meyer, K.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.

    2017-12-01

    We present aerosol and cloud properties collected from airborne remote-sensing measurements in the southeast Atlantic during the recent NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign. During the biomass burning seasons of September 2016 and August 2017, we sampled aerosol layers which overlaid marine stratocumulus clouds off the southwestern coast of Africa. We sampled these aerosol layers and the underlying clouds from the NASA P3 airborne platform with the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). Aerosol optical depth (AOD), along with trace gas content in the atmospheric column (water vapor, NO2, and O3), is obtained from the attenuation in the sun's direct beam, measured at the altitude of the airborne platform. Using hyperspectral transmitted light measurements from 4STAR, in conjunction with hyperspectral hemispheric irradiance measurements from the Solar Spectral Flux Radiometers (SSFR), we also obtained aerosol intensive properties (asymmetry parameter, single scattering albedo), aerosol size distributions, cloud optical depth (COD), cloud particle effective radius, and cloud thermodynamic phase. Aerosol intensive properties are retrieved from measurements of angularly resolved skylight and flight level spectral albedo using the inversion used with measurements from AERONET (Aerosol Robotic Network) that has been modified for airborne use. The cloud properties are obtained from 4STAR measurements of scattered light below clouds. We show a favorable initial comparison of the above-cloud AOD measured by 4STAR to this same product retrieved from measurements by the MODIS instrument on board the TERRA and AQUA satellites. The layer AOD observed above clouds will also be compared to integrated aerosol extinction profile measurements from the High Spectral Resolution Lidar-2 (HSRL-2).

  14. Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Powell, Kathleen A.; Kuehn, Ralph E.; Young, Stuart A.; Winker, David M.; Hostetler, Chris A.; Hunt, William H.; Liu, Zhaoyan; McGill, Matthew J.; Getzewich, Brian J.

    2009-01-01

    Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth s atmosphere is critical in assessing the planet s radiation budget and for advancing human understanding of climate change issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm. It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a space-based remote sensing platform, and the spatial variability of the measurement targets. Detailed descriptions are then provided for both the adaptive threshold algorithm used to detect features of interest within individual lidar profiles and the fully automated multiresolution averaging engine within which this profile scanner functions. The resulting fusion of profile scanner and averaging engine is specifically designed to optimize the trade-offs between the widely varying signal-to-noise ratio of the measurements and the disparate spatial resolutions of the detection targets. Throughout the paper, specific algorithm performance details are illustrated using examples drawn from the existing CALIPSO dataset. Overall performance is established by comparisons to existing layer height distributions obtained by other airborne and space-based lidars.

  15. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space Station. 13. Space lidar II: Using coherent Doppler lidar to estimate river discharge. 14. Poster session: Lidar technology, optics for lidar. Laser for lidar. Middle atmosphere observations. Tropospheric observations (aerosols, clouds). Boundary layer, urban pollution. Differential absorption lidar. Doppler lidar. and Space lidar.

  16. Two-wavelength backscattering lidar for stand off detection of aerosols

    NASA Astrophysics Data System (ADS)

    Mierczyk, Zygmunt; Zygmunt, Marek; Gawlikowski, Andrzej; Gietka, Andrzej; Kaszczuk, Miroslawa; Knysak, Piotr; Mlodzianko, Andrzej; Muzal, Michal; Piotrowski, Wiesław; Wojtanowski, Jacek

    2008-10-01

    Following article presents LIDAR for stand off detection of aerosols which was constructed in Institute of Optoelectronics in Military University of Technology. LIDAR is a DISC type system (DIfferential SCattering) and is based on analysis of backscattering signal for two wavelengths (λ1 = 1064 nm and λ2 = 532 nm) - the first and the second harmonic of Nd:YAG laser. Optical receiving system is consisted of aspherical mirror lens, two additional mirrors and a system of interference filters. In detection system of LIDAR a silicon avalanche photodiode and two different amplifiers were used. Whole system is mounted on a specialized platform designed for possibility of LIDAR scanning movements. LIDAR is computer controlled. The compiled software enables regulation of the scanning platform work, gain control, and control of data processing and acquisition system. In the article main functional elements of LIDAR are shown and typical parameters of system work and construction are presented. One presented also first results of research with use of LIDAR. The aim of research was to detect and characterize scattering aerosol, both natural and anthropogenic one. For analyses of natural aerosols, cumulus cloud was used. For analyses of anthropogenic aerosols one used three various pyrotechnic mixtures (DM11, M2, M16) which generate smoke of different parameters. All scattering centers were firstly well described and theoretical analyses were conducted. Results of LIDAR research were compared with theoretical analyses and general conclusions concerning correctness of LIDAR work and its application were drawn.

  17. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  18. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine Y.

    1994-01-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  19. Macrophysical and optical properties of midlatitude high-altitude clouds from 4 ground-based lidars and collocated CALIOP observations

    NASA Astrophysics Data System (ADS)

    Dupont, J. C.; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Comstock, J.; Winker, D.; Chervet, P.; Roblin, A.

    2009-04-01

    Cirrus clouds not only play a major role in the energy budget of the Earth-Atmosphere system, but are also important in the hydrological cycle [Stephens et al., 1990; Webster, 1994]. According to satellite passive remote sensing, high-altitude clouds cover as much as 40% of the earth's surface on average (Liou 1986; Stubenrauch et al., 2006) and can reach 70% of cloud cover over the Tropics (Wang et al., 1996; Nazaryan et al., 2008). Hence, given their very large cloud cover, they have a major role in the climate system (Lynch et al. 2001). Cirrus clouds can be classified into three distinct families according to their optical thickness, namely subvisible clouds (OD<0.03), semi-transparent clouds (0.03

  20. Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products

    NASA Technical Reports Server (NTRS)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny

    2015-01-01

    To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.

  1. Lidar transmitter offers "non-diffracting" property through short distance in highly-dense random media

    NASA Astrophysics Data System (ADS)

    Alifu, Xiafukaiti; Ziqi, Peng; Shiina, Tatsuo

    2018-04-01

    Non-diffracting beam (NDB) is useful in lidar transmitter because of its high propagation efficiency and high resolution. We aimed to generate NDB in random media such as haze and cloud. The laboratory experiment was conducted with diluted processed milk (fat: 1.8%, 1.1μmφ). Narrow view angle detector of 5.5mrad was used to detect the forward scattering waveform. We obtained the central peak of NDB at the propagation distance of 5cm 30cm in random media by adjusting the concentration of <10%.

  2. The HOLO Series: Critical Ground-Based Demonstrations of Holographic Scanning Lidars

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.; Sanders, Jason A.; Andrus, Ionio Q.; Schwemmer, Geary K.; Miller, David O.; Guerra, David; Schnick, Jeffrey; Moody, Stephen E.

    2000-01-01

    Results of two lidar measurement campaigns are presented, HOLO-1 (Utah, March 1999) and HOLO-2 (New Hampshire, June 1999). These tests demonstrate the ability of lidars utilizing holographic optical elements (HOEs) to determine tropospheric wind velocity and direction at cloud altitude. Several instruments were employed. HOLO-1 used the 1,064 mm transmission-HOE lidar (HARLIE, Goddard Space Flight Center), a zenith-staring 532 nm lidar (AROL-2, Utah State University), and a wide-field video camera (SkyCam) for imagery of clouds overhead. HOLO-2 included these instruments plus the 532 nm reflection-HOE lidar (PHASERS, St. Anselm College). HARLIE and PHASERS scan the sky at constant cone angles of 45 deg. and 42 deg. from normal, respectively. The progress of clouds and entire cloud fields across the sky is tracked by the repetitive conical scans of the HOE lidars. AROL-2 provides the attitude information enabling the SkyCam cloud images to be analyzed for independent data on cloud motion. Data from the HOE lidars are reduced by means of correlations, visualization by animation techniques, and kinematic diagrams of cloud feature motion. Excellent agreement is observed between the HOE lidar results and those obtained with video imagery and lidar ranging.

  3. Parameterization of cloud lidar backscattering profiles by means of asymmetrical Gaussians

    NASA Astrophysics Data System (ADS)

    del Guasta, Massimo; Morandi, Marco; Stefanutti, Leopoldo

    1995-06-01

    A fitting procedure for cloud lidar data processing is shown that is based on the computation of the first three moments of the vertical-backscattering (or -extinction) profile. Single-peak clouds or single cloud layers are approximated to asymmetrical Gaussians. The algorithm is particularly stable with respect to noise and processing errors, and it is much faster than the equivalent least-squares approach. Multilayer clouds can easily be treated as a sum of single asymmetrical Gaussian peaks. The method is suitable for cloud-shape parametrization in noisy lidar signatures (like those expected from satellite lidars). It also permits an improvement of cloud radiative-property computations that are based on huge lidar data sets for which storage and careful examination of single lidar profiles can't be carried out.

  4. Overview of Mount Washington Icing Sensors Project

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.; Politovich, Marcia K.; Rancourt, Kenneth L.; Koenig, George G.; Reinking, Roger F.; Miller, Dean R.

    2003-01-01

    NASA, the FAA, the Department of Defense, the National Center for Atmospheric Research and NOAA are developing techniques for retrieving cloud microphysical properties from a variety of remote sensing technologies. The intent is to predict aircraft icing conditions ahead of aircraft. The Mount Washington Icing Sensors Project MWISP), conducted in April, 1999 at Mt. Washington, NH, was organized to evaluate technologies for the prediction of icing conditions ahead of aircraft in a natural environment, and to characterize icing cloud and drizzle environments. April was selected for operations because the Summit is typically in cloud, generally has frequent freezing precipitation in spring, and the clouds have high liquid water contents. Remote sensing equipment, consisting of radars, radiometers and a lidar, was placed at the base of the mountain, and probes measuring cloud particles, and a radiometer, were operated from the Summit. NASA s Twin Otter research aircraft also conducted six missions over the site. Operations spanned the entire month of April, which was dominated by wrap-around moisture from a low pressure center stalled off the coast of Labrador providing persistent upslope clouds with relatively high liquid water contents and mixed phase conditions. Preliminary assessments indicate excellent results from the lidar, radar polarimetry, radiosondes and summit and aircraft measurements.

  5. Zenith Movie showing Phoenix's Lidar Beam (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    A laser beam from the Canadian-built lidar instrument on NASA's Phoenix Mars Lander can be seen in this contrast-enhanced sequence of 10 images taken by Phoenix's Surface Stereo Imager on July 26, 2008, during early Martian morning hours of the mission's 61st Martian day after landing.

    The view is almost straight up and includes about 1.5 kilometer (about 1 mile) of the length of the beam. The camera, from its position close to the lidar on the lander deck, took the images through a green filter centered on light with wavelength 532 nanometers, the same wavelength of the laser beam. The movie has been artificially colored to to approximately match the color that would be seen looking through this filter on Mars. Contrast is enhanced to make the beam more visible.

    The lidar beam can be seen extending from the lower right to the upper right, near the zenith, as it reflects off particles suspended in the atmosphere. Particles that scatter the beam directly into the camera can be seen to produce brief sparkles of light. In the background, dust can be seen drifting across the sky pushed by winds aloft.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Li, Minglei

    2018-04-01

    Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.

  7. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Scanning

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Chambers, D. M.; Dixit, S. N.; Britten, J. A.; Shore, B. W.; Kavaya, M. J.

    1999-01-01

    The application of specialized rectangular relief transmission gratings to coherent lidar beam scanning is presented. Two types of surface relief transmission grating approaches are studied with an eye toward potential insertion of a constant thickness, diffractive scanner where refractive wedges now exist. The first diffractive approach uses vertically oriented relief structure in the surface of an optical flat; illumination of the diffractive scanner is off-normal in nature. The second grating design case describes rectangular relief structure slanted at a prescribed angle with respect to the surface. In this case, illumination is normal to the diffractive scanner. In both cases, performance predictions for 2.0 micron, circularly polarized light at beam deflection angles of 30 or 45 degrees are presented.

  8. A Variational Method to Retrieve the Extinction Profile in Liquid Clouds Using Multiple Field-of-View Lidar

    NASA Technical Reports Server (NTRS)

    Pounder, Nicola L.; Hogan, Robin J.; Varnai, Tamas; Battaglia, Alessandro; Cahalan, Robert F.

    2011-01-01

    While liquid clouds playa very important role in the global radiation budget, it's been very difficult to remotely determine their internal cloud structure. Ordinary lidar instruments (similar to radars but using visible light pulses) receive strong signals from such clouds, but the information is limited to a thin layer near the cloud boundary. Multiple field-of-view (FOV) lidars offer some new hope as they are able to isolate photons that were scattered many times by cloud droplets and penetrated deep into a cloud before returning to the instrument. Their data contains new information on cloud structure, although the lack of fast simulation methods made it challenging to interpret the observations. This paper describes a fast new technique that can simulate multiple-FOV lidar signals and can even estimate the way the signals would change in response to changes in cloud properties-an ability that allows quick refinements in our initial guesses of cloud structure. Results for a hypothetical airborne three-FOV lidar suggest that this approach can help determine cloud structure for a deeper layer in clouds, and can reliably determine the optical thickness of even fairly thick liquid clouds. The algorithm is also applied to stratocumulus observations by the 8-FOV airborne "THOR" lidar. These tests demonstrate that the new method can determine the depth to which a lidar provides useful information on vertical cloud structure. This work opens the way to exploit data from spaceborne lidar and radar more rigorously than has been possible up to now.

  9. Lidar measurements of boundary layers, aerosol scattering and clouds during project FIFE

    NASA Technical Reports Server (NTRS)

    Eloranta, Edwin W. (Principal Investigator)

    1995-01-01

    A detailed account of progress achieved under this grant funding is contained in five journal papers. The titles of these papers are: The calculation of area-averaged vertical profiles of the horizontal wind velocity using volume imaging lidar data; Volume imaging lidar observation of the convective structure surrounding the flight path of an instrumented aircraft; Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from Volume Imaging Lidar data; An accuracy analysis of the wind profiles calculated from Volume Imaging Lidar data; and Calculation of divergence and vertical motion from volume-imaging lidar data. Copies of these papers form the body of this report.

  10. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite observations. The multiple-lidar data during the CATZ campaign is expected to provide additional information on regional aerosol and cloud dynamics for give overpass, and enable a more realistic assessment of ground-to-satellite correlations. Future work is anticipated to finalize calibrated lidar backscatter profiles and utilization of wind trajectory information to further enable comparisons to CALIPS data.

  11. Application of a multiple scattering model to estimate optical depth, lidar ratio and ice crystal effective radius of cirrus clouds observed with lidar.

    NASA Astrophysics Data System (ADS)

    Gouveia, Diego; Baars, Holger; Seifert, Patric; Wandinger, Ulla; Barbosa, Henrique; Barja, Boris; Artaxo, Paulo; Lopes, Fabio; Landulfo, Eduardo; Ansmann, Albert

    2018-04-01

    Lidar measurements of cirrus clouds are highly influenced by multiple scattering (MS). We therefore developed an iterative approach to correct elastic backscatter lidar signals for multiple scattering to obtain best estimates of single-scattering cloud optical depth and lidar ratio as well as of the ice crystal effective radius. The approach is based on the exploration of the effect of MS on the molecular backscatter signal returned from above cloud top.

  12. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2012-12-31

    usable range of hybrid lidar-radar in a turbid underwater environment. In a highly scattering enviromnent, many photons reaching the detector will...have scattered off particulates in the water, while relatively few photons reaching the detector will have made the round-trip to and from the object...Received power is attenuated according to where P is the power received by the detector , PQIS the power transmitted by the source, c is the beam

  13. Applicability Analysis of Cloth Simulation Filtering Algorithm for Mobile LIDAR Point Cloud

    NASA Astrophysics Data System (ADS)

    Cai, S.; Zhang, W.; Qi, J.; Wan, P.; Shao, J.; Shen, A.

    2018-04-01

    Classifying the original point clouds into ground and non-ground points is a key step in LiDAR (light detection and ranging) data post-processing. Cloth simulation filtering (CSF) algorithm, which based on a physical process, has been validated to be an accurate, automatic and easy-to-use algorithm for airborne LiDAR point cloud. As a new technique of three-dimensional data collection, the mobile laser scanning (MLS) has been gradually applied in various fields, such as reconstruction of digital terrain models (DTM), 3D building modeling and forest inventory and management. Compared with airborne LiDAR point cloud, there are some different features (such as point density feature, distribution feature and complexity feature) for mobile LiDAR point cloud. Some filtering algorithms for airborne LiDAR data were directly used in mobile LiDAR point cloud, but it did not give satisfactory results. In this paper, we explore the ability of the CSF algorithm for mobile LiDAR point cloud. Three samples with different shape of the terrain are selected to test the performance of this algorithm, which respectively yields total errors of 0.44 %, 0.77 % and1.20 %. Additionally, large area dataset is also tested to further validate the effectiveness of this algorithm, and results show that it can quickly and accurately separate point clouds into ground and non-ground points. In summary, this algorithm is efficient and reliable for mobile LiDAR point cloud.

  14. Looking for Off-Fault Deformation and Measuring Strain Accumulation During the Past 70 years on a Portion of the Locked San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Vadman, M.; Bemis, S. P.

    2017-12-01

    Even at high tectonic rates, detection of possible off-fault plastic/aseismic deformation and variability in far-field strain accumulation requires high spatial resolution data and likely decades of measurements. Due to the influence that variability in interseismic deformation could have on the timing, size, and location of future earthquakes and the calculation of modern geodetic estimates of strain, we attempt to use historical aerial photographs to constrain deformation through time across a locked fault. Modern photo-based 3D reconstruction techniques facilitate the creation of dense point clouds from historical aerial photograph collections. We use these tools to generate a time series of high-resolution point clouds that span 10-20 km across the Carrizo Plain segment of the San Andreas fault. We chose this location due to the high tectonic rates along the San Andreas fault and lack of vegetation, which may obscure tectonic signals. We use ground control points collected with differential GPS to establish scale and georeference the aerial photograph-derived point clouds. With a locked fault assumption, point clouds can be co-registered (to one another and/or the 1.7 km wide B4 airborne lidar dataset) along the fault trace to calculate relative displacements away from the fault. We use CloudCompare to compute 3D surface displacements, which reflect the interseismic strain accumulation that occurred in the time interval between photo collections. As expected, we do not observe clear surface displacements along the primary fault trace in our comparisons of the B4 lidar data against the aerial photograph-derived point clouds. However, there may be small scale variations within the lidar swath area that represent near-fault plastic deformation. With large-scale historical photographs available for the Carrizo Plain extending back to at least the 1940s, we can potentially sample nearly half the interseismic period since the last major earthquake on this portion of this fault (1857). Where sufficient aerial photograph coverage is available, this approach has the potential to illuminate complex fault zone processes for this and other major strike-slip faults.

  15. Method for tracking the location of mobile agents using stand-off detection technique

    DOEpatents

    Schmitt, Randal L [Tijeras, NM; Bender, Susan Fae Ann [Tijeras, NM; Rodacy, Philip J [Albuquerque, NM; Hargis, Jr., Philip J.; Johnson, Mark S [Albuquerque, NM

    2006-12-26

    A method for tracking the movement and position of mobile agents using light detection and ranging (LIDAR) as a stand-off optical detection technique. The positions of the agents are tracked by analyzing the time-history of a series of optical measurements made over the field of view of the optical system. This provides a (time+3-D) or (time+2-D) mapping of the location of the mobile agents. Repeated pulses of a laser beam impinge on a mobile agent, such as a bee, and are backscattered from the agent into a LIDAR detection system. Alternatively, the incident laser pulses excite fluorescence or phosphorescence from the agent, which is detected using a LIDAR system. Analysis of the spatial location of signals from the agents produced by repeated pulses generates a multidimensional map of agent location.

  16. Lidar Studies of Extinction in Clouds in the ECLIPS Project

    NASA Technical Reports Server (NTRS)

    Martin, C.; Platt, R.; Young, Stuart A.; Patterson, Graeme P.

    1992-01-01

    The Experimental Cloud Lidar Pilot Study (ECLIPS) project has now had two active phases in 1989 and 1991. A number of laboratories around the world have taken part in the study. The observations have yielded new data on cloud height and structure, and have yielded some useful new information on the retrieval of cloud optical properties, together with the uncertainties involved. Clouds have a major impact on the climate of the earth. They have the effect of reducing the mean surface temperature from 30 C for a cloudless planet to a value of about 15 C for present cloud conditions. However, it is not at all certain how clouds would react to a change in the planetary temperature in the event of climate change due to a radiative forcing from greenhouse gases. Clouds both reflect out sunlight (negative feedback) and enhance the greenhouse effect (positive feedback), but the ultimate sign of cloud feedback is unknown. Because of these uncertainties, campaigns to study clouds intensely were initiated. The International Satellite Cloud Climatology (ISCPP) and the FIRE Campaigns (cirrus and stratocumulus) are examples. The ECLIPS was set up similarly to the above experiments to obtain information specifically on cloud base, but also cloud top (where possible), optical properties, and cloud structure. ECLIPS was designed to allow as many laboratories as possible globally to take part to get the largest range of clouds. It involves observations with elastic backscatter lidar, supported by infrared fluxes at the ground and radiosonde data, as basic instrumentation. More complex experiments using beam filter radiometers, solar pyranometers, and satellite data and often associated with other campaigns were also encouraged to join ECLIPS. Two periods for observation were chosen, Sep. - Dec. 1989 and Apr. - Jul. 1992 into which investigators were requested to fit 30 days of observations. These would be either continuous, or arranged to coincide with NOAA satellite overpasses to obtain AVHRR data. The distribution of the ECLIPS international effort as in 1991 is shown. The main gaps in the global distribution are in the tropics and the Southern Hemisphere.

  17. Development of a 2-micron Pulsed Direct Detection IPDA Lidar for CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, J.; Petros, M.; Singh, U. N.

    2013-12-01

    NASA Langley is developing a 2-micron pulsed Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations with significant advantages. The objective of this development is to integrate an existing high energy double-pulsed 2-micron laser transmitter with a direct detection receiver and telescope to enable a first proof of principle demonstration of airborne direct detection CO2 measurements at 2-micron wavelength. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement. The system is scheduled to fly on NASA UC12 or B200 research aircrafts before the end of 2013. This paper will describe the design of the airborne 2-micron pulsed IPDA lidar system; the lidar operation parameters; the wavelength pair selection; laser transmitter energy, pulse rate, beam divergence, double pulse generation and accurate frequency control; detector characterization; telescope design; lidar structure design; and lidar signal to noise ratio estimation.

  18. Spaceborne lidar for cloud monitoring

    NASA Astrophysics Data System (ADS)

    Werner, Christian; Krichbaumer, W.; Matvienko, Gennadii G.

    1994-12-01

    Results of laser cloud top measurements taken from space in 1982 (called PANTHER) are presented. Three sequences of land, water, and cloud data are selected. A comparison with airborne lidar data shows similarities. Using the single scattering lidar equation for these spaceborne lidar measurements one can misinterpret the data if one doesn't correct for multiple scattering.

  19. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system.

    PubMed

    Liu, Z; Voelger, P; Sugimoto, N

    2000-06-20

    We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.

  20. Lidar Penetration Depth Observations for Constraining Cloud Longwave Feedbacks

    NASA Astrophysics Data System (ADS)

    Vaillant de Guelis, T.; Chepfer, H.; Noel, V.; Guzman, R.; Winker, D. M.; Kay, J. E.; Bonazzola, M.

    2017-12-01

    Satellite-borne active remote sensing Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO; Winker et al., 2010] and CloudSat [Stephens et al., 2002] provide direct measurements of the cloud vertical distribution, with a very high vertical resolution. The penetration depth of the laser of the lidar Z_Opaque is directly linked to the LongWave (LW) Cloud Radiative Effect (CRE) at Top Of Atmosphere (TOA) [Vaillant de Guélis et al., in review]. In addition, this measurement is extremely stable in time making it an excellent observational candidate to verify and constrain the cloud LW feedback mechanism [Chepfer et al., 2014]. In this work, we present a method to decompose the variations of the LW CRE at TOA using cloud properties observed by lidar [GOCCP v3.0; Guzman et al., 2017]. We decompose these variations into contributions due to changes in five cloud properties: opaque cloud cover, opaque cloud altitude, thin cloud cover, thin cloud altitude, and thin cloud emissivity [Vaillant de Guélis et al., in review]. We apply this method, in the real world, to the CRE variations of CALIPSO 2008-2015 record, and, in climate model, to LMDZ6 and CESM simulations of the CRE variations of 2008-2015 period and of the CRE difference between a warm climate and the current climate. In climate model simulations, the same cloud properties as those observed by CALIOP are extracted from the CFMIP Observation Simulator Package (COSP) [Bodas-Salcedo et al., 2011] lidar simulator [Chepfer et al., 2008], which mimics the observations that would be performed by the lidar on board CALIPSO satellite. This method, when applied on multi-model simulations of current and future climate, could reveal the altitude of cloud opacity level observed by lidar as a strong constrain for cloud LW feedback, since the altitude feedback mechanism is physically explainable and the altitude of cloud opacity accurately observed by lidar.

  1. Validating Lidar Depolorization Calibration using Solar Radiation Scattered by Ice Clouds

    NASA Technical Reports Server (NTRS)

    Liu, Zhao-Yang; McGill, Matthew; Hu, Yong-Xiang; Hostetter, Chris; Winker, David; Vaughan, Mark

    2004-01-01

    This letter proposes the use of solar background radiation scattered by ice clouds for validating space lidar depolarization calibration. The method takes advantage of the fact that the background light scattered by ice clouds is almost entirely unpolarized. The theory is examined with Cloud Physics Lidar (CPL) background light measurements.

  2. A methodology for cloud masking uncalibrated lidar signals

    NASA Astrophysics Data System (ADS)

    Binietoglou, Ioannis; D'Amico, Giuseppe; Baars, Holger; Belegante, Livio; Marinou, Eleni

    2018-04-01

    Most lidar processing algorithms, such as those included in EARLINET's Single Calculus Chain, can be applied only to cloud-free atmospheric scenes. In this paper, we present a methodology for masking clouds in uncalibrated lidar signals. First, we construct a reference dataset based on manual inspection and then train a classifier to separate clouds and cloud-free regions. Here we present details of this approach together with an example cloud masks from an EARLINET station.

  3. Cloud-property retrieval using merged HIRS and AVHRR data

    NASA Technical Reports Server (NTRS)

    Baum, Bryan A.; Wielicki, Bruce A.; Minnis, Patrick; Parker, Lindsay

    1992-01-01

    A technique is developed that uses a multispectral, multiresolution method to improve the overall retrieval of mid- to high-level cloud properties by combining HIRS sounding channel data with higher spatial resolution AVHRR radiometric data collocated with the HIRS footprint. Cirrus cloud radiative and physical properties are determined using satellite data, surface-based measurements provided by rawinsondes and lidar, and aircraft-based lidar data collected during the First International Satellite Cloud Climatology Program Regional Experiment in Wisconsin during the months of October and November 1986. HIRS cloud-height retrievals are compared to ground-based lidar and aircraft lidar when possible. Retrieved cloud heights are found to have close agreement with lidar for thin cloud, but are higher than lidar for optically thick cloud. The results of the reflectance-emittance relationships derived are compared to theoretical scattering model results for both water-droplet spheres and randomly oriented hexagonal ice crystals. It is found that the assumption of 10-micron water droplets is inadequate to describe the reflectance-emittance relationship for the ice clouds seen here. Use of this assumption would lead to lower cloud heights using the ISCCP approach. The theoretical results show that use of hexagonal ice crystal phase functions could lead to much improved results for cloud retrieval algorithms using a bispectral approach.

  4. CloudSat 2C-ICE product update with a new Ze parameterization in lidar-only region.

    PubMed

    Deng, Min; Mace, Gerald G; Wang, Zhien; Berry, Elizabeth

    2015-12-16

    The CloudSat 2C-ICE data product is derived from a synergetic ice cloud retrieval algorithm that takes as input a combination of CloudSat radar reflectivity ( Z e ) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation lidar attenuated backscatter profiles. The algorithm uses a variational method for retrieving profiles of visible extinction coefficient, ice water content, and ice particle effective radius in ice or mixed-phase clouds. Because of the nature of the measurements and to maintain consistency in the algorithm numerics, we choose to parameterize (with appropriately large specification of uncertainty) Z e and lidar attenuated backscatter in the regions of a cirrus layer where only the lidar provides data and where only the radar provides data, respectively. To improve the Z e parameterization in the lidar-only region, the relations among Z e , extinction, and temperature have been more thoroughly investigated using Atmospheric Radiation Measurement long-term millimeter cloud radar and Raman lidar measurements. This Z e parameterization provides a first-order estimation of Z e as a function extinction and temperature in the lidar-only regions of cirrus layers. The effects of this new parameterization have been evaluated for consistency using radiation closure methods where the radiative fluxes derived from retrieved cirrus profiles compare favorably with Clouds and the Earth's Radiant Energy System measurements. Results will be made publicly available for the entire CloudSat record (since 2006) in the most recent product release known as R05.

  5. Development of lidar sensor for cloud-based measurements during convective conditions

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, T. Narayana; Nair, Anish Kumar M.; Jayaraman, A.

    2016-05-01

    Atmospheric convection is a natural phenomena associated with heat transport. Convection is strong during daylight periods and rigorous in summer months. Severe ground heating associated with strong winds experienced during these periods. Tropics are considered as the source regions for strong convection. Formation of thunder storm clouds is common during this period. Location of cloud base and its associated dynamics is important to understand the influence of convection on the atmosphere. Lidars are sensitive to Mie scattering and are the suitable instruments for locating clouds in the atmosphere than instruments utilizing the radio frequency spectrum. Thunder storm clouds are composed of hydrometers and strongly scatter the laser light. Recently, a lidar technique was developed at National Atmospheric Research Laboratory (NARL), a Department of Space (DOS) unit, located at Gadanki near Tirupati. The lidar technique employs slant path operation and provides high resolution measurements on cloud base location in real-time. The laser based remote sensing technique allows measurement of atmosphere for every second at 7.5 m range resolution. The high resolution data permits assessment of updrafts at the cloud base. The lidar also provides real-time convective boundary layer height using aerosols as the tracers of atmospheric dynamics. The developed lidar sensor is planned for up-gradation with scanning facility to understand the cloud dynamics in the spatial direction. In this presentation, we present the lidar sensor technology and utilization of its technology for high resolution cloud base measurements during convective conditions over lidar site, Gadanki.

  6. WALES: water vapour lidar experiment in space

    NASA Astrophysics Data System (ADS)

    Guerin, F.; Pain, Th.; Palmade, J.-L.; Pailharey, E.; Giraud, D.; Jubineau, F.

    2017-11-01

    The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.

  7. WALES: WAter vapour Lidar Experiment in Space

    NASA Astrophysics Data System (ADS)

    Guerin, F.; Pain, Th.; Palmade, J. L.; Pailharey, E.; Giraud, D.; Jubineau, F.

    2004-06-01

    The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.

  8. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.

    2017-11-01

    The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.

  9. Impact of Footprint Diameter and Off-Nadir Pointing on the Precision of Canopy Height Estimates from Spaceborne Lidar

    NASA Technical Reports Server (NTRS)

    Pang, Yong; Lefskky, Michael; Sun, Guoqing; Ranson, Jon

    2011-01-01

    A spaceborne lidar mission could serve multiple scientific purposes including remote sensing of ecosystem structure, carbon storage, terrestrial topography and ice sheet monitoring. The measurement requirements of these different goals will require compromises in sensor design. Footprint diameters that would be larger than optimal for vegetation studies have been proposed. Some spaceborne lidar mission designs include the possibility that a lidar sensor would share a platform with another sensor, which might require off-nadir pointing at angles of up to 16 . To resolve multiple mission goals and sensor requirements, detailed knowledge of the sensitivity of sensor performance to these aspects of mission design is required. This research used a radiative transfer model to investigate the sensitivity of forest height estimates to footprint diameter, off-nadir pointing and their interaction over a range of forest canopy properties. An individual-based forest model was used to simulate stands of mixed conifer forest in the Tahoe National Forest (Northern California, USA) and stands of deciduous forests in the Bartlett Experimental Forest (New Hampshire, USA). Waveforms were simulated for stands generated by a forest succession model using footprint diameters of 20 m to 70 m. Off-nadir angles of 0 to 16 were considered for a 25 m diameter footprint diameter. Footprint diameters in the range of 25 m to 30 m were optimal for estimates of maximum forest height (R(sup 2) of 0.95 and RMSE of 3 m). As expected, the contribution of vegetation height to the vertical extent of the waveform decreased with larger footprints, while the contribution of terrain slope increased. Precision of estimates decreased with an increasing off-nadir pointing angle, but off-nadir pointing had less impact on height estimates in deciduous forests than in coniferous forests. When pointing off-nadir, the decrease in precision was dependent on local incidence angle (the angle between the off-nadir beam and a line normal to the terrain surface) which is dependent on the off-nadir pointing angle, terrain slope, and the difference between the laser pointing azimuth and terrain aspect; the effect was larger when the sensor was aligned with the terrain azimuth but when aspect and azimuth are opposed, there was virtually no effect on R2 or RMSE. A second effect of off-nadir pointing is that the laser beam will intersect individual crowns and the canopy as a whole from a different angle which had a distinct effect on the precision of lidar estimates of height, decreasing R2 and increasing RMSE, although the effect was most pronounced for coniferous crowns.

  10. A Depolarisation Lidar Based Method for the Determination of Liquid-Cloud Microphysical Properties.

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; De Roode, S. R.; Siebesma, P.

    2014-12-01

    The fact that polarisation lidars measure a multiple-scattering induced depolarisation signal in liquid clouds is well-known. The depolarisation signal depends on the lidar characteristics (e.g. wavelength and field-of-view) as well as the cloud properties (e.g. liquid water content (LWC) and cloud droplet number concentration (CDNC)). Previous efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear LWC profiles and (quasi-)constant CDNC in the cloud base region. Limiting the applicability of the procedure in this manner allows us to reduce the cloud variables to two parameters (namely liquid water content lapse-rate and the CDNC). This simplification, in turn, allows us to employ a robust optimal-estimation inversion using pre-computed look-up-tables produced using lidar Monte-Carlo multiple-scattering simulations. Here, we describe the theory behind the inversion procedure and apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data covering to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived CDNC are also presented. The results are seen to be consistent with previous studies based on aircraft-based in situ measurements.

  11. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    NASA Astrophysics Data System (ADS)

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  12. UAV-borne lidar with MEMS mirror-based scanning capability

    NASA Astrophysics Data System (ADS)

    Kasturi, Abhishek; Milanovic, Veljko; Atwood, Bryan H.; Yang, James

    2016-05-01

    Firstly, we demonstrated a wirelessly controlled MEMS scan module with imaging and laser tracking capability which can be mounted and flown on a small UAV quadcopter. The MEMS scan module was reduced down to a small volume of <90mm x 60mm x 40mm, weighing less than 40g and consuming less than 750mW of power using a ~5mW laser. This MEMS scan module was controlled by a smartphone via Bluetooth while flying on a drone, and could project vector content, text, and perform laser based tracking. Also, a "point-and-range" LiDAR module was developed for UAV applications based on low SWaP (Size, Weight and Power) gimbal-less MEMS mirror beam-steering technology and off-the-shelf OEM LRF modules. For demonstration purposes of an integrated laser range finder module, we used a simple off-the-shelf OEM laser range finder (LRF) with a 100m range, +/-1.5mm accuracy, and 4Hz ranging capability. The LRFs receiver optics were modified to accept 20° of angle, matching the transmitter's FoR. A relatively large (5.0mm) diameter MEMS mirror with +/-10° optical scanning angle was utilized in the demonstration to maintain the small beam divergence of the module. The complete LiDAR prototype can fit into a small volume of <70mm x 60mm x 60mm, and weigh <50g when powered by the UAV's battery. The MEMS mirror based LiDAR system allows for ondemand ranging of points or areas within the FoR without altering the UAV's position. Increasing the LRF ranging frequency and stabilizing the pointing of the laser beam by utilizing the onboard inertial sensors and the camera are additional goals of the next design.

  13. Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.

    1996-01-01

    The scientific research conducted under this grant have been reported in a series of journal articles, dissertations, and conference proceedings. This report consists of a compilation of these publications in the following areas: development and operation of a High Spectral Resolution Lidar, cloud physics and cloud formation, mesoscale observations of cloud phenomena, ground-based and satellite cloud cover observations, impact of volcanic aerosols on cloud formation, visible and infrared radiative relationships as measured by satellites and lidar, and scattering cross sections.

  14. Cloud and Aerosol 1064nm Lidar Ratio Retrievals from the CATS Instrument

    NASA Astrophysics Data System (ADS)

    Pauly, R.; Yorks, J. E.; McGill, M. J.; Hlavka, D. L.; Midzak, N.

    2017-12-01

    The extinction to backscatter ratio or lidar ratio is an essential value in order to derive the optical properties of cloud and aerosol layers from standard elastic backscatter lidar data. For these instruments, the lidar ratio can sometimes be determined from lidar data utilizing the transmission loss or "constrained" technique. The best situations for deploying this technique involve clearly defined layers with clear sky underneath for 1-3 km. In situations where the lidar ratio cannot be calculated, look-up tables exist for various cloud and aerosol types. There is a vast data record of derived lidar ratios for various cloud and aerosol types using 532nm from an array of instruments (i.e. HSRL, CALIOP, CPL, Aeronet, MPLNET). To date, because the 1064nm molecular signal is so small, lidar ratios at 1064nm have been mostly determined from 532nm lidar ratios using angstrom exponents, color ratios and ground based non-lidar measurements, as HSRL measurements at that wavelength do not exist. Due to the better signal quality at 1064nm compared to the 532nm signal, the CATS laser was thermally tuned to increase the 1064nm output energy. Therefore, the 1064nm channel is used in nearly all CATS layer data processing, making the accurate determination of 1064nm lidar ratio imperative. The CATS 1064nm signal allows for the unique capability to determine 1064nm lidar ratios better than previous instruments. The statistical and case study results of the CATS derived smoke and dust lidar ratios will be presented. Results have shown that the previously assumed 1064nm lidar ratios for dust need to be lowered. In addition to 1064nm lidar ratio results from the traditional transmission loss technique, results for aerosol layers above opaque water clouds from a method utilizing the depolarization ratio of the opaque cloud will be discussed. Incorporating this method into the CATS algorithms should increase the number of aerosol layers with constrained lidar ratio.

  15. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-11-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results illustrated in this study demonstrate that Raman lidars, like the one used in this study, can resolve the spatial and temporal scales required for the study of cirrus cloud microphysical processes and appear sensitive enough to reveal and quantify upper tropospheric humidification associated with cirrus cloud sublimation.

  16. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Lin, R.-F.; Maestri, T.; Rizzi, R.; Masiello, G.

    2009-07-01

    Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows to determine the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud anvil. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicates that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results illustrated in this study demonstrate that Raman lidars, like the one used in this study, can resolve the spatial and temporal scales required for the study of cirrus cloud microphysical processes and appears sensitive enough to reveal and quantify upper tropospheric humidification associated with cirrus cloud sublimation.

  17. Mini-lidar sensor for the remote stand-off sensing of chemical/biological substances and method for sensing same

    DOEpatents

    Ray, Mark D.; Sedlacek, Arthur J.

    2003-08-19

    A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.

  18. A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S. R.; Siebesma, A. P.

    2015-01-01

    The fact that polarisation lidars measure a depolarisation signal in liquid clouds due to the occurrence of multiple scattering is well known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field of view) as well as the cloud macrophysical (e.g. cloud-base altitude) and microphysical (e.g. effective radius, liquid water content) properties. Efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud-droplet number density in the cloud-base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a fixed distance above cloud base). This simplification, in turn, allows us to employ a fast and robust optimal-estimation inversion using pre-computed look-up tables produced using extensive lidar Monte Carlo (MC) multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation (LES) model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud-droplet number densities are also presented and discussed. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.

  19. A Depolarisation lidar based method for the determination of liquid-cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Donovan, David; Klein Baltink, Henk; Henzing, Bas; de Roode, Stephen; Siebesma, Pier

    2015-04-01

    The fact that polarisation lidars measure a~depolarisation signal in liquid clouds due to the occurrence of multiple-scattering is well-known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field-of-view) as well as the cloud macrophysical (e.g. cloud base altitude) and microphysical (e.g. effective radius, liquid water content) properties. Efforts seeking to use depolarisation information in a~quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a~retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud droplet number density in the cloud base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a~fixed distance above cloud-base). This simplification, in turn, allows us to employ a~fast and robust optimal-estimation inversion using pre-computed look-up-tables produced using extensive lidar Monte-Carlo multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a~range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2--3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a~comparison between ground-based aerosol number concentration and lidar-derived cloud droplet number densities are also presented and discussed. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.

  20. Modeling Lidar Multiple Scattering

    NASA Astrophysics Data System (ADS)

    Sato, Kaori; Okamoto, Hajime; Ishimoto, Hiroshi

    2016-06-01

    A practical model to simulate multiply scattered lidar returns from inhomogeneous cloud layers are developed based on Backward Monte Carlo (BMC) simulations. The estimated time delay of the backscattered intensities returning from different vertical grids by the developed model agreed well with that directly obtained from BMC calculations. The method was applied to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite data to improve the synergetic retrieval of cloud microphysics with CloudSat radar data at optically thick cloud grids. Preliminary results for retrieving mass fraction of co-existing cloud particles and drizzle size particles within lowlevel clouds are demonstrated.

  1. Analysis and manipulation of the induced changes in the state of polarization by mirror scanners.

    PubMed

    Petrova-Mayor, Anna; Knudsen, Sarah

    2017-05-20

    The induced polarization effects of metal-coated mirrors were studied in the configurations of one- and two-mirror lidar scanners as a function of azimuth and elevation angles. The theoretical results were verified experimentally for three types of mirrors (custom enhanced gold, off-the-shelf protected gold, and protected aluminum). A method was devised and tested to maintain a desired polarization state (linear or circular) of the transmit beam for all pointing directions by means of rotating wave plates in the transmit and detection paths. Alternatively, the mirror coating can be optimized to preserve the linear polarization state of the transmitted beam. The compensation methods will enable ground-based scanning lidars to produce absolutely calibrated depolarization measurements.

  2. Deriving Cloud Droplet Number Concentration from Combined Airborne Lidar and Polarimeter Measurements from the NAAMES Mission

    NASA Astrophysics Data System (ADS)

    Hair, J. W.; Hostetler, C. A.; Brian, C.; Ziemba, L. D.; Alexandrov, M. D.; Hu, Y.; Crosbie, E.; Scarino, A. J.; Butler, C. F.; Moore, R.; Berkoff, T.; Harper, D. B.; Cook, A. L.; Hare, R. J.; Lee, J.; Anderson, B. E.

    2017-12-01

    The NASA Langley High Spectral Resolution lidar (HSRL) and the NASA GISS Research Scanning Polarimeter (RSP) were deployed onboard the NASA C-130 during two field campaigns as part of the NASA's Earth Venture-Suborbital (EVS) North Atlantic Aerosol and Marine Ecosystems Study (NAAMES) during November 2015 and May 2016. The main objectives of NAAMES are to study the phases of the North Atlantic annual plankton cycle and to investigate remote marine aerosols and their impact on boundary layer clouds. Lidar retrievals of the cloud-top extinction and lidar ratio (extinction/backscatter ratio) of boundary layer clouds are presented. These retrievals are unique and are enabled by two characteristics of the lidar: employment of the high-spectral-resolution lidar technique and the high-vertical-resolution (1.25 m) the Langley HSRL instrument. The HSRL lidar ratio retrievals are compared to estimates derived from Research Scanning Polarimeter data to assess consistency between the two remote sensors. The measurements of effective size and variance from RSP are combined with the HSRL cloud top extinction to retrieve the cloud droplet number concentrations (CDNC). The lidar+polarimeter CDNC estimates are compared to those from the Cloud Droplet Probe (CDP) that is part of the NASA Langley Aerosol Research Group Experiment (LARGE) instrument suite. Histograms of the CNDC measurements from remote sensors are shown to highlight the observed differences in CDNC between the November and May deployments.

  3. A depolarisation lidar based method for the determination of liquid-cloud microphysical properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S. R.; Siebesma, A. P.

    2014-09-01

    The fact that polarisation lidars measure a depolarisation signal in liquid clouds due to the occurrence of multiple-scattering is well-known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field-of-view) as well as the cloud macrophysical (e.g. liquid water content) and microphysical (e.g. effective radius) properties. Efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud droplet number density in the cloud base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a fixed distance above cloud-base). This simplification, in turn, allows us to employ a fast and robust optimal-estimation inversion using pre-computed look-up-tables produced using extensive lidar Monte-Carlo multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud droplet number densities are also presented and discussed. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.

  4. Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the ability to fit the MODIS data. Therefore the MODIS measurements can be used to identify the calibration problem and correct for it. The CALIPSO-MODIS measurements of the profiles of fine and coarse aerosols, together with CALIPSO measurements of clouds vertical distribution, is expected to be critically important in understanding aerosol transport across continents and political boundaries, and to study aerosol-cloud interaction and its effect on precipitation and global forcing of climate.

  5. Determining Cloud Thermodynamic Phase from Micropulse Lidar Network Data

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R.; Campbell, James; Lolli, Simone; Tan, Ivy; Welton, Ellsworth J.

    2017-01-01

    Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micro Pulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of -10 C to -40 C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft.

  6. Determining cloud thermodynamic phase from Micropulse Lidar Network data

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.; Campbell, J. R.; Lolli, S.; Tan, I.; Welton, E. J.

    2017-12-01

    Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micropulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of 0 °C to -40 °C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft.

  7. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Campbell, James R.; Welton, Ellsworth J.; Lewis, Jasper R.; Gu, Yu; Pappalardo, Gelsomina

    2018-03-01

    In the past 2 decades, ground-based lidar networks have drastically increased in scope and relevance, thanks primarily to the advent of lidar observations from space and their need for validation. Lidar observations of aerosol and cloud geometrical, optical and microphysical atmospheric properties are subsequently used to evaluate their direct radiative effects on climate. However, the retrievals are strongly dependent on the lidar instrument measurement technique and subsequent data processing methodologies. In this paper, we evaluate the discrepancies between the use of Raman and elastic lidar measurement techniques and corresponding data processing methods for two aerosol layers in the free troposphere and for two cirrus clouds with different optical depths. Results show that the different lidar techniques are responsible for discrepancies in the model-derived direct radiative effects for biomass burning (0.05 W m-2 at surface and 0.007 W m-2 at top of the atmosphere) and dust aerosol layers (0.7 W m-2 at surface and 0.85 W m-2 at top of the atmosphere). Data processing is further responsible for discrepancies in both thin (0.55 W m-2 at surface and 2.7 W m-2 at top of the atmosphere) and opaque (7.7 W m-2 at surface and 11.8 W m-2 at top of the atmosphere) cirrus clouds. Direct radiative effect discrepancies can be attributed to the larger variability of the lidar ratio for aerosols (20-150 sr) than for clouds (20-35 sr). For this reason, the influence of the applied lidar technique plays a more fundamental role in aerosol monitoring because the lidar ratio must be retrieved with relatively high accuracy. In contrast, for cirrus clouds, with the lidar ratio being much less variable, the data processing is critical because smoothing it modifies the aerosol and cloud vertically resolved extinction profile that is used as input to compute direct radiative effect calculations.

  8. CELiS (Compact Eyesafe Lidar System), a portable 1.5 μm elastic lidar system for rapid aerosol concentration measurement: Part 1, Instrument Design and Operation

    NASA Astrophysics Data System (ADS)

    Bird, A. W.; Wojcik, M.; Moore, K. D.; Lemon, R.

    2014-12-01

    CELiS (Compact Eyesafe Lidar System) is an elastic lidar system conceived for the purpose of monitoring air quality environmental compliance regarding particulate matter (PM) generated from off-road use of wheeled and tracked vehicles. CELiS is a prototype instrument development by the Space Dynamics Laboratory to demonstrate a small, low power, eye-safe lidar system capable of monitoring PM fence-line concentration of fugitive dust from off-road vehicle activity as part of the SERDP (Strategic Environmental Research and Development Program) Measurement and Modeling of Fugitive Dust Emission from Off-Road Department of Defense Activities program. CELiS is small, lightweight and easily transportable for quick setup and measurement of PM concentration and emissions. The instrument is mounted on Moog Quickset pan and tilt positioner. Ground support equipment includes portable racks with laser power and cooler, power supplies, readout electronics and computer. The complete CELiS instrument weighs less than 300 lbs., is less than 1 cubic meters in volume and uses 700 W of 120V AC power. CELiS has a working range of better than 6km and a range resolution of 1.5m-6m. CELiS operates in a biaxial configuration at the 1.5μm eyesafe wavelength. The receiver is an off-axis parabolic (OAP) telescope, aft-optics and alignment assembly and InGaAs APD detector readout. The transmitter is a 20Hz PRF - 25mJ Quantel 1.574 μm laser with a 20x beam expander. Both the receiver and transmitter are mounted on a carbon fiber optical breadboard with a custom mounting solution to minimize misalignment due to thermal operating range (0-40 C) and pointing vectors. Any lidar system used to monitor fence-line PM emissions related to off-road training activities will be subject to a strict eye-safety requirement to protect both troops and wildlife. CELiS is eyesafe at the output aperture. CELiS has participated in two Dugway Proving Ground Lidar exercises performing within expectations. Retrieval of particulate matter concentration is presented in companion poster by K. Moore.

  9. An Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation of the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Herzfeld, Ute C.; McDonald, Brian W.; Wallins, Bruce F.; Markus, Thorsten; Neumann, Thomas A.; Brenner, Anita

    2012-01-01

    The Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission has been selected by NASA as a Decadal Survey mission, to be launched in 2016. Mission objectives are to measure land ice elevation, sea ice freeboard/ thickness and changes in these variables and to collect measurements over vegetation that will facilitate determination of canopy height, with an accuracy that will allow prediction of future environmental changes and estimation of sea-level rise. The importance of the ICESat-2 project in estimation of biomass and carbon levels has increased substantially, following the recent cancellation of all other planned NASA missions with vegetation-surveying lidars. Two innovative components will characterize the ICESat-2 lidar: (1) Collection of elevation data by a multi-beam system and (2) application of micropulse lidar (photon counting) technology. A micropulse photon-counting altimeter yields clouds of discrete points, which result from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of returned points to reflectors of interest including canopy and ground in forested areas. The objective of this paper is to derive and validate an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2-type data. Data are based on airborne observations with a Sigma Space micropulse lidar and vary with respect to signal strength, noise levels, photon sampling options and other properties. A mathematical algorithm is developed, using spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors and geostatistical classification parameters and hyperparameters. Validation shows that the algorithm works very well and that ground and canopy elevation, and hence canopy height, can be expected to be observable with a high accuracy during the ICESat-2 mission. A result relevant for instrument design is that even the two weaker beam classes considered can be expected to yield useful results for vegetation measurements (93.01-99.57% correctly selected points for a beam with expected return of 0.93 mean signals per shot (msp9) and 72.85% - 98.68% for 0.48 msp (msp4)). Resampling options affect results more than noise levels. The algorithm derived here is generally applicable for analysis of micropulse lidar altimeter data collected over forested areas as well as other surfaces, including land ice, sea ice and land surfaces.

  10. Cloud Coverage and Height Distribution from the GLAS Polar Orbiting Lidar: Comparison to Passive Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Spinhime, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) began full on orbit operations in September 2003. A main application of the two-wavelength GLAS lidar is highly accurate detection and profiling of global cloud cover. Initial analysis indicates that cloud and aerosol layers are consistently detected on a global basis to cross-sections down to 10(exp -6) per meter. Images of the lidar data dramatically and accurately show the vertical structure of cloud and aerosol to the limit of signal attenuation. The GLAS lidar has made the most accurate measurement of global cloud coverage and height to date. In addition to the calibrated lidar signal, GLAS data products include multi level boundaries and optical depth of all transmissive layers. Processing includes a multi-variable separation of cloud and aerosol layers. An initial application of the data results is to compare monthly cloud means from several months of GLAS observations in 2003 to existing cloud climatologies from other satellite measurement. In some cases direct comparison to passive cloud retrievals is possible. A limitation of the lidar measurements is nadir only sampling. However monthly means exhibit reasonably good global statistics and coverage results, at other than polar regions, compare well with other measurements but show significant differences in height distribution. For polar regions where passive cloud retrievals are problematic and where orbit track density is greatest, the GLAS results are particularly an advance in cloud cover information. Direct comparison to MODIS retrievals show a better than 90% agreement in cloud detection for daytime, but less than 60% at night. Height retrievals are in much less agreement. GLAS is a part of the NASA EOS project and data products are thus openly available to the science community (see http://glo.gsfc.nasa.gov).

  11. Lidar measurements of polar stratospheric clouds during the 1989 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Browell, Edward V.

    1991-01-01

    The Airborne Arctic Stratospheric Expedition (AASE) was conducted during January to February 1989 from the Sola Air Station, Norway. As part of this expedition, the NASA Langley Research Center's multiwavelength airborne lidar system was flown on the NASA Ames Research Center's DC-8 aircraft to measure ozone (O3) and aerosol profiles in the region of the polar vortex. The lidar system simultaneously transmitted laser beams at 1064, 603, 311, and 301.5 nm to measure atmospheric scattering, polarization and O3 profiles. Long range flights were made between Stavanger, Norway, and the North Pole, and between 40 deg W and 20 deg E meridians. Eleven flights were made, each flight lasting an average of 10 hours covering about 8000 km. Atmospheric scattering ratios, aerosol polarizations, and aerosol scattering ratio wavelength dependences were derived from the lidar measurements to altitudes above 27 km. The details of the aerosol scattering properties of lidar observations in the IR, VIS, and UV regions are presented along with correlations with the national meteorological Center's temperature profiles.

  12. Optical and microphysical parameters of dense stratocumulus clouds during mission 206 of EUCREX '94 as retrieved from measurements made with the airborne lidar LEANDRE 1

    NASA Astrophysics Data System (ADS)

    Pelon, J.; Flamant, C.; Trouillet, V.; Flamant, P. H.

    Cloud parameters derived from measurements performed with the airborne backscatter lidar LEANDRE 1 during mission 206 of the EUCREX '94 campaign are reported. A new method has been developed to retrieve the extinction coefficient at the top of the dense stratocumulus deck under scrutiny during this mission. The largest extinction values are found to be related to the highest cloud top altitude revealing the small-scale structure of vertical motions within the stratocumulus field. Cloud optical depth (COD) is estimated from extinction retrievals, as well as cloud top and cloud base altitude using nadir and zenith lidar observations, respectively. Lidar-derived CODs are compared with CODs deduced from radiometric measurements made onboard the French research aircraft Avion de Recherche Atmosphérique et de Télédétection (ARAT/F27). A fair agreement is obtained (within 20%) for COD's larger than 10. Our results show the potential of lidar measurements to analyze cloud properties at optical depths larger than 5.

  13. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space: Progress

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Krainak, M.; Riris, H. J.; Sun, X.; Riris, H.; Andrews, A. E.; Collatz, J.

    2004-01-01

    We describe progress toward developing a laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate measurements of the tropospheric CO2 mixing ratio from space are challenging due to the many potential error sources. These include possible interference from other trace gas species, the effects of temperature, clouds, aerosols & turbulence in the path, changes in surface reflectivity, and variability in dry air density caused by changes in atmospheric pressure, water vapor and topographic height. Some potential instrumental errors include frequency drifts in the transmitter, small transmission and sensitivity drifts in the instrument. High signal-to-noise ratios and measurement stability are needed for mixing ratio estimates at the few ppm level. We have been developing a laser sounder approach as a candidate for a future space mission. It utilizes multiple different laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter in the same measurement path. It directs the narrow co-aligned laser beams from the instrument's fiber lasers toward nadir, and measures the energy of the strong laser echoes reflected from the Earth's land and water surfaces. During the measurement its narrow linewidth lasers are rapidly tuned on- and off- selected CO2 line near 1572 nm and an O2 absorption line near 770 nm. The receiver measures the energies of the laser echoes from the surface and any clouds and aerosols in the path with photon counting detectors. Ratioing the on- to off-line echo pulse energies for each gas permits the column extinction and column densities of CO2 and O2 to be estimated simultaneously via the differential absorption lidar technique. For the on-line wavelengths, the side of the selected absorption lines are used, which due to pressure broadening, weights the measurements to the lower troposphere, where CO2 variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line. The laser backscatter profiles from clouds and aerosols are measured with other lidar channels, which permits identifying measurements influenced by clouds and/or aerosol scattering in the path. For space use, our lidar would continuously measure at nadir in near polar circular orbit. Using dawn and dusk measurements made over the same region will make it possible to sample the diurnal variations in CO2 mixing ratios. A 1-m diameter telescope is used for the receiver for all wavelengths. When averaging over 50 seconds, our calculations show a SNR of approximately 1500 is achievable for each gas at each on- and off-line measurement. Measurements from such a mission can be used to generate monthly global maps of the lower tropospheric CO2 column abundance. Our calculations show global coverage with an accuracy of a few ppm with a spatial resolution of approximately 50,000 sq. km are achievable each month. We have demonstrated some key elements of the laser, detector and receiver approaches in the laboratory and with measurements over a 206 m horizontal path. These include stable measurements of CO2 line shapes in an absorption cell using a fiber laser amplifier seeded by a tunable diode laser, measurement of small amplitude changes at low optical signal levels with the PMT receiver, and comparison of the horizontal path measurements of CO2 against those from an in-situ instrument.

  14. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    NASA Astrophysics Data System (ADS)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  15. Lidar characterizations of atmospheric aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Burton, S. P.

    2017-12-01

    Knowledge of the vertical profile, composition, concentration, and size distribution of aerosols is required to quantify the impacts of aerosols on human health, global and regional climate, clouds and precipitation. In particular, radiative forcing due to anthropogenic aerosols is the most uncertain part of anthropogenic radiative forcing, with aerosol-cloud interactions (ACI) as the largest source of uncertainty in current estimates of global radiative forcing. Improving aerosol transport model predictions of the vertical profile of aerosol optical and microphysical characteristics is crucial for improving assessments of aerosol radiative forcing. Understanding how aerosols and clouds interact is essential for investigating the aerosol indirect effect and ACI. Through its ability to provide vertical profiles of aerosol and cloud distributions as well as important information regarding the optical and physical properties of aerosols and clouds, lidar is a crucial tool for addressing these science questions. This presentation describes how surface, airborne, and satellite lidar measurements have been used to address these questions, and in particular how High Spectral Resolution Lidar (HSRL) measurements provide profiles of aerosol properties (backscatter, extinction, depolarization, concentration, size) important for characterizing radiative forcing. By providing a direct measurement of aerosol extinction, HSRL provides more accurate aerosol measurement profiles and more accurate constraints for models than standard retrievals from elastic backscatter lidar, which loses accuracy and precision at lower altitudes due to attenuation from overlying layers. Information regarding particle size and abundance from advanced lidar retrievals provides better proxies for cloud-condensation-nuclei (CCN), which are required for assessing aerosol-cloud interactions. When combined with data from other sensors, advanced lidar measurements can provide information on aerosol and cloud properties for addressing both direct and indirect radiative forcing.

  16. Microphysical parameters of cirrus clouds using lidar at a tropical station, Gadanki, Tirupati (13.5° N, 79.2°E), India

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Radhakrishnan, S.-R.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Raghunath, K.

    2008-12-01

    Cirrus clouds have been identified as one of the most uncertain component in the atmospheric research. It is known that cirrus clouds modulate the earth's climate through direct and indirect modification of radiation. The role of cirrus clouds depends mainly on their microphysical properties. To understand cirrus clouds better, we must observe and characterize their properties. In-situ observation of such clouds is a challenging experiment, as the clouds are located at high altitudes. Active remote sensing method based on lidar can detect high and thin cirrus clouds with good spatial and temporal resolution. We present the result obtained on the microphysical properties of the cirrus clouds at two Tropical stations namely Gadhanki, Tirupati (13.50 N, 79.20 E), India and Trivandrum (13.50 N, 770 E) Kerala, India from the ground based pulsed Nd: YAG lidar systems installed at the stations. A variant of the widely used Klett's lidar inversion method with range dependent scattering ratio is used for the present study for the retrieval of aerosol extinction and microphysical parameters of cirrus cloud.

  17. Airborne lidar/radiometric measurements of cirrus cloud parameters and their application to LOWTRAN radiance evaluations

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.

    1990-01-01

    SRI has assembled an airborne lidar/radiometric instrumentation suite for mapping cirrus cloud distribution and analyzing cirrus cloud optical properties. Operation of upward viewing infrared radiometers from an airborne platform provides the optimum method of measuring high altitude cold cloud radiative properties with minimum interference from the thermal emission by the earth's surface and lower atmospheric components. Airborne installed sensors can also operate over large regional areas including water, urban, and mountain surfaces and above lower atmospheric convective clouds and haze layers. Currently available sensors installed on the SRI Queen Air aircraft are illustrated. Lidar and radiometric data records are processed for real time viewing on a color video screen. A cirrus cloud data example is presented as a black and white reproduction of a color display of data at the aircraft altitude of 12,000 ft, the 8 to 14 micron atmospheric radiation background was equivalent to a blackbody temperature of about -60 C and, therefore, the radiometer did not respond strongly to low density cirrus cloud concentrations detected by the lidar. Cloud blackbody temperatures (observed by radiometer) are shown plotted against midcloud temperatures (derived from lidar observed cloud heights and supporting temperature profiles) for data collected on 30 June and 28 July.

  18. Correlations of oriented ice and precipitation in marine midlatitude low clouds using collocated CloudSat, CALIOP, and MODIS observations

    NASA Astrophysics Data System (ADS)

    Ross, Alexa; Holz, Robert E.; Ackerman, Steven A.

    2017-08-01

    In April 2006, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) launched aboard the CALIPSO satellite and into the A-Train constellation of satellites with its transmitter pointed near nadir. This proved problematic due to specular reflection from horizontally oriented ice crystals occurring more frequently than expected. Because the specular backscatter from oriented ice crystals has large attenuated backscatter and almost no depolarization, the standard lidar inversions cannot be applied. To mitigate this issue, the CALIOP transmitter was moved to 3° off nadir in November 2007. Though problematic for global CALIOP retrievals, the sensitivity to oriented ice during the first year of observations provides a unique data set to investigate scenes of this ice crystal signature. This study focuses on the CALIOP-oriented signature that occurs in midlatitude ocean regions whose cloud tops are relatively warm and low, existing below 6 km. A significant seasonal dependence is found in the Northern Hemisphere with up to 19% of clouds below 6 km yielding specular reflection by CALIOP during the colder months. In contrast, the Southern Hemisphere lacks such seasonal dependence and sees fewer oriented ice crystals. Using collocated CloudSat observations with both CALIOP and Moderate Resolution Imaging Spectroradiometer (MODIS), we investigate the correlations of the oriented signature with MODIS cloud properties. Comparing with CloudSat precipitation retrievals, we find that the oriented signature is strongly correlated with surface precipitation with 64% of CALIOP-oriented ice crystal cases precipitating compared to 40% for nonoriented cases.

  19. Active experiments in space; Proceedings of the Topical Meeting of the Interdisciplinary Scientific Commission D (Meeting D3) of the COSPAR 28th Plenary Meeting, The Hague, Netherlands, June 25-July 6, 1990

    NASA Astrophysics Data System (ADS)

    Torbert, R.

    1992-12-01

    The present volume on active experiments in space discusses dynamic trapping of electrons in the Porcupine ionospheric ion beam experiment, plasma wave observations during electron gun experiments on ISEE-1, spatial coherence and electromagnetic wave generation during electron beam experiments in space, and recent experimental measurements of space platform charging at LEO altitudes. Attention is given to high voltage spheres in an unmagnetized plasma, energetic ion emission for active spacecraft control, the collective gyration of a heavy ion cloud in a magnetized plasma, and remote sensing of artificial luminous clouds by lidars. Topics addressed include modulation of the background flux of energetic particles by artificial injection, wave measurements in active experiments on plasma beam injection, field formation around negatively biased solar arrays in the LEO-plasma, and the registration of ELF waves in rocket-satellite experiments with plasma injection.

  20. Extraction of Features from High-resolution 3D LiDaR Point-cloud Data

    NASA Astrophysics Data System (ADS)

    Keller, P.; Kreylos, O.; Hamann, B.; Kellogg, L. H.; Cowgill, E. S.; Yikilmaz, M. B.; Hering-Bertram, M.; Hagen, H.

    2008-12-01

    Airborne and tripod-based LiDaR scans are capable of producing new insight into geologic features by providing high-quality 3D measurements of the landscape. High-resolution LiDaR is a promising method for studying slip on faults, erosion, and other landscape-altering processes. LiDaR scans can produce up to several billion individual point returns associated with the reflection of a laser from natural and engineered surfaces; these point clouds are typically used to derive a high-resolution digital elevation model (DEM). Currently, there exist only few methods that can support the analysis of the data at full resolution and in the natural 3D perspective in which it was collected by working directly with the points. We are developing new algorithms for extracting features from LiDaR scans, and present method for determining the local curvature of a LiDaR data set, working directly with the individual point returns of a scan. Computing the curvature enables us to rapidly and automatically identify key features such as ridge-lines, stream beds, and edges of terraces. We fit polynomial surface patches via a moving least squares (MLS) approach to local point neighborhoods, determining curvature values for each point. The size of the local point neighborhood is defined by a user. Since both terrestrial and airborne LiDaR scans suffer from high noise, we apply additional pre- and post-processing smoothing steps to eliminate unwanted features. LiDaR data also captures objects like buildings and trees complicating greatly the task of extracting reliable curvature values. Hence, we use a stochastic approach to determine whether a point can be reliably used to estimate curvature or not. Additionally, we have developed a graph-based approach to establish connectivities among points that correspond to regions of high curvature. The result is an explicit description of ridge-lines, for example. We have applied our method to the raw point cloud data collected as part of the GeoEarthScope B-4 project on a section of the San Andreas Fault (Segment SA09). This section provides an excellent test site for our method as it exposes the fault clearly, contains few extraneous structures, and exhibits multiple dry stream-beds that have been off-set by motion on the fault.

  1. Phase-partitioning in mixed-phase clouds - An approach to characterize the entire vertical column

    NASA Astrophysics Data System (ADS)

    Kalesse, H.; Luke, E. P.; Seifert, P.

    2017-12-01

    The characterization of the entire vertical profile of phase-partitioning in mixed-phase clouds is a challenge which can be addressed by synergistic profiling measurements with ground-based polarization lidars and cloud radars. While lidars are sensitive to small particles and can thus detect supercooled liquid (SCL) layers, cloud radar returns are dominated by larger particles (like ice crystals). The maximum lidar observation height is determined by complete signal attenuation at a penetrated optical depth of about three. In contrast, cloud radars are able to penetrate multiple liquid layers and can thus be used to expand the identification of cloud phase to the entire vertical column beyond the lidar extinction height, if morphological features in the radar Doppler spectrum can be related to the existence of SCL. Relevant spectral signatures such as bimodalities and spectral skewness can be related to cloud phase by training a neural network appropriately in a supervised learning scheme, with lidar measurements functioning as supervisor. The neural network output (prediction of SCL location) derived using cloud radar Doppler spectra can be evaluated with several parameters such as liquid water path (LWP) detected by microwave radiometer (MWR) and (liquid) cloud base detected by ceilometer or Raman lidar. The technique has been previously tested on data from Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) instruments in Barrow, Alaska and is in this study utilized for observations from the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. Comparisons to supercooled-liquid layers as classified by CLOUDNET are provided.

  2. Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations

    NASA Astrophysics Data System (ADS)

    Kay, Jennifer E.; Bourdages, Line; Miller, Nathaniel B.; Morrison, Ariel; Yettella, Vineel; Chepfer, Helene; Eaton, Brian

    2016-04-01

    Spaceborne lidar observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite are used to evaluate cloud amount and cloud phase in the Community Atmosphere Model version 5 (CAM5), the atmospheric component of a widely used state-of-the-art global coupled climate model (Community Earth System Model). By embedding a lidar simulator within CAM5, the idiosyncrasies of spaceborne lidar cloud detection and phase assignment are replicated. As a result, this study makes scale-aware and definition-aware comparisons between model-simulated and observed cloud amount and cloud phase. In the global mean, CAM5 has insufficient liquid cloud and excessive ice cloud when compared to CALIPSO observations. Over the ice-covered Arctic Ocean, CAM5 has insufficient liquid cloud in all seasons. Having important implications for projections of future sea level rise, a liquid cloud deficit contributes to a cold bias of 2-3°C for summer daily maximum near-surface air temperatures at Summit, Greenland. Over the midlatitude storm tracks, CAM5 has excessive ice cloud and insufficient liquid cloud. Storm track cloud phase biases in CAM5 maximize over the Southern Ocean, which also has larger-than-observed seasonal variations in cloud phase. Physical parameter modifications reduce the Southern Ocean cloud phase and shortwave radiation biases in CAM5 and illustrate the power of the CALIPSO observations as an observational constraint. The results also highlight the importance of using a regime-based, as opposed to a geographic-based, model evaluation approach. More generally, the results demonstrate the importance and value of simulator-enabled comparisons of cloud phase in models used for future climate projection.

  3. The structure and phase of cloud tops as observed by polarization lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Hansen, M. Z.; Simpson, J.

    1983-01-01

    High-resolution observations of the structure of cloud tops have been obtained with polarization lidar operated from a high altitude aircraft. Case studies of measurements acquired from cumuliform cloud systems are presented, two from September 1979 observations in the area of Florida and adjacent waters and a third during the May 1981 CCOPE experiment in southeast Montana. Accurate cloud top height structure and relative density of hydrometers are obtained from the lidar return signal intensity. Correlation between the signal return intensity and active updrafts was noted. Thin cirrus overlying developing turrets was observed in some cases. Typical values of the observed backscatter cross section were 0.1-5 (km/sr) for cumulonimbus tops. The depolarization ratio of the lidar signals was a function of the thermodynamic phase of cloud top areas. An increase of the cloud top depolarization with decreasing temperature was found for temperatures above and below -40 C.

  4. Evaluation of wind field statistics near and inside clouds using a coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Lottman, Brian Todd

    1998-09-01

    This work proposes advanced techniques for measuring the spatial wind field statistics near and inside clouds using a vertically pointing solid state coherent Doppler lidar on a fixed ground based platform. The coherent Doppler lidar is an ideal instrument for high spatial and temporal resolution velocity estimates. The basic parameters of lidar are discussed, including a complete statistical description of the Doppler lidar signal. This description is extended to cases with simple functional forms for aerosol backscatter and velocity. An estimate for the mean velocity over a sensing volume is produced by estimating the mean spectra. There are many traditional spectral estimators, which are useful for conditions with slowly varying velocity and backscatter. A new class of estimators (novel) is introduced that produces reliable velocity estimates for conditions with large variations in aerosol backscatter and velocity with range, such as cloud conditions. Performance of traditional and novel estimators is computed for a variety of deterministic atmospheric conditions using computer simulated data. Wind field statistics are produced for actual data for a cloud deck, and for multi- layer clouds. Unique results include detection of possible spectral signatures for rain, estimates for the structure function inside a cloud deck, reliable velocity estimation techniques near and inside thin clouds, and estimates for simple wind field statistics between cloud layers.

  5. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    NASA Astrophysics Data System (ADS)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-06-01

    16 year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006-December 2013) of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50-55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013) which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  6. Building a LiDAR point cloud simulator: Testing algorithms for high resolution topographic change

    NASA Astrophysics Data System (ADS)

    Carrea, Dario; Abellán, Antonio; Derron, Marc-Henri; Jaboyedoff, Michel

    2014-05-01

    Terrestrial laser technique (TLS) is becoming a common tool in Geosciences, with clear applications ranging from the generation of a high resolution 3D models to the monitoring of unstable slopes and the quantification of morphological changes. Nevertheless, like every measurement techniques, TLS still has some limitations that are not clearly understood and affect the accuracy of the dataset (point cloud). A challenge in LiDAR research is to understand the influence of instrumental parameters on measurement errors during LiDAR acquisition. Indeed, different critical parameters interact with the scans quality at different ranges: the existence of shadow areas, the spatial resolution (point density), and the diameter of the laser beam, the incidence angle and the single point accuracy. The objective of this study is to test the main limitations of different algorithms usually applied on point cloud data treatment, from alignment to monitoring. To this end, we built in MATLAB(c) environment a LiDAR point cloud simulator able to recreate the multiple sources of errors related to instrumental settings that we normally observe in real datasets. In a first step we characterized the error from single laser pulse by modelling the influence of range and incidence angle on single point data accuracy. In a second step, we simulated the scanning part of the system in order to analyze the shifting and angular error effects. Other parameters have been added to the point cloud simulator, such as point spacing, acquisition window, etc., in order to create point clouds of simple and/or complex geometries. We tested the influence of point density and vitiating point of view on the Iterative Closest Point (ICP) alignment and also in some deformation tracking algorithm with same point cloud geometry, in order to determine alignment and deformation detection threshold. We also generated a series of high resolution point clouds in order to model small changes on different environments (erosion, landslide monitoring, etc) and we then tested the use of filtering techniques using 3D moving windows along the space and time, which considerably reduces data scattering due to the benefits of data redundancy. In conclusion, the simulator allowed us to improve our different algorithms and to understand how instrumental error affects final results. And also, improve the methodology of scans acquisition to find the best compromise between point density, positioning and acquisition time with the best accuracy possible to characterize the topographic change.

  7. Fractal properties and denoising of lidar signals from cirrus clouds

    NASA Astrophysics Data System (ADS)

    van den Heuvel, J. C.; Driesenaar, M. L.; Lerou, R. J. L.

    2000-02-01

    Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by combining shots to obtain the backscatter at constant altitude. The signal at high altitude was analyzed for horizontal structure of cirrus clouds. The power spectrum and the structure function show straight lines on a double logarithmic plot. This behavior is characteristic for a Brownian fractal. Wavelet analysis using the Haar wavelet confirms the fractal aspects. It is shown that the horizontal structure of cirrus can be described by a fractal with a dimension of 1.8 over length scales that vary 4 orders of magnitude. We use the fractal properties in a new denoising method. Denoising is required for future lidar measurements from space that have a low signal to noise ratio. Our wavelet denoising is based on the Haar wavelet and uses the statistical fractal properties of cirrus clouds in a method based on the maximum a posteriori (MAP) probability. This denoising based on wavelets is tested on airborne lidar signals from ELITE using added Gaussian noise. Superior results with respect to averaging are obtained.

  8. Lidar

    NASA Technical Reports Server (NTRS)

    Collis, R. T. H.

    1969-01-01

    Lidar is an optical radar technique employing laser energy. Variations in signal intensity as a function of range provide information on atmospheric constituents, even when these are too tenuous to be normally visible. The theoretical and technical basis of the technique is described and typical values of the atmospheric optical parameters given. The significance of these parameters to atmospheric and meteorological problems is discussed. While the basic technique can provide valuable information about clouds and other material in the atmosphere, it is not possible to determine particle size and number concentrations precisely. There are also inherent difficulties in evaluating lidar observations. Nevertheless, lidar can provide much useful information as is shown by illustrations. These include lidar observations of: cirrus cloud, showing mountain wave motions; stratification in clear air due to the thermal profile near the ground; determinations of low cloud and visibility along an air-field approach path; and finally the motion and internal structure of clouds of tracer materials (insecticide spray and explosion-caused dust) which demonstrate the use of lidar for studying transport and diffusion processes.

  9. The Cloud-Aerosol Transport System (CATS): a New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2011-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data.

  10. Lidar Cloud Detection with Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Cromwell, E.; Flynn, D.

    2017-12-01

    The vertical distribution of clouds from active remote sensing instrumentation is a widely used data product from global atmospheric measuring sites. The presence of clouds can be expressed as a binary cloud mask and is a primary input for climate modeling efforts and cloud formation studies. Current cloud detection algorithms producing these masks do not accurately identify the cloud boundaries and tend to oversample or over-represent the cloud. This translates as uncertainty for assessing the radiative impact of clouds and tracking changes in cloud climatologies. The Atmospheric Radiation Measurement (ARM) program has over 20 years of micro-pulse lidar (MPL) and High Spectral Resolution Lidar (HSRL) instrument data and companion automated cloud mask product at the mid-latitude Southern Great Plains (SGP) and the polar North Slope of Alaska (NSA) atmospheric observatory. Using this data, we train a fully convolutional network (FCN) with semi-supervised learning to segment lidar imagery into geometric time-height cloud locations for the SGP site and MPL instrument. We then use transfer learning to train a FCN for (1) the MPL instrument at the NSA site and (2) for the HSRL. In our semi-supervised approach, we pre-train the classification layers of the FCN with weakly labeled lidar data. Then, we facilitate end-to-end unsupervised pre-training and transition to fully supervised learning with ground truth labeled data. Our goal is to improve the cloud mask accuracy and precision for the MPL instrument to 95% and 80%, respectively, compared to the current cloud mask algorithms of 89% and 50%. For the transfer learning based FCN for the HSRL instrument, our goal is to achieve a cloud mask accuracy of 90% and a precision of 80%.

  11. Autonomous, Full-Time Cloud Profiling at Arm Sites with Micro Pulse Lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Campbell, James R.; Hlavka, Dennis L.; Scott, V. Stanley; Flynn, Connor J.

    2000-01-01

    Since the early 1990's technology advances permit ground based lidar to operate full time and profile all significant aerosol and cloud structure of the atmosphere up to the limit of signal attenuation. These systems are known as Micro Pulse Lidars (MPL), as referenced by Spinhirne (1993), and were first in operation at DOE Atmospheric Radiation Measurement (ARM) sites. The objective of the ARM program is to improve the predictability of climate change, particularly as it relates to cloud-climate feedback. The fundamental application of the MPL systems is towards the detection of all significant hydrometeor layers, to the limit of signal attenuation. The heating and cooling of the atmosphere are effected by the distribution and characteristics of clouds and aerosol concentration. Aerosol and cloud retrievals in several important areas can only be adequately obtained with active remote sensing by lidar. For cloud cover, the height and related emissivity of thin clouds and the distribution of base height for all clouds are basic parameters for the surface radiation budget, and lidar is essetial for accurate measurements. The ARM MPL observing network represents the first long-term, global lidar study known within the community. MPL systems are now operational at four ARM sites. A six year data set has been obtained at the original Oklahoma site, and there are several years of observations at tropical and artic sites. Observational results include cloud base height distributions and aerosol profiles. These expanding data sets offer a significant new resource for cloud, aerosol and atmospheric radiation analysis. The nature of the data sets, data processing algorithms, derived parameters and application results are presented.

  12. 315mJ, 2-micrometers Double-Pulsed Coherent Differential Absorption Lidar Transmitter for Atmospheric CO2 Sensing

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo; Bai, Yingxin; Koch, Grady; Chen, Songsheng; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    The design of a double pulsed, injection seeded, 2-micrometer compact coherent Differential absorption Lidar (DIAL) transmitter for CO2 sensing is presented. This system is hardened for ground and airborne applications. The design architecture includes three continuous wave lasers which provide controlled on and off line seeding, injection seeded power oscillator and a single amplifier operating in double pass configuration. As the derivative a coherent Doppler wind lidar, this instrument has the added benefit of providing wind information. The active laser material used for this application is a Ho: Tm:YLF crystal operates at the eye-safe wavelength. The 3-meter long folded ring resonator produces energy of 130-mJ (90/40) with a temporal pulse length around 220 nanoseconds and 530 nanosecond pulses for on and off lines respectively. The separation between the two pulses is on the order of 200 microseconds. The line width is in the order of 2.5MHz and the beam quality has an M(sup 2) of 1.1 times diffraction limited beam. A final output energy for a pair of both on and off pulses as high as 315 mJ (190/125) at a repetition rate of 10 Hz is achieved. The operating temperature is set around 20 C for the pump diode lasers and 10 C for the rod. Since the laser design has to meet high-energy as well as high beam quality requirements, close attention is paid to the laser head design to avoid thermal distortion in the rod. A side-pumped configuration is used and heat is removed uniformly by passing coolant through a tube slightly larger than the rod to reduce thermal gradient. This paper also discusses the advantage of using a long upper laser level life time laser crystal for DIAL application. In addition issues related to injection seeding with two different frequencies to achieve a transform limited line width will be presented.

  13. Efficient LIDAR Point Cloud Data Managing and Processing in a Hadoop-Based Distributed Framework

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hu, F.; Sha, D.; Han, X.

    2017-10-01

    Light Detection and Ranging (LiDAR) is one of the most promising technologies in surveying and mapping city management, forestry, object recognition, computer vision engineer and others. However, it is challenging to efficiently storage, query and analyze the high-resolution 3D LiDAR data due to its volume and complexity. In order to improve the productivity of Lidar data processing, this study proposes a Hadoop-based framework to efficiently manage and process LiDAR data in a distributed and parallel manner, which takes advantage of Hadoop's storage and computing ability. At the same time, the Point Cloud Library (PCL), an open-source project for 2D/3D image and point cloud processing, is integrated with HDFS and MapReduce to conduct the Lidar data analysis algorithms provided by PCL in a parallel fashion. The experiment results show that the proposed framework can efficiently manage and process big LiDAR data.

  14. DAΦNE operation with electron-cloud-clearing electrodes.

    PubMed

    Alesini, D; Drago, A; Gallo, A; Guiducci, S; Milardi, C; Stella, A; Zobov, M; De Santis, S; Demma, T; Raimondi, P

    2013-03-22

    The effects of an electron cloud (e-cloud) on beam dynamics are one of the major factors limiting performances of high intensity positron, proton, and ion storage rings. In the electron-positron collider DAΦNE, namely, a horizontal beam instability due to the electron-cloud effect has been identified as one of the main limitations on the maximum stored positron beam current and as a source of beam quality deterioration. During the last machine shutdown in order to mitigate such instability, special electrodes have been inserted in all dipole and wiggler magnets of the positron ring. It has been the first installation all over the world of this type since long metallic electrodes have been installed in all arcs of the collider positron ring and are currently used during the machine operation in collision. This has allowed a number of unprecedented measurements (e-cloud instabilities growth rate, transverse beam size variation, tune shifts along the bunch train) where the e-cloud contribution is clearly evidenced by turning the electrodes on and off. In this Letter we briefly describe a novel design of the electrodes, while the main focus is on experimental measurements. Here we report all results that clearly indicate the effectiveness of the electrodes for e-cloud suppression.

  15. Phoenix's Laser Beam in Action on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    The Surface Stereo Imager camera aboard NASA's Phoenix Mars Lander acquired a series of images of the laser beam in the Martian night sky. Bright spots in the beam are reflections from ice crystals in the low level ice-fog. The brighter area at the top of the beam is due to enhanced scattering of the laser light in a cloud. The Canadian-built lidar instrument emits pulses of laser light and records what is scattered back.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. The Segmentation of Point Clouds with K-Means and ANN (artifical Neural Network)

    NASA Astrophysics Data System (ADS)

    Kuçak, R. A.; Özdemir, E.; Erol, S.

    2017-05-01

    Segmentation of point clouds is recently used in many Geomatics Engineering applications such as the building extraction in urban areas, Digital Terrain Model (DTM) generation and the road or urban furniture extraction. Segmentation is a process of dividing point clouds according to their special characteristic layers. The present paper discusses K-means and self-organizing map (SOM) which is a type of ANN (Artificial Neural Network) segmentation algorithm which treats the segmentation of point cloud. The point clouds which generate with photogrammetric method and Terrestrial Lidar System (TLS) were segmented according to surface normal, intensity and curvature. Thus, the results were evaluated. LIDAR (Light Detection and Ranging) and Photogrammetry are commonly used to obtain point clouds in many remote sensing and geodesy applications. By photogrammetric method or LIDAR method, it is possible to obtain point cloud from terrestrial or airborne systems. In this study, the measurements were made with a Leica C10 laser scanner in LIDAR method. In photogrammetric method, the point cloud was obtained from photographs taken from the ground with a 13 MP non-metric camera.

  17. Observing microphysical structures and hydrometeor phase in convection with ARM active sensors

    NASA Astrophysics Data System (ADS)

    Riihimaki, L.; Comstock, J. M.; Luke, E. P.; Thorsen, T. J.; Fu, Q.

    2016-12-01

    The existence and distribution of super-cooled liquid water within convective clouds impacts the microphysical processes responsible for cloud radiative and lifetime effects. Yet few observations of cloud phase are available within convection and associated stratiform anvils. Here we identify super-cooled liquid layers within convection and associated stratiform clouds using measured radar Doppler spectra from vertically pointing Ka-band cloud radar and Raman Lidar, capitalizing on the strengths of both instruments. Observations from these sensors are used to show that liquid exists in patches within the cloud, rather than in uniform layers, impacting the growth and formation of ice. While a depolarization lidar like the Raman Lidar is a trusted measurement for identifying super-cooled liquid, the lidar attenuates at an optical depth of around three, limiting its ability to probe the full cloud. The use of the radar Doppler spectra is particularly valuable for this purpose because it allows observations within optically thicker clouds. We demonstrate a new method for identifying super-cooled liquid objectively from the radar Doppler spectra using machine-learning techniques.

  18. CATS Cloud and Aerosol Level 2 Heritage Edition Data Products.

    NASA Astrophysics Data System (ADS)

    Rodier, S. D.; Vaughan, M.; Yorks, J. E.; Palm, S. P.; Selmer, P. A.; Hlavka, D. L.; McGill, M. J.; Trepte, C. R.

    2017-12-01

    The Cloud-Aerosol Transport System (CATS) instrument was developed at NASA's Goddard Space Flight Center (GSFC) and deployed to the International Space Station (ISS) in January 2015. The CATS elastic backscatter lidars have been operating continuously in one of two science modes since February 2015. One of the primary science objectives of CATS is to continue the CALIPSO aerosol and cloud profile data record to provide continuity of lidar climate observations during the transition from CALIPSO to EarthCARE. To accomplish this, the CATS project at NASA's Goddard Space Flight Center (GSFC) and the CALIPSO project at NASA's Langley Research Center (LaRC) closely collaborated to develop and deliver a full suite of CALIPSO-like level 2 data products using the latest version of the CALIPSO level 2 Version 4 algorithms for the CATS data acquired while operating in science mode 1 (Multi-beam backscatter detection at 1064 and 532 nm, with depolarization measurement at both wavelengths). In this work, we present the current status of the CATS Heritage (i.e. CALIPSO-like) level 2 data products derived from the recent released CATS Level 1B V2-08 data. Extensive comparisons are performed between the three data sets (CALIPSO V4.10 Level 2, CATS Level 2 Operational V2-00 and CATS Heritage V1.00) for cloud and aerosol measurements (e.g., cloud-top height cloud-phase, cloud-layer occurrence frequency and cloud-aerosol discrimination) along the ISS path. In addition, global comparisons (between 52°S and 52°N) of aerosol extinction profiles derived from the CATS Level 2 Operational products and CALIOP V4 Level 2 products are presented. Comparisons of aerosol optical depths retrieved from active sensors (CATS and CALIOP) and passive sensors (MODIS) will provide context for the extinction profile comparisons.

  19. Investigation on the monthly variation of cirrus optical properties over the Indian subcontinent using cloud-aerosol lidar and infrared pathfinder satellite observation (Calipso)

    NASA Astrophysics Data System (ADS)

    Dhaman, Reji K.; Satyanarayana, Malladi; Jayeshlal, G. S.; Mahadevan Pillai, V. P.; Krishnakumar, V.

    2016-05-01

    Cirrus clouds have been identified as one of the atmospheric component which influence the radiative processes in the atmosphere and plays a key role in the Earth Radiation Budget. CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) is a joint NASA-CNES satellite mission designed to provide insight in understanding of the role of aerosols and clouds in the climate system. This paper reports the study on the variation of cirrus cloud optical properties of over the Indian sub - continent for a period of two years from January 2009 to December 2010, using cloud-aerosol lidar and infrared pathfinder satellite observations (Calipso). Indian Ocean and Indian continent is one of the regions where cirrus occurrence is maximum particularly during the monsoon periods. It is found that during the south-west monsoon periods there is a large cirrus cloud distribution over the southern Indian land masses. Also it is observed that the north-east monsoon periods had optical thick clouds hugging the coast line. The summer had large cloud formation in the Arabian Sea. It is also found that the land masses near to the sea had large cirrus presence. These cirrus clouds were of high altitude and optical depth. The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometrical thickness are generally similar to the results derived from the ground-based lidar. However, the difference in macrophysical parameter variability shows the limits of space-borne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.

  20. Development of eye-safe lidar for aerosol measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Wilderson, Thomas D.

    1990-01-01

    Research is summarized on the development of an eye safe Raman conversion system to carry out lidar measurements of aerosol and clouds from an airborne platform. Radiation is produced at the first Stokes wavelength of 1.54 micron in the eye safe infrared, when methane is used as the Raman-active medium, the pump source being a Nd:YAG laser at 1.064 micron. Results are presented for an experimental study of the dependence of the 1.54 micron first Stokes radiation on the focusing geometry, methane gas pressure, and pump energy. The specific new technique developed for optimizing the first Stokes generation involves retroreflecting the backward-generated first Stokes light back into the Raman cell as a seed Stokes beam which is then amplified in the temporal tail of the pump beam. Almost 20 percent conversion to 1.54 micron is obtained. Complete, assembled hardware for the Raman conversion system was delivered to the Goddard Space Flight Center for a successful GLOBE flight (1989) to measure aerosol backscatter around the Pacific basin.

  1. A Case for More Multiple Scattering Lidar from Space: Analysis of Four LITE Pulses Returned from a Marine Stratocumulus Deck

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Winker, David M.

    2011-01-01

    Outline: (1) Signal Physics for Multiple-Scattering Cloud Lidar, (2) SNR Estimation (3) Cloud Property Retrievals (3a) several techniques (3b) application to Lidar-In-space Technology Experiment (LITE) data (3c) relation to O2 A-band

  2. Interpretation of cirrus cloud properties using coincident satellite and lidar data during the FIRE cirrus IFO

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Alvarez, Joseph M.; Young, David F.; Sassen, Kenneth; Grund, Christian J.

    1990-01-01

    The First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) provide an opportunity to examine the relationships between the satellite observed radiances and various parameters which describe the bulk properties of clouds, such as cloud amount and cloud top height. Lidar derived cloud altitude data, radiosonde data, and satellite observed radiances are used to examine the relationships between visible reflectance, infrared emittance, and cloud top temperatures for cirrus clouds.

  3. Technology Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Liu, Z.; Chen, S.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Fan, T. F.; Choi, Y.; Plant, J.; Yang, M. M.; Browell, E. V.; Harrison, F. W.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.

    2015-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights.

  4. Technology Advancements for Active Remote Sensing of Carbon Dioxide From Space using the ASCENDS CarbonHawk Experiment Simulator

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Liu, Z.; Campbell, J. F.; Lin, B.; Kooi, S. A.; Carrion, W.; Hicks, J.; Fan, T. F.; Nehrir, A. R.; Browell, E. V.; Meadows, B.; Davis, K. J.

    2016-12-01

    This work describes advances in critical lidar technologies and techniques developed as part of the ASCENDS CarbonHawk Experiment Simulator (ACES) system for measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The ACES design demonstrates advancements in: (1) enhanced power-aperture product through the use and operation of multiple co-aligned laser transmitters and a multi-aperture telescope design; (2) high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation; and (4) advanced algorithms for cloud and aerosol discrimination. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. Specifically, the lidar simultaneously transmits three IM-CW laser beams from the high power EDFAs operating near 1571 nm. The outgoing laser beams are aligned to the field of view of three fiber-coupled 17.8-cm diameter telescopes, and the backscattered light collected by the same three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.9 MHz and operates service-free with a tactical Dewar and cryocooler. The electronic bandwidth is only slightly higher than 1 MHz, effectively limiting the noise level. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. This work provides an over view of these technologies, the modulation approaches, and results from recent test flights during the Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital flight campaign.

  5. Airborne lidar and radiometric observations of PBL- and low clouds

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Valentin, R.; Pelon, J.

    1992-01-01

    Boundary layer- and low altitude clouds over open ocean and continent areas have been studied during several field campaigns since mid-1990 using the French airborne backscatter lidar LEANDRE in conjunction with on-board IR and visible radiometers. LEANDRE is an automatic system, and a modification of the instrumental parameters, when airborne, is computer controlled through an operator keyboard. The vertical range squared lidar signals and instrument status are displayed in real time on two dedicated monitors. The lidar is used either down- or up-looking while the aircraft is flying above or below clouds. A switching of the viewing configuration takes about a minute. The lidar measurements provide a high resolution description of cloud morphology and holes in cloud layers. The flights were conducted during various meteorological conditions on single or multilayer stratocumulus and cumulus decks. Analysis on a single shot basis of cloud top (or bottom) altitude and a plot of the corresponding histogram allows one to determine a probability density function (PDF). The preliminary results show the PDFs for cloud top are not Gaussian and symmetric about the mean value. The skewness varies with atmospheric conditions. An example of results recorded over the Atlantic ocean near Biarritz is displayed, showing: (1) the range squared lidar signals as a function of time (here 100 s corresponds to about 8 km, 60 shots are averaged on horizontal); the Planetary Boundary Layer (PBL) - up to 600 m - is observed at the beginning of the leg as well as on surface returns, giving an indication of the porosity; (2) the cloud top altitude variation between 2.4 to 2.8 km during the 150 to 320 s section; and (3) the corresponding PDF. Similar results are obtained on stratocumulus over land. Single shot measurements can be used also to determine an optical porosity at a small scale as well as a fractional cloudiness at a larger scale. A comparison of cloud top altitude retrieved from lidar and narrowbeam IR radiometer is conducted to study the scale integration problem. A good agreement within less than 100 m relies on spatial uniformity and an optically thick layer. In the presence of holes, a discrepancy is observed. This is illustrated in figure 2, displaying as a function of time (1) the lidar signals; (2) the target temperature (either clouds or sea surface) retreived from a narrowbeam IR radiometer, 17 C is the sea surface temperature on that day; and (3) the visible flux, linked to cloud albedo, measured by a pyranometer. In preparation of ASTEX, down- and up-looking measurements where conducted on stratocumulus clouds over the Atlantic Ocean near Quimper in Brittany. Depending on the flight pattern orientation with respect to the wind, the top and bottom cloud morphologies are different. Preliminary results are given on cloud morphology, cloud top PDFs, optical porosity, fractional cloudiness, and comparison of lidar and radiometric measurements.

  6. Lidar cloud studies for FIRE and ECLIPS

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Grund, Christian J.; Spinhirne, James D.; Hardesty, Michael; Alvarez, James

    1990-01-01

    Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across.

  7. Depolarization Lidar Determination Of Cloud-Base Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S.; Siebesma, A. P.

    2016-06-01

    The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud microphysical cloud properties have also been undertaken but with limited scope and, arguably, success. In this work we present a retrieval procedure applicable to liquid stratus clouds with (quasi-)linear LWC profiles and (quasi-)constant number density profiles in the cloud-base region. This set of assumptions allows us to employ a fast and robust inversion procedure based on a lookup-table approach applied to extensive lidar Monte-Carlo multiple-scattering calculations. An example validation case is presented where the results of the inversion procedure are compared with simultaneous cloud radar observations. In non-drizzling conditions it was found, in general, that the lidar- only inversion results can be used to predict the radar reflectivity within the radar calibration uncertainty (2-3 dBZ). Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud base number considerations are also presented. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.

  8. New Generation Lidar Technology and Applications

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1999-01-01

    Lidar has been a tool for atmospheric research for several decades. Until recently routine operational use of lidar was not known. Problems have involved a lack of appropriate technology rather than a lack of applications. Within the last few years, lidar based on a new generation of solid state lasers and detectors have changed the situation. Operational applications for cloud and aerosol research applications are now well established. In these research applications, the direct height profiling capability of lidar is typically an adjunct to other types of sensing, both passive and active. Compact eye safe lidar with the sensitivity for ground based monitoring of all significant cloud and aerosol structure and the reliability to operate full time for several years is now in routine use. The approach is known as micro pulse lidar (MPL). For MPL the laser pulse repetition rate is in the kilohertz range and the pulse energies are in the micro-Joule range. The low pulse energy permits the systems to be eye safe and reliable with solid state lasers. A number of MPL systems have been deployed since 1992 at atmospheric research sites at a variety of global locations. Accurate monitoring of cloud and aerosol vertical distribution is a critical measurement for atmospheric radiation. An airborne application of lidar cloud and aerosol profiling is retrievals of parameters from combined lidar and passive sensing involving visible, infrared and microwave frequencies. A lidar based on a large pulse, solid state diode pumped ND:YAG laser has been deployed on the NASA ER-2 high altitude research aircraft along with multi-spectral visible/IR and microwave imaging radiometers since 1993. The system has shown high reliability in an extensive series of experimental projects for cloud remote sensing. The retrieval of cirrus radiation parameters is an effective application for combined lidar and passive sensing. An approved NASA mission will soon begin long term lidar observation of atmospheric structure from space. The Geoscience Laser Altimeter System (GLAS) of the Earth Observing System is scheduled for deployment in the 2001 time frame. GLAS is both a cloud and aerosol lidar and a surface altimeter, principally for monitoring of polar ice sheets. The GLAS instrument is based on all solid state lasers operating at 40 Hz and high efficiency, solid state detectors. The design lifetime is three to five years. Data from the GLAS mission is expected to revolutionize some aspects of our understanding of the global distribution of cloud and aerosols for global climate prediction.

  9. LiDAR Point Cloud and Stereo Image Point Cloud Fusion

    DTIC Science & Technology

    2013-09-01

    LiDAR point cloud (right) highlighting linear edge features ideal for automatic registration...point cloud (right) highlighting linear edge features ideal for automatic registration. Areas where topography is being derived, unfortunately, do...with the least amount of automatic correlation errors was used. The following graphic (Figure 12) shows the coverage of the WV1 stereo triplet as

  10. Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.

    2007-06-01

    This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented.

  11. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expectedmore » clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.« less

  12. The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP)

    NASA Astrophysics Data System (ADS)

    Chepfer, H.; Bony, S.; Winker, D.; Cesana, G.; Dufresne, J. L.; Minnis, P.; Stubenrauch, C. J.; Zeng, S.

    2010-01-01

    This article presents the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP) designed to evaluate the cloudiness simulated by general circulation models (GCMs). For this purpose, Cloud-Aerosol Lidar with Orthogonal Polarization L1 data are processed following the same steps as in a lidar simulator used to diagnose the model cloud cover that CALIPSO would observe from space if the satellite was flying above an atmosphere similar to that predicted by the GCM. Instantaneous profiles of the lidar scattering ratio (SR) are first computed at the highest horizontal resolution of the data but at the vertical resolution typical of current GCMs, and then cloud diagnostics are inferred from these profiles: vertical distribution of cloud fraction, horizontal distribution of low, middle, high, and total cloud fractions, instantaneous SR profiles, and SR histograms as a function of height. Results are presented for different seasons (January-March 2007-2008 and June-August 2006-2008), and their sensitivity to parameters of the lidar simulator is investigated. It is shown that the choice of the vertical resolution and of the SR threshold value used for cloud detection can modify the cloud fraction by up to 0.20, particularly in the shallow cumulus regions. The tropical marine low-level cloud fraction is larger during nighttime (by up to 0.15) than during daytime. The histograms of SR characterize the cloud types encountered in different regions. The GOCCP high-level cloud amount is similar to that from the TIROS Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). The low-level and middle-level cloud fractions are larger than those derived from passive remote sensing (International Satellite Cloud Climatology Project, Moderate-Resolution Imaging Spectroradiometer-Cloud and Earth Radiant Energy System Polarization and Directionality of Earth Reflectances, TOVS Path B, AIRS-Laboratoire de Météorologie Dynamique) because the latter only provide information on the uppermost cloud layer.

  13. Optical instruments synergy in determination of optical depth of thin clouds

    NASA Astrophysics Data System (ADS)

    Viviana Vlăduţescu, Daniela; Schwartz, Stephen E.; Huang, Dong

    2018-04-01

    Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.

  14. Optical Instruments Synergy in Determination of Optical Depth of Thin Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladutescu, Daniela V.; Schwartz, Stephen E.

    Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.

  15. Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick

    2008-01-01

    Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.

  16. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.

    PubMed

    Nie, Sheng; Wang, Cheng; Xi, Xiaohuan; Luo, Shezhou; Li, Guoyuan; Tian, Jinyan; Wang, Hongtao

    2018-05-14

    The upcoming space-borne LiDAR satellite Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2018. Different from the waveform LiDAR system onboard the ICESat, ICESat-2 will use a micro-pulse photon-counting LiDAR system. Thus new data processing algorithms are required to retrieve vegetation canopy height from photon-counting LiDAR data. The objective of this paper is to develop and validate an automated approach for better estimating vegetation canopy height. The new proposed method consists of three key steps: 1) filtering out the noise photons by an effective noise removal algorithm based on localized statistical analysis; 2) separating ground returns from canopy returns using an iterative photon classification algorithm, and then determining ground surface; 3) generating canopy-top surface and calculating vegetation canopy height based on canopy-top and ground surfaces. This automatic vegetation height estimation approach was tested to the simulated ICESat-2 data produced from Sigma Space LiDAR data and Multiple Altimeter Beam Experimental LiDAR (MABEL) data, and the retrieved vegetation canopy heights were validated by canopy height models (CHMs) derived from airborne discrete-return LiDAR data. Results indicated that the estimated vegetation canopy heights have a relatively strong correlation with the reference vegetation heights derived from airborne discrete-return LiDAR data (R 2 and RMSE values ranging from 0.639 to 0.810 and 4.08 m to 4.56 m respectively). This means our new proposed approach is appropriate for retrieving vegetation canopy height from micro-pulse photon-counting LiDAR data.

  17. Aerosol and Cloud Observations and Data Products by the GLAS Polar Orbiting Lidar Instrument

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2005-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. The backscatter lidar operates at two wavelengths, 532 and 1064 nm. Both receiver channels meet and exceed their design goals, and beginning with a two month period through October and November 2003, an excellent global lidar data set now exists. The data products for atmospheric observations include the calibrated, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data sets are now in open release through the NASA data distribution system. The initial results on global statistics for cloud and aerosol distribution has been produced and in some cases compared to other satellite observations. The sensitivity of the cloud measurements is such that the 70% global cloud coverage result should be the most accurate to date. Results on the global distribution of aerosol are the first that produce the true height distribution for model inter-comparison.

  18. Aerosol and cloud observations from the Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Winker, D. M.

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.

  19. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data. Input from the ICAP community is desired to help plan our NRT mission goals and interactions with ICAP forecasters.

  20. Cloud and Aerosol Retrieval for the 2001 GLAS Satellite Lidar Mission

    NASA Technical Reports Server (NTRS)

    Hart, William D.; Palm, Stephen P.; Spinhirne, James D.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS) is scheduled for launch in July of 2001 aboard the Ice, Cloud and Land Elevation Satellite (ICESAT). In addition to being a precision altimeter for mapping the height of the Earth's icesheets, GLAS will be an atmospheric lidar, sensitive enough to detect gaseous, aerosol, and cloud backscatter signals, at horizontal and vertical resolutions of 175 and 75m, respectively. GLAS will be the first lidar to produce temporally continuous atmospheric backscatter profiles with nearly global coverage (94-degree orbital inclination). With a projected operational lifetime of five years, GLAS will collect approximately six billion lidar return profiles. The large volume of data dictates that operational analysis algorithms, which need to keep pace with the data yield of the instrument, must be efficient. So, we need to evaluate the ability of operational algorithms to detect atmospheric constituents that affect global climate. We have to quantify, in a statistical manner, the accuracy and precision of GLAS cloud and aerosol observations. Our poster presentation will show the results of modeling studies that are designed to reveal the effectiveness and sensitivity of GLAS in detecting various atmospheric cloud and aerosol features. The studies consist of analyzing simulated lidar returns. Simulation cases are constructed either from idealized renditions of atmospheric cloud and aerosol layers or from data obtained by the NASA ER-2 Cloud Lidar System (CLS). The fabricated renditions permit quantitative evaluations of operational algorithms to retrieve cloud and aerosol parameters. The use of observational data permits the evaluations of performance for actual atmospheric conditions. The intended outcome of the presentation is that climatology community will be able to use the results of these studies to evaluate and quantify the impact of GLAS data upon atmospheric modeling efforts.

  1. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom exponent, especially at high RH.

  2. Long-term trend analysis and climatology of tropical cirrus clouds using 16 years of lidar data set over Southern India

    NASA Astrophysics Data System (ADS)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-12-01

    Sixteen-year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from 7 and a half years (June 2006-December 2013) of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and the differences in sampling frequencies. Nearly 50-55 % of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect a higher number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. The mid-cloud altitude of sub-visible cirrus clouds is found to be increasing at the rate of 41 ± 21 m year-1. Statistically significant decrease in optical thickness of sub-visible and thick cirrus clouds is observed. Also, the fraction of sub-visible cirrus cloud is found to have increased by 9 % in the last 16 years (1998 to 2013). This increase is mainly compensated by a 7 % decrease in thin cirrus cloud fraction. This has implications for the temperature and water vapour budget in the tropical tropopause layer.

  3. Cloud cameras at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Winnick, Michael G.

    2010-06-01

    This thesis presents the results of measurements made by infrared cloud cameras installed at the Pierre Auger Observatory in Argentina. These cameras were used to record cloud conditions during operation of the observatory's fluorescence detectors. As cloud may affect the measurement of fluorescence from cosmic ray extensive air showers, the cloud cameras provide a record of which measurements have been interfered with by cloud. Several image processing algorithms were developed, along with a methodology for the detection of cloud within infrared images taken by the cloud cameras. A graphical user interface (GUI) was developed to expediate this, as a large number of images need to be checked for cloud. A cross-check between images recorded by three of the observatory's cloud cameras is presented, along with a comparison with independent cloud measurements made by LIDAR. Despite the cloud cameras and LIDAR observing different areas of the sky, a good agreement is observed in the measured cloud fraction between the two instruments, particularly on very clear and overcast nights. Cloud information recorded by the cloud cameras, with cloud height information measured by the LIDAR, was used to identify those extensive air showers that were obscured by cloud. These events were used to study the effectiveness of standard quality cuts at removing cloud afflicted events. Of all of the standard quality cuts studied in this thesis, the LIDAR cloud fraction cut was the most effective at preferentially removing cloud obscured events. A 'cloudy pixel' veto is also presented, whereby cloud obscured measurements are excluded during the standard hybrid analysis, and new extensive air shower reconstructed parameters determined. The application of such a veto would provide a slight increase to the number of events available for higher level analysis.

  4. Global statistics of liquid water content and effective number density of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.

    2007-03-01

    This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water content and effective number density are presented.

  5. Comparison between two lidar methods to retrieve microphysical properties of liquid-water clouds

    NASA Astrophysics Data System (ADS)

    Jimenez, Cristofer; Ansmann, Albert; Donovan, David; Engelmann, Ronny; Schmidt, Jörg; Wandinger, Ulla

    2018-04-01

    Since 2010, the Raman dual-FOV lidar system permits the retrieval of microphysical properties of liquid-water clouds during nighttime. A new robust lidar depolarization approach was recently introduced, which permits the retrieval of these properties as well, with high temporal resolution and during daytime. To implement this approach, the lidar system was upgraded, by adding a three channel depolarization receiver. The first preliminary retrieval results and a comparison between both methods is presented.

  6. Multi-beam and single-chip LIDAR with discrete beam steering by digital micromirror device

    NASA Astrophysics Data System (ADS)

    Rodriguez, Joshua; Smith, Braden; Hellman, Brandon; Gin, Adley; Espinoza, Alonzo; Takashima, Yuzuru

    2018-02-01

    A novel Digital Micromirror Device (DMD) based beam steering enables a single chip Light Detection and Ranging (LIDAR) system for discrete scanning points. We present increasing number of scanning point by using multiple laser diodes for Multi-beam and Single-chip DMD-based LIDAR.

  7. Semitransparent cirrus clouds in the upper troposphere and their contribution to the particulate scattering in the tropical UTLS region

    NASA Astrophysics Data System (ADS)

    Thampi, Bijoy V.; Parameswaran, K.; Sunilkumar, S. V.

    2012-01-01

    Contribution of semitransparent cirrus (STC) to the scattering properties of particulates in the UTLS region is examined over the Indian region using the lidar data from Gadanki (13.5°N, 79.2°E) and SAGE-II measurements from 30°S to 30°N in the longitude region 70-90°E within the feasibility of these measurements. While the contribution of STC to particulate optical depth (τp) in UT is found to be quite significant in the equatorial and off-equatorial regions in both the hemispheres during summer, this is very small during winter in the off-equatorial regions. Dense STCs in UT also influences the aerosol scattering below the cloud-base and above the cloud-top (LS). This STC influence in LS is quite significant in the northern hemisphere and almost insignificant over the southern hemisphere, where the STC-cover as well as its optical depth is relatively low. This hemispheric difference is attributed to relatively strong tropospheric convection in the northern hemisphere.

  8. DC-8 scanning lidar characterization of aircraft contrails and cirrus clouds

    NASA Technical Reports Server (NTRS)

    Nielsen, Norman B.; Uthe, Edward E. (Principal Investigator)

    1996-01-01

    A Subsonic Assessment (SASS) element of the overall Atmospheric Effects of Aviation Project (AEAP) was initiated by NASA to assess the atmospheric impact of subsonic aircraft. SRI was awarded a project to develop and test a scanning backscatter lidar for installation on the NASA DC-8 (year 1), participate in the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program (year 2), and conduct a comprehensive analysis of field data (year 3). A scanning mirror pod attached to the DC-8 aircraft provides for scanning lidar observations ahead of the DC-8 and fixed-angle upward or downward observations. The lidar system installed within the DC-8 transmits 275 MJ at 1.06 gm wavelength or about 130 mJ at 1.06 and 0.53 gm simultaneously. Range-resolved aerosol backscatter is displayed in real time in terms of cloud/contrail spatial distributions. The objectives of the project are to map contrail/cloud vertical distributions ahead of DC-8; provide DC-8 guidance into enhanced scattering layers; document DC-8 flight path intersection of contrail and cloud geometries (in-situ measurement positions relative to cloud/contrail shape and an extension of in-situ measurements into the vertical -- integrated contrail/cloud properties); analyze contrail/cloud radiative properties with LIRAD (combined lidar and radiometry) technique; evaluate mean particle sizes of aircraft emissions from two-wavelength observations; study contrail/cloud interactions, diffusion, and mass decay/growth; and make observations in the near-field of aircraft engine emissions. The scanning mirror pod may also provide a scanning capability for other remote sensing instruments.

  9. Using LIDAR and UAV-derived point clouds to evaluate surface roughness in a gravel-bed braided river (Vénéon river, French Alps)

    NASA Astrophysics Data System (ADS)

    Vázquez Tarrío, Daniel; Borgniet, Laurent; Recking, Alain; Liebault, Frédéric; Vivier, Marie

    2016-04-01

    The present research is focused on the Vénéon river at Plan du Lac (Massif des Ecrins, France), an alpine braided gravel bed stream with a glacio-nival hydrological regime. It drains a catchment area of 316 km2. The present research is focused in a 2.5 km braided reach placed immediately upstream of a small hydropower dam. An airbone LIDAR survey was accomplished in October, 2014 by EDF (the company managing the small hydropower dam), and data coming from this LIDAR survey were available for the present research. Point density of the LIDAR-derived 3D-point cloud was between 20-50 points/m2, with a vertical precision of 2-3 cm over flat surfaces. Moreover, between April and Juin, 2015, we carried out a photogrammetrical campaign based in aerial images taken with an UAV-drone. The UAV-derived point-cloud has a point density of 200-300 points/m2, and a vertical precision over flat control surfaces comparable to that of the LIDAR point cloud (2-3 cm). Simultaneously to the UAV campaign, we took several Wolman samples with the aim of characterizing the grain size distribution of bed sediment. Wolman samples were taken following a geomorphological criterion (unit bars, head/tail of compound bars). Furthermore, some of the Wolman samples were repeated with the aim of defining the uncertainty of our sampling protocol. LIDAR and UAV-derived point clouds were treated in order to check whether both point-clouds were correctly co-aligned. After that, we estimated bed roughness using the detrended standard deviation of heights, in a 40-cm window. For all this data treatment we used CloudCompare. Then, we measured the distribution of roughness in the same geomorphological units where we took the Wolman samples, and we compared with the grain size distributions measured in the field: differences between UAV-point cloud roughness distributions and measured-grain size distribution (~1-2 cm) are in the same order of magnitude of the differences found between the repeated Wolman samples (~0.5-1.5 cm). Differences with LIDAR-derived roughness distributions are only slightly higher, which could be due to the lower point density of the LIDAR point clouds.

  10. Laser Remote Sensing from ISS: CATS Cloud and Aerosol Level 2 Data Products (Heritage Edition)

    NASA Technical Reports Server (NTRS)

    Rodier, Sharon; Palm, Steve; Vaughan, Mark; Yorks, John; McGill, Matt; Jensen, Mike; Murray, Tim; Trepte, Chip

    2016-01-01

    With the recent launch of the Cloud-Aerosol Transport System (CATS) we have the opportunity to acquire a continuous record of space based lidar measurements spanning from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) era to the start of the EarthCARE mission. Utilizing existing well-validated science algorithms from the CALIPSO mission, we will ingest the CATS data stream and deliver high-quality lidar data sets to the user community at the earliest possible opportunity. In this paper we present an overview of procedures necessary to generate CALIPSO-like lidar level 2 data products from the CATS level 1 data products.

  11. Assessment of cirrus cloud and aerosol radiative effect in South-East Asia by ground-based NASA MPLNET lidar network data and CALIPSO satellite measurements

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Welton, Ellsworth J.; Di Girolamo, Paolo; Fatkhuroyan, Fatkhuroyan; Gu, Yu; Marquis, Jared W.

    2017-10-01

    Aerosol, together with cirrus clouds, play a fundamental role in the earth-atmosphere system radiation budget, especially at tropical latitudes, where the Earth surface coverage by cirrus cloud can easily reach 70%. In this study we evaluate the combined aerosol and cirrus cloud net radiative effects in a wild and barren region like South East Asia. This part of the world is extremely vulnerable to climate change and it is source of important anthropogenic and natural aerosol emissions. The analysis has been carried out by computing cirrus cloud and aerosol net radiative effects through the Fu-Liou-Gu atmospheric radiative transfer model, adequately adapted to input lidar measurements, at surface and top-of-the atmosphere. The aerosol radiative effects were computed respectively using the retrieved lidar extinction from Cloud-Aerosol Lidar with Orthogonal Polarization in 2011 and 2012 and the lidar on-board of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations for the South East Asia Region (27N-12S, 77E-132E) with 5° x 5° spatial resolution. To assess the cirrus cloud radiative effect, we used the ground-based Micro Pulse Lidar Network measurements at Singapore permanent observational site. Results put in evidence that strong aerosol emission areas are related on average to a net surface cooling. On the contrary, cirrus cloud radiative effect shows a net daytime positive warming of the system earth-atmosphere. This effect is weak over the ocean where the albedo is lower and never counter-balances the net cooling produced by aerosols. The net cooling is stronger in 2011, with an associated reduction in precipitations by the four of the five rain-gauges stations deployed in three regions as Sumatra, Kalimantan and Java with respect to 2012. We can speculate that aerosol emissions may be associated with lower rainfall, however some very important phenomena as El Nino Southern Oscillation , Madden-Julian Oscillation, Monsoon and Indian Dipole are not considered in the analysis.

  12. Wyoming Cloud Lidar: instrument description and applications.

    PubMed

    Wang, Zhien; Wechsler, Perry; Kuestner, William; French, Jeffrey; Rodi, Alfred; Glover, Brent; Burkhart, Matthew; Lukens, Donal

    2009-08-03

    The Wyoming Cloud Lidar (WCL), a compact two-channel elastic lidar, was designed to obtain cloud measurements together with the Wyoming Cloud Radar (WCR) on the University of Wyoming King Air and the National Science Foundation/National Center of Atmospheric Research C-130 aircraft. The WCL has been deployed in four field projects under a variety of atmospheric and cloud conditions during the last two years. Throughout these campaigns, it has exhibited the needed reliability for turn-key operation from aircraft. We provide here an overview of the instrument and examples to illustrate the measurements capability of the WCL. Although the WCL as a standalone instrument can provide unique measurements for cloud and boundary layer aerosol studies, the synergy of WCL and WCR measurements coupled with in situ sampling from an aircraft provide a significant step forward in our ability to observe and understand cloud microphysical property evolution.

  13. Seasonally Transported Aerosol Layers Over Southeast Atlantic are Closer to Underlying Clouds than Previously Reported

    NASA Technical Reports Server (NTRS)

    Rajapakshe, Chamara; Zhang, Zhibo; Yorks, John E.; Yu, Hongbin; Tan, Qian; Meyer, Kerry; Platnick, Steven; Winker, David M.

    2017-01-01

    From June to October, low-level clouds in the southeast (SE) Atlantic often underlie seasonal aerosol layers transported from African continent. Previously, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 532 nm lidar observations have been used to estimate the relative vertical location of the above-cloud aerosols (ACA) to the underlying clouds. Here we show new observations from NASA's Cloud-Aerosol Transport System (CATS) lidar. Two seasons of CATS 1064 nm observations reveal that the bottom of the ACA layer is much lower than previously estimated based on CALIPSO 532 nm observations. For about 60% of CATS nighttime ACA scenes, the aerosol layer base is within 360 m distance to the top of the underlying cloud. Our results are important for future studies of the microphysical indirect and semidirect effects of ACA in the SE Atlantic region.

  14. A Comparison of High Spectral Resolution Infrared Cloud-Top Pressure Altitude Algorithms Using S-HIS Measurements

    NASA Technical Reports Server (NTRS)

    Holz, Robert E.; Ackerman, Steve; Antonelli, Paolo; Nagle, Fred; McGill, Matthew; Hlavka, Dennis L.; Hart, William D.

    2005-01-01

    This paper presents a comparison of cloud-top altitude retrieval methods applied to S-HIS (Scanning High Resolution Interferometer Sounder) measurements. Included in this comparison is an improvement to the traditional CO2 Slicing method. The new method, CO2 Sorting, determines optimal channel pairs to apply the CO2 Slicing. Measurements from collocated samples of the Cloud Physics Lidar (CPL) and Modis Airborne Simulator (MAS) instruments assist in the comparison. For optically thick clouds good correlation between the S-HIS and lidar cloud-top retrievals are found. For tenuous ice clouds there can be large differences between lidar (CPL) and S-HIS retrieved cloud-tops. It is found that CO2 Sorting significantly reduces the cloud height biases for the optically thin cloud (total optical depths less then 1.0). For geometrically thick but optically thin cirrus clouds large differences between the S-HIS infrared cloud top retrievals and the CPL detected cloud top where found. For these cases the cloud height retrieved by the S-HIS cloud retrievals correlated closely with the level the CPL integrated cloud optical depth was approximately 1.0.

  15. Mid-Level Mixed-Phase Cloud Properties Derived From Polarization Lidar Measurements and Model Simulations

    NASA Astrophysics Data System (ADS)

    Sassen, K.; Canonica, L.; James, C.; Khvorostyanov, V.

    2005-12-01

    Water-dominated altocumulus clouds are distributed world-wide in the middle troposphere, and so are generally supercooled clouds with variable amounts of ice production via the heterogeneous droplet freezing process, which depends on temperature and the availability of ice nuclei. Although they tend to be relatively optically thin (i.e., for water clouds) and may often act similarly to cirrus clouds, altocumulus are globally widespread and probably play a significant role in maintaining the radiation balance of the Earth/atmosphere system. We will review recent cloud microphysical/ radiative model findings describing their impact on radiation transfer, and how increasing ice content (leading to cloud glaciation) affects their radiative impact. These simulations are based on the results of a polarization lidar climatology of the macrophysical properties of midlatitude altocumulus clouds, which variably produced ice virga. A new more advanced polarization lidar algorithm for characterizing mixed-phase cloud properties is currently being developed. Relative ice content is shown to have a large effect on atmospheric heating rates. We will also present lidar data examples, from Florida to Alaska, that indicate how desert dust and forest fire smoke aerosols can affect supercooled cloud phase. Since such aerosols may be becoming increasingly prevalent due to various human activities or climate change itself, it is important to assess the potential effects of increasing ice nuclei to climate change.

  16. Assessment of optical properties variation and discrimination of aerosol and cloud with a multiple-wavelength elastic-Raman lidar in New York City

    NASA Astrophysics Data System (ADS)

    Arapi, A.; Wu, Y.; Moshary, F.; Blake, R.; Liou-Mark, J.

    2017-12-01

    Aerosol and cloud play important roles on the Earth's energy budget, which is an important component of climate research. The radiative effects of aerosol-cloud interaction are still highly uncertain and the accuracy of their representation in climate models depends on the accuracy of their measurements. This study evaluates the potential to determine the existence of hydrated aerosols near clouds based on a ground-based multiple-wavelength elastic-Raman lidar at 1064-532-355nm and satellite measurement in New York City area (NYC), east coast of US. The main goal of this study is to examine the variations of color-ratio (spectral or wavelength dependence of backscatter) and relative backscatter to identify patterns between aerosol and cloud. In this presentation, we show the time-height distribution and variation of lidar-measured relative backscatter and color-ratio for some case studies. Then, we employ an aerosol-cloud discrimination algorithm to separate aerosols and clouds according to the color-ratio differences. We demonstrate the significant variation of aerosol optical properties near the low-level clouds in summer, which indicates the potential interaction or transient zone between aerosols and clouds. Finally, we show the preliminary evaluation of the aerosol and cloud product from the satellite retrievals when the ground-lidar observes the transported smoke plumes in NYC area.

  17. Combined Lidar-Radar Remote Sensing: Initial Results from CRYSTAL-FACE and Implications for Future Spaceflight Missions

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Li, Li-Hua; Hart, William D.; Heymsfield, Gerald M.; Hlavka, Dennis L.; Vaughan, Mark A.; Winker, David M.

    2003-01-01

    In the near future NASA plans to fly satellites carrying a multi-wavelength backscatter lidar and a 94-GHz cloud profiling radar in formation to provide complete global profiling of cloud and aerosol properties. The CRYSTAL-FACE field campaign, conducted during July 2002, provided the first high-altitude colocated measurements from lidar and cloud profiling radar to simulate these spaceborne sensors. The lidar and radar provide complementary measurements with varying degrees of measurement overlap. This paper presents initial results of the combined airborne lidar-radar measurements during CRYSTAL-FACE. The overlap of instrument sensitivity is presented, within the context of particular CRYSTAL-FACE conditions. Results are presented to quantify the portion of atmospheric profiles sensed independently by each instrument and the portion sensed simultaneously by the two instruments.

  18. Study of wind retrieval from space-borne infrared coherent lidar in cloudy atmosphere.

    NASA Astrophysics Data System (ADS)

    Baron, Philippe; Ishii, Shoken; Mizutani, Kohei; Okamoto, Kozo; Ochiai, Satoshi

    2015-04-01

    Future spaceborne tropospheric wind missions using infrared coherent lidar are currently being studied in Japan and in the United States [1,2]. The line-of-sight wind velocity is retrieved from the Doppler shift frequency of the signal returned by aerosol particles. However a large percentage (70-80%) of the measured single-shot intensity profiles are expected to be contaminated by clouds [3]. A large number of cloud contaminated profiles (>40%) will be characterized by a cloud-top signal intensity stronger than the aerosol signal by a factor of one order of magnitude, and by a strong attenuation of the signal backscattered from below the clouds. Profiles including more than one cloud layer are also expected. This work is a simulation study dealing with the impacts of clouds on wind retrieval. We focus on the three following points: 1) definition of an algorithm for optimizing the wind retrieval from the cloud-top signal, 2) assessment of the clouds impact on the measurement performance and, 3) definition of a method for averaging the measurements before the retrieval. The retrieval simulations are conducted considering the instrumental characteristics selected for the Japanese study: wavelength at 2 µm, PRF of 30 Hz, pulse power of 0.125 mJ and platform altitude between 200-400 km. Liquid and ice clouds are considered. The analysis uses data from atmospheric models and statistics of cloud effects derived from CALIPSO measurements such as in [3]. A special focus is put on the average method of the measurements before retrieval. Good retrievals in the mid-upper troposphere implie the average of measured single-range power spectra over large horizontal (100 km) and vertical (1 km) ranges. Large differences of signal intensities due to the presence of clouds and the clouds non-uniform distribution have to be taken into account when averaging the data to optimize the measurement performances. References: [1] S. Ishii, T. Iwasaki, M. Sato, R. Oki, K. Okamoto, T. Ishibashi, P. Baron, and T. Nishizawa: Future Doppler lidar wind measurement from space in Japan, Proc. of SPIE Vol. 8529, 2012 [2] D. Wu, J. Tang, Z. Liu, and Y. Hu: Simulation of coherent doppler wind lidar measurement from space based on CALIPSO lidar global aerosol observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 122(0), 79-86, 2013 [3] G.D Emmitt: CFLOS and cloud statistics from satellite and their impact on future space-based Doppler Wind Lidar development. Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar, 2008

  19. Measured backscatter and attenuation properties, including polarization effects, of various dispersions at 0.9 micron

    NASA Technical Reports Server (NTRS)

    Kohl, R. H.; Flaherty, M. I.; Partin, R. L.

    1977-01-01

    The optical properties of a wide variety of atmospheric dispersions were studied using a 0.9-micron lidar system which included a GaAs laser stack transmitter emitting a horizontally polarized beam of 4 milliradians vertical divergence and 1.5 milliradians horizontal divergence. A principal means for assessing optical properties was the polarization ratio, that is, the backscattered radiation power perpendicular to the transmitter beam divided by the backscattered radiation power parallel to the beam polarization. The ratio of the backscattered fraction to the attenuation coefficient was also determined. Data on the dispersion properties of black carbon smoke, road dust, fog, fair-weather cumulus clouds, snow and rain were obtained; the adverse effects of sunlight-induced background noise on the readings is also discussed.

  20. Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs

    NASA Technical Reports Server (NTRS)

    Vaughan, M. A.; Winker, D. M.

    1994-01-01

    Intensive cloud lidar observations have been made by NASA Langley Research Center during the two observation phases of the ECLIPS project. Less intensive but longer term observations have been conducted as part of the FIRE extended time observation (ETO) program since 1987. We present a preliminary analysis of the vertical distribution of clouds based on these observations. A mean cirrus thickness of just under 1 km has been observed with a mean altitude of about 80 percent of the tropopause height. Based on the lidar data, cirrus coverage was estimated to be just under 20 percent, representing roughly 50 percent of all clouds studied. Cirrus was observed to have less seasonal variation than lower clouds. Mid-level clouds are found to occur primarily in association with frontal activity.

  1. Geometric and optical properties of cirrus clouds inferred from three-year ground-based lidar and CALIOP measurements over Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Yumi; Kim, Sang-Woo; Kim, Man-Hae; Yoon, Soon-Chang

    2014-03-01

    This study examines cirrus cloud top and bottom heights (CTH and CBH, respectively) and the associated optical properties revealed by ground-based lidar in Seoul (SNU-L), Korea, and space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which were obtained during a three-year measurement period between July 2006 and June 2009. From two selected cases, we determined good agreement in CTH and CBH with cirrus cloud optical depth (COD) between ground-based lidar and space-borne CALIOP. In particular, CODs at a wavelength of 532 nm calculated from the three years of SNU-L and CALIOP measurements were 0.417 ± 0.394 and 0.425 ± 0.479, respectively. The fraction of COD lower than 0.1 was approximately 17% and 25% of the total SNU-L and CALIOP profiles, respectively, and approximately 50% of both lidar profiles were classified as sub-visual or optically thin such that COD was < 0.3. The mean depolarization ratio was estimated to be 0.30 ± 0.06 for SNU-L and 0.34 ± 0.08 for CALIOP. The monthly variation of CODs from SNU-L and CALIOP measurements was not distinct, whereas cirrus altitudes from both SNU-L and CALIOP showed distinct monthly variation. CALIOP observations showed that cirrus clouds reached the tropopause level in all months, whereas the up-looking SNU-L did not detect cirrus clouds near the tropopause in summer due to signal attenuation by underlying optically thick clouds. The cloud layer thickness (CLT) and COD showed a distinct linear relationship up to approximately 2 km of the CLT; however, the COD did not increase, but remained constant when the CLT was greater than 2.0 km. The ice crystal content, lidar signal attenuation, and the presence of multi-layered cirrus clouds may have contributed to this tendency.

  2. Lidar Data Products and Applications Enabled by Conical Scanning

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Lee, Sang-Woo

    2004-01-01

    Several new data products and applications for elastic backscatter lidar are achieved using simple conical scanning. Atmospheric boundary layer spatial and temporal structure is revealed with resolution not possible with static pointing lidars. Cloud fractional coverage as a function of altitude is possible with high temporal resolution. Wind profiles are retrieved from the cloud and aerosol structure motions revealed by scanning. New holographic technology will soon allow quasi-conical scanning and push-broom lidar imaging without mechanical scanning, high resolution, on the order of seconds.

  3. LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET

    NASA Astrophysics Data System (ADS)

    Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; Herekakis, T.; Kazadzis, S.; Gerasopoulos, E.; Proestakis, E.; Kottas, M.; Balis, D.; Papayannis, A.; Kontoes, C.; Kourtidis, K.; Papagiannopoulos, N.; Mona, L.; Pappalardo, G.; Le Rille, O.; Ansmann, A.

    2015-07-01

    We present LIVAS (LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies), a 3-D multi-wavelength global aerosol and cloud optical database, optimized to be used for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. The LIVAS database provides averaged profiles of aerosol optical properties for the potential spaceborne laser operating wavelengths of 355, 532, 1064, 1570 and 2050 nm and of cloud optical properties at the wavelength of 532 nm. The global database is based on CALIPSO observations at 532 and 1064 nm and on aerosol-type-dependent backscatter- and extinction-related Ångström exponents, derived from EARLINET (European Aerosol Research Lidar Network) ground-based measurements for the UV and scattering calculations for the IR wavelengths, using a combination of input data from AERONET, suitable aerosol models and recent literature. The required spectral conversions are calculated for each of the CALIPSO aerosol types and are applied to CALIPSO backscatter and extinction data corresponding to the aerosol type retrieved by the CALIPSO aerosol classification scheme. A cloud optical database based on CALIPSO measurements at 532 nm is also provided, neglecting wavelength conversion due to approximately neutral scattering behavior of clouds along the spectral range of LIVAS. Averages of particle linear depolarization ratio profiles at 532 nm are provided as well. Finally, vertical distributions for a set of selected scenes of specific atmospheric phenomena (e.g., dust outbreaks, volcanic eruptions, wild fires, polar stratospheric clouds) are analyzed and spectrally converted so as to be used as case studies for spaceborne lidar performance assessments. The final global data set includes 4-year (1 January 2008-31 December 2011) time-averaged CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) data on a uniform grid of 1° × 1° with the original high vertical resolution of CALIPSO in order to ensure realistic simulations of the atmospheric variability in lidar end-to-end simulations.

  4. Comparison of cloud boundaries measured with 8.6 mm radar and 10.6 micrometer lidar

    NASA Technical Reports Server (NTRS)

    Uttal, Taneil; Intrieri, Janet M.

    1993-01-01

    One of the most basic cloud properties is location; the height of cloud base and the height of cloud top. The glossary of meteorology defines cloud base (top) as follows: 'For a given cloud or cloud layer, that lowest (highest) level in the atmosphere at which the air contains a perceptible quantity of cloud particles.' Our studies show that for a 8.66 mm radar, and a 10.6 micrometer lidar, the level at which cloud hydrometers become 'perceptible' can vary significantly as a function of the different wavelengths, powers, beamwidths and sampling rates of the two remote sensors.

  5. Case Study Analyses of the Success DC-8 Scanning Lidar Database

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.

    2000-01-01

    Under project SUCCESS (Subsonic Aircraft Contrail and Cloud Effects Special Study) funded by the Atmospheric Effects of Aviation Program, SRI International (SRI) developed an angular scanning back'scatter lidar for operation on the NASA DC-8 research aircraft and deployed the scanning lidar during the SUCCESS field campaign. The primary purpose of the lidar was to generate real-time video displays of clouds and contrails above, ahead of, and below the DC-8 as a means to help position the aircraft for optimum cloud and contrail sampling by onboard in situ sensors, and to help extend the geometrical domain of the in situ sampling records. A large, relatively complex lidar database was collected and several data examples were processed to illustrate the value of the lidar data for interpreting the other data records collected during SUCCESS. These data examples were used to develop a journal publication for the special SUCCESS Geophysical Research Letters issue (reprint presented as Appendix A). The data examples justified data analyses of a larger part of the DC-8 lidar database and is the objective of the current study.

  6. “Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrare, Richard; Turner, David

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thinmore » continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.« less

  7. A GUI visualization system for airborne lidar image data to reconstruct 3D city model

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2015-10-01

    A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.

  8. Doppler lidar signal and turbulence study

    NASA Technical Reports Server (NTRS)

    Frost, W.; Huang, K. H.; Fitzjarrald, D. F.

    1983-01-01

    Comparison of the second moments of the Doppler lidar signal with aircraft and tower measured parameters is being carried out. Lidar binary data tapes were successfully converted to ASCII Code on the VAX 11/780. These data were used to develop the computer programs for analyzing data from the Marshall Space Flight Center field test. Raw lidar amplitude along the first 50 forward and backward beams of Run No. 2, respectively was plotted. Plotting techniques for the same beams except with the amplitude thresholded and range corrected were developed. Plotting routines for the corresponding lidar width of the first 50 forward and backward beams were also established. The relationship between raw lidar amplitude and lidar width was examined. The lidar width is roughly constant for lidar amplitudes less than 120 dB. A field test with the NASA/MSFC ground based Doppler lidar, the instrumented NASA B-57B gust gradient aircraft, and the NASA/MSFC eight tower array was carried out. The data tape for the lidar was received and read. The aircraft data and tower data are being digitized and converted to engineering units. Velocities computed sequentially along each of the lidar beams beginning at 16:40:00, May 12, 1983 were plotted for Run No. 1.

  9. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  10. Potential New Lidar Observations for Cloud Studies

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Hu, Yong; Narir, Amin; Cai, Xia

    2015-01-01

    The response of clouds to global warming represents a major uncertainty in estimating climate sensitivity. These uncertainties have been tracked to shallow marine clouds in the tropics and subtropics. CALIOP observations have already been used extensively to evaluate model predictions of shallow cloud fraction and top height (Leahy et al. 2013; Nam et al 2012). Tools are needed to probe the lowest levels of the troposphere. The large footprint of satellite lidars gives large multiple scattering from clouds which presents new possibilities for cloud retrievals to constrain model predictions.

  11. A New GaAs Laser Radar for Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Brown, R. T.; Stoliar, A. P.

    1973-01-01

    A special GaAs lidar using fiber coupled diode lasers was constructed for the purpose of measuring the extinction coefficient distribution within a large atmospheric volume at a rate compatible with atmospheric kinematics. The technique is based on taking backscatter signature ratios over spatial increments after the returns are normalized by pulse integration. Essential aspects of the lidar design are beam pulse power, repetition rate, detection system dynamic range and decay linearity. It was necessary to preclude the possibility of eye hazard under any operating conditions, including directly viewing the emitting aperture at close distance with a night-adapted eye. The electronic signal processing and control circuits were built to allow versatile operations. Extinction coefficient measurements were made in fog and clouds using a low-power laboratory version of the lidar, demonstrating feasibility. Data are presented showing range squared corrected backscatter profiles converted to extinction coefficient profiles, temporal signal fluctuations, and solar induced background noise. These results aided in the design of the lidar which is described. Functional tests of this lidar and the implications relevant to the design of a prototype model are discussed. This work was jointly sponsored by Sperry Rand Corporation under its Independent Research and Development program; the Air Force Avionics Laboratory, Wright Field, Dayton, Ohio; and the Naval Ammunition Depot, Crane, Indiana.

  12. Extinction coefficients from lidar observations in ice clouds compared to in-situ measurements from the Cloud Integrating Nephelometer during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Noel, Vincent; Winker, D. M.; Garrett, T. J.; McGill, M.

    2005-01-01

    This paper presents a comparison of volume extinction coefficients in tropical ice clouds retrieved from two instruments : the 532-nm Cloud Physics Lidar (CPL), and the in-situ probe Cloud Integrating Nephelometer (CIN). Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements in ice clouds up to 17km. Coincident observations from three cloud cases are compared : one synoptically-generated cirrus cloud of low optical depth, and two ice clouds located on top of convective systems. Emphasis is put on the vertical variability of the extinction coefficient. Results show small differences on small spatial scales (approx. 100m) in retrievals from both instruments. Lidar retrievals also show higher extinction coefficients in the synoptic cirrus case, while the opposite tendency is observed in convective cloud systems. These differences are generally variations around the average profile given by the CPL though, and general trends on larger spatial scales are usually well reproduced. A good agreement exists between the two instruments, with an average difference of less than 16% on optical depth retrievals.

  13. Cirrus Cloud Optical and Morphological Variations within a Mesoscale Volume

    NASA Technical Reports Server (NTRS)

    Wolf, Walter W.

    1996-01-01

    Cirrus cloud optical and structural properties were measured above southern Wisconsin in two time segments between 18:07 and 21:20 GMT on December 1, 1989 by the volume imaging lidar (VIL) and the High Spectral Resolution Lidar (HSRL) and the visible infrared spin scan radiometer (VISSR) atmospheric sounder (VAS) on GOES. A new technique was used to calculate the cirrus cloud visible aerosol backscatter cross sections for a single channel elastic backscatter lidar. Cirrus clouds were viewed simultaneously by the VIL and the HSRL. This allowed the HSRL aerosol backscatter cross sections to be directly compared to the VIL single channel backscattered signal. This first attempt resulted in an adequate calibration. The calibration was extended to all the cirrus clouds in the mesoscale volume imaged by the VIL.

  14. Airborne LIDAR Measurements of Water Vapor, Ozone, Clouds, and Aerosols in the Tropics Near Central America During the TC4 Experiment

    NASA Technical Reports Server (NTRS)

    Kooi, Susan; Fenn, Marta; Ismail, Syed; Ferrare, Richard; Hair, John; Browell, Edward; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Simpson, Steven

    2008-01-01

    Large scale distributions of ozone, water vapor, aerosols, and clouds were measured throughout the troposphere by two NASA Langley lidar systems on board the NASA DC-8 aircraft as part of the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4) over Central and South America and adjacent oceans in the summer of 2007. Special emphasis was placed on the sampling of convective outflow and transport, sub-visible cirrus clouds, boundary layer aerosols, Saharan dust, volcanic emissions, and urban and biomass burning plumes. This paper presents preliminary results from this campaign, and demonstrates the value of coordinated measurements by the two lidar systems.

  15. Erosion and Channel Incision Analysis with High-Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Potapenko, J.; Bookhagen, B.

    2013-12-01

    High-resolution LiDAR (LIght Detection And Ranging) provides a new generation of sub-meter topographic data that is still to be fully exploited by the Earth science communities. We make use of multi-temporal airborne and terrestrial lidar scans in the south-central California and Santa Barbara area. Specifically, we have investigated the Mission Canyon and Channel Islands regions from 2009-2011 to study changes in erosion and channel incision on the landscape. In addition to gridding the lidar data into digital elevation models (DEMs), we also make use of raw lidar point clouds and triangulated irregular networks (TINs) for detailed analysis of heterogeneously spaced topographic data. Using recent advancements in lidar point cloud processing from information technology disciplines, we have employed novel lidar point cloud processing and feature detection algorithms to automate the detection of deeply incised channels and gullies, vegetation, and other derived metrics (e.g. estimates of eroded volume). Our analysis compares topographically-derived erosion volumes to field-derived cosmogenic radionuclide age and in-situ sediment-flux measurements. First results indicate that gully erosion accounts for up to 60% of the sediment volume removed from the Mission Canyon region. Furthermore, we observe that gully erosion and upstream arroyo propagation accelerated after fires, especially in regions where vegetation was heavily burned. The use of high-resolution lidar point cloud data for topographic analysis is still a novel method that needs more precedent and we hope to provide a cogent example of this approach with our research.

  16. Nighttime lidar water vapor mixing ratio profiling over Warsaw - impact of the relative humidity profile on cloud formation

    NASA Astrophysics Data System (ADS)

    Costa Surós, Montserrat; Stachlewska, Iwona S.

    2016-04-01

    A long-term study, assessing ground-based remote Raman lidar versus in-situ radiosounding has been conducted with the aim of improving the knowledge on the water content vertical profile through the atmosphere, and thus the conditions for cloud formation processes. Water vapor mixing ratio (WVMR) and relative humidity (RH) profiles were retrieved from ADR Lidar (PollyXT-type, EARLINET site in Warsaw). So far, more than 100 nighttime profiles averaged over 1h around midnight from July 2013 to December 2015 have been investigated. Data were evaluated with molecular extinctions calculated using two approximations: the US62 standard atmosphere and the radiosounding launched in Legionowo (12374). The calibration factor CH2O for lidar retrievals was obtained for each profile using the regression method and the profile method to determine the best calibration factor approximation to be used in the final WVMR and RH calculation. Thus, statistically representative results for comparisons between lidar WVMR median profiles obtained by calibrating using radiosounding profiles and using atmospheric synthetic profiles, all of them with the best calibration factor, will be presented. Finally, in order to constrain the conditions of cloud formation in function of the RH profile, the COS14 algorithm, capable of deriving cloud bases and tops by applying thresholds to the RH profiles, was applied to find the cloud vertical structure (CVS). The algorithm was former applied to radiosounding profiles at SGP-ARM site and tested against the CVS obtained from the Active Remote Sensing of Clouds (ARSCL) data. Similarly, it was applied for lidar measurements at the Warsaw measurement site.

  17. Layer stacking: A novel algorithm for individual forest tree segmentation from LiDAR point clouds

    Treesearch

    Elias Ayrey; Shawn Fraver; John A. Kershaw; Laura S. Kenefic; Daniel Hayes; Aaron R. Weiskittel; Brian E. Roth

    2017-01-01

    As light detection and ranging (LiDAR) technology advances, it has become common for datasets to be acquired at a point density high enough to capture structural information from individual trees. To process these data, an automatic method of isolating individual trees from a LiDAR point cloud is required. Traditional methods for segmenting trees attempt to isolate...

  18. Wavelength dependence of coherent and incoherent satellite-based lidar measurements of wind velocity and aerosol backscatter

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Huffaker, R. M.

    1986-01-01

    The results are presented of a capability study of Earth orbiting lidar systems, at various wavelengths from 1.06 to 10.6 microns, for the measurement of wind velocity and aerosol backscatter, and for the detection of clouds. Both coherent and incoherent lidar systems were modeled and compared for the aerosol backscatter and cloud detection applications.

  19. Backscatter-depolarisation lidars on high-altitude research aircraft

    NASA Astrophysics Data System (ADS)

    Mitev, Valentin; Matthey, Renaud; Makarov, Vladislav

    2014-11-01

    This article presents an overview of the development and the applications of two compact elastic backscatter depolarisation lidars, installed on-board the high-altitude research aircraft Myasishchev M-55 Geophysica. The installation of the lidars is intended for simultaneous probing of air parcels respectively upward and downward from the aircraft flight altitude to identify the presence of clouds (or aerosol )above and below the aircraft and to collocate them with in situ instruments. The lidar configuration and the procedure for its on-ground validation is outlined. Example of airborne measurements include polar stratospheric clouds, both synoptical and in lee-waves, ultra-thin cirrus clouds around the tropical tropopause and observation of aerosol layers emerging from the top of deep tropical convection.

  20. Calibration of a 35-GHz Airborne Cloud Radar: Lessons Learned and Intercomparison with a 94-GHz Airborne Cloud Radar

    NASA Astrophysics Data System (ADS)

    Ewald, Florian; Gross, Silke; Hagen, Martin; Hirsch, Lutz; Delanoë, Julien

    2017-04-01

    Clouds play an important role in the climate system since they have a profound influence on Earth's radiation budget and the water cycle. Uncertainties associated with their spatial characteristics as well as their microphysics still introduce large uncertainties in climate change predictions. In recent years, our understanding of the inner workings of clouds has been greatly advanced by the deployment of cloud profiling microwave radars from ground as well as from space like CloudSat or the upcoming EarthCARE satellite mission. In order to validate and assess the limitations of these spaceborne missions, a well-calibrated, airborne cloud radar with known sensitivity to clouds is indispensable. Within this context, the German research aircraft HALO was equipped with the high-power (30kW peak power) cloud radar operating at 35 GHz and a high spectral resolution lidar (HSRL) system at 532 nm. During a number of flight experiments over Europe and over the tropical and extra-tropical North-Atlantic, several radar calibration efforts have been made using the ocean surface backscatter. Moreover, CloudSat underflights have been conducted to compare the radar reflectivity and measurement sensitivity between the air- and spaceborne instruments. Additionally, the influence of different radar wavelengths was explored with joint flights of HALO and the French Falcon 20 aircraft, which was equipped with the RASTA cloud radar at 94 GHz and a HSRL at 355 nm. In this presentation, we will give an overview of lessons learned from different calibration strategies using the ocean surface backscatter. Additional measurements of signal linearity and signal saturation will complement this characterization. Furthermore, we will focus on the coordinated airborne measurements regarding the different sensitivity for clouds at 35 GHz and 94 GHz. By using the highly sensitive lidar signals, we show if the high-power cloud radar at 35 GHz can be used to validate spaceborne and airborne measurements at 94 GHz and which differences are to be expected. Furthermore, the coordinated measurements are used to explore the reflectivity cut-offs of CloudSat and future spaceborne constellations and compare them to ground-based systems.

  1. Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar.

    PubMed

    Nakajima, T Y; Imai, T; Uchino, O; Nagai, T

    1999-08-20

    The influence of daylight and noise current on cloud and aerosol observations by realistic spaceborne lidar was examined by computer simulations. The reflected solar radiations, which contaminate the daytime return signals of lidar operations, were strictly and explicitly estimated by accurate radiative transfer calculations. It was found that the model multilayer cirrus clouds and the boundary layer aerosols could be observed during the daytime and the nighttime with only a few laser shots. However, high background noise and noise current make it difficult to observe volcanic aerosols in middle and upper atmospheric layers. Optimal combinations of the laser power and receiver field of view are proposed to compensate for the negative influence that is due to these noises. For the computer simulations, we used a realistic set of lidar parameters similar to the Experimental Lidar in-Space Equipment of the National Space Development Agency of Japan.

  2. Twomey Effect in Subtropical Stratocumulus Clouds from UV Depolarization LIDAR

    NASA Astrophysics Data System (ADS)

    de Graaf, Martin; Brown, Jessica; Donovan, David

    2018-04-01

    Marine stratocumulus clouds are important climate regulators, reflecting sunlight over a dark ocean background. A UV-depolarization lidar on Ascension, a small remote island in the south Atlantic, measured cloud droplet sizes and number concentration using an inversion method based on Monte Carlo (MC) modelling of multiple scattering in idealised semiadiabatic clouds. The droplet size and number concentration weremodulated due to smoke from the African continent, measured by the same instrument.

  3. The Multiple Altimeter Beam Experimental Lidar (MABEL), an Airborne Simulator for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Markus, Thorsten; Scott, V. Stanley; Neumann, Thomas

    2012-01-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission is currently under development by NASA. The primary mission of ICESat-2 will be to measure elevation changes of the Greenland and Antarctic ice sheets, document changes in sea ice thickness distribution, and derive important information about the current state of the global ice coverage. To make this important measurement, NASA is implementing a new type of satellite-based surface altimetry based on sensing of laser pulses transmitted to, and reflected from, the surface. Because the ICESat-2 measurement approach is different from that used for previous altimeter missions, a high-fidelity aircraft instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to demonstrate the measurement concept and provide verification of the ICESat-2 methodology. The MABEL instrument will serve as a prototype for the ICESat-2 mission and also provides a science tool for studies of land surface topography. This paper outlines the science objectives for the ICESat-2 mission, the current measurement concept for ICESat-2, and the instrument concept and preliminary data from MABEL.

  4. Mie Lidar for Aerosols and Clouds Monitoring at Otlica Observatory

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanič, S.; Bergant, K.; Filipčič, A.; Veberič, D.; Forte, B.

    2009-04-01

    Aerosol and cloud densities are the most important atmospheric parameters, which significantly influence the atmospheric conditions. The study of their spatial and temporal properties can provide detailed information about the transport processes of the air masses. In recent years, lidar techniques for remote sensing of the atmospheric parameters have been greatly improved. Like the lidar systems of the Pierre Auger Observatory in Argentina (35.2S, 69.1W, 1400 m a.s.l.), the Mie lidar built at Otlica Observatory (45.93N, 13.91E, 945 m a.s.l.) in Slovenia employs the same hardware, including the transmitter, the receiver, and the DAQ system. Due to its high-power laser, large-diameter telescope, and photon-counting data-acquisition technique, the Mie lidar has the potential ability to measure the tropospheric and stratospheric atmospheric conditions, and is suitable for monitoring the changes of the cirrus clouds and atmospheric boundary layer. We have been performing routine atmospheric monitoring experiments with the Otlica Mie lidar since September 2008. Using the techniques of event-averaging, noise-elimination, and data-gluing, the far end of lidar probing range is extended from 30 km up to 40 km. The extinction profiles are calculated using the Klett method and the time-height-intensity plots were made. They clearly show the evolution of atmospheric conditions, especially the motion of the cirrus clouds above Otlica.

  5. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    NASA Astrophysics Data System (ADS)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (<80%) of the cirrus have values less than 0.1. Optical depth shows a strong dependence with cirrus geometrical thickness and mid-cloud height. The monthly mean cirrus extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  6. LiDAR Vegetation Investigation and Signature Analysis System (LVISA)

    NASA Astrophysics Data System (ADS)

    Höfle, Bernhard; Koenig, Kristina; Griesbaum, Luisa; Kiefer, Andreas; Hämmerle, Martin; Eitel, Jan; Koma, Zsófia

    2015-04-01

    Our physical environment undergoes constant changes in space and time with strongly varying triggers, frequencies, and magnitudes. Monitoring these environmental changes is crucial to improve our scientific understanding of complex human-environmental interactions and helps us to respond to environmental change by adaptation or mitigation. The three-dimensional (3D) description of the Earth surface features and the detailed monitoring of surface processes using 3D spatial data have gained increasing attention within the last decades, such as in climate change research (e.g., glacier retreat), carbon sequestration (e.g., forest biomass monitoring), precision agriculture and natural hazard management. In all those areas, 3D data have helped to improve our process understanding by allowing quantifying the structural properties of earth surface features and their changes over time. This advancement has been fostered by technological developments and increased availability of 3D sensing systems. In particular, LiDAR (light detection and ranging) technology, also referred to as laser scanning, has made significant progress and has evolved into an operational tool in environmental research and geosciences. The main result of LiDAR measurements is a highly spatially resolved 3D point cloud. Each point within the LiDAR point cloud has a XYZ coordinate associated with it and often additional information such as the strength of the returned backscatter. The point cloud provided by LiDAR contains rich geospatial, structural, and potentially biochemical information about the surveyed objects. To deal with the inherently unorganized datasets and the large data volume (frequently millions of XYZ coordinates) of LiDAR datasets, a multitude of algorithms for automatic 3D object detection (e.g., of single trees) and physical surface description (e.g., biomass) have been developed. However, so far the exchange of datasets and approaches (i.e., extraction algorithms) among LiDAR users lacks behind. We propose a novel concept, the LiDAR Vegetation Investigation and Signature Analysis System (LVISA), which shall enhance sharing of i) reference datasets of single vegetation objects with rich reference data (e.g., plant species, basic plant morphometric information) and ii) approaches for information extraction (e.g., single tree detection, tree species classification based on waveform LiDAR features). We will build an extensive LiDAR data repository for supporting the development and benchmarking of LiDAR-based object information extraction. The LiDAR Vegetation Investigation and Signature Analysis System (LVISA) uses international web service standards (Open Geospatial Consortium, OGC) for geospatial data access and also analysis (e.g., OGC Web Processing Services). This will allow the research community identifying plant object specific vegetation features from LiDAR data, while accounting for differences in LiDAR systems (e.g., beam divergence), settings (e.g., point spacing), and calibration techniques. It is the goal of LVISA to develop generic 3D information extraction approaches, which can be seamlessly transferred to other datasets, timestamps and also extraction tasks. The current prototype of LVISA can be visited and tested online via http://uni-heidelberg.de/lvisa. Video tutorials provide a quick overview and entry into the functionality of LVISA. We will present the current advances of LVISA and we will highlight future research and extension of LVISA, such as integrating low-cost LiDAR data and datasets acquired by highly temporal scanning of vegetation (e.g., continuous measurements). Everybody is invited to join the LVISA development and share datasets and analysis approaches in an interoperable way via the web-based LVISA geoportal.

  7. Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation.

    PubMed

    Roy, G; Bissonnette, L R

    2001-09-20

    Backscatter and depolarization lidar measurements from clouds and precipitation are reported as functions of the elevation angle of the pointing lidar direction. We recorded the data by scanning the lidar beam (Nd:YAG) at a constant angular speed of ~3.5 degrees /s while operating at a repetition rate of 10 Hz. We show that in rain there is an evident and at times spectacular dependence on the elevation angle. That dependence appears to be sensitive to raindrop size. We have developed a three-dimensional polarization-dependent ray-tracing algorithm to calculate the backscatter and the depolarization ratio by large nonspherical droplets. We have applied it to raindrop shapes derived from existing static and dynamic (oscillating) models. We show that many of the observed complex backscatter and depolarization features can be interpreted to a good extent by geometrical optics. These results suggest that there is a definite need for more extensive calculations of the scattering phase matrix elements for large deformed raindrops as functions of the direction of illumination. Obvious applications are retrieval of information on the liquid-solid phase of precipitation and on the size and the vibration state of raindrops.

  8. Comparison of roadway roughness derived from LIDAR and SFM 3D point clouds.

    DOT National Transportation Integrated Search

    2015-10-01

    This report describes a short-term study undertaken to investigate the potential for using dense three-dimensional (3D) point : clouds generated from light detection and ranging (LIDAR) and photogrammetry to assess roadway roughness. Spatially : cont...

  9. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    NASA Astrophysics Data System (ADS)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  10. Exploiting Cloud Radar Doppler Spectra of Mixed-Phase Clouds during ACCEPT Field Experiment to Identify Microphysical Processes

    NASA Astrophysics Data System (ADS)

    Kalesse, H.; Myagkov, A.; Seifert, P.; Buehl, J.

    2015-12-01

    Cloud radar Doppler spectra offer much information about cloud processes. By analyzing millimeter radar Doppler spectra from cloud-top to -base in mixed-phase clouds in which super-cooled liquid-layers are present we try to tell the microphysical evolution story of particles that are present by disentangling the contributions of the solid and liquid particles to the total radar returns. Instead of considering vertical profiles, dynamical effects are taken into account by following the particle population evolution along slanted paths which are caused by horizontal advection of the cloud. The goal is to identify regions in which different microphysical processes such as new particle formation (nucleation), water vapor deposition, aggregation, riming, or sublimation occurr. Cloud radar measurements are supplemented by Doppler lidar and Raman lidar observations as well as observations with MWR, wind profiler, and radio sondes. The presence of super-cooled liquid layers is identified by positive liquid water paths in MWR measurements, the vertical location of liquid layers (in non-raining systems and below lidar extinction) is derived from regions of high-backscatter and low depolarization in Raman lidar observations. In collocated cloud radar measurements, we try to identify cloud phase in the cloud radar Doppler spectrum via location of the Doppler peak(s), the existence of multi-modalities or the spectral skewness. Additionally, within the super-cooled liquid layers, the radar-identified liquid droplets are used as air motion tracer to correct the radar Doppler spectrum for vertical air motion w. These radar-derived estimates of w are validated by independent estimates of w from collocated Doppler lidar measurements. A 35 GHz vertically pointing cloud Doppler radar (METEK MIRA-35) in linear depolarization (LDR) mode is used. Data is from the deployment of the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. There, another MIRA-35 was operated in simultaneous transmission and simultaneous reception (STSR) mode for obtaining measurements of differential reflectivity (ZDR) and correlation coefficient ρhv.

  11. Retrieving microphysics of cirrus clouds from data measured with raman lidar ramses and a tilted ceilometer

    NASA Astrophysics Data System (ADS)

    Borovoi, Anatoli; Reichardt, Jens; Görsdorf, Ulrich; Wolf, Veronika; Konoshonkin, Alexander; Shishko, Victor; Kustova, Natalia

    2018-04-01

    To develop a microphysical model of cirrus clouds, data obtained by Raman lidar RAMSES and a tilted ceilometer are studied synergistically. The measurements are interpreted by use of a data archive containing the backscattering matrixes as well as the depolarization, color and lidar ratios of ice crystals of different shapes, sizes and spatial orientations calculated within the physical-optics approximation.

  12. The occurrence of ice production in slightly supercooled Arctic stratiform clouds as observed by ground-based remote sensors at the ARM NSA site

    NASA Astrophysics Data System (ADS)

    Zhang, Damao; Wang, Zhien; Luo, Tao; Yin, Yan; Flynn, Connor

    2017-03-01

    Ice particle formation in slightly supercooled stratiform clouds is not well documented or understood. In this study, 4 years of combined lidar depolarization and radar reflectivity (Ze) measurements are analyzed to distinguish between cold drizzle and ice crystal formations in slightly supercooled Arctic stratiform clouds over the Atmospheric Radiation Measurement Program Climate Research Facility North Slope of Alaska Utqiaġvik ("Barrow") site. Ice particles are detected and statistically shown to be responsible for the strong precipitation in slightly supercooled Arctic stratiform clouds at cloud top temperatures as high as -4°C. For ice precipitating Arctic stratiform clouds, the lidar particulate linear depolarization ratio (δpar_lin) correlates well with radar Ze at each temperature range, but the δpar_lin-Ze relationship varies with temperature ranges. In addition, lidar depolarization and radar Ze observations of ice generation characteristics in Arctic stratiform clouds are consistent with laboratory-measured temperature-dependent ice growth habits.

  13. Height Distribution Between Cloud and Aerosol Layers from the GLAS Spaceborne Lidar in the Indian Ocean Region

    NASA Technical Reports Server (NTRS)

    Hart, William D.; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis L.

    2005-01-01

    The Geoscience Laser Altimeter System (GLAS), a nadir pointing lidar on the Ice Cloud and land Elevation Satellite (ICESat) launched in 2003, now provides important new global measurements of the relationship between the height distribution of cloud and aerosol layers. GLAS data have the capability to detect, locate, and distinguish between cloud and aerosol layers in the atmosphere up to 40 km altitude. The data product algorithm tests the product of the maximum attenuated backscatter coefficient b'(r) and the vertical gradient of b'(r) within a layer against a predetermined threshold. An initial case result for the critical Indian Ocean region is presented. From the results the relative height distribution between collocated aerosol and cloud shows extensive regions where cloud formation is well within dense aerosol scattering layers at the surface. Citation: Hart, W. D., J. D. Spinhime, S. P. Palm, and D. L. Hlavka (2005), Height distribution between cloud and aerosol layers from the GLAS spaceborne lidar in the Indian Ocean region,

  14. Simulating return signals of a spaceborne high-spectral resolution lidar channel at 532 nm

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Binglong, Chen; Min, Min; Xingying, Zhang; Lilin, Yao; Yiming, Zhao; Lidong, Wang; Fu, Wang; Xiaobo, Deng

    2018-06-01

    High spectral resolution lidar (HSRL) system employs a narrow spectral filter to separate the particulate (cloud/aerosol) and molecular scattering components in lidar return signals, which improves the quality of the retrieved cloud/aerosol optical properties. To better develop a future spaceborne HSRL system, a novel simulation technique was developed to simulate spaceborne HSRL return signals at 532 nm using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud/aerosol extinction coefficients product and numerical weather prediction data. For validating simulated data, a mathematical particulate extinction coefficient retrieval method for spaceborne HSRL return signals is described here. We compare particulate extinction coefficient profiles from the CALIPSO operational product with simulated spaceborne HSRL data. Further uncertainty analysis shows that relative uncertainties are acceptable for retrieving the optical properties of cloud and aerosol. The final results demonstrate that they agree well with each other. It indicates that the return signals of the spaceborne HSRL molecular channel at 532 nm will be suitable for developing operational algorithms supporting a future spaceborne HSRL system.

  15. The GEDI Performance Tool

    NASA Astrophysics Data System (ADS)

    Hancock, S.; Armston, J.; Tang, H.; Patterson, P. L.; Healey, S. P.; Marselis, S.; Duncanson, L.; Hofton, M. A.; Kellner, J. R.; Luthcke, S. B.; Sun, X.; Blair, J. B.; Dubayah, R.

    2017-12-01

    NASA's Global Ecosystem Dynamics Investigation will mount a multi-track, full-waveform lidar on the International Space Station (ISS) that is optimised for the measurement of forest canopy height and structure. GEDI will use ten laser tracks, two 10 mJ "power beams" and eight 5 mJ "coverage beams" to produce global (51.5oS to 51.5oN) maps of above ground biomass (AGB), canopy height, vegetation structure and other biophysical parameters. The mission has a requirement to generate a 1 km AGB map with 80% of pixels with ≤ 20% standard error or 20 Mg·ha-1, whichever is greater. To assess performance and compare to mission requirements, an end-to-end simulator has been developed. The simulator brings together tools to propagate the effects of measurement and sampling error on GEDI data products. The simulator allows us to evaluate the impact of instrument performance, ISS orbits, processing algorithms and losses of data that may occur due to clouds, snow, leaf-off conditions, and areas with an insufficient signal-to-noise ratio (SNR). By evaluating the consequences of operational decisions on GEDI data products, this tool provides a quantitative framework for decision-making and mission planning. Here we demonstrate the performance tool by using it to evaluate the trade-off between measurement and sampling error on the 1 km AGB data product. Results demonstrate that the use of coverage beams during the day (lowest GEDI SNR case) over very dense forests (>95% canopy cover) will result in some measurement bias. Omitting these low SNR cases increased the sampling error. Through this an SNR threshold for a given expected canopy cover can be set. The other applications of the performance tool are also discussed, such as assessing the impact of decisions made in the AGB modelling and signal processing stages on the accuracy of final data products.

  16. Investigating the differences of cirrus cloud properties in nucleation, growth and sublimation regions based on airborne water vapor lidar measurements

    NASA Astrophysics Data System (ADS)

    Urbanek, Benedikt; Groß, Silke; Wirth, Martin

    2017-04-01

    Cirrus clouds impose high uncertainties on weather and climate prediction, as knowledge on important processes is still incomplete. For instance it remains unclear how cloud optical, microphysical, and radiative properties change as the cirrus evolves. To gain better understanding of cirrus clouds, their optical and microphysical properties and their changes with cirrus cloud evolution the ML-CIRRUS campaign was conducted in March and April 2014. Measurements with a combined in-situ and remote sensing payload were performed with the German research aircraft HALO based in Oberpfaffenhofen. 16 research flights with altogether 88 flight hours were performed over the North-Atlantic, western and central Europe to probe different cirrus cloud regimes and cirrus clouds at different stages of evolution. One of the key remotes sensing instruments during ML-CIRRUS was the airborne differential absorption and high spectral lidar system WALES. It measures the 2-dimensional distribution of water vapor inside and outside of cirrus clouds as well as the optical properties of the clouds. Bases on these airborne lidar measurements a novel classification scheme to derive the stage of cirrus cloud evolution was developed. It identifies regions of ice nucleation, particle growth by deposition of water vapor, and ice sublimation. This method is used to investigate differences in the distribution and value of optical properties as well as in the distribution of water vapor and relative humidity depending on the stage of evolution of the cloud. We will present the lidar based classification scheme and its application on a wave driven cirrus cloud case, and we will show first results of the dependence of optical cloud properties and relative humidity distributions on the determined stage of evolution.

  17. DOE ASR Final Report on “Use of ARM Observations to Investigate the Role of Tropical Radiative Processes and Cloud Radiative Effects in Climate Simulations”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Qiang; Comstock, Jennifer

    The overall objective of this ASR funded project is to investigate the role of cloud radiative effects, especially those associated with tropical thin cirrus clouds in the tropical tropopause layer, by analyzing the ARM observations combined with numerical models. In particular, we have processed and analyzed the observations from the Raman lidar at the ARM SGP and TWP sites. In the tenure of the project (8/15/2013 – 8/14/2016 and with a no-cost extension to 8/14/2017), we have been concentrating on (i) developing an automated feature detection scheme of clouds and aerosols for the ARM Raman lidar; (ii) developing an automatedmore » retrieval of cloud and aerosol extinctions for the ARM Raman lidar; (iii) investigating cloud radiative effects based on the observations on the simulated temperatures in the tropical tropopause layer using a radiative-convective model; and (iv) examining the effect of changes of atmospheric composition on the tropical lower-stratospheric temperatures. In addition, we have examined the biases in the CALIPSO-inferred aerosol direct radiative effects using ground-based Raman lidars at the ARM SGP and TWP sites, and estimated the impact of lidar detection sensitivity on assessing global aerosol direct radiative effects. We have also investigated the diurnal cycle of clouds and precipitation at the ARM site using the cloud radar observations along with simulations from the multiscale modeling framework. The main results of our research efforts are reported in the six referred journal publications that acknowledge the DOE Grant DE-SC0010557.« less

  18. Use of Probability Distribution Functions for Discriminating Between Cloud and Aerosol in Lidar Backscatter Data

    NASA Technical Reports Server (NTRS)

    Liu, Zhaoyan; Vaughan, Mark A.; Winker, Davd M.; Hostetler, Chris A.; Poole, Lamont R.; Hlavka, Dennis; Hart, William; McGill, Mathew

    2004-01-01

    In this paper we describe the algorithm hat will be used during the upcoming Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission for discriminating between clouds and aerosols detected in two wavelength backscatter lidar profiles. We first analyze single-test and multiple-test classification approaches based on one-dimensional and multiple-dimensional probability density functions (PDFs) in the context of a two-class feature identification scheme. From these studies we derive an operational algorithm based on a set of 3-dimensional probability distribution functions characteristic of clouds and aerosols. A dataset acquired by the Cloud Physics Lidar (CPL) is used to test the algorithm. Comparisons are conducted between the CALIPSO algorithm results and the CPL data product. The results obtained show generally good agreement between the two methods. However, of a total of 228,264 layers analyzed, approximately 5.7% are classified as different types by the CALIPSO and CPL algorithm. This disparity is shown to be due largely to the misclassification of clouds as aerosols by the CPL algorithm. The use of 3-dimensional PDFs in the CALIPSO algorithm is found to significantly reduce this type of error. Dust presents a special case. Because the intrinsic scattering properties of dust layers can be very similar to those of clouds, additional algorithm testing was performed using an optically dense layer of Saharan dust measured during the Lidar In-space Technology Experiment (LITE). In general, the method is shown to distinguish reliably between dust layers and clouds. The relatively few erroneous classifications occurred most often in the LITE data, in those regions of the Saharan dust layer where the optical thickness was the highest.

  19. Liquid Water Cloud Measurements Using the Raman Lidar Technique: Current Understanding and Future Research Needs

    NASA Technical Reports Server (NTRS)

    Tetsu, Sakai; Whiteman, David N.; Russo, Felicita; Turner, David D.; Veselovskii, Igor; Melfi, S. Harvey; Nagai, Tomohiro; Mano, Yuzo

    2013-01-01

    This paper describes recent work in the Raman lidar liquid water cloud measurement technique. The range-resolved spectral measurements at the National Aeronautics and Space Administration Goddard Space Flight Center indicate that the Raman backscattering spectra measured in and below low clouds agree well with theoretical spectra for vapor and liquid water. The calibration coefficients of the liquid water measurement for the Raman lidar at the Atmospheric Radiation Measurement Program Southern Great Plains site of the U.S. Department of Energy were determined by comparison with the liquid water path (LWP) obtained with Atmospheric Emitted Radiance Interferometer (AERI) and the liquid water content (LWC) obtained with the millimeter wavelength cloud radar and water vapor radiometer (MMCR-WVR) together. These comparisons were used to estimate the Raman liquid water cross-sectional value. The results indicate a bias consistent with an effective liquid water Raman cross-sectional value that is 28%-46% lower than published, which may be explained by the fact that the difference in the detectors' sensitivity has not been accounted for. The LWP of a thin altostratus cloud showed good qualitative agreement between lidar retrievals and AERI. However, the overall ensemble of comparisons of LWP showed considerable scatter, possibly because of the different fields of view of the instruments, the 350-m distance between the instruments, and the horizontal inhomogeneity of the clouds. The LWC profiles for a thick stratus cloud showed agreement between lidar retrievals andMMCR-WVR between the cloud base and 150m above that where the optical depth was less than 3. Areas requiring further research in this technique are discussed.

  20. Atmospheric CO2 Concentration Measurements with Clouds from an Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Mao, J.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Numata, K.; Chen, J. R.; Sun, X.; DiGangi, J. P.; Choi, Y.

    2017-12-01

    Globally distributed atmospheric CO2 concentration measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space are limited to cloud-free scenes. NASA Goddard is developing a pulsed, integrated-path differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations, XCO2, from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate XCO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. We demonstrate this measurement capability using airborne lidar measurements from summer 2017 ASCENDS airborne science campaign in Alaska. We show retrievals of XCO2 to ground and to a variety of cloud tops. We will also demonstrate how the partial column XCO2 to cloud tops and cloud slicing approach help resolving vertical and horizontal gradient of CO2 in cloudy conditions. The XCO2 retrievals from the lidar are validated against in situ measurements and compared to the Goddard Parameterized Chemistry Transport Model (PCTM) simulations. Adding this measurement capability to the future lidar mission for XCO2 will provide full global and seasonal data coverage and some information about vertical structure of CO2. This unique facility is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation.

  1. Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, Thomas Allen; Walsh, Kaitlin M.; Markus, Thorsten

    2013-01-01

    The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05 degrees) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on approx. 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.

  2. Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, Thomas A.; Walsh, Kaitlin M.; Markus, Thorsten

    2014-01-01

    The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05?) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.

  3. Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm

    PubMed Central

    Yan, Li; Xie, Hong; Chen, Changjun

    2017-01-01

    Registration of point clouds is a fundamental issue in Light Detection and Ranging (LiDAR) remote sensing because point clouds scanned from multiple scan stations or by different platforms need to be transformed to a uniform coordinate reference frame. This paper proposes an efficient registration method based on genetic algorithm (GA) for automatic alignment of two terrestrial LiDAR scanning (TLS) point clouds (TLS-TLS point clouds) and alignment between TLS and mobile LiDAR scanning (MLS) point clouds (TLS-MLS point clouds). The scanning station position acquired by the TLS built-in GPS and the quasi-horizontal orientation of the LiDAR sensor in data acquisition are used as constraints to narrow the search space in GA. A new fitness function to evaluate the solutions for GA, named as Normalized Sum of Matching Scores, is proposed for accurate registration. Our method is divided into five steps: selection of matching points, initialization of population, transformation of matching points, calculation of fitness values, and genetic operation. The method is verified using a TLS-TLS data set and a TLS-MLS data set. The experimental results indicate that the RMSE of registration of TLS-TLS point clouds is 3~5 mm, and that of TLS-MLS point clouds is 2~4 cm. The registration integrating the existing well-known ICP with GA is further proposed to accelerate the optimization and its optimizing time decreases by about 50%. PMID:28850100

  4. Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm.

    PubMed

    Yan, Li; Tan, Junxiang; Liu, Hua; Xie, Hong; Chen, Changjun

    2017-08-29

    Registration of point clouds is a fundamental issue in Light Detection and Ranging (LiDAR) remote sensing because point clouds scanned from multiple scan stations or by different platforms need to be transformed to a uniform coordinate reference frame. This paper proposes an efficient registration method based on genetic algorithm (GA) for automatic alignment of two terrestrial LiDAR scanning (TLS) point clouds (TLS-TLS point clouds) and alignment between TLS and mobile LiDAR scanning (MLS) point clouds (TLS-MLS point clouds). The scanning station position acquired by the TLS built-in GPS and the quasi-horizontal orientation of the LiDAR sensor in data acquisition are used as constraints to narrow the search space in GA. A new fitness function to evaluate the solutions for GA, named as Normalized Sum of Matching Scores, is proposed for accurate registration. Our method is divided into five steps: selection of matching points, initialization of population, transformation of matching points, calculation of fitness values, and genetic operation. The method is verified using a TLS-TLS data set and a TLS-MLS data set. The experimental results indicate that the RMSE of registration of TLS-TLS point clouds is 3~5 mm, and that of TLS-MLS point clouds is 2~4 cm. The registration integrating the existing well-known ICP with GA is further proposed to accelerate the optimization and its optimizing time decreases by about 50%.

  5. Subtropical Cirrus Properties Derived from GSFC Scanning Raman Lidar Measurements during CAMEX 3

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Wang, Z.; Demoz, B.

    2004-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island, Bahamas for the third Convection and Moisture Experiment (CAMEX 3) held in August - September, 1998 and acquired an extensive set of water vapor and cirrus cloud measurements (Whiteman et al., 2001). The cirrus data studied here have been segmented by generating mechanism. Distinct differences in the optical properties of the clouds are found when the cirrus are hurricane-induced versus thunderstom-induced. Relationships of cirrus cloud optical depth, mean cloud temperature, and layer mean extinction-to-backscatter ratio (S) are presented and compared with mid-latitude and tropical results. Hurricane-induced cirrus clouds are found to generally possess lower values of S than thunderstorm induced clouds. Comparison of these measurements of S are made with other studies revealing at times large differences in the measurements. Given that S is a required parameter for spacebased retrievals of cloud optical depth using backscatter lidar, these large diffaences in S measurements present difficulties for space-based retrievals of cirrus cloud extinction and optical depth.

  6. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-01

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  7. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-01

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  8. Statistics of optical and geometrical properties of cirrus cloud over tibetan plateau measured by lidar and radiosonde

    NASA Astrophysics Data System (ADS)

    Dai, Guangyao; Wu, Songhua; Song, Xiaoquan; Zhai, Xiaochun

    2018-04-01

    Cirrus clouds affect the energy budget and hydrological cycle of the earth's atmosphere. The Tibetan Plateau (TP) plays a significant role in the global and regional climate. Optical and geometrical properties of cirrus clouds in the TP were measured in July-August 2014 by lidar and radiosonde. The statistics and temperature dependences of the corresponding properties are analyzed. The cirrus cloud formations are discussed with respect to temperature deviation and dynamic processes.

  9. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    NASA Astrophysics Data System (ADS)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-02-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.

  10. Designing and Testing a UAV Mapping System for Agricultural Field Surveying

    PubMed Central

    Skovsen, Søren

    2017-01-01

    A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35–0.58 m are correlated to the applied nitrogen treatments of 0–300 kgNha. The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations. PMID:29168783

  11. Designing and Testing a UAV Mapping System for Agricultural Field Surveying.

    PubMed

    Christiansen, Martin Peter; Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Skovsen, Søren; Gislum, René

    2017-11-23

    A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35-0.58 m are correlated to the applied nitrogen treatments of 0-300 kg N ha . The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.

  12. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  13. Applied Geospatial Education: Acquisition and Processing of High Resolution Airborne LIDAR and Orthoimages for the Great Smoky Mountains National Park, Southeastern United States

    NASA Astrophysics Data System (ADS)

    Jordan, T. R.; Madden, M.; Sharma, J. B.; Panda, S. S.

    2012-07-01

    In an innovative collaboration between government, university and private industry, researchers at the University of Georgia and Gainesville State College are collaborating with Photo Science, Inc. to acquire, process and quality control check lidar and or-thoimages of forest areas in the Southern Appalachian Mountains of the United States. Funded by the U.S. Geological Survey, this project meets the objectives of the ARRA initiative by creating jobs, preserving jobs and training students for high skill positions in geospatial technology. Leaf-off lidar data were acquired at 1-m resolution of the Tennessee portion of the Great Smoky Mountain National Park (GRSM) and adjacent Foothills Parkway. This 1400-sq. km. area is of high priority for national/global interests due to biodiversity, rare and endangered species and protection of some of the last remaining virgin forest in the U.S. High spatial resolution (30 cm) leaf-off 4-band multispectral orthoimages also were acquired for both the Chattahoochee National Forest in north Georgia and the entire GRSM. The data are intended to augment the National Elevation Dataset and orthoimage database of The National Map with information that can be used by many researchers in applications of LiDAR point clouds, high resolution DEMs and or-thoimage mosaics. Graduate and undergraduate students were involved at every stage of the workflow in order to provide then with high level technical educational and professional experience in preparation for entering the geospatial workforce. This paper will present geospatial workflow strategies, multi-team coordination, distance-learning training and industry-academia partnership.

  14. Visible/Infrared Optical Depths of Cirrus as Seen by Satellite and Scanning Lidar

    NASA Technical Reports Server (NTRS)

    Wylie, Donald; Wolf, Walt; Piironen, Paivi; Eloranta, Edwin

    1996-01-01

    The High Spectral Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL) were combined to produce a quantitative image of the visible optical depth of cirrus clouds. The HSRL was used to calibrate the VIL signal into backscatter cross sections of particulates. The backscatter cross sections were related to extinction by a constant backscatter phase function determined from the HSRL data. This produced a three dimensional image of visual extinction in the cirrus clouds over a one hour period. Two lidar images were constructed from one hour VIL cross section records.

  15. Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS

    NASA Astrophysics Data System (ADS)

    Alfaro, Ricardo

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS shortwave infrared COD products.

  16. The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiao-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.

    1999-01-01

    Accurate measurements of surface heights and atmospheric backscatter have been demonstrated with the SLA, MOLA and LITE space lidar. Recent MOLA measurements of the Mars surface have 40 cm resolution and have reduced the global uncertainty in Mars topography from a few km to approx. 10 m. GLAS is a next generation lidar being developed as part of NASA's Icesat Mission for Earth orbit . The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, determine the height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS will fly on a small dedicated spacecraft in a polar orbit at 598 km altitude with an inclination of 94 degrees. GLAS is scheduled to launch in summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will measure the vertical distance to the ice sheet from orbit with 1064 nm pulses from a Nd:Yag laser at 40 Hz. Each 5 nsec wide laser pulse is used for a single range measurement. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a I m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser, Errors in knowledge of the laser beam pointing angle can bias height measurements of sloped surfaces. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam centroid to about 8 urad is required to achieve 10 cm height accuracy. GLAS uses a stellar reference system (SRS) to determine the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith whose measurements are combined with a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser pulse is measured with a laser reference system (LRS). Optically measuring each laser far field pattern relative to the star camera and gyroscope permits the angular offsets of each laser pulse to be determined. GLAS will also determine the vertical distributions of clouds and aerosols by measuring atmospheric backscatter profiles at both 1064 and 532 nm. The 1064 nm measurements use an analog detector and profile the height and vertical structure of thicker clouds. Measurements at 532 nm use new highly sensitive photon counting detectors, and measure the height distributions of very thin clouds and aerosol layers. With averaging these can be used to determine the height of the planetary boundary layer. The instrument design and expected performance will be discussed.

  17. Cloud Physics Lidar Measurements During the SAFARI-2000 Field Campaign

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Hlavka, Dennis; Hart, William; Spinhirne, James; Scott, Stan; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new remote sensing instrument, the Cloud Physics Lidar (CPL) has been built for use on the ER-2 aircraft. The first deployment for CPL was the SAFARI-2000 field campaign during August-September 2000. The CPL is a three-wavelength lidar designed for studies of cirrus, subvisual cirrus, and boundary layer aerosols. The CPL utilizes a high repetition rate, low pulse energy laser with photon counting detectors. A brief description of the CPL instrument will be given, followed by examples of CPL data products. In particular, examples of aerosol backscatter, including boundary layer smoke and cirrus clouds will be shown. Resulting optical depth estimates derived from the aerosol measurements will be shown. Comparisons of the CPL optical depth and optical depth derived from microPulse Lidar and the AATS-14 sunphotomer will be shown.

  18. Arctic polar stratospheric cloud measurements by means of a four wavelength depolarization lidar

    NASA Technical Reports Server (NTRS)

    Stefanutti, L.; Castagnoli, F.; Delguasta, M.; Flesia, C.; Godin, S.; Kolenda, J.; Kneipp, H.; Kyro, Esko; Matthey, R.; Morandi, M.

    1994-01-01

    A four wavelength depolarization backscattering lidar has been operated during the European Arctic Stratospheric Ozone Experiment (EASOE) in Sodankyl, in the Finnish Arctic. The lidar performed measurements during the months of December 1991, January, February and March 1992. The Finnish Meteorological Institute during the same period launched regularly three Radiosondes per day, and three Ozone sondes per week. Both Mt. Pinatubo aerosols and Polar Stratospheric Clouds were measured. The use of four wavelengths, respectively at 355 nm, 532 nm , 750 nm, and 850 nm permits an inversion of the lidar data to determine aerosol particle size. The depolarization technique permits the identification of Polar Stratospheric Clouds. Frequent correlation between Ozone minima and peaks in the Mt. Pinatubo aerosol maxima were detected. Measurements were carried out both within and outside the Polar Vortex.

  19. Technique to separate lidar signal and sunlight.

    PubMed

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.

  20. Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protat, Alain; Young, Stuart; McFarlane, Sally A.

    2014-02-01

    The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar withmore » Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.« less

  1. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cloud Optical Properties Determined by High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Grund, C. J.; Eloranta, E. W.

    1996-01-01

    During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension ratios of 1:5-1:1.

  2. Comparison of Lidar Backscatter with Particle Distribution and GOES-7 Data in Hurricane Juliette

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; McCaul, Eugene W., Jr.; Jedlovec, Gary J.; Atkinson, Robert J.; Pueschel, Rudolf F.; Cutten, Dean R.

    1997-01-01

    Measurements of calibrated backscatter, using two continuous wave Doppler lidars operating at wavelengths 9.1 and 10.6 micrometers were obtained along with cloud particle size distributions in Hurricane Juliette on 21 September 1995 at altitude approximately 11.7 km. Agreement between backscatter from the two lidars and with the cloud particle size distribution is excellent. Features in backscatter and particle number density compare well with concurrent GOES-7 infrared images.

  3. Adaptation of the University of Wisconsin High Spectral Resolution Lidar for Polarization and Multiple Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P. K.

    1992-01-01

    A new implementation of the High Spectral Resolution Lidar (HSRL) in an instrument van which allows measurements during field experiments is described. The instrument was modified to provide measurements of depolarization. In addition, both the signal amplitude and depolarization variations with receiver field of view are simultaneously measured. These modifications allow discrimination of ice clouds from water clouds and observation of multiple scattering contributions to the lidar return.

  4. A comparison of lidar inversion methods for cirrus applications

    NASA Technical Reports Server (NTRS)

    Elouragini, Salem; Flamant, Pierre H.

    1992-01-01

    Several methods for inverting the lidar equation are suggested as means to derive the cirrus optical properties (beta backscatter, alpha extinction coefficients, and delta optical depth) at one wavelength. The lidar equation can be inverted in a linear or logarithmic form; either solution assumes a linear relationship: beta = kappa(alpha), where kappa is the lidar ratio. A number of problems prevent us from calculating alpha (or beta) with a good accuracy. Some of these are as follows: (1) the multiple scattering effect (most authors neglect it); (2) an absolute calibration of the lidar system (difficult and sometimes not possible); (3) lack of accuracy on the lidar ratio k (taken as constant, but in fact it varies with range and cloud species); and (4) the determination of boundary condition for logarithmic solution which depends on signal to noise ration (SNR) at cloud top. An inversion in a linear form needs an absolute calibration of the system. In practice one uses molecular backscattering below the cloud to calibrate the system. This method is not permanent because the lower atmosphere turbidity is variable. For a logarithmic solution, a reference extinction coefficient (alpha(sub f)) at cloud top is required. Several methods to determine alpha(sub f) were suggested. We tested these methods at low SNR. This led us to propose two new methods referenced as S1 and S2.

  5. A New Cloud and Aerosol Layer Detection Method Based on Micropulse Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhao, C.; Wang, Y.; Li, Z.; Wang, Z.; Liu, D.

    2014-12-01

    A new algorithm is developed to detect aerosols and clouds based on micropulse lidar (MPL) measurements. In this method, a semi-discretization processing (SDP) technique is first used to inhibit the impact of increasing noise with distance, then a value distribution equalization (VDE) method is introduced to reduce the magnitude of signal variations with distance. Combined with empirical threshold values, clouds and aerosols are detected and separated. This method can detect clouds and aerosols with high accuracy, although classification of aerosols and clouds is sensitive to the thresholds selected. Compared with the existing Atmospheric Radiation Measurement (ARM) program lidar-based cloud product, the new method detects more high clouds. The algorithm was applied to a year of observations at both the U.S. Southern Great Plains (SGP) and China Taihu site. At SGP, the cloud frequency shows a clear seasonal variation with maximum values in winter and spring, and shows bi-modal vertical distributions with maximum frequency at around 3-6 km and 8-12 km. The annual averaged cloud frequency is about 50%. By contrast, the cloud frequency at Taihu shows no clear seasonal variation and the maximum frequency is at around 1 km. The annual averaged cloud frequency is about 15% higher than that at SGP.

  6. CALIPSO Overview and Early Results

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.

    2008-05-01

    The CALIPSO spacecraft was co-manifested with the CloudSat spacecraft and launched by a Boeing Delta~II rocket from Vandenberg Air Force Base, California on April~28,~2006. CALIPSO is the acronym for Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations. CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) is a three-channel lidar on board that uses a Nd:YAG laser emitting pulses at 1064 and 532~nm. The receiver uses a 1-meter diameter telescope and photomultipliers in the two 532~nm channels; one for parallel-polarized backscatter, and the other for perpendicular-polarized backscatter. The 1064~nm channel uses an APD for measuring the total backscatter at this wavelength. CALIPSO is in a near-circular sunsynchronous polar 705-km orbit with a 1:30~PM ascending node, and is flying in formation with CloudSat, Aura, Aqua and PARASOL. CALIPSO and CloudSat are flying 15~seconds apart in the formation. This talk will present an overview of the CALIPSO mission and details of CALIOP and the rest of the payload. It will show typical results from measurements of clouds, details on cirrus cloud statistics for the first year of data, a characterization of Polar Stratospheric Clouds over the Artic and Antarctic during local winters and early springs, and some general atmospheric events like hurricanes and aerosols from minor volcanic eruptions, desert dust events, and smoke from fires and their transport. The presentation will end with a look toward the future of spaceborne lidars.

  7. Processing Uav and LIDAR Point Clouds in Grass GIS

    NASA Astrophysics Data System (ADS)

    Petras, V.; Petrasova, A.; Jeziorska, J.; Mitasova, H.

    2016-06-01

    Today's methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV) imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM), and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM). Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL), Point Cloud Library (PCL), and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.

  8. Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument

    NASA Technical Reports Server (NTRS)

    Moore, Alvah S., Jr.; Brown, Kevin E.; Hall, William M.; Barnes, James C.; Edwards, William C.; Petway, Larry B.; Little, Alan D.; Luck, William S., Jr.; Jones, Irby W.; Antill, Charles W., Jr.

    1997-01-01

    The Lidar Atmospheric Sensing Experiment (LASE) Instrument is the first fully-engineered, autonomous Differential Absorption Lidar (DIAL) System for the measurement of water vapor in the troposphere (aerosol and cloud measurements are included). LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150 mJ/pulse. The laser beam is "seeded" to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while onboard a NASA/Ames ER-2 aircraft flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere to better than 10% accuracy. LASE has flown 19 times during the development of the instrument and the validation of the science data. This paper describes the design, operation, and reliability of the LASE Instrument.

  9. Continental Shallow Convection Cloud-Base Mass Flux from Doppler Lidar and LASSO Ensemble Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Vogelmann, A. M.; Zhang, D.; Kollias, P.; Endo, S.; Lamer, K.; Gustafson, W. I., Jr.; Romps, D. M.

    2017-12-01

    Continental boundary layer clouds are important to simulations of weather and climate because of their impact on surface budgets and vertical transports of energy and moisture; however, model-parameterized boundary layer clouds do not agree well with observations in part because small-scale turbulence and convection are not properly represented. To advance parameterization development and evaluation, observational constraints are needed on critical parameters such as cloud-base mass flux and its relationship to cloud cover and the sub-cloud boundary layer structure including vertical velocity variance and skewness. In this study, these constraints are derived from Doppler lidar observations and ensemble large-eddy simulations (LES) from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Facility Southern Great Plains (SGP) site in Oklahoma. The Doppler lidar analysis will extend the single-site, long-term analysis of Lamer and Kollias [2015] and augment this information with the short-term but unique 1-2 year period since five Doppler lidars began operation at the SGP, providing critical information on regional variability. These observations will be compared to the statistics obtained from ensemble, routine LES conducted by the LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso). An Observation System Simulation Experiment (OSSE) will be presented that uses the LASSO LES fields to determine criteria for which relationships from Doppler lidar observations are adequately sampled to yield convergence. Any systematic differences between the observed and simulated relationships will be examined to understand factors contributing to the differences. Lamer, K., and P. Kollias (2015), Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover, Geophys. Res. Lett., 42, 8693-8701, doi:10.1002/2015GL064534

  10. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE PAGES

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; ...

    2016-05-03

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  11. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  12. Gravity Waves and Mesospheric Clouds in the Summer Middle Atmosphere: A Comparison of Lidar Measurements and Ray Modeling of Gravity Waves Over Sondrestrom, Greenland

    NASA Technical Reports Server (NTRS)

    Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.

    2004-01-01

    We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.

  13. CALIPSO Observations of Transatlantic Dust: Vertical Stratification and Effect of Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Kalashnikova, Olga V.; Kostinski, Alexander B.

    2012-01-01

    CALIOP nighttime measurements of lidar backscatter, color and depolarization ratios during the summer of 2007 are used to study transatlantic dust properties downwind of Saharan sources, and to examine the interaction of clouds and dust. We discuss the following findings: (1) while lidar backscatter doesn't change much with altitude in the Saharan Air Layer (SAL), depolarization and color ratios both increase with altitude in the SAL; (2) lidar backscatter and color ratio increase as dust is transported westward in the SAL; (3) the vertical lapse rate of dust depolarization ratio increases within SAL as plumes move westward; (4) nearby clouds barely affect the backscatter and color ratio of dust volumes within SAL but not so below SAL. Finally, (5) the odds of CALIOP finding dust below SAL next to clouds are about 2/3 of those far away from clouds. This feature, together with an apparent increase in depolarization ratio near clouds, indicates that particles in some dusty volumes lose asphericity in the humid air near clouds, and cannot be identified by CALIPSO as dust.

  14. The Algorithm Theoretical Basis Document for the GLAS Atmospheric Data Products

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Hart, William D.; Hlavka, Dennis L.; Welton, Ellsworth J.; Spinhirne, James D.

    2012-01-01

    The purpose of this document is to present a detailed description of the algorithm theoretical basis for each of the GLAS data products. This will be the final version of this document. The algorithms were initially designed and written based on the authors prior experience with high altitude lidar data on systems such as the Cloud and Aerosol Lidar System (CALS) and the Cloud Physics Lidar (CPL), both of which fly on the NASA ER-2 high altitude aircraft. These lidar systems have been employed in many field experiments around the world and algorithms have been developed to analyze these data for a number of atmospheric parameters. CALS data have been analyzed for cloud top height, thin cloud optical depth, cirrus cloud emittance (Spinhirne and Hart, 1990) and boundary layer depth (Palm and Spinhirne, 1987, 1998). The successor to CALS, the CPL, has also been extensively deployed in field missions since 2000 including the validation of GLAS and CALIPSO. The CALS and early CPL data sets also served as the basis for the construction of simulated GLAS data sets which were then used to develop and test the GLAS analysis algorithms.

  15. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  16. System optimization of a field-widened Michelson interferometric spectral filter for high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Miller, Ian; Hostetler, Chris; Cook, Anthony; Hair, Johnathan

    2011-06-01

    High spectral resolution lidars (HSRLs) have recently shown great value in aerosol measurements form aircraft and are being called for in future space-based aerosol remote sensing applications. A quasi-monolithic field-widened, off-axis Michelson interferometer had been developed as the spectral discrimination filter for an HSRL currently under development at NASA Langley Research Center (LaRC). The Michelson filter consists of a cubic beam splitter, a solid arm and an air arm. The input light is injected at 1.5° off-axis to provide two output channels: standard Michelson output and the reflected complementary signal. Piezo packs connect the air arm mirror to the main part of the filter that allows it to be tuned within a small range. In this paper, analyses of the throughput wavephase, locking error, AR coating, and tilt angle of the interferometer are described. The transmission ratio for monochromatic light at the transmitted wavelength is used as a figure of merit for assessing each of these parameters.

  17. Phototransistors Development and their Applications to Lidar

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, Tamer F.; Ismail, Syed; Singh, Upendra N.

    2007-01-01

    Custom-designed two-micron phototransistors have been developed using Liquid Phase Epitaxy (LPE), Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) techniques under Laser Risk Reduction Program (LRRP). The devices were characterized in the Detector Characterization Laboratory at NASA Langley Research Center. It appears that the performance of LPE- and MBE-grown phototransistors such as responsivity, noise-equivalent-power, and gain, are better than MOCVD-grown devices. Lidar tests have been conducted using LPE and MBE devices under the 2-micrometer CO2 Differential Absorption Lidar (DIAL) Instrument Incubator Program (IIP) at the National Center for Atmospheric Research (NCAR), Boulder, Colorado. The main focus of these tests was to examine the phototransistors performances as compared to commercial InGaAs avalanche photodiode by integrating them into the Raman-shifted Eye-safe Aerosol Lidar (REAL) operating at 1.543 micrometers. A simultaneous measurement of the atmospheric backscatter signals using the LPE phototransistors and the commercial APD demonstrated good agreement between these two devices. On the other hand, simultaneous detection of lidar backscatter signals using MBE-grown phototransistor and InGaAs APD, showed a general agreement between these two devices with a lower performance than LPE devices. These custom-built phototransistors were optimized for detection around 2-micrometer wavelength while the lidar tests were performed at 1.543 micrometers. Phototransistor operation at 2-micron will improve the performance of a lidar system operating at that wavelength. Measurements include detecting hard targets (Rocky Mountains), atmospheric structure consisting of cirrus clouds and boundary layer. These phototransistors may have potential for high sensitivity differential absorption lidar measurements of carbon dioxide and water vapor at 2.05-micrometers and 1.9-micrometers, respectively.

  18. Lidar cirrus cloud retrieval - methodology and applications

    NASA Astrophysics Data System (ADS)

    Larroza, Eliane; Keckhut, Philippe; Nakaema, Walter; Brogniez, Gérard; Dubuisson, Philippe; Pelon, Jacques; Duflot, Valentin; Marquestaut, Nicolas; Payen, Guillaume

    2016-04-01

    In the last decades numerical modeling has experimented sensitive improvements on accuracy and capability for climate predictions. In the same time it has demanded the reduction of uncertainties related with the respective input parameters. In this context, high altitude clouds (cirrus) have attracted special attention for their role as radiative forcing. Also such clouds are associated with the vertical transport of water vapor from the surface to upper troposphere/lower stratosphere (URLS) in form of ice crystals with variability of concentration and morphology. Still cirrus formation can occur spatially and temporally in great part of the globe due to horizontal motion of air masses and circulations. Determining accurately the physical properties of cirrus clouds still represents a challenge. Especially the so-called subvisible cirrus clouds (optical depth inferior to 0.03) are invisible for space-based passive observations. On the other hand, ground based active remote sensing as lidar can be used to suppress such deficiency. Lidar signal can provide spatial and temporal high resolution to characterize physically (height, geometric thickness, mean temperature) and optically (optical depth, extinction-to-scattering ratio or lidar ratio, depolarization ratio) the cirrus clouds. This report describes the evolution of the methodology initially adopted to retrieval systematically the lidar ratio and the subsequent application on case studies and climatology on the tropical sites of the globe - São Paulo, Brazil (23.33 S, 46.44 W) and OPAR observatory at Ille de La Réunion (21.07 S, 55.38 W). Also is attempting a synergy between different instrumentations and lidar measurements: a infrared radiometer to estimate the kind of ice crystals compounding the clouds; CALIPSO satellite observations and trajectory model (HYSPLIT) for tracking air masses potentially responsible for the horizontal displacement of cirrus. This last approach is particularly interesting to understand the history of the cirrus clouds - time of residence in different altitudes, ageing process and possible phase changes. Finally the radiative transfer code FASDOM fed by ancillary meteorological and surface data is used to simulate brightness temperatures as measured by the infrared radiometer locate at the ground level in the OPAR laboratory.

  19. Quantifying Above-Cloud Aerosols through Integrating Multi-Sensor Measurements from A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Zhang, Yan

    2012-01-01

    Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.

  20. Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems

    NASA Technical Reports Server (NTRS)

    Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip

    2010-01-01

    Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for the Phase II effort, will require full integration and optimization of the waveguide components (SHG waveguide, splitters, and phase modulator) onto a single, monolithic device. The PLC will greatly reduce the size and weight, improve electrical- to-optical efficiency, and significantly reduce the cost of NASA Langley s current stabilized HSRL seed laser system built around a commercial off-the-shelf seed laser that is free-space coupled to a bulk doubler and bulk phase modulator.

  1. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  2. Comparison of 3D point clouds produced by LIDAR and UAV photoscan in the Rochefort cave (Belgium)

    NASA Astrophysics Data System (ADS)

    Watlet, Arnaud; Triantafyllou, Antoine; Kaufmann, Olivier; Le Mouelic, Stéphane

    2016-04-01

    Amongst today's techniques that are able to produce 3D point clouds, LIDAR and UAV (Unmanned Aerial Vehicle) photogrammetry are probably the most commonly used. Both methods have their own advantages and limitations. LIDAR scans create high resolution and high precision 3D point clouds, but such methods are generally costly, especially for sporadic surveys. Compared to LIDAR, UAV (e.g. drones) are cheap and flexible to use in different kind of environments. Moreover, the photogrammetric processing workflow of digital images taken with UAV becomes easier with the rise of many affordable software packages (e.g. Agisoft, PhotoModeler3D, VisualSFM). We present here a challenging study made at the Rochefort Cave Laboratory (South Belgium) comprising surface and underground surveys. The site is located in the Belgian Variscan fold-and-thrust belt, a region that shows many karstic networks within Devonian limestone units. A LIDAR scan has been acquired in the main chamber of the cave (~ 15000 m³) to spatialize 3D point cloud of its inner walls and infer geological beds and structures. Even if the use of LIDAR instrument was not really comfortable in such caving environment, the collected data showed a remarkable precision according to few control points geometry. We also decided to perform another challenging survey of the same cave chamber by modelling a 3D point cloud using photogrammetry of a set of DSLR camera pictures taken from the ground and UAV pictures. The aim was to compare both techniques in terms of (i) implementation of data acquisition and processing, (ii) quality of resulting 3D points clouds (points density, field vs cloud recovery and points precision), (iii) their application for geological purposes. Through Rochefort case study, main conclusions are that LIDAR technique provides higher density point clouds with slightly higher precision than photogrammetry method. However, 3D data modeled by photogrammetry provide visible light spectral information for each modeled voxel and interpolated vertices that can be a useful attributes for clustering during data treatment. We thus illustrate such applications to the Rochefort cave by using both sources of 3D information to quantify the orientation of inaccessible geological structures (e.g. faults, tectonic and gravitational joints, and sediments bedding), cluster these structures using color information gathered from UAV's 3D point cloud and compare these data to structural data surveyed on the field. An additional drone photoscan was also conducted in the surface sinkhole giving access to the surveyed underground cavity to seek geological bodies' connections.

  3. Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions.

    PubMed

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available.

  4. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    PubMed Central

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  5. Physical Characteristics of Arctic Clouds from Ground-based Remote-sensing with a Polarized Micro-Pulse Lidar and a 95-GHz Cloud Radar in Ny-Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Shiobara, M.; Takano, T.; Okamoto, H.; Yabuki, M.

    2015-12-01

    Clouds and aerosols are key elements having a potential to change climate by their radiative effects on the energy balance in the global climate system. In the Arctic, we have been continuing ground-based remote-sensing measurements for clouds and aerosols using a sky-radiometer, a micro-pulse lidar (MPL) and an all-sky camera in Ny-Ålesund (78.9N, 11.9E), Svalbard since early 2000's. In addition to such regular operations, several new measurements have been performed with a polarization MPL since August 2013, a 95GHz Doppler cloud radar since September 2013, and a dual frequency microwave radiometer since June 2014. An intensive field experiment for cloud-aerosol-radiation interaction study named A-CARE (PI: J. Ukita) was conducted for water clouds in the period of 23 June - 13 July 2014 and for mixed phase clouds in the period of 30 March - 23 April 2015 in Ny-Alesund. The experiment consisted of ground-based remote-sensing and in-situ cloud microphysics measurements. In this paper, preliminary results from these remote-sensing measurements will be presented, particularly in regard to physical characteristics of Arctic clouds based on radar-lidar collocated observation in Ny-Ålesund.

  6. CALIPSO: Global Aerosol and Cloud Observations from Lidar and Passive Instruments

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Winker, D. M.; Pelon, J. R.; McCormick, M. P.

    2002-01-01

    CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Spaceborne Observations) is an approved satellite mission being developed through collaboration between NASA and the French space agency CNES. The mission is scheduled for launch in 2004 and will operate for 3 years as part of a five-satellite formation called the Aqua constellation. This constellation will provide a unique data set on aerosol and cloud optical and physical properties and aerosol-cloud interactions that will substantially increase our understanding of the climate system and the potential for climate change.

  7. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  8. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    NASA Astrophysics Data System (ADS)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  9. Daytime Cirrus Cloud Top-of-Atmosphere Radiative Forcing Properties at a Midlatitude Site and their Global Consequence

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Lolli, Simone; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2016-01-01

    One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.070.67 W m(exp -2) in sample-relative terms, which reduces to 0.030.27 W m(exp -2) in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud under sampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth of less than or equal to 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets.

  10. Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS)

    NASA Technical Reports Server (NTRS)

    Guerra, David V.; Schwemmer, Geary K.; Wooten, Albert D., Jr.; Chaudhuri, Sandipan S.; Wilkerson, Thomas D.

    1995-01-01

    A ground-based atmospheric lidar system that utilizes a Holographic Optical Telescope and Scanner has been developed and successfully operated to obtain atmospheric backscatter profiles. The Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing is built around a volume phase reflection Holographic Optical Element. This single optical element both directs and collimates the outgoing laser beam as well as collects, focuses, and filters the atmospheric laser backscatter, while offering significant weight savings over existing telescope mirror technology. Conical scanning is accomplished as the HOE rotates on a turntable sweeping the 1.2 mrad field of view around a 42deg cone. During this technology demonstration, atmospheric aerosol and cloud return signals have been received in both stationary and scanning modes. The success of this program has led to the further development of this technology for integration into airborne and eventually satellite earth observing scanning lidar telescopes.

  11. Long Term Stratospheric Aerosol Lidar Measurements in Kyushu

    NASA Technical Reports Server (NTRS)

    Fujiwara, Motowo

    1992-01-01

    Lidar soundings of the stratospheric aerosols have been made since 1972 at Fukuoka, Kyushu Island of Japan. Volcanic clouds from eruptions of La Soufriere, Sierra Negra, St. Helens, Uluwan, Alaid, unknown volcano, and El Chichon were detected one after another in only three years from 1979 to 1982. In july 1991 strong scattering layers which were originated from the serious eruptions of Pinatubo in June and were almost comparable to the El Chichon clouds were detected. Volcanic clouds from pinatubo and other volcanos mentioned are examined and carefully compared to each other and to the wind and temperature which was measured by Fukuoka Meteorological Observatory almost at the same time as the lidar observation was made.

  12. Using Space Lidar Observations to Decompose Longwave Cloud Radiative Effect Variations Over the Last Decade

    NASA Astrophysics Data System (ADS)

    Vaillant de Guélis, Thibault; Chepfer, Hélène; Noel, Vincent; Guzman, Rodrigo; Winker, David M.; Plougonven, Riwal

    2017-12-01

    Measurements of the longwave cloud radiative effect (LWCRE) at the top of the atmosphere assess the contribution of clouds to the Earth warming but do not quantify the cloud property variations that are responsible for the LWCRE variations. The CALIPSO space lidar observes directly the detailed profile of cloud, cloud opacity, and cloud cover. Here we use these observations to quantify the influence of cloud properties on the variations of the LWCRE observed between 2008 and 2015 in the tropics and at global scale. At global scale, the method proposed here gives good results except over the Southern Ocean. We find that the global LWCRE variations observed over ocean are mostly due to variations in the opaque cloud properties (82%); transparent cloud columns contributed 18%. Variation of opaque cloud cover is the first contributor to the LWCRE evolution (58%); opaque cloud temperature is the second contributor (28%).

  13. Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols.

    PubMed

    Hayman, Matthew; Spuler, Scott

    2017-11-27

    We present a demonstration of a diode-laser-based high spectral resolution lidar. It is capable of performing calibrated retrievals of aerosol and cloud optical properties at a 150 m range resolution with less than 1 minute integration time over an approximate range of 12 km during day and night. This instrument operates at 780 nm, a wavelength that is well established for reliable semiconductor lasers and detectors, and was chosen because it corresponds to the D2 rubidium absorption line. A heated vapor reference cell of isotopic rubidium 87 is used as an effective and reliable aerosol signal blocking filter in the instrument. In principle, the diode-laser-based high spectral resolution lidar can be made cost competitive with elastic backscatter lidar systems, yet delivers a significant improvement in data quality through direct retrieval of quantitative optical properties of clouds and aerosols.

  14. Validating LiDAR Derived Estimates of Canopy Height, Structure and Fractional Cover in Riparian Areas: A Comparison of Leaf-on and Leaf-off LiDAR Data

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.; Chasmer, L. E.; Taylor, A.; Day, R.

    2010-12-01

    Characterization of riparian buffers is integral to understanding the landscape scale impacts of disturbance on wildlife and aquatic ecosystems. Riparian buffers may be characterized using in situ plot sampling or via high resolution remote sensing. Field measurements are time-consuming and may not cover a broad range of ecosystem types. Further, spectral remote sensing methods introduce a compromise between spatial resolution (grain) and area extent. Airborne LiDAR can be used to continuously map and characterize riparian vegetation structure and composition due to the three-dimensional reflectance of laser pulses within and below the canopy, understory and at the ground surface. The distance between reflections (or ‘returns’) allows for detection of narrow buffer corridors at the landscape scale. There is a need to compare leaf-off and leaf-on surveyed LiDAR data with in situ measurements to assess accuracy in landscape scale analysis. These comparisons are particularly important considering increased availability of leaf-off surveyed LiDAR datasets. And given this increased availability, differences between leaf-on and leaf-off derived LiDAR metrics are largely unknown for riparian vegetation of varying composition and structure. This study compares the effectiveness of leaf-on and leaf-off LiDAR in characterizing riparian buffers of varying structure and composition as compared to field measurements. Field measurements were used to validate LiDAR derived metrics. Vegetation height, canopy cover, density and overstory and understory species composition were recorded in 80 random plots of varying vegetation type, density and structure within a Pennsylvania watershed (-77.841, 40.818). Plot data were compared with LiDAR data collected during leaf on and leaf off conditions to determine 1) accuracy of LiDAR derived metrics compared to field measures and 2) differences between leaf-on and leaf-off LiDAR metrics. Results illustrate that differences exist between metrics derived from leaf on and leaf-off surveyed LiDAR. There is greater variability between the two datasets within taller deciduous and mixed (conifer and deciduous) vegetation compared to shorter deciduous and mixed vegetation. Differences decrease as stand density increases for both mixed and deciduous forests. LiDAR derived canopy height is more sensitive to understory vegetation as stand density decreases making measurement of understory vegetation in the field important in the validation process. Finally, while leaf-on LiDAR is often preferred for vegetation analysis, results suggest that leaf-off LiDAR may be sufficient to categorize vegetation into height classes to be used for landscape scale habitat models.

  15. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  16. A new cloud and aerosol layer detection method based on micropulse lidar measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Wang, Yuzhao; Wang, Qianqian; Li, Zhanqing; Wang, Zhien; Liu, Dong

    2014-06-01

    This paper introduces a new algorithm to detect aerosols and clouds based on micropulse lidar measurements. A semidiscretization processing technique is first used to inhibit the impact of increasing noise with distance. The value distribution equalization method which reduces the magnitude of signal variations with distance is then introduced. Combined with empirical threshold values, we determine if the signal waves indicate clouds or aerosols. This method can separate clouds and aerosols with high accuracy, although differentiation between aerosols and clouds are subject to more uncertainties depending on the thresholds selected. Compared with the existing Atmospheric Radiation Measurement program lidar-based cloud product, the new method appears more reliable and detects more clouds with high bases. The algorithm is applied to a year of observations at both the U.S. Southern Great Plains (SGP) and China Taihu sites. At the SGP site, the cloud frequency shows a clear seasonal variation with maximum values in winter and spring and shows bimodal vertical distributions with maximum occurrences at around 3-6 km and 8-12 km. The annual averaged cloud frequency is about 50%. The dominant clouds are stratiform in winter and convective in summer. By contrast, the cloud frequency at the Taihu site shows no clear seasonal variation and the maximum occurrence is at around 1 km. The annual averaged cloud frequency is about 15% higher than that at the SGP site. A seasonal analysis of cloud base occurrence frequency suggests that stratiform clouds dominate at the Taihu site.

  17. Aerosols and polar stratospheric clouds measurements during the EASOE campaign

    NASA Technical Reports Server (NTRS)

    Haner, D.; Godin, S.; Megie, G.; David, C.; Mitev, V.

    1992-01-01

    Preliminary results of observations performed using two different lidar systems during the EASOE (European Arctic Stratospheric Ozone Experiment), which has taken place in the winter of 1991-1992 in the northern hemisphere lattitude regions, are presented. The first system is a ground based multiwavelength lidar intended to perform measurements of the ozone vertical distribution in the 5 km to 40 km altitude range. It was located in Sodankyla (67 degrees N, 27 degrees E) as part of the ELSA experiment. The objectives of the ELSA cooperative project is to study the relation between polar stratospheric cloud events and ozone depletion with high vertical resolution and temporal continuity, and the evolution of the ozone distribution in relation to the position of the polar vortex. The second system is an airborne backscatter lidar (Leandre) which allows for the study of the 3-D structure and the optical properties of polar stratospheric clouds. The Leandre instrument is a dual-polarization lidar system, emitting at 532 nm, which allows for the determination of the type of clouds observed, according to the usual classification of polar stratospheric clouds. More than 60 hours of flight were performed in Dec. 1991, and Jan. and Feb. 1992 in Kiruna, Sweden. The operation of the Leandre instrument has led to the observation of the short scale variability of the Pinatubo volcanic cloud in the high latitude regions and to several episodes of polar stratospheric clouds. Preliminary analysis of the data is presented.

  18. On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars: Radar and Lidar Turbulence Estimation

    DOE PAGES

    Borque, Paloma; Luke, Edward; Kollias, Pavlos

    2016-05-27

    Coincident profiling observations from Doppler lidars and radars are used to estimate the turbulence energy dissipation rate (ε) using three different data sources: (i) Doppler radar velocity (DRV), (ii) Doppler lidar velocity (DLV), and (iii) Doppler radar spectrum width (DRW) measurements. Likewise, the agreement between the derived ε estimates is examined at the cloud base height of stratiform warm clouds. Collocated ε estimates based on power spectra analysis of DRV and DLV measurements show good agreement (correlation coefficient of 0.86 and 0.78 for both cases analyzed here) during both drizzling and nondrizzling conditions. This suggests that unified (below and abovemore » cloud base) time-height estimates of ε in cloud-topped boundary layer conditions can be produced. This also suggests that eddy dissipation rate can be estimated throughout the cloud layer without the constraint that clouds need to be nonprecipitating. Eddy dissipation rate estimates based on DRW measurements compare well with the estimates based on Doppler velocity but their performance deteriorates as precipitation size particles are introduced in the radar volume and broaden the DRW values. And, based on this finding, a methodology to estimate the Doppler spectra broadening due to the spread of the drop size distribution is presented. Furthermore, the uncertainties in ε introduced by signal-to-noise conditions, the estimation of the horizontal wind, the selection of the averaging time window, and the presence of precipitation are discussed in detail.« less

  19. On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars: Radar and Lidar Turbulence Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borque, Paloma; Luke, Edward; Kollias, Pavlos

    Coincident profiling observations from Doppler lidars and radars are used to estimate the turbulence energy dissipation rate (ε) using three different data sources: (i) Doppler radar velocity (DRV), (ii) Doppler lidar velocity (DLV), and (iii) Doppler radar spectrum width (DRW) measurements. Likewise, the agreement between the derived ε estimates is examined at the cloud base height of stratiform warm clouds. Collocated ε estimates based on power spectra analysis of DRV and DLV measurements show good agreement (correlation coefficient of 0.86 and 0.78 for both cases analyzed here) during both drizzling and nondrizzling conditions. This suggests that unified (below and abovemore » cloud base) time-height estimates of ε in cloud-topped boundary layer conditions can be produced. This also suggests that eddy dissipation rate can be estimated throughout the cloud layer without the constraint that clouds need to be nonprecipitating. Eddy dissipation rate estimates based on DRW measurements compare well with the estimates based on Doppler velocity but their performance deteriorates as precipitation size particles are introduced in the radar volume and broaden the DRW values. And, based on this finding, a methodology to estimate the Doppler spectra broadening due to the spread of the drop size distribution is presented. Furthermore, the uncertainties in ε introduced by signal-to-noise conditions, the estimation of the horizontal wind, the selection of the averaging time window, and the presence of precipitation are discussed in detail.« less

  20. 2-micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Yu, J.; Singh, U.; Petros, M.

    2012-12-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar is being developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations with significant advantages. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement. Our objective is to integrate an existing high energy double-pulsed 2-micron laser transmitter with a direct detection receiver and telescope to enable an airborne capability to perform a first proof of principle demonstration of airborne direct detection CO2 measurements. The 2-micron transmitter provides 100mJ at 10Hz with double pulse format specifically designed for DIAL/IPDA instrument. The compact, rugged, highly reliable transceiver is based on unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. A 16-inch diameter telescope has been designed and being manufactured for the direct detection lidar. The detector is an InGaAs Positive-Intrinsic-Negative (PIN) photodiode manufactured by Hamamatsu Corporation. The performance of the detector is characterized at various operating temperatures and bias voltages for spectral response, NEP, response time, dynamic range, and linearity. A collinear lidar structure is designed to be integrated to NASA UC12 or B200 research aircrafts. This paper will describe the design of the airborne 2-micron pulsed IPDA lidar system; the lidar operation parameters; the wavelength pair selection; laser transmitter energy, pulse rate, beam divergence, double pulse generation and accurate frequency control; detector characterization; telescope design; lidar structure design; and lidar signal to noise ratio estimation. The first engineering flight is scheduled at the end of next year.

  1. Multistatic aerosol-cloud lidar in space: A theoretical perspective

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; Alexandrov, M. D.; Brian, C.; Travis, L. D.

    2016-12-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170° can dramatically increase the information content of the measurements. Although the specific subject of this Perspective is the multistatic lidar concept, all our conclusions equally apply to a multistatic radar system intended to study from space the global distribution of cloud and precipitation characteristics.

  2. Multistatic Aerosol Cloud Lidar in Space: A Theoretical Perspective

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.

    2016-01-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170deg can dramatically increase the information content of the measurements. Although the specific subject of this Perspective is the multistatic lidar concept, all our conclusions equally apply to a multistatic radar system intended to study from space the global distribution of cloud and precipitation characteristics.

  3. Eye Safe, Visible Wavelength Lidar Systems: Design and Operational Advances, Results and Potential

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Ellsworth J.; Berkoff, Timothy; Campbell, James

    2007-01-01

    In the early nineties the first of the eye safe visible wavelength lidar systems known now as Micro Pulse Lidar (MPL) became operational. The important advance of the design was a system that, unlike most existing lidar, operated at eye safe energy densities and could thus operate unattended for full time monitoring. Since that time there have been many dozens of these systems produced and applied for full time profiling of atmospheric cloud and aerosol structure. There is currently an observational network of MPL sites to support global climate research. In thc course of application of these instruments there have been significant improvements in the, design and performance of the systems. In the last half decade particularly there has been significant application and technical development of MPL systems. In this paper we review progress. The current MPL systems in use are all single wavelength systems designed for cloud and aerosol applications. For the cloud and aerosol applications, both lidar depolarization and multi wavelength measurements have significant applications. These can be accomplished with the MPL, approach. The main current challenge for the lidar network activity are in the area of the reliability, repeatability and efficiency of data processing. The network makes use of internet data downloads and automated processing. The heights of all cloud and aerosol layers are needed. The recent emphasis has been in operationally deriving aerosol extinction cross section. Future emphasis will include adding cirrus optical parameters. For operational effectiveness, improvements to simplify routine data signal calibration are being researched. Overall the MPL systems have proven very effective. A large data base of results from globally distributed sites can be easily accessed through the internet. Applications have included atmospheric model development. Validation of current global satellite observations of aerosol and clouds, including now orbital lidar observations, was a primary goal for NASA. Although sampling issues require careful consideration, results have proven useful.

  4. Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements

    NASA Astrophysics Data System (ADS)

    Baars, Holger; Seifert, Patric; Engelmann, Ronny; Wandinger, Ulla

    2017-09-01

    Absolute calibrated signals at 532 and 1064 nm and the depolarization ratio from a multiwavelength lidar are used to categorize primary aerosol but also clouds in high temporal and spatial resolution. Automatically derived particle backscatter coefficient profiles in low temporal resolution (30 min) are applied to calibrate the lidar signals. From these calibrated lidar signals, new atmospheric parameters in temporally high resolution (quasi-particle-backscatter coefficients) are derived. By using thresholds obtained from multiyear, multisite EARLINET (European Aerosol Research Lidar Network) measurements, four aerosol classes (small; large, spherical; large, non-spherical; mixed, partly non-spherical) and several cloud classes (liquid, ice) are defined. Thus, particles are classified by their physical features (shape and size) instead of by source. The methodology is applied to 2 months of continuous observations (24 h a day, 7 days a week) with the multiwavelength-Raman-polarization lidar PollyXT during the High-Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in spring 2013. Cloudnet equipment was operated continuously directly next to the lidar and is used for comparison. By discussing three 24 h case studies, it is shown that the aerosol discrimination is very feasible and informative and gives a good complement to the Cloudnet target categorization. Performing the categorization for the 2-month data set of the entire HOPE campaign, almost 1 million pixel (5 min × 30 m) could be analysed with the newly developed tool. We find that the majority of the aerosol trapped in the planetary boundary layer (PBL) was composed of small particles as expected for a heavily populated and industrialized area. Large, spherical aerosol was observed mostly at the top of the PBL and close to the identified cloud bases, indicating the importance of hygroscopic growth of the particles at high relative humidity. Interestingly, it is found that on several days non-spherical particles were dispersed from the ground into the atmosphere.

  5. Lidar Measurements of Wind and Cloud Around Venus from an Orbiting or Floating/flying Platform

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Limaye, Sanjay; Emmitt, George D.; Refaat, Tamer F.; Kavaya, Michael J.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    Given the presence of clouds and haze in the upper portion of the Venus atmosphere, it is reasonable to consider a Doppler wind lidar (DWL) for making remote measurements of the 3-dimensional winds within the tops of clouds and the overlying haze layer. Assuming an orbit altitude of 250 kilometers and cloud tops at 60 kilometers (within the upper cloud layer), an initial performance assessment of an orbiting DWL was made using a numerical instrument and atmospheres model developed for both Earth and Mars. It is reasonable to expect vertical profiles of the 3-dimensional wind speed with 1 kilometer vertical resolution and horizontal spacing of 25 kilometers to several 100 kilometers depending upon the desired integration times. These profiles would begin somewhere just below the tops of the highest clouds and extend into the overlying haze layer to some to-be-determined height. Getting multiple layers of cloud returns is also possible with no negative impact on velocity measurement accuracy. The knowledge and expertise for developing coherent Doppler wind lidar technologies and techniques, for Earth related mission at NASA Langley Research Center is being leveraged to develop an appropriate system suitable for wind measurement around Venus. We are considering a fiber-laser-based lidar system of high efficiency and smaller size and advancing the technology level to meet the requirements for DWL system for Venus from an orbiting or floating/flying platform. This presentation will describe the concept, simulation and technology development plan for wind and cloud measurements on Venus.

  6. A Numerical Model of the Performance of the Howard University Raman Lidar System

    NASA Astrophysics Data System (ADS)

    Connell, Rasheen M.; Adam, Mariana; Venable, Demetrius

    2009-07-01

    At the Howard University Atmospheric Observatory in Beltsville, MD, a Raman Lidar system was developed to provide both daytime and nighttime measurements of water vapor, aerosols, and cirrus clouds with 1 min temporal and 7.5 m spatial resolution in the lower troposphere. Signals at three wavelengths associated with Rayleigh/Mie scattering for aerosols and cirrus clouds at 354.7 nm, Raman scattering for nitrogen at 386.7 nm, and water vapor at 407.5 nm are analyzed. The transmitter is a triple harmonic Nd: YAG solid state laser. The receiver is a 40 cm Cassegrain telescope. Our detector system consists of a multi-channel wavelength separator unit and data acquisition system. We are developing a numerical model to provide a realistic representation of the system behavior. The variants of the lidar equation in the model use system parameters and are solved to determine the return signals for our lidar system. In this paper, we report on two of the five case studies being investigated: clear sky and cirrus cloud covered molecular atmosphere. The first simulations are based on a standard atmosphere, which assumes an unpolluted (aerosol-free) dry air atmosphere. The second set of simulations is based on a cloudy atmosphere, where cirrus clouds are added to the conditions in case study I. Lidar signals are simulated over the altitude range covered by our measurements (up to 14 km). Results will show comparisons between the simulated and actual measurements when varying lidar and atmospheric optical parameters in the model.

  7. 2-Micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; hide

    2014-01-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations. This new 2-micron pulsed IPDA lidar has been flown in spring of this year for total ten flights with 27 flight hours. It is able to make measurements of the total amount of atmospheric CO2 from the aircraft to the ground or cloud. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  8. Active Raman sounding of the earth's water vapor field.

    PubMed

    Tratt, David M; Whiteman, David N; Demoz, Belay B; Farley, Robert W; Wessel, John E

    2005-08-01

    The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed.

  9. Validation of CALIPSO Lidar Observations Using Data From the NASA Langley Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris; Hair, Johnathan; Liu, Zhaoyan; Ferrare, Rich; Harper, David; Cook, Anthony; Vaughan, Mark; Trepte, Chip; Winker, David

    2006-01-01

    This poster focuses on preliminary comparisons of data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft with data acquired by the NASA Langley Airborne High Spectral Resolution Lidar (HSRL). A series of 20 aircraft validation flights was conducted from 14 June through 27 September 2006, under both day and night lighting conditions and a variety of aerosol and cloud conditions. This poster presents comparisons of CALIOP measurements of attenuated backscatter at 532 and 1064 nm and depolarization at 532 nm with near coincident measurements from the Airborne HSRL as a preliminary assessment of CALIOP calibration accuracy. Note that the CALIOP data presented here are the pre-release version. These data have known artifacts in calibration which have been corrected in the December 8 CALIPSO data release which was not available at the time the comparisons were conducted for this poster. The HSRL data are also preliminary. No artifacts are known to exist; however, refinements in calibration and algorithms are likely to be implemented before validation comparisons are made final.

  10. Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

  11. Monitoring Cirrus Clouds Using Lamp Observations in Association with Balloon-Borne Radiosonde Over Nainital: Few Case Studies

    NASA Astrophysics Data System (ADS)

    Solanki, R.; Singh, N.

    2012-12-01

    Upper tropospheric clouds such as cirrus have been identified as one of the important regulator of the radiation balance of the earth atmospheric-system. Though the satellite observation provide valuable information on cirrus clouds, they have limitations on spectral, temporal and spatial coverage, hence the need for local remote sensing, such as LiDAR a leading technique for studying the characteristics and properties of cirrus clouds. The upgraded version of a micro pulse LiDAR popularly known as LiDAR for Atmospheric Measurements and Probing (LAMP) developed by National Atmospheric Research Laboratory (NARL) is operational since October 2011, at ARIES Nainital (29.4oN, 79.5oE, ~2 km above the mean sea level) a high altitude location in the central Himalayas. Regular observations are being carried out in order to study the vertical distribution of aerosols, clouds and boundary layer structure etc. Altitude profiles of range corrected photon count and derived aerosol back scatter coefficients have depicted the occurrence of high altitude cirrus clouds/ ice clouds in an altitude range of 7 to 11 Km. Among the total observations in 27% of the cases the occurrence of cirrus clouds were detected. The corresponding cloud parameters such as temperature (-59 0C), horizontal wind speed (26 m/s), vertical wind speed (24 m/s), Relative Humidity (61%), at a height (~9 Km) were measured with Radiosonde observations. The prevailing region for cirrus cloud is found to be highly turbulent, indicating the region of divergence followed by a convergence, showing the favorable conditions for cirrus cloud formation. Optical and geometrical characteristics of Cirrus clouds have been analyzed using LiDAR and radiosonde measurements. The temperature and thickness dependence of optical properties have also been studied. The results will be further substantiated with CALIPSO satellite and details will be discussed during the presentation.

  12. Nearly a Decade of CALIPSO Observations of Asian and Saharan Dust Properties Near Source and Transport Regions

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Z.; Tackett, J.; Vaughan, M.; Trepte, C.; Winker, D.; H. Yu,

    2015-01-01

    The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol, between 2006-2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on the morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National D'études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.

  13. Comparison of the filtering models for airborne LiDAR data by three classifiers with exploration on model transfer

    NASA Astrophysics Data System (ADS)

    Ma, Hongchao; Cai, Zhan; Zhang, Liang

    2018-01-01

    This paper discusses airborne light detection and ranging (LiDAR) point cloud filtering (a binary classification problem) from the machine learning point of view. We compared three supervised classifiers for point cloud filtering, namely, Adaptive Boosting, support vector machine, and random forest (RF). Nineteen features were generated from raw LiDAR point cloud based on height and other geometric information within a given neighborhood. The test datasets issued by the International Society for Photogrammetry and Remote Sensing (ISPRS) were used to evaluate the performance of the three filtering algorithms; RF showed the best results with an average total error of 5.50%. The paper also makes tentative exploration in the application of transfer learning theory to point cloud filtering, which has not been introduced into the LiDAR field to the authors' knowledge. We performed filtering of three datasets from real projects carried out in China with RF models constructed by learning from the 15 ISPRS datasets and then transferred with little to no change of the parameters. Reliable results were achieved, especially in rural area (overall accuracy achieved 95.64%), indicating the feasibility of model transfer in the context of point cloud filtering for both easy automation and acceptable accuracy.

  14. Performance testing of 3D point cloud software

    NASA Astrophysics Data System (ADS)

    Varela-González, M.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2013-10-01

    LiDAR systems are being used widely in recent years for many applications in the engineering field: civil engineering, cultural heritage, mining, industry and environmental engineering. One of the most important limitations of this technology is the large computational requirements involved in data processing, especially for large mobile LiDAR datasets. Several software solutions for data managing are available in the market, including open source suites, however, users often unknown methodologies to verify their performance properly. In this work a methodology for LiDAR software performance testing is presented and four different suites are studied: QT Modeler, VR Mesh, AutoCAD 3D Civil and the Point Cloud Library running in software developed at the University of Vigo (SITEGI). The software based on the Point Cloud Library shows better results in the loading time of the point clouds and CPU usage. However, it is not as strong as commercial suites in working set and commit size tests.

  15. Initial Performance Assessment of CALIOP

    NASA Technical Reports Server (NTRS)

    Winker, David; Hunt, Bill; McGill, Matthew

    2007-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, pronounced the same as "calliope") is a spaceborne two-wavelength polarizatio n lidar that has been acquiring global data since June 2006. CALIOP p rovides high resolution vertical profiles of clouds and aerosols, and has been designed with a very large linear dynamic range to encompas s the full range of signal returns from aerosols and clouds. CALIOP is the primary instrument carried by the Cloud-Aerosol Lidar and Infrar ed Pathfinder Satellite Observations (CALIPSO) satellite, which was l aunched on April, 28 2006. CALIPSO was developed within the framework of a collaboration between NASA and the French space agency, CNES. I nitial data analysis and validation intercomparisons indicate the qua lity of data from CALIOP meets or exceeds expectations. This paper presents a description of the CALIPSO mission, the CALIOP instrument, an d an initial assessment of on-orbit measurement performance.

  16. Nosql for Storage and Retrieval of Large LIDAR Data Collections

    NASA Astrophysics Data System (ADS)

    Boehm, J.; Liu, K.

    2015-08-01

    Developments in LiDAR technology over the past decades have made LiDAR to become a mature and widely accepted source of geospatial information. This in turn has led to an enormous growth in data volume. The central idea for a file-centric storage of LiDAR point clouds is the observation that large collections of LiDAR data are typically delivered as large collections of files, rather than single files of terabyte size. This split of the dataset, commonly referred to as tiling, was usually done to accommodate a specific processing pipeline. It makes therefore sense to preserve this split. A document oriented NoSQL database can easily emulate this data partitioning, by representing each tile (file) in a separate document. The document stores the metadata of the tile. The actual files are stored in a distributed file system emulated by the NoSQL database. We demonstrate the use of MongoDB a highly scalable document oriented NoSQL database for storing large LiDAR files. MongoDB like any NoSQL database allows for queries on the attributes of the document. As a specialty MongoDB also allows spatial queries. Hence we can perform spatial queries on the bounding boxes of the LiDAR tiles. Inserting and retrieving files on a cloud-based database is compared to native file system and cloud storage transfer speed.

  17. Measurements of Atmospheric CO2 Column in Cloudy Weather Conditions using An IM-CW Lidar at 1.57 Micron

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan; hide

    2015-01-01

    This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.

  18. Improvements to the CERES Cloud Detection Algorithm using Himawari 8 Data and Validation using CALIPSO and CATS Lidar Observations

    NASA Astrophysics Data System (ADS)

    Trepte, Q.; Minnis, P.; Palikonda, R.; Yost, C. R.; Rodier, S. D.; Trepte, C. R.; McGill, M. J.

    2016-12-01

    Geostationary satellites provide continuous cloud and meteorological observations important for weather forecasting and for understanding climate processes. The Himawari-8 satellite represents a new generation of measurement capabilities with significantly improved resolution and enhanced spectral information. The satellite was launched in October 2014 by the Japanese Meteorological Agency and is centered at 140° E to provide coverage over eastern Asia and the western Pacific region. A cloud detection algorithm was developed as part of the CERES Cloud Mask algorithm using the Advanced Himawari Imager (AHI), a 16 channel multi-spectral imager. The algorithm was originally designed for use with Meteosat Second Generation (MSG) data and has been adapted for Himawari-8 AHI measurements. This paper will describe the improvements in the Himawari cloud mask including daytime ocean low cloud and aerosol discrimination, nighttime thin cirrus detection, and Australian desert and coastal cloud detection. The statistics from matched CERES Himawari cloud mask results with CALIPSO lidar data and with new observations from the CATS lidar will also be presented. A feature of the CATS instrument on board the International Space Station is that it gives information at different solar viewing times to examine the diurnal variation of clouds and this provides an ability to evaluate the performance of the cloud mask for different sun angles.

  19. Power laws for the backscattering matrices in the case of lidar sensing of cirrus clouds

    NASA Astrophysics Data System (ADS)

    Kustova, Natalia V.; Konoshonkin, Alexander V.; Borovoi, Anatoli; Okamoto, Hajime; Sato, Kaori; Katagiri, Shuichiro

    2017-11-01

    The data bank for the backscattering matrixes of cirrus clouds that was calculated earlier by the authors and was available in the internet for free access has been replaced in the case of randomly oriented crystals by simple analytic equations. Four microphysical ratios conventionally measured by lidars have been calculated for different shapes and the effective size of the crystals. These values could be used for retrieving shapes of the crystals in cirrus clouds.

  20. Isolating the Liquid Cloud Response to Recent Arctic Sea Ice Variability Using Spaceborne Lidar Observations

    NASA Astrophysics Data System (ADS)

    Morrison, A. L.; Kay, J. E.; Chepfer, H.; Guzman, R.; Yettella, V.

    2018-01-01

    While the radiative influence of clouds on Arctic sea ice is known, the influence of sea ice cover on Arctic clouds is challenging to detect, separate from atmospheric circulation, and attribute to human activities. Providing observational constraints on the two-way relationship between sea ice cover and Arctic clouds is important for predicting the rate of future sea ice loss. Here we use 8 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spaceborne lidar observations from 2008 to 2015 to analyze Arctic cloud profiles over sea ice and over open water. Using a novel surface mask to restrict our analysis to where sea ice concentration varies, we isolate the influence of sea ice cover on Arctic Ocean clouds. The study focuses on clouds containing liquid water because liquid-containing clouds are the most important cloud type for radiative fluxes and therefore for sea ice melt and growth. Summer is the only season with no observed cloud response to sea ice cover variability: liquid cloud profiles are nearly identical over sea ice and over open water. These results suggest that shortwave summer cloud feedbacks do not slow long-term summer sea ice loss. In contrast, more liquid clouds are observed over open water than over sea ice in the winter, spring, and fall in the 8 year mean and in each individual year. Observed fall sea ice loss cannot be explained by natural variability alone, which suggests that observed increases in fall Arctic cloud cover over newly open water are linked to human activities.

  1. LIDAR Point Cloud Data Extraction and Establishment of 3D Modeling of Buildings

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    This paper takes the method of Shepard’s to deal with the original LIDAR point clouds data, and generate regular grid data DSM, filters the ground point cloud and non ground point cloud through double least square method, and obtains the rules of DSM. By using region growing method for the segmentation of DSM rules, the removal of non building point cloud, obtaining the building point cloud information. Uses the Canny operator to extract the image segmentation is needed after the edges of the building, uses Hough transform line detection to extract the edges of buildings rules of operation based on the smooth and uniform. At last, uses E3De3 software to establish the 3D model of buildings.

  2. Single-Photon LIDAR for Vegetation Analysis

    NASA Astrophysics Data System (ADS)

    Rosette, J.; Field, C.; Nelson, R. F.; Decola, P.; Cook, B. D.; Degnan, J. J.

    2011-12-01

    Lidar is now an established and recognised technology which has been widely applied to assist forest inventory, monitoring and management. Small footprint lidar systems produce dense 'point clouds' from intercepted surfaces which, after classification of ground and vegetation returns, can be related to important forest biophysical parameters such as biomass or carbon. Within the context of NASA's Carbon Monitoring System (CMS) initiative (NASA, 2010), the prototype 100 beam, single-photon, scanning lidar, developed by Sigma Space Corporation, USA, is tested to assess the potential of this sensor for vegetation analysis. This emerging lidar technology is currently generally operated at green wavelengths (532 nm) and, like more conventional discrete return NIR lidar sensors, produces point clouds of intercepted surfaces. However, the high pulse repetition rate (20 kHz) and multibeam approach produces an unprecedented measurement rate (up to 2 Million pixels per second) and a correspondingly high point density. Furthermore, the single photon sensitivity enables the technique to be more easily extended to high altitudes and therefore larger swath widths. Additionally, CW diode laser pumping and a low laser pulse energy (6 μJ at 532 nm) favour an extended laser lifetime while the much lower energy per beamlet (~50nJ) ensures eye safety despite operating at a visible wavelength. Furthermore, the short laser pulse duration (0.7ns) allows the surface to be located with high vertical precision. Although the 532 nm green wavelength lies near the peak of the solar output, the spatial and temporal coherence of the surface returns, combined with stringent instrument specifications (small detector field of view and narrow optical band-pass filter), allow solid surfaces to be distinguished from the solar background during daylight operations. However, for extended volumetric scatterers such as tree canopies, some amount of solar noise is likely to be mixed in with valid biomass returns. This has potential implications for the accurate identification of the vegetation profile, particularly for rough transition zones such as the canopy top. This research aims to improve understanding of the ability to extract lidar metrics and forest biomass from datasets where solar noise is present. Studies of this nature will inform future photon-counting satellite lidar sensors such as NASA's ICESat II, scheduled for launch at the beginning of 2016. This objective is achieved through a comparison of the new sensor capabilities with archival discrete return lidar data and recent field measurements in the eastern USA which are used to map biomass. Since such sensors have the potential to facilitate large area lidar coverage, this may extend the capabilities of biomass mapping and monitoring at regional or national scales. REFERENCE NASA, 2010. NASA Carbon Monitoring System Initiative. Available online at: http://cce.nasa.gov/cce/cms/index.html.

  3. On the Nature and Extent of Optically Thin Marine low Clouds

    NASA Technical Reports Server (NTRS)

    Leahy, L. V.; Wood, R.; Charlson, R. J.; Hostetler, C. A.; Rogers, R. R.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    Macrophysical properties of optically thin marine low clouds over the nonpolar oceans (60 deg S-60 deg N) are measured using 2 years of full-resolution nighttime data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Optically thin clouds, defined as the subset of marine low clouds that do not fully attenuate the lidar signal, comprise almost half of the low clouds over the marine domain. Regionally, the fraction of low clouds that are optically thin (f(sub thin,cld)) exhibits a strong inverse relationship with the low-cloud cover, with maxima in the tropical trades (f(sub thin,cld) greater than 0.8) and minima in regions of persistent marine stratocumulus and in midlatitudes (f(sub thin,cld) less than 0.3). Domain-wide, a power law fit describes the cloud length distribution, with exponent beta = 2.03 +/- 0.06 (+/-95% confidence interval). On average, the fraction of a cloud that is optically thin decreases from approximately 1 for clouds smaller than 2 km to less than 0.3 for clouds larger than 30 km. This relationship is found to be independent of region, so that geographical variations in the cloud length distribution explain three quarters of the variance in f(sub thin,cld). Comparing collocated trade cumulus observations from CALIOP and the airborne High Spectral Resolution Lidar reveals that clouds with lengths smaller than are resolvable with CALIOP contribute approximately half of the low clouds in the region sampled. A bounded cascade model is constructed to match the observations from the trades. The model shows that the observed optically thin cloud behavior is consistent with a power law scaling of cloud optical depth and suggests that most optically thin clouds only partially fill the CALIOP footprint.

  4. Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system

    DOEpatents

    Schmitt, Randal L [Tijeras, NM; Henson, Tammy D [Albuquerque, NM; Krumel, Leslie J [Cedar Crest, NM; Hargis, Jr., Philip J.

    2006-06-20

    A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.

  5. Weather and climate needs for Lidar observations from space and concepts for their realization. [wind, temperature, moisture, and pressure data needs

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Korb, C. L.

    1980-01-01

    The spectrum of weather and climate needs for Lidar observations from space is discussed with emphasis on the requirements for wind, temperature, moisture, and pressure data. It is shown that winds are required to realistically depict all atmospheric scales in the tropics and the smaller scales at higher latitudes, where both temperature and wind profiles are necessary. The need for means to estimate air-sea exchanges of sensible and latent heat also is noted. A concept for achieving this through a combination of Lidar cloud top heights and IR cloud top temperatures of cloud streets formed during cold air outbreaks over the warmer ocean is outlined. Recent theoretical feasibility studies concerning the profiling of temperatures, pressure, and humidity by differential absorption Lidar (DIAL) from space and expected accuracies are reviewed. An alternative approach to Doppler Lidar wind measurements also is presented. The concept involves the measurement of the displacement of the aerosol backscatter pattern, at constant heights, between two successive scans of the same area, one ahead of the spacecraft and the other behind it a few minutes later. Finally, an integrated space Lidar system capable of measuring temperature, pressure, humidity, and winds which combines the DIAL methods with the aerosol pattern displacement concept is described.

  6. Polar winter cloud depolarization measurements with the CANDAC Rayleigh-Mie-Raman Lidar

    NASA Astrophysics Data System (ADS)

    McCullough, E. M.; Nott, G. J.; Duck, T. J.; Sica, R. J.; Doyle, J. G.; Pike-thackray, C.; Drummond, J. R.

    2011-12-01

    Clouds introduce a significant positive forcing to the Arctic radiation budget and this is strongest during the polar winter when shortwave radiation is absent (Intrieri et al., 2002). The amount of forcing depends on the occurrence probability and optical depth of the clouds as well as the cloud particle phase (Ebert and Curry 1992). Mixed-phase clouds are particularly complex as they involve interactions between three phases of water (vapour, liquid and ice) coexisting in the same cloud. Although significant progress has been made in characterizing wintertime Arctic clouds (de Boer et al., 2009 and 2011), there is considerable variability in the relative abundance of particles of each phase, in the morphology of solid particles, and in precipitation rates depending on the meteorology at the time. The Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh-Mie-Raman Lidar (CRL) was installed in the Canadian High Arctic at Eureka, Nunavut (80°N, 86°W) in 2008-2009. The remotely-operated system began with measurement capabilities for multi-wavelength aerosol extinction, water vapour mixing ratio, and tropospheric temperature profiles, as well as backscatter cross section coefficient and colour ratio. In 2010, a new depolarization channel was added. The capability to measure the polarization state of the return signal allows the characterization of the cloud in terms of liquid and ice water content, enabling the lidar to probe all three phases of water in these clouds. Lidar depolarization results from 2010 and 2011 winter clouds at Eureka will be presented, with a focus on differences in downwelling radiation between mixed phase clouds and ice clouds. de Boer, G., E.W. Eloranta, and M.D. Shupe (2009), Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations, Journal of Atmospheric Sciences, 66 (9), 2874-2887. de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner (2011), Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors, Geophysical Research Letters, 38, L01803. Ebert, EE and J.A .Curry (1992), A parameterization of ice cloud optical properties for climate models, Journal of Geophysical Research 97:3831-3836. Intrieri JM, Fairall CW, Shupe MD, Persson POG, Andreas EL, Guest PS, Moritz RE. 2002. An annual cycle of Arctic surface cloud forcing at SHEBA. Journal of Geophysical Research 107 NO. C10, 8039 . Noel, V., H. Chepfer, M. Haeffelin, and Y. Morille (2006), Classification of ice crystal shapes in midlatitude ice clouds from three years of lidar observations over the SIRTA observatory. Journal of the Atmospheric Sciences, 63:2978 - 2991.

  7. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements

    NASA Astrophysics Data System (ADS)

    Gouveia, Diego A.; Barja, Boris; Barbosa, Henrique M. J.; Seifert, Patric; Baars, Holger; Pauliquevis, Theotonio; Artaxo, Paulo

    2017-03-01

    Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to -90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for subvisible cirrus clouds a bimodal distribution with a secondary peak at about 44 sr was found suggesting a mixed composition. A dependence of the lidar ratio with cloud temperature (altitude) was not found, indicating that the clouds are vertically well mixed. The frequency of occurrence of cirrus clouds classified as subvisible (τ < 0. 03) were 41.6 %, whilst 37.8 % were thin cirrus (0. 03 < τ < 0. 3) and 20.5 % opaque cirrus (τ > 0. 3). Hence, in central Amazonia not only a high frequency of cirrus clouds occurs, but also a large fraction of subvisible cirrus clouds. This high frequency of subvisible cirrus clouds may contaminate aerosol optical depth measured by sun photometers and satellite sensors to an unknown extent.

  8. Cloud Size Distributions from Multi-sensor Observations of Shallow Cumulus Clouds

    NASA Astrophysics Data System (ADS)

    Kleiss, J.; Riley, E.; Kassianov, E.; Long, C. N.; Riihimaki, L.; Berg, L. K.

    2017-12-01

    Combined radar-lidar observations have been used for almost two decades to document temporal changes of shallow cumulus clouds at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Facility's Southern Great Plains (SGP) site in Oklahoma, USA. Since the ARM zenith-pointed radars and lidars have a narrow field-of-view (FOV), the documented cloud statistics, such as distributions of cloud chord length (or horizontal length scale), represent only a slice along the wind direction of a region surrounding the SGP site, and thus may not be representative for this region. To investigate this impact, we compare cloud statistics obtained from wide-FOV sky images collected by ground-based observations at the SGP site to those from the narrow FOV active sensors. The main wide-FOV cloud statistics considered are cloud area distributions of shallow cumulus clouds, which are frequently required to evaluate model performance, such as routine large eddy simulation (LES) currently being conducted by the ARM LASSO (LES ARM Symbiotic Simulation and Observation) project. We obtain complementary macrophysical properties of shallow cumulus clouds, such as cloud chord length, base height and thickness, from the combined radar-lidar observations. To better understand the broader observational context where these narrow FOV cloud statistics occur, we compare them to collocated and coincident cloud area distributions from wide-FOV sky images and high-resolution satellite images. We discuss the comparison results and illustrate the possibility to generate a long-term climatology of cloud size distributions from multi-sensor observations at the SGP site.

  9. LOSA-M3: multi-wave polarization scanning lidar for research of the troposphere and cirrus clouds

    NASA Astrophysics Data System (ADS)

    Kokhanenko, G. P.; Balin, Yu. S.; Klemasheva, M. G.; Penner, I. E.; Nasonov, S. V.; Samoilova, S. V.

    2017-11-01

    Lidar is designed to study the aerosol fields of the troposphere and the polarization characteristics of crystal clouds. Two laser wavelengths are used - 1064 and 532 nm, elastic scattering signals and spontaneous Raman scattering of nitrogen (607 nm) are recorded. Lidar is made in a mobile version, allowing its transportation by road and working under expeditionary conditions. The lidar transceiver is placed on a scanning column, which allows to change the direction of sounding within the upper hemisphere at a speed of 1 degree per second. The polarization characteristics of the transmitter and receiver can be changed by rotating the phase plates synchronously with the the laser pulses. In combination with conical scanning of the lidar, this makes it possible to detect the anisotropy of scattering and the possible azimuthal orientation of the crystal particles.

  10. Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhong, Ruofei; Tang, Tao; Wang, Liuzhao; Liu, Xianlin

    2017-08-01

    Pavement markings provide an important foundation as they help to keep roads users safe. Accurate and comprehensive information about pavement markings assists the road regulators and is useful in developing driverless technology. Mobile light detection and ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional (3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in a fast and efficient way. The RGB attribute information of data points can be obtained based on the panoramic camera in the system. In this paper, we present a novel method process to automatically extract pavement markings using multiple attribute information of the laser scanning point cloud from the mobile LiDAR data. This method process utilizes a differential grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to identify and extract pavement markings. We utilized point cloud density to remove the noise and used morphological operations to eliminate the errors. In the application, we tested our method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The results indicated that both correctness (p) and completeness (r) were higher than 90%. The method process of this research can be applied to extract pavement markings from huge point cloud data produced by mobile LiDAR.

  11. Eye-Safe Lidar System for Pesticide Spray Drift Measurement

    PubMed Central

    Gregorio, Eduard; Rocadenbosch, Francesc; Sanz, Ricardo; Rosell-Polo, Joan R.

    2015-01-01

    Spray drift is one of the main sources of pesticide contamination. For this reason, an accurate understanding of this phenomenon is necessary in order to limit its effects. Nowadays, spray drift is usually studied by using in situ collectors which only allow time-integrated sampling of specific points of the pesticide clouds. Previous research has demonstrated that the light detection and ranging (lidar) technique can be an alternative for spray drift monitoring. This technique enables remote measurement of pesticide clouds with high temporal and distance resolution. Despite these advantages, the fact that no lidar instrument suitable for such an application is presently available has appreciably limited its practical use. This work presents the first eye-safe lidar system specifically designed for the monitoring of pesticide clouds. Parameter design of this system is carried out via signal-to-noise ratio simulations. The instrument is based on a 3-mJ pulse-energy erbium-doped glass laser, an 80-mm diameter telescope, an APD optoelectronic receiver and optomechanically adjustable components. In first test measurements, the lidar system has been able to measure a topographic target located over 2 km away. The instrument has also been used in spray drift studies, demonstrating its capability to monitor the temporal and distance evolution of several pesticide clouds emitted by air-assisted sprayers at distances between 50 and 100 m. PMID:25658395

  12. Advances in Raman Lidar Measurements of Water Vapor, Cirrus Clouds and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Rush, Kurt; Veselovskii, Igor; Cadirola, Martin; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultraviolet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground- based, upward-looking tests. RASL is an airborne Raman Lidar system designed to measure water vapor mixing ratio, and aerosol backscatter/extinction/depolarization. It also possesses the capability to make experimental measurements of cloud liquid water and carbon dioxide. It is being prepared for first flight tests during the summer of 2006. With the newly developed filters installed in RASL, measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary layer profiling of water vapor mixing ratio is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction- to-backscatter ratio measurements are made using 1-minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. Downward-looking from an airborne RASL should possess the same measurement statistics with approximately a factor of 5 - 10 decrease in averaging time. A description of the technology improvements are provided followed by examples of the improved Raman lidar measurements.

  13. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various Earth surfaces giving good agreement, suggesting that the lidar efficiency, and thus a lidar calibration factor for detection, can be estimated fairly well using Earth's surface signal.

  14. Exploring microphysical, radiative, dynamic and thermodynamic processes driving fog and low stratus clouds using ground-based Lidar and Radar measurements

    NASA Astrophysics Data System (ADS)

    Haeffelin, Martial

    2016-04-01

    Radiation fog formation is largely influenced by the chemical composition, size and number concentration of cloud condensation nuclei and by heating/cooling and drying/moistening processes in a shallow mixing layer near the surface. Once a fog water layer is formed, its development and dissipation become predominantly controlled by radiative cooling/heating, turbulent mixing, sedimentation and deposition. Key processes occur in the atmospheric surface layer, directly in contact with the soil and vegetation, and throughout the atmospheric column. Recent publications provide detailed descriptions of these processes for idealized cases using very high-resolution models and proper representation of microphysical processes. Studying these processes in real fog situations require atmospheric profiling capabilities to monitor the temporal evolution of key parameters at several heights (surface, inside the fog, fog top, free troposphere). This could be done with in-situ sensors flown on tethered balloons or drones, during dedicated intensive field campaigns. In addition Backscatter Lidars, Doppler Lidars, Microwave Radiometers and Cloud Doppler Radars can provide more continuous, yet precise monitoring of key parameters throughout the fog life cycle. The presentation will describe how Backscatter Lidars can be used to study the height and kinetics of aerosol activation into fog droplets. Next we will show the potential of Cloud Doppler Radar measurements to characterize the temporal evolution of droplet size, liquid water content, sedimentation and deposition. Contributions from Doppler Lidars and Microwave Radiometers will be discussed. This presentation will conclude on the potential to use Lidar and Radar remote sensing measurements to support operational fog nowcasting.

  15. Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) Implementation Study

    NASA Technical Reports Server (NTRS)

    Stadler, John H.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Ball, Donald J.

    1998-01-01

    New technological advances have made possible new active remote sensing capabilities from space. Utilizing these technologies, the Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) will provide high spatial resolution measurements of ozone, clouds and aerosols in the stratosphere and lower troposphere. Simultaneous measurements of ozone, clouds and aerosols will assist in the understanding of global change, atmospheric chemistry and meteorology.

  16. A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments

    Treesearch

    Jeffrey S. Evans; Andrew T. Hudak

    2007-01-01

    One prerequisite to the use of light detection and ranging (LiDAR) across disciplines is differentiating ground from nonground returns. The objective was to automatically and objectively classify points within unclassified LiDAR point clouds, with few model parameters and minimal postprocessing. Presented is an automated method for classifying LiDAR returns as ground...

  17. Quantifying the Amount of Ice in Cold Tropical Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Avery, Melody A.; Winker, David M.; Garnier, Anne; Lawson, R. Paul; Heymsfield, Andrew J.; Mo, Qixu; Schoeberl, Mark R.; Woods, Sarah; Lance, Sara; Young, Stuart A.; hide

    2014-01-01

    How much ice is there in the Tropical Tropopause layer, globally? How does one begin to answer that question? Clouds are currently the largest source of uncertainty in climate models, and the ice water content (IWC) of cold cirrus clouds is needed to understand the total water and radiation budgets of the upper troposphere and lower stratosphere (UT/LS). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, originally a "pathfinder" mission only expected to last for three years, has now been operational for more than eight years. Lidar data from CALIPSO can provide information about how IWC is vertically distributed in the UT/LS, and about inter-annual variability and seasonal changes in cloud ice. However, cloud IWC is difficult to measure accurately with either remote or in situ instruments because IWC from cold cirrus clouds is derived from the particle cross-sectional area or visible extinction coefficient. Assumptions must be made about the relationship between the area, volume and density of ice particles with various crystal habits. Recently there have been numerous aircraft field campaigns providing detailed information about cirrus ice water content from cloud probes. This presentation evaluates the assumptions made when creating the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) global IWC data set, using recently reanalyzed aircraft particle probe measurements of very cold, thin TTL cirrus from the 2006 CR-AVE.

  18. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cirrus Parameter Relationships Derived from Satellite and Lidar Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.

    1996-01-01

    Cirrus cloud radiative and physical characteristics are determined using a combination of ground based, aircraft, and satellite measurements taken as part of the First ISCCP Region Experiment (FIRE) cirrus intensive field observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center and top heights and the corresponding temperatures. Coincident GOES-4 4-km visible (0.65 micrometer) and 8-km infrared window (11.5 micrometer) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 062 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance , extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface-based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature wer ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperature and cloud thickness from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. the parameterization of visible reflectance in terms of cloud optical depth and clear sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous advanced very high resolution radiometer (AVHRR) data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloud pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study or cirrus cloud scattering processes and remote sensing techniques.

  19. Retrieval of Urban Boundary Layer Structures from Doppler Lidar Data. Part I: Accuracy Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Quanxin; Lin, Ching Long; Calhoun, Ron

    2008-01-01

    Two coherent Doppler lidars from the US Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City. The dual lidar data are used to evaluate the accuracy of the four-dimensional variational data assimilation (4DVAR) method and identify the coherent flow structures in the urban boundary layer. The objectives of the study are three-fold. The first objective is to examine the effect of eddy viscosity models on the quality of retrieved velocity data. The second objective is to determine the fidelity of single-lidar 4DVAR and evaluatemore » the difference between single- and dual-lidar retrievals. The third objective is to correlate the retrieved flow structures with the ground building data. It is found that the approach of treating eddy viscosity as part of control variables yields better results than the approach of prescribing viscosity. The ARL single-lidar 4DVAR is able to retrieve radial velocity fields with an accuracy of 98% in the along-beam direction and 80-90% in the cross-beam direction. For the dual-lidar 4DVAR, the accuracy of retrieved radial velocity in the ARL cross-beam direction improves to 90-94%. By using the dual-lidar retrieved data as a reference, the single-lidar 4DVAR is able to recover fluctuating velocity fields with 70-80% accuracy in the along-beam direction and 60-70% accuracy in the cross-beam direction. Large-scale convective roll structures are found in the vicinity of downtown airpark and parks. Vortical structures are identified near the business district. Strong updrafts and downdrafts are also found above a cluster of restaurants.« less

  20. Lidars for smoke and dust cloud diagnostics

    NASA Astrophysics Data System (ADS)

    Fujimura, S. F.; Warren, R. E.; Lutomirski, R. F.

    1980-11-01

    An algorithm that integrates a time-resolved lidar signature for use in estimating transmittance, extinction coefficient, mass concentration, and CL values generated under battlefield conditions is applied to lidar signatures measured during the DIRT-I tests. Estimates are given for the dependence of the inferred transmittance and extinction coefficient on uncertainties in parameters such as the obscurant backscatter-to-extinction ratio. The enhanced reliability in estimating transmittance through use of a target behind the obscurant cloud is discussed. It is found that the inversion algorithm can produce reliable estimates of smoke or dust transmittance and extinction from all points within the cloud for which a resolvable signal can be detected, and that a single point calibration measurement can convert the extinction values to mass concentration for each resolvable signal point.

  1. Effects of Cloud on Goddard Lidar Observatory for Wind (GLOW) Performance and Analysis of Associated Errors

    NASA Astrophysics Data System (ADS)

    Bacha, Tulu

    The Goddard Lidar Observatory for Wind (GLOW), a mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the troposphere and lower stratosphere region of atmosphere is operated and its errors characterized. It was operated at Howard University Beltsville Center for Climate Observation System (BCCOS) side by side with other operating instruments: the NASA/Langely Research Center Validation Lidar (VALIDAR), Leosphere WLS70, and other standard wind sensing instruments. The performance of Goddard Lidar Observatory for Wind (GLOW) is presented for various optical thicknesses of cloud conditions. It was also compared to VALIDAR under various conditions. These conditions include clear and cloudy sky regions. The performance degradation due to the presence of cirrus clouds is quantified by comparing the wind speed error to cloud thickness. The cloud thickness is quantified in terms of aerosol backscatter ratio (ASR) and cloud optical depth (COD). ASR and COD are determined from Howard University Raman Lidar (HURL) operating at the same station as GLOW. The wind speed error of GLOW was correlated with COD and aerosol backscatter ratio (ASR) which are determined from HURL data. The correlation related in a weak linear relationship. Finally, the wind speed measurements of GLOW were corrected using the quantitative relation from the correlation relations. Using ASR reduced the GLOW wind error from 19% to 8% in a thin cirrus cloud and from 58% to 28% in a relatively thick cloud. After correcting for cloud induced error, the remaining error is due to shot noise and atmospheric variability. Shot-noise error is the statistical random error of backscattered photons detected by photon multiplier tube (PMT) can only be minimized by averaging large number of data recorded. The atmospheric backscatter measured by GLOW along its line-of-sight direction is also used to analyze error due to atmospheric variability within the volume of measurement. GLOW scans in five different directions (vertical and at elevation angles of 45° in north, south, east, and west) to generate wind profiles. The non-uniformity of the atmosphere in all scanning directions is a factor contributing to the measurement error of GLOW. The atmospheric variability in the scanning region leads to difference in the intensity of backscattered signals for scanning directions. Taking the ratio of the north (east) to south (west) and comparing the statistical differences lead to a weak linear relation between atmospheric variability and line-of-sights wind speed differences. This relation was used to make correction which reduced by about 50%.

  2. Registration of Laser Scanning Point Clouds: A Review.

    PubMed

    Cheng, Liang; Chen, Song; Liu, Xiaoqiang; Xu, Hao; Wu, Yang; Li, Manchun; Chen, Yanming

    2018-05-21

    The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become important for geospatial data applications. This paper presents a comprehensive review of LiDAR data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine registration strategy is commonly used for LiDAR point clouds registration. The coarse registration method is first used to achieve a good initial position, based on which registration is then refined utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews current registration methods and their methodologies, and identifies important differences between them. The lack of standard data and unified evaluation systems is identified as a factor limiting objective comparison of different methods. The paper also describes the most commonly-used point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data registration in terms of applications, data, and technology are discussed. In particular, there is a need to address registration of multi-angle and multi-scale data from various newly available types of LiDAR hardware, which will play an important role in diverse applications such as forest resource surveys, urban energy use, cultural heritage protection, and unmanned vehicles.

  3. Registration of Laser Scanning Point Clouds: A Review

    PubMed Central

    Cheng, Liang; Chen, Song; Xu, Hao; Wu, Yang; Li, Manchun

    2018-01-01

    The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become important for geospatial data applications. This paper presents a comprehensive review of LiDAR data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine registration strategy is commonly used for LiDAR point clouds registration. The coarse registration method is first used to achieve a good initial position, based on which registration is then refined utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews current registration methods and their methodologies, and identifies important differences between them. The lack of standard data and unified evaluation systems is identified as a factor limiting objective comparison of different methods. The paper also describes the most commonly-used point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data registration in terms of applications, data, and technology are discussed. In particular, there is a need to address registration of multi-angle and multi-scale data from various newly available types of LiDAR hardware, which will play an important role in diverse applications such as forest resource surveys, urban energy use, cultural heritage protection, and unmanned vehicles. PMID:29883397

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosismore » from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.« less

  5. The Cloud Detection and UV Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.

    2004-01-01

    We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.

  6. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cirrus Parameter Relationships Derived from Satellite and Lidar Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.

    1990-01-01

    Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the FIRE Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4-km visible (0.65 micro-m) and 8-km infrared window (11.5 micro-m) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 0.62 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance, extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface- based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature were ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperatures and cloud thicknesses from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. The parameterization of visible reflectance in terms of cloud optical depth and clear-sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous AVHRR data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloudy pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study of cirrus cloud scattering processes and remote sensing techniques.

  7. The discrimination between crude-oil spills and monomolecular sea slicks by an airborne lidar

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Garrett, W. D.; Hoge, F. E.

    1986-01-01

    Airborne lidar measurements were performed over a deployed monomolecular oleyl alcohol surface film ('slick'), the physicochemical characteristics of which are known to be similar to biogenic organic compounds secreted by plankton and fish, and adjacent 'clean' sea surfaces in the North Sea. In the presence of the slick, the suppression of the Raman backscatter at 381 nm and of two spectral bands indicative of water column fluorescent organic material at 414 and 482 nm were observed. This effect is explained by two possible mechanisms giving rise to a modification of the transmission or coupling of the laser beam into the water column: (1) the damping of capillary and short gravity water waves by the oleyl alcohol slick, and (2) the modification of the uppermost water layer by the oleyl alcohol film. The results obtained in the presence of a slick are compared with data measured over a Murban crude-oil spill with the same lidar system off the coast of the U.S.A. The consequences of the lidar-monomolecular film experiments with regard to the remote detection of crude-oil spills and oil-thickness measurements with an airborne laser fluorosensing system will be discussed.

  8. Classification by Using Multispectral Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Liao, C. T.; Huang, H. H.

    2012-07-01

    Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  9. Automatic registration of Iphone images to LASER point clouds of the urban structures using shape features

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Lindenbergh, R. C.; Menenti, M.

    2013-10-01

    Fusion of 3D airborne laser (LIDAR) data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for registering these two different data from different sensor sources. As we use iPhone camera images which are taken in front of the interested urban structure by the application user and the high resolution LIDAR point clouds of the acquired by an airborne laser sensor. After finding the photo capturing position and orientation from the iPhone photograph metafile, we automatically select the area of interest in the point cloud and transform it into a range image which has only grayscale intensity levels according to the distance from the image acquisition position. We benefit from local features for registering the iPhone image to the generated range image. In this article, we have applied the registration process based on local feature extraction and graph matching. Finally, the registration result is used for facade texture mapping on the 3D building surface mesh which is generated from the LIDAR point cloud. Our experimental results indicate possible usage of the proposed algorithm framework for 3D urban map updating and enhancing purposes.

  10. Topographic lidar survey of the Chandeleur Islands, Louisiana, February 6, 2012

    USGS Publications Warehouse

    Guy, Kristy K.; Plant, Nathaniel G.; Bonisteel-Cormier, Jamie M.

    2014-01-01

    This Data Series Report contains lidar elevation data collected February 6, 2012, for Chandeleur Islands, Louisiana. Point cloud data in lidar data exchange format (LAS) and bare earth digital elevation models (DEMs) in ERDAS Imagine raster format (IMG) are available as downloadable files. The point cloud data—data points described in three dimensions—were processed to extract bare earth data; therefore, the point cloud data are organized into the following classes: 1– and 17–unclassified, 2–ground, 9–water, and 10–breakline proximity. Digital Aerial Solutions, LLC, (DAS) was contracted by the U.S. Geological Survey (USGS) to collect and process these data. The lidar data were acquired at a horizontal spacing (or nominal pulse spacing) of 0.5 meters (m) or less. The USGS conducted two ground surveys in small areas on the Chandeleur Islands on February 5, 2012. DAS calculated a root mean square error (RMSEz) of 0.034 m by comparing the USGS ground survey point data to triangulated irregular network (TIN) models built from the lidar elevation data. This lidar survey was conducted to document the topography and topographic change of the Chandeleur Islands. The survey supports detailed studies of Louisiana, Mississippi and Alabama barrier islands that resolve annual and episodic changes in beaches, berms and dunes associated with processes driven by storms, sea-level rise, and even human restoration activities. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.

  11. Doppler lidar power, aperture diameter, and FFT size trade-off study

    NASA Astrophysics Data System (ADS)

    Chester, David B.; Budge, Scott E.

    2017-05-01

    In the design or selection of a Doppler lidar instrument for a spacecraft landing system, it is important to evaluate the balance between performance requirements and cost, weight, and power consumption. Leveraging the capability of LadarSIM, a trade-off study was performed to evaluate the interaction between the laser transmission power, aperture diameter, and FFT size in a Doppler lidar system. For this study the probabilities of detection and false alarm were calculated using LadarSIM to simulate FMCW lidar systems with varying power, aperture diameter, and FFT size. This paper reports the results of this trade-off study.

  12. Wind Profiling from a High Energy, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar during Field Campaign

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Koch, G. J.; Kavaya, M. J.; Yu, J.; Beyon, J. Y.; Demoz, B.

    2009-12-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. The LaRC mobile lidar was deployed at Howard University facility in Beltsville, Maryland as part of NASA HQ funded (ROSES-2007, Wind Lidar Science Proposal entitled “Intercomparison of Multiple Lidars for Wind Measurements). During the campaign, testing of the lidar was combined with a field campaign to operate a 2-μm coherent lidar alongside a 355-nm direct detection lidar to demonstrate the hybrid wind lidar concept. Besides lidar, many other meteorological sensors were located at the campaign site, including wind measuring balloon sondes, sonic and propeller anemometers mounted on a tower, and a 915-MHz radio acoustic sounding system. Comparisons among these wind measurement sensors are currently being analyzed and should be available for presentation at the Conference.

  13. Characteristics of cirrus clouds and tropical tropopause layer: Seasonal variation and long-term trends

    NASA Astrophysics Data System (ADS)

    Pandit, Amit Kumar; Gadhavi, Harish; Ratnam, M. Venkat; Jayaraman, A.; Raghunath, K.; Rao, S. Vijaya Bhaskara

    2014-12-01

    In the present study, characteristics of tropical cirrus clouds observed during 1998-2013 using a ground-based lidar located at Gadanki (13.5°N, 79.2°E), India, are presented. Altitude occurrences of cirrus clouds as well as its top and base heights are estimated using the advanced mathematical tool, wavelet covariance transform (WCT). The association of observed cirrus cloud properties with the characteristics of tropical tropopause layer (TTL) is investigated using co-located radiosonde measurements available since 2006. In general, cirrus clouds occurred for about 44% of the total lidar observation time (6246 h). The most probable altitude at which cirrus clouds occurr is 14.5 km. The occurrence of cirrus clouds exhibited a strong seasonal dependence with maximum occurrence during monsoon season (76%) and minimum occurrence during winter season (33%) which is consistent with the results reported recently using space-based lidar measurements. Most of the time, cirrus top was located within the TTL (between cold point and convective outflow level) while cirrus base occurred near the convective outflow level. The geometrical thickness of the cirrus cloud is found to be higher during monsoon season compared to winter and there exists a weak inverse relation with TTL thickness. During the observation period the percentage occurrence of cirrus clouds near the tropopause showed an 8.4% increase at 70% confidence level. In the last 16 years, top and base heights of cirrus cloud increased by 0.56 km and 0.41 km, respectively.

  14. Quantifying Wave Breaking Shape and Type in the Surf-Zone Using LiDAR

    NASA Astrophysics Data System (ADS)

    Albright, A.; Brodie, K. L.; Hartzell, P. J.; Glennie, C. L.

    2017-12-01

    Waves change shape as they shoal and break across the surf-zone, ultimately dissipating and transferring their energy into turbulence by either spilling or plunging. This injection of turbulence and changes in wave shape can affect the direction of sediment transport at the seafloor, and ultimately lead to morphological evolution. Typical methods for collecting wave data in the surf-zone include in-situ pressure gauges, velocimeters, ultrasonic sensors, and video imagery. Drawbacks to these data collection methods are low spatial resolution of point measurements, reliance on linear theory to calculate sea-surface elevations, and intensive computations required to extract wave properties from stereo 2D imagery. As a result, few field measurements of the shapes of plunging and/or spilling breakers exist, and existing knowledge is confined to results of laboratory studies. We therefore examine the use of a multi-beam scanning Light Detection and Ranging (LiDAR) remote sensing instrument with the goal of classifying the breaking type of propagating waves in the surf-zone and quantitatively determining wave morphometric properties. Data were collected with a Velodyne HDL-32E LiDAR scanner (360° vertical field of view) mounted on an arm of the Coastal Research Amphibious Buggy (CRAB) at the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. Processed laser scan data are used to visualize the lifecycle of a wave (shoaling, breaking, broken) and identify wave types (spilling, plunging, non-breaking) as they pass beneath the scanner. For each rotation of the LiDAR scanner, the point cloud data are filtered, smoothed, and detrended in order to identify individual waves and measure their properties, such as speed, height, period, upward/downward slope, asymmetry, and skewness. The 3D nature of point cloud data is advantageous for research, because it enables viewing from any angle. In our analysis, plan views are used to separate individual waves, and cross-shore profiles are used to extract wave properties. Combined with accurate georeferencing information, LiDAR has the potential to be a powerful remote sensing tool for coastal monitoring systems and the study of nearshore processes.

  15. Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability.

    PubMed

    McGill, M J; Hart, W D; McKay, J A; Spinhirne, J D

    1999-10-20

    Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar system: the double-edge and the multichannel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only approximately 10-20% compared with nighttime performance, provided that a proper solar filter is included in the instrument design.

  16. LIDAR and Millimeter-Wave Cloud RADAR (MWCR) techniques for joint observations of cirrus in Shouxian (32.56°N, 116.78°E), China

    NASA Astrophysics Data System (ADS)

    Bu, Lingbing; Pan, Honglin; Kumar, K. Raghavendra; Huang, Xingyou; Gao, Haiyang; Qin, Yanqiu; Liu, Xinbo; Kim, Dukhyeon

    2016-10-01

    Cirrus plays an important role in the regulation of the Earth-atmosphere radiation budget. The joint observation using both the LIght Detection And Ranging (LIDAR) and Millimeter-Wave Cloud RADAR (MWCR) was implemented in this study to obtain properties of cirrus at Atmospheric Radiation Measurement (ARM) mobile facility in Shouxian (32.56°N, 116.78°E, 21 m above sea level), China during May-December 2008. We chose the simultaneous measurements of LIDAR and MWCR with effective data days, and the days must with cirrus. Hence, the cirrus properties based on 37 days of data between October 18th and December 13th, 2008 were studied in the present work. By comparing the LIDAR data with the MWCR data, we analyzed the detection capabilities of both instruments quantitatively for measuring the cirrus. The LIDAR cannot penetrate through the thicker cirrus with optical depth (τ) of more than 1.5, while the MWCR cannot sense the clouds with an optical depth of less than 0.3. Statistical analysis showed that the mean cloud base height (CBH) and cloud thickness (CT) of cirrus were 6.5±0.8 km and 2.1±1.1 km, respectively. Furthermore, we investigated three existing inversion methods for deriving the ice water content (IWC) by using the separate LIDAR, MWCR, and the combination of both, respectively. Based on the comparative analysis, a novel joint method was provided to obtain more accurate IWC. In this joint method, cirrus was divided into three different categories according to the optical depth (τ≤0.3, τ≥1.5, and 0.3<τ<1.5). Based on the joint method used in this study, the mean IWC was calculated by means of the statistics, which showed that the mean IWC of cirrus was 0.011±0.008 g m-3.

  17. A new retrieval method for the ice water content of cirrus using data from the CloudSat and CALIPSO

    NASA Astrophysics Data System (ADS)

    Pan, Honglin; Bu, Lingbing; Kumar, K. Raghavendra; Gao, Haiyang; Huang, Xingyou; Zhang, Wentao

    2017-08-01

    The CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) are the members of satellite observation system of A-train to achieve the quasi-synchronization observation on the same orbit. With the help of active (CALIOP and CPR) and passive payloads from these two satellites, respectively, unprecedented detailed information of microphysical properties of ice cloud can be retrieved. The ice water content (IWC) is regarded as one of the most important microphysical characteristics of cirrus for its prominent role in cloud radiative forcing. In this paper, we proposed a new joint (Combination) retrieval method using the full advantages of different well established retrieval methods, namely the LIDAR method (for the region Lidar-only), the MWCR method (for the region Radar-only), and Wang method (for the region Lidar-Radar) proposed by Wang et al. (2002). In retrieval of cirrus IWC, empirical formulas of the exponential type were used for both thinner cirrus (detected by Lidar-only), thicker cirrus (detected by radar-only), and the part of cirrus detected by both, respectively. In the present study, the comparison of various methods verified that our proposed new joint method is more comprehensive, rational and reliable. Further, the retrieval information of cirrus is complete and accurate for the region that Lidar cannot penetrate and Radar is insensitive. On the whole, the retrieval results of IWC showed certain differences retrieved from the joint method, Ca&Cl, and ICARE which can be interpreted from the different hypothesis of microphysical characteristics and parameters used in the retrieval method. In addition, our joint method only uses the extinction coefficient and the radar reflectivity factor to calculate the IWC, which is simpler and reduces to some extent the accumulative error. In future studies, we will not only compare the value of IWC but also explore the detailed macrophysical and microphysical characteristics of cirrus.

  18. Features of Point Clouds Synthesized from Multi-View ALOS/PRISM Data and Comparisons with LiDAR Data in Forested Areas

    NASA Technical Reports Server (NTRS)

    Ni, Wenjian; Ranson, Kenneth Jon; Zhang, Zhiyu; Sun, Guoqing

    2014-01-01

    LiDAR waveform data from airborne LiDAR scanners (ALS) e.g. the Land Vegetation and Ice Sensor (LVIS) havebeen successfully used for estimation of forest height and biomass at local scales and have become the preferredremote sensing dataset. However, regional and global applications are limited by the cost of the airborne LiDARdata acquisition and there are no available spaceborne LiDAR systems. Some researchers have demonstrated thepotential for mapping forest height using aerial or spaceborne stereo imagery with very high spatial resolutions.For stereo imageswith global coverage but coarse resolution newanalysis methods need to be used. Unlike mostresearch based on digital surface models, this study concentrated on analyzing the features of point cloud datagenerated from stereo imagery. The synthesizing of point cloud data from multi-view stereo imagery increasedthe point density of the data. The point cloud data over forested areas were analyzed and compared to small footprintLiDAR data and large-footprint LiDAR waveform data. The results showed that the synthesized point clouddata from ALOSPRISM triplets produce vertical distributions similar to LiDAR data and detected the verticalstructure of sparse and non-closed forests at 30mresolution. For dense forest canopies, the canopy could be capturedbut the ground surface could not be seen, so surface elevations from other sourceswould be needed to calculatethe height of the canopy. A canopy height map with 30 m pixels was produced by subtracting nationalelevation dataset (NED) fromthe averaged elevation of synthesized point clouds,which exhibited spatial featuresof roads, forest edges and patches. The linear regression showed that the canopy height map had a good correlationwith RH50 of LVIS data with a slope of 1.04 and R2 of 0.74 indicating that the canopy height derived fromPRISM triplets can be used to estimate forest biomass at 30 m resolution.

  19. First results of cirrus clouds properties by means of a pollyxt raman lidar at two measurement sites

    NASA Astrophysics Data System (ADS)

    Voudouri, Kalliopi-Artemis; Giannakaki, Elina; Komppula, Mika; Balis, Dimitris

    2018-04-01

    Geometrical and optical characteristics of cirrus clouds using Raman lidar PollyXT measurements at different locations are presented. The PollyXT has been participated in two long-term experimental campaigns, one close to New Delhi in India and one at Elandsfontein in South Africa, providing continuous measurements and covering a wide range of cloud types. First results of cirrus cloud properties at different latitudes, as well as their temporal distributions are presented in this study. An automatic cirrus clouds detection algorithm is applied based on the wavelet covariance transform. The measurements at New Delhi performed from March 2008 to February 2009, while at Elandsfontein measurements were performed from December 2009 to January 2011.

  20. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.

    2013-01-01

    We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were <1.4 ppm for flight measurement altitudes >6 km.

  1. Cloud and aerosol occurrences in the UTLS region across Pakistan during summer monsoon seasons using CALIPSO and CloudSat observations

    NASA Astrophysics Data System (ADS)

    Chishtie, Farrukh

    2016-04-01

    As part of the A-train NASA constellation, Coudsat and CALIPSO provide an unprecedented vertical observation of clouds and aerosols. Using observational data from both of these satellites, we conduct a multi-year analysis from 2006-2014, of the UTLS (Upper Troposphere and the Lower Stratosphere) region. We map out cloud and aerosol occurrences in this region across Pakistan, specifically around the summer monsoon season. Over the past five years, Pakistan has faced tremendous challenges due to massive flooding as well as earlier brief monsoon seasons of low precipitation and short drought periods. Hence, this motivates the present study towards understanding the deep convective and related dynamics in this season which can possibly influence cloud and aerosol transport in the region. Further, while global studies are conducted, the goal of this study is to conduct a detailed study of cloud, aerosols and their interplay, across Pakistan. Due to a dearth of ground observations, this study provides a dedicated focus on the UTLS domain. Vertical profiling satellites in this region are deemed important as there are no ground observations being done. This is important as both the properties and dynamics of clouds and aerosols have to be studied in a wider context in order to better understand the monsoon season and its onset in this region. With the CALIPSO Vertical Feature Mask (VFM), Total Attenuated Backscatter (TAB) and Depolarization Ratio (DR) as well as the combined CloudSat's 2B-GEOPROF-LIDAR (Radar-Lidar Cloud Geometrical Profile) and 2B-CLDCLASS-LIDAR (Radar-Lidar Cloud Classification) products, we find the presence of thin cirrus clouds in the UTLS region in the periods of June-September from the 2006-2014 period. There are marked differences in day observations as compared to night in both of these satellite retrievals, with the latter period finding more occurrences of clouds in the UTLS region. Dedicated CloudSat products 2B-CLDCLASS (cloud classification) and 2C-TAU (Cloud Optical Depth) further confirm the presence of sub-visual and thin cirrus clouds in the UTLS region, during the summer monsoon season. From CALIPSO observations, there is significant presence of aerosol layers before the onset of precipitation in the troposphere. This thickness ranges from 1-4 km, with increasing thickness observed the 2009-2014 period. Implications of these findings are detailed in this presentation.

  2. Global Lidar Measurements of Clouds and Aerosols from Space Using the Geoscience Laser Altimeter System (GLAS)

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Palm, S. P.; Welton, E. J.; Hart, W. D.; Spinhirne, J. D.; McGill, M.; Mahesh, A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Geoscience Laser Altimeter System (GLAS) is scheduled for launch on the ICESat satellite as part of the NASA EOS mission in 2002. GLAS will be used to perform high resolution surface altimetry and will also provide a continuously operating atmospheric lidar to profile clouds, aerosols, and the planetary boundary layer with horizontal and vertical resolution of 175 and 76.8 m, respectively. GLAS is the first active satellite atmospheric profiler to provide global coverage. Data products include direct measurements of the heights of aerosol and cloud layers, and the optical depth of transmissive layers. In this poster we provide an overview of the GLAS atmospheric data products, present a simulated GLAS data set, and show results from the simulated data set using the GLAS data processing algorithm. Optical results from the ER-2 Cloud Physics Lidar (CPL), which uses many of the same processing algorithms as GLAS, show algorithm performance with real atmospheric conditions during the Southern African Regional Science Initiative (SAFARI 2000).

  3. Airborne Validation of Spatial Properties Measured by the CALIPSO Lidar

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Vaughan, Mark A.; Trepte, Charles Reginald; Hart, William D.; Hlavka, Dennis L.; Winker, David M.; Keuhn, Ralph

    2007-01-01

    The primary payload onboard the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite is a dual-wavelength backscatter lidar designed to provide vertical profiling of clouds and aerosols. Launched in April 2006, the first data from this new satellite was obtained in June 2006. As with any new satellite measurement capability, an immediate post-launch requirement is to verify that the data being acquired is correct lest scientific conclusions begin to be drawn based on flawed data. A standard approach to verifying satellite data is to take a similar, or validation, instrument and fly it onboard a research aircraft. Using an aircraft allows the validation instrument to get directly under the satellite so that both the satellite instrument and the aircraft instrument are sensing the same region of the atmosphere. Although there are almost always some differences in the sampling capabilities of the two instruments, it is nevertheless possible to directly compare the measurements. To validate the measurements from the CALIPSO lidar, a similar instrument, the Cloud Physics Lidar, was flown onboard the NASA high-altitude ER-2 aircraft during July- August 2006. This paper presents results to demonstrate that the CALIPSO lidar is properly calibrated and the CALIPSO Level 1 data products are correct. The importance of the results is to demonstrate to the research community that CALIPSO Level 1 data can be confidently used for scientific research.

  4. A graph signal filtering-based approach for detection of different edge types on airborne lidar data

    NASA Astrophysics Data System (ADS)

    Bayram, Eda; Vural, Elif; Alatan, Aydin

    2017-10-01

    Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.

  5. Lidar observation of Eyjafjallajoekull ash layer evolution above the Swiss Plateau

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; Dinoev, Todor; Parlange, Mark; Serikov, Ilya; Calpini, Bertrand; Wienhold, F.; Engel, I.; Brabec, M.; Crisian, A.; Peter, T.; Mitev, Valentin; Matthey, R.

    2010-05-01

    The Iceland volcano Eyjafjallajökull started to emit significant amounts of volcanic ash and SO2 on 15th April 2010, following the initial eruption on 20th March 2010. In the next days, the ash was dispersed over large parts of Europe resulting in the closure of the major part of the European airspace. Information about spatial and temporal evolution of the cloud was needed urgently to define the conditions for opening the airspace. Satellite, airborne and ground observations together with meteorological models were used to evaluate the cloud propagation and evolution. While the horizontal extents of the volcanic cloud were accurately captured by satellite images, it remained difficult to obtain accurate information about the cloud base and top height, density and dynamics. During this event lidars demonstrated that they were the only ground based instruments allowing monitoring of the vertical distribution of the volcanic ash. Here we present observational results showing the evolution of the volcanic layer over the Swiss plateau. The measurements were carried out by one Raman lidar located in Payerne, two elastic lidars located in Neuchatel and Zurich, and a backscatter sonde launched from Zurich. The observations by the lidars have shown very similar time evolution, coherent with the backscatter sonde profiles and characterized by the appearance of the ash layer on the evening of 16th, followed by descend to 2-3 km during the next day and final mixing with the ABL on 19th. Simultaneous water vapor data from the Payerne lidar show low water content of the ash layer. The CSEM and EPFL gratefully acknowledge the financial support by the European Commission under grant RICA-025991.

  6. Lidar observations of high altitude cirrus near the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Parameswaran, K.; Kumar, S. Sunil; Krishna Murthy, B.

    High altitude cirrus plays a significant role in atmospheric chemistry, radiation and troposphere-stratosphere exchanges. Studies on their global morphology using satellite data (SAGE) suggests that over the tropics these clouds occur quite frequently in the altitude region around 14 to 16 km with favoured locations centred over Southern Asia, India and Mexico. A monostatic Nd:YAG lidar (operating at 532 nm wavelength) located at National MST Radar Facility (NMRF), Gadanki (13.5°N, 79.2°E) provides an excellent opportunity to study the properties of these clouds. Lidar observations for ~120 nights during the period January 1999 to March 2000 are used to investigate the physical and optical properties of these clouds aswell as their spatial (altitude) and temporal variability. Based on optical depth ( c ) cirrus clouds are classified as Sub-visual Cirrus (SVC) with c 0.03, Thin Cirrus (TC) with 0.030.3. While SVCs are observed anywhere in the altitude region 12 to 18 km, with favoured altitude above 15 km, TCs and DCs usually occur around 14.5+/-1km. The altitude region 14 to 16km appears to be more conducive for cirrus formation. Even though the geometrical thickness (vertical extent) of these clouds varies from 0.3 to 3 km, they are mostly confined to altitudes below the level of tropopause temperature inversion. The cloud optical depth maximises around the post-mid-night period. These clouds also introduce significant depolarisation for the backscattered radiation indicating presence of abundant non-spherical particles presumably ice-crystals. Under favourable conditions these ice-crystals get aligned horizontally to enhance the co - polarized component of lidar backscatter signal through specular reflection, leading to a decrease in cloud depolarisation () below the ambient molecular depolarisation (m ). Such conditions are usually encountered in the case of optically dense clouds. Altitude profile of backscatter ratio within the cloud shows that the cloud is not optically symmetric with respect to the geometric centre. This asymmetry parameter () of the cloud shows significant temporal variability. For clouds with> m , as c increases, the optical centre descends in altitude and for clouds with< m the optical centre ascends as c increases. Occurrence of cirrus clouds and their optical properties are found to be closely associated with the characteristics of atmospheric turbulence in the upper troposphere.

  7. Development of dual-wavelength Mie polarization Raman lidar for aerosol and cloud vertical structure probing

    NASA Astrophysics Data System (ADS)

    Wang, Zhenzhu; Liu, Dong; Wang, Yingjian; Wang, Bangxin; Zhong, Zhiqing; Xie, Chenbo; Wu, Decheng; Bo, Guangyu; Shao, Jie

    2014-11-01

    A Dual-wavelength Mie Polarization Raman Lidar has been developed for cloud and aerosol optical properties measurement. This idar system has built in Hefei and passed the performance assessment in 2012, and then moved to Jinhua city to carry out the long-term continuous measurements of vertical distribution of regional cloud and aerosol. A double wavelengths (532 and 1064 nm) Nd-YAG laser is employed as emitting source and four channels are used for detecting back-scattering signals from atmosphere aerosol and cloud including 1064 nm Mie, 607 nm N2 Raman, two 532 nm Orthogonal Polarization channels. The temporal and spatial resolutions for this system, which is operating with a continuing mode (24/7) automatically, are 30s and 7.5m, respectively. The measured data are used for investigating the aerosol and cloud vertical structure and cloud phase from combining of cloud signal intensity, polarization ratio and color ratio.

  8. Multi-sensor measurements of mixed-phase clouds above Greenland

    NASA Astrophysics Data System (ADS)

    Stillwell, Robert A.; Shupe, Matthew D.; Thayer, Jeffrey P.; Neely, Ryan R.; Turner, David D.

    2018-04-01

    Liquid-only and mixed-phase clouds in the Arctic strongly affect the regional surface energy and ice mass budgets, yet much remains unknown about the nature of these clouds due to the lack of intensive measurements. Lidar measurements of these clouds are challenged by very large signal dynamic range, which makes even seemingly simple tasks, such as thermodynamic phase classification, difficult. This work focuses on a set of measurements made by the Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland and its retrieval algorithms, which use both analog and photon counting as well as orthogonal and non-orthogonal polarization retrievals to extend dynamic range and improve overall measurement quality and quantity. Presented here is an algorithm for cloud parameter retrievals that leverages enhanced dynamic range retrievals to classify mixed-phase clouds. This best guess retrieval is compared to co-located instruments for validation.

  9. A 3D Cloud-Construction Algorithm for the EarthCARE Satellite Mission

    NASA Technical Reports Server (NTRS)

    Barker, H. W.; Jerg, M. P.; Wehr, T.; Kato, S.; Donovan, D. P.; Hogan, R. J.

    2011-01-01

    This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data.

  10. Prospects of the ICESat-2 Laser Altimetry Mission for Savanna Ecosystem Structural Studies Based on Airborne Simulation Data

    NASA Technical Reports Server (NTRS)

    Gwenzi, David; Lefsky, Michael A.; Suchdeo, Vijay P.; Harding, David J.

    2016-01-01

    The next planned spaceborne lidar mission is the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), which will use the Advanced Topographic Laser Altimeter System (ATLAS) sensor, a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in an oak savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA's Goddard Space Flight Center. ATLAS-like data was generated using the MATLAS simulator, which adjusts MABEL data's detected number of signal and noise photons to that expected from the ATLAS instrument. Transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we chose to use data from the near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 14 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an automated algorithm to identify cut off points where the cumulative density of photons from the highest elevation indicates the presence of the canopy top and likewise where such cumulative density from the lowest elevation indicates the mean terrain elevation. MABEL derived height metrics were moderately correlated to discrete return lidar (DRL) derived height metrics r(sub 2) and RMSE values ranging from 0.60 to 0.73 and 2.9 m to 4.4 m respectively) but MATLAS simulation resulted in more modest correlations with DRL indices r(sub 2) ranging from 0.5 to 0.64 and RMSE from 3.6 m to 4.6 m). Simulations also indicated that the expected number of signal photons from ATLAS will be substantially lower, a situation that reduces canopy height estimation precision especially in areas of low density vegetation cover. On the basis of the simulated data, there is reason to believe that the ability of ICESat-2 to estimate height in savannas will be comparable to the original ICESat mission although the respective sensors have different measurement principles.

  11. Three-beam aerosol backscatter correlation lidar for wind profiling

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  12. Important LiDAR metrics for discriminating forest tree species in Central Europe

    NASA Astrophysics Data System (ADS)

    Shi, Yifang; Wang, Tiejun; Skidmore, Andrew K.; Heurich, Marco

    2018-03-01

    Numerous airborne LiDAR-derived metrics have been proposed for classifying tree species. Yet an in-depth ecological and biological understanding of the significance of these metrics for tree species mapping remains largely unexplored. In this paper, we evaluated the performance of 37 frequently used LiDAR metrics derived under leaf-on and leaf-off conditions, respectively, for discriminating six different tree species in a natural forest in Germany. We firstly assessed the correlation between these metrics. Then we applied a Random Forest algorithm to classify the tree species and evaluated the importance of the LiDAR metrics. Finally, we identified the most important LiDAR metrics and tested their robustness and transferability. Our results indicated that about 60% of LiDAR metrics were highly correlated to each other (|r| > 0.7). There was no statistically significant difference in tree species mapping accuracy between the use of leaf-on and leaf-off LiDAR metrics. However, combining leaf-on and leaf-off LiDAR metrics significantly increased the overall accuracy from 58.2% (leaf-on) and 62.0% (leaf-off) to 66.5% as well as the kappa coefficient from 0.47 (leaf-on) and 0.51 (leaf-off) to 0.58. Radiometric features, especially intensity related metrics, provided more consistent and significant contributions than geometric features for tree species discrimination. Specifically, the mean intensity of first-or-single returns as well as the mean value of echo width were identified as the most robust LiDAR metrics for tree species discrimination. These results indicate that metrics derived from airborne LiDAR data, especially radiometric metrics, can aid in discriminating tree species in a mixed temperate forest, and represent candidate metrics for tree species classification and monitoring in Central Europe.

  13. Assessment of the CALIPSO Lidar 532 nm Attenuated Backscatter Calibration Using the NASA LaRC Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Rogers, Raymond R.; Hostetler, Chris A.; Hair, Johnathan W.; Ferrare, Richard A.; Liu, Zhaoyan; Obland, Michael D.; Harper, David B.; Cook, Anthony L.; Powell, Kathleen A.; Vaughan, Mark A.; hide

    2011-01-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft has provided global, high-resolution vertical profiles of aerosols and clouds since it became operational on 13 June 2006. On 14 June 2006, the NASA Langley Research Center (LaRC) High Spectral Resolution Lidar (HSRL) was deployed aboard the NASA Langley B-200 aircraft for the first of a series of 86 underflights of the CALIPSO satellite to provide validation measurements for the CALIOP data products. To better assess the range of conditions under which CALIOP data products are produced, these validation flights were conducted under both daytime and nighttime lighting conditions, in multiple seasons, and over a large range of latitudes and aerosol and cloud conditions. This paper presents a quantitative assessment of the CALIOP 532 nm calibration (through the 532 nm total attenuated backscatter) using an internally calibrated airborne HSRL underflight data and is the most extensive study of CALIOP 532 nm calibration. Results show that average HSRL and CALIOP 532 nm total attenuated backscatter agree on average within 2.7% +/- 2.1% (CALIOP lower) at night and within 2.9 % +/- 3.9% (CALIOP lower) during the day., demonstrating the accuracy of the CALIOP 532 nm calibration algorithms. Additionally, comparisons with HSRL show consistency of the CALIOP calibration before and after the laser switch in 2009 as well as improvements in the daytime version 3 calibration scheme compared with the version 2 calibration scheme. Potential systematic uncertainties in the methodology relevant to validating satellite lidar measurements with an airborne lidar system are discussed and found to be less than 3.7% for this validation effort with HSRL. Results from this study are also compared to those from prior assessments of CALIOP calibration and attenuated backscatter.

  14. Novel Methods for Measuring LiDAR

    NASA Astrophysics Data System (ADS)

    Ayrey, E.; Hayes, D. J.; Fraver, S.; Weiskittel, A.; Cook, B.; Kershaw, J.

    2017-12-01

    The estimation of forest biometrics from airborne LiDAR data has become invaluable for quantifying forest carbon stocks, forest and wildlife ecology research, and sustainable forest management. The area-based approach is arguably the most common method for developing enhanced forest inventories from LiDAR. It involves taking a series of vertical height measurements of the point cloud, then using those measurements with field measured data to develop predictive models. Unfortunately, there is considerable variation in methodology for collecting point cloud data, which can vary in pulse density, seasonality, canopy penetrability, and instrument specifications. Today there exists a wealth of public LiDAR data, however the variation in acquisition parameters makes forest inventory prediction by traditional means unreliable across the different datasets. The goal of this project is to test a series of novel point cloud measurements developed along a conceptual spectrum of human interpretability, and then to use the best measurements to develop regional enhanced forest inventories on Northern New England's and Atlantic Canada's public LiDAR. Similarly to a field-based inventory, individual tree crowns are being segmented, and summary statistics are being used as covariates. Established competition and structural indices are being generated using each tree's relationship to one another, whilst existing allometric equations are being used to estimate diameter and biomass of each tree measured in the LiDAR. Novel metrics measuring light interception, clusteredness, and rugosity are also being measured as predictors. On the other end of the human interpretability spectrum, convolutional neural networks are being employed to directly measure both the canopy height model, and the point clouds by scanning each using two and three dimensional kernals trained to identify features useful for predicting biological attributes such as biomass. Predictive models will be trained and tested against one another using 28 different sites and over 42 different LiDAR acquisitions. The optimal model will then be used to generate regional wall-to-wall forest inventories at a 10 m resolution.

  15. Accuracy evaluation of 3D lidar data from small UAV

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. M.; Bissmarck, Fredrik; Larsson, Hâkan; Grönwall, Christina; Tolt, Gustav

    2015-10-01

    A UAV (Unmanned Aerial Vehicle) with an integrated lidar can be an efficient system for collection of high-resolution and accurate three-dimensional (3D) data. In this paper we evaluate the accuracy of a system consisting of a lidar sensor on a small UAV. High geometric accuracy in the produced point cloud is a fundamental qualification for detection and recognition of objects in a single-flight dataset as well as for change detection using two or several data collections over the same scene. Our work presented here has two purposes: first to relate the point cloud accuracy to data processing parameters and second, to examine the influence on accuracy from the UAV platform parameters. In our work, the accuracy is numerically quantified as local surface smoothness on planar surfaces, and as distance and relative height accuracy using data from a terrestrial laser scanner as reference. The UAV lidar system used is the Velodyne HDL-32E lidar on a multirotor UAV with a total weight of 7 kg. For processing of data into a geographically referenced point cloud, positioning and orientation of the lidar sensor is based on inertial navigation system (INS) data combined with lidar data. The combination of INS and lidar data is achieved in a dynamic calibration process that minimizes the navigation errors in six degrees of freedom, namely the errors of the absolute position (x, y, z) and the orientation (pitch, roll, yaw) measured by GPS/INS. Our results show that low-cost and light-weight MEMS based (microelectromechanical systems) INS equipment with a dynamic calibration process can obtain significantly improved accuracy compared to processing based solely on INS data.

  16. Using Lidar and color infrared imagery to successfully measure stand characteristics on the William B. Bankhead National Forest, Alabama

    Treesearch

    Jeffrey Stephens; Luben Dimov; Callie Schweitzer; Wubishet Tadesse

    2008-01-01

    Light detection and ranging (Lidar) and color infrared imagery (CIR) were used to quantify forest structure and to distinguish deciduous from coniferous trees for selected stands on the William B. Bankhead National Forest in Alabama. Lidar bare ground and vegetation point clouds were used to determine tree heights and tree locations. Lidar accuracy was assessed by...

  17. Earlinet validation of CATS L2 product

    NASA Astrophysics Data System (ADS)

    Proestakis, Emmanouil; Amiridis, Vassilis; Kottas, Michael; Marinou, Eleni; Binietoglou, Ioannis; Ansmann, Albert; Wandinger, Ulla; Yorks, John; Nowottnick, Edward; Makhmudov, Abduvosit; Papayannis, Alexandros; Pietruczuk, Aleksander; Gialitaki, Anna; Apituley, Arnoud; Muñoz-Porcar, Constantino; Bortoli, Daniele; Dionisi, Davide; Althausen, Dietrich; Mamali, Dimitra; Balis, Dimitris; Nicolae, Doina; Tetoni, Eleni; Luigi Liberti, Gian; Baars, Holger; Stachlewska, Iwona S.; Voudouri, Kalliopi-Artemis; Mona, Lucia; Mylonaki, Maria; Rita Perrone, Maria; João Costa, Maria; Sicard, Michael; Papagiannopoulos, Nikolaos; Siomos, Nikolaos; Burlizzi, Pasquale; Engelmann, Ronny; Abdullaev, Sabur F.; Hofer, Julian; Pappalardo, Gelsomina

    2018-04-01

    The Cloud-Aerosol Transport System (CATS) onboard the International Space Station (ISS), is a lidar system providing vertically resolved aerosol and cloud profiles since February 2015. In this study, the CATS aerosol product is validated against the aerosol profiles provided by the European Aerosol Research Lidar Network (EARLINET). This validation activity is based on collocated CATS-EARLINET measurements and the comparison of the particle backscatter coefficient at 1064nm.

  18. Classifying stages of cirrus life-cycle evolution

    NASA Astrophysics Data System (ADS)

    Urbanek, Benedikt; Groß, Silke; Schäfler, Andreas; Wirth, Martin

    2018-04-01

    Airborne lidar backscatter data is used to determine in- and out-of-cloud regions. Lidar measurements of water vapor together with model temperature fields are used to calculate relative humidity over ice (RHi). Based on temperature and RHi we identify different stages of cirrus evolution: homogeneous and heterogeneous freezing, depositional growth, ice sublimation and sedimentation. We will present our classification scheme and first applications on mid-latitude cirrus clouds.

  19. Evaluation of AIRS cloud properties using MPACE data

    NASA Astrophysics Data System (ADS)

    Wu, Xuebao; Li, Jun; Menzel, W. Paul; Huang, Allen; Baggett, Kevin; Revercomb, Henry

    2005-12-01

    Retrieval of cloud properties from the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite has been investigated. The cloud products from the collocated MODerate resolution Imaging Spectroradiometer (MODIS) data are used to characterize the AIRS sub-pixel cloud information such as cloud phase, cloud coverage, and cloud layer information. A Minimum Residual (MR) approach is used to retrieve cloud microphysical properties once the cloud top pressure (CTP) and effective cloud amount (ECA) are determined from AIRS CO2 absorption channels between 720 and 790 cm-1. The cloud microphysical properties can be retrieved by minimizing the differences between the observations and the calculations using AIRS longwave window channels between 790 and 1130 cm-1. AIRS is used to derive cloud properties during the Mixed Phase Arctic Cloud Experiment (MPACE) field campaign. Comparison with measurements obtained from lidar data is made for a test day, showing that AIRS cloud property retrievals agree with in situ lidar observations. Due to the large solar zenith angle, the MODIS operational retrieval approach is not able to provide cloud microphysics north of Barrow, Alaska; however, AIRS provides cloud microphysical properties with its high spectral resolution IR measurements.

  20. Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    NASA Technical Reports Server (NTRS)

    Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph

    2012-01-01

    Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a dispersive media, the effect of both phase and group indices have to be considered. Taking all these factors into account, a method was developed to measure targets through multiple regions of different materials and produce results that are absolute measurements of target position in three-dimensional space, rather than simply relative position. The environment in which the lidar measurements are taken must be broken down into separate regions of interest and each region solved for separately. In this case, there were three regions of interest: air, fused silica, and vacuum. The angular position of the target inside the chamber is solved using only phase index and phase velocity, while the ranging effects due to travel from air to glass to vacuum/air are solved with group index and group velocity. When all parameters are solved simultaneously, an absolute knowledge of the position of each target within an environmental chamber can be derived. Novel features of this innovation include measuring absolute position of targets through multiple dispersive and non-dispersive media, deconstruction of lidar raw data from a commercial off-the-shelf unit into reworkable parameters, and use of group velocities to reduce range data. Measurement of structures within a vacuum chamber or other harsh environment, such as a furnace, may now be measured as easily as if they were in an ambient laboratory. This analysis permits transformation of the raw data into absolute spatial units (e.g., mm). This technique has also been extended to laser tracker, theodolite, and cathetometer measurements through refractive media.

  1. Simulation of a Doppler lidar system for autonomous navigation and hazard avoidance during planetary landing

    NASA Astrophysics Data System (ADS)

    Budge, Scott E.; Chester, David B.

    2016-05-01

    The latest mission proposals for exploration of solar system bodies require accurate position and velocity data during the descent phase in order to ensure safe, soft landing at the pre-designated sites. During landing maneuvers, the accuracy of the on-board inertial measurement unit (IMU) may not be reliable due to drift over extended travel times to destinations. NASA has proposed an advanced Doppler lidar system with multiple beams that can be used to accurately determine attitude and position of the landing vehicle during descent, and to detect hazards that might exist in the landing area. In order to assess the effectiveness of such a Doppler lidar landing system, it is valuable to simulate the system with different beam numbers and configurations. In addition, the effectiveness of the system to detect and map potential landing hazards must be understood. This paper reports the simulated system performance for a proposed multi-beam Doppler lidar using the LadarSIM system simulation software. Details of the simulation methods are given, as well as lidar performance parameters such as range and velocity accuracy, detection and false alarm rates, and examples of the Doppler lidars ability to detect and characterize simulated hazards in the landing site. The simulation includes modulated pulse generation and coherent detection methods, beam footprint simulation, beam scanning, and interaction with terrain.

  2. CALIPSO Observations of Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Wood, Robert

    2015-01-01

    This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of attenuated backscatter depend on cloud fraction. The results for a large region around the Azores show that: (1) far-from-cloud aerosol statistics are dominated by samples from scenes with lower cloud fractions, while near-cloud aerosol statistics are dominated by samples from scenes with higher cloud fractions; (2) near-cloud enhancements of attenuated backscatter occur for any cloud fraction but are most pronounced for higher cloud fractions; (3) the difference in the enhancements for different cloud fractions is most significant within 5km from clouds; (4) near-cloud enhancements can be well approximated by logarithmic functions of cloud fraction and distance to clouds. These findings demonstrate that if variability in cloud fraction across the scenes used to composite aerosol statistics are not considered, a sampling artifact will affect these statistics calculated as a function of distance to clouds. For the Azores-region dataset examined here, this artifact occurs mostly within 5 km from clouds, and exaggerates the near-cloud enhancements of lidar backscatter and color ratio by about 30. This shows that for accurate characterization of the changes in aerosol properties with distance to clouds, it is important to account for the impact of changes in cloud fraction.

  3. CALIPSO Satellite Lidar Identification Of Elevated Dust Over Australia Compared With Air Quality Model PM60 Forecasts

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Vaughan, Mark; Omar, Ali; Liu, Zhaoyan; Lee, Sunhee; Hu, Youngxiang; Cope, Martin

    2008-01-01

    Global measurements of the vertical distribution of clouds and aerosols have been recorded by the lidar on board the CALIPSO (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) satellite since June 2006. Such extensive, height-resolved measurements provide a rare and valuable opportunity for developing, testing and validating various atmospheric models, including global climate, numerical weather prediction, chemical transport and air quality models. Here we report on the initial results of an investigation into the performance of the Australian Air Quality Forecast System (AAQFS) model in forecasting the distribution of elevated dust over the Australian region. The model forecasts of PM60 dust distribution are compared with the CALIPSO lidar Vertical Feature Mask (VFM) data product. The VFM classifies contiguous atmospheric regions of enhanced backscatter as either cloud or aerosols. Aerosols are further classified into six subtypes. By comparing forecast PM60 concentration profiles to the spatial distribution of dust reported in the CALIPSO VFM, we can assess the model s ability to predict the occurrence and the vertical and horizontal extents of dust events within the study area.

  4. High Spectral Resolution Lidar Measurements of Multiple Scattering

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P.

    1996-01-01

    The University of Wisconsin High Spectral Resolution Lidar (HSRL) provides unambiguous measurements of backscatter cross section, backscatter phase function, depolarization, and optical depth. This is accomplished by dividing the lidar return into separate particulate and molecular contributions. The molecular return is then used as a calibration target. We have modified the HSRL to use an I2 molecular absorption filter to separate aerosol and molecular signals. This allows measurement in dense clouds. Useful profiles extend above the cloud base until the two way optical depth reaches values between 5 and 6; beyond this, photon counting errors become large. In order to observe multiple scattering, the HSRL includes a channel which records the combined aerosol and molecular lidar return simultaneously with the spectrometer channel measurements of optical properties. This paper describes HSRL multiple scattering measurements from both water and ice clouds. These include signal strengths and depolarizations as a function of receiver field of view. All observations include profiles of extinction and backscatter cross sections. Measurements are also compared to predictions of a multiple scattering model based on small angle approximations.

  5. Understanding Beam Alignment in a Coherent Lidar System

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Roychoudhari, Chandrasekhar

    2015-01-01

    Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.

  6. Initial Results from CALIPSO

    NASA Technical Reports Server (NTRS)

    Winker, David M.; Pelon, Jacques; McCormick, M. Patrick

    2006-01-01

    CALIPSO will carry the first polarization lidar in orbit, along with infrared and visible passive imagers, and will fly in formation as part of the Afternoon Constellation (A-train). The acquisition of observations which are simultaneous and coincident with observations from other instruments of the A-train will allow numerous synergies to be realized from combining CALIPSO observations with observations from other platforms. In particular, cloud observations from the CALIPSO lidar and the CloudSat radar will complement each other, together encompassing the variety of clouds found in the atmosphere, from thin cirrus to deep convective clouds. CALIPSO has been developed within the framework of a collaboration between NASA and CNES and is currently scheduled to launch, along with the CloudSat satellite, in spring 2006. This paper will present an overview of the CALIPSO mission, including initial results.

  7. Drivers in the Scaling Between Precipitation and Cloud Radiative Impacts in Deep Convection

    NASA Astrophysics Data System (ADS)

    Rapp, A. D.; Sun, L.; Smalley, K.

    2017-12-01

    The coupling between changes in radiation and precipitation has been demonstrated by a number of studies and suggests an important link between cloud and precipitation processes for defining climate sensitivity. Precipitation and radiative fluxes from CloudSat/CALIPSO retrieval products are used to examine the relationship between precipitation and cloud radiative impacts through two dimensionless parameters. The surface radiative cooling impact, Rc, represents the ratio of the surface shortwave cloud radiative effect to latent heating (LH) from precipitation. The atmospheric radiative heating impact, Rh, represents the ratio of the atmospheric cloud radiative effect to LH from precipitation. Together, these parameters describe the relationship between precipitation processes and how efficiently clouds cools the surface or heats the atmosphere. Deep convective clouds are identified using the 2B-GEOPROF-LIDAR joint radar-lidar product and the cloud radiative impact parameters are calculated from the 2B-FLXHR-LIDAR fluxes and 2C-RAIN-PROFILE precipitation. Deep convective clouds will be sampled according to their dynamic and thermodynamic regimes to provide insights into the factors that control the scaling between precipitation and radiative impacts. Preliminary results from analysis of precipitating deep convective pixels indicates a strong increase (decrease) in the ratio of atmospheric heating (surface cooling) and precipitation with thermodynamic environment, especially increasing water vapor; however, it remains to be seen whether these results hold when integrated over an entire deep convective cloud system. Analysis of the dependence of Rc and Rh on the cloud horizontal and vertical structure is also planned, which should lead to a better understanding of the role of non-precipitating anvil characteristics in modulating the relationship between precipitation and surface and atmospheric radiative effects.

  8. Tropical cloud and precipitation regimes as seen from near-simultaneous TRMM, CloudSat, and CALIPSO observations and comparison with ISCCP

    NASA Astrophysics Data System (ADS)

    Luo, Zhengzhao Johnny; Anderson, Ricardo C.; Rossow, William B.; Takahashi, Hanii

    2017-06-01

    Although Tropical Rainfall Measuring Mission (TRMM) and CloudSat/CALIPSO fly in different orbits, they frequently cross each other so that for the period between 2006 and 2010, a total of 15,986 intersect lines occurred within 20 min of each other from 30°S to 30°N, providing a rare opportunity to study tropical cloud and precipitation regimes and their internal vertical structure from near-simultaneous measurements by these active sensors. A k-means cluster analysis of TRMM and CloudSat matchups identifies three tropical cloud and precipitation regimes: the first two regimes correspond to, respectively, organized deep convection with heavy rain and cirrus anvils with moderate rain; the third regime is a convectively suppressed regime that can be further divided into three subregimes, which correspond to, respectively, stratocumulus clouds with drizzle, cirrus overlying low clouds, and nonprecipitating cumulus. Inclusion of CALIPSO data adds to the dynamic range of cloud properties and identifies one more cluster; subcluster analysis further identifies a thin, midlevel cloud regime associated with tropical mountain ranges. The radar-lidar cloud regimes are compared with the International Satellite Cloud Climatology Project (ISCCP) weather states (WSs) for the extended tropics. Focus is placed on the four convectively active WSs, namely, WS1-WS4. ISCCP WS1 and WS2 are found to be counterparts of Regime 1 and Regime 2 in radar-lidar observations, respectively. ISCCP WS3 and WS4, which are mainly isolated convection and broken, detached cirrus, do not have a strong association with any individual radar and lidar regimes, a likely effect of the different sampling strategies between ISCCP and active sensors and patchy cloudiness of these WSs.

  9. Integrated Cloud-Aerosol-Radiation Product using CERES, MODIS, CALIPSO and CloudSat Data

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave

    2007-01-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3- dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  10. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data

    NASA Astrophysics Data System (ADS)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip

    2007-10-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  11. Forest Aboveground Biomass Mapping and Canopy Cover Estimation from Simulated ICESat-2 Data

    NASA Astrophysics Data System (ADS)

    Narine, L.; Popescu, S. C.; Neuenschwander, A. L.

    2017-12-01

    The assessment of forest aboveground biomass (AGB) can contribute to reducing uncertainties associated with the amount and distribution of terrestrial carbon. With a planned launch date of July 2018, the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) will provide data which will offer the possibility of mapping AGB at global scales. In this study, we develop approaches for utilizing vegetation data that will be delivered in ICESat-2's land-vegetation along track product (ATL08). The specific objectives are to: (1) simulate ICESat-2 photon-counting lidar (PCL) data using airborne lidar data, (2) utilize simulated PCL data to estimate forest canopy cover and AGB and, (3) upscale AGB predictions to create a wall-to-wall AGB map at 30-m spatial resolution. Using existing airborne lidar data for Sam Houston National Forest (SHNF) located in southeastern Texas and known ICESat-2 beam locations, PCL data are simulated from discrete return lidar points. We use multiple linear regression models to relate simulated PCL metrics for 100 m segments along the ICESat-2 ground tracks to AGB from a biomass map developed using airborne lidar data and canopy cover calculated from the same. Random Forest is then used to create an AGB map from predicted estimates and explanatory data consisting of spectral metrics derived from Landsat TM imagery and land cover data from the National Land Cover Database (NLCD). Findings from this study will demonstrate how data that will be acquired by ICESat-2 can be used to estimate forest structure and characterize the spatial distribution of AGB.

  12. Nineteenth International Laser Radar Conference. Part 2

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Ismail, Syed (Editor); Schwemmer, Geary K. (Editor)

    1998-01-01

    This publication contains extended abstracts of papers presented at the Nineteenth International Laser Radar Conference, held at Annapolis, Maryland, July 6-10, 1998; 260 papers were presented in both oral and poster sessions. The topics of the conference sessions were Aerosol Clouds, Multiple Scattering; Tropospheric Profiling, Stratospheric/Mesospheric Profiling; Wind Profiling; New Lidar Technology and Techniques; Lidar Applications, Including Altimetry and Marine; Space and Future Lidar; and Lidar Commercialization/Eye Safety. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations, development of new lasers and lidar system technology, and current and future space-based lidar systems.

  13. Nineteenth International Laser Radar Conference. Part 1

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Ismail, Syed (Editor); Schwemmer, Geary K. (Editor)

    1998-01-01

    This publication contains extended abstracts of papers presented at the Nineteenth International Laser Radar Conference, held at Annapolis, Maryland, July 6-10, 1998; 260 papers were presented in both oral and poster sessions. The topics of the conference sessions were Aerosol Clouds, Multiple Scattering; Tropospheric Profiling; Stratospheric/Mesospheric Profiling; Wind Profiling; New Lidar Technology and Techniques; Lidar Applications, including Altimetry and Marine; Space and Future Lidar; and Lidar Commercialization/Eye Safety. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations, development of new lasers and lidar system technology, and current and future space-based lidar systems.

  14. Cloud Type Classification (cldtype) Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Donna; Shi, Yan; Lim, K-S

    The Cloud Type (cldtype) value-added product (VAP) provides an automated cloud type classification based on macrophysical quantities derived from vertically pointing lidar and radar. Up to 10 layers of clouds are classified into seven cloud types based on predetermined and site-specific thresholds of cloud top, base and thickness. Examples of thresholds for selected U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility sites are provided in Tables 1 and 2. Inputs for the cldtype VAP include lidar and radar cloud boundaries obtained from the Active Remotely Sensed Cloud Location (ARSCL) and Surface Meteorological Systems (MET) data. Rainmore » rates from MET are used to determine when radar signal attenuation precludes accurate cloud detection. Temporal resolution and vertical resolution for cldtype are 1 minute and 30 m respectively and match the resolution of ARSCL. The cldtype classification is an initial step for further categorization of clouds. It was developed for use by the Shallow Cumulus VAP to identify potential periods of interest to the LASSO model and is intended to find clouds of interest for a variety of users.« less

  15. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  16. Uncertainties in Ice-Sheet Altimetry from a Spaceborne 1064-nm Single-Channel Lidar Due to Undetected Thin Clouds

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Varnai, Tamas; Wiscombe, Warren; Yang, Ping

    2010-01-01

    In support of the Ice, Cloud, and land Elevation Satellite (ICESat)-II mission, this paper studies the bias in surface-elevation measurements caused by undetected thin clouds. The ICESat-II satellite may only have a 1064-nm single-channel lidar onboard. Less sensitive to clouds than the 532-nm channel, the 1064-nm channel tends to miss thin clouds. Previous studies have demonstrated that scattering by cloud particles increases the photon-path length, thus resulting in biases in ice-sheet-elevation measurements from spaceborne lidars. This effect is referred to as atmospheric path delay. This paper complements previous studies in the following ways: First, atmospheric path delay is estimated over the ice sheets based on cloud statistics from the Geoscience Laser Altimeter System onboard ICESat and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua. Second, the effect of cloud particle size and shape is studied with the state-of-the-art phase functions developed for MODIS cirrus- cloud microphysical model. Third, the contribution of various orders of scattering events to the path delay is studied, and an analytical model of the first-order scattering contribution is developed. This paper focuses on the path delay as a function of telescope field of view (FOV). The results show that reducing telescope FOV can significantly reduce the expected path delay. As an example, the average path delays for FOV = 167 microrad (a 100-m-diameter circle on the surface) caused by thin undetected clouds by the 1064-nm channel over Greenland and East Antarctica are illustrated.

  17. Network of LAMP systems for atmospheric monitoring in India

    NASA Astrophysics Data System (ADS)

    Yellapragada, Bhavani Kumar; Jayaraman, Achuthan

    2012-07-01

    A systematic knowledge of the vertical distribution of aerosol particles in the atmosphere is required for understanding many atmospheric processes such as dynamics of boundary layer, pollution transport, modification of cloud microphysics etc. At present, the information on the particle distribution in the atmosphere is far from sufficient to estimate properly the load of aerosols in the atmosphere. Light detection and ranging (LIDAR) has been demonstrated to be a reliable remote sensing technique to obtain altitude profiles of atmospheric cloud and aerosol scattering. A LIDAR network is being implemented by National Atmospheric Research Laboratory (NARL), a Department of Space unit, in India for the measurement and monitoring of the atmospheric aerosols and clouds. Towards this, the technology of boundary layer lidar (BLL) (Bhavani Kumar, 2006) has been exploited. Several industrial grade BLL systems are being fabricated at a private industry in India through technological transfer from NARL. The industrial BLL lidar is named as LAMP, stands for LIDAR for Atmospheric Measurement and Probing. Five LAMP systems have already been fabricated and deployed at several locations of the country for continuous monitoring of aerosols and clouds under the Indian Lidar network (I-LINK) programme. The LAMP system employs a single barrel construction so that no realignment is required in future. Moreover, the network lidar system employs several features like rotation facility about the elevation (EL) axis, a provision of front window for environmental protection to the telescope optics and a silica gel pocket for desiccation (for transmit and receive assembly) and a provision of nitrogen purging to overcome the humidity effects. The LAMP system is an autonomous system equipped with a diode pumped Nd-YAG laser, a PMT for the detection of the backscattered photons, and a PC based photon counting electronics for recording the photon returns. In this paper, a report describing LAMP hardware components, acceptance test results and sample atmospheric measurements obtained from different locations across the country will be presented. Reference Bhavani Kumar, Y., Portable lidar system for atmospheric boundary layer measurements, Opt. Eng., 45, 076201, 2006 (doi: 10.1117/1.2221555)

  18. Geoscience Laser Altimeter System (GLAS) for the ICESat Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiaoli; Ketchum, Eleanor A.; Millar, Pamela S.; Riris, Haris

    2002-01-01

    The Geoscience Laser Altimeter System (GLAS) is a new generation lidar and is the primary science payload for NASA's ICESat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical distribution of clouds and aerosols on a global scale. GLAS will be integrated onto a small spacecraft built by Ball Aerospace, and will be launched into a polar orbit with a 590-630 km altitude at an inclination of 94 degrees. ICESat is is currently planned to launch in winter 2002/03 and GLAS is designed to operate continuously in space for a minimum of 3 years. GLAS will measure the vertical distance from orbit to the Earth's surface with pulses from a ND:YAG laser at a 40 Hz rate. Each 6 nsec wide 1064 nm laser pulse is used to produce a single range measurement. On the surface, the laser footprints have 66 m diameter and approx. 170 m center-center spacings. The GLAS receiver uses a I m diameter telescope to detect laser backscatter and a Si APD to detect the 1064 nm signals. The detector's output is sampled by a digital ranging receiver, which records each transmitted pulse and surface echo waveform with 1 nsec (15 cm) resolution. Each echo pulse is digitized and is reported to ground with a record length of from 200 to 544 samples, depending on the spacecraft's location . The GLAS location and epoch times are measured by a precision GPS receiver carried on the ICESat spacecraft. Initial processing of the echo waveforms within GLAS permits discrimination between cloud and surface echoes for selecting appropriate waveform samples. This selection is guided by an on-board DEM which is used to set the boundaries for the echo pulse search algorithm. Subsequent ground-based echo pulse analysis, along with GPS-based clock frequency estimates, permit final determination of the range to the surface, degree of pulse spreading, and vertical distribution of any vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when measuring over tilted surfaces, such as near the boundaries of ice sheets. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid angle to better than 10 urad is needed. GLAS uses a stellar reference system (SRS) to measure the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). GLAS will also measure the vertical distributions of clouds and aerosols by recording the vertical profiles of laser pulse backscatter at both 1064 and 532 nm. The 1064 rim measurements use the Si APD detector and will be used to measure the height and echo pulse shape from thicker clouds. The lidar receiver at 532 nm uses a narrow bandwidth etalon filter and highly sensitive photon counting detectors. The 532 nm backscatter profiles will be used to measure the vertical extent of thinner clouds and the atmospheric boundary layer. The GLAS instrument component development is complete and the instrument is undergoing final testing and qualification at NASA-Goddard. The GLAS "as-built" characteristics and its expected measurement performance will be discussed.

  19. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  20. Improved simulation of aerosol, cloud, and density measurements by shuttle lidar

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. W.

    1981-01-01

    Data retrievals are simulated for a Nd:YAG lidar suitable for early flight on the space shuttle. Maximum assumed vertical and horizontal resolutions are 0.1 and 100 km, respectively, in the boundary layer, increasing to 2 and 2000 km in the mesosphere. Aerosol and cloud retrievals are simulated using 1.06 and 0.53 microns wavelengths independently. Error sources include signal measurement, conventional density information, atmospheric transmission, and lidar calibration. By day, tenuous clouds and Saharan and boundary layer aerosols are retrieved at both wavelengths. By night, these constituents are retrieved, plus upper tropospheric, stratospheric, and mesospheric aerosols and noctilucent clouds. Density, temperature, and improved aerosol and cloud retrievals are simulated by combining signals at 0.35, 1.06, and 0.53 microns. Particlate contamination limits the technique to the cloud free upper troposphere and above. Error bars automatically show effect of this contamination, as well as errors in absolute density nonmalization, reference temperature or pressure, and the sources listed above. For nonvolcanic conditions, relative density profiles have rms errors of 0.54 to 2% in the upper troposphere and stratosphere. Temperature profiles have rms errors of 1.2 to 2.5 K and can define the tropopause to 0.5 km and higher wave structures to 1 or 2 km.

  1. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.

    1999-01-01

    LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.

  2. Raman Lidar Measurements of Water Vapor and Cirrus Clouds During The Passage of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Evans, K. D.; Demoz, B.; Starr, D OC.; Eloranta, E. W.; Tobin, D.; Feltz, W.; Jedlovec, G. J.; Gutman, S. I.; Schwemmer, G. K.; hide

    2000-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from less than 0.01 to 1.5. The influence of multiple scattering on these optical depth measurements was studied. A correction technique is presented which minimizes the influences of multiple scattering and derives information about cirrus cloud optical and physical properties. The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.005 or greater. Using the ISCCP detection threshold for cirrus clouds on the GOES data presented here, a high bias of up to 40% in the GOES precipitable water retrieval was found.

  3. Lidar and radar measurements of the melting layer in the frame of the Convective and Orographically-induced Precipitation Study: observations of dark and bright band phenomena

    NASA Astrophysics Data System (ADS)

    di Girolamo, P.; Summa, D.; Bhawar, R.; di Iorio, T.; Norton, E. G.; Peters, G.; Dufournet, Y.

    2011-11-01

    During the Convective and Orographically-induced Precipitation Study (COPS), lidar dark and bright bands were observed by the University of BASILicata Raman lidar system (BASIL) during several intensive (IOPs) and special (SOPs) observation periods (among others, 23 July, 15 August, and 17 August 2007). Lidar data were supported by measurements from the University of Hamburg cloud radar MIRA 36 (36 GHz), the University of Hamburg dual-polarization micro rain radars (24.1 GHz) and the University of Manchester UHF wind profiler (1.29 GHz). Results from BASIL and the radars for 23 July 2007 are illustrated and discussed to support the comprehension of the microphysical and scattering processes responsible for the appearance of the lidar and radar dark and bright bands. Simulations of the lidar dark and bright band based on the application of concentric/eccentric sphere Lorentz-Mie codes and a melting layer model are also provided. Lidar and radar measurements and model results are also compared with measurements from a disdrometer on ground and a two-dimensional cloud (2DC) probe on-board the ATR42 SAFIRE.

  4. Stereoscopic, thermal, and true deep cumulus cloud top heights

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, D. T.; Corlett, G. K.; Lawrence, S. P.; Remedios, J. J.; Sherwood, S. C.; Chae, J.; Minnis, P.; McGill, M.

    2004-05-01

    We compare cloud-top height estimates from several sensors: thermal tops from GOES-8 and MODIS, stereoscopic tops from MISR, and directly measured heights from the Goddard Cloud Physics Lidar on board the ER-2, all collected during the CRYSTAL-FACE field campaign. Comparisons reveal a persistent 1-2 km underestimation of cloud-top heights by thermal imagery, even when the finite optical extinctions near cloud top and in thin overlying cirrus are taken into account. The most severe underestimates occur for the tallest clouds. The MISR "best-sinds" and lidar estimates disagree in very similar ways with thermally estimated tops, which we take as evidence of excellent performance by MISR. Encouraged by this, we use MISR to examine variations in cloud penetration and thermal top height errors in several locations of tropical deep convection over multiple seasons. The goals of this are, first, to learn how cloud penetration depends on the near-tropopause environment; and second, to gain further insight into the mysterious underestimation of tops by thermal imagery.

  5. An Algorithm to Identify and Localize Suitable Dock Locations from 3-D LiDAR Scans

    DTIC Science & Technology

    2013-05-10

    Locations from 3-D LiDAR Scans 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Graves, Mitchell Robert 5d. PROJECT NUMBER...Ranging ( LiDAR ) scans. A LiDAR sensor is a sensor that collects range images from a rotating array of vertically aligned lasers. Our solution leverages...Algorithm, Dock, Locations, Point Clouds, LiDAR , Identify 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a

  6. ATLID: atmospheric lidar for clouds and aerosol observation combined with radar sounding

    NASA Astrophysics Data System (ADS)

    Pain, Th.; Martimort, Ph.; Tanguy, Ph.; Leibrandt, W.; Heliere, A.

    2017-11-01

    The atmospheric lidar ATLID is part of the payload of the joint collaborative satellite mission Earth Cloud and Aerosol Explorer (EarthCARE) conducted by the European Space Agency (ESA) and the National Space Development Agency of Japan (JAXA). In December 2002, ESA granted Alcatel Space with a phase A study of the EarthCARE mission in which Alcatel Space is also in charge to define ATLID. The primary objective of ATLID at the horizon 2011 is to provide global observation of clouds in synergy with a cloud profiling radar (CPR) mounted on the same platform. The planned spaceborne mission also embarks an imager and a radiometer and shall fly for 3 years. The lidar design is based on a novel concept that maximises the scientific return and fosters a cost-effective approach. This improved capability results from a better understanding of the way optical characteristics of aerosol and clouds affect the performance budget. For that purpose, an end to end performance model has been developed utilising a versatile data retrieval method suitable for new and more conventional approaches. A synthesis of the achievable performance will be presented to illustrate the potential of the system together with a description of the design.

  7. Estimating Forest Canopy Heights and Aboveground Biomass with Simulated ICESat-2 Data

    NASA Astrophysics Data System (ADS)

    Malambo, L.; Narine, L.; Popescu, S. C.; Neuenschwander, A. L.; Sheridan, R.

    2016-12-01

    The Ice, Cloud and Land Elevation Satellite (ICESat) 2 is scheduled for launch in 2017 and one of its overall science objectives will be to measure vegetation heights, which can be used to estimate and monitor aboveground biomass (AGB) over large spatial scales. This study serves to develop a methodology for utilizing vegetation data collected by ICESat-2 that will be on a five-year mission from 2017, for mapping forest canopy heights and estimating aboveground forest biomass (AGB). The specific objectives are to, (1) simulate ICESat-2 photon-counting lidar (PCL) data, (2) utilize simulated PCL data to estimate forest canopy heights and propose a methodology for upscaling PCL height measurements to obtain spatially contiguous coverage and, (3) estimate and map AGB using simulated PCL data. The laser pulse from ICESat-2 will be divided into three pairs of beams spaced approximately 3 km apart, with footprints measuring approximately 14 m in diameter and with 70 cm along-track intervals. Using existing airborne lidar data (ALS) for Sam Houston National Forest (SHNF) and known ICESat-2 beam locations, footprints are generated along beam locations and PCL data are then simulated from discrete return lidar points within each footprint. By applying data processing algorithms, photons are classified into top of canopy points and ground surface elevation points to yield tree canopy height values within each ICESat-2 footprint. AGB is then estimated using simple linear regression that utilizes AGB from a biomass map generated with ALS data for SHNF and simulated PCL height metrics for 100 m segments along ICESat-2 tracks. Two approaches also investigated for upscaling AGB estimates to provide wall-to-wall coverage of AGB are (1) co-kriging and (2) Random Forest. Height and AGB maps, which are the outcomes of this study, will demonstrate how data acquired by ICESat-2 can be used to measure forest parameters and in extension, estimate forest carbon for climate change initiatives.

  8. Building damage assessment using airborne lidar

    NASA Astrophysics Data System (ADS)

    Axel, Colin; van Aardt, Jan

    2017-10-01

    The assessment of building damage following a natural disaster is a crucial step in determining the impact of the event itself and gauging reconstruction needs. Automatic methods for deriving damage maps from remotely sensed data are preferred, since they are regarded as being rapid and objective. We propose an algorithm for performing unsupervised building segmentation and damage assessment using airborne light detection and ranging (lidar) data. Local surface properties, including normal vectors and curvature, were used along with region growing to segment individual buildings in lidar point clouds. Damaged building candidates were identified based on rooftop inclination angle, and then damage was assessed using planarity and point height metrics. Validation of the building segmentation and damage assessment techniques were performed using airborne lidar data collected after the Haiti earthquake of 2010. Building segmentation and damage assessment accuracies of 93.8% and 78.9%, respectively, were obtained using lidar point clouds and expert damage assessments of 1953 buildings in heavily damaged regions. We believe this research presents an indication of the utility of airborne lidar remote sensing for increasing the efficiency and speed at which emergency response operations are performed.

  9. Optimal contrast elastic lidar sensing of clear and aerosol-loaded atmosphere

    NASA Astrophysics Data System (ADS)

    Evgenieva, Tsvetina T.; Gurdev, Ljuan L.

    2016-01-01

    The sensing laser radiation wavelength is one of the most significant factors conditioning the elastic lidar efficiency. Nevertheless, its role in the process of lidar sensing has not been investigated systematically so far. Therefore, the main purpose of the present work is to develop and perform an initial examination of an approach to solve this problem based on modeling the profile of the lidar return signal (the lidar profile) and evaluating, in a specific way, the corresponding profile of the measurement signal-to-noise ratio (SNR). The measurement fluctuations are considered as mainly due to the Poisson shot noise that is intrinsic to the dark current and the photocurrent induced by the useful signal itself and the atmospheric background. The initial results obtained show for instance that for ground-based lidar facilities the maximum Rayleigh return signal is obtainable at wavelengths about 350nm. The roles are changed when sensing clouds using wavelength from 400nm to 1000-2000nm. Then, the longer wavelengths provide higher return power from clouds, and the effect is magnified in aerosol-loaded (and especially hazy) atmosphere. The results of such investigations are useful when selecting optimal lidar-design characteristics ensuring maximum brightness and contrast of the lidar-acquired images of specific aerosol strata and objects in the atmosphere.

  10. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  11. Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Griffin, Michael K.; Dodd, Gregory C.

    1989-01-01

    The optical and microphysical properties of subvisual cirrus clouds are derived from ground-based polarization lidar, shortwave radiation flux, and solar corona measurements of two approximately 0.75 km deep cirrus located near the tropopause. The first cloud produced no visual manifestations under excellent viewing conditions, and the second appeared to be a persistent aircraft contrail that was generally visible except in the zenith direction. Average lidar linear depolarization ratios and volume backscatter coefficients for the two clouds were 0.19 and 0.35, and 0.6 x 10 to the -3 and 1.4 x 10 to the -3 /km sr, respectively. It is estimated that the zenith-subvisual cirrus contained ice crystals of 25-micron effective diameter at a mean concentration of 25/1 and ice mass content of 0.2 mg/cu m. The threshold cloud optical thickness for visual-versus-invisible cirrus, derived from both broadband shortwave flux and 0.694 micrometer lidar data, is found to be tau sub c approx equal 0.03. Such tau values are comparable to those of 5 to 10 km deep stratospheric aerosol clouds of volcanic origin and polar stratospheric clouds, which are episodic in nature. Hence, we conclude that if these clouds are a fairly common feature of the upper troposphere, as recent SAGE satellite measurements would suggest, then the impact of natural and contrail subvisual cirrus on the planet's radiation balance may be relatively significant.

  12. Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Griffin, Michael K.; Dodd, Gregory C.

    1988-01-01

    The optical and microphysical properties of subvisual cirrus clouds are derived from ground-based polarization lidar, shortwave radiation flux, and solar corona measurements of two approximately 0.75 km deep cirrus located near the tropopause. The first cloud produced no visual manifestations under excellent viewing conditions, and the second appeared to be a persistent aircraft contrail that was generally visible except in the zenith direction. Average lidar linear depolarization ratios and volume backscatter coefficients for the two clouds were 0.19 and 0.35, and 0.6x10 to the -3 and 1.4x10 to the -3 /km sr, respectively. It is estimated that the zenith-subvisual cirrus contained ice crystals of 25 micron effective diameter at a mean concentration of 25/l and ice mass content of 0.2 mg/cu m. The threshold cloud optical thickness for visual-versus-invisible cirrus, derived from both broadband shortwave flux and 0.694 micrometer lidar data, is found to be tau sub c approx equal 0.03. Such tau values are comparable to those of 5 to 10 km deep stratospheric aerosol clouds of volcanic origin and polar stratospheric clouds, which are episodic in nature. Hence, we conclude that if these clouds are a fairly common feature of the upper troposphere, as recent SAGE satellite measurements would suggest, then the impact of natural and contrail subvisual cirrus on the planet's radiation balance may be relatively significant.

  13. Doppler lidar for measurement of atmospheric wind fields

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1991-01-01

    Measurements of wind fields in the earth's troposphere with daily global coverage is widely considered as a significant advance for forecasting and transport studies. For optimal use by NWP (Numerical Weather Prediction) models the horizontal and vertical resolutions should be approximately 100 km and 1 km, respectively. For boundary layer studies vertical resolution of a few hundred meters seems essential. Earth-orbiting Doppler lidar has a unique capability to measure global winds in the troposphere with the high vertical resolution required. The lidar approach depends on transmission of pulses with high spectral purity and backscattering from the atmospheric aerosol particles or layered clouds to provide a return signal. Recent field measurement campaigns using NASA research aircraft have resulted in collection of aerosol and cloud data which can be used to optimize the Doppler lidar instrument design and measurement strategy.

  14. Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Scott, V. Stanley

    2000-01-01

    Long-term global radiation programs, such as AERONET and BSRN, have shown success in monitoring column averaged cloud and aerosol optical properties. Little attention has been focused on global measurements of vertically resolved optical properties. Lidar systems are the preferred instrument for such measurements. However, global usage of lidar systems has not been achieved because of limits imposed by older systems that were large, expensive, and logistically difficult to use in the field. Small, eye-safe, and autonomous lidar systems are now currently available and overcome problems associated with older systems. The first such lidar to be developed is the Micro-pulse lidar System (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which removes multiple scattering concerns. We have developed successful protocols to operate and calibrate MPL systems. We have also developed a data analysis algorithm that produces data products such as cloud and aerosol layer heights, optical depths, extinction profiles, and the extinction-backscatter ratio. The algorithm minimizes the use of a priori assumptions and also produces error bars for all data products. Here we present an overview of our MPL protocols and data analysis techniques. We also discuss the ongoing construction of a global MPL network in conjunction with the AERONET program. Finally, we present some early results from the MPL network.

  15. Graz kHz SLR LIDAR: first results

    NASA Astrophysics Data System (ADS)

    Kirchner, Georg; Koidl, Franz; Kucharski, Daniel; Pachler, Walther; Seiss, Matthias; Leitgeb, Erich

    2009-05-01

    The Satellite Laser Ranging (SLR) Station Graz is measuring routinely distances to satellites with a 2 kHz laser, achieving an accuracy of 2-3 mm. Using this available equipment, we developed - and added as a byproduct - a kHz SLR LIDAR for the Graz station: Photons of each transmitted laser pulse are backscattered from clouds, atmospheric layers, aircraft vapor trails etc. An additional 10 cm diameter telescope - installed on our main telescope mount - and a Single- Photon Counting Module (SPCM) detect these photons. Using an ISA-Bus based FPGA card - developed in Graz for the kHz SLR operation - these detection times are stored with 100 ns resolution (15 m slots in distance). Event times of any number of laser shots can be accumulated in up to 4096 counters (according to > 60 km distance). The LIDAR distances are stored together with epoch time and telescope pointing information; any reflection point is therefore determined with 3D coordinates, with 15 m resolution in distance, and with the angular precision of the laser telescope pointing. First test results to clouds in full daylight conditions - accumulating up to several 100 laser shots per measurement - yielded high LIDAR data rates (> 100 points per second) and excellent detection of clouds (up to 10 km distance at the moment). Our ultimate goal is to operate the LIDAR automatically and in parallel with the standard SLR measurements, during day and night, collecting LIDAR data as a byproduct, and without any additional expenses.

  16. Raster Vs. Point Cloud LiDAR Data Classification

    NASA Astrophysics Data System (ADS)

    El-Ashmawy, N.; Shaker, A.

    2014-09-01

    Airborne Laser Scanning systems with light detection and ranging (LiDAR) technology is one of the fast and accurate 3D point data acquisition techniques. Generating accurate digital terrain and/or surface models (DTM/DSM) is the main application of collecting LiDAR range data. Recently, LiDAR range and intensity data have been used for land cover classification applications. Data range and Intensity, (strength of the backscattered signals measured by the LiDAR systems), are affected by the flying height, the ground elevation, scanning angle and the physical characteristics of the objects surface. These effects may lead to uneven distribution of point cloud or some gaps that may affect the classification process. Researchers have investigated the conversion of LiDAR range point data to raster image for terrain modelling. Interpolation techniques have been used to achieve the best representation of surfaces, and to fill the gaps between the LiDAR footprints. Interpolation methods are also investigated to generate LiDAR range and intensity image data for land cover classification applications. In this paper, different approach has been followed to classifying the LiDAR data (range and intensity) for land cover mapping. The methodology relies on the classification of the point cloud data based on their range and intensity and then converted the classified points into raster image. The gaps in the data are filled based on the classes of the nearest neighbour. Land cover maps are produced using two approaches using: (a) the conventional raster image data based on point interpolation; and (b) the proposed point data classification. A study area covering an urban district in Burnaby, British Colombia, Canada, is selected to compare the results of the two approaches. Five different land cover classes can be distinguished in that area: buildings, roads and parking areas, trees, low vegetation (grass), and bare soil. The results show that an improvement of around 10 % in the classification results can be achieved by using the proposed approach.

  17. Global Measurements of Optically Thin Ice Clouds Using CALIOP

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Avery, M.; Tackett, J.

    2017-01-01

    Optically thin ice clouds have been shown to have a net warming effect on the globe but, because passive instruments are not sensitive to optically thin clouds, the occurrence frequency of this class of clouds is greatly underestimated in historical passive sensor cloud climatology. One major strength of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) spacecraft, is its ability to detect these thin clouds, thus filling an important missing piece in the historical data record. This poster examines the full mission of CALIPSO Level 2 data, focusing on those CALIOP retrievals identified as thin ice clouds according to the definition shown to the right. Using this definition, thin ice clouds are identified and counted globally and vertically for each season. By examining the spatial and seasonal distributions of these thin clouds we hope to gain a better understanding these thin ice clouds and how their global distribution has changed over the mission. This poster showcases when and where CALIOP detects thin ice clouds and examines a case study of the eastern pacific and the effects seen from the El Nino-Southern Oscillation (ENSO).

  18. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping.

    PubMed

    Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian

    2016-12-31

    For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  19. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    PubMed Central

    Cui, Tingting; Ji, Shunping; Shan, Jie; Gong, Jianya; Liu, Kejian

    2016-01-01

    For multi-sensor integrated systems, such as the mobile mapping system (MMS), data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable. PMID:28042855

  20. Satellite to Ground-based LIDAR Comparisons using MPLNET Data Products

    NASA Technical Reports Server (NTRS)

    Berkoff, T.A.; Belcher, L.; Campbell, J.; Spinhirne, J.; Welton, E. J.

    2007-01-01

    The Micro-Pulse Lidar Network (MPLNET) is a network of ground-based lidar systems that provide continuous long-term observations of aerosol and cloud properties at approximately 10 different locations around the globe. Each site in the network uses an elastic scattering lidar co-located with a sunphotometer to provide data products of aerosol optical physical properties. Data products from sites are available on a next-day basis from the MPLNET website. Expansion of the network is based on partnering with research groups interested in joining MPLNET. Results have contributed to a variety of studies including aerosol transport studies and satellite calibration and validation efforts. One of the key motivations for MPLNET is to contribute towards the calibration and validation of satellite-based lidars such as GLAS/ICESAT and CALIPSO. MPLNET is able to provide comparison to several of the key aerosol and cloud CALIPSO data products including: layer height and thickness, optical depth, backscatter and extinction profiles, and the extinction-to-backscatter ratio.

  1. Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Lin, B.; Harrison, F. W.; Kooi, S. A.; Choi, Y.; Plant, J.; Yang, M. M.; Antill, C.; Campbell, J. F.; Ismail, S.; Browell, E. V.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.; Moore, B., III; Crowell, S.

    2014-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is an Intensity-Modulated Continuous-Wave lidar system recently developed at NASA Langley Research Center that seeks to advance technologies and techniques critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. These advancements include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. ACES simultaneously transmits five laser beams: three from commercial EDFAs operating near 1571 nm, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1260 nm. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The outgoing laser beams are aligned to the field of view of ACES' three fiber-coupled 17.8-cm diameter athermal telescopes. The backscattered light collected by the three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.7 MHz and operates service-free using a tactical dewar and cryocooler. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the spring of 2014. After ground range tests of the instrument, ACES successfully completed six test flights on the Langley Hu-25 aircraft in July, 2014, and recorded data at multiple altitudes over land and ocean surfaces with and without intervening clouds. Preliminary results from these flights will be presented in this paper.

  2. Georeferencing UAS Derivatives Through Point Cloud Registration with Archived Lidar Datasets

    NASA Astrophysics Data System (ADS)

    Magtalas, M. S. L. Y.; Aves, J. C. L.; Blanco, A. C.

    2016-10-01

    Georeferencing gathered images is a common step before performing spatial analysis and other processes on acquired datasets using unmanned aerial systems (UAS). Methods of applying spatial information to aerial images or their derivatives is through onboard GPS (Global Positioning Systems) geotagging, or through tying of models through GCPs (Ground Control Points) acquired in the field. Currently, UAS (Unmanned Aerial System) derivatives are limited to meter-levels of accuracy when their generation is unaided with points of known position on the ground. The use of ground control points established using survey-grade GPS or GNSS receivers can greatly reduce model errors to centimeter levels. However, this comes with additional costs not only with instrument acquisition and survey operations, but also in actual time spent in the field. This study uses a workflow for cloud-based post-processing of UAS data in combination with already existing LiDAR data. The georeferencing of the UAV point cloud is executed using the Iterative Closest Point algorithm (ICP). It is applied through the open-source CloudCompare software (Girardeau-Montaut, 2006) on a `skeleton point cloud'. This skeleton point cloud consists of manually extracted features consistent on both LiDAR and UAV data. For this cloud, roads and buildings with minimal deviations given their differing dates of acquisition are considered consistent. Transformation parameters are computed for the skeleton cloud which could then be applied to the whole UAS dataset. In addition, a separate cloud consisting of non-vegetation features automatically derived using CANUPO classification algorithm (Brodu and Lague, 2012) was used to generate a separate set of parameters. Ground survey is done to validate the transformed cloud. An RMSE value of around 16 centimeters was found when comparing validation data to the models georeferenced using the CANUPO cloud and the manual skeleton cloud. Cloud-to-cloud distance computations of CANUPO and manual skeleton clouds were obtained with values for both equal to around 0.67 meters at 1.73 standard deviation.

  3. Retrieving the Polar Mixed-Phase Cloud Liquid Water Path by Combining CALIOP and IIR Measurements

    NASA Astrophysics Data System (ADS)

    Luo, Tao; Wang, Zhien; Li, Xuebin; Deng, Shumei; Huang, Yong; Wang, Yingjian

    2018-02-01

    Mixed-phase cloud (MC) is the dominant cloud type over the polar region, and there are challenging conditions for remote sensing and in situ measurements. In this study, a new methodology of retrieving the stratiform MC liquid water path (LWP) by combining Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and infrared imaging radiometer (IIR) measurements was developed and evaluated. This new methodology takes the advantage of reliable cloud-phase discrimination by combining lidar and radar measurements. An improved multiple-scattering effect correction method for lidar signals was implemented to provide reliable cloud extinction near cloud top. Then with the adiabatic cloud assumption, the MC LWP can be retrieved by a lookup-table-based method. Simulations with error-free inputs showed that the mean bias and the root mean squared error of the LWP derived from the new method are -0.23 ± 2.63 g/m2, with the mean absolute relative error of 4%. Simulations with erroneous inputs suggested that the new methodology could provide reliable retrieval of LWP to support the statistical or climatology analysis. Two-month A-train satellite retrievals over Arctic region showed that the new method can produce very similar cloud top temperature (CTT) dependence of LWP to the ground-based microwave radiometer measurements, with a bias of -0.78 g/m2 and a correlation coefficient of 0.95 between the two mean CTT-LWP relationships. The new approach can also produce reasonable pattern and value of LWP in spatial distribution over the Arctic region.

  4. The View from the Top: CALIOP Ice Water Content in the Uppermost Layer of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Avery, Melody A.; Deng, Min; Garnier, Anne; Heymsfield, Andrew; Pelon, Jacques; Powell, Kathleen A.; Trepte, Charles R.; Vaughan, Mark A.; Winker, David M.; Young, Stuart

    2012-01-01

    NASA's CALIPSO satellite carries both the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Imaging Infrared Radiometer (IIR). The lidar is ideally suited to viewing the very top of tropical cyclones, and the IIR provides critical optical and microphysical information. The lidar and the IIR data work together to understand storm clouds since they are perfectly co-located, and big tropical cyclones provide an excellent complex target for comparing the observations. There is a lot of information from these case studies for understanding both the observations and the tropical cyclones, and we are just beginning to scratch the surface of what can be learned. Many tropical cyclone cloud particle measurements are focused on the middle and lower regions of storms, but characterization of cyclone interaction with the lowermost stratosphere at the upper storm boundary may be important for determining the total momentum and moisture transport budget, and perhaps for predicting storm intensity as well. A surprising amount of cloud ice is to be found at the very top of these big storms.

  5. Standoff determination of the particle size and concentration of small optical depth clouds based on double scattering measurements: concept and experimental validation with bioaerosols.

    PubMed

    Roy, Gilles; Roy, Nathalie

    2008-03-20

    A multiple-field-of-view (MFOV) lidar is used to characterize size and optical depth of low concentration of bioaerosol clouds. The concept relies on the measurement of the forward scattered light by using the background aerosols at various distances at the back of a subvisible cloud. It also relies on the subtraction of the background aerosol forward scattering contribution and on the partial attenuation of the first-order backscattering. The validity of the concept developed to retrieve the effective diameter and the optical depth of low concentration bioaerosol clouds with good precision is demonstrated using simulation results and experimental MFOV lidar measurements. Calculations are also done to show that the method presented can be extended to small optical depth cloud retrieval.

  6. Orbiting lidar simulations. I - Aerosol and cloud measurements by an independent-wavelength technique

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Morley, B. M.; Livingston, J. M.; Grams, G. W.; Patterson, E. M.

    1982-01-01

    Aerosol and cloud measurements have been simulated for a Space Shuttle lidar. Expected errors - in signal, transmission, density, and calibration - are calculated algebraically and checked by simulating measurements and retrievals using random-number generators. By day, vertical structure is retrieved for tenuous clouds, Saharan aerosols, and boundary layer aerosols (at 0.53 and 1.06 micron) as well as strong volcanic stratospheric aerosols (at 0.53 micron). By night, all these constituents are retrieved plus upper tropospheric and stratospheric aerosols (at 1.06 micron), mesospheric aerosols (at 0.53 micron), and noctilucent clouds (at 1.06 and 0.53 micron). The vertical resolution was 0.1-0.5 km in the troposphere, 0.5-2.0 km above, except 0.25-1.0 km in the mesospheric cloud and aerosol layers; horizontal resolution was 100-2000 km.

  7. LiDAR and Image Point Cloud Comparison

    DTIC Science & Technology

    2014-09-01

    UAV unmanned aerial vehicle USGS United States Geological Survey UTM Universal Transverse Mercator WGS 84 World Geodetic System 1984 WSI...19  1.  Physics of LiDAR Systems ................................................................20  III.  DATA AND SOFTWARE...ground control point GPS Global Positioning System IMU inertial measurements unit LiDAR light detection and ranging MI mutual information MVS

  8. Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data near Summit Station, Greenland

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-01-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  9. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    NASA Astrophysics Data System (ADS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  10. Retrieval of Droplet size Density Distribution from Multiple field of view Cross polarized Lidar Signals: Theory and Experimental Validation

    DTIC Science & Technology

    2016-06-02

    Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...theoretical and experimental studies of mul- tiple scattering and multiple-field-of-view (MFOV) li- dar detection have made possible the retrieval of cloud...droplet cloud are typical of Rayleigh scattering, with a signature close to a dipole (phase function quasi -flat and a zero-depolarization ratio

  11. Ice Cloud Backscatter Study and Comparison with CALIPSO and MODIS Satellite Data

    NASA Technical Reports Server (NTRS)

    Ding, Jiachen; Yang, Ping; Holz, Robert E.; Platnick, Steven; Meyer, Kerry G.; Vaughan, Mark A.; Hu, Yongxiang; King, Michael D.

    2016-01-01

    An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6 percent and 9 percent for tropical and mid-latitude ice clouds, respectively.

  12. Modelling lidar volume-averaging and its significance to wind turbine wake measurements

    NASA Astrophysics Data System (ADS)

    Meyer Forsting, A. R.; Troldborg, N.; Borraccino, A.

    2017-05-01

    Lidar velocity measurements need to be interpreted differently than conventional in-situ readings. A commonly ignored factor is “volume-averaging”, which refers to lidars not sampling in a single, distinct point but along its entire beam length. However, especially in regions with large velocity gradients, like the rotor wake, can it be detrimental. Hence, an efficient algorithm mimicking lidar flow sampling is presented, which considers both pulsed and continous-wave lidar weighting functions. The flow-field around a 2.3 MW turbine is simulated using Detached Eddy Simulation in combination with an actuator line to test the algorithm and investigate the potential impact of volume-averaging. Even with very few points discretising the lidar beam is volume-averaging captured accurately. The difference in a lidar compared to a point measurement is greatest at the wake edges and increases from 30% one rotor diameter (D) downstream of the rotor to 60% at 3D.

  13. Development and Initial Testing of a Multi-Sensor Platform for Cloud-Aerosol Interactions in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Hoffman, D. S.; Repasky, K. S.; Todt, B.; Sharpe, T.; Half Red, C.; Carlsten, J. L.

    2009-12-01

    Coupled atmospheric components of the lower troposphere including aerosols and water vapor have a large affect on the chemical processes that drive the earth’s complex climate system. Aerosols can affect the earth’s global radiation budget directly by absorbing or reflecting incoming solar radiation, and indirectly by changing the microphysical properties of clouds by serving as cloud condensation nuclei (CCN). An increase in CCN results in higher cloud droplet concentration which has been shown to suppress drizzle formation and lead to more reflective clouds. The changes in the cloud microphysical structure due to the interaction of aerosols and water vapor result in more incoming solar radiation being reflected back into space, leading to a net negative radiative forcing in the global radiation budget. The uncertainty in this radiative forcing reflects the uncertainty in the understanding of the aerosol indirect effect and its role in the climate system. To better understand the aerosol direct and indirect effects, lidar measurements of aerosol properties and water vapor distributions can provide important information to enhance our understanding of the role of aerosols in the climate system. The LIDAR group at Montana State University has initiated a program to simultaneously study aerosols, water vapor, and cloud formation with high spatial and temporal resolution using both active and passive sensors. Aerosol distributions and radiative properties are currently being studied with a two-color LIDAR system at 1064 and 532 nm. In addition, a three color, high spectral resolution LIDAR system at 1064,532, and 355 nm has also been developed and is starting to take initial data. Daytime and nighttime boundary layer water vapor number density profiles are also currently being studied with an external cavity diode oscillator/diode amplifier based micro-pulsed differential absorption lidar (DIAL) instrument at the 830 nm water vapor absorption band. Cloud formation studies are being conducted by a simultaneous, spatially correlated digital sky imaging camera system where aerosol loading and water vapor distributions are monitored as a function of lateral distance to clouds. Furthermore, a commercially purchased sun/sky scanning solar radiometer (CIMEL 318) as part of the NASA run AERONET program is also being used to study aerosol loading and radiative transfer through the atmosphere. A brief description of these instruments will be presented as well as initial simultaneous results showing correlated data between lower tropospheric aerosols and boundary layer water vapor distributions over extended periods if time.

  14. Research and development of commercial lidar systems in romania: critical review of the ESYRO lidar systems developed by sc enviroscopy SRL (ESYRO)

    NASA Astrophysics Data System (ADS)

    Mihai Cazacu, Marius; Tudose, Ovidiu; Balanici, Dragos; Balin, Ioan

    2018-04-01

    This paper is shortly presenting the two basic lidar system configurations respectively a micro-lidar and a multi-wavelength lidar systems developed by SC EnviroScopY SRL (ESYRO) from Iasi - Romania in the last decade. Furthermore in addition to the comparative analysis of the two technical configurations the examples of various tests and the capability of the two systems to perform are here presented. Measurements samples of aerosols, clouds, PBL, depolarization and Saharan dust are also illustrated.

  15. Lidar aboveground vegetation biomass estimates in shrublands: Prediction, uncertainties and application to coarser scales

    USGS Publications Warehouse

    Li, Aihua; Dhakal, Shital; Glenn, Nancy F.; Spaete, Luke P.; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan

    2017-01-01

    Our study objectives were to model the aboveground biomass in a xeric shrub-steppe landscape with airborne light detection and ranging (Lidar) and explore the uncertainty associated with the models we created. We incorporated vegetation vertical structure information obtained from Lidar with ground-measured biomass data, allowing us to scale shrub biomass from small field sites (1 m subplots and 1 ha plots) to a larger landscape. A series of airborne Lidar-derived vegetation metrics were trained and linked with the field-measured biomass in Random Forests (RF) regression models. A Stepwise Multiple Regression (SMR) model was also explored as a comparison. Our results demonstrated that the important predictors from Lidar-derived metrics had a strong correlation with field-measured biomass in the RF regression models with a pseudo R2 of 0.76 and RMSE of 125 g/m2 for shrub biomass and a pseudo R2 of 0.74 and RMSE of 141 g/m2 for total biomass, and a weak correlation with field-measured herbaceous biomass. The SMR results were similar but slightly better than RF, explaining 77–79% of the variance, with RMSE ranging from 120 to 129 g/m2 for shrub and total biomass, respectively. We further explored the computational efficiency and relative accuracies of using point cloud and raster Lidar metrics at different resolutions (1 m to 1 ha). Metrics derived from the Lidar point cloud processing led to improved biomass estimates at nearly all resolutions in comparison to raster-derived Lidar metrics. Only at 1 m were the results from the point cloud and raster products nearly equivalent. The best Lidar prediction models of biomass at the plot-level (1 ha) were achieved when Lidar metrics were derived from an average of fine resolution (1 m) metrics to minimize boundary effects and to smooth variability. Overall, both RF and SMR methods explained more than 74% of the variance in biomass, with the most important Lidar variables being associated with vegetation structure and statistical measures of this structure (e.g., standard deviation of height was a strong predictor of biomass). Using our model results, we developed spatially-explicit Lidar estimates of total and shrub biomass across our study site in the Great Basin, U.S.A., for monitoring and planning in this imperiled ecosystem.

  16. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGES

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m −2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m −2.« less

  17. 2-micron Double Pulsed IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke; Scola, Tory

    2015-04-01

    We have developed a high energy pulsed 2-micron IPDA lidar instrument to measure the atmospheric CO2 column density. The IPDA lidar is operated on the long wavelength wing of R(30) CO2 line at 2050.967 nm (4875.749 cm-1) in the side-line operation mode. The R(30) line is an excellent absorption line for the measurements of CO2 in 2µm wavelength region with regard to the strength of the absorption lines, low susceptibility to atmospheric temperature variability, and freedom from problematic interference with other absorption lines. The Ho:Tm:YLF laser transmitter is designed to be operated in a unique double pulse format that can produce two-pulse pair in 10 Hz operation. Typically, the output energies of the laser transmitter are 100mJ and 45mJ for the first pulse and the second pulse, respectively. We injection seed the first pulse with on-line frequency and the second pulse with off-line frequency. The IPDA lidar instrument size, weight and power consumption were restricted to small research aircraft payload requirements. The airborne IPDA lidar instrument measures the total integrated column content of CO2 from the instrument to the ground but with weighting that can be tuned by controlling the transmitted wavelengths. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. The 2-μm CO2 IPDA lidar airborne demonstration was conducted during March 20, 2014 through April 10, 2014. IPDA lidar airborne flights included various operating and environmental conditions. Environmental conditions included different flight altitude up to 8.3 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Besides, some flights targeted power plant incinerators for investigating the IPDA sensitivity to CO2 plums. The lidar instrument is robust during all of the flights. This paper describes the development of the new 2-micron pulsed IPDA lidar instrument, and presents the initial data for the airborne measurements of atmospheric CO2 concentration.

  18. a Voxel-Based Filtering Algorithm for Mobile LIDAR Data

    NASA Astrophysics Data System (ADS)

    Qin, H.; Guan, G.; Yu, Y.; Zhong, L.

    2018-04-01

    This paper presents a stepwise voxel-based filtering algorithm for mobile LiDAR data. In the first step, to improve computational efficiency, mobile LiDAR points, in xy-plane, are first partitioned into a set of two-dimensional (2-D) blocks with a given block size, in each of which all laser points are further organized into an octree partition structure with a set of three-dimensional (3-D) voxels. Then, a voxel-based upward growing processing is performed to roughly separate terrain from non-terrain points with global and local terrain thresholds. In the second step, the extracted terrain points are refined by computing voxel curvatures. This voxel-based filtering algorithm is comprehensively discussed in the analyses of parameter sensitivity and overall performance. An experimental study performed on multiple point cloud samples, collected by different commercial mobile LiDAR systems, showed that the proposed algorithm provides a promising solution to terrain point extraction from mobile point clouds.

  19. Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua

    2017-10-01

    A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.

  20. Improvements in Raman Lidar Measurements Using New Interference Filter Technology

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Veselovskii, Igor; Cadirola, Martin; Rush, Kurt; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultra-violet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground-based, upward-looking tests. Measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary and mixed layer profiling of water vapor mixing ratio up to an altitude of approximately 4 h is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction-to-backscatter ratio measurements are made using 1 -minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. A description of the filter technology developments is provided followed by examples of the improved Raman lidar measurements.

  1. Lidar Measurements of Ozone, Aerosols, and Clouds Observed in the Tropics Near Central America During TC4-Costa Rica

    NASA Astrophysics Data System (ADS)

    Hair, J. W.; Browell, E.; Butler, C.; Fenn, M.; Notari, A.; Simpson, S.; Ismail, S.; Avery, M.

    2007-12-01

    Large-scale measurements of ozone and aerosol distributions were made from the NASA DC-8 aircraft during the TC4 (Tropical Composition, Cloud, and Climate Coupling) field experiment conducted from June 28 - August 10, 2007 based in San Jose, Costa Rica. Remote measurements were made with an airborne lidar to provide ozone and multiple-wavelength aerosol and cloud backscatter profiles from near the surface to above the tropopause along the flight track. Aerosol depolarization measurements were also made for the detection of nonspherical aerosols, such as mineral dust, biomass burning, and recent emissions from South American volcanoes. Long-range transport of Saharan dust with depolarizing aerosols was frequently observed in the lower troposphere both over the Caribbean Sea and Pacific Ocean and within the marine boundary layer. In addition, visible and sub-visible cirrus clouds were observed with the multi-wavelength backscatter and depolarization measurements. Initial distributions of ozone, aerosol, and cloud are presented which will be used to interpret large-scale atmospheric processes. In situ measurements of ozone and aerosols made onboard the DC-8 will be compared to the remote lidar measurements. This paper provides a first look at the characteristics of ozone, aerosol, and cloud distributions that were encountered during this field experiment and provide a unique dataset that will be further related through satellite data, backward trajectories, and chemical transport models (CTM) to sources and sinks of ozone, aerosols, and clouds and to dynamical, chemical, and radiative processes.

  2. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  3. Land, Ocean and Ice sheet surface elevation retrieval from CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Lu, X.; Hu, Y.

    2013-12-01

    Since launching in April 2006 the main objective of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been studying the climate impact of clouds and aerosols in the atmosphere. However, CALIPSO also collects information about other components of the Earth's ecosystem, such as lands, oceans and polar ice sheets. The objective of this study is to propose a Super-Resolution Altimetry (SRA) technique to provide high resolution of land, ocean and polar ice sheet surface elevation from CALIPSO single shot lidar measurements (70 m spot size). The land surface results by the new technique agree with the United States Geological Survey (USGS) National Elevation Database (NED) high-resolution elevation maps, and the ice sheet surface results in the region of Greenland and Antarctic compare very well with the Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry measurements. The comparisons suggest that the obtained CALIPSO surface elevation information by the new technique is accurate to within 1 m. The effects of error sources on the retrieved surface elevation are discussed. Based on the new technique, the preliminary data products of along-track topography retrieved from the CALIPSO lidar measurements is available to the altimetry community for evaluation.

  4. Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover

    NASA Astrophysics Data System (ADS)

    Melin, M.; Korhonen, L.; Kukkonen, M.; Packalen, P.

    2017-07-01

    Canopy cover (CC) is a variable used to describe the status of forests and forested habitats, but also the variable used primarily to define what counts as a forest. The estimation of CC has relied heavily on remote sensing with past studies focusing on satellite imagery as well as Airborne Laser Scanning (ALS) using light detection and ranging (lidar). Of these, ALS has been proven highly accurate, because the fraction of pulses penetrating the canopy represents a direct measurement of canopy gap percentage. However, the methods of photogrammetry can be applied to produce point clouds fairly similar to airborne lidar data from aerial images. Currently there is little information about how well such point clouds measure canopy density and gaps. The aim of this study was to assess the suitability of aerial image point clouds for CC estimation and compare the results with those obtained using spectral data from aerial images and Landsat 5. First, we modeled CC for n = 1149 lidar plots using field-measured CCs and lidar data. Next, this data was split into five subsets in north-south direction (y-coordinate). Finally, four CC models (AerialSpectral, AerialPointcloud, AerialCombi (spectral + pointcloud) and Landsat) were created and they were used to predict new CC values to the lidar plots, subset by subset, using five-fold cross validation. The Landsat and AerialSpectral models performed with RMSEs of 13.8% and 12.4%, respectively. AerialPointcloud model reached an RMSE of 10.3%, which was further improved by the inclusion of spectral data; RMSE of the AerialCombi model was 9.3%. We noticed that the aerial image point clouds managed to describe only the outermost layer of the canopy and missed the details in lower canopy, which was resulted in weak characterization of the total CC variation, especially in the tails of the data.

  5. A numerical model characterizing the experimental performance of the Howard University Raman Lidar system

    NASA Astrophysics Data System (ADS)

    Connell, Rasheen M.

    At the Howard University Atmospheric Observatory in Beltsville, MD, a Raman Lidar System was developed to provide both daytime and nighttime measurements of water vapor, aerosols, and cirrus clouds with 60 s temporal and 7.5 m spatial resolution in the lower and upper troposphere. This system analyzes signals at three wavelengths associated with Rayleigh/Mie scattering for aerosols and cirrus clouds at 354.7 nm, Raman scattering for nitrogen at 386.7 nm, and water vapor at 407.5 nm. The transmitter is a triple harmonic Nd: YAG solid state laser. The receiver is a 40 cm Cassegrain telescope. The detector system consists of a multi-channel wavelength separator unit and data acquisition system. This thesis develops a numerical model to provide a realistic representation of the system behavior. The variants of the lidar equation in the model use system parameters to solve and determine the return signals for the lidar system. This dissertation describes four case studies being investigated: clear sky, polluted, wet, and cirrus cloud atmospheric conditions. The first simulations are based on a standard atmosphere, which assumes an unpolluted (aerosol-free) dry-air atmosphere. The second and third sets of simulations are based on polluted and cirrus cloud atmospheric conditions, where aerosols and cirrus clouds are added to Case Study I. The last set of simulations is based on a wet atmosphere, where the troposphere is comprised of the same mixture of gases in Case Study II, with the addition of atmospheric water vapor. Lidar signals are simulated over the altitude range covered by our measurements (up to 14 km). Results of our simulations show that the measured and modeled signals agree within 10% over an extended period of time when the system (i.e., such as alignment, filter tuning, etc.) has not changed.

  6. Temporal Analysis and Automatic Calibration of the Velodyne HDL-32E LiDAR System

    NASA Astrophysics Data System (ADS)

    Chan, T. O.; Lichti, D. D.; Belton, D.

    2013-10-01

    At the end of the first quarter of 2012, more than 600 Velodyne LiDAR systems had been sold worldwide for various robotic and high-accuracy survey applications. The ultra-compact Velodyne HDL-32E LiDAR has become a predominant sensor for many applications that require lower sensor size/weight and cost. For high accuracy applications, cost-effective calibration methods with minimal manual intervention are always desired by users. However, the calibrations are complicated by the Velodyne LiDAR's narrow vertical field of view and the very highly time-variant nature of its measurements. In the paper, the temporal stability of the HDL-32E is first analysed as the motivation for developing a new, automated calibration method. This is followed by a detailed description of the calibration method that is driven by a novel segmentation method for extracting vertical cylindrical features from the Velodyne point clouds. The proposed segmentation method utilizes the Velodyne point cloud's slice-like nature and first decomposes the point clouds into 2D layers. Then the layers are treated as 2D images and are processed with the Generalized Hough Transform which extracts the points distributed in circular patterns from the point cloud layers. Subsequently, the vertical cylindrical features can be readily extracted from the whole point clouds based on the previously extracted points. The points are passed to the calibration that estimates the cylinder parameters and the LiDAR's additional parameters simultaneously by constraining the segmented points to fit to the cylindrical geometric model in such a way the weighted sum of the adjustment residuals are minimized. The proposed calibration is highly automatic and this allows end users to obtain the time-variant additional parameters instantly and frequently whenever there are vertical cylindrical features presenting in scenes. The methods were verified with two different real datasets, and the results suggest that up to 78.43% accuracy improvement for the HDL-32E can be achieved using the proposed calibration method.

  7. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  8. Validation of POLDER/ADEOS data using a ground-based lidar network: Preliminary results for semi-transparent and cirrus clouds

    NASA Technical Reports Server (NTRS)

    Chepfer, H.; Sauvage, L.; Flamant, P. H.; Pelon, J.; Goloub, P.; Brogniez, G.; spinhirne, J.; Lavorato, M.; Sugimoto, N.

    1998-01-01

    At mid and tropical latitudes, cirrus clouds are present more than 50% of the time in satellites observations. Due to their large spatial and temporal coverage, and associated low temperatures, cirrus clouds have a major influence on the Earth-Ocean-Atmosphere energy balance through their effects on the incoming solar radiation and outgoing infrared radiation. At present the impact of cirrus clouds on climate is well recognized but remains to be asserted more precisely, for their optical and radiative properties are not very well known. In order to understand the effects of cirrus clouds on climate, their optical and radiative characteristics of these clouds need to be determined accurately at different scales in different locations i.e. latitude. Lidars are well suited to observe cirrus clouds, they can detect very thin and semi-transparent layers, and retrieve the clouds geometrical properties i.e. altitude and multilayers, as well as radiative properties i.e. optical depth, backscattering phase functions of ice crystals. Moreover the linear depolarization ratio can give information on the ice crystal shape. In addition, the data collected with an airborne version of POLDER (POLarization and Directionality of Earth Reflectances) instrument have shown that bidirectional polarized measurements can provide information on cirrus cloud microphysical properties (crystal shapes, preferred orientation in space). The spaceborne version of POLDER-1 has been flown on ADEOS-1 platform during 8 months (October 96 - June 97), and the next POLDER-2 instrument will be launched in 2000 on ADEOS-2. The POLDER-1 cloud inversion algorithms are currently under validation. For cirrus clouds, a validation based on comparisons between cloud properties retrieved from POLDER-1 data and cloud properties inferred from a ground-based lidar network is currently under consideration. We present the first results of the validation.

  9. Microwave Radiometer and Lidar Synergy for High Vertical Resolution Thermodynamic Profiling in a Cloudy Scenario

    NASA Astrophysics Data System (ADS)

    Barrera Verdejo, M.; Crewell, S.; Loehnert, U.; Di Girolamo, P.

    2016-12-01

    Continuous monitoring of thermodynamic atmospheric profiles is important for many applications, e.g. assessment of atmospheric stability and cloud formation. Nowadays there is a wide variety of ground-based sensors for atmospheric profiling. However, no single instrument is able to simultaneously provide measurements with complete vertical coverage, high vertical and temporal resolution, and good performance under all weather conditions. For this reason, instrument synergies of a wide range of complementary measurements are more and more considered for improving the quality of atmospheric observations. The current work presents synergetic use of a microwave radiometer (MWR) and Raman lidar (RL) within a physically consistent optimal estimation approach. On the one hand, lidar measurements provide humidity and temperature measurements with a high vertical resolution albeit with limited vertical coverage, due to overlapping function problems, sunlight contamination and the presence of clouds. On the other hand, MWRs obtain humidity, temperature and cloud information throughout the troposphere, with however only a very limited vertical resolution. The benefits of MWR+RL synergy have been previously demonstrated for clear sky cases. This work expands this approach to cloudy scenarios. Consistent retrievals of temperature, absolute and relative humidity as well as liquid water path are analyzed. In addition, different measures are presented to demonstrate the improvements achieved via the synergy compared to individual retrievals, e.g. degrees of freedom or theoretical error. We also demonstrate that, compared to the lidar, the higher temporal resolution of the MWR presents a strong advantage for capturing the high temporal variability of the liquid water cloud.. Finally, the results are compared with independent information sources, e.g. GPS or radiosondes, showing good consistency. The study demonstrates the benefits of the sensor combination, being especially strong in regions where lidar data is not available, whereas if both instruments are available, the lidar measurements dominate the retrieval.

  10. Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination

    PubMed Central

    Fasano, Giancarmine; Grassi, Michele

    2017-01-01

    In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective-n-Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal. PMID:28946651

  11. Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination.

    PubMed

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2017-09-24

    In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective- n -Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal.

  12. Development of LiDAR aware allometrics for Abies grandis: A Case Study

    NASA Astrophysics Data System (ADS)

    Stone, G. A.; Tinkham, W. T.; Smith, A. M.; Hudak, A. T.; Falkowski, M. J.; Keefe, R.

    2012-12-01

    Forest managers rely increasingly on accurate allometric relationships to inform decisions regarding stand rotations, silvilcultural treatments, timber harvesting, and biometric modeling. At the same time, advances in remote sensing techniques like LiDAR (light detection and ranging) have brought about opportunities to advance how we assess forest growth, and thus are contributing to the need for more accurate allometries. Past studies have attempted to relate LiDAR data to both plot and individual tree measures of forest biomass. However, many of these studies have been limited by the accuracy of their coincident observations. In this study, 24 Abies grandis were measured, felled, and dissected for the explicit objective of developing LiDAR aware allometrics. The analysis predicts spatial variables of competition, growth potential (e.g, trees per acre, aspect, elevation, etc.) and common statistical distributional metrics (e.g., mean, mode, percentiles, variance, skewness, kurtosis, etc.) derived from LiDAR point cloud returns to coincident in situ measures of Abies grandis stem biomass. The resulting allometries exemplify a new approach for predicting structural attributes of interest (biomass, basal area, volume, etc.) directly from LiDAR point cloud data, precluding the measurement errors that are propogated by indirectly predicting these structure attributes of interest from LiDAR data using traditional plot-based measurements.

  13. Impact of survey workflow on precision and accuracy of terrestrial LiDAR datasets

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Cowgill, E.; Kreylos, O.

    2009-12-01

    Ground-based LiDAR (Light Detection and Ranging) survey techniques are enabling remote visualization and quantitative analysis of geologic features at unprecedented levels of detail. For example, digital terrain models computed from LiDAR data have been used to measure displaced landforms along active faults and to quantify fault-surface roughness. But how accurately do terrestrial LiDAR data represent the true ground surface, and in particular, how internally consistent and precise are the mosaiced LiDAR datasets from which surface models are constructed? Addressing this question is essential for designing survey workflows that capture the necessary level of accuracy for a given project while minimizing survey time and equipment, which is essential for effective surveying of remote sites. To address this problem, we seek to define a metric that quantifies how scan registration error changes as a function of survey workflow. Specifically, we are using a Trimble GX3D laser scanner to conduct a series of experimental surveys to quantify how common variables in field workflows impact the precision of scan registration. Primary variables we are testing include 1) use of an independently measured network of control points to locate scanner and target positions, 2) the number of known-point locations used to place the scanner and point clouds in 3-D space, 3) the type of target used to measure distances between the scanner and the known points, and 4) setting up the scanner over a known point as opposed to resectioning of known points. Precision of the registered point cloud is quantified using Trimble Realworks software by automatic calculation of registration errors (errors between locations of the same known points in different scans). Accuracy of the registered cloud (i.e., its ground-truth) will be measured in subsequent experiments. To obtain an independent measure of scan-registration errors and to better visualize the effects of these errors on a registered point cloud, we scan from multiple locations an object of known geometry (a cylinder mounted above a square box). Preliminary results show that even in a controlled experimental scan of an object of known dimensions, there is significant variability in the precision of the registered point cloud. For example, when 3 scans of the central object are registered using 4 known points (maximum time, maximum equipment), the point clouds align to within ~1 cm (normal to the object surface). However, when the same point clouds are registered with only 1 known point (minimum time, minimum equipment), misalignment of the point clouds can range from 2.5 to 5 cm, depending on target type. The greater misalignment of the 3 point clouds when registered with fewer known points stems from the field method employed in acquiring the dataset and demonstrates the impact of field workflow on LiDAR dataset precision. By quantifying the degree of scan mismatch in results such as this, we can provide users with the information needed to maximize efficiency in remote field surveys.

  14. Multi-Beam Surface Lidar for Lunar and Planetary Mapping

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Garvin, James B.

    1998-01-01

    Surface lidar techniques are now being demonstrated in low Earth orbit with a single beam of pulsed laser radiation at 1064 nm that profiles the vertical structure of Earth surface landforms along the nadir track of a spacecraft. In addition, a profiling laser altimeter, called MOLA, is operating in elliptical Martian orbit and returning surface topography data. These instruments form the basis for suggesting an improved lidar instrument that employs multiple beams for extension of sensor capabilities toward the goal of true, 3-dimensional mapping of the Moon or other similar planetary surfaces. In general the lidar waveform acquired with digitization of a laser echo can be used for laser distance measurement (i.e. range-to-the-surface) by time-of-flight measurement and for surface slope and shape measurements by examining the detailed lidar waveform. This is particularly effective when the intended target is the lunar surface or another planetary body free of any atmosphere. The width of the distorted return pulse is a first order measure of the surface incidence angle, a combination of surface slope and laser beam pointing. Assuming an independent and absolute (with respect to inertial space) measurement of laser beam pointing on the spacecraft, it is possible to derive a surface slope with-respect-to the mean planetary surface or its equipotential gravity surface. Higher-order laser pulse distortions can be interpreted in terms of the vertical relief of the surface or reflectivity variations within the area of the laser beam footprint on the surface.

  15. MPL-net at ARM Sites

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Welton, E. J.; Campbell, J. R.; Berkoff, T. A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The NASA MPL-net project goal is consistent data products of the vertical distribution of clouds and aerosol from globally distributed lidar observation sites. The four ARM micro pulse lidars are a basis of the network to consist of over twelve sites. The science objective is ground truth for global satellite retrievals and accurate vertical distribution information in combination with surface radiation measurements for aerosol and cloud models. The project involves improvement in instruments and data processing and cooperation with ARM and other partners.

  16. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  17. Aircraft-Induced Hole Punch and Canal Clouds

    NASA Astrophysics Data System (ADS)

    Heymsfield, A. J.; Kennedy, P.; Massie, S. T.; Schmitt, C. G.; Wang, Z.; Haimov, S.; Rangno, A.

    2009-12-01

    The production of holes and channels in altocumulus clouds by two commercial turboprop aircraft is documented for the first time. An unprecedented data set combining in situ measurements from microphysical probes with remote sensing measurements from cloud radar and lidar, all operating from the NSF/NCAR C130 aircraft, as well as ground-based NOAA and CSU radars, is used to describe the radar/lidar properties of a hole punch cloud and channel and the ensuing ice microphysical properties and structure of the ice column that subsequently developed. Ice particle production by commercial turboprop aircraft climbing through clouds much warmer than the regions where contrails are produced has the potential to modify significantly the cloud microphysical properties and effectively seed them under some conditions. Jet aircraft may also be producing hole punch clouds when flying through altocumulus with supercooled droplets at heights lower than their normal cruise altitudes where contrails can form. Commercial aircraft therefore can generate ice and affect the clouds at temperatures as much as 30°C warmer than the -40°C contrail formation threshold temperature.

  18. Thirteenth International Laser Radar Conference

    NASA Technical Reports Server (NTRS)

    1986-01-01

    One hundred fifteen papers were presented in both oral and poster sessions. The topics of the conference sessions were: spaceborne lidar applications; extinction/visibility; differential absorption lidar; winds and tropospheric studies; middle atmosphere; clouds and multiple scattering; pollution studies; and new systems.

  19. Active sensor synergy for arctic cloud microphysics

    NASA Astrophysics Data System (ADS)

    Sato, Kaori; Okamoto, Hajime; Katagiri, Shuichiro; Shiobara, Masataka; Yabuki, Masanori; Takano, Toshiaki

    2018-04-01

    In this study, we focus on the retrieval of liquid and ice-phase cloud microphysics from spaceborne and ground-based lidar-cloud radar synergy. As an application of the cloud retrieval algorithm developed for the EarthCARE satellite mission (JAXA-ESA) [1], the derived statistics of cloud microphysical properties in high latitudes and their relation to the Arctic climate are investigated.

  20. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  1. Global CALIPSO Observations of Aerosol Changes Near Clouds

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2011-01-01

    Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  2. Correlations among the Optical Properties of Cirrus-Cloud Particles: Microphysical Interpretation

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Hess, M.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Cirrus measurements obtained with a ground-based polarization Raman lidar at 67.9 deg N in January 1997 reveal a strong positive correlation between the particle optical properties, specifically depolarization ratio delta(sub par) and extinction- to-backscatter (lidar) ratio S, for delta(sub par) less than approximately 40%, and an anti-correlation for delta(sub par) greater than approximately 40%. Over the length of the measurements the particle properties vary systematically. Initially, delta (sub par) approximately equals 60% and S approximately equals 10sr are observed. Then, with decreasing delta(sub par), S first increases to approximately 27sr (delta(sub par) approximately equals 40%) before decreasing to values around 10sr again (delta(sub par) approximately equals 20%). The analysis of lidar humidity and radiosonde temperature data shows that the measured optical properties stem from scattering by dry solid ice particles, while scattering by supercooled droplets, or by wetted or subliming ice particles can be excluded. For the microphysical interpretation of the lidar measurements, ray-tracing computations of particle scattering properties have been used. The comparison with the theoretical data suggests that the observed cirrus data can be interpreted in terms of size, shape, and, under the assumption that the lidar measurements of consecutive cloud segments can be mapped on the temporal development of a single cloud parcel moving along its trajectory, growth of the cirrus particles: Near the cloud top in the early stage of cirrus development, light scattering by nearly isometric particles that have the optical characteristics of hexagonal columns (short, column-like particles) is dominant. Over time the ice particles grow, and as the cloud base height extends to lower altitudes characterized by warmer temperatures they become morphologically diverse. For large S and depolarization values of approximately 40%, the scattering contributions of column- and plate-like particles are roughly the same. In the lower ranges of the cirrus clouds, light scattering is predominantly by plate-like ice particles. This interpretation assumes random orientation of the cirrus particles. Simulations with a simple model suggest, however, that the positive correlation between S and delta(sub par) which is observed for depolarization ratios less than 40% mainly at low cloud altitudes, can be alternatively explained by horizontal alignment of a fraction of the cirrus particle population.

  3. A portable lidar using a diode-pumped YAG laser

    NASA Technical Reports Server (NTRS)

    Takeuchi, N.; Okumura, H.; Sugita, T.; Matsumoto, H.; Yamaguchi, S.

    1992-01-01

    A Mie lidar system is technically established and is used for monitoring air pollution, stratospheric and boundary layer aerosol distribution, plume dispersion, visibility, and the study of atmospheric structure and cloud physics. However, a lidar system is not widely used because of its cumbersome handling and unwieldy portability. Although the author developed a laser diode lidar system based on RM-CW technique, it has a limit of measurement distance. Here we report the development of an all solid Mie lidar system using a diode-pumped Nd:YAG laser and a Si-APD detector. This was constructed as a prototype of a handy lidar system.

  4. Influence of Meteorological Regimes on Cloud Microphysics Over Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Glennon, C.; Wang, S. H.; Scott, R. C.; Bromwich, D. H.; Lubin, D.

    2017-12-01

    The Antarctic provides a sharp contrast in cloud microphysics from the high Arctic, due to orographic lifting and resulting strong vertical motions induced by mountain ranges and other varying terrain on several spatial scales. The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) deployed advanced cloud remote sensing equipment to Ross Island, Antarctica, from December 2015 until January 2016. This equipment included scanning and zenith radars operating in the Ka and X bands, a high spectral resolution lidar (HSRL), and a polarized micropulse lidar (MPL). A major AWARE objective is to provide state-of-the-art data for improving cloud microphysical parameterizations in climate models. To further this objective we have organized and classified the local Ross Island meteorology into distinct regimes using k-means clustering on ERA-Interim reanalysis data. We identify synoptic categories producing unique regimes of cloud cover and cloud microphysical properties over Ross Island. Each day of observations can then be associated with a specific meteorological regime, thus assisting modelers with identifying case studies. High-resolution (1 km) weather forecasts from the Antarctic Mesoscale Prediction System (AMPS) are sorted into these categories. AMPS-simulated anomalies of cloud fraction, near-surface air temperature, and vertical velocity at 500-mb are composited and compared with ground-based radar and lidar-derived cloud properties to identify mesoscale meteorological processes driving Antarctic cloud formation. Synoptic lows over the Ross and Amundsen Seas drive anomalously warm conditions at Ross Island by injecting marine air masses inland over the West Antarctic Ice Sheet (WAIS). This results in ice and mixed-phase orographic cloud systems arriving at Ross Island from the south to southeast along the Transantarctic Mountains. In contrast, blocking over the Amundsen Sea region brings classical liquid-dominated mixed-phase and thin liquid water clouds from the Southern Ocean. Low pressure systems over the Bellingshausen Sea produce outflow of cold, dry continental polar air, yielding predominantly tenuous ice cloud at Ross Island.

  5. Self-Similar Spin Images for Point Cloud Matching

    NASA Astrophysics Data System (ADS)

    Pulido, Daniel

    The rapid growth of Light Detection And Ranging (Lidar) technologies that collect, process, and disseminate 3D point clouds have allowed for increasingly accurate spatial modeling and analysis of the real world. Lidar sensors can generate massive 3D point clouds of a collection area that provide highly detailed spatial and radiometric information. However, a Lidar collection can be expensive and time consuming. Simultaneously, the growth of crowdsourced Web 2.0 data (e.g., Flickr, OpenStreetMap) have provided researchers with a wealth of freely available data sources that cover a variety of geographic areas. Crowdsourced data can be of varying quality and density. In addition, since it is typically not collected as part of a dedicated experiment but rather volunteered, when and where the data is collected is arbitrary. The integration of these two sources of geoinformation can provide researchers the ability to generate products and derive intelligence that mitigate their respective disadvantages and combine their advantages. Therefore, this research will address the problem of fusing two point clouds from potentially different sources. Specifically, we will consider two problems: scale matching and feature matching. Scale matching consists of computing feature metrics of each point cloud and analyzing their distributions to determine scale differences. Feature matching consists of defining local descriptors that are invariant to common dataset distortions (e.g., rotation and translation). Additionally, after matching the point clouds they can be registered and processed further (e.g., change detection). The objective of this research is to develop novel methods to fuse and enhance two point clouds from potentially disparate sources (e.g., Lidar and crowdsourced Web 2.0 datasets). The scope of this research is to investigate both scale and feature matching between two point clouds. The specific focus of this research will be in developing a novel local descriptor based on the concept of self-similarity to aid in the scale and feature matching steps. An open problem in fusion is how best to extract features from two point clouds and then perform feature-based matching. The proposed approach for this matching step is the use of local self-similarity as an invariant measure to match features. In particular, the proposed approach is to combine the concept of local self-similarity with a well-known feature descriptor, Spin Images, and thereby define "Self-Similar Spin Images". This approach is then extended to the case of matching two points clouds in very different coordinate systems (e.g., a geo-referenced Lidar point cloud and stereo-image derived point cloud without geo-referencing). The use of Self-Similar Spin Images is again applied to address this problem by introducing a "Self-Similar Keyscale" that matches the spatial scales of two point clouds. Another open problem is how best to detect changes in content between two point clouds. A method is proposed to find changes between two point clouds by analyzing the order statistics of the nearest neighbors between the two clouds, and thereby define the "Nearest Neighbor Order Statistic" method. Note that the well-known Hausdorff distance is a special case as being just the maximum order statistic. Therefore, by studying the entire histogram of these nearest neighbors it is expected to yield a more robust method to detect points that are present in one cloud but not the other. This approach is applied at multiple resolutions. Therefore, changes detected at the coarsest level will yield large missing targets and at finer levels will yield smaller targets.

  6. Instantaneous Coastline Extraction from LIDAR Point Cloud and High Resolution Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhoing, L.; Lai, Z.; Gan, Z.

    2018-04-01

    A new method was proposed for instantaneous waterline extraction in this paper, which combines point cloud geometry features and image spectral characteristics of the coastal zone. The proposed method consists of follow steps: Mean Shift algorithm is used to segment the coastal zone of high resolution remote sensing images into small regions containing semantic information;Region features are extracted by integrating LiDAR data and the surface area of the image; initial waterlines are extracted by α-shape algorithm; a region growing algorithm with is taking into coastline refinement, with a growth rule integrating the intensity and topography of LiDAR data; moothing the coastline. Experiments are conducted to demonstrate the efficiency of the proposed method.

  7. Airborne Lidar Observations of Water Vapor Variability in the Northern Atlantic Trades

    NASA Astrophysics Data System (ADS)

    Kiemle, Christoph; Groß, Silke; Wirth, Martin; Bugliaro, Luca

    2017-04-01

    During the NARVAL (Next Generation Aircraft Remote Sensing for Validation Studies) field experiments in December 2013 and August 2016 the DLR lidar WALES (Water vapor Lidar Experiment in Space) was operated on board the German research aircraft HALO. The lidar simultaneously provided two-dimensional curtains of atmospheric backscatter and humidity along the flight track with high accuracy and spatial resolution, in order to help improve our knowledge on the coupling between water vapor, clouds, and circulation in the trades. The variability of water vapor, ubiquitous in our measurements, poses challenges to climate models because it acts on the small-scale low-cloud cover. Aloft, the very dry free troposphere in the subsiding branch of the Hadley cell acts as an open window in a greenhouse, efficiently cooling the lower troposphere. Secondary circulations between radiatively heated and cooled regions are supposed to occur, adding complexity to the situation. After recently having identified them to be mainly responsible for the uncertainty in global climate sensitivity, such interactions between shallow convection, circulation and radiation are at the heart of present scientific debate, endorsed by the WCRP (World Climate Research Programme) "Grand Challenge on Clouds, Circulation and Climate Sensitivity". Out of the wealth of about 30 winter and 60 summer flight hours totaling 75000 km of data over the Tropical Atlantic Ocean east of Barbados, several representative lidar segments from different flights are presented, together with Meteosat Second Generation (MSG) images and dropsonde profiles. All observations indicate high heterogeneity of the humidity in the lowest 5 km, as well as high variability of the depth of the cloud layer (1 - 2 km thick) and of the sub-cloud boundary layer ( 1 km thick). Layer depths and partial water vapor columns within the layers may vary by up to a factor of 2, and on a large range of horizontal scales. Occasionally, very dry, up to 100 km wide regions are observed. In winter, 95 % of the water vapor column ( 30 kg/m2) is below the trade inversion, and the vertical moisture gradient at the trade inversion is mostly stronger than the gradient at the top of the sub-cloud layer. In the summer campaign the ITCZ was closer. There was consequently more moisture in total ( 40 kg/m2) and particularly also more moisture in the free troposphere above the inversion, of importance for radiation. The typical deviations between lidar and dropsonde water vapor mixing ratio profiles amount to a few percent. This presentation highlights the potential of novel lidar observations to advance science in a complex and climate-sensitive context.

  8. Using CATS Near-Real-time Lidar Observations to Monitor and Constrain Volcanic Sulfur Dioxide (SO2) Forecasts

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Yorks, J.; Krotkov, N. A.; da Silva, A. M.; Mcgill, M.

    2016-01-01

    An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5 days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.

  9. Using CATS Near-Real-Time Lidar Observations to Monitor and Constrain Volcanic Sulfur Dioxide (SO2) Forecasts

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Yorks, J.; Krotkov, N. A.; Da Silva, A. M.; McGill, M.

    2016-01-01

    An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.

  10. 9+ Years of CALIOP PSC Data: An Evolving Climatology

    NASA Technical Reports Server (NTRS)

    Pitts, Michael C.; Poole, Lamont R.

    2015-01-01

    Polar stratospheric clouds (PSCs) play key roles in the springtime chemical depletion of ozone at high latitudes. PSC particles provide sites for heterogeneous chemical reactions that transform stable chlorine and bromine reservoir species into highly reactive ozone-destructive forms. Furthermore, large nitric acid trihydrate (NAT) PSC particles can irreversibly redistribute odd nitrogen through gravitational sedimentation, which prolongs the ozone depletion process by slowing the reformation of the stable chlorine reservoirs. However, there are still significant gaps in our understanding of PSC processes, particularly concerning the details of NAT particle formation. Spaceborne observations from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite are providing a rich new dataset for studying PSCs on unprecedented vortex-wide scales. In this paper, we examine the vertical and spatial distribution of PSCs in the Antarctic and Arctic on vortex-wide scales for entire PSC seasons over the more than nine-year data record.

  11. Multiangle lidar observations of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Lalitkumar Prakash, Pawar; Choukiker, Yogesh Kumar; Raghunath, K.

    2018-04-01

    Atmospheric Lidars are used extensively to get aerosol parameters like backscatter coefficient, backscatter ratio etc. National Atmospheric Research Laboratory, Gadanki (13°N, 79°E), India has a powerful lidar which has alt-azimuth capability. Inversion method is applied to data from observations of lidar system at different azimuth and elevation angles. Data Analysis is described and Observations in 2D and 3D format are discussed. Presence of Cloud and the variation of backscatter parameters are seen in an interesting manner.

  12. Infrared lidars for atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1991-01-01

    Lidars using pulsed TEA-CO2 transmitters and coherent receivers have been developed at JPL and used to measure atmospheric backscatter and extinction at wavelengths in the 9-11 micron region. The global winds measurement application of coherent Doppler lidar requires intensive study of the global climatology of aerosol and cloud backscatter and extinction. An airborne lidar was recently flown on the NASA DC-8 research aircraft for operation during two Pacific circumnavigation missions. The instrument characteristics, as well as representative measurement results, are discussed.

  13. 16-year Climatology of Cirrus cloud properties using ground-based Lidar over Gadanki (13.45˚N, 79.18˚E)

    NASA Astrophysics Data System (ADS)

    Pandit, Amit Kumar; Raghunath, Karnam; Jayaraman, Achuthan; Venkat Ratnam, Madineni; Gadhavi, Harish

    Cirrus clouds are ubiquitous high level cold clouds predominantly consisting of ice-crystals. With their highest coverage over the tropics, these are one of the most vital and complex components of Tropical Tropopause Layer (TTL) due to their strong radiative feedback and dehydration in upper troposphere and lower stratosphere (UTLS) regions. The continuous changes in their coverage, position, thickness, and ice-crystal size and shape distributions bring uncertainties in the estimates of cirrus cloud radiative forcing. Long-term changes in the distribution of aerosols and water vapour in the TTL can influence cirrus properties. This necessitates long-term studies of tropical cirrus clouds, which are only few. The present study provides 16-year climatology of physical and optical properties of cirrus clouds observed using a ground-based Lidar located at Gadanki (13.45(°) N, 79.18(°) ˚E and 375 m amsl) in south-India. In general, cirrus clouds occurred for about 44% of the total Lidar observation time. Owing to the increased convective activities, the occurrence of cirrus clouds during the southwest-monsoon season is highest while it is lowest during the winter. Altitude distribution of cirrus clouds reveals that the peak occurrence was about 25% at 14.5 km. The most probable base and top height of cirrus clouds are 14 and 15.5 km, respectively. This is also reflected in the bulk extinction coefficient profile (at 532 nm) of cirrus clouds. These results are compared with the CALIPSO observations. Most of the time cirrus clouds are located within the TTL bounded by convective outflow level and cold-point tropopause. Cirrus clouds are thick during the monsoon season as compared to that during winter. An inverse relation between the thickness of cirrus clouds and TTL thickness is found. The occurrence of cirrus clouds at an altitude close to the tropopause (16 km) showed an increase of 8.4% in the last 16 years. Base and top heights of cirrus clouds also showed increase of 0.41 km and 0.56 km, respectively. These results are discussed in relation with the recent increase in the tropical tropopause altitude.

  14. Simultaneous colour visualizations of multiple ALS point cloud attributes for land cover and vegetation analysis

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Schroiff, Anke; Otepka, Johannes; Mandlburger, Gottfried; Pfeifer, Norbert

    2014-05-01

    LIDAR point clouds hold valuable information for land cover and vegetation analysis, not only in the spatial distribution of the points but also in their various attributes. However, LIDAR point clouds are rarely used for visual interpretation, since for most users, the point cloud is difficult to interpret compared to passive optical imagery. Meanwhile, point cloud viewing software is available allowing interactive 3D interpretation, but typically only one attribute at a time. This results in a large number of points with the same colour, crowding the scene and often obscuring detail. We developed a scheme for mapping information from multiple LIDAR point attributes to the Red, Green, and Blue channels of a widely used LIDAR data format, which are otherwise mostly used to add information from imagery to create "photorealistic" point clouds. The possible combinations of parameters are therefore represented in a wide range of colours, but relative differences in individual parameter values of points can be well understood. The visualization was implemented in OPALS software, using a simple and robust batch script, and is viewer independent since the information is stored in the point cloud data file itself. In our case, the following colour channel assignment delivered best results: Echo amplitude in the Red, echo width in the Green and normalized height above a Digital Terrain Model in the Blue channel. With correct parameter scaling (but completely without point classification), points belonging to asphalt and bare soil are dark red, low grassland and crop vegetation are bright red to yellow, shrubs and low trees are green and high trees are blue. Depending on roof material and DTM quality, buildings are shown from red through purple to dark blue. Erroneously high or low points, or points with incorrect amplitude or echo width usually have colours contrasting from terrain or vegetation. This allows efficient visual interpretation of the point cloud in planar, profile and 3D views since it reduces crowding of the scene and delivers intuitive contextual information. The resulting visualization has proved useful for vegetation analysis for habitat mapping, and can also be applied as a first step for point cloud level classification. An interactive demonstration of the visualization script is shown during poster attendance, including the opportunity to view your own point cloud sample files.

  15. LIDAR wind speed measurements at a Taiwan onshore wind park

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  16. A Ground-Based Doppler Radar and Micropulse Lidar Forward Simulator for GCM Evaluation of Arctic Mixed-Phase Clouds: Moving Forward Towards an Apples-to-apples Comparison of Hydrometeor Phase

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.

    2017-12-01

    An important aspect of evaluating Artic cloud representation in a general circulation model (GCM) consists of using observational benchmarks which are as equivalent as possible to model output in order to avoid methodological bias and focus on correctly diagnosing model dynamical and microphysical misrepresentations. However, current cloud observing systems are known to suffer from biases such as limited sensitivity, and stronger response to large or small hydrometeors. Fortunately, while these observational biases cannot be corrected, they are often well understood and can be reproduced in forward simulations. Here a ground-based millimeter wavelength Doppler radar and micropulse lidar forward simulator able to interface with output from the Goddard Institute for Space Studies (GISS) ModelE GCM is presented. ModelE stratiform hydrometeor fraction, mixing ratio, mass-weighted fall speed and effective radius are forward simulated to vertically-resolved profiles of radar reflectivity, Doppler velocity and spectrum width as well as lidar backscatter and depolarization ratio. These forward simulated fields are then compared to Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) ground-based observations to assess cloud vertical structure (CVS). Model evalution of Arctic mixed-phase cloud would also benefit from hydrometeor phase evaluation. While phase retrieval from synergetic observations often generates large uncertainties, the same retrieval algorithm can be applied to observed and forward-simulated radar-lidar fields, thereby producing retrieved hydrometeor properties with potentially the same uncertainties. Comparing hydrometeor properties retrieved in exactly the same way aims to produce the best apples-to-apples comparisons between GCM ouputs and observations. The use of a comprenhensive ground-based forward simulator coupled with a hydrometeor classification retrieval algorithm provides a new perspective for GCM evaluation of Arctic mixed-phase clouds from the ground where low-level supercooled liquid layer are more easily observed and where additional environmental properties such as cloud condensation nuclei are quantified. This should help assist in choosing between several possible diagnostic ice nucleation schemes for ModelE stratiform cloud.

  17. Angular Alignment Testing of Laser Mirror Mounts Under Temperature Cycling

    NASA Technical Reports Server (NTRS)

    Bullock, K. T.; DeYoung, R. J.; Sandford, S. P.

    1997-01-01

    A number of commercial and custom-built laser mirror mounts were tested for angular alignment sensitivity during temperature cycling from room temperature (20 C) to 40 C. A Nd:YAG laser beam was reflected off a mirror that was held by the mount under test and was directed to a position-sensitive detector. Horizontal and vertical movement of the reflected beam was recorded, and the angular movement, as a function of temperature (coefficient of thermal tilt (CTT)) was calculated from these data. In addition, the amount of hysteresis in the movement after cycling from room temperature to 40 C and back was determined. All commercial mounts showed greater angular movement than the simpler National Aeronautics and Space Administration Lidar Atmospheric Sensing Experiment (NASA LASE) custom mirror mounts.

  18. The e-Beam Sustained Laser Technology for Space-based Doppler Wind Lidar

    NASA Technical Reports Server (NTRS)

    Brown, M. J.; Holman, W.; Robinson, R. J.; Schwarzenberger, P. M.; Smith, I. M.; Wallace, S.; Harris, M. R.; Willetts, D. V.; Kurzius, S. C.

    1992-01-01

    An overview is presented of GEC Avionics activities relating to the Spaceborne Doppler Wind Lidar. In particular, the results of design studies into the use of an e-beam sustained CO2 laser for spaceborne applications, and experimental work on a test bed system are discussed.

  19. Laplace Transform Based Radiative Transfer Studies

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.

    2006-12-01

    Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.

  20. Operational processing and cloud boundary detection from micro pulse lidar data

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Hlavka, Dennis L.; Spinhirne, James D.; Scott, V. Stanley., III; Turner, David D.

    1998-01-01

    Micro Pulse Lidar (MPL) was developed at NASA Goddard Space Flight Center (GSFC) as the result of research on space-borne lidar techniques. It was designed to provide continuous, unattended observations of all significant atmospheric cloud and aerosol structure with a rugged, compact system design and the benefit of eye safety (Spinhirne 1993). The significant eye safety feature is achieved by using low pulse energies and high pulse repetition rates compared to standard lidar systems. MPL systems use a diode pumped 10 microj, 2500 Hz doubled Nd:YLF laser. In addition, a solid state Geiger mode avalanche photo diode (GAPD) photon counting detector is used allowing for quantum efficiencies approaching 70%. Other design features have previously been noted by Spinhirne (1995). Though a commercially available instrument, with nearly 20 systems operating around the world, the most extensive MPL work has come from those operated by the Atmospheric Radiation Measurement (ARM) (Stokes and Schwartz 1994) program. The diverse ability of the instrument relating to the measurement of basic cloud macrophysical structure and both cloud and aerosol radiative properties well suits the ARM research philosophy. MPL data can be used to yield many parameters including cloud boundary heights to the limit of signal attenuation, cloud scattering cross sections and optical thicknesses, planetary boundary layer heights and aerosol scattering profiles, including those into the stratosphere in nighttime cases (Hlavka et al 1996). System vertical resolution ranges from 30 m to 300 m (i.e. high and low resolution respectively) depending on system design. The lidar research group at GSFC plays an advisory role in the operation, calibration and maintenance of NASA and ARM owned MPL systems. Over the past three years, processing software and system correction techniques have been developed in anticipation of the increasing population of systems amongst the community. Datasets produced by three ARM-owned systems have served as the basis for this development. With two operating at the southern Great Plains Cloud and Radiation Testbed Site (SGP CART) since December 1993 and another at the Manus Island Atmospheric Radiation and Cloud Station (TWP ARCS) location in the tropical western Pacific since February 1997, the ARM archive contains over 4 years of observations. In addition, high resolution systems planning to come on-line at the North Slope, AK CART shortly with another scheduled to follow at the TWP ARCS-II will diversify this archive with more extensive observations.

  1. Augmented reality system using lidar point cloud data for displaying dimensional information of objects on mobile phones

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Lohani, B.

    2014-05-01

    Mobile augmented reality system is the next generation technology to visualise 3D real world intelligently. The technology is expanding at a fast pace to upgrade the status of a smart phone to an intelligent device. The research problem identified and presented in the current work is to view actual dimensions of various objects that are captured by a smart phone in real time. The methodology proposed first establishes correspondence between LiDAR point cloud, that are stored in a server, and the image t hat is captured by a mobile. This correspondence is established using the exterior and interior orientation parameters of the mobile camera and the coordinates of LiDAR data points which lie in the viewshed of the mobile camera. A pseudo intensity image is generated using LiDAR points and their intensity. Mobile image and pseudo intensity image are then registered using image registration method SIFT thereby generating a pipeline to locate a point in point cloud corresponding to a point (pixel) on the mobile image. The second part of the method uses point cloud data for computing dimensional information corresponding to the pairs of points selected on mobile image and fetch the dimensions on top of the image. This paper describes all steps of the proposed method. The paper uses an experimental setup to mimic the mobile phone and server system and presents some initial but encouraging results

  2. Surface Fitting Filtering of LIDAR Point Cloud with Waveform Information

    NASA Astrophysics Data System (ADS)

    Xing, S.; Li, P.; Xu, Q.; Wang, D.; Li, P.

    2017-09-01

    Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from "WATER (Watershed Allied Telemetry Experimental Research)" are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.

  3. Development of a pulsed 9.5 micron lidar for regional scale O3 measurement

    NASA Technical Reports Server (NTRS)

    Stewart, R. W.

    1980-01-01

    A pulsed infrared lidar system designed for application to the remote sensing of atmospheric trace gases from an airborne platform is described. The system is also capable of measuring the infrared backscatter characteristics of the ocean surface, terrain, cloud, and aerosol targets. The lidar employed is based on dual wavelength pulse energy measurements in the 9-11 micrometer wavelength region.

  4. 4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR

    NASA Astrophysics Data System (ADS)

    Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas

    2016-04-01

    The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten, Austria) and an agricultural maize crop stand (Heidelberg, Germany). This research demonstrates the potential and also limitations of fully automated, near real-time 4D LiDAR monitoring in geosciences.

  5. On the use of airborne LiDAR for braided river monitoring and water surface delineation

    NASA Astrophysics Data System (ADS)

    Vetter, M.; Höfle, B.; Pfeifer, N.; Rutzinger, M.; Stötter, J.

    2009-04-01

    Airborne LiDAR is an established technology for Earth surface surveying. With LiDAR data sets it is possible to derive maps with different land use classes, which are important for hydraulic simulations. We present a 3D point cloud based method for automatic water surface delineation using single as well as multitemporal LiDAR data sets. With the developed method it is possible to detect the location of the water surface with high planimetric accuracy. The multitemporal analysis of different LiDAR data sets makes it possible to visualize, monitor and quantify the changes of the flow path of braided rivers as well as derived water surface land use classes. The reflection properties from laser beams (1064 nm wavelength) on water surfaces are characterized by strong absorption or specular reflection resulting in a dominance of low signal amplitude values and a high number of laser shot dropouts (i.e. non-recorded laser echoes). The occurrence of dropouts is driven by (i) the incidence angle, (ii) the surface reflectance and (iii) the roughness of the water body. The input data of the presented delineation method are the modeled dropouts and the point cloud attributes of geometry and signal amplitude. A terrestrial orthophoto is used to explore the point cloud in order to find proper information about the geometry and amplitude attributes that are characteristic for water surfaces. The delineation method is divided into five major steps. (a) We compute calibrated amplitude values by reducing the atmospheric, topographic influences and the scan geometry for each laser echo. (b) Then, the dropouts are modeled by using the information from the time stamps, the pulse repetition frequency, the inertial measurement unit and the GPS information of the laser shots and the airplane. The next step is to calculate the standard deviation of the heights for all reflections and all modeled dropouts (c) in a specific radius around the points. (d) We compute the amplitude ratio density for all shots. The amplitude density ratio is the relation between the number of laser echoes having an amplitude within a specific interval (i.e. very low amplitudes) plus the dropouts (i.e. with amplitude of zero) divided by the number of all laser shots in a fixed search distance of a point. (e) We classify each point in water or a non-water by using the attributes of (i) the standard deviation of the height and (ii) the amplitude density ratio. For validation, a terrestrial orthophoto is used, which was taken at the same time as the laser campaign. A major advantage of this new approach is the ability of a point cloud based delineation of water and non-water areas. We demonstrate the results at the glacier forefield of the Hintereisferner (Ötztal, Tyrol, Austria) with multitemporal data sets. The multitemporal analysis demonstrates the strength of the delineation method for mapping the watercourse and monitoring the changes in the flow path of the braided river between the different epochs.

  6. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  7. Microphysical properties and ice particle morphology of cirrus clouds inferred from combined CALIOP-IIR measurements

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.; Yang, P.; Tang, G.; King, M. D.; Sekiguchi, M.

    2016-12-01

    Cirrus clouds cover about 25% of the globe. Knowledge about the optical and microphysical properties of these clouds [particularly, optical thickness (COT) and effective radius (CER)] is essential to radiative forcing assessment. Previous studies of those properties using satellite remote sensing techniques based on observations by passive and active sensors gave inconsistent retrievals. In particular, COTs from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) using the unconstrained method are affected by variable particle morphology, especially the fraction of horizontally oriented plate particles (HPLT), because the method assumes the lidar ratio to be constant, which should have different values for different ice particle shapes. More realistic ice particle morphology improves estimates of the optical and microphysical properties. In this study, we develop an optimal estimation-based algorithm to infer cirrus COT and CER in addition to morphological parameters (e.g., Fraction of HPLT) using the observations made by CALIOP and the Infrared Imaging Radiometer (IIR) on the CALIPSO platform. The assumed ice particle model is a mixture of a few habits with variable HPLT. Ice particle single-scattering properties are computed using state-of-the-art light-scattering computational capabilities. Rigorous estimation of uncertainties associated with surface properties, atmospheric gases and cloud heterogeneity is performed. The results based on the present method show that COTs are quite consistent with the MODIS and CALIOP counterparts, and CERs essentially agree with the IIR operational retrievals. The lidar ratio is calculated from the bulk optical properties based on the inferred parameters. The presentation will focus on latitudinal variations of particle morphology and the lidar ratio on a global scale.

  8. Diversity on subtropical and polar cirrus clouds properties as derived from both ground-based lidars and CALIPSO/CALIOP measurements

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Cuevas, Emilio; Ochoa, Héctor; Gil-Ojeda, Manuel

    2017-01-01

    Cirrus (Ci) cloud properties can change significantly from place to place over the globe as a result of weather processes, reflecting their likely different radiative and climate implications. In this work Cirrus clouds (Ci) features observed in late autumn/early winter season at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements were carried out in three stations: São Paulo (MSP, Brazil) and Tenerife (SCO, Canary Islands, Spain), as subtropical sites, and the polar Belgrano II base (BEL, Argentina) in the Antarctic continent. The backscattering ratio (BSR) profiles and the top and base heights of the Ci layers together to their Cirrus Cloud Optical Depth (CCOD) and Lidar Ratio (LR) for Ci clouds were derived. In addition, temperatures at the top and base boundaries of the Ci clouds were also obtained from local radiosoundings to verify pure ice Ci clouds occurrence using a given temperature top threshold (<- 38 °C). Ci clouds observed along the day were assembled in groups based on their predominant CCOD, and classified according to four CCOD-based categories. Ci clouds were found to be vertically-distributed in relation with the temperature, forming subvisual Ci clouds at lower temperatures and higher altitudes than other Ci categories at both latitudes. Discrepancies shown on LR values for the three stations, but mainly remarked between subtropical and polar cases, can be associated to different temperature regimes for Ci formation, influencing the internal ice habits of the Ci clouds, and hence likely affecting the LR derived for the Ci layer. In comparison with literature values, daily mean CCOD/LR for SCO (0.4 ± 0.4/21 ± 10 sr), MSP (0.5 ± 0.5/27 ± 5 sr) and BEL (0.2 ± 0.3/28 ± 9 sr) are in good agreement; however, the variability of the Ci optical features along the day present large discrepancies. In comparison with CALIOP data, Ci clouds are observed at similar altitudes (around 10-13 km height); however, differences are found mostly in CCOD values for subtropical Ci clouds, whereas LR values are in a closer agreement. These differences are carefully examined in relation with the closest CALIPSO overpass time and distance from the station (> 70 km far), inferring the irregular extension and inhomogeneity of the Ci clouds over each study area. These considerations can be useful for assimilation of the Ci features into climate models and evaluation of future space-borne lidar observations of Ci clouds, especially for the future ESA/Copernicus-Sentinel and ESA/EarthCARE missions.

  9. Evaluating NASA S-NPP continuity cloud products for climate research using CALIPSO, CATS and Level-3 analysis

    NASA Astrophysics Data System (ADS)

    Holz, R.; Platnick, S. E.; Meyer, K.; Frey, R.; Wind, G.; Ackerman, S. A.; Heidinger, A. K.; Botambekov, D.; Yorks, J. E.; McGill, M. J.

    2016-12-01

    The launch of VIIRS and CrIS on Suomi NPP in the fall of 2011 introduced the next generation of U.S. operational polar orbiting environmental observations. Similar to MODIS, VIIRS provides visible and IR observations at moderate spatial resolution and has a 1:30 pm equatorial crossing time consistent with the MODIS on Aqua platform. However unlike MODIS, VIIRS lacks water vapor and CO2 absorbing channels that are used by the MODIS cloud algorithms for both cloud detection and to retrieve cloud top height and cloud emissivity for ice clouds. Given the different spectral and spatial characteristics of VIIRS, we seek to understand the extent to which the 15-year MODIS climate record can be continued with VIIRS/CrIS observations while maintaining consistent sensitivities across the observational systems. This presentation will focus on the evaluation of the latest version of the NASA funded cloud retrieval algorithms being developed for climate research. We will present collocated inter-comparisons between the imagers (VIIRS and MODIS Aqua) with CALIPSO and Cloud Aerosol Transport System (CATS) lidar observations as well as long term statistics based on a new Level-3 (L3) product being developed as part the project. The CALIPSO inter-comparisons will focus on cloud detection (cloud mask) with a focus on the impact of recent modifications to the cloud mask and how these changes impact the global statistics. For the first time we will provide inter-comparisons between two different cloud lidar systems (CALIOP and CATS) and investigate how the different sensitivities of the lidars impact the cloud mask and cloud comparisons. Using CALIPSO and CATS as the reference, and applying the same algorithms to VIIRS and MODIS, we will discuss the consistency between products from both imagers. The L3 analysis will focus on the regional and seasonal consistency between the suite of MODIS and VIIRS continuity cloud products. Do systematic biases remains when using consistent algorithms but applied to different observations (MODIS or VIIRS)?

  10. Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment

    NASA Astrophysics Data System (ADS)

    Ansmann, A.; Tesche, M.; Althausen, D.; Müller, D.; Seifert, P.; Freudenthaler, V.; Heese, B.; Wiegner, M.; Pisani, G.; Knippertz, P.; Dubovik, O.

    2008-02-01

    Multiwavelength lidar, Sun photometer, and radiosonde observations were conducted at Ouarzazate (30.9°N, 6.9°W, 1133 m above sea level, asl), Morocco, in the framework of the Saharan Mineral Dust Experiment (SAMUM) in May-June 2006. The field site is close to the Saharan desert. Information on the depolarization ratio, backscatter and extinction coefficients, and lidar ratio of the dust particles, estimates of the available concentration of atmospheric ice nuclei at cloud level, profiles of temperature, humidity, and the horizontal wind vector as well as backward trajectory analysis are used to study cases of cloud formation in the dust with focus on heterogeneous ice formation. Surprisingly, most of the altocumulus clouds that form at the top of the Saharan dust layer, which reaches into heights of 4-7 km asl and has layer top temperatures of -8°C to -18°C, do not show any ice formation. According to the lidar observations the presence of a high number of ice nuclei (1-20 cm-3) does not automatically result in the obvious generation of ice particles, but the observations indicate that cloud top temperatures must typically reach values as low as -20°C before significant ice production starts. Another main finding is that liquid clouds are obviously required before ice crystals form via heterogeneous freezing mechanisms, and, as a consequence, that deposition freezing is not an important ice nucleation process. An interesting case with cloud seeding in the free troposphere above the dust layer is presented in addition. Small water clouds formed at about -30°C and produced ice virga. These virga reached water cloud layers several kilometers below the initiating cloud cells and caused strong ice production in these clouds at temperatures as high as -12°C to -15°C.

  11. Efficient Open Source Lidar for Desktop Users

    NASA Astrophysics Data System (ADS)

    Flanagan, Jacob P.

    Lidar --- Light Detection and Ranging --- is a remote sensing technology that utilizes a device similar to a rangefinder to determine a distance to a target. A laser pulse is shot at an object and the time it takes for the pulse to return in measured. The distance to the object is easily calculated using the speed property of light. For lidar, this laser is moved (primarily in a rotational movement usually accompanied by a translational movement) and records the distances to objects several thousands of times per second. From this, a 3 dimensional structure can be procured in the form of a point cloud. A point cloud is a collection of 3 dimensional points with at least an x, a y and a z attribute. These 3 attributes represent the position of a single point in 3 dimensional space. Other attributes can be associated with the points that include properties such as the intensity of the return pulse, the color of the target or even the time the point was recorded. Another very useful, post processed attribute is point classification where a point is associated with the type of object the point represents (i.e. ground.). Lidar has gained popularity and advancements in the technology has made its collection easier and cheaper creating larger and denser datasets. The need to handle this data in a more efficiently manner has become a necessity; The processing, visualizing or even simply loading lidar can be computationally intensive due to its very large size. Standard remote sensing and geographical information systems (GIS) software (ENVI, ArcGIS, etc.) was not originally built for optimized point cloud processing and its implementation is an afterthought and therefore inefficient. Newer, more optimized software for point cloud processing (QTModeler, TopoDOT, etc.) usually lack more advanced processing tools, requires higher end computers and are very costly. Existing open source lidar approaches the loading and processing of lidar in an iterative fashion that requires implementing batch coding and processing time that could take months for a standard lidar dataset. This project attempts to build a software with the best approach for creating, importing and exporting, manipulating and processing lidar, especially in the environmental field. Development of this software is described in 3 sections - (1) explanation of the search methods for efficiently extracting the "area of interest" (AOI) data from disk (file space), (2) using file space (for storage), budgeting memory space (for efficient processing) and moving between the two, and (3) method development for creating lidar products (usually raster based) used in environmental modeling and analysis (i.e.: hydrology feature extraction, geomorphological studies, ecology modeling, etc.).

  12. Monitoring of the Polar Stratospheric Clouds formation and evolution in Antarctica in August 2007 during IPY with the MATCH method applied to lidar data

    NASA Astrophysics Data System (ADS)

    Montoux, Nadege; David, Christine; Klekociuk, Andrew; Pitts, Michael; di Liberto, Luca; Snels, Marcel; Jumelet, Julien; Bekki, Slimane; Larsen, Niels

    2010-05-01

    The project ORACLE-O3 ("Ozone layer and UV RAdiation in a changing CLimate Evaluated during IPY") is one of the coordinated international proposals selected for the International Polar Year (IPY). As part of this global project, LOLITA-PSC ("Lagrangian Observations with Lidar Investigations and Trajectories in Antarctica and Arctic, of PSC") is devoted to Polar Stratospheric Clouds (PSC) studies. Indeed, understanding the formation and evolution of PSC is an important issue to quantify the impact of climate changes on their frequency of formation and, further, on chlorine activation and subsequent ozone depletion. In this framework, three lidar stations performed PSC observations in Antarctica during the 2006, 2007, and 2008 winters: Davis (68.58°S, 77.97°E), McMurdo (77.86°S, 166.48°E) and Dumont D'Urville (66.67°S, 140.01°E). The data are completed with the lidar data from CALIOP ("Cloud-Aerosol Lidar with Orthogonal Polarization") onboard the CALIPSO ("Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation") satellite. Lagrangian trajectory calculations are used to identify air masses with PSCs sounded by several ground-based lidar stations with the same method, called MATCH, applied for the first time in Arctic to study the ozone depletion with radiosoundings. The evolution of the optical properties of the PSCs and thus the type of PSCs formed (supercooled ternary solution, nitric acid trihydrate particles or ice particles) could thus be linked to the thermodynamical evolution of the air mass deduced from the trajectories. A modeling with the microphysical model of the Danish Meteorological Institute allows assessing our ability to predict PSCs for various environmental conditions. Indeed, from pressure and temperature evolution, the model allows retrieving the types of particles formed as well as their mean radii, their concentrations and could also simulate the lidar signals. In a first step, a case in August 2007 around 17-18 km, involving the three ground-based lidar stations and CALIOP has been selected. Trajectories with different models (gscf and ecmwf), grids and initializations have been computed to test the robustness of the MATCH. Then the DMI model has been used with these different trajectories to test its ability to reproduce the observations. For a same case, the temperature differences (~2-3 K) between the trajectories have a strong impact on the number density of the particles formed (factor 1000). This case is presented here in detail and a statistical comparison is planned with the numerous MATCH cases identified during the three winters and which involve most of the time two ground-based lidar stations with CALIOP.

  13. Low-pass parabolic FFT filter for airborne and satellite lidar signal processing.

    PubMed

    Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian

    2015-10-14

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing.

  14. Three-dimensional reconstruction of indoor whole elements based on mobile LiDAR point cloud data

    NASA Astrophysics Data System (ADS)

    Gong, Yuejian; Mao, Wenbo; Bi, Jiantao; Ji, Wei; He, Zhanjun

    2014-11-01

    Ground-based LiDAR is one of the most effective city modeling tools at present, which has been widely used for three-dimensional reconstruction of outdoor objects. However, as for indoor objects, there are some technical bottlenecks due to lack of GPS signal. In this paper, based on the high-precision indoor point cloud data which was obtained by LiDAR, an international advanced indoor mobile measuring equipment, high -precision model was fulfilled for all indoor ancillary facilities. The point cloud data we employed also contain color feature, which is extracted by fusion with CCD images. Thus, it has both space geometric feature and spectral information which can be used for constructing objects' surface and restoring color and texture of the geometric model. Based on Autodesk CAD platform and with help of PointSence plug, three-dimensional reconstruction of indoor whole elements was realized. Specifically, Pointools Edit Pro was adopted to edit the point cloud, then different types of indoor point cloud data was processed, including data format conversion, outline extracting and texture mapping of the point cloud model. Finally, three-dimensional visualization of the real-world indoor was completed. Experiment results showed that high-precision 3D point cloud data obtained by indoor mobile measuring equipment can be used for indoor whole elements' 3-d reconstruction and that methods proposed in this paper can efficiently realize the 3 -d construction of indoor whole elements. Moreover, the modeling precision could be controlled within 5 cm, which was proved to be a satisfactory result.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protat, A; Young, S

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for threemore » months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.« less

  16. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE PAGES

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m -2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m -2.« less

  17. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Cho, Byung S.

    1992-01-01

    A polarization (0.694 microns wavelength) lidar dataset for subvisual and thin (bluish-colored) cirrus clouds is drawn from project FIRE (First ISCCP Regional Experiment) extended time observations. The clouds are characterized by their day-night visual appearance; base, top, and optical midcloud heights and temperatures; measured physical and estimated optical cloud thicknesses; integrated linear depolarization ratios; and derived k/2 eta ratios. A subset of the data supporting 30 NOAA polar-orbiting satellite overpasses is given in tabular form to provide investigators with the means to test cloud retrieval algorithms and establish the limits of cirrus detectability from satellite measurements under various conditions. Climatologically, subvisual-thin cirrus appear to be higher, colder, and more strongly depolarizing than previously reported multilatitude cirrus, although similar k/2 eta that decrease with height and temperature are found.

  18. Raman lidar measurement of water vapor and ice clouds associated with Asian dust layer over Tsukuba, Japan

    NASA Astrophysics Data System (ADS)

    Sakai, Tetsu; Nagai, Tomohiro; Nakazato, Masahisa; Matsumura, Takatsugu

    2004-03-01

    The vertical distributions of particle extinction, backscattering, depolarization, and water vapor mixing ratio were measured using a Raman lidar over Tsukuba (36.1°N, 140.1°E), Japan, on 23-24 April 2001. Ice clouds associated with the Asian dust layer were observed at an altitude of ~6-9 km. The relative humidities in the cloud layer were close to the ice saturation values and the temperature at the top of the cloud layer was ~-35°C, suggesting that the Asian dust acted as ice nuclei at the high temperatures. The meteorological analysis suggested that the ice-saturated region was formed near the top of the dust layer where the moist air ascended in slantwise fashion above the cold-frontal zone associated with extratropical cyclone.

  19. Filtering Photogrammetric Point Clouds Using Standard LIDAR Filters Towards DTM Generation

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M. Y.

    2018-05-01

    Digital Terrain Models (DTMs) can be generated from point clouds acquired by laser scanning or photogrammetric dense matching. During the last two decades, much effort has been paid to developing robust filtering algorithms for the airborne laser scanning (ALS) data. With the point cloud quality from dense image matching (DIM) getting better and better, the research question that arises is whether those standard Lidar filters can be used to filter photogrammetric point clouds as well. Experiments are implemented to filter two dense matching point clouds with different noise levels. Results show that the standard Lidar filter is robust to random noise. However, artefacts and blunders in the DIM points often appear due to low contrast or poor texture in the images. Filtering will be erroneous in these locations. Filtering the DIM points pre-processed by a ranking filter will bring higher Type II error (i.e. non-ground points actually labelled as ground points) but much lower Type I error (i.e. bare ground points labelled as non-ground points). Finally, the potential DTM accuracy that can be achieved by DIM points is evaluated. Two DIM point clouds derived by Pix4Dmapper and SURE are compared. On grassland dense matching generates points higher than the true terrain surface, which will result in incorrectly elevated DTMs. The application of the ranking filter leads to a reduced bias in the DTM height, but a slightly increased noise level.

  20. Effect of target color and scanning geometry on terrestrial LiDAR point-cloud noise and plane fitting

    NASA Astrophysics Data System (ADS)

    Bolkas, Dimitrios; Martinez, Aaron

    2018-01-01

    Point-cloud coordinate information derived from terrestrial Light Detection And Ranging (LiDAR) is important for several applications in surveying and civil engineering. Plane fitting and segmentation of target-surfaces is an important step in several applications such as in the monitoring of structures. Reliable parametric modeling and segmentation relies on the underlying quality of the point-cloud. Therefore, understanding how point-cloud errors affect fitting of planes and segmentation is important. Point-cloud intensity, which accompanies the point-cloud data, often goes hand-in-hand with point-cloud noise. This study uses industrial particle boards painted with eight different colors (black, white, grey, red, green, blue, brown, and yellow) and two different sheens (flat and semi-gloss) to explore how noise and plane residuals vary with scanning geometry (i.e., distance and incidence angle) and target-color. Results show that darker colors, such as black and brown, can produce point clouds that are several times noisier than bright targets, such as white. In addition, semi-gloss targets manage to reduce noise in dark targets by about 2-3 times. The study of plane residuals with scanning geometry reveals that, in many of the cases tested, residuals decrease with increasing incidence angles, which can assist in understanding the distribution of plane residuals in a dataset. Finally, a scheme is developed to derive survey guidelines based on the data collected in this experiment. Three examples demonstrate that users should consider instrument specification, required precision of plane residuals, required point-spacing, target-color, and target-sheen, when selecting scanning locations. Outcomes of this study can aid users to select appropriate instrumentation and improve planning of terrestrial LiDAR data-acquisition.

  1. Ice Cloud Properties And Their Radiative Effects: Global Observations And Modeling

    NASA Astrophysics Data System (ADS)

    Hong, Yulan

    Ice clouds are crucial to the Earth's radiation balance. They cool the Earth-atmosphere system by reflecting solar radiation back to space and warm it by blocking outgoing thermal radiation. However, there is a lack of an observation-based climatology of ice cloud properties and their radiative effects. Two active sensors, the CloudSat radar and the CALIPSO lidar, for the first time provide vertically resolved ice cloud data on a global scale. Using synergistic signals of these two sensors, it is possible to obtain both optically thin and thick ice clouds as the radar excels in probing thick clouds while the lidar is better to detect the thin ones. First, based on the CloudSat radar and CALIPSO lidar measurements, we have derived a climatology of ice cloud properties. Ice clouds cover around 50% of the Earth surface, and their global-mean optical depth, ice water path, and effective radius are approximately 2 (unitless), 109 g m. {-2} and 48 \\mum, respectively. Ice cloud occurrence frequency not only depends on regions and seasons, but also on the types of ice clouds as defined by optical depth (tau) values. Optically thin ice clouds (tau < 3) are most frequently observed in the tropics around 15 km and in the midlatitudes below 5 km, while the thicker clouds (tau > 3) occur frequently in the tropical convective areas and along the midlatitude storm tracks. Using ice retrievals derived from combined radar-lidar measurements, we conducted radiative transfer modeling to study ice cloud radiative effects. The combined effects of ice clouds warm the earth-atmosphere system by approximately 5 W m-2, contributed by a longwave warming effect of about 21.8 W m-2 and a shortwave cooling effect of approximately -16.7 W m-2. Seasonal variations of ice cloud radiative effects are evident in the midlatitudes where the net effect changes from warming during winter to cooling during summer, and the net warming effect occurs year-round in the tropics (˜ 10 W m-2). Ice cloud optical depth is shown to be an important factor in determining the sign and magnitude of the net radiative effect. On a global average, ice clouds with tau ≤ 4.6 display a warming effect with the largest contributions from those with tau ˜ 1.0. Optically thin and high ice clouds cause strong heating in the tropical upper troposphere, while outside the tropics, mixed-phase clouds cause strong cooling at lower altitudes (> 5 km). In addition, ice clouds occurring with liquid clouds in the same profile account for about 30%$of all observations. These liquid clouds reduce longwave heating rates in ice cloud layers by 0-1 K/day depending on the values of ice cloud optical depth and regions. This research for the first time provides a clear picture on the global distribution of ice clouds with a wide range of optical depth. Through radiative transfer modeling, we have gained better knowledge on ice cloud radiative effects and their dependence on ice cloud properties. These results not only improve our understanding of the interaction between clouds and climate, but also provide observational basis to evaluate climate models.

  2. Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms; validation against collocated MODIS and CALIOP data

    NASA Astrophysics Data System (ADS)

    Taylor, T. E.; O'Dell, C. W.; Frankenberg, C.; Partain, P.; Cronk, H. Q.; Savtchenko, A.; Nelson, R. R.; Rosenthal, E. J.; Chang, A. Y.; Fisher, B.; Osterman, G.; Pollock, R. H.; Crisp, D.; Eldering, A.; Gunson, M. R.

    2015-12-01

    The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols within the instrument's field of view (FOV). Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) XCO2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 μm O2 A-band, neglecting scattering by clouds and aerosols, which introduce photon path-length (PPL) differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A-Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO2 and H2O column abundances using observations taken at 1.61 μm (weak CO2 band) and 2.06 μm (strong CO2 band), while neglecting atmospheric scattering. The CO2 and H2O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which key off of different features in the spectra, provides the basis for cloud screening of the OCO-2 data set. To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning to allow throughputs of ≃ 30 %, agreement between the OCO-2 and MODIS cloud screening methods is found to be ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April-May) for OCO-2 nadir-land, glint-land and glint-water observations. No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1.

  3. Lidar - ND Halo Scanning Doppler, Boardman - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leo, Laura

    2017-10-23

    The University of Notre Dame (ND) scanning lidar dataset used for the WFIP2 Campaign is provided. The raw dataset contains the radial velocity and backscatter measurements along with the beam location and other lidar parameters in the header.

  4. Real-time full-motion color Flash lidar for target detection and identification

    NASA Astrophysics Data System (ADS)

    Nelson, Roy; Coppock, Eric; Craig, Rex; Craner, Jeremy; Nicks, Dennis; von Niederhausern, Kurt

    2015-05-01

    Greatly improved understanding of areas and objects of interest can be gained when real time, full-motion Flash LiDAR is fused with inertial navigation data and multi-spectral context imagery. On its own, full-motion Flash LiDAR provides the opportunity to exploit the z dimension for improved intelligence vs. 2-D full-motion video (FMV). The intelligence value of this data is enhanced when it is combined with inertial navigation data to produce an extended, georegistered data set suitable for a variety of analysis. Further, when fused with multispectral context imagery the typical point cloud now becomes a rich 3-D scene which is intuitively obvious to the user and allows rapid cognitive analysis with little or no training. Ball Aerospace has developed and demonstrated a real-time, full-motion LIDAR system that fuses context imagery (VIS to MWIR demonstrated) and inertial navigation data in real time, and can stream these information-rich geolocated/fused 3-D scenes from an airborne platform. In addition, since the higher-resolution context camera is boresighted and frame synchronized to the LiDAR camera and the LiDAR camera is an array sensor, techniques have been developed to rapidly interpolate the LIDAR pixel values creating a point cloud that has the same resolution as the context camera, effectively creating a high definition (HD) LiDAR image. This paper presents a design overview of the Ball TotalSight™ LIDAR system along with typical results over urban and rural areas collected from both rotary and fixed-wing aircraft. We conclude with a discussion of future work.

  5. Vertical transport of Kelut volcanic stratospheric aerosols observed by the equatorial lidar and the Equatorial Atmosphere Radar

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.

    2017-12-01

    The transport of substance between stratosphere and troposphere in the equatorial region makes an impact to the global climate change, but it has a lot of unknown behaviors. We have performed the lidar observations for survey of atmospheric structure of troposphere, stratosphere, and mesosphere over Kototabang (0.2S, 100.3E), Indonesia in the equatorial region since 2004. Kelut volcano (7.9S, 112.3E) in the Java island of Indonesia erupted on 13 February 2014. The CALIOP observed that the eruption cloud reached 26km above sea level in the tropical stratosphere, but most of the plume remained at 19-20 km over the tropopause. By CALIOP data analysis, aerosol clouds spread in the longitude direction with the lapse of time and arrived at equator in 5 days. After aerosol clouds reached equator, they moved towards the east along the equator by strong eastward equatorial wind of QBO. In June 2014 (4 months after the eruption), aerosol transport from the stratosphere to the troposphere were observed by the polarization lidar at Kototabang. At the same time, we can clearly see down phase structure of vertical wind velocity observed by EAR (Equatorial Atmosphere Radar) generated by the equatorial Kelvin wave. We investigate the transport of substance between stratosphere and troposphere in the equatorial region by data which have been collected by the polarization lidar at Kototabang and the EAR after Kelut volcano eruption. Using combination of ground based lidar, satellite based lidar, and atmosphere radar, we can get valuable evidence of equatorial transport of substance between the troposphere and the lower stratosphere. This work was supported by Collaborative Research based on MU Radar and Equatorial Atmosphere Radar.

  6. Lidar-based individual tree species classification using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Tomohiro; Ishii, Akira; Nakamura, Hiroyuki; Inoue, Tsuyoshi; Takamatsu, Hisashi

    2017-06-01

    Terrestrial lidar is commonly used for detailed documentation in the field of forest inventory investigation. Recent improvements of point cloud processing techniques enabled efficient and precise computation of an individual tree shape parameters, such as breast-height diameter, height, and volume. However, tree species are manually specified by skilled workers to date. Previous works for automatic tree species classification mainly focused on aerial or satellite images, and few works have been reported for classification techniques using ground-based sensor data. Several candidate sensors can be considered for classification, such as RGB or multi/hyper spectral cameras. Above all candidates, we use terrestrial lidar because it can obtain high resolution point cloud in the dark forest. We selected bark texture for the classification criteria, since they clearly represent unique characteristics of each tree and do not change their appearance under seasonable variation and aged deterioration. In this paper, we propose a new method for automatic individual tree species classification based on terrestrial lidar using Convolutional Neural Network (CNN). The key component is the creation step of a depth image which well describe the characteristics of each species from a point cloud. We focus on Japanese cedar and cypress which cover the large part of domestic forest. Our experimental results demonstrate the effectiveness of our proposed method.

  7. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    NASA Technical Reports Server (NTRS)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  8. Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) Spacecraft: Independent Technical Assessment

    NASA Technical Reports Server (NTRS)

    Gilbrech, Richard J.; McManamen, John P.; Wilson, Timmy R.; Robinson, Frank; Schoren, William R.

    2004-01-01

    CALIPSO is a joint science mission between the CNES, LaRC and GSFC. It was selected as an Earth System Science Pathfinder satellite mission in December 1998 to address the role of clouds and aerosols in the Earth's radiation budget. The spacecraft includes a NASA light detecting and ranging (LIDAR) instrument, a NASA wide-field camera and a CNES imaging infrared radiometer. The scope of this effort was a review of the Proteus propulsion bus design and an assessment of the potential for personnel exposure to hydrazine propellant.

  9. Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) Spacecraft: Independent Technical Assessment

    NASA Technical Reports Server (NTRS)

    Gilbrech, Richard J.; McManamen, John P.; Wilson, Timmy R.; Robinson, Frank; Schoren, William R.

    2005-01-01

    CALIPSO is a joint science mission between the CNES, LaRC and GSFC. It was selected as an Earth System Science Pathfinder satellite mission in December 1998 to address the role of clouds and aerosols in the Earth's radiation budget. The spacecraft includes a NASA light detecting and ranging (LIDAR) instrument, a NASA wide-field camera and a CNES imaging infrared radiometer. The scope of this effort was a review of the Proteus propulsion bus design and an assessment of the potential for personnel exposure to hydrazine propellant.

  10. The Airborne Cloud-Aerosol Transport System. Part I; Overview and Description of the Instrument and Retrival Algorithms

    NASA Technical Reports Server (NTRS)

    Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick

    2014-01-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.

  11. Progress report: Continued development of an integrated sounding system in support of the DOE/ARM experimental program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgeworth R. Westwater; Kenneth S. Gage; Yong Han

    1996-09-06

    From January 6 to February 28, 1993, the second phase of the Prototype Radiation Observation Experiment (PROBE) was conducted in Kavieng, Papua New Guinea. Data taken during PROBE included frequent radiosondes, 915 MHz Wind profiler/Radio Acoustic Sounding System (RASS) observations of winds and temperatures, and lidar measurements of cloud-base heights. In addition, a dual-channel Microwave Water Substance Radiometer (MWSR) at 23.87 and 31.65 GHz and a Fourier Transform Infrared Radiometer (FTIR) were operated. The FTIR operated between 500 and 2000 cm{sup -1} and measured some of the first high spectral resolution (1 cm{sup -1}) radiation data taken in the tropics.more » The microwave radiometer provided continuous measurements with 30-second resolution of precipitable water vapor (PWV) and integrated cloud liquid (ICL), the RASS measured virtual temperature profiles every 30 minutes, and the cloud lidar provided episodic measurements of clouds every minute. The RASS, MWSR, and FTIR data taken during PROBE were compared with radiosonde data. Broadband longwave and shortwave irradiance data and lidar data were used to identify the presence of cirrus clouds and clear conditions. Comparisons were made between measured and calculated radiance during clear conditions, using radiosonde data as input to a Line-By-Line Radiative Transfer Model. Comparisons of RASS-measured virtual temperature with radiosonde data revealed a significant cold bias below 500 m.« less

  12. Development of High Altitude UAV Weather Radars for Hurricane Research

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald; Li, Li-Hua

    2005-01-01

    A proposed effort within NASA called (ASHE) over the past few years was aimed at studying the genesis of tropical disturbances off the east coast of Africa. This effort was focused on using an instrumented Global Hawk UAV with high altitude (%Ok ft) and long duration (30 h) capability. While the Global Hawk availability remains uncertain, development of two relevant instruments, a Doppler radar (URAD - UAV Radar) and a backscatter lidar (CPL-UAV - Cloud Physics Lidar), are in progress. The radar to be discussed here is based on two previous high-altitude, autonomously operating radars on the NASA ER-2 aircraft, the ER-2 Doppler Radar (EDOP) at X-band (9.6 GHz), and the Cloud Radar System (CRS) at W- band (94 GHz). The nadir-pointing EDOP and CRS radars profile vertical reflectivity structure and vertical Doppler winds in precipitation and clouds, respectively. EDOP has flown in all of the CAMEX flight series to study hurricanes over storms such as Hurricanes Bonnie, Humberto, Georges, Erin, and TS Chantal. These radars were developed at Goddard over the last decade and have been used for satellite algorithm development and validation (TRMM and Cloudsat), and for hurricane and convective storm research. We describe here the development of URAD that will measure wind and reflectivity in hurricanes and other weather systems from a top down, high-altitude view. URAD for the Global Hawk consists of two subsystems both of which are at X-band (9.3-9.6 GHz) and Doppler: a nadir fixed-beam Doppler radar for vertical motion and precipitation measurement, and a Conical scanning radar for horizontal winds in cloud and at the surface, and precipitation structure. These radars are being designed with size, weight, and power consumption suitable for the Global Hawk and other UAV's. The nadir radar uses a magnetron transmitter and the scanning radar uses a TWT transmitter. With conical scanning of the radar at a 35" incidence angle over an ocean surface in the absence of precipitation, the surface return over a single 360 degree sweep over -25 h-diameter region provides information on the surface wind speed and direction within the scan circle. In precipitation regions, the conical scan with appropriate mapping and analysis provides the 3D structure of reflectivity beneath the plane and the horizontal winds. The use of conical scanning in hurricanes has recently been demonstrated for measuring inner core winds with the IWRAP system flying on the NOAA P3's. In this presentation, we provide a description of the URAD system hardware, status, and future plans. In addition to URAD, NASA SBIR activity is supporting a Phase I study by Remote Sensing Solutions and the University of Massachusetts for a dual-frequency IWRAP for a high altitude UAV that utilizes solid state transmitters at 14 and 35 GHz, the same frequencies that are planned for the radar on the Global Precipitation System satellite. This will be discussed elsewhere at the meeting.

  13. The design, development, and test of balloonborne and groundbased lidar systems. Volume 3: Groundbased lidar systems

    NASA Astrophysics Data System (ADS)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Robertie, N. F.

    1991-06-01

    This is Volume 3 of a three volume final report on the design, development and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the August 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.

  14. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform.

    PubMed

    Morales, Jesús; Plaza-Leiva, Victoria; Mandow, Anthony; Gomez-Ruiz, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso

    2018-01-30

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley's K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL.

  15. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform

    PubMed Central

    Plaza-Leiva, Victoria; Serón, Javier

    2018-01-01

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley’s K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL. PMID:29385705

  16. Assessing the influence of return density on estimation of lidar-based aboveground biomass in tropical peat swamp forests of Kalimantan, Indonesia

    Treesearch

    Solichin Manuri; Hans-Erik Andersen; Robert J. McGaughey; Cris Brack

    2017-01-01

    The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition canvary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed...

  17. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; hide

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  18. Estimate of rain evaporation rates from dual-wavelength lidar measurements: comparison against a model analytical solution

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Di Girolamo, Paolo; Demoz, Belay; Li, Xiaowen; Welton, Ellsworth J.

    2018-04-01

    Rain evaporation significantly contributes to moisture and heat cloud budgets. In this paper, we illustrate an approach to estimate the median volume raindrop diameter and the rain evaporation rate profiles from dual-wavelength lidar measurements. These observational results are compared with those provided by a model analytical solution. We made use of measurements from the multi-wavelength Raman lidar BASIL.

  19. Adapting CALIPSO Climate Measurements for Near Real Time Analyses and Forecasting

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Trepte, Charles R.; Winker, David M.; Avery, Melody A.; Campbell, James; Hoff, Ray; Young, Stuart; Getzewich, Brian J.; Tackett, Jason L.; Kar, Jayanta

    2011-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder satellite Observations (CALIPSO) mission was originally conceived and designed as a climate measurements mission, with considerable latency between data acquisition and the release of the level 1 and level 2 data products. However, the unique nature of the CALIPSO lidar backscatter profiles quickly led to the qualitative use of CALIPSO?s near real time (i.e., ? expedited?) lidar data imagery in several different forecasting applications. To enable quantitative use of their near real time analyses, the CALIPSO project recently expanded their expedited data catalog to include all of the standard level 1 and level 2 lidar data products. Also included is a new cloud cleared level 1.5 profile product developed for use by operational forecast centers for verification of aerosol predictions. This paper describes the architecture and content of the CALIPSO expedited data products. The fidelity and accuracy of the expedited products are assessed via comparisons to the standard CALIPSO data products.

  20. Adaptation of the University of Wisconsin High Spectral Resolution Lidar for Polarization and Multiple Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P. K.

    1996-01-01

    Quantitative lidar measurements of aerosol scattering are hampered by the need for calibrations and the problem of correcting observed backscatter profiles for the effects of attenuation. The University of Wisconsin High Spectral Resolution Lidar (HSRL) addresses these problems by separating molecular scattering contributions from the aerosol scattering; the molecular scattering is then used as a calibration target that is available at each point in the observed profiles. While the HSRl approach has intrinsic advantages over competing techniques, realization of these advantages requires implementation of a technically demanding system which is potentially very sensitive to changes in temperature and mechanical alignments. This paper describes a new implementation of the HSRL in an instrumented van which allows measurements during field experiments. The HSRL was modified to measure depolarization. In addition, both the signal amplitude and depolarization variations with receiver field of view are simultaneously measured. This allows for discrimination of ice clouds from water clouds and observation of multiple scattering contributions to the lidar return.

Top