Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.
Chevallier, Maguelonne; Krauth, Werner
2007-11-01
We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.
Superfluidity or supersolidity as a consequence of off-diagonal long-range order
NASA Astrophysics Data System (ADS)
Shi, Yu
2005-07-01
We present a general derivation of Hess-Fairbank effect or nonclassical rotational inertial (NCRI), i.e., the refusal to rotate with its container, as well as the quantization of angular momentum, as consequences of off-diagonal long-range order (ODLRO) in an interacting Bose system. Afterwards, the path integral formulation of superfluid density is rederived without ignoring the centrifugal potential. Finally and in particular, for a class of variational wave functions used for solid helium, treating the constraint of single-valuedness boundary condition carefully, we show that there is no ODLRO and, especially, demonstrate explicitly that NCRI cannot be possessed in absence of defects, even though there exist zero-point motion and exchange effect.
Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales
NASA Astrophysics Data System (ADS)
Winter, Stephen M.; Li, Ying; Jeschke, Harald O.; Valentí, Roser
2016-06-01
In this study, we reanalyze the magnetic interactions in the Kitaev spin-liquid candidate materials Na2IrO3,α -RuCl3 , and α -Li2IrO3 using nonperturbative exact diagonalization methods. These methods are more appropriate given the relatively itinerant nature of the systems suggested in previous works. We treat all interactions up to third neighbors on equal footing. The computed terms reveal significant long-range coupling, bond anisotropy, and/or off-diagonal couplings which we argue naturally explain the observed ordered phases in these systems. Given these observations, the potential for realizing the spin-liquid state in real materials is analyzed, and synthetic challenges are defined and explained.
Superclimbing dislocation with a Coulomb-type interaction between jogs
NASA Astrophysics Data System (ADS)
Liu, Longxiang; Kuklov, Anatoly B.
2018-03-01
The main candidate for the superfluid pathways in solid 4He are dislocations with Burgers vector along the hcp symmetry axis. Here we focus on the quantum behavior of a generic edge dislocation which can perform superclimb; that is, it can climb due to the superflow along its core. The role of the long-range elastic interactions between jogs is addressed by Monte Carlo simulations. It is found that such interactions do not change qualitatively the phase diagram found without accounting for the long-range forces. Their main effect consists of renormalizing the effective scale determining the compressibility of the dislocation in the Tomonaga-Luttinger liquid phase. It is also found that the quantum rough phase of the dislocation can be well described within the Gaussian approximation which features off-diagonal long-range order (ODLRO) in one dimension for the superfluid order parameter along the core.
Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers
Chan, Chun Wang I.; Albo, Asaf; Hu, Qing; ...
2016-11-14
Contemporary research into diagonal active region terahertz quantum cascade lasers for high temperature operation has yielded little success. We present evidence that the failure of high diagonality alone as a design strategy is due to a fundamental trade-off between large optical oscillator strength and long upper-level lifetime. Here, we hypothesize that diagonality needs to be paired with increased doping in order to succeed, and present evidence that highly diagonal designs can benefit from much higher doping than normally found in terahertz quantum cascade lasers. In assuming the benefits of high diagonality paired with high doping, we also highlight important challengesmore » that need to be overcome, specifically the increased importance of carrier induced band-bending and impurity scattering.« less
Localization to delocalization crossover in a driven nonlinear cavity array
NASA Astrophysics Data System (ADS)
Brown, Oliver T.; Hartmann, Michael J.
2018-05-01
We study nonlinear cavity arrays where the particle relaxation rate in each cavity increases with the excitation number. We show that coherent parametric inputs can drive such arrays into states with commensurate filling that form non-equilibrium analogs of Mott insulating states. We explore the boundaries of the Mott insulating phase and the crossover to a delocalized phase with spontaneous first order coherence. While sharing many similarities with the Mott insulator to superfluid transition in equilibrium, the phase diagrams we find also show marked differences. Particularly the off diagonal order does not become long range since the influence of dephasing processes increases with increasing tunneling rates.
Cluster-Glass Phase in Pyrochlore X Y Antiferromagnets with Quenched Disorder
NASA Astrophysics Data System (ADS)
Andrade, Eric C.; Hoyos, José A.; Rachel, Stephan; Vojta, Matthias
2018-03-01
We study the impact of quenched disorder (random exchange couplings or site dilution) on easy-plane pyrochlore antiferromagnets. In the clean system, order by disorder selects a magnetically ordered state from a classically degenerate manifold. In the presence of randomness, however, different orders can be chosen locally depending on details of the disorder configuration. Using a combination of analytical considerations and classical Monte Carlo simulations, we argue that any long-range-ordered magnetic state is destroyed beyond a critical level of randomness where the system breaks into magnetic domains due to random exchange anisotropies, becoming, therefore, a glass of spin clusters, in accordance with the available experimental data. These random anisotropies originate from off-diagonal exchange couplings in the microscopic Hamiltonian, establishing their relevance to other magnets with strong spin-orbit coupling.
Self-consistent approximation beyond the CPA: Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, T.; Gray, L.J.
1981-08-01
In Part I, Professor Leath has described the substantial efforts to generalize the CPA. In this second part, a particular self-consistent approximation for random alloys developed by Kaplan, Leath, Gray, and Diehl is described. This approximation is applicable to diagonal, off-diagonal and environmental disorder, includes cluster scattering, and yields a translationally invariant and analytic (Herglotz) average Green's function. Furthermore Gray and Kaplan have shown that an approximation for alloys with short-range order can be constructed from this theory.
Liquid?solid helium interface: some conceptual questions
NASA Astrophysics Data System (ADS)
Leggett, A. J.
2003-12-01
I raise, and discuss qualitatively, some conceptual issues concerning the interface between the crystalline solid and superfluid liquid phases of 4He emphasizing, in particular, the fact that the ground-state wave functions of the two phases are prima facie qualitatively quite different, in that the superfluid liquid phase possesses off-diagonal long-range order (ODLRO), while the crystalline solid does not. The fact that the statics and dynamics of the interface do not appear to be particularly sensitive to the presence of ODLRO in the liquid is tentatively explained by the fact that because of a subtlety associated with the Bose statistics obeyed by the atoms, the solid and liquid wave functions are not locally very different.
Are we living near the center of a local void?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cusin, Giulia; Pitrou, Cyril; Uzan, Jean-Philippe, E-mail: giulia.cusin@unige.ch, E-mail: pitrou@iap.fr, E-mail: uzan@iap.fr
The properties of the cosmic microwave background (CMB) temperature and polarisation anisotropies measured by a static, off-centered observer located in a local spherically symmetric void, are described. In particular in this paper we compute, together with the standard 2-point angular correlation functions, the off-diagonal correlators, which are no more vanishing by symmetry. While the energy shift induced by the off-centered position of the observer can be suppressed by a proper choice of the observer velocity, a lensing-like effect on the CMB emission point remains. This latter effect is genuinely geometrical (e.g. non-degenerate with a boost) and reflects in the structuremore » of the off-diagonal correlators. At lowest order in this effect, the temperature and polarisation correlation matrices have non-vanishing diagonal elements, as usual, and all the off-diagonal terms are excited. This particular signature of a local void model allows one, in principle, to disentangle geometrical effects from local kinematical ones in CMB observations.« less
NASA Astrophysics Data System (ADS)
Atalay, Bora; Berker, A. Nihat
2018-05-01
Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states q =3 ,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d >1 and all noninfinite temperatures, the system eventually renormalizes to a random single state, thus signaling q ×q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 +ɛ , the system is as expected disordered at all temperatures for d =1 .
Inertial sensor and method of use
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)
2003-01-01
The inertial sensor of the present invention utilizes a proof mass suspended from spring structures forming a nearly degenerate resonant structure into which a perturbation is introduced, causing a split in frequency of the two modes so that the mode shape become uniquely defined, and to the first order, remains orthogonal. The resonator is provided with a mass or inertia tensor with off-diagonal elements. These off-diagonal elements are large enough to change the mode shape of the two nearly degenerate modes from the original coordinate frame. The spring tensor is then provided with a compensating off-diagonal element, such that the mode shape is again defined in the original coordinate frame. The compensating off-diagonal element in the spring tensor is provided by a biasing voltage that softens certain elements in the spring tensor. Acceleration disturbs the compensation and the mode shape again changes from the original coordinate frame. By measuring the change in the mode shape, the acceleration is measured.
Thermodynamic entanglement of magnonic condensates
NASA Astrophysics Data System (ADS)
Yuan, H. Y.; Yung, Man-Hong
2018-02-01
Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a central role in most of the quantum information processing tasks. Here we theoretically study the entanglement properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation for a future investigation of the magnon BEC in terms of quantum entanglement.
Long-Range Adiabatic Corrections to the Ground Molecular State of Alkali-Metal Dimers.
NASA Astrophysics Data System (ADS)
Marinescu, M.; Dalgarno, A.
1997-04-01
The structure of the long-range limit of the diagonal adiabatic corrections to the ground molecular state of diatomic molecules, may be expressed as a series of inverse powers of internuclear distance, R. The coefficients of this expansion are proportional to the inverse of the nuclear mass. Thus, they may be interpreted as a nuclear mass-dependent corrections to the dispersion coefficients. Using perturbation theory we have calculated the long-range coefficients of the diagonal adiabatic corrections up to the order of R-10. The final expressions are in terms of integrals over imaginary frequencies of products of atomic matrix elements involving Green's functions of complex energy. Thus, in our approach the molecular problem is reduced to an atomic one. Numerical evaluations have been done for all alkali-metal dimers. We acknowledge the support of the U.S. Dept. of Energy.
User oriented end-station on VUV pump-probe magneto-optical ellipsometry at ELI beamlines
NASA Astrophysics Data System (ADS)
Espinoza, Shirly; Neuber, Gerd; Brooks, Christopher D.; Besner, Bastian; Hashemi, Maryam; Rübhausen, Michael; Andreasson, Jakob
2017-11-01
A state of the art ellipsometer for user operations is being implemented at ELI Beamlines in Prague, Czech Republic. It combines three of the most promising and exotic forms of ellipsometry: VUV, pump-probe and magneto-optical ellipsometry. This new ellipsometer covers a spectral operational range from the NIR up to the VUV, with high through-put between 1 and 40 eV. The ellipsometer also allows measurements of magneto-optical spectra with a 1 kHz switchable magnetic field of up to 1.5 T across the sample combining ellipsometry and Kerr spectroscopy measurements in an unprecedented spectral range. This form of generalized ellipsometry enables users to address diagonal and off-diagonal components of the dielectric tensor within one measurement. Pump-probe measurements enable users to study the dynamic behaviour of the dielectric tensor in order to resolve the time-domain phenomena in the femto to 100 ns range.
Wu, Jianlan; Cao, Jianshu
2013-07-28
We apply a new formalism to derive the higher-order quantum kinetic expansion (QKE) for studying dissipative dynamics in a general quantum network coupled with an arbitrary thermal bath. The dynamics of system population is described by a time-convoluted kinetic equation, where the time-nonlocal rate kernel is systematically expanded of the order of off-diagonal elements of the system Hamiltonian. In the second order, the rate kernel recovers the expression of the noninteracting-blip approximation method. The higher-order corrections in the rate kernel account for the effects of the multi-site quantum coherence and the bath relaxation. In a quantum harmonic bath, the rate kernels of different orders are analytically derived. As demonstrated by four examples, the higher-order QKE can reliably predict quantum dissipative dynamics, comparing well with the hierarchic equation approach. More importantly, the higher-order rate kernels can distinguish and quantify distinct nontrivial quantum coherent effects, such as long-range energy transfer from quantum tunneling and quantum interference arising from the phase accumulation of interactions.
Large Eddy Simulation of Bubbly Ship Wakes
2005-08-01
as, [Cm +BI(p)+ DE (u)+D,(u,)] (2.28) aRm, =-[E,+FE )(p) (229O•., L pe•,z+_tpjj.( F.(]-](2.29) where Ci and EP represent the convective terms, Bi is the...discrete operator for the pressure gradient term, DE and D, (FE and FI) are discrete operators for the explicitly treated off diagonal terms and the...Bashforth scheme is employed for all the other terms. The off diagonal viscous terms ( DE ) are treated explicitly in order to simplify the LHS matrix of the
NASA Technical Reports Server (NTRS)
Boulet, Christian; Ma, Qiancheng; Thibault, Franck
2014-01-01
A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N2 for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While in the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N2, opening the way to the analysis of more complex molecular systems.
Higher-order gravitational lensing reconstruction using Feynman diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Elizabeth E.; Manohar, Aneesh V.; Yadav, Amit P.S.
2014-09-01
We develop a method for calculating the correlation structure of the Cosmic Microwave Background (CMB) using Feynman diagrams, when the CMB has been modified by gravitational lensing, Faraday rotation, patchy reionization, or other distorting effects. This method is used to calculate the bias of the Hu-Okamoto quadratic estimator in reconstructing the lensing power spectrum up to O (φ{sup 4}) in the lensing potential φ. We consider both the diagonal noise TT TT, EB EB, etc. and, for the first time, the off-diagonal noise TT TE, TB EB, etc. The previously noted large O (φ{sup 4}) term in the second order noise ismore » identified to come from a particular class of diagrams. It can be significantly reduced by a reorganization of the φ expansion. These improved estimators have almost no bias for the off-diagonal case involving only one B component of the CMB, such as EE EB.« less
Block Preconditioning to Enable Physics-Compatible Implicit Multifluid Plasma Simulations
NASA Astrophysics Data System (ADS)
Phillips, Edward; Shadid, John; Cyr, Eric; Miller, Sean
2017-10-01
Multifluid plasma simulations involve large systems of partial differential equations in which many time-scales ranging over many orders of magnitude arise. Since the fastest of these time-scales may set a restrictively small time-step limit for explicit methods, the use of implicit or implicit-explicit time integrators can be more tractable for obtaining dynamics at time-scales of interest. Furthermore, to enforce properties such as charge conservation and divergence-free magnetic field, mixed discretizations using volume, nodal, edge-based, and face-based degrees of freedom are often employed in some form. Together with the presence of stiff modes due to integrating over fast time-scales, the mixed discretization makes the required linear solves for implicit methods particularly difficult for black box and monolithic solvers. This work presents a block preconditioning strategy for multifluid plasma systems that segregates the linear system based on discretization type and approximates off-diagonal coupling in block diagonal Schur complement operators. By employing multilevel methods for the block diagonal subsolves, this strategy yields algorithmic and parallel scalability which we demonstrate on a range of problems.
Off-diagonal series expansion for quantum partition functions
NASA Astrophysics Data System (ADS)
Hen, Itay
2018-05-01
We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boulet, Christian, E-mail: Christian.boulet@u-psud.fr; Ma, Qiancheng; Thibault, Franck
A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N{sub 2} for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While inmore » the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N{sub 2}, opening the way to the analysis of more complex molecular systems.« less
NASA Astrophysics Data System (ADS)
Ghosh, A.; Yarlagadda, S.
2017-09-01
Understanding the microscopic mechanism of coexisting long-range orders (such as lattice supersolidity) in strongly correlated systems is a subject of immense interest. We study the possible manifestations of long-range orders, including lattice-supersolid phases with differently broken symmetry, in a two-dimensional square lattice system of hard-core bosons (HCBs) coupled to archetypal cooperative/coherent normal-mode distortions such as those in perovskites. At strong HCB-phonon coupling, using a duality transformation to map the strong-coupling problem to a weak-coupling one, we obtain an effective Hamiltonian involving nearest-neighbor, next-nearest-neighbor, and next-to-next-nearest-neighbor hoppings and repulsions. Using stochastic series expansion quantum Monte Carlo, we construct the phase diagram of the system. As coupling strength is increased, we find that the system undergoes a first-order quantum phase transition from a superfluid to a checkerboard solid at half-filling and from a superfluid to a diagonal striped solid [with crystalline ordering wave vector Q ⃗=(2 π /3 ,2 π /3 ) or (2 π /3 ,4 π /3 )] at one-third filling without showing any evidence of supersolidity. On tuning the system away from these commensurate fillings, checkerboard supersolid is generated near half-filling whereas a rare diagonal striped supersolid is realized near one-third filling. Interestingly, there is an asymmetry in the extent of supersolidity about one-third filling. Within our framework, we also provide an explanation for the observed checkerboard and stripe formations in La2 -xSrxNiO4 at x =1 /2 and x =1 /3 .
Wojcik, Roza; Vannatta, Michael
2010-01-01
Diagonal capillary electrophoresis is a form of two-dimensional capillary electrophoresis that employs identical separation modes in each dimension. The distal end of the first capillary incorporates an enzyme-based microreactor. Analytes that are not modified by the reactor will have identical migration times in the two capillaries and will generate spots that fall on the diagonal in a reconstructed two-dimensional electropherogram. Analytes that undergo enzymatic modification in the reactor will have a different migration time in the second capillary and will generate spots that fall off the diagonal in the electropherogram. We demonstrate the system with immobilized alkaline phosphatase to monitor the phosphorylation status of a mixture of peptides. This enzyme-based diagonal capillary electrophoresis assay appears to be generalizable; any post-translational modification can be detected as long as an immobilized enzyme is available that reacts with the modification under electrophoretic conditions. PMID:20099889
Multidimensional Coherent Spectroscopy of GaAs Excitons and Quantum Microcavity Polaritons
NASA Astrophysics Data System (ADS)
Wilmer, Brian L.
Light-matter interactions associated with excitons and exciton related complexes are explored in bulk GaAs and semiconductor microcavities using multidimensional coherent spectroscopy (MDCS). This approach provides rich spectra determining quantum excitation pathways, structural influences on the excitons, and coherence times. Polarization, excitation density, and temperature-dependent MDCS is performed on excitons in strained bulk GaAs layers, probing the coherent response for differing amounts of strain. Biaxial tensile strain lifts the degeneracy of heavy-hole and light-hole valence states, leading to an observed splitting of the associated excitons at low temperature. Increasing the strain increases the magnitude of the heavy-/light- hole exciton peak splitting, induces an asymmetry in the off-diagonal interaction coherences, increases the difference in the heavy- and light- hole exciton homogenous linewidths, and increases the inhomogeneous broadening of both exciton species. All results arise from strain-induced variations in the local electronic environment, which is not uniform along the growth direction of the thin layers. For cross-linear polarized excitation, wherein excitonic signals give way to biexcitonic signals, the high-strain sample shows evidence of bound light-, heavy- and mixed- hole biexcitons. 2DCS maps the anticrossing associated with normal mode splitting in a semiconductor microcavity. For a detuning range near zero, it is observed that there are two diagonal features related to the intra-action of exciton-polariton branches and two off-diagonal features related to coherent interaction between the polaritons. At negative detuning, the line shape properties of the diagonal intra-action features are distinguishable and can be associated with cavity-like and exciton-like modes. A biexcitonic companion feature is observed, shifted from the exciton feature by the biexciton binding energy. Closer to zero detuning, all features are enhanced and the diagonal intra-action features become nearly equal in amplitude and linewidth. At positive detuning the exciton-like and cavity-like characteristics return to the diagonal intra-action features. Off-diagonal interaction features exhibit asymmetry in their amplitudes throughout the detuning range. The amplitudes are strongly modulated as the lower polariton branch crosses the bound biexciton energy determined from negatively detuned spectra.
Ground-state magnetic phase diagram of bow-tie graphene nanoflakes in external magnetic field
NASA Astrophysics Data System (ADS)
Szałowski, Karol
2013-12-01
The magnetic phase diagram of a ground state is studied theoretically for graphene nanoflakes of bow-tie shape and various sizes in external in-plane magnetic field. The tight-binding Hamiltonian supplemented with Hubbard term is used to model the electronic structure of the systems in question. The existence of the antiferromagnetic phase with magnetic moments localized at the sides of the bow-tie is found for low field and a field-induced spin-flip transition to ferromagnetic state is predicted to occur in charge-undoped structures. For small nanoflake doped with a single charge carrier, the low-field phase is ferrimagnetic and a metamagnetic transition to ferromagnetic ordering can be forced by the field. The critical field is found to decrease with increasing size of the nanoflake. The influence of diagonal and off-diagonal disorder on the mentioned magnetic properties is studied. The effect of off-diagonal disorder is found to be more important than that of diagonal disorder, leading to significantly widened distribution of critical fields for disordered population of nanoflakes.
A new fast direct solver for the boundary element method
NASA Astrophysics Data System (ADS)
Huang, S.; Liu, Y. J.
2017-09-01
A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.
Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim
2017-12-15
The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim
2017-12-01
The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.
Effective friction of granular flows made of non-spherical particles
NASA Astrophysics Data System (ADS)
Somfai, Ellák; Nagy, Dániel B.; Claudin, Philippe; Favier, Adeline; Kálmán, Dávid; Börzsönyi, Tamás
2017-06-01
Understanding the rheology of dense granular matter is a long standing problem and is important both from the fundamental and the applied point of view. As the basic building blocks of granular materials are macroscopic particles, the nature of both the response to deformations and the dissipation is very different from that of molecular materials. In the absence of large gradients, the best approach formulates the constitutive equation as an effective friction: for sheared granular matter the ratio of the off-diagonal and the diagonal elements of the stress tensor depends only on dynamical parameters, in particular the inertial number. In this work we employ numerical simulations to extend this formalism to granular packings made of frictionless elongated particles. We measured how the shape of the particles affects the effective friction, volume fraction and first normal stress difference, and compared it to the spherical particle case. We had to introduce polydispersity in particle size in order to keep the systems of the more elongated particles disordered.
Biomechanical pole and leg characteristics during uphill diagonal roller skiing.
Lindinger, Stefan Josef; Göpfert, Caroline; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer
2009-11-01
Diagonal skiing as a major classical technique has hardly been investigated over the last two decades, although technique and racing velocities have developed substantially. The aims of the present study were to 1) analyse pole and leg kinetics and kinematics during submaximal uphill diagonal roller skiing and 2) identify biomechanical factors related to performance. Twelve elite skiers performed a time to exhaustion (performance) test on a treadmill. Joint kinematics and pole/plantar forces were recorded separately during diagonal roller skiing (9 degrees; 11 km/h). Performance was correlated to cycle length (r = 0.77; P < 0.05), relative leg swing (r = 0.71), and gliding time (r = 0.74), hip flexion range of motion (ROM) during swing (r = 0.73) and knee extension ROM during gliding (r = 0.71). Push-off demonstrated performance correlations for impulse of leg force (r = 0.84), relative duration (r= -0.76) and knee flexion (r = 0.73) and extension ROM (r = 0.74). Relative time to peak pole force was associated with performance (r = 0.73). In summary, diagonal roller skiing performance was linked to 1) longer cycle length, 2) greater impulse of force during a shorter push-off with larger flexion/extension ROMs in leg joints, 3) longer leg swing, and 4) later peak pole force, demonstrating the major key characteristics to be emphasised in training.
Fidelity decay in interacting two-level boson systems: Freezing and revivals
NASA Astrophysics Data System (ADS)
Benet, Luis; Hernández-Quiroz, Saúl; Seligman, Thomas H.
2011-05-01
We study the fidelity decay in the k-body embedded ensembles of random matrices for bosons distributed in two single-particle states, considering the reference or unperturbed Hamiltonian as the one-body terms and the diagonal part of the k-body embedded ensemble of random matrices and the perturbation as the residual off-diagonal part of the interaction. We calculate the ensemble-averaged fidelity with respect to an initial random state within linear response theory to second order on the perturbation strength and demonstrate that it displays the freeze of the fidelity. During the freeze, the average fidelity exhibits periodic revivals at integer values of the Heisenberg time tH. By selecting specific k-body terms of the residual interaction, we find that the periodicity of the revivals during the freeze of fidelity is an integer fraction of tH, thus relating the period of the revivals with the range of the interaction k of the perturbing terms. Numerical calculations confirm the analytical results.
Probing the geometry of the Laughlin state
Johri, Sonika; Papic, Z.; Schmitteckert, P.; ...
2016-02-05
It has recently been pointed out that phases of matter with intrinsic topological order, like the fractional quantum Hall states, have an extra dynamical degree of freedom that corresponds to quantum geometry. Here we perform extensive numerical studies of the geometric degree of freedom for the simplest example of fractional quantumHall states—the filling v = 1/3 Laughlin state.We perturb the system by a smooth, spatially dependent metric deformation and measure the response of the Hall fluid, finding it to be proportional to the Gaussian curvature of the metric. Further, we generalize the concept of coherent states to formulate the bulkmore » off-diagonal long range order for the Laughlin state, and compute the deformations of the metric in the vicinity of the edge of the system. We introduce a ‘pair amplitude’ operator and show that it can be used to numerically determine the intrinsic metric of the Laughlin state. Furthermore, these various probes are applied to several experimentally relevant settings that can expose the quantum geometry of the Laughlin state, in particular to systems with mass anisotropy and in the presence of an electric field gradient.« less
Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons.
Newland, P L; Kondoh, Y
1997-06-01
Imposed movements of the apodeme of the femoral chordotonal organ (FeCO) of the locust hind leg elicit resistance reflexes in extensor and flexor tibiae motor neurons. The synaptic responses of the fast and slow extensor tibiae motor neurons (FETi and SETi, respectively) and the spike responses of SETi were analyzed with the use of the Wiener kernel white noise method to determine their response properties. The first-order Wiener kernels computed from soma recordings were essentially monophasic, or low passed, indicating that the motor neurons were primarily sensitive to the position of the tibia about the femorotibial joint. The responses of both extensor motor neurons had large nonlinear components. The second-order kernels of the synaptic responses of FETi and SETi had large on-diagonal peaks with two small off-diagonal valleys. That of SETi had an additional elongated valley on the diagonal, which was accompanied by two off-diagonal depolarizing peaks at a cutoff frequency of 58 Hz. These second-order components represent a half-wave rectification of the position-sensitive depolarizing response in FETi and SETi, and a delayed inhibitory input to SETi, indicating that both motor neurons were directionally sensitive. Model predictions of the responses of the motor neurons showed that the first-order (linear) characterization poorly predicted the actual responses of FETi and SETi to FeCO stimulation, whereas the addition of the second-order (nonlinear) term markedly improved the performance of the model. Simultaneous recordings from the soma and a neuropilar process of FETi showed that its synaptic responses to FeCO stimulation were phase delayed by about -30 degrees at 20 Hz, and reduced in amplitude by 30-40% when recorded in the soma. Similar configurations of the first and second-order kernels indicated that the primary process of FETi acted as a low-pass filter. Cross-correlation between a white noise stimulus and a unitized spike discharge of SETi again produced well-defined first- and second-order kernels that showed that the SETi spike response was also dependent on positional inputs. An elongated negative valley on the diagonal, characteristic of the second-order kernel of the synaptic response in SETi, was absent in the kernel from the spike component, suggesting that information is lost in the spike production process. The functional significance of these results is discussed in relation to the behavior of the locust.
Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.
2016-01-01
Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (in)homogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé-Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.
Microstructure and phase behavior in colloids and liquid crystals
NASA Astrophysics Data System (ADS)
Lohr, Matthew Alan
This thesis describes our investigation of microstructure and phase behavior in colloids and liquid crystals. The first set of experiments explores the phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries as a function of volume fraction. Stable helical packings are observed with long-range orientational order. Some of these packings evolve abruptly to disordered states as the volume fraction is reduced. We quantify these transitions using correlation functions and susceptibilities of an orientational order parameter. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase-transition-like behavior in quasi-one-dimensional systems. The second set of experiments investigates cross-over behavior from glasses with attractive interactions to sparse gel-like states. In particular, the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions are measured as a function of packing fraction. A crossover from glassy to sparse gel-like states is indicated by an excess of low-frequency phonon modes. This change in vibrational mode distribution appears to arise from highly localized vibrations that tend to involve individual and/or small clusters of particles with few local bonds. These mode behaviors and corresponding structural insights may serve as a useful signature for glass-gel transitions in wider classes of attractive packings. A third set of experiments explores the director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating of the concentration-dependent elastic properties of LCLC s via drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films form two distinct director and defect configurations: a diagonally aligned director pattern with local squares of defects, and an off-diagonal configuration with zig-zag defects. The formation of these patterns appears to be tied to the relative free energy costs of splay and bend deformations in the precursor nematic films. The observed nematic and columnar configurations are understood numerically using a Landau-de Gennes free energy model. This work provides first examples of quasi-2D micropatterning of LC films in the columnar phase and the first micropatterning of lyotropic LC films in general, as well as demonstrating alignment and configuration switching of typically difficult-to-align LCLC films via bulk elastic properties.
Magnetic field induced evolution of intertwined orders in the Kitaev magnet β -Li2IrO3
NASA Astrophysics Data System (ADS)
Rousochatzakis, Ioannis; Perkins, Natalia B.
2018-05-01
Recent scattering experiments in the 3D Kitaev magnet β -Li2IrO3 have shown that a relatively weak magnetic field along the crystallographic b axis drives the system from its incommensurate counter-rotating order to a correlated magnet, with a significant uniform `zigzag' component superimposing the magnetization along the field. Here it is shown that the zigzag order is not emerging from its linear coupling to the field (via a staggered, off-diagonal element of the g tensor) but from its intertwining with the incommensurate order and the longitudinal magnetization. The emerging picture explains all qualitative experimental findings at zero and finite fields, including the rapid decline of the incommensurate order with field and the so-called intensity sum rule. The latter are shown to be independent signatures of the smallness of the Heisenberg exchange J , compared to the Kitaev coupling K and the off-diagonal anisotropy Γ . Remarkably, in the regime of interest, the field H* at which the incommensurate component vanishes, depends essentially only on J , which allows us to extract an estimate of J ≃4 K from reported measurements of H*. We also comment on recent experiments in pressurized β -Li2IrO3 and conclude that J decreases with pressure.
Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach
NASA Astrophysics Data System (ADS)
Chen, Lipeng; Zhao, Yang
2017-12-01
Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.
An efficient sparse matrix multiplication scheme for the CYBER 205 computer
NASA Technical Reports Server (NTRS)
Lambiotte, Jules J., Jr.
1988-01-01
This paper describes the development of an efficient algorithm for computing the product of a matrix and vector on a CYBER 205 vector computer. The desire to provide software which allows the user to choose between the often conflicting goals of minimizing central processing unit (CPU) time or storage requirements has led to a diagonal-based algorithm in which one of four types of storage is selected for each diagonal. The candidate storage types employed were chosen to be efficient on the CYBER 205 for diagonals which have nonzero structure which is dense, moderately sparse, very sparse and short, or very sparse and long; however, for many densities, no diagonal type is most efficient with respect to both resource requirements, and a trade-off must be made. For each diagonal, an initialization subroutine estimates the CPU time and storage required for each storage type based on results from previously performed numerical experimentation. These requirements are adjusted by weights provided by the user which reflect the relative importance the user places on the two resources. The adjusted resource requirements are then compared to select the most efficient storage and computational scheme.
NASA Astrophysics Data System (ADS)
Chatterjee, Arghya; Chatterjee, Sandeep; Nayak, Tapan K.; Ranjan Sahoo, Nihar
2016-12-01
Susceptibilities of conserved quantities, such as baryon number, strangeness and electric charge are sensitive to the onset of quantum chromodynamics phase transition, and are expected to provide information on the matter produced in heavy-ion collision experiments. A comprehensive study of the second order diagonal susceptibilities and cross correlations has been made within a thermal model approach of the hadron resonance gas model as well as with a hadronic transport model, ultra-relativistic quantum molecular dynamics. We perform a detailed analysis of the effect of detector acceptances and choice of particle species in the experimental measurements of the susceptibilities for heavy-ion collisions corresponding to \\sqrt{{s}{NN}} = 4 GeV to 200 GeV. The transverse momentum cutoff dependence of suitably normalised susceptibilities are proposed as useful observables to probe the properties of the medium at freezeout.
Boguslawski, Katharina; Tecmer, Paweł
2017-12-12
Wave functions restricted to electron-pair states are promising models to describe static/nondynamic electron correlation effects encountered, for instance, in bond-dissociation processes and transition-metal and actinide chemistry. To reach spectroscopic accuracy, however, the missing dynamic electron correlation effects that cannot be described by electron-pair states need to be included a posteriori. In this Article, we extend the previously presented perturbation theory models with an Antisymmetric Product of 1-reference orbital Geminal (AP1roG) reference function that allows us to describe both static/nondynamic and dynamic electron correlation effects. Specifically, our perturbation theory models combine a diagonal and off-diagonal zero-order Hamiltonian, a single-reference and multireference dual state, and different excitation operators used to construct the projection manifold. We benchmark all proposed models as well as an a posteriori Linearized Coupled Cluster correction on top of AP1roG against CR-CC(2,3) reference data for reaction energies of several closed-shell molecules that are extrapolated to the basis set limit. Moreover, we test the performance of our new methods for multiple bond breaking processes in the homonuclear N 2 , C 2 , and F 2 dimers as well as the heteronuclear BN, CO, and CN + dimers against MRCI-SD, MRCI-SD+Q, and CR-CC(2,3) reference data. Our numerical results indicate that the best performance is obtained from a Linearized Coupled Cluster correction as well as second-order perturbation theory corrections employing a diagonal and off-diagonal zero-order Hamiltonian and a single-determinant dual state. These dynamic corrections on top of AP1roG provide substantial improvements for binding energies and spectroscopic properties obtained with the AP1roG approach, while allowing us to approach chemical accuracy for reaction energies involving closed-shell species.
Diagonal dominance for the multivariable Nyquist array using function minimization
NASA Technical Reports Server (NTRS)
Leininger, G. G.
1977-01-01
A new technique for the design of multivariable control systems using the multivariable Nyquist array method was developed. A conjugate direction function minimization algorithm is utilized to achieve a diagonal dominant condition over the extended frequency range of the control system. The minimization is performed on the ratio of the moduli of the off-diagonal terms to the moduli of the diagonal terms of either the inverse or direct open loop transfer function matrix. Several new feedback design concepts were also developed, including: (1) dominance control parameters for each control loop; (2) compensator normalization to evaluate open loop conditions for alternative design configurations; and (3) an interaction index to determine the degree and type of system interaction when all feedback loops are closed simultaneously. This new design capability was implemented on an IBM 360/75 in a batch mode but can be easily adapted to an interactive computer facility. The method was applied to the Pratt and Whitney F100 turbofan engine.
Angular-momentum couplings in ultra-long-range giant dipole molecules
NASA Astrophysics Data System (ADS)
Stielow, Thomas; Scheel, Stefan; Kurz, Markus
2018-02-01
In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works on Rydberg molecules. In addition to s -wave scattering, the next higher order of p -wave scattering in the Fermi pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states, mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the various potential energy surfaces.
Zhao, Yang; Yao, Yao; Chernyak, Vladimir; Zhao, Yang
2014-04-28
We investigate a spin-boson model with two boson baths that are coupled to two perpendicular components of the spin by employing the density matrix renormalization group method with an optimized boson basis. It is revealed that in the deep sub-Ohmic regime there exists a novel second-order phase transition between two types of doubly degenerate states, which is reduced to one of the usual types for nonzero tunneling. In addition, it is found that expectation values of the spin components display jumps at the phase boundary in the absence of bias and tunneling.
Decoherence dynamics of interacting qubits coupled to a bath of local optical phonons
NASA Astrophysics Data System (ADS)
Lone, Muzaffar Qadir; Yarlagadda, S.
2016-04-01
We study decoherence in an interacting qubit system described by infinite range Heisenberg model (IRHM) in a situation where the system is coupled to a bath of local optical phonons. Using perturbation theory in polaron frame of reference, we derive an effective Hamiltonian that is valid in the regime of strong spin-phonon coupling under nonadiabatic conditions. It is shown that the effective Hamiltonian commutes with the IRHM upto leading orders of perturbation and thus has the same eigenstates as the IRHM. Using a quantum master equation with Markovian approximation of dynamical evolution, we show that the off-diagonal elements of the density matrix do not decay in the energy eigen basis of IRHM.
Chaos in non-diagonal spatially homogeneous cosmological models in spacetime dimensions <=10
NASA Astrophysics Data System (ADS)
Demaret, Jacques; de Rop, Yves; Henneaux, Marc
1988-08-01
It is shown that the chaotic oscillatory behaviour, absent in diagonal homogeneous cosmological models in spacetime dimensions between 5 and 10, can be reestablished when off-diagonal terms are included. Also at Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile
Can nonstandard interactions jeopardize the hierarchy sensitivity of DUNE?
NASA Astrophysics Data System (ADS)
Deepthi, K. N.; Goswami, Srubabati; Nath, Newton
2017-10-01
We study the effect of nonstandard interactions (NSIs) on the propagation of neutrinos through the Earth's matter and how it affects the hierarchy sensitivity of the DUNE experiment. We emphasize the special case when the diagonal NSI parameter ɛe e=-1 , nullifying the standard matter effect. We show that if, in addition, C P violation is maximal then this gives rise to an exact intrinsic hierarchy degeneracy in the appearance channel, irrespective of the baseline and energy. Introduction of the off diagonal NSI parameter, ɛe τ, shifts the position of this degeneracy to a different ɛe e. Moreover the unknown magnitude and phases of the off diagonal NSI parameters can give rise to additional degeneracies. Overall, given the current model independent limits on NSI parameters, the hierarchy sensitivity of DUNE can get seriously impacted. However, a more precise knowledge of the NSI parameters, especially ɛe e, can give rise to an improved sensitivity. Alternatively, if a NSI exists in nature, and still DUNE shows hierarchy sensitivity, certain ranges of the NSI parameters can be excluded. Additionally, we briefly discuss the implications of ɛe e=-1 (in the Earth) on the Mikheyev-Smirnov-Wolfenstein effect in the Sun.
Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements
NASA Astrophysics Data System (ADS)
Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui
2017-01-01
Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm-1.
NASA Astrophysics Data System (ADS)
Hauke, Philipp; Cucchietti, Fernando M.; Müller-Hermes, Alexander; Bañuls, Mari-Carmen; Cirac, J. Ignacio; Lewenstein, Maciej
2010-11-01
Systems with long-range interactions show a variety of intriguing properties: they typically accommodate many metastable states, they can give rise to spontaneous formation of supersolids, and they can lead to counterintuitive thermodynamic behavior. However, the increased complexity that comes with long-range interactions strongly hinders theoretical studies. This makes a quantum simulator for long-range models highly desirable. Here, we show that a chain of trapped ions can be used to quantum simulate a one-dimensional (1D) model of hard-core bosons with dipolar off-site interaction and tunneling, equivalent to a dipolar XXZ spin-1/2 chain. We explore the rich phase diagram of this model in detail, employing perturbative mean-field theory, exact diagonalization and quasi-exact numerical techniques (density-matrix renormalization group and infinite time-evolving block decimation). We find that the complete devil's staircase—an infinite sequence of crystal states existing at vanishing tunneling—spreads to a succession of lobes similar to the Mott lobes found in Bose-Hubbard models. Investigating the melting of these crystal states at increased tunneling, we do not find (contrary to similar 2D models) clear indications of supersolid behavior in the region around the melting transition. However, we find that inside the insulating lobes there are quasi-long-range (algebraic) correlations, as opposed to models with nearest-neighbor tunneling, that show exponential decay of correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filinov, A.V.; Golubnychiy, V.O.; Bonitz, M.
Extending our previous work [A.V. Filinov et al., J. Phys. A 36, 5957 (2003)], we present a detailed discussion of accuracy and practical applications of finite-temperature pseudopotentials for two-component Coulomb systems. Different pseudopotentials are discussed: (i) the diagonal Kelbg potential, (ii) the off-diagonal Kelbg potential, (iii) the improved diagonal Kelbg potential, (iv) an effective potential obtained with the Feynman-Kleinert variational principle, and (v) the 'exact' quantum pair potential derived from the two-particle density matrix. For the improved diagonal Kelbg potential, a simple temperature-dependent fit is derived which accurately reproduces the 'exact' pair potential in the whole temperature range. The derivedmore » pseudopotentials are then used in path integral Monte Carlo and molecular-dynamics (MD) simulations to obtain thermodynamical properties of strongly coupled hydrogen. It is demonstrated that classical MD simulations with spin-dependent interaction potentials for the electrons allow for an accurate description of the internal energy of hydrogen in the difficult regime of partial ionization down to the temperatures of about 60 000 K. Finally, we point out an interesting relationship between the quantum potentials and the effective potentials used in density-functional theory.« less
NASA Astrophysics Data System (ADS)
Saha, Surajit; Ghosh, Manas
2016-02-01
We perform a rigorous analysis of the profiles of a few diagonal and off-diagonal components of linear ( α xx , α yy , α xy , and α yx ), first nonlinear ( β xxx , β yyy , β xyy , and β yxx ), and second nonlinear ( γ xxxx , γ yyyy , γ xxyy , and γ yyxx ) polarizabilities of quantum dots exposed to an external pulsed field. Simultaneous presence of multiplicative white noise has also been taken into account. The quantum dot contains a dopant represented by a Gaussian potential. The number of pulse and the dopant location have been found to fabricate the said profiles through their interplay. Moreover, a variation in the noise strength also contributes evidently in designing the profiles of above polarizability components. In general, the off-diagonal components have been found to be somewhat more responsive to a variation of noise strength. However, we have found some exception to the above fact for the off-diagonal β yxx component. The study projects some pathways of achieving stable, enhanced, and often maximized output of linear and nonlinear polarizabilities of doped quantum dots driven by multiplicative noise.
Estimation of geopotential from satellite-to-satellite range rate data: Numerical results
NASA Technical Reports Server (NTRS)
Thobe, Glenn E.; Bose, Sam C.
1987-01-01
A technique for high-resolution geopotential field estimation by recovering the harmonic coefficients from satellite-to-satellite range rate data is presented and tested against both a controlled analytical simulation of a one-day satellite mission (maximum degree and order 8) and then against a Cowell method simulation of a 32-day mission (maximum degree and order 180). Innovations include: (1) a new frequency-domain observation equation based on kinetic energy perturbations which avoids much of the complication of the usual Keplerian element perturbation approaches; (2) a new method for computing the normalized inclination functions which unlike previous methods is both efficient and numerically stable even for large harmonic degrees and orders; (3) the application of a mass storage FFT to the entire mission range rate history; (4) the exploitation of newly discovered symmetries in the block diagonal observation matrix which reduce each block to the product of (a) a real diagonal matrix factor, (b) a real trapezoidal factor with half the number of rows as before, and (c) a complex diagonal factor; (5) a block-by-block least-squares solution of the observation equation by means of a custom-designed Givens orthogonal rotation method which is both numerically stable and tailored to the trapezoidal matrix structure for fast execution.
Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian
2012-03-28
In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.
Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions
NASA Astrophysics Data System (ADS)
Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus
2017-10-01
We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.
On Mapping Homogeneous Graphs on a Linear Array-Processor Model.
1983-10-01
D2 ..,Dk) is a family of ordered sets of computation vertices and DIUDzu ..UDk=VG. 2. For any D in D, if v, and v are in D then w X wxw 3. Let TD ...denote the indexing function associated with the ordered set D. For any pair of DP and Dq in D, if v. and vy are in D and Dq respectively then TD (Dp) < TD ...the indices assigned to the diagonals in D range from I to 1DI and if D is a diagonal in D then TD (Dp)=,,, that is, the index of D. in the ordering is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radzihovsky, Leo
Motivated by a realization of imbalanced Feshbach-resonant atomic Fermi gases, we formulate a low-energy theory of the Fulde-Ferrell and the Larkin-Ovchinnikov (LO) states and use it to analyze fluctuations, stability, and phase transitions in these enigmatic finite momentum-paired superfluids. Focusing on the unidirectional LO pair-density-wave state, which spontaneously breaks the continuous rotational and translational symmetries, we show that it is characterized by two Goldstone modes, corresponding to a superfluid phase and a smectic phonon. Because of the liquid-crystalline ''softness'' of the latter, at finite temperature the three-dimensional state is characterized by a vanishing LO order parameter, quasi-Bragg peaks in themore » structure and momentum distribution functions, and a ''charge''-4, paired-Cooper-pairs, off-diagonal long-range order, with a superfluid-stiffness anisotropy that diverges near a transition into a nonsuperfluid state. In addition to conventional integer vortices and dislocations, the LO superfluid smectic exhibits composite half-integer vortex-dislocation defects. A proliferation of defects leads to a rich variety of descendant states, such as the charge-4 superfluid and Fermi-liquid nematics and topologically ordered nonsuperfluid states, that generically intervene between the LO state and the conventional superfluid and the polarized Fermi liquid at low and high imbalance, respectively. The fermionic sector of the LO gapless superconductor is also quite unique, exhibiting a Fermi surface of Bogoliubov quasiparticles associated with the Andreev band of states, localized on the array of the LO domain walls.« less
Lee, Jun Chang; Nam, Kyoung Won; Jang, Dong Pyo; Kim, In Young
2015-12-01
Previously suggested diagonal-steering algorithms for binaural hearing support devices have commonly assumed that the direction of the speech signal is known in advance, which is not always the case in many real circumstances. In this study, a new diagonal-steering-based binaural speech localization (BSL) algorithm is proposed, and the performances of the BSL algorithm and the binaural beamforming algorithm, which integrates the BSL and diagonal-steering algorithms, were evaluated using actual speech-in-noise signals in several simulated listening scenarios. Testing sounds were recorded in a KEMAR mannequin setup and two objective indices, improvements in signal-to-noise ratio (SNRi ) and segmental SNR (segSNRi ), were utilized for performance evaluation. Experimental results demonstrated that the accuracy of the BSL was in the 90-100% range when input SNR was -10 to +5 dB range. The average differences between the γ-adjusted and γ-fixed diagonal-steering algorithms (for -15 to +5 dB input SNR) in the talking in the restaurant scenario were 0.203-0.937 dB for SNRi and 0.052-0.437 dB for segSNRi , and in the listening while car driving scenario, the differences were 0.387-0.835 dB for SNRi and 0.259-1.175 dB for segSNRi . In addition, the average difference between the BSL-turned-on and the BSL-turned-off cases for the binaural beamforming algorithm in the listening while car driving scenario was 1.631-4.246 dB for SNRi and 0.574-2.784 dB for segSNRi . In all testing conditions, the γ-adjusted diagonal-steering and BSL algorithm improved the values of the indices more than the conventional algorithms. The binaural beamforming algorithm, which integrates the proposed BSL and diagonal-steering algorithm, is expected to improve the performance of the binaural hearing support devices in noisy situations. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryachko, E.S.
1999-06-03
The electronic coupling between the initial and final diabatic states is the major factor that determines the rate of electron transfer. A general formula for the adiabatic-to-diabatic mixing angle in terms of the electronic dipole moments is derived within a two-state model. It expresses the electronic coupling determining the rate of electronic transfer in terms of the off-diagonal diabatic dipole moment.
NASA Astrophysics Data System (ADS)
Hou, Y. S.; Xiang, H. J.; Gong, X. G.
2017-08-01
Recent experiments reveal that the honeycomb ruthenium trichloride α -RuC l3 is a prime candidate of the Kitaev quantum spin liquid (QSL). However, there is no theoretical model which can properly describe its experimental dynamical response due to the lack of a full understanding of its magnetic interactions. Here, we propose a general scheme to calculate the magnetic interactions in systems (e.g., α -RuC l3 ) with nonnegligible orbital moments by constraining the directions of orbital moments. With this scheme, we put forward a minimal J1-K1-Γ1-J3-K3 model for α -RuC l3 and find that: (I) The third nearest neighbor (NN) antiferromagnetic Heisenberg interaction J3 stabilizes the zigzag antiferromagnetic order; (II) The NN symmetric off-diagonal exchange Γ1 plays a pivotal role in determining the preferred direction of magnetic moments and generating the spin wave gap. An exact diagonalization study on this model shows that the Kitaev QSL can be realized by suppressing the NN symmetric off-diagonal exchange Γ1 and the third NN Heisenberg interaction J3. Thus, we not only propose a powerful general scheme for investigating the intriguing magnetism of Jeff=1 /2 magnets, but also point out future directions for realizing the Kitaev QSL in the honeycomb ruthenium trichloride α -RuC l3 .
Electron spin resonance for the detection of long-range spin nematic order
NASA Astrophysics Data System (ADS)
Furuya, Shunsuke C.; Momoi, Tsutomu
2018-03-01
Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low-magnetization regime of SrCu2(BO3)2.
Rosta, Edina; Warshel, Arieh
2012-01-01
Understanding the relationship between the adiabatic free energy profiles of chemical reactions and the underlining diabatic states is central to the description of chemical reactivity. The diabatic states form the theoretical basis of Linear Free Energy Relationships (LFERs) and thus play a major role in physical organic chemistry and related fields. However, the theoretical justification for some of the implicit LFER assumptions has not been fully established by quantum mechanical studies. This study follows our earlier works1,2 and uses the ab initio frozen density functional theory (FDFT) method3 to evaluate both the diabatic and adiabatic free energy surfaces and to determine the corresponding off-diagonal coupling matrix elements for a series of SN2 reactions. It is found that the off-diagonal coupling matrix elements are almost the same regardless of the nucleophile and the leaving group but change upon changing the central group. Furthermore, it is also found that the off diagonal elements are basically the same in gas phase and in solution, even when the solvent is explicitly included in the ab initio calculations. Furthermore, our study establishes that the FDFT diabatic profiles are parabolic to a good approximation thus providing a first principle support to the origin of LFER. These findings further support the basic approximation of the EVB treatment. PMID:23329895
Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey
2013-01-01
Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large-scale and long-time simulation with an approximate accounting of hydrodynamic interactions. PMID:24089734
Generalized Gibbs state with modified Redfield solution: Exact agreement up to second order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thingna, Juzar; Wang, Jian-Sheng; Haenggi, Peter
A novel scheme for the steady state solution of the standard Redfield quantum master equation is developed which yields agreement with the exact result for the corresponding reduced density matrix up to second order in the system-bath coupling strength. We achieve this objective by use of an analytic continuation of the off-diagonal matrix elements of the Redfield solution towards its diagonal limit. Notably, our scheme does not require the provision of yet higher order relaxation tensors. Testing this modified method for a heat bath consisting of a collection of harmonic oscillators we assess that the system relaxes towards its correctmore » coupling-dependent, generalized quantum Gibbs state in second order. We numerically compare our formulation for a damped quantum harmonic system with the nonequilibrium Green's function formalism: we find good agreement at low temperatures for coupling strengths that are even larger than expected from the very regime of validity of the second-order Redfield quantum master equation. Yet another advantage of our method is that it markedly reduces the numerical complexity of the problem; thus, allowing to study efficiently large-sized system Hilbert spaces.« less
Equbal, Asif; Leskes, Michal; Nielsen, Niels Chr; Madhu, P K; Vega, Shimon
2016-02-01
We present a bimodal Floquet analysis of the recently introduced refocused continuous wave (rCW) solid-state NMR heteronuclear dipolar decoupling method and compare it with the similar looking X-inverse X (XiX) scheme. The description is formulated in the rf interaction frame and is valid for both finite and ideal π pulse rCW irradiation that forms the refocusing element in the rCW scheme. The effective heteronuclear dipolar coupling Hamiltonian up to first order is described. The analysis delineates the difference between the two sequences to different orders of their Hamiltonians for both diagonal and off-diagonal parts. All the resonance conditions observed in experiments and simulations have been characterised and their influence on residual line broadening is highlighted. The theoretical comparison substantiates the numerical simulations and experimental results to a large extent. Copyright © 2016 Elsevier Inc. All rights reserved.
Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment
Coloma, Pilar
2016-03-03
Here, we study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ε ~more » $$ \\mathcal{O} $$ (0.05 – 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.« less
Photoinduced piezooptics effect in TeO2-Ga2O3 glasses
NASA Astrophysics Data System (ADS)
Ozga, K.; Fedorchuk, A. O.; Armand, P.
2015-08-01
We have found that during the bicolor illumination by two boicolor coherent wavelengths 1540 nm/770 nm there occurred substantial changes of the elastooptical non-diagonal coefficients at 1150 nm cw laser wavelength. They are maximal at power densities 400 … 500 MW/cm2. The studies have shown that the maximal effect exists for ultra-fast quenching glasses and occurs after the 1-2 min of the treatment. The switching off of the optical treatment leads to the disappearance of the photoinduced piezooptics at about 100 ms. The observed changes are explained within the photoinduced changes of the charge density distribution for the principal structural clusters within a framework of the DFT approach. The studies were done both for diagonal as well as off-diagonal piezooptical effect (POE) tensor components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ke-Wei; Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Fujihashi, Yuta
A master equation approach based on an optimized polaron transformation is adopted for dynamics simulation with simultaneous diagonal and off-diagonal spin-boson coupling. Two types of bath spectral density functions are considered, the Ohmic and the sub-Ohmic. The off-diagonal coupling leads asymptotically to a thermal equilibrium with a nonzero population difference P{sub z}(t → ∞) ≠ 0, which implies localization of the system, and it also plays a role in restraining coherent dynamics for the sub-Ohmic case. Since the new method can extend to the stronger coupling regime, we can investigate the coherent-incoherent transition in the sub-Ohmic environment. Relevant phase diagramsmore » are obtained for different temperatures. It is found that the sub-Ohmic environment allows coherent dynamics at a higher temperature than the Ohmic environment.« less
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.
2015-04-01
We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and -modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painlevé-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed.
Major Fault Patterns in Zanjan State of Iran Based of GECO Global Geoid Model
NASA Astrophysics Data System (ADS)
Beheshty, Sayyed Amir Hossein; Abrari Vajari, Mohammad; Raoufikelachayeh, SeyedehSusan
2016-04-01
A new Earth Gravitational Model (GECO) to degree 2190 has been developed incorporates EGM2008 and the latest GOCE based satellite solutions. Satellite gradiometry data are more sensitive information of the long- and medium- wavelengths of the gravity field than the conventional satellite tracking data. Hence, by utilizing this new technique, more accurate, reliable and higher degrees/orders of the spherical harmonic expansion of the gravity field can be achieved. Gravity gradients can also be useful in geophysical interpretation and prospecting. We have presented the concept of gravity gradients with some simple interpretations. A MATLAB based computer programs were developed and utilized for determining the gravity and gradient components of the gravity field using the GGMs, followed by a case study in Zanjan State of Iran. Our numerical studies show strong (more than 72%) correlations between gravity anomalies and the diagonal elements of the gradient tensor. Also, strong correlations were revealed between the components of the deflection of vertical and the off-diagonal elements as well as between the horizontal gradient and magnitude of the deflection of vertical. We clearly distinguished two big faults in North and South of Zanjan city based on the current information. Also, several minor faults were detected in the study area. Therefore, the same geophysical interpretation can be stated for gravity gradient components too. Our mathematical derivations support some of these correlations.
Retrieve the Bethe states of quantum integrable models solved via the off-diagonal Bethe Ansatz
NASA Astrophysics Data System (ADS)
Zhang, Xin; Li, Yuan-Yuan; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2015-05-01
Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, a systematic method for retrieving the Bethe-type eigenstates of integrable models without obvious reference state is developed by employing certain orthogonal basis of the Hilbert space. With the XXZ spin torus model and the open XXX spin- \\frac{1}{2} chain as examples, we show that for a given inhomogeneous T-Q relation and the associated Bethe Ansatz equations, the constructed Bethe-type eigenstate has a well-defined homogeneous limit.
Modeling anomalous radial transport in kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2009-11-01
Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.
NASA Astrophysics Data System (ADS)
Polyakov, Igor V.; Khrenova, Maria G.; Moskovsky, Alexander A.; Shabanov, Boris M.; Nemukhin, Alexander V.
2018-04-01
Modeling electronic excitation of bacteriochlorophyll (BChl) molecules in light-harvesting (LH) antennae from photosynthetic centers presents a challenge for the quantum theory. We report on a quantum chemical study of the ring of 32 BChl molecules from the bacterial core complex LH1-RC. Diagonal and off-diagonal elements of the excitonic Hamiltonian matrices are estimated in quantum chemical calculations of relevant fragments using the TD-DFT and CIS approaches. The deviation of the computed excitation energy of this BChl system from the experimental data related to the Qy band maximum of this LH1-RC complex is about 0.2 eV. We demonstrate that corrections due to improvement in modeling of an individual BChl molecule and due to contributions from the protein environment are in the range of the obtained discrepancy between theory and experiment. Differences between results of the excitonic model and direct quantum chemical calculations of BChl aggregates fall in the same range.
NASA Technical Reports Server (NTRS)
Ma, Q.; Boulet, C.; Tipping, R. H.
2017-01-01
Line shape parameters including the half-widths and the off-diagonal elements of the relaxation matrix have been calculated for self-broadened NH3 lines in the perpendicular v4 band. As in the pure rotational and the parallel v1 bands, the small inversion splitting in this band causes a complete failure of the isolated line approximation. As a result, one has to use formalisms not relying on this approximation. However, due to differences between parallel and perpendicular bands of NH3, the applicability of the formalism used in our previous studies of the v1 band and other parallel bands must be carefully verified. We have found that, as long as potential models only contain components with K1 equals K2 equals 0, whose matrix elements require the selection rule delta k equals 0, the formalism is applicable for the v4 band with some minor adjustments. Based on both theoretical considerations and results from numerical calculations, the non-diagonality of the relaxation matrices in all the PP, RP, PQ, RQ, PR, and RR branches is discussed. Theoretically calculated self-broadened half-widths are compared with measurements and the values listed in HITRAN 2012. With respect to line coupling effects, we have compared our calculated intra-doublet off-diagonal elements of the relaxation matrix with reliable measurements carried out in the PP branch where the spectral environment is favorable. The agreement is rather good since our results do well reproduce the observed k and j dependences of these elements, thus validating our formalism.
Gyrokinetic modelling of the quasilinear particle flux for plasmas with neutral-beam fuelling
NASA Astrophysics Data System (ADS)
Narita, E.; Honda, M.; Nakata, M.; Yoshida, M.; Takenaga, H.; Hayashi, N.
2018-02-01
A quasilinear particle flux is modelled based on gyrokinetic calculations. The particle flux is estimated by determining factors, namely, coefficients of off-diagonal terms and a particle diffusivity. In this paper, the methodology to estimate the factors is presented using a subset of JT-60U plasmas. First, the coefficients of off-diagonal terms are estimated by linear gyrokinetic calculations. Next, to obtain the particle diffusivity, a semi-empirical approach is taken. Most experimental analyses for particle transport have assumed that turbulent particle fluxes are zero in the core region. On the other hand, even in the stationary state, the plasmas in question have a finite turbulent particle flux due to neutral-beam fuelling. By combining estimates of the experimental turbulent particle flux and the coefficients of off-diagonal terms calculated earlier, the particle diffusivity is obtained. The particle diffusivity should reflect a saturation amplitude of instabilities. The particle diffusivity is investigated in terms of the effects of the linear instability and linear zonal flow response, and it is found that a formula including these effects roughly reproduces the particle diffusivity. The developed framework for prediction of the particle flux is flexible to add terms neglected in the current model. The methodology to estimate the quasilinear particle flux requires so low computational cost that a database consisting of the resultant coefficients of off-diagonal terms and particle diffusivity can be constructed to train a neural network. The development of the methodology is the first step towards a neural-network-based particle transport model for fast prediction of the particle flux.
Order-disorder phenomena in the low-temperature phase of BaTiO3
NASA Astrophysics Data System (ADS)
Völkel, G.; Müller, K. A.
2007-09-01
X - and Q -band electron paramagnetic resonance measurements are reported on Mn4+ -doped BaTiO3 single crystals in the rhombohedral low-temperature phase. The Mn4+ probe ion is statistically substitute for the isovalent Ti4+ ion. The critical line broadening observed when approaching the phase transition to the orthorhombic phase demonstrates the presence of order-disorder processes within the off-center Ti subsystem and the formation of dynamic precursor clusters with a structure compatible with one of the orthorhombic phase. From the data it is concluded that BaTiO3 shows a special type of phase transition where displacive and order-disorder character are not only present at the cubic-tetragonal transition, but also at the orthorhombic-rhombohedral transition at low temperatures. The disappearance of the Mn4+ spectrum in the orthorhombic, tetragonal, and cubic phases can be interpreted as the consequence of the strong line broadening caused by changes of the instantaneous off-center positions in time around the averaged off-center position along a body diagonal.
Static holes in the geometrically frustrated bow-tie ladder
NASA Astrophysics Data System (ADS)
Martins, George B.; Brenig, Wolfram
2008-10-01
We investigate the doping of a geometrically frustrated spin ladder with static holes by a complementary approach using exact diagonalization and quantum dimers. Results for thermodynamic properties, the singlet density of states, the hole-binding energy and the spin correlations will be presented. For the undoped systems the ground state is non-degenerate, with translationally invariant nearest-neighbor spin correlations. For the doped case, we find that static holes polarize their vicinity through a localization of singlets, reducing the frustration. This polarization induces short range repulsive forces between two holes and an oscillatory behavior of the long range two-hole energy. For most quantities investigated, we find very good agreement between the quantum dimer approach and the results from exact diagonalization.
Influences of the coordinate dependent noncommutative space on charged and spin currents
NASA Astrophysics Data System (ADS)
Ren, Ya-Jie; Ma, Kai
2018-06-01
We study the charged and spin currents on a coordinate dependent noncommutative space. Starting from the noncommutative extended relativistic equation of motion, the nonrelativistic approximation is obtained by using the Foldy-Wouthuysen transformation, and then the charged and spin currents are derived by using the extended Drude model. We find that the charged current is twisted by modifying the off-diagonal elements of the Hall conductivity, however, the spin current is not affected up to leading order of the noncommutative parameter.
Machado, Michely Ediani; Tomazoni, Fernanda; Casarin, Maísa; Ardenghi, Thiago M; Zanatta, Fabricio Batistin
2017-10-01
To compare the performance of partial-mouth periodontal examination (PMPE) protocols with different cut-off points to the full-mouth examination (FME) in the assessment of the prevalence and extent of gingival bleeding in adolescents. A cross-sectional study was conducted involving 12-year-old adolescents. Following a systematic two-stage cluster sampling process, 1134 individuals were evaluated. Different PMPE protocols were compared to the FME with six sites per tooth. Sensitivity, specificity, area under the ROC curve (AUC), intraclass correlation coefficient (ICC), relative and absolute biases and the inflation factor were assessed for each PMPE protocol with different cut-off points for the severity of gingival bleeding. The highest AUC values were found for the six-site two-diagonal quadrant (2-4) (0.97), six-site random half-mouth (0.95) and Community Periodontal Index (0.95) protocols. The assessment of three sites [mesiobuccal (MB), buccal (B) and distolingual (DL)] in two diagonal quadrants and the random half-mouth protocol had higher sensitivity and lower specificity than the same protocols with distobuccal (DB) sites. However, the use of DB sites led to better specificity and improved the balance between sensitivity and specificity, except for the two-diagonal quadrant (1-3) protocol. The ≥1 cut-off point led to the most discrepant results from the FME. Six-site two-diagonal quadrant (2-4) and random half-mouth assessments perform better in the evaluation of gingival bleeding in adolescents. However, when a faster protocol is needed, a two-diagonal quadrant assessment using only MB, B and DL sites can be used with no important loss of information. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Off-diagonal expansion quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Patchy screening of the cosmic microwave background by inhomogeneous reionization
NASA Astrophysics Data System (ADS)
Gluscevic, Vera; Kamionkowski, Marc; Hanson, Duncan
2013-02-01
We derive a constraint on patchy screening of the cosmic microwave background from inhomogeneous reionization using off-diagonal TB and TT correlations in WMAP-7 temperature/polarization data. We interpret this as a constraint on the rms optical-depth fluctuation Δτ as a function of a coherence multipole LC. We relate these parameters to a comoving coherence scale, of bubble size RC, in a phenomenological model where reionization is instantaneous but occurs on a crinkly surface, and also to the bubble size in a model of “Swiss cheese” reionization where bubbles of fixed size are spread over some range of redshifts. The current WMAP data are still too weak, by several orders of magnitude, to constrain reasonable models, but forthcoming Planck and future EPIC data should begin to approach interesting regimes of parameter space. We also present constraints on the parameter space imposed by the recent results from the EDGES experiment.
Off-diagonal expansion quantum Monte Carlo.
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Breakdown of Spin-Waves in Anisotropic Magnets: Spin Dynamics in α-RuCl3
NASA Astrophysics Data System (ADS)
Winter, Stephen; Riedl, Kira; Honecker, Andreas; Valenti, Roser
α -RuCl3 has recently emerged as a promising candidate for realizing the hexagonal Kitaev model in a real material. Similar to the related iridates (e.g. Na2IrO3), complex magnetic interactions arise from a competition between various similar energy scales, including spin-orbit coupling (SOC), Hund's coupling, and crystal-field splitting. Due to this complexity, the correct spin Hamiltonians for such systems remain hotly debated. For α-RuCl3, a combination of ab-initio calculations, microscopic considerations, and analysis of the static magnetic response have suggested off-diagonal couplings (Γ ,Γ') and long-range interactions in addition to the expected Kitaev exchange. However, the effect of such additional terms on the dynamic response remains unclear. In this contribution, we discuss the recently measured inelastic neutron scattering response in the context of realistic proposals for the microscopic spin Hamiltonian. We conclude that the observed scattering continuum, which has been taken as a signature of Kitaev spin liquid physics, likely persists over a broad range of parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Lingyun; Prokudin, Alexei; Kang, Zhong-Bo
2015-09-01
We study the three-gluon correlation function contribution to the Sivers asymmetry in semi-inclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally, we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off-diagonal contribution from the three-gluon correlation functions.
Magnetic structure and excitation spectrum of the hyperhoneycomb Kitaev magnet β -Li2IrO3
NASA Astrophysics Data System (ADS)
Ducatman, Samuel; Rousochatzakis, Ioannis; Perkins, Natalia B.
2018-03-01
We present a theoretical study of the static and dynamical properties of the three-dimensional, hyperhoneycomb Kitaev magnet β -Li2IrO3 . We argue that the observed incommensurate order can be understood in terms of a long-wavelength twisting of a nearby commensurate period-3 state, with the same key qualitatively features. The period-3 state shows very different structure when either the Kitaev interaction K or the off-diagonal exchange anisotropy Γ is dominant. A comparison of the associated static spin structure factors with reported scattering experiments in zero and finite fields gives strong evidence that β -Li2IrO3 lies in the regime of dominant Kitaev coupling, and that the Heisenberg exchange J is much weaker than both K and Γ . Our predictions for the magnon excitation spectra, the dynamical spin structure factors, and their polarization dependence provide additional distinctive fingerprints that can be checked experimentally.
Gigantic transverse voltage induced via off-diagonal thermoelectric effect in CaxCoO2 thin films
NASA Astrophysics Data System (ADS)
Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Adachi, Hideaki; Yamada, Yuka
2010-07-01
Gigantic transverse voltages exceeding several tens volt have been observed in CaxCoO2 thin films with tilted c-axis orientation upon illumination of nanosecond laser pulses. The voltage signals were highly anisotropic within the film surface showing close relation with the c-axis tilt direction. The magnitude and the decay time of the voltage strongly depended on the film thickness. These results confirm that the large laser-induced voltage originates from a phenomenon termed the off-diagonal thermoelectric effect, by which a film out-of-plane temperature gradient leads to generation of a film in-plane voltage.
Isovector and flavor-diagonal charges of the nucleon
NASA Astrophysics Data System (ADS)
Gupta, Rajan; Bhattacharya, Tanmoy; Jang, Yong-Chull; Lin, Huey-Wen; Yoon, Boram
2018-03-01
We present an update on the status of the calculations of isovector and flavor-diagonal charges of the nucleon. The calculations of the isovector charges are being done using ten 2+1+1-flavor HISQ ensembles generated by the MILC collaboration covering the range of lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and three-states fits to the three-point correlators. The calculations of the disconnected diagrams needed to estimate flavor-diagonal charges are being done on a subset of six ensembles using the stocastic method. Final results are obtained using a simultaneous fit in M2π, the lattice spacing a and the finite volume parameter MπL keeping only the leading order corrections.
An Empirical State Error Covariance Matrix for Batch State Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty. Also, in its most straight forward form, the technique only requires supplemental calculations to be added to existing batch algorithms. The generation of this direct, empirical form of the state error covariance matrix is independent of the dimensionality of the observations. Mixed degrees of freedom for an observation set are allowed. As is the case with any simple, empirical sample variance problems, the presented approach offers an opportunity (at least in the case of weighted least squares) to investigate confidence interval estimates for the error covariance matrix elements. The diagonal or variance terms of the error covariance matrix have a particularly simple form to associate with either a multiple degree of freedom chi-square distribution (more approximate) or with a gamma distribution (less approximate). The off diagonal or covariance terms of the matrix are less clear in their statistical behavior. However, the off diagonal covariance matrix elements still lend themselves to standard confidence interval error analysis. The distributional forms associated with the off diagonal terms are more varied and, perhaps, more approximate than those associated with the diagonal terms. Using a simple weighted least squares sample problem, results obtained through use of the proposed technique are presented. The example consists of a simple, two observer, triangulation problem with range only measurements. Variations of this problem reflect an ideal case (perfect knowledge of the range errors) and a mismodeled case (incorrect knowledge of the range errors).
Exact solution of the XXX Gaudin model with generic open boundaries
NASA Astrophysics Data System (ADS)
Hao, Kun; Cao, Junpeng; Yang, Tao; Yang, Wen-Li
2015-03-01
The XXX Gaudin model with generic integrable open boundaries specified by the most general non-diagonal reflecting matrices is studied. Besides the inhomogeneous parameters, the associated Gaudin operators have six free parameters which break the U(1) -symmetry. With the help of the off-diagonal Bethe ansatz, we successfully obtained the eigenvalues of these Gaudin operators and the corresponding Bethe ansatz equations.
Many-body localization in a long range XXZ model with random-field
NASA Astrophysics Data System (ADS)
Li, Bo
2016-12-01
Many-body localization (MBL) in a long range interaction XXZ model with random field are investigated. Using the exact diagonal method, the MBL phase diagram with different tuning parameters and interaction range is obtained. It is found that the phase diagram of finite size results supplies strong evidence to confirm that the threshold interaction exponent α = 2. The tuning parameter Δ can efficiently change the MBL edge in high energy density stats, thus the system can be controlled to transfer from thermal phase to MBL phase by changing Δ. The energy level statistics data are consistent with result of the MBL phase diagram. However energy level statistics data cannot detect the thermal phase correctly in extreme long range case.
Phonon Dispersion and the Competition between Pairing and Charge Order
NASA Astrophysics Data System (ADS)
Costa, N. C.; Blommel, T.; Chiu, W.-T.; Batrouni, G.; Scalettar, R. T.
2018-05-01
The Holstein model describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge-density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature Tcdw for CDW order and also uncover several novel features of diagonal long-range order in the phase diagram, including a competition between charge patterns at momenta q =(π ,π ) and q =(0 ,π ) which lends insight into the relationship between Fermi surface nesting and the wave vector at which charge order occurs. We also demonstrate SC order at half filling in situations where a nonzero bandwidth sufficiently suppresses Tcdw.
NASA Astrophysics Data System (ADS)
Cheng, Chih-Chia; Chang, Feng-Chih; Wang, Jui-Hsu; Chen, Jem-Kun; Yen, Ying-Chieh; Lee, Duu-Jong
2015-12-01
A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (~1093 S m-1) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles).A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (~1093 S m-1) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles). Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07076g
Long-Range Vibrational Dynamics Are Directed by Watson-Crick Base Pairing in Duplex DNA.
Hithell, Gordon; Shaw, Daniel J; Donaldson, Paul M; Greetham, Gregory M; Towrie, Michael; Burley, Glenn A; Parker, Anthony W; Hunt, Neil T
2016-05-05
Ultrafast two-dimensional infrared (2D-IR) spectroscopy of a 15-mer A-T DNA duplex in solution has revealed structure-dependent vibrational coupling and energy transfer processes linking bases with the sugar-phosphate backbone. Duplex melting induces significant changes in the positions of off-diagonal peaks linking carbonyl and ring-stretching vibrational modes of the adenine and thymine bases with vibrations of the phosphate group and phosphodiester linkage. These indicate that Watson-Crick hydrogen bonding and helix formation lead to a unique vibrational coupling arrangement of base vibrational modes with those of the phosphate unit. On the basis of observations from time-resolved 2D-IR data, we conclude that rapid energy transfer processes occur between base and backbone, mediated by additional modes located on the deoxyribose moiety within the same nucleotide. These relaxation dynamics are insensitive to duplex melting, showing that efficient intramolecular energy relaxation to the solvent via the phosphate groups is the key to excess energy dissipation in both single- and double-stranded DNA.
Quantum phases of spinful Fermi gases in optical cavities
NASA Astrophysics Data System (ADS)
Colella, E.; Citro, R.; Barsanti, M.; Rossini, D.; Chiofalo, M.-L.
2018-04-01
We explore the quantum phases emerging from the interplay between spin and motional degrees of freedom of a one-dimensional quantum fluid of spinful fermionic atoms, effectively interacting via a photon-mediating mechanism with tunable sign and strength g , as it can be realized in present-day experiments with optical cavities. We find the emergence, in the very same system, of spin- and atomic-density wave ordering, accompanied by the occurrence of superfluidity for g >0 , while cavity photons are seen to drive strong correlations at all g values, with fermionic character for g >0 , and bosonic character for g <0 . Due to the long-range nature of interactions, to infer these results we combine mean-field and exact-diagonalization methods supported by bosonization analysis.
Transferring elements of a density matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allahverdyan, Armen E.; Hovhannisyan, Karen V.; Yerevan State University, A. Manoogian Street 1, Yerevan
2010-01-15
We study restrictions imposed by quantum mechanics on the process of matrix-element transfer. This problem is at the core of quantum measurements and state transfer. Given two systems A and B with initial density matrices lambda and r, respectively, we consider interactions that lead to transferring certain matrix elements of unknown lambda into those of the final state r-tilde of B. We find that this process eliminates the memory on the transferred (or certain other) matrix elements from the final state of A. If one diagonal matrix element is transferred, r(tilde sign){sub aa}=lambda{sub aa}, the memory on each nondiagonal elementmore » lambda{sub an}ot ={sub b} is completely eliminated from the final density operator of A. Consider the following three quantities, Relambda{sub an}ot ={sub b}, Imlambda{sub an}ot ={sub b}, and lambda{sub aa}-lambda{sub bb} (the real and imaginary part of a nondiagonal element and the corresponding difference between diagonal elements). Transferring one of them, e.g., Rer(tilde sign){sub an}ot ={sub b}=Relambda{sub an}ot ={sub b}, erases the memory on two others from the final state of A. Generalization of these setups to a finite-accuracy transfer brings in a trade-off between the accuracy and the amount of preserved memory. This trade-off is expressed via system-independent uncertainty relations that account for local aspects of the accuracy-disturbance trade-off in quantum measurements. Thus, the general aspect of state disturbance in quantum measurements is elimination of memory on non-diagonal elements, rather than diagonalization.« less
Airy structure in 16O+14C nuclear rainbow scattering
NASA Astrophysics Data System (ADS)
Ohkubo, S.; Hirabayashi, Y.
2015-08-01
The Airy structure in 16 O +14 C rainbow scattering is studied with an extended double-folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic realistic wave functions for 16 O by using a density-dependent nucleon-nucleon force. The experimental angular distributions at EL=132 , 281, and 382.2 MeV are well reproduced by the calculations. By studying the energy evolution of the Airy structure, the Airy minimum around θ =76∘ in the angular distribution at EL=132 MeV is assigned as the second-order Airy minimum A 2 in contrast to the recent literature which assigns it as the third order A 3 . The Airy minima in the 90∘ excitation function is investigated in comparison with well-known 16 O +16 O and 12 C +12 C systems. Evolution of the Airy structure into the molecular resonances with the 16 O +14 C cluster structure in the low-energy region around Ec .m .=30 MeV is discussed. It is predicted theoretically for the first time for a non-4 N 16O +14 C system that Airy elephants in the 90∘ excitation function are present.
NASA Astrophysics Data System (ADS)
Yarevsky, E.; Yakovlev, S. L.; Larson, Å; Elander, N.
2015-06-01
The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three-body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrödinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.
Kashinski, D O; Talbi, D; Hickman, A P; Di Nallo, O E; Colboc, F; Chakrabarti, K; Schneider, I F; Mezei, J Zs
2017-05-28
A quantitative theoretical study of the dissociative recombination of SH + with electrons has been carried out. Multireference, configuration interaction calculations were used to determine accurate potential energy curves for SH + and SH. The block diagonalization method was used to disentangle strongly interacting SH valence and Rydberg states and to construct a diabatic Hamiltonian whose diagonal matrix elements provide the diabatic potential energy curves. The off-diagonal elements are related to the electronic valence-Rydberg couplings. Cross sections and rate coefficients for the dissociative recombination reaction were calculated with a stepwise version of the multichannel quantum defect theory, using the molecular data provided by the block diagonalization method. The calculated rates are compared with the most recent measurements performed on the ion Test Storage Ring (TSR) in Heidelberg, Germany.
NASA Astrophysics Data System (ADS)
Ma, Song-Shan; Xu, Hui; Wang, Huan-You; Guo, Rui
2009-08-01
This paper presents a model to describe alternating current (AC) conductivity of DNA sequences, in which DNA is considered as a one-dimensional (1D) disordered system, and electrons transport via hopping between localized states. It finds that AC conductivity in DNA sequences increases as the frequency of the external electric field rises, and it takes the form of øac(ω) ~ ω2 ln2(1/ω). Also AC conductivity of DNA sequences increases with the increase of temperature, this phenomenon presents characteristics of weak temperature-dependence. Meanwhile, the AC conductivity in an off-diagonally correlated case is much larger than that in the uncorrelated case of the Anderson limit in low temperatures, which indicates that the off-diagonal correlations in DNA sequences have a great effect on the AC conductivity, while at high temperature the off-diagonal correlations no longer play a vital role in electric transport. In addition, the proportion of nucleotide pairs p also plays an important role in AC electron transport of DNA sequences. For p < 0.5, the conductivity of DNA sequence decreases with the increase of p, while for p >= 0.5, the conductivity increases with the increase of p.
Impact of Orbit Position Errors on Future Satellite Gravity Models
NASA Astrophysics Data System (ADS)
Encarnacao, J.; Ditmar, P.; Klees, R.
2015-12-01
We present the results of a study of the impact of orbit positioning noise (OPN) caused by incomplete knowledge of the Earth's gravity field on gravity models estimated from satellite gravity data. The OPN is simulated as the difference between two sets of orbits integrated on the basis of different static gravity field models. The OPN is propagated into ll-SST data, here computed as averaged inter-satellite accelerations projected onto the Line of Sight (LoS) vector between the two satellites. We consider the cartwheel formation (CF), pendulum formation (PF), and trailing formation (TF) as they produce a different dominant orientation of the LoS vector. Given the polar orbits of the formations, the LoS vector is mainly aligned with the North-South direction in the TF, with the East-West direction in the PF (i.e. no along-track offset), and contains a radial component in the CF. An analytical analysis predicts that the CF suffers from a very high sensitivity to the OPN. This is a fundamental characteristic of this formation, which results from the amplification of this noise by diagonal components of the gravity gradient tensor (defined in the local frame) during the propagation into satellite gravity data. In contrast, the OPN in the data from PF and TF is only scaled by off-diagonal gravity gradient components, which are much smaller than the diagonal tensor components. A numerical analysis shows that the effect of the OPN is similar in the data collected by the TF and the PF. The amplification of the OPN errors for the CF leads to errors in the gravity model that are three orders of magnitude larger than those in case of the PF. This means that any implementation of the CF will most likely produce data with relatively low quality since this error dominates the error budget, especially at low frequencies. This is particularly critical for future gravimetric missions that will be equipped with highly accurate ranging sensors.
Understanding the determinants of volatility clustering in terms of stationary Markovian processes
NASA Astrophysics Data System (ADS)
Miccichè, S.
2016-11-01
Volatility is a key variable in the modeling of financial markets. The most striking feature of volatility is that it is a long-range correlated stochastic variable, i.e. its autocorrelation function decays like a power-law τ-β for large time lags. In the present work we investigate the determinants of such feature, starting from the empirical observation that the exponent β of a certain stock's volatility is a linear function of the average correlation of such stock's volatility with all other volatilities. We propose a simple approach consisting in diagonalizing the cross-correlation matrix of volatilities and investigating whether or not the diagonalized volatilities still keep some of the original volatility stylized facts. As a result, the diagonalized volatilities result to share with the original volatilities either the power-law decay of the probability density function and the power-law decay of the autocorrelation function. This would indicate that volatility clustering is already present in the diagonalized un-correlated volatilities. We therefore present a parsimonious univariate model based on a non-linear Langevin equation that well reproduces these two stylized facts of volatility. The model helps us in understanding that the main source of volatility clustering, once volatilities have been diagonalized, is that the economic forces driving volatility can be modeled in terms of a Smoluchowski potential with logarithmic tails.
Commander and User Perceptions of the Army’s Intransit Visibility (ITV) Architecture
2007-03-01
covariance matrix; (c) Bartlett’s test of Sphericity; and (d) Kaiser-Meyer- Olkin ( KMO ) measure of sampling adequacy. The inter-item correlation matrix...001), and all diagonal terms had a value of 1 while off-diagonal terms were 0. The KMO measure of sampling adequacy reflects the homogeneity...amongst the variables and serves as an index for comparing the magnitudes of correlation coefficients to partial correlation coefficients. KMO values at
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, A. M.; Matern, S.; Hickey, C.
Motivated by experiments on La 2ZnIrO 6 and La 2MgIrO 6, we study the magnetism of spin-orbit coupled jeff = 1/2 iridium moments on the three-dimensional geometrically-frustrated face-centered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. Using Luttinger-Tisza and Monte Carlo simulations, we find a rich variety of orders, including collinear A-type antiferromagnetism, collinear stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and determine their magnetic ordering transition temperatures. We argue that thermodynamic data on these iridates underscore the presence of a dominant Kitaev exchange, and suggest a possible resolution to themore » puzzle of why La 2ZnIrO 6, but not La 2MgIrO 6, exhibits 'weak' ferromagnetism.« less
NASA Astrophysics Data System (ADS)
Glowacki, David
Recently, we outlined an efficient multi-tiered parallel excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground/excited state energies and gradients of large supramolecular complexes in atomistic detail. In this paper, we apply our ab initioexciton framework to the 27 coupled bacteriocholorophyll-a chromophores which make up the LH2 complex, using it to compute linear absorption spectra and short-time, on-the-fly nonadiabatic surface-hopping (SH) dynamics of electronically excited LH2. Our ab initio exciton model includes two key parameters whose values are determined by fitting to experiment: d, which is added to the diagonal elements, corrects for the error in TDDFT vertical excitation energies on a single chromophore; and e, which occurs on the off-diagonal matrix elements, describes the average dielectric screening of the inter-chromophore transition-dipole coupling. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, best-fit values of both d and e were obtained by fitting to the thermally broadened experimental absorption spectrum within the Frank-Condon approximation, providing a linear absorption spectrum that agrees reasonably well with the experimental observations. We follow the nonadiabatic dynamics using surface hopping to construct time-resolved visualizations of the EET dynamics in the sub-picosecond regime following photoexcitation. This provides some qualitative insight into the excitonic energy transfer (EET) that results from atomically resolved vibrational fluctuations of the chromophores. The dynamical picture that emerges is one of rapidly fluctuating eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the underlying chromophore vibrational dynamics. The eigenstate fluctuations arise from disorder in both the diagonal chromophore site energies and the off-diagonal inter-chromophore couplings. The scalability of our excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.
Tensorial Calibration. 2. Second Order Tensorial Calibration.
1987-10-12
index is repeated more than once only in one side of an equation, it implies a summation over the index valid range. 12 To avoid confusion of terms...and higher order tensor, the rank can be higher than the maximum dimensionality. 13 ,ON 6 LINEAR SECOND ORDER TENSORIAL CALIBRATION MODEL From...these equations are valid only if all the elements of the diagonal matrix B3 are non-zero because its inverse (-1) must be computed. This implies that M
Off-diagonal Jacobian support for Nodal BCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, John W.; Andrs, David; Gaston, Derek R.
In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite elementmore » codes in general: 1. The ability to zero out entire Jacobian matrix rows after \
Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F
2009-07-22
We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.
NASA Astrophysics Data System (ADS)
Trocha, Piotr; Weymann, Ireneusz; Barnaś, Józef
2009-10-01
Spin-dependent transport through two coupled single-level quantum dots weakly connected to ferromagnetic leads with collinear magnetizations is considered theoretically. Transport characteristics, including the current, linear and nonlinear conductances, and tunnel magnetoresistance are calculated using the real-time diagrammatic technique in the parallel, serial, and intermediate geometries. The effects due to virtual tunneling processes between the two dots via the leads, associated with off-diagonal coupling matrix elements, are also considered. Negative differential conductance and negative tunnel magnetoresistance have been found in the case of serial and intermediate geometries, while no such behavior has been observed for double quantum dots coupled in parallel. It is also shown that transport characteristics strongly depend on the magnitude of the off-diagonal coupling matrix elements.
Workshop report on large-scale matrix diagonalization methods in chemistry theory institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S.
The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems asmore » well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of« less
NASA Astrophysics Data System (ADS)
Bijnens, Johan; Rössler, Thomas
2015-11-01
We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique.
Long-Range Correlations Between Transmitted and Reected Fluxes of Electromagnetic Waves
NASA Astrophysics Data System (ADS)
Gorodnichev, E. E.; Kuzovlev, A. I.; Rogozkin, D. B.
2017-12-01
We study the long-range spatial correlations between intensity fluctuations in speckles formed by multiply scattered light. The correlation function between intensity fluctuations at the opposite boundaries of the slab are analyzed under the conditions of circular polarization memory. It shown that, until the scattered light is depolarized completely, the polarization and scalar contributions to the correlation function are of the same order of magnitude. As the slab thickness increases, their ratio falls off in inverse proportion to the thickness.
Truncation of Spherical Harmonic Series and its Influence on Gravity Field Modelling
NASA Astrophysics Data System (ADS)
Fecher, T.; Gruber, T.; Rummel, R.
2009-04-01
Least-squares adjustment is a very common and effective tool for the calculation of global gravity field models in terms of spherical harmonic series. However, since the gravity field is a continuous field function its optimal representation by a finite series of spherical harmonics is connected with a set of fundamental problems. Particularly worth mentioning here are cut off errors and aliasing effects. These problems stem from the truncation of the spherical harmonic series and from the fact that the spherical harmonic coefficients cannot be determined independently of each other within the adjustment process in case of discrete observations. The latter is shown by the non-diagonal variance-covariance matrices of gravity field solutions. Sneeuw described in 1994 that the off-diagonal matrix elements - at least if data are equally weighted - are the result of a loss of orthogonality of Legendre polynomials on regular grids. The poster addresses questions arising from the truncation of spherical harmonic series in spherical harmonic analysis and synthesis. Such questions are: (1) How does the high frequency data content (outside the parameter space) affect the estimated spherical harmonic coefficients; (2) Where to truncate the spherical harmonic series in the adjustment process in order to avoid high frequency leakage?; (3) Given a set of spherical harmonic coefficients resulting from an adjustment, what is the effect of using only a truncated version of it?
Neil A. Clark; Sang-Mook Lee
2004-01-01
This paper demonstrates how a digital video camera with a long lens can be used with pulse laser ranging in order to collect very large-scale tree crown measurements. The long focal length of the camera lens provides the magnification required for precise viewing of distant points with the trade-off of spatial coverage. Multiple video frames are mosaicked into a single...
Excitonic magnet in external field: Complex order parameter and spin currents
NASA Astrophysics Data System (ADS)
Geffroy, D.; Hariki, A.; Kuneš, J.
2018-04-01
We investigate spin-triplet exciton condensation in the two-orbital Hubbard model close to half-filling by means of dynamical mean-field theory. Employing an impurity solver that handles complex off-diagonal hybridization functions, we study the behavior of excitonic condensate in stoichiometric and doped systems subject to external magnetic field. We find a general tendency of the triplet order parameter to lie perpendicular with the applied field and identify exceptions from this rule. For solutions exhibiting k -odd spin textures, we discuss the Bloch theorem, which, in the absence of spin-orbit coupling, forbids the appearance of spontaneous net spin current. We demonstrate that the Bloch theorem is not obeyed by the dynamical mean-field theory.
Impact of off-diagonal cross-shell interaction on 14C
NASA Astrophysics Data System (ADS)
Yuan, Cen-Xi
2017-10-01
A shell-model investigation is performed to show the impact on the structure of 14C from the off-diagonal cross-shell interaction, 〈pp|V|sdsd〉, which represents the mixing between the 0 and 2ħω configurations in the psd model space. The observed levels of the positive states in 14C can be nicely described in 0-4ħω or a larger model space through the well defined Hamiltonians, YSOX and WBP, with a reduction of the strength of the 〈pp|V|sdsd〉 interaction in the latter. The observed B(GT) values for 14C can be generally described by YSOX, while WBP and their modifications of the 〈pp|V|sdsd〉 interaction fail for some values. Further investigation shows the effect of such interactions on the configuration mixing and occupancy. The present work shows examples of how the off-diagonal cross-shell interaction strongly drives the nuclear structure. Supported by National Natural Science Foundation of China (11305272), Special Program for Applied Research on Super Computation of the NSFC Guangdong Joint Fund (the second phase), the Guangdong Natural Science Foundation (2014A030313217), the Pearl River S&T Nova Program of Guangzhou (201506010060), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (2016TQ03N575), and the Fundamental Research Funds for the Central Universities (17lgzd34)
An Avoidance Model for Short-Range Order Induced by Soft Repulsions in Systems of Rigid Rods
NASA Astrophysics Data System (ADS)
Han, Jining; Herzfeld, Judith
1996-03-01
The effects of soft repulsions on hard particle systems are calculated using an avoidance model which improves upon the simple mean field approximation. Avoidance reduces, but does not eliminate, the energy due to soft repulsions. On the other hand, it also reduces the configurational entropy. Under suitable conditions, this simple trade-off yields a free energy that is lower than the mean field value. In these cases, the variationally determined avoidance gives an estimate for the short-range positional order induced by soft repulsions. The results indicate little short-range order for isotropically oriented rods. However, for parallel rods, short-range order increases to significant levels as the particle axial ratio increases. The implications for long- range positional ordering are also discussed. In particular, avoidance may explain the smectic ordering of tobacco mosaic virus at volume fractions lower than those necessary for smectic ordering of hard particles.
FACTORING TO FIT OFF DIAGONALS.
imply an upper bound on the number of factors. When applied to somatotype data, the method improved substantially on centroid solutions and indicated a reinterpretation of earlier factoring studies. (Author)
Zhukova, V; Blanco, J M; Ipatov, M; Churyukanova, M; Taskaev, S; Zhukov, A
2018-02-16
There is a pressing need for improving of the high-frequency magneto-impedance effect of cost-effective soft magnetic materials for use in high-performance sensing devices. The impact of the stress-annealing on magnetic properties and high frequency impedance of Fe-rich glass-coated microwires was studied. Hysteresis loops of Fe-rich microwires have been considerably affected by stress- annealing. In stress-annealed Fe- rich microwire we obtained drastic decreasing of coercivity and change of character of hysteresis loop from rectangular to linear. By controlling stress-annealing conditions (temperature and time) we achieved drastic increasing (by order of magnitude) of giant magnetoimpedance ratio. Coercivity, remanent magnetization, diagonal and of-diagonal magnetoimpedance effect of Fe-rich microwires can be tuned by stress-annealing conditions: annealing temperature and time. Observed experimental results are discussed considering relaxation of internal stresses, compressive "back-stresses" arising after stress annealing and topological short range ordering.
Breakdown of Magnetic Order in the Pressurized Kitaev Iridate β -Li2IrO3
NASA Astrophysics Data System (ADS)
Majumder, M.; Manna, R. S.; Simutis, G.; Orain, J. C.; Dey, T.; Freund, F.; Jesche, A.; Khasanov, R.; Biswas, P. K.; Bykova, E.; Dubrovinskaia, N.; Dubrovinsky, L. S.; Yadav, R.; Hozoi, L.; Nishimoto, S.; Tsirlin, A. A.; Gegenwart, P.
2018-06-01
Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate β -Li2IrO3 is explored using magnetization, thermal expansion, magnetostriction, and muon spin rotation measurements, as well as single-crystal x-ray diffraction under pressure and ab initio calculations. The Néel temperature of β -Li2IrO3 increases with the slope of 0.9 K /GPa upon initial compression, but the reduction in the polarization field Hc reflects a growing instability of the incommensurate order. At 1.4 GPa, the ordered state breaks down upon a first-order transition, giving way to a new ground state marked by the coexistence of dynamically correlated and frozen spins. This partial freezing in the absence of any conspicuous structural defects may indicate the classical nature of the resulting pressure-induced spin liquid, an observation paralleled to the increase in the nearest-neighbor off-diagonal exchange Γ under pressure.
NASA Astrophysics Data System (ADS)
Ono, Junichi; Takada, Shoji; Saito, Shinji
2015-06-01
An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Junichi; Takada, Shoji; Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502
2015-06-07
An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchicalmore » conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.« less
Optimum take-off angle in the long jump.
Linthorne, Nicholas P; Guzman, Maurice S; Bridgett, Lisa A
2005-07-01
In this study, we found that the optimum take-off angle for a long jumper may be predicted by combining the equation for the range of a projectile in free flight with the measured relations between take-off speed, take-off height and take-off angle for the athlete. The prediction method was evaluated using video measurements of three experienced male long jumpers who performed maximum-effort jumps over a wide range of take-off angles. To produce low take-off angles the athletes used a long and fast run-up, whereas higher take-off angles were produced using a progressively shorter and slower run-up. For all three athletes, the take-off speed decreased and the take-off height increased as the athlete jumped with a higher take-off angle. The calculated optimum take-off angles were in good agreement with the athletes' competition take-off angles.
NASA Astrophysics Data System (ADS)
Grüning, M.; Gritsenko, O. V.; Baerends, E. J.
2002-04-01
An approximate Kohn-Sham (KS) exchange potential vxσCEDA is developed, based on the common energy denominator approximation (CEDA) for the static orbital Green's function, which preserves the essential structure of the density response function. vxσCEDA is an explicit functional of the occupied KS orbitals, which has the Slater vSσ and response vrespσCEDA potentials as its components. The latter exhibits the characteristic step structure with "diagonal" contributions from the orbital densities |ψiσ|2, as well as "off-diagonal" ones from the occupied-occupied orbital products ψiσψj(≠1)σ*. Comparison of the results of atomic and molecular ground-state CEDA calculations with those of the Krieger-Li-Iafrate (KLI), exact exchange (EXX), and Hartree-Fock (HF) methods show, that both KLI and CEDA potentials can be considered as very good analytical "closure approximations" to the exact KS exchange potential. The total CEDA and KLI energies nearly coincide with the EXX ones and the corresponding orbital energies ɛiσ are rather close to each other for the light atoms and small molecules considered. The CEDA, KLI, EXX-ɛiσ values provide the qualitatively correct order of ionizations and they give an estimate of VIPs comparable to that of the HF Koopmans' theorem. However, the additional off-diagonal orbital structure of vxσCEDA appears to be essential for the calculated response properties of molecular chains. KLI already considerably improves the calculated (hyper)polarizabilities of the prototype hydrogen chains Hn over local density approximation (LDA) and standard generalized gradient approximations (GGAs), while the CEDA results are definitely an improvement over the KLI ones. The reasons of this success are the specific orbital structures of the CEDA and KLI response potentials, which produce in an external field an ultranonlocal field-counteracting exchange potential.
Matrix-product-state method with local basis optimization for nonequilibrium electron-phonon systems
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian; Brockt, Christoph; Dorfner, Florian; Vidmar, Lev; Jeckelmann, Eric
We present a method for simulating the time evolution of quasi-one-dimensional correlated systems with strongly fluctuating bosonic degrees of freedom (e.g., phonons) using matrix product states. For this purpose we combine the time-evolving block decimation (TEBD) algorithm with a local basis optimization (LBO) approach. We discuss the performance of our approach in comparison to TEBD with a bare boson basis, exact diagonalization, and diagonalization in a limited functional space. TEBD with LBO can reduce the computational cost by orders of magnitude when boson fluctuations are large and thus it allows one to investigate problems that are out of reach of other approaches. First, we test our method on the non-equilibrium dynamics of a Holstein polaron and show that it allows us to study the regime of strong electron-phonon coupling. Second, the method is applied to the scattering of an electronic wave packet off a region with electron-phonon coupling. Our study reveals a rich physics including transient self-trapping and dissipation. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 1807.
Kleiner, Isabelle; Hougen, Jon T.
2015-01-01
A new hybrid-model fitting program for methylamine-like molecules has been developed, based on an effective Hamiltonian in which the ammonia-like inversion motion is treated using a tunneling formalism, while the internal-rotation motion is treated using an explicit kinetic energy operator and potential energy function. The Hamiltonian in the computer program is set up as a 2×2 partitioned matrix, where each diagonal block contains a traditional torsion-rotation Hamiltonian (as in the earlier program BELGI), and the two off-diagonal blocks contain tunneling terms. This hybrid formulation permits the use of the permutation-inversion group G6 (isomorphic to C3v) for terms in the two diagonal blocks, but requires G12 for terms in the off-diagonal blocks. The first application of the new program is to 2-methylmalonaldehyde. Microwave data for this molecule were previously fit using an all-tunneling Hamiltonian formalism to treat both large-amplitude-motions. For 2-methylmalonaldehyde, the hybrid program achieves the same quality of fit as was obtained with the all-tunneling program, but fits with the hybrid program eliminate a large discrepancy between internal rotation barriers in the OH and OD isotopologs of 2-methylmalonaldehyde that arose in fits with the all-tunneling program. This large isotopic shift in internal rotation barrier is thus almost certainly an artifact of the all-tunneling model. Other molecules for application of the hybrid program are mentioned. PMID:26439709
Quantum correlation of path-entangled two-photon states in waveguide arrays with defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Yiling; Xu, Lei; Han, Bin
We study the quantum correlation of path-entangled states of two photons in coupled one-dimensional waveguide arrays with lattice defects. Both off-diagonal and diagonal defects are considered, which show different effects on the quantum correlation of path-entangled two-photon states. Two-photon bunching or anti-bunching effects can be observed and controlled. The two photons are found to have a tendency to bunch at the side lobes with a repulsive off-diagonal defect, and the path-entanglement of the input two-photon state can be preserved during the propagation. We also found that defect modes may play an important role on the two-photon correlation of path-entangled statesmore » in the waveguide arrays. Due to the quantum interference effect, intriguing evolution dynamics of the two-photon correlation matrix elements with oscillation frequencies being either twice of or the same as that of a classical light wave, depending on the position of the correlation matrix element, is observed. Our results show that it is possible to manipulate the two-photon correlation properties of path-entangled states in waveguide arrays with lattice defects.« less
Multistate metadynamics for automatic exploration of conical intersections
NASA Astrophysics Data System (ADS)
Lindner, Joachim O.; Röhr, Merle I. S.; Mitrić, Roland
2018-05-01
We introduce multistate metadynamics for automatic exploration of conical intersection seams between adiabatic Born-Oppenheimer potential energy surfaces in molecular systems. By choosing the energy gap between the electronic states as a collective variable the metadynamics drives the system from an arbitrary ground-state configuration toward the intersection seam. Upon reaching the seam, the multistate electronic Hamiltonian is extended by introducing biasing potentials into the off-diagonal elements, and the molecular dynamics is continued on a modified potential energy surface obtained by diagonalization of the latter. The off-diagonal bias serves to locally open the energy gap and push the system to the next intersection point. In this way, the conical intersection energy landscape can be explored, identifying minimum energy crossing points and the barriers separating them. We illustrate the method on the example of furan, a prototype organic molecule exhibiting rich photophysics. The multistate metadynamics reveals plateaus on the conical intersection energy landscape from which the minimum energy crossing points with characteristic geometries can be extracted. The method can be combined with the broad spectrum of electronic structure methods and represents a generally applicable tool for the exploration of photophysics and photochemistry in complex molecules and materials.
Using Volunteer Computing to Study Some Features of Diagonal Latin Squares
NASA Astrophysics Data System (ADS)
Vatutin, Eduard; Zaikin, Oleg; Kochemazov, Stepan; Valyaev, Sergey
2017-12-01
In this research, the study concerns around several features of diagonal Latin squares (DLSs) of small order. Authors of the study suggest an algorithm for computing minimal and maximal numbers of transversals of DLSs. According to this algorithm, all DLSs of a particular order are generated, and for each square all its transversals and diagonal transversals are constructed. The algorithm was implemented and applied to DLSs of order at most 7 on a personal computer. The experiment for order 8 was performed in the volunteer computing project Gerasim@home. In addition, the problem of finding pairs of orthogonal DLSs of order 10 was considered and reduced to Boolean satisfiability problem. The obtained problem turned out to be very hard, therefore it was decomposed into a family of subproblems. In order to solve the problem, the volunteer computing project SAT@home was used. As a result, several dozen pairs of described kind were found.
Long range magnetic ordering of ultracold fermions in an optical lattice
NASA Astrophysics Data System (ADS)
Duarte, P. M.; Hart, R. A.; Yang, T.-L.; Hulet, R. G.
2013-05-01
We present progress towards the observation of long range antiferromagnetic (AFM) ordering of fermionic 6Li atoms in an optical lattice. We prepare a two spin state mixture of 106 atoms at T /TF = 0 . 1 by evaporatively cooling in an optical dipole trap. The sample is then transferred to a dimple trap formed by three retroreflected laser beams at 1064 nm that propagate in orthogonal directions. The polarization of the retroreflected light is controlled using liquid crystal retarders, which allow us to adiabatically transform the dimple trap into a 3D lattice. Overlapped with each of the three dimple/lattice beams is a beam at 532 nm, which can cancel the harmonic confinement and flatten the band structure in the lattice. This setup offers the possibility of implementing proposed schemes which enlarge the size of the AFM phase in the trap. As a probe for AFM we use Bragg scattering of light. We have observed Bragg scattering off of the (100) lattice planes, and using an off-angle probe we can see the diffuse scattering from the sample which serves as background for the small signals expected before the onset of AFM ordering. Supported by NSF, ONR, DARPA, and the Welch Foundation.
Greve, Christian; Preketes, Nicholas K; Costard, Rene; Koeppe, Benjamin; Fidder, Henk; Nibbering, Erik T J; Temps, Friedrich; Mukamel, Shaul; Elsaesser, Thomas
2012-07-26
The N-H stretching vibrations of adenine, one of the building blocks of DNA, are studied by combining infrared absorption and nonlinear two-dimensional infrared spectroscopy with ab initio calculations. We determine diagonal and off-diagonal anharmonicities of N-H stretching vibrations in chemically modified adenosine monomer dissolved in chloroform. For the single-quantum excitation manifold, the normal mode picture with symmetric and asymmetric NH(2) stretching vibrations is fully appropriate. For the two-quantum excitation manifold, however, the interplay between intermode coupling and frequency shifts due to a large diagonal anharmonicity leads to a situation where strong mixing does not occur. We compare our findings with previously reported values obtained on overtone spectroscopy of coupled hydrogen stretching oscillators.
Morse oscillator propagator in the high temperature limit I: Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae
2017-02-15
In an earlier work of the author the time evolution of Morse oscillator was studied analytically and exactly at low temperatures whereupon optical correlation functions were calculated using Morse oscillator coherent states were employed. Morse oscillator propagator in the high temperature limit is derived and a closed form of its corresponding canonical partition function is obtained. Both diagonal and off-diagonal forms of Morse oscillator propagator are derived in the high temperature limit. Partition functions of diatomic molecules are calculated. - Highlights: • Derives the quantum propagator of Morse oscillator in the high temperature limit. • Uses the resulting diagonal propagatormore » to derive a closed form of Morse oscillator partition function. • Provides a more sophisticated formula of the quantum propagator to test the accuracy of the herein results.« less
Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions
NASA Astrophysics Data System (ADS)
Keleş, Ahmet; Zhao, Erhai
2018-05-01
The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads to a spin liquid for J2/J1∈(0.08 ,0.15 ). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈[0 ,1 0 ° ). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ ∈[0 ,5 4 ° ) , for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.
Multidimensional FEM-FCT schemes for arbitrary time stepping
NASA Astrophysics Data System (ADS)
Kuzmin, D.; Möller, M.; Turek, S.
2003-05-01
The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.
Empirical performance of the multivariate normal universal portfolio
NASA Astrophysics Data System (ADS)
Tan, Choon Peng; Pang, Sook Theng
2013-09-01
Universal portfolios generated by the multivariate normal distribution are studied with emphasis on the case where variables are dependent, namely, the covariance matrix is not diagonal. The moving-order multivariate normal universal portfolio requires very long implementation time and large computer memory in its implementation. With the objective of reducing memory and implementation time, the finite-order universal portfolio is introduced. Some stock-price data sets are selected from the local stock exchange and the finite-order universal portfolio is run on the data sets, for small finite order. Empirically, it is shown that the portfolio can outperform the moving-order Dirichlet universal portfolio of Cover and Ordentlich[2] for certain parameters in the selected data sets.
Quantum Glass of Interacting Bosons with Off-Diagonal Disorder
NASA Astrophysics Data System (ADS)
Piekarska, A. M.; Kopeć, T. K.
2018-04-01
We study disordered interacting bosons described by the Bose-Hubbard model with Gaussian-distributed random tunneling amplitudes. It is shown that the off-diagonal disorder induces a spin-glass-like ground state, characterized by randomly frozen quantum-mechanical U(1) phases of bosons. To access criticality, we employ the "n -replica trick," as in the spin-glass theory, and the Trotter-Suzuki method for decomposition of the statistical density operator, along with numerical calculations. The interplay between disorder, quantum, and thermal fluctuations leads to phase diagrams exhibiting a glassy state of bosons, which are studied as a function of model parameters. The considered system may be relevant for quantum simulators of optical-lattice bosons, where the randomness can be introduced in a controlled way. The latter is supported by a proposition of experimental realization of the system in question.
Hidden symmetries for ellipsoid-solitonic deformations of Kerr-Sen black holes and quantum anomalies
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.
2013-02-01
We prove the existence of hidden symmetries in the general relativity theory defined by exact solutions with generic off-diagonal metrics, nonholonomic (non-integrable) constraints, and deformations of the frame and linear connection structure. A special role in characterization of such spacetimes is played by the corresponding nonholonomic generalizations of Stackel-Killing and Killing-Yano tensors. There are constructed new classes of black hole solutions and we study hidden symmetries for ellipsoidal and/or solitonic deformations of "prime" Kerr-Sen black holes into "target" off-diagonal metrics. In general, the classical conserved quantities (integrable and not-integrable) do not transfer to the quantized systems and produce quantum gravitational anomalies. We prove that such anomalies can be eliminated via corresponding nonholonomic deformations of fundamental geometric objects (connections and corresponding Riemannian and Ricci tensors) and by frame transforms.
The calculated rovibronic spectrum of scandium hydride, ScH
NASA Astrophysics Data System (ADS)
Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan
2015-07-01
The electronic structure of six low-lying electronic states of scandium hydride, X 1Σ+, a 3Δ, b 3Π, A 1Δ, c 3Σ+ and B 1Π, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular rovibronic transitions for 45ScH.
Weak interaction probes of light nuclei
NASA Astrophysics Data System (ADS)
Towner, I. S.
1986-03-01
Experimental evidence for pion enhancement in axial charge transitions as predicted by softpion theorems is reviewed. Corrections from non-soft-pion terms seem to be limited. For transitions involving the space part of the axial-vector current, soft-pion theorems are powerless. Meson-exchange currents then involve a complicated interplay among competing process. Explicit calculations in the hard-pion model for closed-shell-plus (or minus)-one nuclei, A=15 and A= =17, are in reasonable agreement with experiment. Quenching in the off-diagonal spin-flip matrix element is larger than in the diagonal matrix element.
NASA Astrophysics Data System (ADS)
Amaral, Marcelo M.; Aschheim, Raymond; Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.; Woolridge, Daniel
2017-09-01
The goal of this work is to elaborate on new geometric methods of constructing exact and parametric quasiperiodic solutions for anamorphic cosmology models in modified gravity theories, MGTs, and general relativity, GR. There exist previously studied generic off-diagonal and diagonalizable cosmological metrics encoding gravitational and matter fields with quasicrystal like structures, QC, and holonomy corrections from loop quantum gravity, LQG. We apply the anholonomic frame deformation method, AFDM, in order to decouple the (modified) gravitational and matter field equations in general form. This allows us to find integral varieties of cosmological solutions determined by generating functions, effective sources, integration functions and constants. The coefficients of metrics and connections for such cosmological configurations depend, in general, on all spacetime coordinates and can be chosen to generate observable (quasi)-periodic/aperiodic/fractal/stochastic/(super) cluster/filament/polymer like (continuous, stochastic, fractal and/or discrete structures) in MGTs and/or GR. In this work, we study new classes of solutions for anamorphic cosmology with LQG holonomy corrections. Such solutions are characterized by nonlinear symmetries of generating functions for generic off-diagonal cosmological metrics and generalized connections, with possible nonholonomic constraints to Levi-Civita configurations and diagonalizable metrics depending only on a time like coordinate. We argue that anamorphic quasiperiodic cosmological models integrate the concept of quantum discrete spacetime, with certain gravitational QC-like vacuum and nonvacuum structures. And, that of a contracting universe that homogenizes, isotropizes and flattens without introducing initial conditions or multiverse problems.
Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Ma, Q.; Boulet, C.; Tipping, R. H.
2015-01-01
The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS (Energy-Corrected Sudden) and IOS (Infinite-Order Sudden) models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism to address the line mixing for Raman and infrared spectra of molecules such as N2, C2H2, CO2, NH3, and H2O. By carrying out rigorous calculations, our calculated relaxation matrices are in good agreement with both experimental data and results derived from the ECS model.
NASA Astrophysics Data System (ADS)
Hajabdollahi, Farzaneh; Premnath, Kannan N.
2018-05-01
Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean-invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third-order diagonal moments on the first-order moments for standard lattices, and strategies have recently been introduced to restore Galilean invariance without such errors using a modified collision operator involving corrections to either the relaxation times or the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that can be used to tune the effective sound speed, and thereby alleviating the numerical stiffness. In the present paper, we present a GI formulation of the preconditioned cascaded central-moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the remaining truncation errors arising from the degeneracy of the diagonal third-order moments and fully restore Galilean invariance without cubic defects for the preconditioned LB scheme on a standard lattice. Several conclusions are drawn from the analysis of the structure of the non-GI errors and the associated corrections, with particular emphasis on their dependence on the preconditioning parameter. The GI preconditioned central-moment LB method is validated for a number of complex flow benchmark problems and its effectiveness to achieve convergence acceleration and improvement in accuracy is demonstrated.
Symmetry boost of the fidelity of Shor factoring
NASA Astrophysics Data System (ADS)
Nam, Y. S.; Blümel, R.
2018-05-01
In Shor's algorithm quantum subroutines occur with the structure F U F-1 , where F is a unitary transform and U is performing a quantum computation. Examples are quantum adders and subunits of quantum modulo adders. In this paper we show, both analytically and numerically, that if, in analogy to spin echoes, F and F-1 can be implemented symmetrically when executing Shor's algorithm on actual, imperfect quantum hardware, such that F and F-1 have the same hardware errors, a symmetry boost in the fidelity of the combined F U F-1 quantum operation results when compared to the case in which the errors in F and F-1 are independently random. Running the complete gate-by-gate implemented Shor algorithm, we show that the symmetry-induced fidelity boost can be as large as a factor 4. While most of our analytical and numerical results concern the case of over- and under-rotation of controlled rotation gates, in the numerically accessible case of Shor's algorithm with a small number of qubits, we show explicitly that the symmetry boost is robust with respect to more general types of errors. While, expectedly, additional error types reduce the symmetry boost, we show explicitly, by implementing general off-diagonal SU (N ) errors (N =2 ,4 ,8 ), that the boost factor scales like a Lorentzian in δ /σ , where σ and δ are the error strengths of the diagonal over- and underrotation errors and the off-diagonal SU (N ) errors, respectively. The Lorentzian shape also shows that, while the boost factor may become small with increasing δ , it declines slowly (essentially like a power law) and is never completely erased. We also investigate the effect of diagonal nonunitary errors, which, in analogy to unitary errors, reduce but never erase the symmetry boost. Going beyond the case of small quantum processors, we present analytical scaling results that show that the symmetry boost persists in the practically interesting case of a large number of qubits. We illustrate this result explicitly for the case of Shor factoring of the semiprime RSA-1024, where, analytically, focusing on over- and underrotation errors, we obtain a boost factor of about 10. In addition, we provide a proof of the fidelity product formula, including its range of applicability.
Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform
NASA Astrophysics Data System (ADS)
Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin
2013-12-01
Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.
Ultra-wide Range Gamma Detector System for Search and Locate Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odell, D. Mackenzie Odell; Harpring, Larry J.; Moore, Frank S. Jr.
2005-10-26
Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local andmore » remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented.« less
Theory of electromagnetic wave propagation in ferromagnetic Rashba conductor
NASA Astrophysics Data System (ADS)
Shibata, Junya; Takeuchi, Akihito; Kohno, Hiroshi; Tatara, Gen
2018-02-01
We present a comprehensive study of various electromagnetic wave propagation phenomena in a ferromagnetic bulk Rashba conductor from the perspective of quantum mechanical transport. In this system, both the space inversion and time reversal symmetries are broken, as characterized by the Rashba field α and magnetization M, respectively. First, we present a general phenomenological analysis of electromagnetic wave propagation in media with broken space inversion and time reversal symmetries based on the dielectric tensor. The dependence of the dielectric tensor on the wave vector q and M is retained to first order. Then, we calculate the microscopic electromagnetic response of the current and spin of conduction electrons subjected to α and M, based on linear response theory and the Green's function method; the results are used to study the system optical properties. First, it is found that a large α enhances the anisotropic properties of the system and enlarges the frequency range in which the electromagnetic waves have hyperbolic dispersion surfaces and exhibit unusual propagations known as negative refraction and backward waves. Second, we consider the electromagnetic cross-correlation effects (direct and inverse Edelstein effects) on the wave propagation. These effects stem from the lack of space inversion symmetry and yield q-linear off-diagonal components in the dielectric tensor. This induces a Rashba-induced birefringence, in which the polarization vector rotates around the vector (α ×q ) . In the presence of M, which breaks time reversal symmetry, there arises an anomalous Hall effect and the dielectric tensor acquires off-diagonal components linear in M. For α ∥M , these components yield the Faraday effect for the Faraday configuration q ∥M and the Cotton-Mouton effect for the Voigt configuration ( q ⊥M ). When α and M are noncollinear, M- and q-induced optical phenomena are possible, which include nonreciprocal directional dichroism in the Voigt configuration. In these nonreciprocal optical phenomena, a "toroidal moment," α ×M , and a "quadrupole moment," αiMj+Miαj , play central roles. These phenomena are strongly enhanced at the spin-split transition edge in the electron band.
Static Holes in Geometrically Frustrated Bow Tie Ladder
NASA Astrophysics Data System (ADS)
Martins, George; Brenig, Wolfram
2007-03-01
Doping of the geometrically frustrated bow-tie spin ladder with static holes is investigated by a complementary approach using exact diagonalization and hard-core quantum dimers. Results for the thermodynamics in the undoped case, the singlet density of states, the hole-binding energy, and the spin correlations will be presented. We find that the static holes polarize their vicinity by a localization of singlets in order to reduce the frustration. As a consequence the singlet polarization cloud induces short range repulsive forces between the holes with oscillatory longer range behavior. For those systems we have studied, most results for the quantum dimer approach are found to be qualitatively if not quantitatively in agreement with exact diagonalization. The ground state of the undoped system is non-degenerate with translationally invariant nearest-neighbor spin correlations up to a few unit cells, which is consistent with a spin liquid state or a valence bond crystal with very large unit cell. C. Waldtmann, A. Kreutzmann, U. Schollwock, K. Maisinger, and H.-U. Everts, Phys. Rev. B 62, 9472 (2000).
Multiorbital kinetic effects on charge ordering of frustrated electrons on the triangular lattice
NASA Astrophysics Data System (ADS)
Février, C.; Fratini, S.; Ralko, A.
2015-06-01
The role of the multiorbital effects on the emergence of frustrated electronic orders on the triangular lattice at half filling is investigated through an extended spinless fermion Hubbard model. By using two complementary approaches, unrestricted Hartree-Fock and exact diagonalizations, we unravel a very rich phase diagram controlled by the strength of both local and off-site Coulomb interactions and by the interorbital hopping anisotropy ratio t'/t . Three robust unconventional electronic phases, a pinball liquid, an inverse pinball liquid, and a large-unit-cell √{12 }×√{12 } droplet phase, are found to be generic in the triangular geometry, being controlled by the band structure parameters. The latter are also stabilized in the isotropic limit of our microscopic model, which recovers the standard SU(2) spinful extended single-band Hubbard model.
Harnessing molecular excited states with Lanczos chains.
Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O; Saad, Yousef; Umari, Paolo; Xian, Jiawei
2010-02-24
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
2008-04-09
tfrequency of the probe field, h̄ωij is the energy separation between levels i and j , and βij,mn stands for the diagonal and off-diagonal radiative-decay rates...between levels i and j coupled by a dipole moment erij . In Fig. 1(b), we consider another three-level system with the upper two levels resonantly...broadening proportional to ΩR12 = Ω R 13. Electron scattering is found to create a dephasing to the induced optical coherence ρij with i 6= j . When the
Harnessing molecular excited states with Lanczos chains
NASA Astrophysics Data System (ADS)
Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O.; Saad, Yousef; Umari, Paolo; Xian, Jiawei
2010-02-01
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.
Particle Tracking on the BNL Relativistic Heavy Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dell, G. F.
1986-08-07
Tracking studies including the effects of random multipole errors as well as the effects of random and systematic multipole errors have been made for RHIC. Initial results for operating at an off diagonal working point are discussed.
Colloidal attraction induced by a temperature gradient.
Di Leonardo, R; Ianni, F; Ruocco, G
2009-04-21
Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.
Solvated dissipative electro-elastic network model of hydrated proteins
NASA Astrophysics Data System (ADS)
Martin, Daniel
2013-03-01
Elastic network models coarse grain proteins into a network of residue beads connected by springs. We add dissipative dynamics to this mechanical system by applying overdamped Langevin equations of motion to normal-mode vibrations of the network. In addition, the network is made heterogeneous and softened at the protein surface by accounting for hydration of the ionized residues. Solvation changes the network Hessian in two ways. Diagonal solvation terms soften the spring constants and off-diagonal dipole-dipole terms correlate displacements of the ionized residues. The model is used to formulate the response functions of the electrostatic potential and electric field appearing in theories of redox reactions and spectroscopy. We also formulate the dielectric response of the protein and find that solvation of the surface ionized residues leads to a slow relaxation peak in the dielectric loss spectrum, about two orders of magnitude slower than the main peak of protein relaxation. Finally, the solvated network is used to formulate the allosteric response of the protein to ion binding. The global thermodynamics of ion binding is not strongly affected by the network solvation, but it dramatically enhances conformational changes in response to placing a charge at the a the active site.
Solvated dissipative electro-elastic network model of hydrated proteins
NASA Astrophysics Data System (ADS)
Martin, Daniel R.; Matyushov, Dmitry V.
2012-10-01
Elastic network models coarse grain proteins into a network of residue beads connected by springs. We add dissipative dynamics to this mechanical system by applying overdamped Langevin equations of motion to normal-mode vibrations of the network. In addition, the network is made heterogeneous and softened at the protein surface by accounting for hydration of the ionized residues. Solvation changes the network Hessian in two ways. Diagonal solvation terms soften the spring constants and off-diagonal dipole-dipole terms correlate displacements of the ionized residues. The model is used to formulate the response functions of the electrostatic potential and electric field appearing in theories of redox reactions and spectroscopy. We also formulate the dielectric response of the protein and find that solvation of the surface ionized residues leads to a slow relaxation peak in the dielectric loss spectrum, about two orders of magnitude slower than the main peak of protein relaxation. Finally, the solvated network is used to formulate the allosteric response of the protein to ion binding. The global thermodynamics of ion binding is not strongly affected by the network solvation, but it dramatically enhances conformational changes in response to placing a charge at the active site of the protein.
Boundary Quantum Knizhnik-Zamolodchikov Equations and Bethe Vectors
NASA Astrophysics Data System (ADS)
Reshetikhin, Nicolai; Stokman, Jasper; Vlaar, Bart
2015-06-01
Solutions to boundary quantum Knizhnik-Zamolodchikov equations are constructed as bilateral sums involving "off-shell" Bethe vectors in case the reflection matrix is diagonal and only the 2-dimensional representation of is involved. We also consider their rational and classical degenerations.
Kumar, Praveen; Jang, Seogjoo
2013-04-07
The emission lineshape of the B850 band in the light harvesting complex 2 of purple bacteria is calculated by extending the approach of 2nd order time-nonlocal quantum master equation [S. Jang and R. J. Silbey, J. Chem. Phys. 118, 9312 (2003)]. The initial condition for the emission process corresponds to the stationary excited state density where exciton states are entangled with the bath modes in equilibrium. This exciton-bath coupling, which is not diagonal in either site excitation or exciton basis, results in a new inhomogeneous term that is absent in the expression for the absorption lineshape. Careful treatment of all the 2nd order terms are made, and explicit expressions are derived for both full 2nd order lineshape expression and the one based on secular approximation that neglects off-diagonal components in the exciton basis. Numerical results are presented for a few representative cases of disorder and temperature. Comparison of emission line shape with the absorption line shape is also made. It is shown that the inhomogeneous term coming from the entanglement of the system and bath degrees of freedom makes significant contributions to the lineshape. It is also found that the perturbative nature of the theory can result in negative portion of lineshape in some situations, which can be removed significantly by inclusion of the inhomogeneous term and completely by using the secular approximation. Comparison of the emission and absorption lineshapes at different temperatures demonstrates the role of thermal population of different exciton states and exciton-phonon couplings.
NASA Astrophysics Data System (ADS)
Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.
1983-05-01
The laser photoelectron spectra of MnH- and MnD-, and FeH- and FeD- are reported. A qualitative description of the electronic structure of the low-spin and high-spin states of the metal hydrides is developed, and used to interpret the spectra. A diagonal transition in the photodetachment to the known high-spin, 7Σ+, ground state of MnH is observed. An intense off-diagonal transition to a state of MnH, at 1725±50 cm-1 excitation energy, is attributed to loss of an antibonding electron from MnH-, to yield a low-spin quintet state of MnH. For FeH- the photodetachment to the ground state is an off-diagonal transition, attributed to loss of the antibonding electron from FeH-, to yield a low-spin quartet ground state of FeH. A diagonal transition results in an FeH state at 1945±55 cm-1; this state of FeH is assigned as the lowest-lying high-spin sextet state of FeH. An additional excited state of MnH and two other excited states of FeH are observed. Excitation energies for all the states are reported; vibrational frequencies and bond lengths for the ions and several states of the neutrals are also determined from the spectra. The electron affinity of MnH is found to be 0.869±0.010 eV; and the electron affinity of FeH is determined to be 0.934±0.011 eV. Spectroscopic constants for the various deuterides are also reported.
Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb.
Agrapidis, Cliò Efthimia; van den Brink, Jeroen; Nishimoto, Satoshi
2018-01-29
We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state phase diagram as a function of the ratio between Heisenberg (J = cosϕ) and Kitaev (K = sinϕ) interactions. Depending on the ratio, the system exhibits four long-range ordered states: ferromagnetic-z, ferromagnetic-xy, staggered-xy, Néel-z, and two liquid states: Tomonaga-Luttinger liquid and spiral-xy. The two Kitaev points [Formula: see text] and [Formula: see text] are singular. The ϕ-dependent phase diagram is similar to that for the 2D honeycomb-lattice KH model. Remarkably, all the ordered states of the honeycomb-lattice KH model can be interpreted in terms of the coupled KH chains. We also discuss the magnetic structure of the K-intercalated RuCl 3 , a potential Kitaev material, in the framework of the 1D KH model. Furthermore, we demonstrate that the low-lying excitations of the 1D KH Hamiltonian can be explained within the combination of the known six-vertex model and spin-wave theory.
Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications
NASA Astrophysics Data System (ADS)
Ma, Q.
2015-12-01
The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS and IOS models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism to address the line mixing for Raman and infrared spectra of molecules such as N2, C2H2, CO2, NH3, and H2O. By carrying out rigorous calculations, our calculated relaxation matrices are in good agreement with both experimental data and results derived from the ECS model.
NASA Astrophysics Data System (ADS)
Duan, Huaiyu; Fuller, George M.; Carlson, J.; Qian, Yong-Zhong
2006-11-01
We present results of large-scale numerical simulations of the evolution of neutrino and antineutrino flavors in the region above the late-time post-supernova-explosion proto-neutron star. Our calculations are the first to allow explicit flavor evolution histories on different neutrino trajectories and to self-consistently couple flavor development on these trajectories through forward scattering-induced quantum coupling. Employing the atmospheric-scale neutrino mass-squared difference (|δm2|≃3×10-3eV2) and values of θ13 allowed by current bounds, we find transformation of neutrino and antineutrino flavors over broad ranges of energy and luminosity in roughly the “bi-polar” collective mode. We find that this large-scale flavor conversion, largely driven by the flavor off-diagonal neutrino-neutrino forward scattering potential, sets in much closer to the proto-neutron star than simple estimates based on flavor-diagonal potentials and Mikheyev-Smirnov-Wolfenstein evolution would indicate. In turn, this suggests that models of r-process nucleosynthesis sited in the neutrino-driven wind could be affected substantially by active-active neutrino flavor mixing, even with the small measured neutrino mass-squared differences.
Temperature-insensitive long-wavelength (λ ≈14 µm) Quantum Cascade lasers with low threshold.
Huang, Xue; Charles, William O; Gmachl, Claire
2011-04-25
We demonstrate high-performance, long-wavelength (λ ≈14 µm) Quantum Cascade (QC) lasers based on a diagonal optical transition and a "two-phonon-continuum" depletion scheme in which the lower laser level is depopulated by resonant longitudinal optical phonon scattering followed by scattering to a lower energy level continuum. A 2.8 mm long QC laser shows a low threshold current density of 2.0 kA/cm2, a peak output power of ~336 mW, and a slope efficiency of 375 mW/A, all at 300 K, with a high characteristic temperature T0 ~310 K over a wide temperature range from 240 K to 390 K.
Numerical radius and zero pattern of matrices
NASA Astrophysics Data System (ADS)
Nikiforov, Vladimir
2008-01-01
Let A be an n×n complex matrix and r be the maximum size of its principal submatrices with no off-diagonal zero entries. Suppose A has zero main diagonal and x is a unit n-vector. Then, letting ||A|| be the Frobenius norm of A, we show that
Analytical effective tensor for flow-through composites
Sviercoski, Rosangela De Fatima [Los Alamos, NM
2012-06-19
A machine, method and computer-usable medium for modeling an average flow of a substance through a composite material. Such a modeling includes an analytical calculation of an effective tensor K.sup.a suitable for use with a variety of media. The analytical calculation corresponds to an approximation to the tensor K, and follows by first computing the diagonal values, and then identifying symmetries of the heterogeneity distribution. Additional calculations include determining the center of mass of the heterogeneous cell and its angle according to a defined Cartesian system, and utilizing this angle into a rotation formula to compute the off-diagonal values and determining its sign.
The neutrino–neutrino interaction effects in supernovae: The point of view from the ‘matter’ basis
Galais, Sebastien; Kneller, James; Volpe, Cristina
2012-01-19
We consider the Hamiltonian for neutrino oscillations in matter in the case of arbitrary potentials including off-diagonal complex terms. We derive the expressions for the corresponding Hamiltonian in the basis of the instantaneous eigenstates in matter, in terms of quantities one can derive from the flavor-basis Hamiltonian and its derivative, for an arbitrary number of neutrino flavors. We make our expressions explicit for the two-neutrino flavor case and apply our results to the neutrino propagation in core-collapse supernovae where the Hamiltonian includes both coupling to matter and to neutrinos. We show that the neutrino flavor evolution depends on the mixingmore » matrix derivatives involving not only the derivative of the matter mixing angles but also of the phases. In particular, we point out the important role of the phase derivatives, that appear due to the neutrino-neutrino interaction, and show how it can cause an oscillating degeneracy between the diagonal elements of the Hamiltonian in the basis of the eigenstates in matter. Lastly, our results also reveal that the end of the synchronization regime is due to a rapid increase of the phase derivative and identify the condition to be fulfilled for the onset of bipolar oscillations involving both the off-diagonal neutrino-neutrino interaction contributions and the vacuum terms.« less
Clustering fossil from primordial gravitational waves in anisotropic inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emami, Razieh; Firouzjahi, Hassan, E-mail: emami@ipm.ir, E-mail: firouz@ipm.ir
2015-10-01
Inflationary models can correlate small-scale density perturbations with the long-wavelength gravitational waves (GW) in the form of the Tensor-Scalar-Scalar (TSS) bispectrum. This correlation affects the mass-distribution in the Universe and leads to the off-diagonal correlations of the density field modes in the form of the quadrupole anisotropy. Interestingly, this effect survives even after the tensor mode decays when it re-enters the horizon, known as the fossil effect. As a result, the off-diagonal correlation function between different Fourier modes of the density fluctuations can be thought as a way to probe the large-scale GW and the mechanism of inflation behind themore » fossil effect. Models of single field slow roll inflation generically predict a very small quadrupole anisotropy in TSS while in models of multiple fields inflation this effect can be observable. Therefore this large scale quadrupole anisotropy can be thought as a spectroscopy for different inflationary models. In addition, in models of anisotropic inflation there exists quadrupole anisotropy in curvature perturbation power spectrum. Here we consider TSS in models of anisotropic inflation and show that the shape of quadrupole anisotropy is different than in single field models. In fact, in these models, quadrupole anisotropy is projected into the preferred direction and its amplitude is proportional to g{sub *} N{sub e} where N{sub e} is the number of e-folds and g{sub *} is the amplitude of quadrupole anisotropy in curvature perturbation power spectrum. We use this correlation function to estimate the large scale GW as well as the preferred direction and discuss the detectability of the signal in the galaxy surveys like Euclid and 21 cm surveys.« less
NASA Astrophysics Data System (ADS)
Vidanović, Ivana; Bogojević, Aleksandar; Balaž, Antun; Belić, Aleksandar
2009-12-01
In this paper, building on a previous analysis [I. Vidanović, A. Bogojević, and A. Belić, preceding paper, Phys. Rev. E 80, 066705 (2009)] of exact diagonalization of the space-discretized evolution operator for the study of properties of nonrelativistic quantum systems, we present a substantial improvement to this method. We apply recently introduced effective action approach for obtaining short-time expansion of the propagator up to very high orders to calculate matrix elements of space-discretized evolution operator. This improves by many orders of magnitude previously used approximations for discretized matrix elements and allows us to numerically obtain large numbers of accurate energy eigenvalues and eigenstates using numerical diagonalization. We illustrate this approach on several one- and two-dimensional models. The quality of numerically calculated higher-order eigenstates is assessed by comparison with semiclassical cumulative density of states.
Multi-color incomplete Cholesky conjugate gradient methods for vector computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, E.L.
1986-01-01
This research is concerned with the solution on vector computers of linear systems of equations. Ax = b, where A is a large, sparse symmetric positive definite matrix with non-zero elements lying only along a few diagonals of the matrix. The system is solved using the incomplete Cholesky conjugate gradient method (ICCG). Multi-color orderings are used of the unknowns in the linear system to obtain p-color matrices for which a no-fill block ICCG method is implemented on the CYBER 205 with O(N/p) length vector operations in both the decomposition of A and, more importantly, in the forward and back solvesmore » necessary at each iteration of the method. (N is the number of unknowns and p is a small constant). A p-colored matrix is a matrix that can be partitioned into a p x p block matrix where the diagonal blocks are diagonal matrices. The matrix is stored by diagonals and matrix multiplication by diagonals is used to carry out the decomposition of A and the forward and back solves. Additionally, if the vectors across adjacent blocks line up, then some of the overhead associated with vector startups can be eliminated in the matrix vector multiplication necessary at each conjugate gradient iteration. Necessary and sufficient conditions are given to determine which multi-color orderings of the unknowns correspond to p-color matrices, and a process is indicated for choosing multi-color orderings.« less
Kato expansion in quantum canonical perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru
2016-06-15
This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.
Gorodnichev, E E
2018-04-01
The problem of multiple scattering of polarized light in a two-dimensional medium composed of fiberlike inhomogeneities is studied. The attenuation lengths for the density matrix elements are calculated. For a highly absorbing medium it is found that, as the sample thickness increases, the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the sample thickness, the off-diagonal elements which are responsible for correlations between the cross-polarized waves disappear. In the asymptotic limit of very thick samples the scattered light proves to be polarized perpendicular to the fibers. The difference in the attenuation lengths between the density matrix elements results in a nonmonotonic depth dependence of the degree of polarization. In the opposite case of a weakly absorbing medium, the off-diagonal element of the density matrix and, correspondingly, the correlations between the cross-polarized fields are shown to decay faster than the intensity of waves polarized along and perpendicular to the fibers.
Anomalous dynamical phase in quantum spin chains with long-range interactions
NASA Astrophysics Data System (ADS)
Homrighausen, Ingo; Abeling, Nils O.; Zauner-Stauber, Valentin; Halimeh, Jad C.
2017-09-01
The existence or absence of nonanalytic cusps in the Loschmidt-echo return rate is traditionally employed to distinguish between a regular dynamical phase (regular cusps) and a trivial phase (no cusps) in quantum spin chains after a global quench. However, numerical evidence in a recent study (J. C. Halimeh and V. Zauner-Stauber, arXiv:1610.02019) suggests that instead of the trivial phase, a distinct anomalous dynamical phase characterized by a novel type of nonanalytic cusps occurs in the one-dimensional transverse-field Ising model when interactions are sufficiently long range. Using an analytic semiclassical approach and exact diagonalization, we show that this anomalous phase also arises in the fully connected case of infinite-range interactions, and we discuss its defining signature. Our results show that the transition from the regular to the anomalous dynamical phase coincides with Z2-symmetry breaking in the infinite-time limit, thereby showing a connection between two different concepts of dynamical criticality. Our work further expands the dynamical phase diagram of long-range interacting quantum spin chains, and can be tested experimentally in ion-trap setups and ultracold atoms in optical cavities, where interactions are inherently long range.
NASA Astrophysics Data System (ADS)
Okubo, Tsuyoshi; Shinjo, Kazuya; Yamaji, Youhei; Kawashima, Naoki; Sota, Shigetoshi; Tohyama, Takami; Imada, Masatoshi
2017-08-01
We investigate the ground state properties of Na2IrO3 based on numerical calculations of the recently proposed ab initio Hamiltonian represented by Kitaev and extended Heisenberg interactions. To overcome the limitation posed by small tractable system sizes in the exact diagonalization study employed in a previous study [Y. Yamaji et al., Phys. Rev. Lett. 113, 107201 (2014), 10.1103/PhysRevLett.113.107201], we apply a two-dimensional density matrix renormalization group and an infinite-size tensor-network method. By calculating at much larger system sizes, we critically test the validity of the exact diagonalization results. The results consistently indicate that the ground state of Na2IrO3 is a magnetically ordered state with zigzag configuration in agreement with experimental observations and the previous diagonalization study. Applications of the two independent methods in addition to the exact diagonalization study further uncover a consistent and rich phase diagram near the zigzag phase beyond the accessibility of the exact diagonalization. For example, in the parameter space away from the ab initio value of Na2IrO3 controlled by the trigonal distortion, we find three phases: (i) an ordered phase with the magnetic moment aligned mutually in 120 degrees orientation on every third hexagon, (ii) a magnetically ordered phase with a 16-site unit cell, and (iii) an ordered phase with presumably incommensurate periodicity of the moment. It suggests that potentially rich magnetic structures may appear in A2IrO3 compounds for A other than Na. The present results also serve to establish the accuracy of the first-principles approach in reproducing the available experimental results thereby further contributing to finding a route to realize the Kitaev spin liquid.
NASA Astrophysics Data System (ADS)
Nemes, Csaba; Barcza, Gergely; Nagy, Zoltán; Legeza, Örs; Szolgay, Péter
2014-06-01
In the numerical analysis of strongly correlated quantum lattice models one of the leading algorithms developed to balance the size of the effective Hilbert space and the accuracy of the simulation is the density matrix renormalization group (DMRG) algorithm, in which the run-time is dominated by the iterative diagonalization of the Hamilton operator. As the most time-dominant step of the diagonalization can be expressed as a list of dense matrix operations, the DMRG is an appealing candidate to fully utilize the computing power residing in novel kilo-processor architectures. In the paper a smart hybrid CPU-GPU implementation is presented, which exploits the power of both CPU and GPU and tolerates problems exceeding the GPU memory size. Furthermore, a new CUDA kernel has been designed for asymmetric matrix-vector multiplication to accelerate the rest of the diagonalization. Besides the evaluation of the GPU implementation, the practical limits of an FPGA implementation are also discussed.
On the interpretation of kernels - Computer simulation of responses to impulse pairs
NASA Technical Reports Server (NTRS)
Hung, G.; Stark, L.; Eykhoff, P.
1983-01-01
A method is presented for the use of a unit impulse response and responses to impulse pairs of variable separation in the calculation of the second-degree kernels of a quadratic system. A quadratic system may be built from simple linear terms of known dynamics and a multiplier. Computer simulation results on quadratic systems with building elements of various time constants indicate reasonably that the larger time constant term before multiplication dominates in the envelope of the off-diagonal kernel curves as these move perpendicular to and away from the main diagonal. The smaller time constant term before multiplication combines with the effect of the time constant after multiplication to dominate in the kernel curves in the direction of the second-degree impulse response, i.e., parallel to the main diagonal. Such types of insight may be helpful in recognizing essential aspects of (second-degree) kernels; they may be used in simplifying the model structure and, perhaps, add to the physical/physiological understanding of the underlying processes.
Shear Strength of Square Graphene Nanoribbons beyond Wrinkling
NASA Astrophysics Data System (ADS)
Ragab, Tarek; Basaran, Cemal
2018-04-01
Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane (x-y) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress-strain diagram beyond the elastic range. The results showed that the average slope of the stress-strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress-strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.
Shear Strength of Square Graphene Nanoribbons beyond Wrinkling
NASA Astrophysics Data System (ADS)
Ragab, Tarek; Basaran, Cemal
2018-07-01
Atomistic modeling of armchair and zigzag graphene nanoribbons (GNRs) has been performed to investigate the post-wrinkling behavior under in-plane ( x- y) shear deformation. Simulations were performed at 300 K for square GNRs with size ranging from 2.5 nm to 20 nm. Shear stresses led only to diagonal tension, and wrinkling was not accompanied by any diagonal compressive force. Once the diagonal tension reached its ultimate elastic level, three major stress-relaxing phenomena were observed. The type of stress-relaxing phenomenon involved greatly affected the mechanical behavior in terms of the slope of the stress-strain diagram beyond the elastic range. The results showed that the average slope of the stress-strain relation beyond the ultimate elastic stress decreased with the increase of the GNR size. Moreover, the slope of the shear stress-strain curve beyond the ultimate elastic stress was always greater for armchair than for zigzag GNRs. GNRs can sustain very high plastic shear strains beyond 100% before failure. The ultimate elastic stress can range from 20 GPa to 50 GPa, occurring at shear strain ranging from 52% to 19%. The ultimate elastic stress and strain were inversely proportional to the size of the GNR with a power factor ranging from 0.261 for armchair GNRs to 0.354 for zigzag GNRs due to the decrease in the effective width for diagonal tension.
Robust quantum entanglement generation and generation-plus-storage protocols with spin chains
NASA Astrophysics Data System (ADS)
Estarellas, Marta P.; D'Amico, Irene; Spiller, Timothy P.
2017-04-01
Reliable quantum communication and/or processing links between modules are a necessary building block for various quantum processing architectures. Here we consider a spin-chain system with alternating strength couplings and containing three defects, which impose three domain walls between topologically distinct regions of the chain. We show that—in addition to its useful, high-fidelity, quantum state transfer properties—an entangling protocol can be implemented in this system, with optional localization and storage of the entangled states. We demonstrate both numerically and analytically that, given a suitable initial product-state injection, the natural dynamics of the system produces a maximally entangled state at a given time. We present detailed investigations of the effects of fabrication errors, analyzing random static disorder both in the diagonal and off-diagonal terms of the system Hamiltonian. Our results show that the entangled state formation is very robust against perturbations of up to ˜10 % the weaker chain coupling, and also robust against timing injection errors. We propose a further protocol, which manipulates the chain in order to localize and store each of the entangled qubits. The engineering of a system with such characteristics would thus provide a useful device for quantum information processing tasks involving the creation and storage of entangled resources.
Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons
NASA Astrophysics Data System (ADS)
Have, Jonas; Pedersen, Thomas G.
2018-03-01
The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.
Parallel algorithms for computation of the manipulator inertia matrix
NASA Technical Reports Server (NTRS)
Amin-Javaheri, Masoud; Orin, David E.
1989-01-01
The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.
Fiscal Capacity and Educational Finance: Some Further Variations.
ERIC Educational Resources Information Center
Dziuban, Charles; And Others
The school district fiscal capacity data (1962 and 1967) of the National Finance Project were analyzed for psychometric adequacy and robustness of component composition. The procedures involved: (1) the computation of the Kaiser, Meyer, Olkin Measure of Sampling Adequacy, (2) inspection of the off-diagonal elements of the antiimage covariance…
Detail of tension bars at end posts western truss. Shows ...
Detail of tension bars at end posts western truss. Shows adjustable bars at top of structure; diagonal and vertical members on truss are not adjustable. Looking north from civilian land. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA
Computer Control and Activation of Six-Degree-of-Freedom Simulator
1983-01-01
Evaluation of Matrices 54 Calculation of Linear Coefficients 54 Off-Line Calculations for Aircraft 59 Off-Line Calculations for Combat Vehicle 61 Table...468 in. 59 Physical concept tail-boom control system 203 Vlll 60 Tail-boom control system block diagram 204 61 Block diagram for position...configuration. Now, since Z must be diagonal, it follows that the principal elements of Z are given by 13 where and a) = ^11 ^12’ 2 2 ^21 ^22 ’ 61
Correlation Structure of Fractional Pearson Diffusions.
Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla
2013-09-01
The stochastic solution to a diffusion equations with polynomial coefficients is called a Pearson diffusion. If the first time derivative is replaced by a Caputo fractional derivative of order less than one, the stochastic solution is called a fractional Pearson diffusion. This paper develops an explicit formula for the covariance function of a fractional Pearson diffusion in steady state, in terms of Mittag-Leffler functions. That formula shows that fractional Pearson diffusions are long range dependent, with a correlation that falls off like a power law, whose exponent equals the order of the fractional derivative.
Dip and anisotropy effects on flow using a vertically skewed model grid.
Hoaglund, John R; Pollard, David
2003-01-01
Darcy flow equations relating vertical and bedding-parallel flow to vertical and bedding-parallel gradient components are derived for a skewed Cartesian grid in a vertical plane, correcting for structural dip given the principal hydraulic conductivities in bedding-parallel and bedding-orthogonal directions. Incorrect-minus-correct flow error results are presented for ranges of structural dip (0 < or = theta < or = 90) and gradient directions (0 < or = phi < or = 360). The equations can be coded into ground water models (e.g., MODFLOW) that can use a skewed Cartesian coordinate system to simulate flow in structural terrain with deformed bedding planes. Models modified with these equations will require input arrays of strike and dip, and a solver that can handle off-diagonal hydraulic conductivity terms.
Line mixing in a N2-broadened CO2 Q branch observed with a tunable diode laser
NASA Technical Reports Server (NTRS)
Gentry, Bruce; Strow, L. Larrabee
1987-01-01
Line-mixing effects have been observed in the infrared Q branch of the (11/1/0,03/1/0)I-00/0/0 band of CO2 at 2076/cm. A tunable diode laser spectrometer was used to record spectra of CO2 broadened by N2 and O2 at total pressures ranging from 100 to 720 torr. The observed absorption coefficients are up to 65 percent lower than those calculated using an isolated Lorentzian line approximation. A simple energy gap scaling law is used to determine the off-diagonal relaxation matrix elements from the known pressure-broadening coefficients. The spectra calculated using these matrix elements reproduces the observed absorption coefficients to within several percent.
Planar pyrochlore: A strong-coupling analysis
NASA Astrophysics Data System (ADS)
Brenig, Wolfram; Honecker, Andreas
2002-04-01
Recent investigations of the two-dimensional spin-1/2 checkerboard lattice favor a valence bond crystal with long-range quadrumer order [J.-B. Fouet, M. Mambrini, P. Sindzingre, and C. Lhuillier, cond-mat/0108070 (unpublished)]. Starting from the limit of isolated quadrumers, we perform a complementary analysis of the evolution of the spectrum as a function of the interquadrumer coupling j using both exact diagonalization (ED) and series expansion (SE) by continuous unitary transformation. We compute (i) the ground-state energy, (ii) the elementary triplet excitations, and (iii) singlet excitations on finite systems and find very good agreement between SE and ED. In the thermodynamic limit we find a ground-state energy substantially lower than that documented in the literature. The elementary triplet excitation is shown to be gapped and almost dispersionless, whereas the singlet sector contains strongly dispersive modes. Evidence is presented for the low energy singlet excitations in the spin gap in the vicinity of j=1 to result from a large downward renormalization of local high-energy states.
Universality and tails of long-range interactions in one dimension
NASA Astrophysics Data System (ADS)
Valiente, Manuel; Öhberg, Patrik
2017-07-01
Long-range interactions and, in particular, two-body potentials with power-law long-distance tails are ubiquitous in nature. For two bosons or fermions in one spatial dimension, the latter case being formally equivalent to three-dimensional s -wave scattering, we show how generic asymptotic interaction tails can be accounted for in the long-distance limit of scattering wave functions. This is made possible by introducing a generalization of the collisional phase shifts to include space dependence. We show that this distance dependence is universal, in that it does not depend on short-distance details of the interaction. The energy dependence is also universal, and is fully determined by the asymptotic tails of the two-body potential. As an important application of our findings, we describe how to eliminate finite-size effects with long-range potentials in the calculation of scattering phase shifts from exact diagonalization. We show that even with moderately small system sizes it is possible to accurately extract phase shifts that would otherwise be plagued with finite-size errors. We also consider multichannel scattering, focusing on the estimation of open channel asymptotic interaction strengths via finite-size analysis.
The Quantum-to-Classical Transition in Strongly Interacting Nanoscale Systems
NASA Astrophysics Data System (ADS)
Benatov, Latchezar Latchezarov
This thesis comprises two separate but related studies, dealing with two strongly interacting nanoscale systems on the border between the quantum and classical domains. In Part 1, we use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing in the presence of a momentum-coupled detector bath and a position-coupled environmental bath. Besides, the full master equation clearly shows that half of the detector back-action is correlated with electron tunneling, indicating a departure from the model of the detector as an effective bath and suggesting that a future calculation valid at lower bias voltage, stronger tunneling and/or stronger coupling might reveal interesting quantum effects in the oscillator dynamics. In the second part of the thesis, we study the subsystem dynamics and thermalization of an oscillator-spin star model, where a nanomechanical resonator is coupled to a few two-level systems (TLS's). We use a fourth-order Runge-Kutta numerical algorithm to integrate the Schrodinger equation for the system and obtain our results. We find that the oscillator reaches a Boltzmann steady state when the TLS bath is initially in a thermal state at a temperature higher than the oscillator phonon energy. This occurs in both chaotic and integrable systems, and despite the small number of spins (only six) and the lack of couplings between them. At the same time, pure initial states do not thermalize well in our system, indicating that mixed state thermalization stems from the thermal nature of the initial bath state. Under the influence of a thermal TLS bath, oscillator Fock states decay in an approximately exponential manner, but there is also a concave-down trend at very early times, possibly indicative of Gaussian decay. In the case of initial Fock state superpositions, the diagonal density matrix element behaves very similarly to single initial Fock states, while the off-diagonal matrix element decays sinusoidally with an exponentially decreasing amplitude. The off-diagonal decay time is much smaller then the diagonal one, indicating that superposition states decohere much faster than they decay. Both decay times decrease with increasing Fock state number, but more slowly than the 1/n dependence seen in the presence of an external ohmic bath.
NASA Technical Reports Server (NTRS)
Ma, Q.; Boulet, C.; Tipping, R. H.
2014-01-01
The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.
NASA Astrophysics Data System (ADS)
Jhan, Sin-Mu; Jin, Bih-Yaw
2017-11-01
A simple molecular orbital treatment of local current distributions inside single molecular junctions is developed in this paper. Using the first-order perturbation theory and nonequilibrium Green's function techniques in the framework of Hückel theory, we show that the leading contributions to local current distributions are directly proportional to the off-diagonal elements of transition density matrices. Under the orbital approximation, the major contributions to local currents come from a few dominant molecular orbital pairs which are mixed by the interactions between the molecule and electrodes. A few simple molecular junctions consisting of single- and multi-ring conjugated systems are used to demonstrate that local current distributions inside molecular junctions can be decomposed by partial sums of a few leading contributing transition density matrices.
NASA Astrophysics Data System (ADS)
Tomonari, Mutsumi; Ookubo, Norio; Takada, Toshikazu
1995-04-01
The first-order hyperpolarizability components, βzzz and βzxx, for C 2v molecules (the z axis being the principal axis) are analyzed after simplified sum-over-states calculations. Compared with p-nitroaniline (PNA), βzxx is three times enhanced by x-extended π conjugation realized by a bulky substrate in 9-amino-10-nitroanthracene (ANA) and by multiple substitutions in 1,5-diamino-2,4-dinitrobenzene (DDB). While ANA shows βzzz unchanged because its z-directed charge transfer (CT) is similar to PNA, DDB has a β zzz1/3 of PNA, which is reduced by two weak CTs introduced by two ortho-positioned donor-acceptor pairs on both sides of the z axis.
NASA Technical Reports Server (NTRS)
Black, J. M. (Inventor)
1981-01-01
A dc-to-dc converter employs four transistor switches in a bridge to chop dc power from a source, and a voltage multiplying diode rectifying ladder network to rectify and filter the chopped dc power for delivery to a load. The bridge switches are cross coupled in order for diagonally opposite pairs to turn on and off together using RC networks for the cross coupling to achieve the mode of operation of a free running multivibrator, and the diode rectifying ladder is configured to operate in a push-pull mode driven from opposite sides of the multivibrator outputs of the ridge switches. The four transistor switches provide a square-wave output voltage which as a peak-to-peak amplitude that is twice the input dc voltage, and is thus useful as a dc-to-ac inverter.
NASA Technical Reports Server (NTRS)
Green, Sheldon; Boissoles, J.; Boulet, C.
1988-01-01
The first accurate theoretical values for off-diagonal (i.e., line-coupling) pressure-broadening cross sections are presented. Calculations were done for CO perturbed by He at thermal collision energies using an accurate ab initio potential energy surface. Converged close coupling, i.e., numerically exact values, were obtained for coupling to the R(0) and R(2) lines. These were used to test the coupled states (CS) and infinite order sudden (IOS) approximate scattering methods. CS was found to be of quantitative accuracy (a few percent) and has been used to obtain coupling values for lines to R(10). IOS values are less accurate, but, owing to their simplicity, may nonetheless prove useful as has been recently demonstrated.
Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.
Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C
2012-01-01
Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs).
Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems
Dey, Samrat; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.
2013-01-01
Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs). PMID:24301987
Magnetic Excitations of Stripes
NASA Astrophysics Data System (ADS)
Yao, Daoxin; Carlson, Erica; Campbell, David
2005-03-01
Competing tendencies in electronic systems with strong correlations can lead to spontaneous nanoscale structure, pattern formation, and even long-range spatial order. There has been continued interest in various ``stripe'' phases of electrons, as well as more recent interest in possible ``checkerboard'' patterns. New experimental techniques allow for the extraction of detailed and reproducible neutron scattering spectra in copper oxide superconductors and related nickelate compounds. We discuss the magnetic excitations of well-ordered stripe phases, including the high energy magnetic excitations of recent interest and possible connections to the ``resonance peak'' in cuprate superconductors. Using a suitably parametrized Heisenberg model and spin wave theory, we study a variety of possible stripe configurations, including vertical, diagonal, staircase, and zigzag stripes. We calculate the expected neutron scattering intensities as a function of energy and momentum. Constant energy cuts at high energy often reveal a square-like scattering pattern, and occasionally a circular pattern. Bond-centered stripes have weight gathered near (pi,pi) at low energy, indicating that only part of the spin wave cone is expected to be resolvable experimentally. In addition, we present a litmus test for experimentally distinguishing bond-centered stripes from site-centered stripes using low energy data.
Dutta, Rajesh; Bagchi, Kaushik
2017-01-01
Kubo’s fluctuation theory of line shape forms the backbone of our understanding of optical and vibrational line shapes, through such concepts as static heterogeneity and motional narrowing. However, the theory does not properly address the effects of quantum coherences on optical line shape, especially in extended systems where a large number of eigenstates are present. In this work, we study the line shape of an exciton in a one-dimensional lattice consisting of regularly placed and equally separated optical two level systems. We consider both linear array and cyclic ring systems of different sizes. Detailed analytical calculations of line shape have been carried out by using Kubo’s stochastic Liouville equation (SLE). We make use of the observation that in the site representation, the Hamiltonian of our system with constant off-diagonal coupling J is a tridiagonal Toeplitz matrix (TDTM) whose eigenvalues and eigenfunctions are known analytically. This identification is particularly useful for long chains where the eigenvalues of TDTM help understanding crossover between static and fast modulation limits. We summarize the new results as follows. (i) In the slow modulation limit when the bath correlation time is large, the effects of spatial correlation are not negligible. Here the line shape is broadened and the number of peaks increases beyond the ones obtained from TDTM (constant off-diagonal coupling element J and no fluctuation). (ii) However, in the fast modulation limit when the bath correlation time is small, the spatial correlation is less important. In this limit, the line shape shows motional narrowing with peaks at the values predicted by TDTM (constant J and no fluctuation). (iii) Importantly, we find that the line shape can capture that quantum coherence affects in the two limits differently. (iv) In addition to linear chains of two level systems, we also consider a cyclic tetramer. The cyclic polymers can be designed for experimental verification. (v) We also build a connection between line shape and population transfer dynamics. In the fast modulation limit, both the line shape and the population relaxation, for both correlated and uncorrelated bath, show similar behavior. However, in slow modulation limit, they show profoundly different behavior. (vi) This study explains the unique role of the rate of fluctuation (inverse of the bath correlation time) in the sustenance and propagation of coherence. We also examine the effects of off-diagonal fluctuation in spectral line shape. Finally, we use Tanimura-Kubo formalism to derive a set of coupled equations to include temperature effects (partly neglected in the SLE employed here) and effects of vibrational mode in energy transfer dynamics. PMID:28527457
Evidence for a Nematic Phase in La 1.75 Sr 0.25 NiO 4
Zhong, Ruidan; Winn, Barry L.; Gu, Genda; ...
2017-04-28
Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La 2 - xSr xNiO 4, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature “disordered” state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, in this paper we use neutron scattering measurements on an x = 0.25 crystal to demonstrate that the dispersion of themore » charge-stripe excitations is anisotropic. Finally, this observation provides compelling evidence for the presence of electronic nematic order.« less
Evidence for a Nematic Phase in La 1.75 Sr 0.25 NiO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Ruidan; Winn, Barry L.; Gu, Genda
Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La 2 - xSr xNiO 4, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature “disordered” state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, in this paper we use neutron scattering measurements on an x = 0.25 crystal to demonstrate that the dispersion of themore » charge-stripe excitations is anisotropic. Finally, this observation provides compelling evidence for the presence of electronic nematic order.« less
Quasiparticle Scattering off Defects and Possible Bound States in Charge-Ordered YBa_{2}Cu_{3}O_{y}.
Zhou, R; Hirata, M; Wu, T; Vinograd, I; Mayaffre, H; Krämer, S; Horvatić, M; Berthier, C; Reyes, A P; Kuhns, P L; Liang, R; Hardy, W N; Bonn, D A; Julien, M-H
2017-01-06
We report the NMR observation of a skewed distribution of ^{17}O Knight shifts when a magnetic field quenches superconductivity and induces long-range charge-density-wave (CDW) order in YBa_{2}Cu_{3}O_{y}. This distribution is explained by an inhomogeneous pattern of the local density of states N(E_{F}) arising from quasiparticle scattering off, yet unidentified, defects in the CDW state. We argue that the effect is most likely related to the formation of quasiparticle bound states, as is known to occur, under specific circumstances, in some metals and superconductors (but not in the CDW state, in general, except for very few cases in 1D materials). These observations should provide insight into the microscopic nature of the CDW, especially regarding the reconstructed band structure and the sensitivity to disorder.
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Smith, Ira C.
1991-01-01
Tuning maps are an aid in the controller tuning process because they provide a convenient way for the plant operator to determine the consequences of adjusting different controller parameters. In this application the maps provide a graphical representation of the effect of varying the gains in the state feedback matrix on startup and load disturbance transients for a three capacity process. Nominally, the three tank system, represented in diagonal form, has a Proportional-Integral control on each loop. Cross coupling is then introduced between the loops by using non-zero off-diagonal proportional parameters. Changes in transient behavior due to setpoint and load changes are examined by varying the gains of the cross coupling terms.
The K-Grid Fourier Analysis of Multigrid-Type Iterative Methods.
1987-07-01
I C ( 71 ’,AMI AS iUl l i ’c 22a NAME OF RESPONSIBLE INi7VIDUAl 12.’t iVi N fH WU( ( ’u p I, ) 2 OI|hiF SYMIO[ Mai. John Thomas _ ._ 2767-5026 .I M...equivalent to Z (M,4kal’ )k C’,,k,r,w ( MCr at )k- (3.13) j-i (1) Let A, := (Mk ,, Ci,, ) A,: (3.14) 3.3 Bounds on the Off-Diagonal Elements of Mm. When...444 .345 .282 .240 .210 4 . 318 .254 .212 .183 .161 310 E... M.- M. " N NJ I 7 vT Kr - 3.5 Bounds on the Diagonal Elements of tim Recall that the
On optimal improvements of classical iterative schemes for Z-matrices
NASA Astrophysics Data System (ADS)
Noutsos, D.; Tzoumas, M.
2006-04-01
Many researchers have considered preconditioners, applied to linear systems, whose matrix coefficient is a Z- or an M-matrix, that make the associated Jacobi and Gauss-Seidel methods converge asymptotically faster than the unpreconditioned ones. Such preconditioners are chosen so that they eliminate the off-diagonal elements of the same column or the elements of the first upper diagonal [Milaszewicz, LAA 93 (1987) 161-170], Gunawardena et al. [LAA 154-156 (1991) 123-143]. In this work we generalize the previous preconditioners to obtain optimal methods. "Good" Jacobi and Gauss-Seidel algorithms are given and preconditioners, that eliminate more than one entry per row, are also proposed and analyzed. Moreover, the behavior of the above preconditioners to the Krylov subspace methods is studied.
Hong, Seung Hwan; Choi, Han-Yong
2013-09-11
We investigated the characteristics of spin fluctuation mediated superconductivity employing the Eliashberg formalism. The effective interaction between electrons was modeled in terms of the spin susceptibility measured by inelastic neutron scattering experiments on single crystal La(2-x)Sr(x)CuO4 superconductors. The diagonal self-energy and off-diagonal self-energy were calculated by solving the coupled Eliashberg equation self-consistently for the chosen spin susceptibility and tight-binding dispersion of electrons. The full momentum and frequency dependence of the self-energy is presented for optimally doped, overdoped, and underdoped LSCO cuprates in a superconductive state. These results may be compared with the experimentally deduced self-energy from ARPES experiments.
Micro- and Macroevolutionary Trade-Offs in Plant-Feeding Insects.
Peterson, Daniel A; Hardy, Nate B; Normark, Benjamin B
2016-12-01
A long-standing hypothesis asserts that plant-feeding insects specialize on particular host plants because of negative interactions (trade-offs) between adaptations to alternative hosts, yet empirical evidence for such trade-offs is scarce. Most studies have looked for microevolutionary performance trade-offs within insect species, but host use could also be constrained by macroevolutionary trade-offs caused by epistasis and historical contingency. Here we used a phylogenetic approach to estimate the micro- and macroevolutionary correlations between use of alternative host-plant taxa within two major orders of plant-feeding insects: Lepidoptera (caterpillars) and Hemiptera (true bugs). Across 1,604 caterpillar species, we found both positive and negative pairwise correlations between use of 11 host-plant orders, with overall network patterns suggesting that different host-use constraints act over micro- and macroevolutionary timescales. In contrast, host-use patterns of 955 true bug species revealed uniformly positive correlations between use of the same 11 host plant orders over both timescales. The lack of consistent patterns across timescales and insect orders indicates that host-use trade-offs are historically contingent rather than universal constraints. Moreover, we observed few negative correlations overall despite the wide taxonomic and ecological diversity of the focal host-plant orders, suggesting that positive interactions between host-use adaptations, not trade-offs, dominate the long-term evolution of host use in plant-feeding insects.
Sensor Control And Film Annotation For Long Range, Standoff Reconnaissance
NASA Astrophysics Data System (ADS)
Schmidt, Thomas G.; Peters, Owen L.; Post, Lawrence H.
1984-12-01
This paper describes a Reconnaissance Data Annotation System that incorporates off-the-shelf technology and system designs providing a high degree of adaptability and interoperability to satisfy future reconnaissance data requirements. The history of data annotation for reconnaissance is reviewed in order to provide the base from which future developments can be assessed and technical risks minimized. The system described will accommodate new developments in recording head assemblies and the incorporation of advanced cameras of both the film and electro-optical type. Use of microprocessor control and digital bus inter-face form the central design philosophy. For long range, high altitude, standoff missions, the Data Annotation System computes the projected latitude and longitude of central target position from aircraft position and attitude. This complements the use of longer ranges and high altitudes for reconnaissance missions.
NASA Astrophysics Data System (ADS)
Troisi, Alessandro
2006-03-01
In organic crystalline semiconductor molecular components are held together by very weak interactions and the transfer integrals between neighboring molecular orbitals are extremely sensitive to small nuclear displacements. We used a mixed quantum chemical and molecular dynamic methodology to assess the effect of thermal structural fluctuations on the modulation of the transfer integrals between close molecules. We have found that the fluctuations of the transfer integrals are of the same order of magnitude of their average value for pentacene and anthracene. This condition makes the band description inadequate because a dynamic localization takes place and the translational symmetry is completely broken for the electronic states. We also present a simple one-dimensional semiclassical model that incorporates the effects of dynamical localization and allows the numerical computation of the charge mobility for ordered organic semiconductors. These results explain several contrasting experimental observations pointing sometimes to a delocalized ``band-like'' transport and sometimes to the existence of strongly localized charge carriers.
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
Exact Fundamental Limits of the First and Second Hyperpolarizabilities
NASA Astrophysics Data System (ADS)
Lytel, Rick; Mossman, Sean; Crowell, Ethan; Kuzyk, Mark G.
2017-08-01
Nonlinear optical interactions of light with materials originate in the microscopic response of the molecular constituents to excitation by an optical field, and are expressed by the first (β ) and second (γ ) hyperpolarizabilities. Upper bounds to these quantities were derived seventeen years ago using approximate, truncated state models that violated completeness and unitarity, and far exceed those achieved by potential optimization of analytical systems. This Letter determines the fundamental limits of the first and second hyperpolarizability tensors using Monte Carlo sampling of energy spectra and transition moments constrained by the diagonal Thomas-Reiche-Kuhn (TRK) sum rules and filtered by the off-diagonal TRK sum rules. The upper bounds of β and γ are determined from these quantities by applying error-refined extrapolation to perfect compliance with the sum rules. The method yields the largest diagonal component of the hyperpolarizabilities for an arbitrary number of interacting electrons in any number of dimensions. The new method provides design insight to the synthetic chemist and nanophysicist for approaching the limits. This analysis also reveals that the special cases which lead to divergent nonlinearities in the many-state catastrophe are not physically realizable.
NASA Astrophysics Data System (ADS)
Xu, Tingzhong; Wang, Hongyan; Xia, Yong; Zhao, Zhiming; Huang, Mimi; Wang, Jiuhong; Zhao, Libo; Zhao, Yulong; Jiang, Zhuangde
2017-12-01
A novel micro-electromechanical systems piezoresistive pressure sensor with a diagonally positioned peninsula-island structure has high sensitivity for ultralow- pressure measurement. The pressure sensor was designed with a working range of 0-500 Pa and had a high sensitivity of 0.06 mV·V-1·Pa-1. The trade-off between high sensitivity and linearity was alleviated. Moreover, the influence of the installation angle on the sensing chip output was analyzed, and an application experiment of the sensor was conducted using the built pipettor test platform. Findings indicated that the proposed pressure sensor had sufficient resolution ability and accuracy to detect the pressure variation in the pipettor chamber. Therefore, the proposed pressure sensor has strong potential for medical equipment application.
Many-body delocalization with random vector potentials
NASA Astrophysics Data System (ADS)
Cheng, Chen; Mondaini, Rubem
2016-11-01
We study the ergodic properties of excited states in a model of interacting fermions in quasi-one-dimensional chains subjected to a random vector potential. In the noninteracting limit, we show that arbitrarily small values of this complex off-diagonal disorder trigger localization for the whole spectrum; the divergence of the localization length in the single-particle basis is characterized by a critical exponent ν which depends on the energy density being investigated. When short-range interactions are included, the localization is lost, and the system is ergodic regardless of the magnitude of disorder in finite chains. Our numerical results suggest a delocalization scheme for arbitrary small values of interactions. This finding indicates that the standard scenario of the many-body localization cannot be obtained in a model with random gauge fields.
Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics
NASA Technical Reports Server (NTRS)
Fijany, Amir; Scheid, Robert E.
1989-01-01
The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.
Discrete Fourier Transform in a Complex Vector Space
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2015-01-01
An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.
The Density Matrix for Single-mode Light after k-Photon Absorption
NASA Astrophysics Data System (ADS)
Voigt, H.; Bandilla, A.
In order to continue and generalize the studies of the density matrix of a light field undergoing k-photon absorption, in this paper we put the emphasis on the off-diagonal elements. The solution obtained earlier for the diagonal elements describing the photon statistics can be found as a special case but will not be discussed again. The general solution calculated by recursion shows an asymptotic behaviour if the initial photon number is sufficiently high. Only the initial phase information survives. Illustrating the solution we start with coherent light and a generalized coherent state.Translated AbstractDie Dichtematrix eines Lichtstrahls nach k-Photonen-Absorption aus einer ModeWir führen die Betrachtungen über das Verhalten der Dichtematrix eines Lichtfeldes nach k-Photonen-Absorption aus einer Mode verallgemeinernd weiter und konzentrieren uns auf die Nichtdiagonalelemente. Die im folgenden angegebene allgemeine Lösung, die durch Rekursion gefunden wurde, enthält die schon früher erhaltene, jedoch hier nicht weiter diskutierte Lösung für die Diagonalelemente als Spezialfall. Sie zeigt ferner, daß es einen asymptotischen Zustand gibt, der eine von der Ausgangsintensität unabhängige Information über die Ausgangsphase enthält. Zur Diskussion der Lösung werden verschiedene Anfangsbedingungen betrachtet, so z. B. kohärentes Licht und kohärentes Licht, das ein Medium mit nichtlinearem Brechungsindex durchlaufen hat (Kerr-Effekt).
NASA Astrophysics Data System (ADS)
Wang, Kangni; Zheng, Jihong; Liu, Yourong; Gao, Hui; Zhuang, Songlin
2017-06-01
An electrically tunable two-dimensional (2D) holographic polymer-dispersed liquid crystal (H-PDLC) grating with variable period was fabricated by inserting a cylindrical lens in a conventional holographic interference beam. The interference between the plane wave and cylindrical wave resulting in varying intersection angles on the sample, combined with dual exposure along directions perpendicular to each other, generates a 2D H-PDLC grating with varied period. We have identified periods varying from 3.109 to 5.158 μm across a 16 mm width, with supporting theoretical equations for the period. The period exhibits a symmetrical square lattice in a diagonal direction, with an asymmetrical rectangular lattice in off-diagonal locations. With the first exposure at 2 s and the second exposure at 60 s, the phase separation between the prepolymer and liquid crystal was most evident. The diffraction properties and optic-electric characteristics were also studied. The diffraction efficiency of first-order light was observed to be 13.5% without external voltage, and the transmission efficiency of non-diffracted light was 78% with an applied voltage of 100 V. The proposed method provides the capability of generating period variation to the conventional holographic interference path, with potential application in diffractive optics such as tunable multi-wavelength organic lasing from a dye-doped 2D H-PDLC grating.
NASA Astrophysics Data System (ADS)
Li, P. H. Y.; Bishop, R. F.
2018-03-01
We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α < α1ac = 0 . 46(1) and α > α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.
Totally endoscopic sequential arterial coronary artery bypass grafting on the beating heart
Ak, Koray; Wimmer-Greinecker, Gerhard; Dzemali, Omer; Moritz, Anton; Dogan, Selami
2007-01-01
A 50-year-old man was referred to the Department of Thoracic and Cardiovascular Surgery at the Johann Wolfgang-Goethe University (Frankfurt, Germany) with angina on exertion. An evaluation revealed critical stenosis involving the proximal portion of the left anterior descending artery and the first diagonal branch. The patient underwent successful sequential grafting of the left internal mammary artery to the left anterior descending artery and the diagonal branch using a totally endoscopic coronary artery bypass grafting technique on the beating heart with a new version of the da Vinci Surgical System (Intuitive Surgical, USA). To the authors’ knowledge, this is the first report in literature to describe sequential arterial off-pump grafting of two anterior wall target vessels using a totally endoscopic technique on the beating heart. PMID:17440646
Hydrodynamic impeller stiffness, damping, and inertia in the rotordynamics of centrifugal flow pumps
NASA Technical Reports Server (NTRS)
Jery, S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.
1984-01-01
The lateral hydrodynamic forces experienced by a centrifugal pump impeller performing circular whirl motions within several volute geometries were measured. The lateral forces were decomposed into: (1) time averaged lateral forces and (2) hydrodynamic force matrices representing the variation of the lateral forces with position of the impeller center. It is found that these force matrices essentially consist of equal diagonal terms and skew symmetric off diagonal terms. One consequence of this is that during its whirl motion the impeller experiences forces acting normal and tangential to the locus of whirl. Data on these normal and tangential forces are presented; it is shown that there exists a region of positive reduced whirl frequencies, within which the hydrodynamic forces can be destablizing with respect to whirl.
Optical Design of the Camera for Transiting Exoplanet Survey Satellite (TESS)
NASA Technical Reports Server (NTRS)
Chrisp, Michael; Clark, Kristin; Primeau, Brian; Dalpiaz, Michael; Lennon, Joseph
2015-01-01
The optical design of the wide field of view refractive camera, 34 degrees diagonal field, for the TESS payload is described. This fast f/1.4 cryogenic camera, operating at -75 C, has no vignetting for maximum light gathering within the size and weight constraints. Four of these cameras capture full frames of star images for photometric searches of planet crossings. The optical design evolution, from the initial Petzval design, took advantage of Forbes aspheres to develop a hybrid design form. This maximized the correction from the two aspherics resulting in a reduction of average spot size by sixty percent in the final design. An external long wavelength pass filter was replaced by an internal filter coating on a lens to save weight, and has been fabricated to meet the specifications. The stray light requirements were met by an extended lens hood baffle design, giving the necessary off-axis attenuation.
Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α -RuCl3
NASA Astrophysics Data System (ADS)
Ran, Kejing; Wang, Jinghui; Wang, Wei; Dong, Zhao-Yang; Ren, Xiao; Bao, Song; Li, Shichao; Ma, Zhen; Gan, Yuan; Zhang, Youtian; Park, J. T.; Deng, Guochu; Danilkin, S.; Yu, Shun-Li; Li, Jian-Xin; Wen, Jinsheng
2017-03-01
Kitaev interactions underlying a quantum spin liquid have long been sought, but experimental data from which their strengths can be determined directly, are still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of α -RuCl3 , we observe spin-wave spectra with a gap of ˜2 meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principles calculations, and find that the anisotropic Kitaev interaction K term and the isotropic antiferromagnetic off-diagonal exchange interaction Γ term are significantly larger than the Heisenberg exchange coupling J term. Our experimental data can be well fit using an effective-spin model with K =-6.8 meV and Γ =9.5 meV . These results demonstrate explicitly that Kitaev physics is realized in real materials.
Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
NASA Astrophysics Data System (ADS)
Diosady, Laslo T.; Murman, Scott M.
2017-02-01
A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods
NASA Technical Reports Server (NTRS)
Diosady, Laslo T.; Murman, Scott M.
2016-01-01
space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
NASA Astrophysics Data System (ADS)
Hartle, Rainer; Cohen, Guy; Reichman, David R.; Millis, Andrew J.
2014-03-01
A recently developed hierarchical quantum master equation approach is used to investigate nonequilibrium electron transport through an interacting double quantum dot system in the regime where the inter-dot coupling is weaker than the coupling to the electrodes. The corresponding eigenstates provide tunneling paths that may interfere constructively or destructively, depending on the energy of the tunneling electrons. Electron-electron interactions are shown to quench these interference effects in bias-voltage dependent ways, leading, in particular, to negative differential resistance, population inversion and an enhanced broadening of resonances in the respective transport characteristics. Relaxation times are found to be very long, and to be correlated with very slow dynamics of the inter-dot coherences (off diagonal density matrix elements). The ability of the hierarchical quantum master equation approach to access very long time scales is crucial for the study of this physics. This work is supported by the National Science Foundation (NSF DMR-1006282 and NSF CHE-1213247), the Yad Hanadiv-Rothschild Foundation (via a Rothschild Fellowship for GC) and the Alexander von Humboldt Foundation (via a Feodor Lynen fellowship for RH).
LWIR and VLWIR detectors development at SOFRADIR for space applications
NASA Astrophysics Data System (ADS)
Terrier, Bertrand; Delannoy, Anne; Chorier, Philippe; Maillard, Magalie; Rubaldo, Laurent
2010-10-01
SOFRADIR is one of the leading companies involved in the development and manufacturing of infrared detectors. Its offer covers the infrared spectrum from visible range (0.4 μm) up to very long wavelength range (15 μm). The need in this last field is driven by space activities, especially by meteorological instruments using imagery or spectrometry. In the frame of Meteosat Third Generation mission, ESA has launched pre-development activities to address the critical equipments for risk reduction. VLWIR detectors for FCI and IRS have been considered as challenging ones and thus SOFRADIR has been involved for manufacturing and testing 2D arrays with long cut-off wavelength (14.9μm at 50K) in order to evaluate their compliance to MTG requirements as far as dark current behaviour, quantum efficiency, photoresponse uniformity, spatial response, operability and reliability are concerned. In parallel, trends of space and tactical applications call for dark current reduction technology in order to improve systems performances in terms of operating temperature and signal to noise ratio. In the frame of its common laboratory DEFIR with CEA-LETI, Sofradir has developed a new MCT p on n technology to answer this need. First demonstrations were made with success (640x512, pitch 15μm and cut-off 9.5μm) and Sofradir is now industrializing this technology in particular for tactical application. Thanks to the communality between space and tactical activity at Sofradir, these results will benefit advantageously also to space activity. In this paper, we present a review of latest Sofradir results concerning LWIR and VLWIR technology. In particular, latest data, concerning development and characterization of generic VLWIR technology up to 15 μm cut-off wavelength, are presented as well as data concerning the promising p on n LWIR technology.
Many-body localization in Ising models with random long-range interactions
NASA Astrophysics Data System (ADS)
Li, Haoyuan; Wang, Jia; Liu, Xia-Ji; Hu, Hui
2016-12-01
We theoretically investigate the many-body localization phase transition in a one-dimensional Ising spin chain with random long-range spin-spin interactions, Vi j∝|i-j |-α , where the exponent of the interaction range α can be tuned from zero to infinitely large. By using exact diagonalization, we calculate the half-chain entanglement entropy and the energy spectral statistics and use them to characterize the phase transition towards the many-body localization phase at infinite temperature and at sufficiently large disorder strength. We perform finite-size scaling to extract the critical disorder strength and the critical exponent of the divergent localization length. With increasing α , the critical exponent experiences a sharp increase at about αc≃1.2 and then gradually decreases to a value found earlier in a disordered short-ranged interacting spin chain. For α <αc , we find that the system is mostly localized and the increase in the disorder strength may drive a transition between two many-body localized phases. In contrast, for α >αc , the transition is from a thermalized phase to the many-body localization phase. Our predictions could be experimentally tested with an ion-trap quantum emulator with programmable random long-range interactions, or with randomly distributed Rydberg atoms or polar molecules in lattices.
Effective model with strong Kitaev interactions for α -RuCl3
NASA Astrophysics Data System (ADS)
Suzuki, Takafumi; Suga, Sei-ichiro
2018-04-01
We use an exact numerical diagonalization method to calculate the dynamical spin structure factors of three ab initio models and one ab initio guided model for a honeycomb-lattice magnet α -RuCl3 . We also use thermal pure quantum states to calculate the temperature dependence of the heat capacity, the nearest-neighbor spin-spin correlation function, and the static spin structure factor. From the results obtained from these four effective models, we find that, even when the magnetic order is stabilized at low temperature, the intensity at the Γ point in the dynamical spin structure factors increases with increasing nearest-neighbor spin correlation. In addition, we find that the four models fail to explain heat-capacity measurements whereas two of the four models succeed in explaining inelastic-neutron-scattering experiments. In the four models, when temperature decreases, the heat capacity shows a prominent peak at a high temperature where the nearest-neighbor spin-spin correlation function increases. However, the peak temperature in heat capacity is too low in comparison with that observed experimentally. To address these discrepancies, we propose an effective model that includes strong ferromagnetic Kitaev coupling, and we show that this model quantitatively reproduces both inelastic-neutron-scattering experiments and heat-capacity measurements. To further examine the adequacy of the proposed model, we calculate the field dependence of the polarized terahertz spectra, which reproduces the experimental results: the spin-gapped excitation survives up to an onset field where the magnetic order disappears and the response in the high-field region is almost linear. Based on these numerical results, we argue that the low-energy magnetic excitation in α -RuCl3 is mainly characterized by interactions such as off-diagonal interactions and weak Heisenberg interactions between nearest-neighbor pairs, rather than by the strong Kitaev interactions.
ERIC Educational Resources Information Center
Spearing, Debra; Woehlke, Paula
To assess the effect on discriminant analysis in terms of correct classification into two groups, the following parameters were systematically altered using Monte Carlo techniques: sample sizes; proportions of one group to the other; number of independent variables; and covariance matrices. The pairing of the off diagonals (or covariances) with…
NASA Astrophysics Data System (ADS)
Bubuianu, Laurenţiu; Vacaru, Sergiu I.
2018-05-01
We elaborate on the anholonomic frame deformation method, AFDM, for constructing exact solutions with quasiperiodic structure in modified gravity theories, MGTs, and general relativity, GR. Such solutions are described by generic off-diagonal metrics, nonlinear and linear connections and (effective) matter sources with coefficients depending on all spacetime coordinates via corresponding classes of generation and integration functions and (effective) matter sources. There are studied effective free energy functionals and nonlinear evolution equations for generating off-diagonal quasiperiodic deformations of black hole and/or homogeneous cosmological metrics. The physical data for such functionals are stated by different values of constants and prescribed symmetries for defining quasiperiodic structures at cosmological scales, or astrophysical objects in nontrivial gravitational backgrounds some similar forms as in condensed matter physics. It is shown how quasiperiodic structures determined by general nonlinear, or additive, functionals for generating functions and (effective) sources may transform black hole like configurations into cosmological metrics and inversely. We speculate on possible implications of quasiperiodic solutions in dark energy and dark matter physics. Finally, it is concluded that geometric methods for constructing exact solutions consist an important alternative tool to numerical relativity for investigating nonlinear effects in astrophysics and cosmology.
HYPERFINE-DEPENDENT gf-VALUES OF Mn I LINES IN THE 1.49-1.80 μm H BAND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, M.; Hutton, R.; Zou, Y.
2015-01-01
The three Mn I lines at 17325, 17339, and 17349 Å are among the 25 strongest lines (log (gf) > 0.5) in the H band. They are all heavily broadened due to hyperfine structure, and the profiles of these lines have so far not been understood. Earlier studies of these lines even suggested that they were blended. In this work, the profiles of these three infrared (IR) lines have been studied theoretically and compared to experimental spectra to assist in the complete understanding of the solar spectrum in the IR. It is shown that the structure of these lines cannot be describedmore » in the conventional way using the diagonal A and B hyperfine interaction constants. The off-diagonal hyperfine interaction not only has a large impact on the energies of the hyperfine levels, but also introduces a large intensity redistribution among the hyperfine lines, changing the line profiles dramatically. By performing large-scale calculations of the diagonal and off-diagonal hyperfine interaction and the gf-values between the upper and lower hyperfine levels and using a semi-empirical fitting procedure, we achieved agreement between our synthetic and experimental spectra. Furthermore, we compare our results with observations of stellar spectra. The spectra of the Sun and the K1.5 III red giant star Arcturus were modeled in the relevant region, 1.73-1.74 μm, using our theoretically predicted gf-values and energies for each individual hyperfine line. Satisfactory fits were obtained and clear improvements were found using our new data compared with the old available Mn I data. A complete list of energies and gf-values for all the 3d {sup 5}4s({sup 7} S)4d e{sup 6}D - 3d {sup 5}4s({sup 7} S)4f w{sup 6}F hyperfine lines are available as supporting material, whereas only the stronger lines are presented and discussed in detail in this paper.« less
Gamallo, Pablo; Defazio, Paolo; González, Miguel; Paniagua, Miguel; Petrongolo, Carlo
2015-09-28
We present Born-Oppenheimer (BO) and Renner-Teller (RT) time dependent quantum dynamics studies of the reactions O((3)P) + H2(+)(X(2)Σg(+)) → OH(+)(X(3)Σ(-)) + H((2)S) and OH(X(2)Π) + H(+). We consider the OH2(+) X[combining tilde](2)A'' and Ã(2)A' electronic states that correlate with a linear (2)Π species. The electronic angular momenta operators L[combining circumflex] and L[combining circumflex](2) are considered in nonadiabatic coupled-channel calculations, where the associated RT effects are due to diagonal V(RT) potentials that add up to the PESs and to off-diagonal C(RT) couplings between the potential energy surfaces (PESs). Initial-state-resolved reaction probabilities PI, integral cross sections σI, and rate constants kI are obtained using recent ab initio PESs and couplings and the real wavepacket formalism. Because the PESs are strongly attractive, PI have no threshold energy and are large, σI decrease with collision energy, and kI depend little on the temperature. The X[combining tilde](2)A'' PES is up to three times more reactive than the Ã(2)A' PES and H2(+) rotational effects (j0 = 0, 1) are negligible. The diagonal V(RT) potentials are strongly repulsive at the collinearity and nearly halve all low-energy observables with respect to the BO ones. The off-diagonal C(RT) couplings are important at low partial waves, where they mix the X[combining tilde](2)A'' and Ã(2)A' states up to ∼20%. However, V(RT) effects predominate over the C(RT) ones that change at most by ∼19% the BO values of σI and kI. The reaction O((3)P) + H2(+)(X(2)Σg(+)) → OH(+)(X(3)Σ(-)) + H((2)S) is probably one of the most reactive atom + diatom collisions because its RT rate constant at room temperature is equal to 2.26 × 10(-10) cm(3) s(-1). Within the BO approximation, the present results agree rather well with recent quasiclassical and centrifugal-sudden data using the same PESs.
Scaling of the polarization amplitude in quantum many-body systems in one dimension
NASA Astrophysics Data System (ADS)
Kobayashi, Ryohei; Nakagawa, Yuya O.; Fukusumi, Yoshiki; Oshikawa, Masaki
2018-04-01
Resta proposed a definition of the electric polarization in one-dimensional systems in terms of the ground-state expectation value of the large gauge transformation operator. Vanishing of the expectation value in the thermodynamic limit implies that the system is a conductor. We study Resta's polarization amplitude (expectation value) in the S =1 /2 XXZ chain and its several generalizations, in the gapless conducting Tomonaga-Luttinger liquid phase. We obtain an analytical expression in the lowest-order perturbation theory about the free fermion point (XY chain) and an exact result for the Haldane-Shastry model with long-range interactions. We also obtain numerical results, mostly using the exact diagonalization method. We find that the amplitude exhibits a power-law scaling in the system size (chain length) and vanishes in the thermodynamic limit. On the other hand, the exponent depends on the model even when the low-energy limit is described by the Tomonaga-Luttinger liquid with the same Luttinger parameter. We find that a change in the exponent occurs when the Umklapp term(s) are eliminated, suggesting the importance of the Umklapp terms.
Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys
NASA Astrophysics Data System (ADS)
Turek, I.; Kudrnovský, J.; Drchal, V.
2015-12-01
We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known torque-correlation formula and which can be formulated within the atomic-sphere approximation. The formalism is sketched in a simple tight-binding model and worked out in detail in the relativistic tight-binding linear muffin-tin orbital method and the coherent potential approximation (CPA). The resulting nonlocal torques are represented by nonrandom, non-site-diagonal, and spin-independent matrices, which simplifies the configuration averaging. The CPA-vertex corrections play a crucial role for the internal consistency of the theory and for its exact equivalence to other first-principles approaches based on the random local torques. This equivalence is also illustrated by the calculated Gilbert damping parameters for binary NiFe and FeCo random alloys, for pure iron with a model atomic-level disorder, and for stoichiometric FePt alloys with a varying degree of L 10 atomic long-range order.
Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice.
Dong, Qianli; Li, Ning; Li, Xiaochong; Yuan, Zan; Xie, Dejian; Wang, Xiaofei; Li, Jianing; Yu, Yanan; Wang, Jinbin; Ding, Baoxu; Zhang, Zhibin; Li, Changping; Bian, Yao; Zhang, Ai; Wu, Ying; Liu, Bao; Gong, Lei
2018-06-01
The non-random spatial packing of chromosomes in the nucleus plays a critical role in orchestrating gene expression and genome function. Here, we present a Hi-C analysis of the chromatin interaction patterns in rice (Oryza sativa L.) at hierarchical architectural levels. We confirm that rice chromosomes occupy their own territories with certain preferential inter-chromosomal associations. Moderate compartment delimitation and extensive TADs (Topologically Associated Domains) were determined to be associated with heterogeneous genomic compositions and epigenetic marks in the rice genome. We found subtle features including chromatin loops, gene loops, and off-/near-diagonal intensive interaction regions. Gene chromatin loops associated with H3K27me3 could be positively involved in gene expression. In addition to insulated enhancing effects for neighbor gene expression, the identified rice gene loops could bi-directionally (+/-) affect the expression of looped genes themselves. Finally, web-interleaved off-diagonal IHIs/KEEs (Interactive Heterochromatic Islands or KNOT ENGAGED ELEMENTs) could trap transposable elements (TEs) via the enrichment of silencing epigenetic marks. In parallel, the near-diagonal FIREs (Frequently Interacting Regions) could positively affect the expression of involved genes. Our results suggest that the chromatin packing pattern in rice is generally similar to that in Arabidopsis thaliana but with clear differences at specific structural levels. We conclude that genomic composition, epigenetic modification, and transcriptional activity could act in combination to shape global and local chromatin packing in rice. Our results confirm recent observations in rice and A. thaliana but also provide additional insights into the patterns and features of chromatin organization in higher plants. © 2018 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Yang, Chou-Hsun; Hsu, Chao-Ping
2013-10-01
The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.
Generation of large-scale magnetic fields by small-scale dynamo in shear flows
Squire, J.; Bhattacharjee, A.
2015-10-20
We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less
Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in Silica matrix
NASA Astrophysics Data System (ADS)
Hocini, Abdesselam; Moukhtari, Riad; Khedrouche, Djamel; Kahlouche, Ahmed; Zamani, Mehdi
2017-02-01
Using the three-dimensional finite difference time domain method (3D FDTD) with perfectly matched layers (PML), optical and magneto-optical properties of two-dimensional magneto-photonic crystals micro-cavity is studied. This micro-cavity is fabricated by SiO2/ZrO2 or SiO2/TiO2 matrix doped with magnetic nanoparticles, in which the refractive index varied in the range of 1.51-1.58. We demonstrate that the Q factor for the designed cavity increases as the refractive index increases, and we find that the Q factor decreases as the volume fraction VF% due to off-diagonal elements increases. These magnetic microcavities may serve as a fundamental structure in a variety of ultra compact magneto photonic devices such as optical isolators, circulators and modulators in the future.
Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.
Squire, J; Bhattacharjee, A
2015-10-23
We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suganuma, Hideo; Sakumichi, Naoyuki
In the context of the dual superconductor picture for the confinement mechanism, we study maximally Abelian (MA) projection of quark confinement in SU(3) quenched lattice QCD with 32{sup 4} at β=6.4 (i.e., a ≃ 0.058 fm). We investigate the static quark-antiquark potential V(r), its Abelian part V{sub Abel}(r) and its off-diagonal part V{sub off}(r), respectively, from the on-axis lattice data. As a remarkable fact, we find almost perfect Abelian dominance for quark confinement, i.e., σ{sub Abel} ≃ σ for the string tension, on the fine and large-volume lattice. We find also a nontrivial summation relation of V (r) ≃ V{submore » Abel}(r)+V{sub off}(r)« less
A discrete Fourier-encoded, diagonal-free experiment to simplify homonuclear 2D NMR correlations.
Huang, Zebin; Guan, Quanshuai; Chen, Zhong; Frydman, Lucio; Lin, Yulan
2017-07-21
Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.
A discrete Fourier-encoded, diagonal-free experiment to simplify homonuclear 2D NMR correlations
NASA Astrophysics Data System (ADS)
Huang, Zebin; Guan, Quanshuai; Chen, Zhong; Frydman, Lucio; Lin, Yulan
2017-07-01
Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.
Bubble nucleation and inflationary perturbations
NASA Astrophysics Data System (ADS)
Firouzjahi, Hassan; Jazayeri, Sadra; Karami, Asieh; Rostami, Tahereh
2017-12-01
In this work we study the imprints of bubble nucleation on primordial inflationary perturbations. We assume that the bubble is formed via the tunneling of a spectator field from the false vacuum of its potential to its true vacuum. We consider the configuration in which the observable CMB sphere is initially outside of the bubble. As the bubble expands, more and more regions of the exterior false vacuum, including our CMB sphere, fall into the interior of the bubble. The modes which leave the horizon during inflation at the time when the bubble wall collides with the observable CMB sphere are affected the most. The bubble wall induces non-trivial anisotropic and scale dependent corrections in the two point function of the curvature perturbation. The corrections in the curvature perturbation and the diagonal and off-diagonal elements of CMB power spectrum are estimated.
Adjoint affine fusion and tadpoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urichuk, Andrew, E-mail: andrew.urichuk@uleth.ca; Walton, Mark A., E-mail: walton@uleth.ca; International School for Advanced Studies
2016-06-15
We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are writtenmore » for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.« less
A Partitioning Algorithm for Block-Diagonal Matrices With Overlap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy Antoine Atenekeng Kahou; Laura Grigori; Masha Sosonkina
2008-02-02
We present a graph partitioning algorithm that aims at partitioning a sparse matrix into a block-diagonal form, such that any two consecutive blocks overlap. We denote this form of the matrix as the overlapped block-diagonal matrix. The partitioned matrix is suitable for applying the explicit formulation of Multiplicative Schwarz preconditioner (EFMS) described in [3]. The graph partitioning algorithm partitions the graph of the input matrix into K partitions, such that every partition {Omega}{sub i} has at most two neighbors {Omega}{sub i-1} and {Omega}{sub i+1}. First, an ordering algorithm, such as the reverse Cuthill-McKee algorithm, that reduces the matrix profile ismore » performed. An initial overlapped block-diagonal partition is obtained from the profile of the matrix. An iterative strategy is then used to further refine the partitioning by allowing nodes to be transferred between neighboring partitions. Experiments are performed on matrices arising from real-world applications to show the feasibility and usefulness of this approach.« less
NASA Technical Reports Server (NTRS)
Rogers, S. E.; Kwak, D.; Chang, J. L. C.
1986-01-01
The method of pseudocompressibility has been shown to be an efficient method for obtaining a steady-state solution to the incompressible Navier-Stokes equations. Recent improvements to this method include the use of a diagonal scheme for the inversion of the equations at each iteration. The necessary transformations have been derived for the pseudocompressibility equations in generalized coordinates. The diagonal algorithm reduces the computing time necessary to obtain a steady-state solution by a factor of nearly three. Implicit viscous terms are maintained in the equations, and it has become possible to use fourth-order implicit dissipation. The steady-state solution is unchanged by the approximations resulting from the diagonalization of the equations. Computed results for flow over a two-dimensional backward-facing step and a three-dimensional cylinder mounted normal to a flat plate are presented for both the old and new algorithms. The accuracy and computing efficiency of these algorithms are compared.
Ferroelectrics under the Synchrotron Light: A Review.
Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis
2015-12-30
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.
Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence
Squire, J.; Bhattacharjee, A.
2015-11-02
Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is nomore » strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.« less
On the structure of quantum L∞ algebras
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Fuchs, Michael; Traube, Matthias
2017-10-01
It is believed that any classical gauge symmetry gives rise to an L∞ algebra. Based on the recently realized relation between classical W algebras and L∞ algebras, we analyze how this generalizes to the quantum case. Guided by the existence of quantum W algebras, we provide a physically well motivated definition of quantum L∞ algebras describing the consistency of global symmetries in quantum field theories. In this case we are restricted to only two non-trivial graded vector spaces X 0 and X -1 containing the symmetry variations and the symmetry generators. This quantum L∞ algebra structure is explicitly exemplified for the quantum W_3 algebra. The natural quantum product between fields is the normal ordered one so that, due to contractions between quantum fields, the higher L∞ relations receive off-diagonal quantum corrections. Curiously, these are not present in the loop L∞ algebra of closed string field theory.
On the Assessment of Psychometric Adequacy in Correlation Matrices.
ERIC Educational Resources Information Center
Dziuban, Charles D.; Shirkey, Edwin C.
Three techniques for assessing the adequacy of correlation matrices for factor analysis were applied to four examples from the literature. The methods compared were: (1) inspection of the off diagonal elements of the anti-image covariance matrix S(to the 2nd) R(to the -1) and S(to the 2nd); (2) the Measure of Sampling Adequacy (M.S.A.), and (3)…
Content-Addressable Memory Storage by Neural Networks: A General Model and Global Liapunov Method,
1988-03-01
point ex- ists. Liapunov functions were also described for Volterra -Lotka systems whose off-diagonal terms are relatively small (Kilmer, 1972...field, bidirectional associative memory, Volterra -Lotka, Gilpin-Ayala, and Eigen- Schuster models. The Cohen-Grossberg model thus defines a general...masking field, bidirectional associative memory. Volterra -Lotka, Gilpin-Ayala. and Eigen-Schuster models. The Cohen-Grossberg model thus defines a
Influence of seating styles on head and pelvic vertical movement symmetry in horses ridden at trot
Hernlund, Elin; Pfau, Thilo; Haubro Andersen, Pia; Rhodin, Marie
2018-01-01
Detailed knowledge of how a rider’s seating style and riding on a circle influences the movement symmetry of the horse’s head and pelvis may aid rider and trainer in an early recognition of low grade lameness. Such knowledge is also important during both subjective and objective lameness evaluations in the ridden horse in a clinical setting. In this study, inertial sensors were used to assess how different rider seating styles may influence head and pelvic movement symmetry in horses trotting in a straight line and on the circle in both directions. A total of 26 horses were subjected to 15 different conditions at trot: three unridden conditions and 12 ridden conditions where the rider performed three different seating styles (rising trot, sitting trot and two point seat). Rising trot induced systematic changes in movement symmetry of the horses. The most prominent effect was decreased pelvic rise that occurred as the rider was actively rising up in the stirrups, thus creating a downward momentum counteracting the horses push off. This mimics a push off lameness in the hindlimb that is in stance when the rider sits down in the saddle during the rising trot. On the circle, the asymmetries induced by rising trot on the correct diagonal counteracted the circle induced asymmetries, rendering the horse more symmetrical. This finding offers an explanation to the equestrian tradition of rising on the ‘correct diagonal.’ In horses with small pre-existing movement asymmetries, the asymmetry induced by rising trot, as well as the circular track, attenuated or reduced the horse’s baseline asymmetry, depending on the sitting diagonal and direction on the circle. A push off hindlimb lameness would be expected to increase when the rider sits during the lame hindlimb stance whereas an impact hindlimb lameness would be expected to decrease. These findings suggest that the rising trot may be useful for identifying the type of lameness during subjective lameness assessment of hindlimb lameness. This theory needs to be studied further in clinically lame horses. PMID:29621299
Point Spread Function of ASTRO-H Soft X-Ray Telescope (SXT)
NASA Technical Reports Server (NTRS)
Hayashi, Takayuki; Sato, Toshiki; Kikuchi, Naomichi; Iizuka, Ryo; Maeda, Yoshitomo; Ishida, Manabu; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; Mori, Hideyuki;
2016-01-01
ASTRO-H (Hitomi) satellite equips two Soft X-ray Telescopes (SXTs), one of which (SXT-S) is coupled to Soft-X-ray Spectrometer (SXS) while the other (SXT-I) is coupled to Soft X-ray Imager (SXI). Although SXTs are lightweight of approximately 42 kgmodule1 and have large on-axis effective area (EA) of approximately 450 cm(exp 2) at 4.5 keV module(sub 1) by themselves, their angular resolutions are moderate approximately 1.2 arcmin in half power diameter. The amount of contamination into the SXS FOV (3.05 times 3.05 arcmin(exp 2) from nearby sources was measured in the ground-based calibration at the beamline in Institute of Space and Astronautical Science. The contamination at 4.5 keV were measured with sources distant from the SXS center by one width of the FOV in perpendicular and diagonal directions, that is, 3 and 4.5 arcmin-off, respectively. The average EA of the contamination in the four directions with the 3 and 4.5 arcmin-off were measured to be 2 and 0.6% of the on-axis EA of 412 cm (exp) for the SXS FOV, respectively. The contamination from a source distant by two FOV widths in a diagonal direction, that is, 8.6 arcmin-off was measured to be 0.1% of the on-axis at 4.5 keV. The contamination amounts were also measured at 1.5 keV and 8.0 keV which indicated that the ratio of the contamination EA to that of on-axis hardly depended on the source energy. The off-axis SXT-I images from 4.5 to 27 arcmin were acquired at intervals of -4.5 arcmin for the SXI FOV of 38 times 38 arcmin(exp 2). The image shrinked as the off-axis angle increased. Above 13.5 arcmin of off-angle, a stray appeared around the image center in the off-axis direction. As for the on-axis image, a ring-shaped stray appeared at the edge of SXI of approximately 18 arcmin distant from the image center.
Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates
NASA Astrophysics Data System (ADS)
Azurmendi, Hugo F.; Freedberg, Darón I.
2013-03-01
Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very similar and therefore cancel when calculating the difference to determine 1DCC values.
NASA Astrophysics Data System (ADS)
Dinh, Thanh-Chung; Renger, Thomas
2015-01-01
A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Qy transition dipole moments in Chl b homodimers is larger by about 9∘ than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.
Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?
Schottdorf, Manuel; Eglen, Stephen J.; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex. PMID:24475081
Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?
Schottdorf, Manuel; Eglen, Stephen J; Wolf, Fred; Keil, Wolfgang
2014-01-01
It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.
Multi-color incomplete Cholesky conjugate gradient methods for vector computers. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Poole, E. L.
1986-01-01
In this research, we are concerned with the solution on vector computers of linear systems of equations, Ax = b, where A is a larger, sparse symmetric positive definite matrix. We solve the system using an iterative method, the incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color strategy to obtain p-color matrices for which a block-oriented ICCG method is implemented on the CYBER 205. (A p-colored matrix is a matrix which can be partitioned into a pXp block matrix where the diagonal blocks are diagonal matrices). This algorithm, which is based on a no-fill strategy, achieves O(N/p) length vector operations in both the decomposition of A and in the forward and back solves necessary at each iteration of the method. We discuss the natural ordering of the unknowns as an ordering that minimizes the number of diagonals in the matrix and define multi-color orderings in terms of disjoint sets of the unknowns. We give necessary and sufficient conditions to determine which multi-color orderings of the unknowns correpond to p-color matrices. A performance model is given which is used both to predict execution time for ICCG methods and also to compare an ICCG method to conjugate gradient without preconditioning or another ICCG method. Results are given from runs on the CYBER 205 at NASA's Langley Research Center for four model problems.
Modeling rainfall-runoff relationship using multivariate GARCH model
NASA Astrophysics Data System (ADS)
Modarres, R.; Ouarda, T. B. M. J.
2013-08-01
The traditional hydrologic time series approaches are used for modeling, simulating and forecasting conditional mean of hydrologic variables but neglect their time varying variance or the second order moment. This paper introduces the multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) modeling approach to show how the variance-covariance relationship between hydrologic variables varies in time. These approaches are also useful to estimate the dynamic conditional correlation between hydrologic variables. To illustrate the novelty and usefulness of MGARCH models in hydrology, two major types of MGARCH models, the bivariate diagonal VECH and constant conditional correlation (CCC) models are applied to show the variance-covariance structure and cdynamic correlation in a rainfall-runoff process. The bivariate diagonal VECH-GARCH(1,1) and CCC-GARCH(1,1) models indicated both short-run and long-run persistency in the conditional variance-covariance matrix of the rainfall-runoff process. The conditional variance of rainfall appears to have a stronger persistency, especially long-run persistency, than the conditional variance of streamflow which shows a short-lived drastic increasing pattern and a stronger short-run persistency. The conditional covariance and conditional correlation coefficients have different features for each bivariate rainfall-runoff process with different degrees of stationarity and dynamic nonlinearity. The spatial and temporal pattern of variance-covariance features may reflect the signature of different physical and hydrological variables such as drainage area, topography, soil moisture and ground water fluctuations on the strength, stationarity and nonlinearity of the conditional variance-covariance for a rainfall-runoff process.
A CLT on the SNR of Diagonally Loaded MVDR Filters
NASA Astrophysics Data System (ADS)
Rubio, Francisco; Mestre, Xavier; Hachem, Walid
2012-08-01
This paper studies the fluctuations of the signal-to-noise ratio (SNR) of minimum variance distorsionless response (MVDR) filters implementing diagonal loading in the estimation of the covariance matrix. Previous results in the signal processing literature are generalized and extended by considering both spatially as well as temporarily correlated samples. Specifically, a central limit theorem (CLT) is established for the fluctuations of the SNR of the diagonally loaded MVDR filter, under both supervised and unsupervised training settings in adaptive filtering applications. Our second-order analysis is based on the Nash-Poincar\\'e inequality and the integration by parts formula for Gaussian functionals, as well as classical tools from statistical asymptotic theory. Numerical evaluations validating the accuracy of the CLT confirm the asymptotic Gaussianity of the fluctuations of the SNR of the MVDR filter.
2014-09-01
optimal diagonal loading which minimizes the MSE. The be- havior of optimal diagonal loading when the arrival process is composed of plane waves embedded...observation vectors. The examples of the ensemble correlation matrix corresponding to the input process consisting of a single or multiple plane waves...Y ∗ij is a complex-conjugate of Yij. This result is used in order to evaluate the expectations of different quadratic forms. The Poincare -Nash
Fidelity Study of Superconductivity in Extended Hubbard Models
NASA Astrophysics Data System (ADS)
Plonka, Nachum; Jia, Chunjing; Moritz, Brian; Wang, Yao; Devereaux, Thomas
2015-03-01
The role of strong electronic correlations on unconventional superconductivity remains an important open question. Here, we explore the influence of long-range Coulomb interactions, present in real material systems, through nearest and next-nearest neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing large scale, numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that these extended interactions enhance charge fluctuations with various wave vectors. These suppress superconductivity in general, but in certain parameter regimes superconductivity is sustained. This has implications for tuning extended interactions in real materials.
A Wave Chaotic Study of Quantum Graphs with Microwave Networks
NASA Astrophysics Data System (ADS)
Fu, Ziyuan
Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.
Enhanced magneto-optical Kerr effect at Fe/insulator interfaces
NASA Astrophysics Data System (ADS)
Gu, Bo; Takahashi, Saburo; Maekawa, Sadamichi
2017-12-01
Using density functional theory calculations, we have found an enhanced magneto-optical Kerr effect in Fe/insulator interfaces. The results of our study indicate that interfacial Fe atoms in the Fe films have a low-dimensional nature, which causes the following two effects: (i) The diagonal component σx x of the optical conductivity decreases dramatically because the hopping integral for electrons between Fe atoms is suppressed by the low dimensionality. (ii) The off-diagonal component σx y of the optical conductivity does not change at low photon energies, but it is enhanced at photon energies around 2 eV, where we obtain enhanced orbital magnetic moments and spin-orbit correlations for the interfacial Fe atoms. A large Kerr angle develops in proportion to the ratio σx y/σx x . Our findings indicate an efficient way to enhance the effect of spin-orbit coupling at metal/insulator interfaces without using heavy elements.
NASA Astrophysics Data System (ADS)
Chandran, A.; Schulz, Marc D.; Burnell, F. J.
2016-12-01
Many phases of matter, including superconductors, fractional quantum Hall fluids, and spin liquids, are described by gauge theories with constrained Hilbert spaces. However, thermalization and the applicability of quantum statistical mechanics has primarily been studied in unconstrained Hilbert spaces. In this paper, we investigate whether constrained Hilbert spaces permit local thermalization. Specifically, we explore whether the eigenstate thermalization hypothesis (ETH) holds in a pinned Fibonacci anyon chain, which serves as a representative case study. We first establish that the constrained Hilbert space admits a notion of locality by showing that the influence of a measurement decays exponentially in space. This suggests that the constraints are no impediment to thermalization. We then provide numerical evidence that ETH holds for the diagonal and off-diagonal matrix elements of various local observables in a generic disorder-free nonintegrable model. We also find that certain nonlocal observables obey ETH.
Bounds on the Coupling of the Majoron to Light Neutrinos from Supernova Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farzan, Yasaman
2002-12-02
We explore the role of Majoron (J) emission in the supernova cooling process, as a source of upper bound on the neutrino-Majoron coupling. We show that the strongest upper bound on the coupling to {nu}{sub 3} comes from the {nu}{sub e}{nu}{sub e} {yields} J process in the core of a supernova. We also find bounds on diagonal couplings of the Majoron to {nu}{sub {mu}({tau})}{nu}{sub {mu}({tau})} and on off-diagonal {nu}{sub e}{nu}{sub {mu}({tau})} couplings in various regions of the parameter space. We discuss the evaluation of cross-section for four-particle interactions ({nu}{nu} {yields} JJ and {nu}J {yields} {nu}J). We show that these aremore » typically dominated by three-particle sub-processes and do not give new independent constraints.« less
Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons.
Alekseev, P S
2016-10-14
At low temperatures, in very clean two-dimensional (2D) samples, the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a viscous flow of an electron fluid. We study the viscous flow of 2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field leads to negative magnetoresistance which is temperature and size dependent. Our analysis demonstrates that this viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the ultrahigh-mobility GaAs quantum wells. We conclude that 2D electrons in those structures in moderate magnetic fields should be treated as a viscous fluid.
Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons
NASA Astrophysics Data System (ADS)
Alekseev, P. S.
2016-10-01
At low temperatures, in very clean two-dimensional (2D) samples, the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a viscous flow of an electron fluid. We study the viscous flow of 2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field leads to negative magnetoresistance which is temperature and size dependent. Our analysis demonstrates that this viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the ultrahigh-mobility GaAs quantum wells. We conclude that 2D electrons in those structures in moderate magnetic fields should be treated as a viscous fluid.
Space: The Long-Range Future: An Interview with Jesco von Puttkamer.
ERIC Educational Resources Information Center
Lawler, Andrew
1985-01-01
Jesco von Puttkamer manages long-range planning in NASA's Office of Space Flight. He believes that space offers the opportunity to ease global tensions, help the developing world, and create a new global culture off the planet. (Author/RM)
El-S Hassanine, Reda M; Gibson, David I
2005-07-01
Specimens of the marine fishes Siganus luridus (Siganidae) and Caesio suevica (Lutjanidae) were caught in the Red Sea off the coast of Sharm El-Sheikh, South Sinai, Egypt. Twelve (30%) and eight (17%) fish, respectively, were found to harbour intestinal trematodes. S. luridus was parasitised by Hexangium brayi n. sp. (Angiodictyidae) and C. suevica by Siphodera aegyptensis n. sp. (Cryptogonimidae). H. brayi n. sp. is differentiated from the other two species of the genus by the vitelline follicles which are confined to the inter-caecal field, its body shape which is distinctly pyriform, the terminations of the intestinal caeca which are distinctly saccular, the eggs which are few in number, and by the excretory vesicle which gives off a lateral arm on each side that divides into two long collecting ducts. S. aegyptensis n. sp. is most similar to S. cirrhiti Yamaguti, 1970, but differs in having a definite number of testes (nine), seven arranged in a ring and the other two situated symmetrically or diagonally within this ring, and vitelline follicles extending posteriorly to the level of the anterior lobes of the ovary. Both genera Hexangium Goto & Ozaki, 1929 and Siphodera Linton, 1910 are reviewed in detail and redefined.
Quantum Entanglement and the Topological Order of Fractional Hall States
NASA Astrophysics Data System (ADS)
Rezayi, Edward
2015-03-01
Fractional quantum Hall states or, more generally, topological phases of matter defy Landau classification based on order parameter and broken symmetry. Instead they have been characterized by their topological order. Quantum information concepts, such as quantum entanglement, appear to provide the most efficient method of detecting topological order solely from the knowledge of the ground state wave function. This talk will focus on real-space bi-partitioning of quantum Hall states and will present both exact diagonalization and quantum Monte Carlo studies of topological entanglement entropy in various geometries. Results on the torus for non-contractible cuts are quite rich and, through the use of minimum entropy states, yield the modular S-matrix and hence uniquely determine the topological order, as shown in recent literature. Concrete examples of minimum entropy states from known quantum Hall wave functions and their corresponding quantum numbers, used in exact diagonalizations, will be given. In collaboration with Clare Abreu and Raul Herrera. Supported by DOE Grant DE-SC0002140.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yidong; Liu, Xiaodong; Luo, Hong
2015-06-01
Here, a space and time third-order discontinuous Galerkin method based on a Hermite weighted essentially non-oscillatory reconstruction is presented for the unsteady compressible Euler and Navier–Stokes equations. At each time step, a lower-upper symmetric Gauss–Seidel preconditioned generalized minimal residual solver is used to solve the systems of linear equations arising from an explicit first stage, single diagonal coefficient, diagonally implicit Runge–Kutta time integration scheme. The performance of the developed method is assessed through a variety of unsteady flow problems. Numerical results indicate that this method is able to deliver the designed third-order accuracy of convergence in both space and time,more » while requiring remarkably less storage than the standard third-order discontinous Galerkin methods, and less computing time than the lower-order discontinous Galerkin methods to achieve the same level of temporal accuracy for computing unsteady flow problems.« less
NASA Technical Reports Server (NTRS)
Tosti, Louis P.
1959-01-01
An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a tilt-wing vertical-take-off-and-landing aircraft with the use of a remotely controlled 1/4-scale free-flight model. The model had two propellers with hinged (flapping) blades mounted on the wing which could be tilted up to an incidence angle of nearly 90 deg for vertical take-off and landing. The investigation consisted of hovering flights in still air, vertical take-offs and landings, and slow constant-altitude transitions from hovering to forward flight. The stability and control characteristics of the model were generally satisfactory except for the following characteristics. In hovering flight, the model had an unstable pitching oscillation of relatively long period which the pilots were able to control without artificial stabilization but which could not be considered entirely satisfactory. At very low speeds and angles of wing incidence on the order of 70 deg, the model experienced large nose-up pitching moments which severely limited the allowable center-of-gravity range.
Fidelity decay of the two-level bosonic embedded ensembles of random matrices
NASA Astrophysics Data System (ADS)
Benet, Luis; Hernández-Quiroz, Saúl; Seligman, Thomas H.
2010-12-01
We study the fidelity decay of the k-body embedded ensembles of random matrices for bosons distributed over two single-particle states. Fidelity is defined in terms of a reference Hamiltonian, which is a purely diagonal matrix consisting of a fixed one-body term and includes the diagonal of the perturbing k-body embedded ensemble matrix, and the perturbed Hamiltonian which includes the residual off-diagonal elements of the k-body interaction. This choice mimics the typical mean-field basis used in many calculations. We study separately the cases k = 2 and 3. We compute the ensemble-averaged fidelity decay as well as the fidelity of typical members with respect to an initial random state. Average fidelity displays a revival at the Heisenberg time, t = tH = 1, and a freeze in the fidelity decay, during which periodic revivals of period tH are observed. We obtain the relevant scaling properties with respect to the number of bosons and the strength of the perturbation. For certain members of the ensemble, we find that the period of the revivals during the freeze of fidelity occurs at fractional times of tH. These fractional periodic revivals are related to the dominance of specific k-body terms in the perturbation.
sdg Interacting boson hamiltonian in the seniority scheme
NASA Astrophysics Data System (ADS)
Yoshinaga, N.
1989-03-01
The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagonalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.
NASA Astrophysics Data System (ADS)
Galiatsatos, P. G.; Tennyson, J.
2012-11-01
The most time consuming step within the framework of the UK R-matrix molecular codes is that of the diagonalization of the inner region Hamiltonian matrix (IRHM). Here we present the method that we follow to speed up this step. We use shared memory machines (SMM), distributed memory machines (DMM), the OpenMP directive based parallel language, the MPI function based parallel language, the sparse matrix diagonalizers ARPACK and PARPACK, a variation for real symmetric matrices of the official coordinate sparse matrix format and finally a parallel sparse matrix-vector product (PSMV). The efficient application of the previous techniques rely on two important facts: the sparsity of the matrix is large enough (more than 98%) and in order to get back converged results we need a small only part of the matrix spectrum.
NASA Astrophysics Data System (ADS)
Shen, Hong-Xia; Wu, Guo-Zhen; Wang, Pei-Jie
2012-12-01
The Raman optical activity (ROA) study on S-phenylethylamine is presented by the intensity analyses via bond polarizability and differential bond polarizability. Ample information concerning the physical picture of this chiral system is obtained, and its ROA mechanism is constructed. Especially, we propose that the asymmetric modes and/or the off-diagonal elements of the electronic polarizability tensor are the potential keys to the exploration of ROA.
Ferroelectrics under the Synchrotron Light: A Review
Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis
2015-01-01
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814
2000-08-06
A scarp, or cliff, extends diagonally from upper left to lower right in this picture of Mercury taken by NASA Mariner 10. The structures are believed to be formed by the compressive forces due to crustal shortening.
A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel
NASA Technical Reports Server (NTRS)
Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.
1972-01-01
The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.
Model of electron pairs in electron-doped cuprates
NASA Astrophysics Data System (ADS)
Singh, R. J.; Khan, Shakeel
2016-07-01
In the order parameter of hole-doped cuprate superconductors in the pseudogap phase, two holes enter the order parameter from opposite sides and pass through various CuO2 cells jumping from one O2- to the other under the influence of magnetic field offered by the Cu2+ ions in that CuO2 cell and thus forming hole pairs. In the pseudogap phase of electron-doped cuprates, two electrons enter the order parameter at Cu2+ sites from opposite ends and pass from one Cu2+ site to the diagonally opposite Cu2+ site. Following this type of path, they are subjected to high magnetic fields from various Cu2+ ions in that cell. They do not travel from one Cu2+ site to the other along straight path but by helical path. As they pass through the diagonal, they face high to low to very high magnetic field. Therefore, frequency of helical motion and pitch goes on changing with the magnetic field. Just before reaching the Cu2+ ions at the exit points of all the cells, the pitch of the helical motion is enormously decreased and thus charge density at these sites is increased. So the velocity of electrons along the diagonal path is decreased. Consequently, transition temperature of electron-doped cuprates becomes less than that of hole-doped cuprates. Symmetry of the order parameter of the electron-doped cuprates has been found to be of 3dx2-y2 + iS type. It has been inferred that internal magnetic field inside the order parameter reconstructs the Fermi surface, which is requisite for superconductivity to take place. Electron pairs formed in the pseudogap phase are the precursors of superconducting order parameter when cooled below Tc.
NASA Astrophysics Data System (ADS)
Havasi, Ágnes; Kazemi, Ehsan
2018-04-01
In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.
NASA Astrophysics Data System (ADS)
Mesta, M.; van Eersel, H.; Coehoorn, R.; Bobbert, P. A.
2016-03-01
Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.
Scalar Casimir densities and forces for parallel plates in cosmic string spacetime
NASA Astrophysics Data System (ADS)
Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.
2018-04-01
We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Q.; Boulet, C.; Tipping, R. H.
The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS{sub 1} − S{sub 2} introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonalmore » elements do not require extra correlation functions of the S-circumflex operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters’ two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C{sub 2}H{sub 2} broadened by N{sub 2}. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.« less
The use of MP3 recorders to log data from equine hoof mounted accelerometers.
Parsons, K J; Wilson, A M
2006-11-01
MP3 recorders are readily available, small, lightweight and low cost, providing the potential for logging analogue hoof mounted accelerometer signals for the characterisation of equine locomotion. These, however, require testing in practice. To test whether 1) multiple MP3 recorders can maintain synchronisation, giving the ability to synchronise independent recorders for the logging of multiple limbs simultaneously; and 2) features of a foot mounted accelerometer signal attributable to foot-on and foot-off can be accurately identified from horse foot mounted accelerometers logged directly into an MP3 recorder. Three experiments were performed: 1) Maintenance of synchronisation was assessed by counting the number of samples recorded by each of 4 MP3 recorders while mounted on a trotting horse and over 2 consecutive 30 min periods in 8 recorders on a bench. 2) Foot-on and foot-off times obtained from manual transcription of MP3 logged data and directly logged accelerometer signal were compared. 3) MP3/accelerometer acquisition units were used to log accelerometer signals from racehorses during extended training sessions. Mean absolute error of synchronisation between MP3 recorders was 10 samples per million (compared to mean number of samples, range 1-32 samples per million). Error accumulation showed a linear correlation with time. Features attributable to foot on and foot off were equally identifiable from the MP3 recorded signal over a range of equine gaits. Multiple MP3 recorders can be synchronised and used as a relatively cheap, robust, reliable and accurate logging system when combined with an accelerometer and external battery for the specific application of the measurement of stride timing variables across the range of equine gaits during field locomotion. Footfall timings can be used to identify intervals between the fore and hind contacts, the identification of diagonal advanced placement and to calculate stride timing variables (stance time, protraction time and stride time). These parameters are invaluable for the characterisation and assessment of equine locomotion.
Diagonal ordering operation technique applied to Morse oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, Dušan, E-mail: dusan_popov@yahoo.co.uk; Dong, Shi-Hai; Popov, Miodrag
2015-11-15
We generalize the technique called as the integration within a normally ordered product (IWOP) of operators referring to the creation and annihilation operators of the harmonic oscillator coherent states to a new operatorial approach, i.e. the diagonal ordering operation technique (DOOT) about the calculations connected with the normally ordered product of generalized creation and annihilation operators that generate the generalized hypergeometric coherent states. We apply this technique to the coherent states of the Morse oscillator including the mixed (thermal) state case and get the well-known results achieved by other methods in the corresponding coherent state representation. Also, in the lastmore » section we construct the coherent states for the continuous dynamics of the Morse oscillator by using two new methods: the discrete–continuous limit, respectively by solving a finite difference equation. Finally, we construct the coherent states corresponding to the whole Morse spectrum (discrete plus continuous) and demonstrate their properties according the Klauder’s prescriptions.« less
Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization
NASA Astrophysics Data System (ADS)
Jentschura, Ulrich; Noble, Jonathan
2014-03-01
We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.
Goldfeld, Sharon; Villanueva, Karen; Tanton, Robert; Katz, Ilan; Brinkman, Sally; Woolcock, Geoffrey; Giles-Corti, Billie
2017-01-01
Introduction Healthy childhood development in the early years is critical for later adult health and well-being. Early childhood development (ECD) research has focused primarily on individual, family and school factors, but largely ignored community factors. The Kids in Communities Study (KiCS) will test and investigate community-level influences on child development across Australia. Methods and analysis Cross-sectional mixed-methods study exploring community-level effects in 25 Australian local communities; selection based on community socioeconomic status (SES) and ECD using the Australian Early Development Census (AEDC), a population measure of child development, to create a local community ‘diagonality type’, that is, those performing better or worse (off-diagonal), or as expected (on-diagonal) on the AEDC relative to their SES. Data collection includes stakeholder interviews, parent and service provider focus groups, and surveys with general community residents and service providers, mapping of neighbourhood design and local amenities and services, analysis of policy documents, and the use of existing sociodemographic and early childhood education and care data. Quantitative data will be used to test associations between local community diagonality type, and ECD based on AEDC scores. Qualitative data will provide complementary and deeper exploration of these same associations. Ethics and dissemination The Royal Children's Hospital Human Research Ethics Committee approved the study protocol (#30016). Further ethics approvals were obtained from State Education and Health departments and Catholic archdioceses where required. ECD community-level indicators will eventually be derived and made publically available. Findings will be published in peer-reviewed journals, community reports, websites and policy briefs to disseminate results to researchers, and key stakeholders including policymakers, practitioners and (most importantly) the communities involved. PMID:28289049
Boundary Information Inflow Enhances Correlation in Flocking
NASA Astrophysics Data System (ADS)
Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco
2013-04-01
The most conspicuous trait of collective animal behavior is the emergence of highly ordered structures. Less obvious to the eye, but perhaps more profound a signature of self-organization, is the presence of long-range spatial correlations. Experimental data on starling flocks in 3D show that the exponent ruling the decay of the velocity correlation function, C(r)˜1/rγ, is extremely small, γ≪1. This result can neither be explained by equilibrium field theory nor by off-equilibrium theories and simulations of active systems. Here, by means of numerical simulations and theoretical calculations, we show that a dynamical field applied to the boundary of a set of Heisenberg spins on a 3D lattice gives rise to a vanishing exponent γ, as in starling flocks. The effect of the dynamical field is to create an information inflow from border to bulk that triggers long-range spin-wave modes, thus giving rise to an anomalously long-ranged correlation. The biological origin of this phenomenon can be either exogenous—information produced by environmental perturbations is transferred from boundary to bulk of the flock—or endogenous—the flock keeps itself in a constant state of dynamical excitation that is beneficial to correlation and collective response.
Implicit solvers for unstructured meshes
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, Dimitri J.
1991-01-01
Implicit methods for unstructured mesh computations are developed and tested. The approximate system which arises from the Newton-linearization of the nonlinear evolution operator is solved by using the preconditioned generalized minimum residual technique. These different preconditioners are investigated: the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over-relaxation (SSOR). The preconditioners have been optimized to have good vectorization properties. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also investigated. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... will be stretched in the direction of the long diagonal of the meshes. (ii) A gauge as described in.... This distance will be measured perpendicular to the lacings, ropes or codline with the net stretched in...
Code of Federal Regulations, 2011 CFR
2011-10-01
... will be stretched in the direction of the long diagonal of the meshes. (ii) A gauge as described in.... This distance will be measured perpendicular to the lacings, ropes or codline with the net stretched in...
Code of Federal Regulations, 2012 CFR
2012-10-01
... will be stretched in the direction of the long diagonal of the meshes. (ii) A gauge as described in.... This distance will be measured perpendicular to the lacings, ropes or codline with the net stretched in...
Code of Federal Regulations, 2014 CFR
2014-10-01
... will be stretched in the direction of the long diagonal of the meshes. (ii) A gauge as described in.... This distance will be measured perpendicular to the lacings, ropes or codline with the net stretched in...
Code of Federal Regulations, 2013 CFR
2013-10-01
... will be stretched in the direction of the long diagonal of the meshes. (ii) A gauge as described in.... This distance will be measured perpendicular to the lacings, ropes or codline with the net stretched in...
Intralimb and Interlimb Cutaneous Reflexes during Locomotion in the Intact Cat.
Hurteau, Marie-France; Thibaudier, Yann; Dambreville, Charline; Danner, Simon M; Rybak, Ilya A; Frigon, Alain
2018-04-25
When the foot contacts an obstacle during locomotion, cutaneous inputs activate spinal circuits to ensure dynamic balance and forward progression. In quadrupeds, this requires coordinated reflex responses between the four limbs. Here, we investigated the patterns and phasic modulation of cutaneous reflexes in forelimb and hindlimb muscles evoked by inputs from all four limbs. Five female cats were implanted to record muscle activity and to stimulate the superficial peroneal and superficial radial nerves during locomotion. Stimulating these nerves evoked short-, mid-, and longer-latency excitatory and/or inhibitory responses in all four limbs that were phase-dependent. The largest responses were generally observed during the peak activity of the muscle. Cutaneous reflexes during mid-swing were consistent with flexion of the homonymous limb and accompanied by modification of the stance phases of the other three limbs, by coactivating flexors and extensors and/or by delaying push-off. Cutaneous reflexes during mid-stance were consistent with stabilizing the homonymous limb by delaying and then facilitating its push-off and modifying the support phases of the homolateral and diagonal limbs, characterized by coactivating flexors and extensors, reinforcing extensor activity and/or delaying push-off. The shortest latencies of homolateral and diagonal responses were consistent with fast-conducting disynaptic or trisynaptic pathways. Descending homolateral and diagonal pathways from the forelimbs to the hindlimbs had a higher probability of eliciting responses compared with ascending pathways from the hindlimbs to the forelimbs. Thus, in quadrupeds, intralimb and interlimb reflexes activated by cutaneous inputs ensure dynamic coordination of the four limbs, producing a whole-body response. SIGNIFICANCE STATEMENT The skin contains receptors that, when activated, send inputs to spinal circuits, signaling a perturbation. Rapid responses, or reflexes, in muscles of the contacted limb and opposite homologous limb help maintain balance and forward progression. Here, we investigated reflexes during quadrupedal locomotion in the cat by electrically stimulating cutaneous nerves in each of the four limbs. Functionally, responses appear to modify the trajectory or stabilize the movement of the stimulated limb while modifying the support phase of the other limbs. Reflexes between limbs are mediated by fast-conducting pathways that involve excitatory and inhibitory circuits controlling each limb. The comparatively stronger descending pathways from cervical to lumbar circuits controlling the forelimbs and hindlimbs, respectively, could serve a protective function. Copyright © 2018 the authors 0270-6474/18/384104-19$15.00/0.
Zipf's Law for Word Frequencies: Word Forms versus Lemmas in Long Texts.
Corral, Álvaro; Boleda, Gemma; Ferrer-i-Cancho, Ramon
2015-01-01
Zipf's law is a fundamental paradigm in the statistics of written and spoken natural language as well as in other communication systems. We raise the question of the elementary units for which Zipf's law should hold in the most natural way, studying its validity for plain word forms and for the corresponding lemma forms. We analyze several long literary texts comprising four languages, with different levels of morphological complexity. In all cases Zipf's law is fulfilled, in the sense that a power-law distribution of word or lemma frequencies is valid for several orders of magnitude. We investigate the extent to which the word-lemma transformation preserves two parameters of Zipf's law: the exponent and the low-frequency cut-off. We are not able to demonstrate a strict invariance of the tail, as for a few texts both exponents deviate significantly, but we conclude that the exponents are very similar, despite the remarkable transformation that going from words to lemmas represents, considerably affecting all ranges of frequencies. In contrast, the low-frequency cut-offs are less stable, tending to increase substantially after the transformation.
Vaidya spacetime in the diagonal coordinates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezin, V. A., E-mail: berezin@inr.ac.ru; Dokuchaev, V. I., E-mail: dokuchaev@inr.ac.ru; Eroshenko, Yu. N., E-mail: eroshenko@inr.ac.ru
We have analyzed the transformation from initial coordinates (v, r) of the Vaidya metric with light coordinate v to the most physical diagonal coordinates (t, r). An exact solution has been obtained for the corresponding metric tensor in the case of a linear dependence of the mass function of the Vaidya metric on light coordinate v. In the diagonal coordinates, a narrow region (with a width proportional to the mass growth rate of a black hole) has been detected near the visibility horizon of the Vaidya accreting black hole, in which the metric differs qualitatively from the Schwarzschild metric andmore » cannot be represented as a small perturbation. It has been shown that, in this case, a single set of diagonal coordinates (t, r) is insufficient to cover the entire range of initial coordinates (v, r) outside the visibility horizon; at least three sets of diagonal coordinates are required, the domains of which are separated by singular surfaces on which the metric components have singularities (either g{sub 00} = 0 or g{sub 00} = ∞). The energy–momentum tensor diverges on these surfaces; however, the tidal forces turn out to be finite, which follows from an analysis of the deviation equations for geodesics. Therefore, these singular surfaces are exclusively coordinate singularities that can be referred to as false fire-walls because there are no physical singularities on them. We have also considered the transformation from the initial coordinates to other diagonal coordinates (η, y), in which the solution is obtained in explicit form, and there is no energy–momentum tensor divergence.« less
NASA Astrophysics Data System (ADS)
Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind
2018-04-01
The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.
Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas
2015-07-14
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.
Fidelity study of superconductivity in extended Hubbard models
NASA Astrophysics Data System (ADS)
Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.
2015-07-01
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.
Buscaglia, Vincenzo; Tripathi, Saurabh; Petkov, Valeri; Dapiaggi, Monica; Deluca, Marco; Gajović, Andreja; Ren, Yang
2014-02-12
High-resolution x-ray diffraction (XRD), Raman spectroscopy and total scattering XRD coupled to atomic pair distribution function (PDF) analysis studies of the atomic-scale structure of archetypal BaZrxTi(1-x)O3 (x = 0.10, 0.20, 0.40) ceramics are presented over a wide temperature range (100-450 K). For x = 0.1 and 0.2 the results reveal, well above the Curie temperature, the presence of Ti-rich polar clusters which are precursors of a long-range ferroelectric order observed below TC. Polar nanoregions (PNRs) and relaxor behaviour are observed over the whole temperature range for x = 0.4. Irrespective of ceramic composition, the polar clusters are due to locally correlated off-centre displacement of Zr/Ti cations compatible with local rhombohedral symmetry. Formation of Zr-rich clusters is indicated by Raman spectroscopy for all compositions. Considering the isovalent substitution of Ti with Zr in BaZrxTi1-xO3, the mechanism of formation and growth of the PNRs is not due to charge ordering and random fields, but rather to a reduction of the local strain promoted by the large difference in ion size between Zr(4+) and Ti(4+). As a result, non-polar or weakly polar Zr-rich clusters and polar Ti-rich clusters are randomly distributed in a paraelectric lattice and the long-range ferroelectric order is disrupted with increasing Zr concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Ling -Yun; Kang, Zhong -Bo; Prokudin, Alexei
2015-12-22
Here, we study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(α em 2α s), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading ordermore » calculation for the transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function.« less
Simulations of anti-parallel reconnection using a nonlocal heat flux closure
Ng, Jonathan; Hakim, Ammar; Bhattacharjee, A.; ...
2017-08-08
The integration of kinetic effects in fluid models is important for global simulations of the Earth's magnetosphere. In particular, it has been shown that ion kinetics play a crucial role in the dynamics of large reconnecting systems, and that higher-order fluid moment models can account for some of these effects. Here, we use a ten-moment model for electrons and ions, which includes the off diagonal elements of the pressure tensor that are important for magnetic reconnection. Kinetic effects are recovered by using a nonlocal heat flux closure, which approximates linear Landau damping in the fluid framework. Moreover, the closure ismore » tested using the island coalescence problem, which is sensitive to ion dynamics. We also demonstrate that the nonlocal closure is able to self-consistently reproduce the structure of the ion diffusion region, pressure tensor, and ion velocity without the need for fine-tuning of relaxation coefficients present in earlier models.« less
Improvements in aircraft extraction programs
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.; Maine, R. E.
1976-01-01
Flight data from an F-8 Corsair and a Cessna 172 was analyzed to demonstrate specific improvements in the LRC parameter extraction computer program. The Cramer-Rao bounds were shown to provide a satisfactory relative measure of goodness of parameter estimates. It was not used as an absolute measure due to an inherent uncertainty within a multiplicative factor, traced in turn to the uncertainty in the noise bandwidth in the statistical theory of parameter estimation. The measure was also derived on an entirely nonstatistical basis, yielding thereby also an interpretation of the significance of off-diagonal terms in the dispersion matrix. The distinction between coefficients as linear and non-linear was shown to be important in its implication to a recommended order of parameter iteration. Techniques of improving convergence generally, were developed, and tested out on flight data. In particular, an easily implemented modification incorporating a gradient search was shown to improve initial estimates and thus remove a common cause for lack of convergence.
NASA Astrophysics Data System (ADS)
Krasnoshchekov, Sergey V.; Craig, Norman C.; Koroleva, Lidiya A.; Stepanov, Nikolay F.
2018-01-01
A new gas-phase infrared (IR) spectrum of acryloyl fluoride (ACRF, CH2dbnd CHsbnd CFdbnd O) with a resolution of 0.1 cm- 1 in the range 4000-450 cm- 1 was measured. Theoretical ab initio molecular structures, full quartic potential energy surfaces (PES), and cubic surfaces of dipole moments and polarizability tensor components (electro-optical properties, EOP) of the s-trans and s-cis conformers of the ACRF were calculated by the second-order Møller-Plesset electronic perturbation theory with a correlation consistent Dunning triple-ζ basis set. The numerical-analytic implementation of the second-order operator canonical Van Vleck perturbation theory was employed for predicting anharmonic IR and Raman scattering (RS) spectra of ACRF. To improve the anharmonic predictions, harmonic frequencies were replaced by their counterparts evaluated with the higher-level CCSD(T)/cc-pVTZ model, to form a ;hybrid; PES. The original operator representation of the Hamiltonian is analytically reduced to a quasi-diagonal form, integrated in the harmonic oscillator basis and diagonalized to account for strong resonance couplings. Double canonical transformations of EOP expansions enabled prediction of integral intensities of both fundamental and multi-quanta transitions in IR/RS spectra. Enhanced band shape analysis reinforced the assignments. A thorough interpretation of the new IR experimental spectra and existing matrix-isolation literature data for the mixture of two conformers of ACRF was accomplished, and a number of assignments clarified.
Quench action and Rényi entropies in integrable systems
NASA Astrophysics Data System (ADS)
Alba, Vincenzo; Calabrese, Pasquale
2017-09-01
Entropy is a fundamental concept in equilibrium statistical mechanics, yet its origin in the nonequilibrium dynamics of isolated quantum systems is not fully understood. A strong consensus is emerging around the idea that the stationary thermodynamic entropy is the von Neumann entanglement entropy of a large subsystem embedded in an infinite system. Also motivated by cold-atom experiments, here we consider the generalization to Rényi entropies. We develop a new technique to calculate the diagonal Rényi entropy in the quench action formalism. In the spirit of the replica treatment for the entanglement entropy, the diagonal Rényi entropies are generalized free energies evaluated over a thermodynamic macrostate which depends on the Rényi index and, in particular, is not the same state describing von Neumann entropy. The technical reason for this perhaps surprising result is that the evaluation of the moments of the diagonal density matrix shifts the saddle point of the quench action. An interesting consequence is that different Rényi entropies encode information about different regions of the spectrum of the postquench Hamiltonian. Our approach provides a very simple proof of the long-standing issue that, for integrable systems, the diagonal entropy is half of the thermodynamic one and it allows us to generalize this result to the case of arbitrary Rényi entropy.
Three-dimensional spectroscopy of vibrational energy in liquids: nitromethane and acetonitrile.
Sun, Yuxiao; Pein, Brandt C; Dlott, Dana D
2013-12-12
We introduce a novel type of three-dimensional (3D) spectroscopy to study vibrational energy transfer, where an IR pulse tunable through the CH-stretching and CD-stretching regions was used to create parent vibrational excitations in liquids and a visible probe pulse was used to generate both Stokes and anti-Stokes Raman spectra as a function of delay time. The Raman spectra determine how much vibrational excitation was present in each probed state. The three dimensions are the wavenumber of the pumped state, the wavenumber of the probed state, and the time interval. The technique was used to study nitromethane (NM) and acetonitrile (ACN) and their deuterated analogues at ambient temperature. The 3D spectra were quite complicated. Three types of artifacts due to nonlinear light scattering were observed. Along the diagonal were two fundamental CH-stretch (or CD-stretch) transitions and several weaker combination bands or overtone transitions. Because Raman spectroscopy allows us to simultaneously probe a wide wavenumber region, for every diagonal peak, there were ∼10 off-diagonal peaks. The cross-peaks at shorter delay times reveal the nature of the initial excitation by showing which lower-wavenumber excitations were produced along with the pumped CH-stretch or CD-stretch. The longer-time spectra characterized vibrational energy relaxation processes, and showed how daughter vibrations were generated by different parent excitations.
Casimir Effect in de Sitter Spacetime
NASA Astrophysics Data System (ADS)
Saharian, A. A.
2011-06-01
The vacuum expectation value of the energy-momentum tensor and the Casimir forces are investigated for a massive scalar field with an arbitrary curvature coupling parameter in the geometry of two parallel plates, on the background of de Sitter spacetime. The field is prepared in the Bunch-Davies vacuum state and is constrained to satisfy Robin boundary conditions on the plates. The vacuum energy-momentum tensor is non-diagonal, with the off-diagonal component corresponding to the energy flux along the direction normal to the plates. It is shown that the curvature of the background spacetime decisively influences the behavior of the Casimir forces at separations larger than the curvature radius of de Sitter spacetime. In dependence of the curvature coupling parameter and the mass of the field, two different regimes are realized, which exhibit monotonic or oscillatory behavior of the forces. The decay of the Casimir force at large plate separation is shown to be power-law, with independence of the value of the field mass.
NASA Astrophysics Data System (ADS)
Stevens Miller, Amy E.; Feigerle, C. S.; Lineberger, W. C.
1987-08-01
The laser photoelectron spectra of CrH-, CoH-, and NiH- and the analogous deuterides are reported. The spectra are interpreted using a qualitative description of the electronic structure for the hydrides. This model is used to assign off-diagonal transitions in the photodetachment to low-spin states of the neutrals, and diagonal transitions to high-spin states of the neutrals. These data are used to identify the high-spin states of CoH and NiH; several other states of CrH, CoH, and NiH are also identified. Periodic trends in the bond lengths, vibrational frequencies, and electronic excitation energies for the MnH through NiH molecules are examined. Electron affinities are reported for CrH (0.563±0.010 eV), CoH (0.671±0.010 eV), and NiH (0.481±0.007 eV), and the corresponding deuterides.
Polaron dynamics with a multitude of Davydov D{sub 2} trial states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nengji; Department of Physics, Hangzhou Normal University, Hangzhou 310046; Huang, Zhongkai
2015-07-07
We propose an extension to the Davydov D{sub 2} Ansatz in the dynamics study of the Holstein molecular crystal model with diagonal and off-diagonal exciton-phonon coupling using the Dirac-Frenkel time-dependent variational principle. The new trial state by the name of the “multi-D{sub 2} Ansatz” is a linear combination of Davydov D{sub 2} trial states, and its validity is carefully examined by quantifying how faithfully it follows the Schrödinger equation. Considerable improvements in accuracy have been demonstrated in comparison with the usual Davydov trial states, i.e., the single D{sub 1} and D{sub 2} Ansätze. With an increase in the number ofmore » the Davydov D{sub 2} trial states in the multi-D{sub 2} Ansatz, deviation from the exact Schrödinger dynamics is gradually diminished, leading to a numerically exact solution to the Schrödinger equation.« less
Diffusion of Conserved Charges in Relativistic Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Greif, Moritz; Fotakis, Jan. A.; Denicol, Gabriel S.; Greiner, Carsten
2018-06-01
We demonstrate that the diffusion currents do not depend only on gradients of their corresponding charge density, but that the different diffusion charge currents are coupled. This happens in such a way that it is possible for density gradients of a given charge to generate dissipative currents of another charge. Within this scheme, the charge diffusion coefficient is best viewed as a matrix, in which the diagonal terms correspond to the usual charge diffusion coefficients, while the off-diagonal terms describe the coupling between the different currents. In this Letter, we calculate for the first time the complete diffusion matrix for hot and dense nuclear matter, including baryon, electric, and strangeness charges. We find that the baryon diffusion current is strongly affected by baryon charge gradients but also by its coupling to gradients in strangeness. The electric charge diffusion current is found to be strongly affected by electric and strangeness gradients, whereas strangeness currents depend mostly on strange and baryon gradients.
Hobbs, Sarah Jane; Bertram, John E A; Clayton, Hilary M
2016-01-01
Background. Although the trot is described as a diagonal gait, contacts of the diagonal pairs of hooves are not usually perfectly synchronized. Although subtle, the timing dissociation between contacts of each diagonal pair could have consequences on gait dynamics and provide insight into the functional strategies employed. This study explores the mechanical effects of different diagonal dissociation patterns when speed was matched between individuals and how these effects link to moderate, natural changes in trotting speed. We anticipate that hind-first diagonal dissociation at contact increases with speed, diagonal dissociation at contact can reduce collision-based energy losses and predominant dissociation patterns will be evident within individuals. Methods. The study was performed in two parts: in the first 17 horses performed speed-matched trotting trials and in the second, five horses each performed 10 trotting trials that represented a range of individually preferred speeds. Standard motion capture provided kinematic data that were synchronized with ground reaction force (GRF) data from a series of force plates. The data were analyzed further to determine temporal, speed, GRF, postural, mass distribution, moment, and collision dynamics parameters. Results. Fore-first, synchronous, and hind-first dissociations were found in horses trotting at (3.3 m/s ± 10%). In these speed-matched trials, mean centre of pressure (COP) cranio-caudal location differed significantly between the three dissociation categories. The COP moved systematically and significantly (P = .001) from being more caudally located in hind-first dissociation (mean location = 0.41 ± 0.04) through synchronous (0.36 ± 0.02) to a more cranial location in fore-first dissociation (0.32 ± 0.02). Dissociation patterns were found to influence function, posture, and balance parameters. Over a moderate speed range, peak vertical forelimb GRF had a strong relationship with dissociation time (R = .594; P < .01) and speed (R = .789; P < .01), but peak vertical hindlimb GRF did not have a significant relationship with dissociation time (R = .085; P > 0.05) or speed (R = .223; P = .023). Discussion. The results indicate that at moderate speeds individual horses use dissociation patterns that allow them to maintain trunk pitch stability through management of the cranio-caudal location of the COP. During the hoof-ground collisions, reduced mechanical energy losses were found in hind-first dissociations compared to fully synchronous contacts. As speed increased, only forelimb vertical peak force increased so dissociations tended towards hind-first, which shifted the net COP caudally and balanced trunk pitching moments.
Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells
NASA Astrophysics Data System (ADS)
Lloyd-Williams, Jonathan; Monserrat, Bartomeu
Quantities derived from electron-phonon coupling matrix elements require a fine sampling of the vibrational Brillouin zone. Converged results are typically not obtainable using the direct method, in which a perturbation is frozen into the system and the total energy derivatives are calculated using a finite difference approach, because the size of simulation cell needed is prohibitively large. We show that it is possible to determine the response of a periodic system to a perturbation characterized by a wave vector with reduced fractional coordinates (m1 /n1 ,m2 /n2 ,m3 /n3) using a supercell containing a number of primitive cells equal to the least common multiple of n1, n2, and n3. This is accomplished by utilizing supercell matrices containing nonzero off-diagonal elements. We present the results of electron-phonon coupling calculations using the direct method to sample the vibrational Brillouin zone with grids of unprecedented size for a range of systems, including the canonical example of diamond. We also demonstrate that the use of nondiagonal supercells reduces by over an order of magnitude the computational cost of obtaining converged vibrational densities of states and phonon dispersion curves. J.L.-W. is supported by the Engineering and Physical Sciences Research Council (EPSRC). B.M. is supported by Robinson College, Cambridge, and the Cambridge Philosophical Society. This work was supported by EPSRC Grants EP/J017639/1 and EP/K013564/1.
Reduced order feedback control equations for linear time and frequency domain analysis
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1981-01-01
An algorithm was developed which can be used to obtain the equations. In a more general context, the algorithm computes a real nonsingular similarity transformation matrix which reduces a real nonsymmetric matrix to block diagonal form, each block of which is a real quasi upper triangular matrix. The algorithm works with both defective and derogatory matrices and when and if it fails, the resultant output can be used as a guide for the reformulation of the mathematical equations that lead up to the ill conditioned matrix which could not be block diagonalized.
Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method
Grayver, Alexander V.; Kolev, Tzanio V.
2015-11-01
Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less
Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grayver, Alexander V.; Kolev, Tzanio V.
Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less
Spin-orbit coupled systems in the atomic limit: rhenates, osmates, iridates
NASA Astrophysics Data System (ADS)
Paramekanti, Arun; Singh, David J.; Yuan, Bo; Casa, Diego; Said, Ayman; Kim, Young-June; Christianson, A. D.
2018-06-01
Motivated by RIXS experiments on a wide range of complex heavy oxides, including rhenates, osmates, and iridates, we discuss the theory of RIXS for site-localized t2 g orbital systems with strong spin-orbit coupling. For such systems, we present exact diagonalization results for the spectrum at different electron fillings, showing that it accesses "single-particle" and "multiparticle" excitations. This leads to a simple picture for the energies and intensities of the RIXS spectra in Mott insulators such as double perovskites which feature highly localized electrons, and yields estimates of the spin-orbit coupling and Hund's coupling in correlated 5 d oxides. We present new higher resolution RIXS data at the Re L3 edge in Ba2YReO6 which finds a previously unresolved peak splitting, providing further confirmation of our theoretical predictions. Using ab initio electronic structure calculations on Ba2M ReO6 (with M =Re , Os, Ir) we show that while the atomic limit yields a reasonable effective Hamiltonian description of the experimental observations, effects such as t2 g-eg interactions and hybridization with oxygen are important. Our ab initio estimate for the strength of the intersite exchange coupling shows that, compared to the d3 systems, the exchange is one or two orders of magnitude weaker in the d2 and d4 materials, which may partly explain the suppression of long-range magnetic order in the latter compounds. As a way to interpolate between the site-localized picture and our electronic structure band calculations, we discuss the spin-orbital levels of the M O6 cluster. This suggests a possible role for intracluster excitons in Ba2YIrO6 which may lead to a weak breakdown of the atomic Jeff=0 picture and to small magnetic moments.
Thermodynamic and structural properties of hcp bulk and nano-precipitated Ag-Al.
NASA Astrophysics Data System (ADS)
Zarkevich, Nikolai; Johnson, Duane; Smirnov, Andrei
2002-03-01
We study the short- and long- range chemical ordering in hcp bulk Ag_2Al using the Monte Carlo method based on a Hamiltonian constructed via structural formation energies from ab initio electronic-structure calculations. We find that the ground-state structure and thermodynamic properties of bulk Ag_2Al is that determined from the X-ray experimental data. We also address the influence of the interface, coherency strain, and off-stoichiometric disorder on the structure of metastable γ' nano-precipitates in fcc Al matrix. We show that γ' precipitates are off-stoichiometric and provide a new Al-rich structure that reproduces the observed TEM image. We acknowledge our support in part by an ALCOA Foundation Grant, the U.S. Department of Energy through the Frederick Seitz Materials Research Laboratory at UIUC under grant DEFG02-91ER45439, and the UIUC Materials Computation Center under National Science Foundation grant DMR-9976550.
Bethe states of the trigonometric SU(3) spin chain with generic open boundaries
NASA Astrophysics Data System (ADS)
Sun, Pei; Xin, Zhirong; Qiao, Yi; Wen, Fakai; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Tao; Yang, Wen-Li; Shi, Kangjie
2018-06-01
By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU (3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T - Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.
Derivation of a formula for the resonance integral for a nonorthogonal basis set
Yim, Yung-Chang; Eyring, Henry
1981-01-01
In a self-consistent field calculation, a formula for the off-diagonal matrix elements of the core Hamiltonian is derived for a nonorthogonal basis set by a polyatomic approach. A set of parameters is then introduced for the repulsion integral formula of Mataga-Nishimoto to fit the experimental data. The matrix elements computed for the nonorthogonal basis set in the π-electron approximation are transformed to those for an orthogonal basis set by the Löwdin symmetrical orthogonalization. PMID:16593009
NASA Astrophysics Data System (ADS)
Yamada, Tomoaki; Zampolli, Mario; Haralabus, Georgios; Heaney, Kevin; Prior, Mark; Isse, Takeshi
2016-04-01
Controlled impulsive scientific underwater sound sources in the Northwestern Pacific were observed at two IMS hydroacoustic stations in the Pacific Ocean. Although these experiments were conducted with the aim of studying the physical properties of the plate boundaries inside the Earth, they are also suitable for the investigation of long range underwater acoustic detections. In spite of the fact that the energy of these controlled impulsive scientific sources is significantly smaller than that of nuclear explosions, the signals were obtained by IMS hydrophone stations thousands of kilometres away and also by distant ocean bottom instruments operated by various Institutes, such as the Earthquake Research Institute, University of Tokyo. These experiments provide calibrated (yield, time, location) long-range acoustic transmissions, which enable one to examine the physics of long-range acoustic propagation and to verify the capabilities of the CTBTO IMS network to detect even small explosions.The two IMS stations used are H03 (Juan Fernandez Island, Chile) off the coast of Chile in the Southeastern Pacific and H11 (Wake Island, USA) in the Western Pacific. Both stations consist of two triplets of hydrophones in the SOFAR channel, which monitor the oceans for signs of nuclear explosions. H03 detected low-yield explosions above flat terrain at distances of 15,000 km across the Pacific as well as explosions above the landward slope off the coast of Japan at distances above 16,000 km across the Pacific. These records showed that source signatures, such as short duration and bubble pulses, were preserved over the long propagation distances. It was found that the observed maximum amplitudes from each source exhibit order of magnitude variations even when the yield and detonation depth are the same. The experimental data and transmission loss simulations suggest that bathymetric features around the sources and between the sources and the receivers are the main causes for these variations.
Spatio-temporal changes of seismic anisotropy in seismogenic zones
NASA Astrophysics Data System (ADS)
Saade, M.; Montagner, J.; Roux, P.; Paul, C.; Brenguier, F.; Enescu, B.; Shiomi, K.
2013-12-01
Seismic anisotropy plays a key role in the study of stress and strain fields in the earth. Potential temporal change of seismic anisotropy can be interpreted as change of the orientation of cracks in seismogenic zones and thus change of the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes (Durand et al. , 2011) but are still not well understood. In this study, from a numerical point of view, we investigate the variations of the polarization of surface waves in anisotropic media. These variations are related to the elastic properties of the medium, in particular to anisotropy. The technique used is based on the calculation of the whole cross-correlation tensor (CCT) of ambient seismic noise. If the sources are randomly distributed in homogeneous medium, it allows us to reconstruct the Green's tensor between two stations continuously and to monitor the region through the use of its fluctuations. Therefore, the temporal change of the Green's cross-correlation tensor enables the monitoring of stress and strain fields. This technique is applied to synthetic seismograms computed in a transversally isotropic medium with horizontal symmetry axis (hereafter referred to an HTI medium) using a code RegSEM (Cupillard et al. , 2012) based on the spectral element method. We designed an experiment in order to investigate the influence of anisotropy on the CCT. In homogeneous, isotropic medium the off-diagonal terms of the Green's tensor are null. The CCT is computed between each pair of stations and then rotated in order to approximate the Green's tensor by minimizing the off-diagonal components. This procedure permits the calculation of the polarization angle of quasi-Rayleigh and quasi-Love waves, and to observe the azimuthal variation of their polarization. The results show that even a small variation of the azimuth of seismic anisotropy with respect to a certain pair of stations can induce, in some cases, a large variation in the horizontal polarization of surface waves along the direction of this pair of stations. It depends on the relative azimuth angle between the pair of stations and the direction of anisotropy, on the amplitude of anisotropy and the frequency band of the signal. Therefore, it is now possible to explain the large, rapid and very localized variations of surface waves horizontal polarization observed by Durand et al. (2011) during the Parkfield earthquake of 2004. Furthermore, some preliminary results about the investigation of seismic anisotropy change caused by the June 13, 2008 Iwate-Miyagi Nairiku earthquake (Mw = 6.9) will be presented.
NASA Astrophysics Data System (ADS)
Roszak, K.; Cywiński, Ł.
2015-10-01
We study quantum teleportation via Bell-diagonal mixed states of two qubits in the context of the intrinsic properties of the quantum discord. We show that when the quantum-correlated state of the two qubits is used for quantum teleportation, the character of the teleportation efficiency changes substantially depending on the Bell-diagonal-state parameters, which can be seen when the worst-case-scenario or best-case-scenario fidelity is studied. Depending on the parameter range, one of two types of single-qubit states is hardest/easiest to teleport. The transition between these two parameter ranges coincides exactly with the transition between the range of classical correlation decay and quantum correlation decay characteristic for the evolution of the quantum discord. The correspondence provides a physical interpretation for the prominent feature of the decay of the quantum discord.
NASA Astrophysics Data System (ADS)
Lavarélo, Arthur; Roux, Guillaume
2014-10-01
The excitation spectrum of the frustrated spin-1/2 Heisenberg chain is reexamined using variational and exact diagonalization calculations. We show that the overlap matrix of the short-range resonating valence bond states basis can be inverted which yields tractable equations for single and two spinons excitations. Older results are recovered and new ones, such as the bond-state dispersion relation and its size with momentum at the Majumdar-Ghosh point are found. In particular, this approach yields a gap opening at J 2 = 0.25 J 1 and an onset of incommensurability in the dispersion relation at J 2 = 9/17 J 1 as in [S. Brehmer et al., J. Phys.: Condens. Matter 10, 1103 (1998)]. These analytical results provide a good support for the understanding of exact diagonalization spectra, assuming an independent spinons picture.
NASA Astrophysics Data System (ADS)
Del Rey Fernández, David C.; Boom, Pieter D.; Zingg, David W.
2017-02-01
Combined with simultaneous approximation terms, summation-by-parts (SBP) operators offer a versatile and efficient methodology that leads to consistent, conservative, and provably stable discretizations. However, diagonal-norm operators with a repeating interior-point operator that have thus far been constructed suffer from a loss of accuracy. While on the interior, these operators are of degree 2p, at a number of nodes near the boundaries, they are of degree p, and therefore of global degree p - meaning the highest degree monomial for which the operators are exact at all nodes. This implies that for hyperbolic problems and operators of degree greater than unity they lead to solutions with a global order of accuracy lower than the degree of the interior-point operator. In this paper, we develop a procedure to construct diagonal-norm first-derivative SBP operators that are of degree 2p at all nodes and therefore can lead to solutions of hyperbolic problems of order 2 p + 1. This is accomplished by adding nonzero entries in the upper-right and lower-left corners of SBP operator matrices with a repeating interior-point operator. This modification necessitates treating these new operators as elements, where mesh refinement is accomplished by increasing the number of elements in the mesh rather than increasing the number of nodes. The significant improvements in accuracy of this new family, for the same repeating interior-point operator, are demonstrated in the context of the linear convection equation.
NASA Astrophysics Data System (ADS)
Fathololoumi, S.; Dupont, E.; Wasilewski, Z. R.; Chan, C. W. I.; Razavipour, S. G.; Laframboise, S. R.; Huang, Shengxi; Hu, Q.; Ban, D.; Liu, H. C.
2013-03-01
We experimentally investigated the effect of oscillator strength (radiative transition diagonality) on the performance of resonant phonon-based terahertz quantum cascade lasers that have been optimized using a simplified density matrix formalism. Our results show that the maximum lasing temperature (Tmax) is roughly independent of laser transition diagonality within the lasing frequency range of the devices under test (3.2-3.7 THz) when cavity loss is kept low. Furthermore, the threshold current can be lowered by employing more diagonal transition designs, which can effectively suppress parasitic leakage caused by intermediate resonance between the injection and the downstream extraction levels. Nevertheless, the current carrying capacity through the designed lasing channel in more diagonal designs may sacrifice even more, leading to electrical instability and, potentially, complete inhibition of the device's lasing operation. We propose a hypothesis based on electric-field domain formation and competition/switching of different current-carrying channels to explain observed electrical instability in devices with lower oscillator strengths. The study indicates that not only should designers maximize Tmax during device optimization but also they should always consider the risk of electrical instability in device operation.
Home Reading: The Key to Proficiency.
ERIC Educational Resources Information Center
Henderson, Bill
2000-01-01
A Boston principal reflects on decade-long efforts to get students and their families to read together. Initiatives ranged from reading contests and upgraded reading materials to reading contracts, literacy shows, parent/home visiting programs, pizza parties, and off-site tutors. Persistence paid off in higher reading scores. (MLH)
DOT National Transportation Integrated Search
2011-07-15
"Metropolitan Planning Organizations (MPOs) are required by Federal law to develop a long-range Metropolitan Transportation Plan (MTP) at least every five years. This research focuses on assessing the trade-offs between business-as-usual MTP scenario...
Song, Xiaojun; Ta, Dean; Wang, Weiqi
2011-10-01
The parameters of ultrasonic guided waves (GWs) are very sensitive to mechanical and structural changes in long cortical bones. However, it is a challenge to obtain the group velocity and other parameters of GWs because of the presence of mixed multiple modes. This paper proposes a blind identification algorithm using the joint approximate diagonalization of eigen-matrices (JADE) and applies it to the separation of superimposed GWs in long bones. For the simulation case, the velocity of the single mode was calculated after separation. A strong agreement was obtained between the estimated velocity and the theoretical expectation. For the experiments in bovine long bones, by using the calculated velocity and a theoretical model, the cortical thickness (CTh) was obtained. For comparison with the JADE approach, an adaptive Gaussian chirplet time-frequency (ACGTF) method was also used to estimate the CTh. The results showed that the mean error of the CTh acquired by the JADE approach was 4.3%, which was smaller than that of the ACGTF method (13.6%). This suggested that the JADE algorithm may be used to separate the superimposed GWs and that the JADE algorithm could potentially be used to evaluate long bones. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Pratt, D. T.
1984-01-01
Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.
R4 terms in supergravities via T -duality constraint
NASA Astrophysics Data System (ADS)
Razaghian, Hamid; Garousi, Mohammad R.
2018-05-01
It has been speculated in the literature that the effective actions of string theories at any order of α' should be invariant under the Buscher rules plus their higher covariant-derivative corrections. This may be used as a constraint to find effective actions at any order of α', in particular, the metric, the B -field, and the dilaton couplings in supergravities at order α'3 up to an overall factor. For the simple case of zero B -field and diagonal metric in which we have done the calculations explicitly, we have found that the constraint fixes almost all of the seven independent Riemann curvature couplings. There is only one term which is not fixed, because when metric is diagonal, the reduction of two R4 terms becomes identical. The Riemann curvature couplings that the T -duality constraint produces for both type II and heterotic theories are fully consistent with the existing couplings in the literature which have been found by the S-matrix and by the sigma-model approaches.
Many-body delocalization with random vector potentials
NASA Astrophysics Data System (ADS)
Cheng, Chen; Mondaini, Rubem
In this talk we present the ergodic properties of excited states in a model of interacting fermions in quasi-one dimensional chains subjected to a random vector potential. In the non-interacting limit, we show that arbitrarily small values of this complex off-diagonal disorder triggers localization for the whole spectrum; the divergence of the localization length in the single particle basis is characterized by a critical exponent ν which depends on the energy density being investigated. However, when short-ranged interactions are included, the localization is lost and the system is ergodic regardless of the magnitude of disorder in finite chains. Our numerical results suggest a delocalization scheme for arbitrary small values of interactions. This finding indicates that the standard scenario of the many-body localization cannot be obtained in a model with random gauge fields. This research is financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. U1530401 and 11674021). RM also acknowledges support from NSFC (Grant No. 11650110441).
Plantet, C; Meimon, S; Conan, J-M; Fusco, T
2015-11-02
Exoplanet direct imaging with large ground based telescopes requires eXtreme Adaptive Optics that couples high-order adaptive optics and coronagraphy. A key element of such systems is the high-order wavefront sensor. We study here several high-order wavefront sensing approaches, and more precisely compare their sensitivity to noise. Three techniques are considered: the classical Shack-Hartmann sensor, the pyramid sensor and the recently proposed LIFTed Shack-Hartmann sensor. They are compared in a unified framework based on precise diffractive models and on the Fisher information matrix, which conveys the information present in the data whatever the estimation method. The diagonal elements of the inverse of the Fisher information matrix, which we use as a figure of merit, are similar to noise propagation coefficients. With these diagonal elements, so called "Fisher coefficients", we show that the LIFTed Shack-Hartmann and pyramid sensors outperform the classical Shack-Hartmann sensor. In photon noise regime, the LIFTed Shack-Hartmann and modulated pyramid sensors obtain a similar overall noise propagation. The LIFTed Shack-Hartmann sensor however provides attractive noise properties on high orders.
Terahertz broadband polarization converter based on metamaterials
NASA Astrophysics Data System (ADS)
Li, Yonghua; Zhao, Guozhong
2018-01-01
Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.
Fidelity study of superconductivity in extended Hubbard models
Plonka, N.; Jia, C. J.; Wang, Y.; ...
2015-07-08
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. Finally, we find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they aremore » attractive or repulsive, seemingly due to competing charge fluctuations.« less
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas
2015-06-26
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less
Dracínský, Martin; Kaminský, Jakub; Bour, Petr
2009-03-07
Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in future quantum chemistry packages is desirable.
Quantum entanglement and spin control in silicon nanocrystal.
Berec, Vesna
2012-01-01
Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.
Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.
Ismail-Beigi, Sohrab
2017-09-27
The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.
Sparsity based terahertz reflective off-axis digital holography
NASA Astrophysics Data System (ADS)
Wan, Min; Muniraj, Inbarasan; Malallah, Ra'ed; Zhao, Liang; Ryle, James P.; Rong, Lu; Healy, John J.; Wang, Dayong; Sheridan, John T.
2017-05-01
Terahertz radiation lies between the microwave and infrared regions in the electromagnetic spectrum. Emitted frequencies range from 0.1 to 10 THz with corresponding wavelengths ranging from 30 μm to 3 mm. In this paper, a continuous-wave Terahertz off-axis digital holographic system is described. A Gaussian fitting method and image normalisation techniques were employed on the recorded hologram to improve the image resolution. A synthesised contrast enhanced hologram is then digitally constructed. Numerical reconstruction is achieved using the angular spectrum method of the filtered off-axis hologram. A sparsity based compression technique is introduced before numerical data reconstruction in order to reduce the dataset required for hologram reconstruction. Results prove that a tiny amount of sparse dataset is sufficient in order to reconstruct the hologram with good image quality.
A simple rule for quadrupedal gait generation determined by leg loading feedback: a modeling study
Fukuoka, Yasuhiro; Habu, Yasushi; Fukui, Takahiro
2015-01-01
We discovered a specific rule for generating typical quadrupedal gaits (the order of the movement of four legs) through a simulated quadrupedal locomotion, in which unprogrammed gaits (diagonal/lateral sequence walks, left/right-lead canters, and left/right-lead transverse gallops) spontaneously emerged because of leg loading feedbacks to the CPGs hard-wired to produce a default trot. Additionally, all gaits transitioned according to speed, as seen in animals. We have therefore hypothesized that various gaits derive from a trot because of posture control through leg loading feedback. The body tilt on the two support legs of each diagonal pair during trotting was classified into three types (level, tilted up, or tilted down) according to speed. The load difference between the two legs led to the phase difference between their CPGs via the loading feedbacks, resulting in nine gaits (32: three tilts to the power of two diagonal pairs) including the aforementioned. PMID:25639661
Acoustic and Visual Monitoring for Marine Mammals at the Southern California Off-Shore Range (SCORE)
2005-02-28
1998 ). Long - range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. Journal of the Acoustical ...C. G. and Clark, D.S. 1998 . Long - range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean, J. Acous. Soc. Am...Gulf of Alaska. Marine Mammal Science 19: 682-693. Stafford , K.M., C.G. Fox, and D.S. Clark. 1998 .
Steady bipartite coherence induced by non-equilibrium environment
NASA Astrophysics Data System (ADS)
Huangfu, Yong; Jing, Jun
2018-01-01
We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.
Lepton flavor violating Z' explanation of the muon anomalous magnetic moment
Altmannshofer, Wolfgang; Chen, Chien-Yi; Dev, P. S. Bhupal; ...
2016-09-28
Here, we discuss a minimal solution to the long-standing (g-2) μ anomaly in a simple extension of the Standard Model with an extra Z' vector boson that has only flavor off-diagonal couplings to the second and third generation of leptons, i.e. μ, τ, ν μ, ν τ, and their antiparticles. A simplified model realization, as well as various collider and low-energy constraints on this model, are discussed. We find that the (g-2) μ -favored region for a Z' lighter than the tau lepton is totally excluded, while a heavier Z' solution is still allowed. Some testable implications of this scenariomore » in future experiments, such as lepton-flavor universality-violating tau decays at Belle 2, and a new four-lepton signature involving same-sign di-muons and di-taus at HL-LHC and FCC-ee, are pointed out. A characteristic resonant absorption feature in the high-energy neutrino spectrum might also be observed by neutrino telescopes like IceCube and KM3NeT.« less
Lepton flavor violating Z' explanation of the muon anomalous magnetic moment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmannshofer, Wolfgang; Chen, Chien-Yi; Dev, P. S. Bhupal
Here, we discuss a minimal solution to the long-standing (g-2) μ anomaly in a simple extension of the Standard Model with an extra Z' vector boson that has only flavor off-diagonal couplings to the second and third generation of leptons, i.e. μ, τ, ν μ, ν τ, and their antiparticles. A simplified model realization, as well as various collider and low-energy constraints on this model, are discussed. We find that the (g-2) μ -favored region for a Z' lighter than the tau lepton is totally excluded, while a heavier Z' solution is still allowed. Some testable implications of this scenariomore » in future experiments, such as lepton-flavor universality-violating tau decays at Belle 2, and a new four-lepton signature involving same-sign di-muons and di-taus at HL-LHC and FCC-ee, are pointed out. A characteristic resonant absorption feature in the high-energy neutrino spectrum might also be observed by neutrino telescopes like IceCube and KM3NeT.« less
Effective Methods for Solving Band SLEs after Parabolic Nonlinear PDEs
NASA Astrophysics Data System (ADS)
Veneva, Milena; Ayriyan, Alexander
2018-04-01
A class of models of heat transfer processes in a multilayer domain is considered. The governing equation is a nonlinear heat-transfer equation with different temperature-dependent densities and thermal coefficients in each layer. Homogeneous Neumann boundary conditions and ideal contact ones are applied. A finite difference scheme on a special uneven mesh with a second-order approximation in the case of a piecewise constant spatial step is built. This discretization leads to a pentadiagonal system of linear equations (SLEs) with a matrix which is neither diagonally dominant, nor positive definite. Two different methods for solving such a SLE are developed - diagonal dominantization and symbolic algorithms.
NASA Astrophysics Data System (ADS)
Nandy, Atanu; Pal, Biplab; Chakrabarti, Arunava
2016-08-01
It is shown that an entire class of off-diagonally disordered linear lattices composed of two basic building blocks and described within a tight-binding model can be tailored to generate absolutely continuous energy bands. It can be achieved if linear atomic clusters of an appropriate size are side-coupled to a suitable subset of sites in the backbone, and if the nearest-neighbor hopping integrals, in the backbone and in the side-coupled cluster, bear a certain ratio. We work out the precise relationship between the number of atoms in one of the building blocks in the backbone and that in the side attachment. In addition, we also evaluate the definite correlation between the numerical values of the hopping integrals at different subsections of the chain, that can convert an otherwise point spectrum (or a singular continuous one for deterministically disordered lattices) with exponentially (or power law) localized eigenfunctions to an absolutely continuous spectrum comprising one or more bands (subbands) populated by extended, totally transparent eigenstates. The results, which are analytically exact, put forward a non-trivial variation of the Anderson localization (Anderson P. W., Phys. Rev., 109 (1958) 1492), pointing towards its unusual sensitivity to the numerical values of the system parameters and, go well beyond the other related models such as the Random Dimer Model (RDM) (Dunlap D. H. et al., Phys. Rev. Lett., 65 (1990) 88).
NASA Astrophysics Data System (ADS)
Weymouth, Alfred J.; Riegel, Elisabeth; Matencio, Sonia; Giessibl, Franz J.
2018-04-01
One of the challenges of AFM, in contrast to STM, is that the measured signal includes both long-range and short-range components. The most accurate method for removing long-range components is to measure both on and off an adsorbate and to subtract the difference. This on-off method is challenging at room temperature due to thermal drift. By moving to a non-contact scheme in which the lateral component of the force interaction is probed, the measurement is dominated by short-range interactions. We use frequency-modulation lateral force microscopy to measure individual PTCDA molecules adsorbed on Ag/Si(111)-( √{3 }×√{3 } ). By fitting the data to a model potential, we can extract the depth and width of the potential. When the tip is closer to the sample, a repulsive feature can be observed in the data.
Zipf’s Law for Word Frequencies: Word Forms versus Lemmas in Long Texts
Corral, Álvaro; Boleda, Gemma; Ferrer-i-Cancho, Ramon
2015-01-01
Zipf’s law is a fundamental paradigm in the statistics of written and spoken natural language as well as in other communication systems. We raise the question of the elementary units for which Zipf’s law should hold in the most natural way, studying its validity for plain word forms and for the corresponding lemma forms. We analyze several long literary texts comprising four languages, with different levels of morphological complexity. In all cases Zipf’s law is fulfilled, in the sense that a power-law distribution of word or lemma frequencies is valid for several orders of magnitude. We investigate the extent to which the word-lemma transformation preserves two parameters of Zipf’s law: the exponent and the low-frequency cut-off. We are not able to demonstrate a strict invariance of the tail, as for a few texts both exponents deviate significantly, but we conclude that the exponents are very similar, despite the remarkable transformation that going from words to lemmas represents, considerably affecting all ranges of frequencies. In contrast, the low-frequency cut-offs are less stable, tending to increase substantially after the transformation. PMID:26158787
NASA Astrophysics Data System (ADS)
Yu, Ruimin; Fan, Wugang; Guo, Xiangxin; Dong, Shaoming
2016-02-01
Carbonaceous air cathodes with rational architecture are vital for the nonaqueous Li-O2 batteries to achieve large energy density, high energy efficiency and long cycle life. In this work, we report the cathodes made of highly ordered and vertically aligned carbon nanotubes grown on permeable Ta foil substrates (VACNTs-Ta) via thermal chemical vapour deposition. The VACNTs-Ta, composed of uniform carbon nanotubes with approximately 240 μm in superficial height, has the super large surface area. Meanwhile, the oriented carbon nanotubes provide extremely outstanding passageways for Li ions and oxygen species. Electrochemistry tests of VACNTs-Ta air cathodes show enhancement in discharge capacity and cycle life compared to those made from short-range oriented and disordered carbon nanotubes. By further combining with the LiI redox mediator that is dissolved in the tetraethylene dimethyl glycol based electrolytes, the batteries exhibit more than 200 cycles at the current density of 200 mA g-1 with a cut-off discharge capacity of 1000 mAh g-1, and their energy efficiencies increase from 50% to 82%. The results here demonstrate the importance of cathode construction for high-energy-efficiency and long-life Li-O2 batteries.
Ren, Jiajun; Yi, Yuanping; Shuai, Zhigang
2016-10-11
We propose an inner space perturbation theory (isPT) to replace the expensive iterative diagonalization in the standard density matrix renormalization group theory (DMRG). The retained reduced density matrix eigenstates are partitioned into the active and secondary space. The first-order wave function and the second- and third-order energies are easily computed by using one step Davidson iteration. Our formulation has several advantages including (i) keeping a balance between the efficiency and accuracy, (ii) capturing more entanglement with the same amount of computational time, (iii) recovery of the standard DMRG when all the basis states belong to the active space. Numerical examples for the polyacenes and periacene show that the efficiency gain is considerable and the accuracy loss due to the perturbation treatment is very small, when half of the total basis states belong to the active space. Moreover, the perturbation calculations converge in all our numerical examples.
Universal relations of an ultracold Fermi gas with arbitrary spin-orbit coupling
NASA Astrophysics Data System (ADS)
Jie, Jianwen; Qi, Ran; Zhang, Peng
2018-05-01
We derive the universal relations for an ultracold two-component Fermi gas with a spin-orbit coupling (SOC) ∑α,β =x ,y ,zλα βσαpβ , where px ,y ,z and σx ,y ,z are the single-atom momentum and Pauli operators for pseudospin, respectively, and the SOC intensity λα β could take an arbitrary value. We consider the system with an s -wave short-range interspecies interaction, and ignore the SOC-induced modification for the value of the scattering length. Using the first-quantized approach developed by Tan [S. Tan, Phys. Rev. Lett. 107, 145302 (2011), 10.1103/PhysRevLett.107.145302], we obtain the short-range and high-momentum expansions for the one-body real-space correlation function and momentum distribution function, respectively. For our system these functions are a 2 ×2 matrix in the pseudospin basis. We find that the leading-order (1 /k4 ) behavior of the diagonal elements of the momentum distribution function, i.e., n↑↑(k ) and n↓↓(k ) , are not modified by the SOC. However, the SOC can significantly modify the large-k behaviors of the distribution difference δ n (k ) ≡n↑↑(k ) -n↓↓(k ) as well as the nondiagonal elements of the momentum distribution function, i.e., n↑↓(k ) and n↓↑(k ) . In the absence of the SOC, the leading order of δ n (k ) , n↑↓(k ) , and n↓↑(k ) is O (1 /k6) . When SOC appears, it can induce a term on the order of 1 /k5 for these elements. We further derive the adiabatic relation and the energy functional. Our results show that the SOC can induce an additional term in the energy functional, which describes the contribution from the SOC to the total energy. In addition, the form of the adiabatic relation for our system is not modified by the SOC. Our results are applicable for the systems with any type of single-atom trapping potential, which could be either diagonal or nondiagonal in the pseudospin basis.
NASA Astrophysics Data System (ADS)
Ptok, Andrzej; Jerzy Kapcia, Konrad
2015-04-01
The effects of a single non-magnetic impurity on superconducting states in the Penson-Kolb-Hubbard model have been analyzed. The investigations have been performed within the Hartree-Fock mean field approximation in two steps: (i) the homogeneous system is analysed using the Bogoliubov transformation, whereas (ii) the inhomogeneous system is investigated by self-consistent Bogoliubov-de Gennes equations (with the exact diagonalization and the kernel polynomial method). We analysed both signs of the pair hopping, which correspond to s-wave and η-wave superconductivity. Our results show that an enhancement of the local superconducting gap at the impurity-site occurs for both cases. We obtained that Cooper pairs are scattered (at the impurity site) into the states which are from the neighborhoods of the states, which are commensurate ones with the crystal lattice. Additionally, in the η-phase there are peaks in the local-energy gap (in momentum space), which are connected with long-range oscillations in the spatial distribution of the energy gap, superconducting order parameter (SOP), as well as effective pairing potential. Our results can be contrasted with the experiment and predicts how to experimentally differentiate these two different symmetries of SOP by the scanning tunneling microscopy technique.
Slowest kinetic modes revealed by metabasin renormalization
NASA Astrophysics Data System (ADS)
Okushima, Teruaki; Niiyama, Tomoaki; Ikeda, Kensuke S.; Shimizu, Yasushi
2018-02-01
Understanding the slowest relaxations of complex systems, such as relaxation of glass-forming materials, diffusion in nanoclusters, and folding of biomolecules, is important for physics, chemistry, and biology. For a kinetic system, the relaxation modes are determined by diagonalizing its transition rate matrix. However, for realistic systems of interest, numerical diagonalization, as well as extracting physical understanding from the diagonalization results, is difficult due to the high dimensionality. Here, we develop an alternative and generally applicable method of extracting the long-time scale relaxation dynamics by combining the metabasin analysis of Okushima et al. [Phys. Rev. E 80, 036112 (2009), 10.1103/PhysRevE.80.036112] and a Jacobi method. We test the method on an illustrative model of a four-funnel model, for which we obtain a renormalized kinematic equation of much lower dimension sufficient for determining slow relaxation modes precisely. The method is successfully applied to the vacancy transport problem in ionic nanoparticles [Niiyama et al., Chem. Phys. Lett. 654, 52 (2016), 10.1016/j.cplett.2016.04.088], allowing a clear physical interpretation that the final relaxation consists of two successive, characteristic processes.
Ferroelectric order in liquid crystal phases of polar disk-shaped ellipsoids
NASA Astrophysics Data System (ADS)
Bose, Tushar Kanti; Saha, Jayashree
2014-05-01
The demonstration of a spontaneous macroscopic ferroelectric order in liquid phases in the absence of any long range positional order is considered an outstanding problem of both fundamental and technological interest. Recently, we reported that a system of polar achiral disklike ellipsoids can spontaneously exhibit a long searched ferroelectric nematic phase and a ferroelectric columnar phase with strong axial polarization. The major role is played by the dipolar interactions. The model system of interest consists of attractive-repulsive Gay-Berne oblate ellipsoids embedded with two parallel point dipoles positioned symmetrically on the equatorial plane of the ellipsoids. In the present work, we investigate in detail the profound effects of changing the separation between the two symmetrically placed dipoles and the strength of the dipoles upon the existence of different ferroelectric discotic liquid crystal phases via extensive off-lattice N-P-T Monte Carlo simulations. Ferroelectric biaxial phases are exhibited in addition to the uniaxial ferroelectric fluids where the phase biaxiality results from the dipolar interactions. The structures of all the ferroelectric configurations of interest are presented in detail. Simple phase diagrams are determined which include different polar and apolar discotic fluids generated by the system.
Goldfeld, Sharon; Villanueva, Karen; Tanton, Robert; Katz, Ilan; Brinkman, Sally; Woolcock, Geoffrey; Giles-Corti, Billie
2017-03-13
Healthy childhood development in the early years is critical for later adult health and well-being. Early childhood development (ECD) research has focused primarily on individual, family and school factors, but largely ignored community factors. The Kids in Communities Study (KiCS) will test and investigate community-level influences on child development across Australia. Cross-sectional mixed-methods study exploring community-level effects in 25 Australian local communities; selection based on community socioeconomic status (SES) and ECD using the Australian Early Development Census (AEDC), a population measure of child development, to create a local community 'diagonality type', that is, those performing better or worse (off-diagonal), or as expected (on-diagonal) on the AEDC relative to their SES. Data collection includes stakeholder interviews, parent and service provider focus groups, and surveys with general community residents and service providers, mapping of neighbourhood design and local amenities and services, analysis of policy documents, and the use of existing sociodemographic and early childhood education and care data. Quantitative data will be used to test associations between local community diagonality type, and ECD based on AEDC scores. Qualitative data will provide complementary and deeper exploration of these same associations. The Royal Children's Hospital Human Research Ethics Committee approved the study protocol (#30016). Further ethics approvals were obtained from State Education and Health departments and Catholic archdioceses where required. ECD community-level indicators will eventually be derived and made publically available. Findings will be published in peer-reviewed journals, community reports, websites and policy briefs to disseminate results to researchers, and key stakeholders including policymakers, practitioners and (most importantly) the communities involved. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Entanglement entropy for the long-range Ising chain in a transverse field.
Koffel, Thomas; Lewenstein, M; Tagliacozzo, Luca
2012-12-28
We consider the Ising model in a transverse field with long-range antiferromagnetic interactions that decay as a power law with their distance. We study both the phase diagram and the entanglement properties as a function of the exponent of the interaction. The phase diagram can be used as a guide for future experiments with trapped ions. We find two gapped phases, one dominated by the transverse field, exhibiting quasi-long-range order, and one dominated by the long-range interaction, with long-range Néel ordered ground states. We determine the location of the quantum critical points separating those two phases. We determine their critical exponents and central charges. In the phase with quasi-long-range order the ground states exhibit exotic corrections to the area law for the entanglement entropy coexisting with gapped entanglement spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesta, M.; Coehoorn, R.; Bobbert, P. A.
2016-03-28
Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-rangemore » quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.« less
Possible biomechanical origins of the long-range correlations in stride intervals of walking
NASA Astrophysics Data System (ADS)
Gates, Deanna H.; Su, Jimmy L.; Dingwell, Jonathan B.
2007-07-01
When humans walk, the time duration of each stride varies from one stride to the next. These temporal fluctuations exhibit long-range correlations. It has been suggested that these correlations stem from higher nervous system centers in the brain that control gait cycle timing. Existing proposed models of this phenomenon have focused on neurophysiological mechanisms that might give rise to these long-range correlations, and generally ignored potential alternative mechanical explanations. We hypothesized that a simple mechanical system could also generate similar long-range correlations in stride times. We modified a very simple passive dynamic model of bipedal walking to incorporate forward propulsion through an impulsive force applied to the trailing leg at each push-off. Push-off forces were varied from step to step by incorporating both “sensory” and “motor” noise terms that were regulated by a simple proportional feedback controller. We generated 400 simulations of walking, with different combinations of sensory noise, motor noise, and feedback gain. The stride time data from each simulation were analyzed using detrended fluctuation analysis to compute a scaling exponent, α. This exponent quantified how each stride interval was correlated with previous and subsequent stride intervals over different time scales. For different variations of the noise terms and feedback gain, we obtained short-range correlations (α<0.5), uncorrelated time series (α=0.5), long-range correlations (0.5<α<1.0), or Brownian motion (α>1.0). Our results indicate that a simple biomechanical model of walking can generate long-range correlations and thus perhaps these correlations are not a complex result of higher level neuronal control, as has been previously suggested.
A fast algorithm for computer aided collimation gamma camera (CACAO)
NASA Astrophysics Data System (ADS)
Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.
2000-08-01
The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.
Two-photon Anderson localization in a disordered quadratic waveguide array
NASA Astrophysics Data System (ADS)
Bai, Y. F.; Xu, P.; Lu, L. L.; Zhong, M. L.; Zhu, S. N.
2016-05-01
We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks.
NASA Technical Reports Server (NTRS)
Newell, Reginald E. (Principal Investigator)
2003-01-01
During the first year we focused on the analysis of data collected on over 7600 commercial aircraft flights (the MOZAIC program). The aim was to further our understanding of the fundamental dynamical processes that drive mesoscale phenomena in the upper troposphere and lower stratosphere, and their effects on the advection of passive scalars. Through these studies we made the following findings. 2001]: We derived the Kolmogorov equation for the third-order velocity structure function on an f-plane. We showed how the sign of the function yields the direction of the energy cascade. The remarkable linearity of the measured off diagonal third-order structure function was studied. We suggested that the Coriolis term, which appears explicitly in this equation, may be crucial in understanding the observed kinetic energy spectra at scales larger than 100 km, instead of the nonlinear advection term as previously assumed. Also, we showed that
NASA Technical Reports Server (NTRS)
Demmel, James W.; Higham, Nicholas J.; Schreiber, Robert S.
1992-01-01
Many of the currently popular 'block algorithms' are scalar algorithms in which the operations have been grouped and reordered into matrix operations. One genuine block algorithm in practical use is block LU factorization, and this has recently been shown by Demmel and Higham to be unstable in general. It is shown here that block LU factorization is stable if A is block diagonally dominant by columns. Moreover, for a general matrix the level of instability in block LU factorization can be founded in terms of the condition number kappa(A) and the growth factor for Gaussian elimination without pivoting. A consequence is that block LU factorization is stable for a matrix A that is symmetric positive definite or point diagonally dominant by rows or columns as long as A is well-conditioned.
Pressure effects on band structures in dense lithium
NASA Astrophysics Data System (ADS)
Goto, Naoyuki; Nagara, Hitose
2012-07-01
We studied the change of the band structures in some structures of Li predicted at high pressures, using GGA and GW calculations. The width of the 1s band coming from the 1s electron of Li shows broadening by the pressurization, which is the normal behavior of bands at high pressure. The width of the band just below the Fermi level decreases by the pressurization, which is an opposite behavior to the normal bands. The character of this narrowing band is mostly p-like with a little s-like portion. The band gaps in some structures are really observed even by the GGA calculations. The gaps by the GW calculations increase to about 1.5 times the GGA values. Generally the one-shot GW calculation (diagonal only calculations) gives more reliable values than the GGA, but it may fail to predict band gaps for the case where band dispersion shows complex crossing near the Fermi level. There remains some structures for which GW calculations with off-diagonal elements taken into account are needed to identify the phase to be metallic or semiconducting.
Comparative DMFT study of the eg-orbital Hubbard model in thin films
NASA Astrophysics Data System (ADS)
Rüegg, Andreas; Hung, Hsiang-Hsuan; Gull, Emanuel; Fiete, Gregory A.
2014-02-01
Heterostructures of transition-metal oxides have emerged as a new route to engineer electronic systems with desired functionalities. Motivated by these developments, we study a two-orbital Hubbard model in a thin-film geometry confined along the cubic [001] direction using the dynamical mean-field theory. We contrast the results of two approximate impurity solvers (exact diagonalization and one-crossing approximation) to the results of the numerically exact continuous-time quantum Monte Carlo solver. Consistent with earlier studies, we find that the one-crossing approximation performs well in the insulating regime, while the advantage of the exact-diagonalization-based solver is more pronounced in the metallic regime. We then investigate various aspects of strongly correlated eg-orbital systems in thin-film geometries. In particular, we show how the interfacial orbital polarization dies off quickly a few layers from the interface and how the film thickness affects the location of the interaction-driven Mott transition. In addition, we explore the changes in the electronic structure with varying carrier concentration and identify large variations of the orbital polarization in the strongly correlated regime.
Multiple quantum coherence spectroscopy.
Mathew, Nathan A; Yurs, Lena A; Block, Stephen B; Pakoulev, Andrei V; Kornau, Kathryn M; Wright, John C
2009-08-20
Multiple quantum coherences provide a powerful approach for studies of complex systems because increasing the number of quantum states in a quantum mechanical superposition state increases the selectivity of a spectroscopic measurement. We show that frequency domain multiple quantum coherence multidimensional spectroscopy can create these superposition states using different frequency excitation pulses. The superposition state is created using two excitation frequencies to excite the symmetric and asymmetric stretch modes in a rhodium dicarbonyl chelate and the dynamic Stark effect to climb the vibrational ladders involving different overtone and combination band states. A monochromator resolves the free induction decay of different coherences comprising the superposition state. The three spectral dimensions provide the selectivity required to observe 19 different spectral features associated with fully coherent nonlinear processes involving up to 11 interactions with the excitation fields. The different features act as spectroscopic probes of the diagonal and off-diagonal parts of the molecular potential energy hypersurface. This approach can be considered as a coherent pump-probe spectroscopy where the pump is a series of excitation pulses that prepares a multiple quantum coherence and the probe is another series of pulses that creates the output coherence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonasson, O.; Karimi, F.; Knezevic, I.
2016-08-01
We derive a Markovian master equation for the single-electron density matrix, applicable to quantum cascade lasers (QCLs). The equation conserves the positivity of the density matrix, includes off-diagonal elements (coherences) as well as in-plane dynamics, and accounts for electron scattering with phonons and impurities. We use the model to simulate a terahertz-frequency QCL, and compare the results with both experiment and simulation via nonequilibrium Green's functions (NEGF). We obtain very good agreement with both experiment and NEGF when the QCL is biased for optimal lasing. For the considered device, we show that the magnitude of coherences can be a significantmore » fraction of the diagonal matrix elements, which demonstrates their importance when describing THz QCLs. We show that the in-plane energy distribution can deviate far from a heated Maxwellian distribution, which suggests that the assumption of thermalized subbands in simplified density-matrix models is inadequate. As a result, we also show that the current density and subband occupations relax towards their steady-state values on very different time scales.« less
NASA Astrophysics Data System (ADS)
Cruzeiro, L.
2008-10-01
A new physical cause for a temperature-dependent double peak in exciton systems is put forward within a thermal equilibrium approach for the calculation of optical properties of exciton systems. Indeed, it is found that one-dimensional exciton systems with only one molecule per unit cell can have an absorption spectrum characterized by a double peak provided that the coupling between excitations in different molecules is positive. The two peaks, whose relative intensities vary with temperature, are located around the exciton band edges, being separated by an energy of approximately 4V, where V is the average coupling between nearest neighbours. For small amounts of diagonal and off-diagonal disorder, the contributions from the intermediate states in the band are also visible as intermediate structure between the two peaks, this being enhanced for systems with periodic boundary conditions. At a qualitative level, these results correlate well with experimental observations in the molecular aggregates of the thiacarbocyanine dye THIATS and in the organic crystals of acetanilide and N-methylacetamide.
An Efficient numerical method to calculate the conductivity tensor for disordered topological matter
NASA Astrophysics Data System (ADS)
Garcia, Jose H.; Covaci, Lucian; Rappoport, Tatiana G.
2015-03-01
We propose a new efficient numerical approach to calculate the conductivity tensor in solids. We use a real-space implementation of the Kubo formalism where both diagonal and off-diagonal conductivities are treated in the same footing. We adopt a formulation of the Kubo theory that is known as Bastin formula and expand the Green's functions involved in terms of Chebyshev polynomials using the kernel polynomial method. Within this method, all the computational effort is on the calculation of the expansion coefficients. It also has the advantage of obtaining both conductivities in a single calculation step and for various values of temperature and chemical potential, capturing the topology of the band-structure. Our numerical technique is very general and is suitable for the calculation of transport properties of disordered systems. We analyze how the method's accuracy varies with the number of moments used in the expansion and illustrate our approach by calculating the transverse conductivity of different topological systems. T.G.R, J.H.G and L.C. acknowledge Brazilian agencies CNPq, FAPERJ and INCT de Nanoestruturas de Carbono, Flemish Science Foundation for financial support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkas, R. R.; Foot, R.; He, X.
The universal QCD color theory is extended to an SU(3)/sub 1//direct product/SU(3)/sub 2//direct product/SU(3)/sub 3/ gauge theory, where quarks of the /ital i/th generation transform as triplets under SU(3)/sub /ital i// and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamentalmore » issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements.« less
The other Higgses, at resonance, in the Lee-Wick extension of the Standard Model
NASA Astrophysics Data System (ADS)
Figy, Terrance; Zwicky, Roman
2011-10-01
Within the framework of the Lee-Wick Standard Model (LWSM) we investigate Higgs pair production gg → h 0 h 0, gg to {h_0}{tilde{p}_0} and top pair production gg to bar{t}t at the Large Hadron Collider (LHC), where the neutral particles from the Higgs sector ( h 0, {tilde{h}_0} and {tilde{p}_0} ) appear as possible resonant intermediate states. Depending on whether the LW Higgs state is below or above the top pair threshold either the hh or tt-channel are dominant and therefore of main interest. We investigate the signal gg to {h_0}{h_0} to bar{b}bγ γ and we find that the LW Higgs, depending on its mass-range, can be seen not long after the LHC upgrade in 2012. In gg to bar{t}t the LW states, due to the wrong-sign propagator and negative width, lead to a dip-peak structure instead of the usual peak-dip structure which gives a characteristic signal especially for low-lying LW Higgs states. We comment on the LWSM and the forward-backward asymmetry in view of the measurement at the TeVatron. Furthermore, we present a technique which reduces the hyperbolic diagonalization to standard diagonalization methods. We clarify issues of spurious phases in the Yukawa sector.
Analysis of nodal aberration properties in off-axis freeform system design.
Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao
2016-08-20
Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.
Magnetic Properties of a Fluvial Chronosequence From the Eastern Wind River Range, Wyoming
NASA Astrophysics Data System (ADS)
Quinton, E. E.; Dahms, D. E.; Geiss, C. E.
2010-12-01
In order to constrain the rate of magnetic enhancement in glacial fluvial sediments, we sampled modern soils from eight fluvial terraces in the East Wind River Range in Wyoming. Soil profiles up to 1.2 meters deep were described in the field and sampled in five cm intervals from a series of hand-dug pits or natural river-bank exposure. The age of the studied profiles are estimated to range from >600 ka to modern. They include Sacagawea Ridge, Bull Lake and Pinedale-age fluvial terraces as well as one Holocene profile. To characterize changes in magnetic properties we measured low-field magnetic susceptibility, anhysteretic remanent magnetization, isothermal remanent magnetization and S-ratios for all, and hysteresis loops for a selected sub-set of samples. Our measurements show no clear trend in magnetic enhancement with estimated soil age. The observed lack of magnetic enhancement in the older soils may be due to long-term deflation, which continuously strips off the magnetically enhanced topsoil. It is also possible that the main pedogenic processes, such as the development of well-expressed calcic horizons destroy or mask the effects of long-term magnetic enhancement.
Applications of superconducting bolometers in security imaging
NASA Astrophysics Data System (ADS)
Luukanen, A.; Leivo, M. M.; Rautiainen, A.; Grönholm, M.; Toivanen, H.; Grönberg, L.; Helistö, P.; Mäyrä, A.; Aikio, M.; Grossman, E. N.
2012-12-01
Millimeter-wave (MMW) imaging systems are currently undergoing deployment World-wide for airport security screening applications. Security screening through MMW imaging is facilitated by the relatively good transmission of these wavelengths through common clothing materials. Given the long wavelength of operation (frequencies between 20 GHz to ~ 100 GHz, corresponding to wavelengths between 1.5 cm and 3 mm), existing systems are suited for close-range imaging only due to substantial diffraction effects associated with practical aperture diameters. The present and arising security challenges call for systems that are capable of imaging concealed threat items at stand-off ranges beyond 5 meters at near video frame rates, requiring substantial increase in operating frequency in order to achieve useful spatial resolution. The construction of such imaging systems operating at several hundred GHz has been hindered by the lack of submm-wave low-noise amplifiers. In this paper we summarize our efforts in developing a submm-wave video camera which utilizes cryogenic antenna-coupled microbolometers as detectors. Whilst superconducting detectors impose the use of a cryogenic system, we argue that the resulting back-end complexity increase is a favorable trade-off compared to complex and expensive room temperature submm-wave LNAs both in performance and system cost.
A beam-splitter-type 3-D endoscope for front view and front-diagonal view images.
Kamiuchi, Hiroki; Masamune, Ken; Kuwana, Kenta; Dohi, Takeyoshi; Kim, Keri; Yamashita, Hiromasa; Chiba, Toshio
2013-01-01
In endoscopic surgery, surgeons must manipulate an endoscope inside the body cavity to observe a large field-of-view while estimating the distance between surgical instruments and the affected area by reference to the size or motion of the surgical instruments in 2-D endoscopic images on a monitor. Therefore, there is a risk of the endoscope or surgical instruments physically damaging body tissues. To overcome this problem, we developed a Ø7- mm 3-D endoscope that can switch between providing front and front-diagonal view 3-D images by simply rotating its sleeves. This 3-D endoscope consists of a conventional 3-D endoscope and an outer and inner sleeve with a beam splitter and polarization plates. The beam splitter was used for visualizing both the front and front-diagonal view and was set at 25° to the outer sleeve's distal end in order to eliminate a blind spot common to both views. Polarization plates were used to avoid overlap of the two views. We measured signal-to-noise ratio (SNR), sharpness, chromatic aberration (CA), and viewing angle of this 3-D endoscope and evaluated its feasibility in vivo. Compared to the conventional 3-D endoscope, SNR and sharpness of this 3-D endoscope decreased by 20 and 7 %, respectively. No significant difference was found in CA. The viewing angle for both the front and front-diagonal views was about 50°. In the in vivo experiment, this 3-D endoscope can provide clear 3-D images of both views by simply rotating its inner sleeve. The developed 3-D endoscope can provide the front and front-diagonal view by simply rotating the inner sleeve, therefore the risk of damage to fragile body tissues can be significantly decreased.
Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.
Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai
2011-01-01
Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Shimizu, Akira; Inoue, Jun-Ichi
1999-10-01
We study the nonequilibrium time evolution of the Bose-Einstein condensate of interacting bosons confined in a leaky box, when its number fluctuation is initially (t=0) suppressed. We take account of quantum fluctuations of all modes, including k=0, of the bosons. As the wave function of the ground state that has a definite number N of interacting bosons, we use a variational form \\|N,y>, which is obtained by operating a unitary operator eiG(y) on the number state of free bosons. Using eiG(y), we identify a ``natural coordinate'' b of the interacting bosons, by which many physical properties can be simply described. The \\|N,y> can be represented simply as a number state of b we thus call it the ``number state of interacting bosons'' (NSIB). To simulate real systems, for which if one fixes N at t=0 N will fluctuate at later times because of a finite probability of exchanging bosons between the box and the environment, we evaluate the time evolution of the reduced density operator ρ⁁(t) of the bosons in the box as a function of the leakage flux J. We concentrate on the most interesting and nontrivial time stage, i.e., the early time stage for which Jt<
Implicit solvers for unstructured meshes
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, Dimitri J.
1991-01-01
Implicit methods were developed and tested for unstructured mesh computations. The approximate system which arises from the Newton linearization of the nonlinear evolution operator is solved by using the preconditioned GMRES (Generalized Minimum Residual) technique. Three different preconditioners were studied, namely, the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over relaxation (SSOR). The preconditioners were optimized to have good vectorization properties. SSOR and ILU were also studied as iterative schemes. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also studied. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.
Peng, Bo; Kowalski, Karol
2017-01-25
In this paper, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Finally, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.
Zhou, Tao; Gao, Yi; Zhu, Jian -Xin
2015-03-07
Recenmore » tly it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the d -wave nodal lines (nodal gap) contrasts the common understanding of the d -wave pairing symmetry, which challenges the present theories for the high- T c superconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high- T c superconductors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Kowalski, Karol
In this paper, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Finally, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.
Compatible diagonal-norm staggered and upwind SBP operators
NASA Astrophysics Data System (ADS)
Mattsson, Ken; O'Reilly, Ossian
2018-01-01
The main motivation with the present study is to achieve a provably stable high-order accurate finite difference discretisation of linear first-order hyperbolic problems on a staggered grid. The use of a staggered grid makes it non-trivial to discretise advective terms. To overcome this difficulty we discretise the advective terms using upwind Summation-By-Parts (SBP) operators, while the remaining terms are discretised using staggered SBP operators. The upwind and staggered SBP operators (for each order of accuracy) are compatible, here meaning that they are based on the same diagonal norms, allowing for energy estimates to be formulated. The boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-SAT approximations lead to fully explicit ODE systems. The accuracy and stability properties are demonstrated for linear hyperbolic problems in 1D, and for the 2D linearised Euler equations with constant background flow. The newly derived upwind and staggered SBP operators lead to significantly more accurate numerical approximations, compared with the exclusive usage of (previously derived) central-difference first derivative SBP operators.
Multivariable Dynamic Ankle Mechanical Impedance With Relaxed Muscles
Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville
2015-01-01
Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic “peanut” shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed. PMID:24686292
Multivariable dynamic ankle mechanical impedance with relaxed muscles.
Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville
2014-11-01
Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic "peanut" shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed.
Topological electronic liquids: Electronic physics of one dimension beyond the one spatial dimension
NASA Astrophysics Data System (ADS)
Wiegmann, P. B.
1999-06-01
There is a class of electronic liquids in dimensions greater than 1 that shows all essential properties of one-dimensional electronic physics. These are topological liquids-correlated electronic systems with a spectral flow. Compressible topological electronic liquids are superfluids. In this paper we present a study of a conventional model of a topological superfluid in two spatial dimensions. This model is thought to be relevant to a doped Mott insulator. We show how the spectral flow leads to the superfluid hydrodynamics and how the orthogonality catastrophe affects off-diagonal matrix elements. We also compute the major electronic correlation functions. Among them are the spectral function, the pair wave function, and various tunneling amplitudes. To compute correlation functions we develop a method of current algebra-an extension of the bosonization technique of one spatial dimension. In order to emphasize a similarity between electronic liquids in one dimension and topological liquids in dimensions greater than 1, we first review the Fröhlich-Peierls mechanism of ideal conductivity in one dimension and then extend the physics and the methods into two spatial dimensions.
Comparison and evaluation of datasets for off-angle iris recognition
NASA Astrophysics Data System (ADS)
Kurtuncu, Osman M.; Cerme, Gamze N.; Karakaya, Mahmut
2016-05-01
In this paper, we investigated the publicly available iris recognition datasets and their data capture procedures in order to determine if they are suitable for the stand-off iris recognition research. Majority of the iris recognition datasets include only frontal iris images. Even if a few datasets include off-angle iris images, the frontal and off-angle iris images are not captured at the same time. The comparison of the frontal and off-angle iris images shows not only differences in the gaze angle but also change in pupil dilation and accommodation as well. In order to isolate the effect of the gaze angle from other challenging issues including dilation and accommodation, the frontal and off-angle iris images are supposed to be captured at the same time by using two different cameras. Therefore, we developed an iris image acquisition platform by using two cameras in this work where one camera captures frontal iris image and the other one captures iris images from off-angle. Based on the comparison of Hamming distance between frontal and off-angle iris images captured with the two-camera- setup and one-camera-setup, we observed that Hamming distance in two-camera-setup is less than one-camera-setup ranging from 0.05 to 0.001. These results show that in order to have accurate results in the off-angle iris recognition research, two-camera-setup is necessary in order to distinguish the challenging issues from each other.
Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law
NASA Astrophysics Data System (ADS)
Zhu, Xinyao; Xu, Wei
2018-02-01
The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abazov, Victor Mukhamedovich
Here, we present a measurement of the correlation between the spins of t and tbar quarks produced in proton-antiproton collisions at the Tevatron Collider at a center-of-mass energy of 1.96 TeV. We apply a matrix element technique to dilepton and single-lepton+jets final states in data accumulated with the D0 detector that correspond to an integrated luminosity of 9.7 fbmore » $$^{-1}$$. The measured value of the correlation coefficient in the off-diagonal basis, $$O_{off} = 0.89 \\pm 0.22$$ (stat + syst), is in agreement with the standard model prediction, and represents evidence for a top-antitop quark spin correlation difference from zero at a level of 4.2 standard deviations.« less
Abazov, Victor Mukhamedovich
2016-03-25
Here, we present a measurement of the correlation between the spins of t and tbar quarks produced in proton-antiproton collisions at the Tevatron Collider at a center-of-mass energy of 1.96 TeV. We apply a matrix element technique to dilepton and single-lepton+jets final states in data accumulated with the D0 detector that correspond to an integrated luminosity of 9.7 fbmore » $$^{-1}$$. The measured value of the correlation coefficient in the off-diagonal basis, $$O_{off} = 0.89 \\pm 0.22$$ (stat + syst), is in agreement with the standard model prediction, and represents evidence for a top-antitop quark spin correlation difference from zero at a level of 4.2 standard deviations.« less
A comparison of methods for monitoring photon beam energy constancy.
Gao, Song; Balter, Peter A; Rose, Mark; Simon, William E
2016-11-08
In extension of a previous study, we compared several photon beam energy metrics to determine which was the most sensitive to energy change; in addition to those, we accounted for both the sensitivity of each metric and the uncertainty in determining that metric for both traditional flattening filter (FF) beams (4, 6, 8, and 10 MV) and for flattening filter-free (FFF) beams (6 and 10 MV) on a Varian TrueBeam. We examined changes in these energy metrics when photon energies were changed to ± 5% and ± 10% from their nominal energies: 1) an attenuation-based metric (the percent depth dose at 10 cm depth, PDD(10)) and, 2) profile-based metrics, including flatness (Flat) and off-axis ratios (OARs) measured on the orthogonal axes or on the diagonals (diagonal normalized flatness, FDN). Profile-based metrics were measured near dmax and also near 10 cm depth in water (using a 3D scanner) and with ioniza-tion chamber array (ICA). PDD(10) was measured only in water. Changes in PDD, OAR, and FDN were nearly linear to the changes in the bend magnet current (BMI) over the range from -10% to +10% for both FF and FFF beams: a ± 10% change in energy resulted in a ± 1.5% change in PDD(10) for both FF and FFF beams, and changes in OAR and FDN were > 3.0% for FF beams and > 2.2% for FFF beams. The uncertainty in determining PDD(10) was estimated to be 0.15% and that for OAR and FDN about 0.07%. This resulted in minimally detectable changes in energy of 2.5% for PDD(10) and 0.5% for OAR and FDN. We found that the OAR- or FDN- based metrics were the best for detecting energy changes for both FF and FFF beams. The ability of the OAR-based metrics determined with a water scanner to detect energy changes was equivalent to that using an ionization chamber array. We recommend that OAR be measured either on the orthogonal axes or the diagonals, using an ionization chamber array near the depth of maximum dose, as a sensitive and efficient way to confirm stability of photon beam energy. © 2016 The Authors.
Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali
2018-01-15
A dual-off-axis pumping scheme is presented to generate wavelength-tunable high-order Hermite-Gaussian (HG) modes in Yb:CaGdAlO 4 lasers. The mode and wavelength can be actively controlled by the off-axis displacements and pump power. The purities of the output HG modes are quantified by intensity distributions and the measured M 2 values. The highest order reaches m=15 for stable HG m,0 mode, and wavelength-tunable width is about 10 nm. Moreover, through externally converting the HG m,0 modes, the vortex beams carrying orbital angular momentum (OAM) with a large OAM-tunable range from ±1ℏ to ±15ℏ are produced. This work is effective for largely scaling the spectral and OAM tunable ranges of optical vortex beams.
Baryon interactions from lattice QCD with physical masses — strangeness S = -1 sector —
NASA Astrophysics Data System (ADS)
Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Sasaki, Kenji
2018-03-01
We present our recent results of baryon interactions with strangeness S = -1 based on Nambu-Bethe-Salpeter (NBS) correlation functions calculated fromlattice QCD with almost physical quark masses corresponding to (mk,mk) ≈ (146, 525) MeV and large volume (La)4 ≈ (96a)4 ≈ (8.1 fm)4. In order to perform a comprehensive study of baryon interactions, a large number of NBS correlation functions from NN to ΞΞ are calculated simultaneously by using large scale computer resources. In this contribution, we focus on the strangeness S = -1 channels of the hyperon interactions by means of HAL QCD method. Four sets of three potentials (the 3S1 - 3 D1 central, 3S1 - 3 D1 tensor, and the 1S0 central potentials) are presented for the ∑N - ∑N (the isospin I = 3/2) diagonal, the ∧N - ∧N diagonal, the ∧N → ∑N transition, and the ∑N - ∑N (I = 1/2) diagonal interactions. Scattering phase shifts for ∑N (I = 3/2) system are presented.
Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces
Hanke, Torben; Singh, Udai Raj; Cornils, Lasse; ...
2017-01-06
Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less
Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanke, Torben; Singh, Udai Raj; Cornils, Lasse
Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less
Dispersive transport and symmetry of the dispersion tensor in porous media
NASA Astrophysics Data System (ADS)
Pride, Steven R.; Vasco, Donald W.; Flekkoy, Eirik G.; Holtzman, Ran
2017-04-01
The macroscopic laws controlling the advection and diffusion of solute at the scale of the porous continuum are derived in a general manner that does not place limitations on the geometry and time evolution of the pore space. Special focus is given to the definition and symmetry of the dispersion tensor that is controlling how a solute plume spreads out. We show that the dispersion tensor is not symmetric and that the asymmetry derives from the advective derivative in the pore-scale advection-diffusion equation. When flow is spatially variable across a voxel, such as in the presence of a permeability gradient, the amount of asymmetry can be large. As first shown by Auriault [J.-L. Auriault et al. Transp. Porous Med. 85, 771 (2010), 10.1007/s11242-010-9591-y] in the limit of low Péclet number, we show that at any Péclet number, the dispersion tensor Di j satisfies the flow-reversal symmetry Di j(+q ) =Dj i(-q ) where q is the mean flow in the voxel under analysis; however, Reynold's number must be sufficiently small that the flow is reversible when the force driving the flow changes sign. We also demonstrate these symmetries using lattice-Boltzmann simulations and discuss some subtle aspects of how to measure the dispersion tensor numerically. In particular, the numerical experiments demonstrate that the off-diagonal components of the dispersion tensor are antisymmetric which is consistent with the analytical dependence on the average flow gradients that we propose for these off-diagonal components.
NASA Astrophysics Data System (ADS)
Burin, Alexander L.
2015-09-01
Many-body localization in an XY model with a long-range interaction is investigated. We show that in the regime of a high strength of disordering compared to the interaction an off-resonant flip-flop spin-spin interaction (hopping) generates the effective Ising interactions of spins in the third order of perturbation theory in a hopping. The combination of hopping and induced Ising interactions for the power-law distance dependent hopping V (R ) ∝R-α always leads to the localization breakdown in a thermodynamic limit of an infinite system at α <3 d /2 where d is a system dimension. The delocalization takes place due to the induced Ising interactions U (R ) ∝R-2 α of "extended" resonant pairs. This prediction is consistent with the numerical finite size scaling in one-dimensional systems. Many-body localization in an XY model is more stable with respect to the long-range interaction compared to a many-body problem with similar Ising and Heisenberg interactions requiring α ≥2 d which makes the practical implementations of this model more attractive for quantum information applications. The full summary of dimension constraints and localization threshold size dependencies for many-body localization in the case of combined Ising and hopping interactions is obtained using this and previous work and it is the subject for the future experimental verification using cold atomic systems.
NASA Technical Reports Server (NTRS)
Young, Larry A.; Yetter, Jeffrey A.; Guynn, Mark D.
2006-01-01
Maturation of intelligent systems technologies and their incorporation into aerial platforms are dictating the development of new analysis tools and incorporation of such tools into existing system analysis methodologies in order to fully capture the trade-offs of autonomy on vehicle and mission success. A first-order "system analysis of autonomy" methodology is outlined in this paper. Further, this analysis methodology is subsequently applied to notional high-altitude long-endurance (HALE) aerial vehicle missions.
A system for NMR stark spectroscopy of quadrupolar nuclei.
Tarasek, Matthew R; Kempf, James G
2010-05-13
Electrostatic influences on NMR parameters are well accepted. Experimental and computational routes have been long pursued to understand and utilize such Stark effects. However, existing approaches are largely indirect informants on electric fields, and/or are complicated by multiple causal factors in spectroscopic change. We present a system to directly measure quadrupolar Stark effects from an applied electric (E) field. Our apparatus and applications are relevant in two contexts. Each uses a radiofrequency (rf) E field at twice the nuclear Larmor frequency (2omega(0)). The mechanism is a distortion of the E-field gradient tensor that is linear in the amplitude (E(0)) of the rf E field. The first uses 2omega(0) excitation of double-quantum transitions for times similar to T(1) (the longitudinal spin relaxation time). This perturbs the steady state distribution of spin population. Nonlinear analysis versus E(0) can be used to determine the Stark response rate. The second context uses POWER (perturbations observed with enhanced resolution) NMR. Here, coherent, short-time (
Robust edge states in amorphous gyromagnetic photonic lattices
NASA Astrophysics Data System (ADS)
Mansha, Shampy; Chong, Y. D.
2017-09-01
We numerically study amorphous analogs of a two-dimensional photonic Chern insulator. The amorphous lattices consist of gyromagnetic rods that break time-reversal symmetry, with the lattice sites generated by a close-packing algorithm. The level of short-range order is adjustable, and there is no long-range order. The topologically nontrivial gaps of the photonic Chern insulator are found to persist into the amorphous regime, so long as there is sufficient short-range order. Strongly nonreciprocal robust transmission occurs via edge states, which are shown to propagate ballistically despite the absence of long-range order, and to be exponentially localized along the lattice edge. Interestingly, there is an enhancement of nonreciprocal transmission even at very low levels of short-range order, where there are no discernible spectral gaps.
NASA Astrophysics Data System (ADS)
Kneller, James P.; McLaughlin, Gail C.
2009-09-01
We discuss the three neutrino flavor evolution problem with general, flavor-diagonal, matter potentials and a fully parametrized mixing matrix that includes CP violation, and derive expressions for the eigenvalues, mixing angles, and phases. We demonstrate that, in the limit that the mu and tau potentials are equal, the eigenvalues and matter mixing angles θ˜12 and θ˜13 are independent of the CP phase, although θ˜23 does have CP dependence. Since we are interested in developing a framework that can be used for S matrix calculations of neutrino flavor transformation, it is useful to work in a basis that contains only off-diagonal entries in the Hamiltonian. We derive the “nonadiabaticity” parameters that appear in the Hamiltonian in this basis. We then introduce the neutrino S matrix, derive its evolution equation and the integral solution. We find that this new Hamiltonian, and therefore the S matrix, in the limit that the μ and τ neutrino potentials are the same, is independent of both θ˜23 and the CP violating phase. In this limit, any CP violation in the flavor basis can only be introduced via the rotation matrices, and so effects which derive from the CP phase are then straightforward to determine. We then show explicitly that the electron neutrino and electron antineutrino survival probability is independent of the CP phase in this limit. Conversely, if the CP phase is nonzero and mu and tau matter potentials are not equal, then the electron neutrino survival probability cannot be independent of the CP phase.
ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains
Canova, Carlos; Denker, Michael; Gerstein, George; Helias, Moritz
2016-01-01
With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity. PMID:27420734
A decoupled approach to filter design for stochastic systems
NASA Astrophysics Data System (ADS)
Barbata, A.; Zasadzinski, M.; Ali, H. Souley; Messaoud, H.
2016-08-01
This paper presents a new theorem to guarantee the almost sure exponential stability for a class of stochastic triangular systems by studying only the stability of each diagonal subsystems. This result allows to solve the filtering problem of the stochastic systems with multiplicative noises by using the almost sure exponential stability concept. Two kinds of observers are treated: the full-order and reduced-order cases.
Hygienic support of the ISS air quality (main achievements and prospects)
NASA Astrophysics Data System (ADS)
Moukhamedieva, Lana; Tsarkov, Dmitriy; Pakhomova, Anna
Hygienic preventive measures during pre-flight processing of manned spaceships, selection of polymeric materials, sanitary-hygienic evaluation of cargo and scientific hardware to be used on the ISS and life support systems allow to maintain air quality in limits of regulatory requirements. However, graduate increase of total air contamination by harmful chemicals is observed as service life of the ISS gets longer. It is caused by polymeric materials used on the station overall quantity rise, by additional contamination brought by cargo spacecrafts and modules docking to the ISS and by the cargo. At the same time the range of contaminants that are typical for off-gassing from polymeric materials where modern stabilizers, plasticizers, flame retarders and other additives are used gets wider. In resolving the matters of the ISS service life extension the main question of hygienic researches is to determine real safe operation life of the polymeric material used in structures and hardware of the station, including: begin{itemize} research of polymers degradation (ageing) and its effect on intensity of off gassing and its toxicity; begin{itemize} introduction of polymers with minimal volatile organic compounds off gassing under conditions of space flight and thermal-oxidative degradation. In order to ensure human safety during long-term flight it is important to develop: begin{itemize} real-time air quality monitoring systems, including on-line analysis of highly toxic contaminants evolving during thermo-oxidative degradation of polymer materials and during blowouts of toxic contaminants; begin{itemize} hygienic standards of contaminants level for extended duration of flight up to 3 years. It is essential to develop an automated control system for on-line monitoring of toxicological status and to develop hygienic and engineer measures of its management in order to ensure crew members safety during off-nominal situation.
NASA Astrophysics Data System (ADS)
Rathinasamy, Maheswaran; Bindhu, V. M.; Adamowski, Jan; Narasimhan, Balaji; Khosa, Rakesh
2017-10-01
An investigation of the scaling characteristics of vegetation and temperature data derived from LANDSAT data was undertaken for a heterogeneous area in Tamil Nadu, India. A wavelet-based multiresolution technique decomposed the data into large-scale mean vegetation and temperature fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial resolutions. In this approach, the wavelet coefficients were used to investigate whether the normalized difference vegetation index (NDVI) and land surface temperature (LST) fields exhibited self-similar scaling behaviour. In this study, l-moments were used instead of conventional simple moments to understand scaling behaviour. Using the first six moments of the wavelet coefficients through five levels of dyadic decomposition, the NDVI data were shown to be statistically self-similar, with a slope of approximately -0.45 in each of the horizontal, vertical, and diagonal directions of the image, over scales ranging from 30 to 960 m. The temperature data were also shown to exhibit self-similarity with slopes ranging from -0.25 in the diagonal direction to -0.20 in the vertical direction over the same scales. These findings can help develop appropriate up- and down-scaling schemes of remotely sensed NDVI and LST data for various hydrologic and environmental modelling applications. A sensitivity analysis was also undertaken to understand the effect of mother wavelets on the scaling characteristics of LST and NDVI images.
Tsuruta, S; Misztal, I; Strandén, I
2001-05-01
Utility of the preconditioned conjugate gradient algorithm with a diagonal preconditioner for solving mixed-model equations in animal breeding applications was evaluated with 16 test problems. The problems included single- and multiple-trait analyses, with data on beef, dairy, and swine ranging from small examples to national data sets. Multiple-trait models considered low and high genetic correlations. Convergence was based on relative differences between left- and right-hand sides. The ordering of equations was fixed effects followed by random effects, with no special ordering within random effects. The preconditioned conjugate gradient program implemented with double precision converged for all models. However, when implemented in single precision, the preconditioned conjugate gradient algorithm did not converge for seven large models. The preconditioned conjugate gradient and successive overrelaxation algorithms were subsequently compared for 13 of the test problems. The preconditioned conjugate gradient algorithm was easy to implement with the iteration on data for general models. However, successive overrelaxation requires specific programming for each set of models. On average, the preconditioned conjugate gradient algorithm converged in three times fewer rounds of iteration than successive overrelaxation. With straightforward implementations, programs using the preconditioned conjugate gradient algorithm may be two or more times faster than those using successive overrelaxation. However, programs using the preconditioned conjugate gradient algorithm would use more memory than would comparable implementations using successive overrelaxation. Extensive optimization of either algorithm can influence rankings. The preconditioned conjugate gradient implemented with iteration on data, a diagonal preconditioner, and in double precision may be the algorithm of choice for solving mixed-model equations when sufficient memory is available and ease of implementation is essential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry
Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less
Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry; ...
2016-10-27
Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less
Generation of large-scale magnetic fields by small-scale dynamo in shear flows
NASA Astrophysics Data System (ADS)
Squire, Jonathan; Bhattacharjee, Amitava
2015-11-01
A new mechanism for turbulent mean-field dynamo is proposed, in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the ``shear-current'' effect. The dynamo is studied using a variety of computational and analytic techniques, both when the magnetic fluctuations arise self-consistently through the small-scale dynamo and in lower Reynolds number regimes. Given the inevitable existence of non-helical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help to explain generation of large-scale magnetic fields across a wide range of astrophysical objects. This work was supported by a Procter Fellowship at Princeton University, and the US Department of Energy Grant DE-AC02-09-CH11466.
Evaluation of channelizing devices for work zones : type II barricades and chevron panels.
DOT National Transportation Integrated Search
1982-01-01
The objectives of this research were (1) to evaluate the 4-in. (10.2-cm) and 6-in. (15.2-cm) wide alternating diagonal stripes on barricade rails less than 3 ft. (0.92-m) long, and (2) to select the most effective chevron panel. A secondary objective...
About the coupling of turbulence closure models with averaged Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Vandromme, D.; Ha Minh, H.
1986-01-01
The MacCormack implicit predictor-corrector model (1981) for numerical solution of the coupled Navier-Stokes equations for turbulent flows is extended to nonconservative multiequation turbulence models, as well as the inclusion of second-order Reynolds stress turbulence closure. A scalar effective pressure turbulent contribution to the pressure field is defined to approximate the effects of the Reynolds stress in strongly sheared flows. The Jacobian matrices of the transport equations are diagonalized to reduce the required computer memory and run time. Techniques are defined for including turbulence in the diagonalization. Application of the method is demonstrated with solutions generated for transonic nozzle flow and for the interaction between a supersonic flat plate boundary layer and a 12 deg compression-expansion ramp.
NASA Astrophysics Data System (ADS)
Trif, Mircea; Dmytruk, Olesia; Bouchiat, Hélène; Aguado, Ramón; Simon, Pascal
2018-02-01
We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density-matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-dependent susceptibility using both microscopic and effective low-energy descriptions for the nanowire. We find that the diagonal component of the susceptibility, associated with the dynamics of the Majorana state populations, dominates over the standard Kubo contribution for a wide range of experimentally relevant parameters. The diagonal term, explored, in this Rapid Communication, in the context of Majorana physics, allows probing accurately the presence of Majorana bound states in the junction.
Implementation of ADI: Schemes on MIMD parallel computers
NASA Technical Reports Server (NTRS)
Vanderwijngaart, Rob F.
1993-01-01
In order to simulate the effects of the impingement of hot exhaust jets of High Performance Aircraft on landing surfaces a multi-disciplinary computation coupling flow dynamics to heat conduction in the runway needs to be carried out. Such simulations, which are essentially unsteady, require very large computational power in order to be completed within a reasonable time frame of the order of an hour. Such power can be furnished by the latest generation of massively parallel computers. These remove the bottleneck of ever more congested data paths to one or a few highly specialized central processing units (CPU's) by having many off-the-shelf CPU's work independently on their own data, and exchange information only when needed. During the past year the first phase of this project was completed, in which the optimal strategy for mapping an ADI-algorithm for the three dimensional unsteady heat equation to a MIMD parallel computer was identified. This was done by implementing and comparing three different domain decomposition techniques that define the tasks for the CPU's in the parallel machine. These implementations were done for a Cartesian grid and Dirichlet boundary conditions. The most promising technique was then used to implement the heat equation solver on a general curvilinear grid with a suite of nontrivial boundary conditions. Finally, this technique was also used to implement the Scalar Penta-diagonal (SP) benchmark, which was taken from the NAS Parallel Benchmarks report. All implementations were done in the programming language C on the Intel iPSC/860 computer.
Peled, Yair; Motil, Avi; Kressel, Iddo; Tur, Moshe
2013-05-06
We report a Brillouin-based fully distributed and dynamic monitoring of the strain induced by a propagating mechanical wave along a 20 m long composite strip, to which surface a single-mode optical fiber was glued. Employing a simplified version of the Slope-Assisted Brillouin Optical Time Domain Analysis (SA-BOTDA) technique, the whole length of the strip was interrogated every 10 ms (strip sampling rate of 100 Hz) with a spatial resolution of the order of 1m. A dynamic spatially and temporally continuous map of the strain was obtained, whose temporal behavior at four discrete locations was verified against co-located fiber Bragg gratings. With a trade-off among sampling rate, range and signal to noise ratio, kHz sampling rates and hundreds of meters of range can be obtained with resolution down to a few centimeters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe; Terriberry, Timothy B.; Kolla, Hemanth
Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Formulas such as these, are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearlymore » the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe; Terriberry, Timothy B.; Kolla, Hemanth
Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the fullmore » representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.« less
Bounds on Energy Absorption and Prethermalization in Quantum Systems with Long-Range Interactions
NASA Astrophysics Data System (ADS)
Ho, Wen Wei; Protopopov, Ivan; Abanin, Dmitry A.
2018-05-01
Long-range interacting systems such as nitrogen vacancy centers in diamond and trapped ions serve as experimental setups to probe a range of nonequilibrium many-body phenomena. In particular, via driving, various effective Hamiltonians with physics potentially quite distinct from short-range systems can be realized. In this Letter, we derive general rigorous bounds on the linear response energy absorption rates of periodically driven systems of spins or fermions with long-range interactions that are sign changing and fall off as 1 /rα with α >d /2 . We show that the disorder averaged energy absorption rate at high temperatures decays exponentially with the driving frequency. This strongly suggests the presence of a prethermal plateau in which dynamics is governed by an effective, static Hamiltonian for long times, and we provide numerical evidence to support such a statement. Our results are relevant for understanding timescales of heating and new dynamical regimes described by effective Hamiltonians in such long-range systems.
Stress tensor and viscosity of water: Molecular dynamics and generalized hydrodynamics results
NASA Astrophysics Data System (ADS)
Bertolini, Davide; Tani, Alessandro
1995-08-01
The time correlation functions (CF's) of diagonal and off-diagonal components of the stress tensor of water have been calculated at 245 and 298 K in a molecular dynamics (MD) study on 343 molecules in the microcanonical ensemble. We present results obtained at wave number k=0 and at a few finite values of k, in the atomic and molecular formalism. In all cases, more than 98% of these functions are due to the potential term of the stress tensor. At k=0, their main features are a fast oscillatory initial decay, followed by a long-time tail more apparent in the supercooled region. Bulk and shear viscosities, calculated via Green-Kubo integration of the relevant CF at k=0, are underestimated with respect to experimental data, mainly at low temperature, but their ratio (~=2) is correctly reproduced. Both shear and bulk viscosity decrease as a function of k, the latter more rapidly, so that they become almost equal at ~=1 Å-1. Also, both viscosities drop rapidly from their maximum at ω=0. This behavior has been related to the large narrowing observed in the acoustic band, mainly in the supercooled region. The infinite frequency bulk and shear rigidity moduli have been shown to be in fair agreement with the experimental data, provided the MD value used for comparison is that corresponding to the frequency range relevant to ultrasonic measurements. The MD results of stress-stress CF's compare well with those predicted by Bertolini and Tani [Phys. Rev. E 51, 1091 (1995)] at k=0, by an application of generalized hydrodynamics [de Schepper et al., Phys. Rev. A 38, 271 (1988)] in the molecular formalism, to the same model of water (TIP4P) [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)]. These CF's are essentially equal in the atomic and molecular formalism, the only minor difference being restricted to the high frequency librational region of the shear function. By a comparison of atomic and molecular results, we show here that neglecting libration has no effect on the density-density and longitudinal current CF's and very little effect on transverse properties. On the other hand, this study points out the importance of including the oscillation in the nearest-neighbor cage in the memory function of the longitudinal and transverse current CF. The oscillatory local motion turns out to play an important role in all CF's and hence contributes significantly to the value of viscosity and of rigidity moduli.
NASA Astrophysics Data System (ADS)
Schmitz, Matthias; Tavan, Paul
2004-12-01
The midinfrared (MIR) spectra of molecules in polar solvents exhibit inhomogeneously broadened bands whose spectral positions are shifted as compared to the gas phase. The shifts are caused by interactions with structured solvation shells and the broadenings by fluctuations of these interactions. The MIR spectra can be calculated from hybrid molecular dynamics (MD) simulations, which treat the solute molecule by density functional theory and the solvent by molecular mechanics by the so-called instantaneous normal mode analysis (INMA) or by Fourier transforming the time correlation function (FTTCF) of the molecular dipole moment. In Paper I of this work [M. Schmitz and P. Tavan, J. Chem. Phys. 121, 12233 (2004)] we explored an alternative method based on generalized virial (GV) frequencies noting, however, that GV systematically underestimates frequencies. As shown by us these artifacts are caused by solvent-induced fluctuations of the (i) equilibrium geometry, (ii) force constants, and (iii) normal mode directions as well as by (iv) diagonal and (v) off-diagonal anharmonicities. Here we now show, by analyzing the time scales of fluctuations and sample MD trajectories of formaldehyde in the gas phase and in water, that all these sources of computational artifacts can be made visible by a Fourier analysis of the normal coordinates. Correspondingly, the error sources (i) and (iii)-(v) can be removed by bandpass filtering, as long as the spectral signatures of the respective effects are well separated from the fundamental band. Furthermore, the artifacts arising from effect (ii) can be strongly diminished by a time-resolved version of the GV approach (TF-GV). The TF-GV method then yields for each mode j a trajectory of the vibrational frequency ωj(t|τ) at a time resolution τ>τj, which is only limited by the corresponding oscillation time τj=2π/ωj and, thus, is in the femtosecond range. A correlation analysis of these trajectories clearly separates the librational motions from the conformational dynamics of the solvation shells and yields the inhomogeneously broadened MIR spectra, if the theory of motional narrowing is properly included. The MIR spectrum of formaldehyde in solution obtained by TF-GV agrees very well with the FTTCF result, if one applies the so-called "harmonic approximation" quantum correction factor and a temperature scaling to the FTTCF intensities. Also for INMA an excellent agreement is achieved if one disregards a slight INMA overestimate of linewidths.
Probing coherence aspects of adiabatic quantum computation and control.
Goswami, Debabrata
2007-09-28
Quantum interference between multiple excitation pathways can be used to cancel the couplings to the unwanted, nonradiative channels resulting in robustly controlling decoherence through adiabatic coherent control approaches. We propose a useful quantification of the two-level character in a multilevel system by considering the evolution of the coherent character in the quantum system as represented by the off-diagonal density matrix elements, which switches from real to imaginary as the excitation process changes from being resonant to completely adiabatic. Such counterintuitive results can be explained in terms of continuous population exchange in comparison to no population exchange under the adiabatic condition.
León-Montiel, Roberto de J; Quiroz-Juárez, Mario A; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L; Moya-Cessa, Héctor M; Torres, Juan P; Aragón, José L
2015-11-27
Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed.
CASCADE AND DAMPING OF ALFVEN-CYCLOTRON FLUCTUATIONS: APPLICATION TO SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Yanwei; Petrosian, Vahe; Liu Siming
2009-06-10
It is well recognized that the presence of magnetic fields will lead to anisotropic energy cascade and dissipation of astrophysical turbulence. With the diffusion approximation and linear dissipation rates, we study the cascade and damping of Alfven-cyclotron fluctuations in solar plasmas numerically for two diagonal diffusion tensors, one (isotropic) with identical components for the parallel and perpendicular directions (with respect to the magnetic field) and one with different components (nonisotropic). It is found that for the isotropic case the steady-state turbulence spectra are nearly isotropic in the inertial range and can be fitted by a single power-law function with amore » spectral index of -3/2, similar to the Iroshnikov-Kraichnan phenomenology, while for the nonisotropic case the spectra vary greatly with the direction of propagation. The energy fluxes in both cases are much higher in the perpendicular direction than in the parallel direction due to the angular dependence (or inhomogeneity) of the components. In addition, beyond the MHD regime the kinetic effects make the spectrum softer at higher wavenumbers. In the dissipation range the turbulence spectrum cuts off at the wavenumber, where the damping rate becomes comparable to the cascade rate, and the cutoff wavenumber changes with the wave propagation direction. The angle-averaged turbulence spectrum of the isotropic model resembles a broken power law, which cuts off at the maximum of the cutoff wavenumbers or the {sup 4}He cyclotron frequency. Taking into account the Doppler effects, the model naturally reproduces the broken power-law turbulence spectra observed in the solar wind and predicts that a higher break frequency always comes along with a softer dissipation range spectrum that may be caused by the increase of the turbulence intensity, the reciprocal of the plasma {beta}{sub p}, and/or the angle between the solar wind velocity and the mean magnetic field. These predictions can be tested by detailed comparisons with more accurate observations.« less
NASA Astrophysics Data System (ADS)
Dobbyn, Abigail J.; Knowles, Peter J.
A number of established techniques for obtaining diabatic electronic states in small molecules are critically compared for the example of the X and B states in the water molecule, which contribute to the two lowest-energy conical intersections. Integration of the coupling matrix elements and analysis of configuration mixing coefficients both produce reliable diabatic states globally. Methods relying on diagonalization of dipole moment and angular momentum operators are shown to fail in large regions of coordinate space. However, the use of transition angular momentum matrix elements involving the A state, which is degenerate with B at the conical intersections, is successful globally, provided that an appropriate choice of coordinates is made. Long range damping of non-adiabatic coupling to give correct asymptotic mixing angles also is investigated.
The design of a long-range megatransport aircraft
NASA Technical Reports Server (NTRS)
Weisshaar, Terrence A.; Allen, Carl L.
1992-01-01
Aircraft manufacturers are examining the market and feasibility of long-range passenger aircraft carrying more than 600 passengers. These aircraft would carry travelers at reduced cost and, at the same time, reduce congestion around major airports. The design of a large, long-range transport involves broad issues such as: the integration of airport terminal facilities; passenger loading and unloading; trade-offs between aircraft size and the cost to reconfigure these existing facilities; and, defeating the 'square-cube' law. Thirteen Purdue design teams generated RFP's that defined passenger capability and range, based upon team perception of market needs and infrastructure constraints. Turbofan engines were designed by each group to power these aircraft. The design problem and the variety of solutions developed are reviewed.
Probing Majorana neutrino textures at DUNE
NASA Astrophysics Data System (ADS)
Bora, Kalpana; Borah, Debasish; Dutta, Debajyoti
2017-10-01
We study the possibility of probing different texture zero neutrino mass matrices at the long baseline neutrino experiment DUNE, particularly focusing on its sensitivity to the octant of atmospheric mixing angle θ23 and leptonic Dirac C P phase δcp. Assuming a diagonal charged lepton basis and Majorana nature of light neutrinos, we first classify the possible light neutrino mass matrices with one and two texture zeros and then numerically evaluate the parameter space which satisfies the texture zero conditions. Apart from using the latest global fit 3 σ values of neutrino oscillation parameters, we also use the latest bound on the sum of absolute neutrino masses (∑i |mi|) from the Planck mission data and the updated bound on effective neutrino mass Me e from neutrinoless double beta decay (0 ν β β ) experiments to find the allowed Majorana texture zero mass matrices. For the allowed texture zero mass matrices from all these constraints, we then feed the corresponding light neutrino parameter values satisfying the texture zero conditions into the numerical analysis in order to study the capability of DUNE to allow or exclude them once it starts taking data. We find that DUNE will be able to exclude some of these texture zero mass matrices which restrict (θ23-δcp) to a very specific range of values, depending on the values of the parameters that nature has chosen.
Neutrino quantum kinetic equations: The collision term
Blaschke, Daniel N.; Cirigliano, Vincenzo
2016-08-01
We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes ofmore » the two helicity states. As a result, the isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.« less
Spin-orbit coupled systems in the atomic limit: rhenates, osmates, iridates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paramekanti, Arun; Singh, David J.; Yuan, Bo
Motivated by RIXS experiments on a wide range of complex heavy oxides, including rhenates, osmates, and iridates, we discuss the theory of RIXS for site-localized t 2g orbital systems with strong spin-orbit coupling. For such systems, we present exact diagonalization results for the spectrum at different electron fillings, showing that it accesses “single-particle” and “multiparticle” excitations. This leads to a simple picture for the energies and intensities of the RIXS spectra in Mott insulators such as double perovskites which feature highly localized electrons, and yields estimates of the spin-orbit coupling and Hund's coupling in correlated 5d oxides. We present newmore » higher resolution RIXS data at the Re L 3 edge in Ba 2YReO 6 which finds a previously unresolved peak splitting, providing further confirmation of our theoretical predictions. Using ab initio electronic structure calculations on Ba 2MReO 6 (with M=Re, Os, Ir) we show that while the atomic limit yields a reasonable effective Hamiltonian description of the experimental observations, effects such as t 2g–e g interactions and hybridization with oxygen are important. Our ab initio estimate for the strength of the intersite exchange coupling shows that, compared to the d 3 systems, the exchange is one or two orders of magnitude weaker in the d 2 and d 4 materials, which may partly explain the suppression of long-range magnetic order in the latter compounds. As a way to interpolate between the site-localized picture and our electronic structure band calculations, we discuss the spin-orbital levels of the MO 6 cluster. In conclusion, this suggests a possible role for intracluster excitons in Ba 2YIrO 6 which may lead to a weak breakdown of the atomic J eff = 0 picture and to small magnetic moments.« less
Spin-orbit coupled systems in the atomic limit: rhenates, osmates, iridates
Paramekanti, Arun; Singh, David J.; Yuan, Bo; ...
2018-06-11
Motivated by RIXS experiments on a wide range of complex heavy oxides, including rhenates, osmates, and iridates, we discuss the theory of RIXS for site-localized t 2g orbital systems with strong spin-orbit coupling. For such systems, we present exact diagonalization results for the spectrum at different electron fillings, showing that it accesses “single-particle” and “multiparticle” excitations. This leads to a simple picture for the energies and intensities of the RIXS spectra in Mott insulators such as double perovskites which feature highly localized electrons, and yields estimates of the spin-orbit coupling and Hund's coupling in correlated 5d oxides. We present newmore » higher resolution RIXS data at the Re L 3 edge in Ba 2YReO 6 which finds a previously unresolved peak splitting, providing further confirmation of our theoretical predictions. Using ab initio electronic structure calculations on Ba 2MReO 6 (with M=Re, Os, Ir) we show that while the atomic limit yields a reasonable effective Hamiltonian description of the experimental observations, effects such as t 2g–e g interactions and hybridization with oxygen are important. Our ab initio estimate for the strength of the intersite exchange coupling shows that, compared to the d 3 systems, the exchange is one or two orders of magnitude weaker in the d 2 and d 4 materials, which may partly explain the suppression of long-range magnetic order in the latter compounds. As a way to interpolate between the site-localized picture and our electronic structure band calculations, we discuss the spin-orbital levels of the MO 6 cluster. In conclusion, this suggests a possible role for intracluster excitons in Ba 2YIrO 6 which may lead to a weak breakdown of the atomic J eff = 0 picture and to small magnetic moments.« less
NASA Astrophysics Data System (ADS)
Mukherjee, Sudip; Rajak, Atanu; Chakrabarti, Bikas K.
2018-02-01
We explore the behavior of the order parameter distribution of the quantum Sherrington-Kirkpatrick model in the spin glass phase using Monte Carlo technique for the effective Suzuki-Trotter Hamiltonian at finite temperatures and that at zero temperature obtained using the exact diagonalization method. Our numerical results indicate the existence of a low- but finite-temperature quantum-fluctuation-dominated ergodic region along with the classical fluctuation-dominated high-temperature nonergodic region in the spin glass phase of the model. In the ergodic region, the order parameter distribution gets narrower around the most probable value of the order parameter as the system size increases. In the other region, the Parisi order distribution function has nonvanishing value everywhere in the thermodynamic limit, indicating nonergodicity. We also show that the average annealing time for convergence (to a low-energy level of the model, within a small error range) becomes system size independent for annealing down through the (quantum-fluctuation-dominated) ergodic region. It becomes strongly system size dependent for annealing through the nonergodic region. Possible finite-size scaling-type behavior for the extent of the ergodic region is also addressed.
Fractional-order difference equations for physical lattices and some applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2015-10-15
Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions.more » Continuum limits of these fractional-order difference equations are also suggested.« less
NASA Astrophysics Data System (ADS)
Gauthier, N.; Fennell, A.; Prévost, B.; Uldry, A.-C.; Delley, B.; Sibille, R.; Désilets-Benoit, A.; Dabkowska, H. A.; Nilsen, G. J.; Regnault, L.-P.; White, J. S.; Niedermayer, C.; Pomjakushin, V.; Bianchi, A. D.; Kenzelmann, M.
2017-04-01
Magnetic frustration and low dimensionality can prevent long-range magnetic order and lead to exotic correlated ground states. SrDy2O4 consists of magnetic Dy3 + ions forming magnetically frustrated zigzag chains along the c axis and shows no long-range order to temperatures as low as T =60 mK. We carried out neutron scattering and ac magnetic susceptibility measurements using powder and single crystals of SrDy2O4 . Diffuse neutron scattering indicates strong one-dimensional (1D) magnetic correlations along the chain direction that can be qualitatively accounted for by the axial next-nearest-neighbor Ising model with nearest-neighbor and next-nearest-neighbor exchange J1=0.3 meV and J2=0.2 meV, respectively. Three-dimensional (3D) correlations become important below T*≈0.7 K. At T =60 mK, the short-range correlations are characterized by a putative propagation vector k1 /2=(0 ,1/2 ,1/2 ) . We argue that the absence of long-range order arises from the presence of slowly decaying 1D domain walls that are trapped due to 3D correlations. This stabilizes a low-temperature phase without long-range magnetic order, but with well-ordered chain segments separated by slowly moving domain walls.
NASA Astrophysics Data System (ADS)
Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard
2014-03-01
Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.
Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Nelson, R.; Siddiqui, Elisha
We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less
Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N
Zhang, Yi; Nelson, R.; Siddiqui, Elisha; ...
2016-12-29
We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William H., E-mail: millerwh@berkeley.edu; Cotton, Stephen J., E-mail: StephenJCotton47@gmail.com
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of themore » action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William H.; Cotton, Stephen J.
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory - e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer valuesmore » of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states - and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.« less
NASA Astrophysics Data System (ADS)
Béland, Laurent Karim; Mousseau, Normand
2012-02-01
The kinetic activation relaxation technique (kinetic ART) method, an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search,ootnotetextL. K. B'eland, P. Brommer, F. El-Mellouhi, J.-F. Joly and N. Mousseau, Phys. Rev. E 84, 046704 (2011). is used to study the relaxation of c-Si after Si^- bombardment at 3 keV. We describe the evolution of the damaged areas at room-temperature and above for periods of the order of seconds, treating long-range elastic deformations exactly. We assess the stability of the nanoscale structures formed by the damage cascade and the mechanisms that govern post-implantation annealing.
Self-organized chiral colloidal crystals of Brownian square crosses.
Zhao, Kun; Mason, Thomas G
2014-04-16
We study aqueous Brownian dispersions of microscale, hard, monodisperse platelets, shaped as achiral square crosses, in two dimensions (2D). When slowly concentrated while experiencing thermal excitations, the crosses self-organize into fluctuating 2D colloidal crystals. As the particle area fraction φA is raised, an achiral rhombic crystal phase forms at φA ≈ 0.52. Above φA ≈ 0.56, the rhombic crystal gives way to a square crystal phase that exhibits long-range chiral symmetry breaking (CSB) via a crystal-crystal phase transition; the observed chirality in a particular square crystallite has either a positive or a negative enantiomeric sense. By contrast to triangles and rhombs, which exhibit weak CSB as a result of total entropy maximization, square crosses display robust long-range CSB that is primarily dictated by how they tile space at high densities. We measure the thermal distribution of orientation angles γ of the crosses' arms relative to the diagonal bisector of the local square crystal lattice as a function of φA, and the average measured γ (φA) agrees with a re-scaled model involving efficient packing of rotated cross shapes. Our findings imply that a variety of hard achiral shapes can be designed to form equilibrium chiral phases by considering their tiling at high densities.
NASA Astrophysics Data System (ADS)
Woo, Sungsoo; Kang, Sungsam; Yoon, Changhyeong; Choi, Wonshik
2016-03-01
With the advancement of 3D display technology, 3D imaging of macroscopic objects has drawn much attention as they provide the contents to display. The most widely used imaging methods include a depth camera, which measures time of flight for the depth discrimination, and various structured illumination techniques. However, these existing methods have poor depth resolution, which makes imaging complicated structures a difficult task. In order to resolve this issue, we propose an imaging system based upon low-coherence interferometry and off-axis digital holographic imaging. By using light source with coherence length of 200 micro, we achieved the depth resolution of 100 micro. In order to map the macroscopic objects with this high axial resolution, we installed a pair of prisms in the reference beam path for the long-range scanning of the optical path length. Specifically, one prism was fixed in position, and the other prism was mounted on a translation stage and translated in parallel to the first prism. Due to the multiple internal reflections between the two prisms, the overall path length was elongated by a factor of 50. In this way, we could cover a depth range more than 1 meter. In addition, we employed multiple speckle illuminations and incoherent averaging of the acquired holographic images for reducing the specular reflections from the target surface. Using this newly developed system, we performed imaging targets with multiple different layers and demonstrated imaging targets hidden behind the scattering layers. The method was also applied to imaging targets located around the corner.
Detecting coupled collective motions in protein by independent subspace analysis
NASA Astrophysics Data System (ADS)
Sakuraba, Shun; Joti, Yasumasa; Kitao, Akio
2010-11-01
Protein dynamics evolves in a high-dimensional space, comprising aharmonic, strongly correlated motional modes. Such correlation often plays an important role in analyzing protein function. In order to identify significantly correlated collective motions, here we employ independent subspace analysis based on the subspace joint approximate diagonalization of eigenmatrices algorithm for the analysis of molecular dynamics (MD) simulation trajectories. From the 100 ns MD simulation of T4 lysozyme, we extract several independent subspaces in each of which collective modes are significantly correlated, and identify the other modes as independent. This method successfully detects the modes along which long-tailed non-Gaussian probability distributions are obtained. Based on the time cross-correlation analysis, we identified a series of events among domain motions and more localized motions in the protein, indicating the connection between the functionally relevant phenomena which have been independently revealed by experiments.
Capturing the crystalline phase of two-dimensional nanocrystal superlattices in action.
Jiang, Zhang; Lin, Xiao-Min; Sprung, Michael; Narayanan, Suresh; Wang, Jin
2010-03-10
Critical photonic, electronic, and magnetic applications of two-dimensional nanocrystal superlattices often require nanostructures in perfect single-crystal phases with long-range order and limited defects. Here we discovered a crystalline phase with quasi-long-range positional order for two-dimensional nanocrystal superlattice domains self-assembled at the liquid-air interface during droplet evaporation, using in situ time-resolved X-ray scattering along with rigorous theories on two dimensional crystal structures. Surprisingly, it was observed that drying these superlattice domains preserved only an orientational order but not a long-range positional order, also supported by quantitative analysis of transmission electron microscopy images.
NASA Astrophysics Data System (ADS)
Li, Keqiang; Gao, Feng; Li, Shengbo Eben; Zheng, Yang; Gao, Hongbo
2017-12-01
This study presents a distributed H-infinity control method for uncertain platoons with dimensionally and structurally unknown interaction topologies provided that the associated topological eigenvalues are bounded by a predesigned range.With an inverse model to compensate for nonlinear powertrain dynamics, vehicles in a platoon are modeled by third-order uncertain systems with bounded disturbances. On the basis of the eigenvalue decomposition of topological matrices, we convert the platoon system to a norm-bounded uncertain part and a diagonally structured certain part by applying linear transformation. We then use a common Lyapunov method to design a distributed H-infinity controller. Numerically, two linear matrix inequalities corresponding to the minimum and maximum eigenvalues should be solved. The resulting controller can tolerate interaction topologies with eigenvalues located in a certain range. The proposed method can also ensure robustness performance and disturbance attenuation ability for the closed-loop platoon system. Hardware-in-the-loop tests are performed to validate the effectiveness of our method.
Ground State and Finite Temperature Lanczos Methods
NASA Astrophysics Data System (ADS)
Prelovšek, P.; Bonča, J.
The present review will focus on recent development of exact- diagonalization (ED) methods that use Lanczos algorithm to transform large sparse matrices onto the tridiagonal form. We begin with a review of basic principles of the Lanczos method for computing ground-state static as well as dynamical properties. Next, generalization to finite-temperatures in the form of well established finite-temperature Lanczos method is described. The latter allows for the evaluation of temperatures T>0 static and dynamic quantities within various correlated models. Several extensions and modification of the latter method introduced more recently are analysed. In particular, the low-temperature Lanczos method and the microcanonical Lanczos method, especially applicable within the high-T regime. In order to overcome the problems of exponentially growing Hilbert spaces that prevent ED calculations on larger lattices, different approaches based on Lanczos diagonalization within the reduced basis have been developed. In this context, recently developed method based on ED within a limited functional space is reviewed. Finally, we briefly discuss the real-time evolution of correlated systems far from equilibrium, which can be simulated using the ED and Lanczos-based methods, as well as approaches based on the diagonalization in a reduced basis.
Influence of seismic anisotropy on the cross correlation tensor: numerical investigations
NASA Astrophysics Data System (ADS)
Saade, M.; Montagner, J. P.; Roux, P.; Cupillard, P.; Durand, S.; Brenguier, F.
2015-05-01
Temporal changes in seismic anisotropy can be interpreted as variations in the orientation of cracks in seismogenic zones, and thus as variations in the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes, although they are still not well understood. In this study, we investigate the azimuthal polarization of surface waves in anisotropic media with respect to the orientation of anisotropy, from a numerical point of view. This technique is based on the observation of the signature of anisotropy on the nine-component cross-correlation tensor (CCT) computed from seismic ambient noise recorded on pairs of three-component sensors. If noise sources are spatially distributed in a homogeneous medium, the CCT allows the reconstruction of the surface wave Green's tensor between the station pairs. In homogeneous, isotropic medium, four off-diagonal terms of the surface wave Green's tensor are null, but not in anisotropic medium. This technique is applied to three-component synthetic seismograms computed in a transversely isotropic medium with a horizontal symmetry axis, using a spectral element code. The CCT is computed between each pair of stations and then rotated, to approximate the surface wave Green's tensor by minimizing the off-diagonal components. This procedure allows the calculation of the azimuthal variation of quasi-Rayleigh and quasi-Love waves. In an anisotropic medium, in some cases, the azimuth of seismic anisotropy can induce a large variation in the horizontal polarization of surface waves. This variation depends on the relative angle between a pair of stations and the direction of anisotropy, the amplitude of the anisotropy, the frequency band of the signal and the depth of the anisotropic layer.
Pebay, Philippe; Terriberry, Timothy B.; Kolla, Hemanth; ...
2016-03-29
Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the fullmore » representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.« less
Xu, Jingjiang; Song, Shaozhen; Wei, Wei; Wang, Ruikang K
2017-01-01
Wide-field vascular visualization in bulk tissue that is of uneven surface is challenging due to the relatively short ranging distance and significant sensitivity fall-off for most current optical coherence tomography angiography (OCTA) systems. We report a long ranging and ultra-wide-field OCTA (UW-OCTA) system based on an akinetic swept laser. The narrow instantaneous linewidth of the swept source with its high phase stability, combined with high-speed detection in the system enable us to achieve long ranging (up to 46 mm) and almost negligible system sensitivity fall-off. To illustrate these advantages, we compare the basic system performances between conventional spectral domain OCTA and UW-OCTA systems and their functional imaging of microvascular networks in living tissues. In addition, we show that the UW-OCTA is capable of different depth-ranging of cerebral blood flow within entire brain in mice, and providing unprecedented blood perfusion map of human finger in vivo . We believe that the UW-OCTA system has promises to augment the existing clinical practice and explore new biomedical applications for OCT imaging.
Xu, Jingjiang; Song, Shaozhen; Wei, Wei; Wang, Ruikang K.
2016-01-01
Wide-field vascular visualization in bulk tissue that is of uneven surface is challenging due to the relatively short ranging distance and significant sensitivity fall-off for most current optical coherence tomography angiography (OCTA) systems. We report a long ranging and ultra-wide-field OCTA (UW-OCTA) system based on an akinetic swept laser. The narrow instantaneous linewidth of the swept source with its high phase stability, combined with high-speed detection in the system enable us to achieve long ranging (up to 46 mm) and almost negligible system sensitivity fall-off. To illustrate these advantages, we compare the basic system performances between conventional spectral domain OCTA and UW-OCTA systems and their functional imaging of microvascular networks in living tissues. In addition, we show that the UW-OCTA is capable of different depth-ranging of cerebral blood flow within entire brain in mice, and providing unprecedented blood perfusion map of human finger in vivo. We believe that the UW-OCTA system has promises to augment the existing clinical practice and explore new biomedical applications for OCT imaging. PMID:28101428
NASA Astrophysics Data System (ADS)
Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.
2016-05-01
Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.
Hesford, Andrew J; Astheimer, Jeffrey P; Greengard, Leslie F; Waag, Robert C
2010-02-01
A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method.
Hesford, Andrew J.; Astheimer, Jeffrey P.; Greengard, Leslie F.; Waag, Robert C.
2010-01-01
A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method. PMID:20136208
Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice
NASA Astrophysics Data System (ADS)
Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Gigiberiya, Volodymyr A.; Vygornitskii, Nikolai V.
2017-05-01
The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L ×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L , was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k -mers (determining the aspect ratio) was varied from 2 to 12. The k -mers oriented along the x and y directions (kx-mers and ky-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k -mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k -mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k -mers. For long k -mers (k ≥6 ), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k -mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.
E-beam generated holographic masks for optical vector-matrix multiplication
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Case, S. K.
1981-01-01
An optical vector matrix multiplication scheme that encodes the matrix elements as a holographic mask consisting of linear diffraction gratings is proposed. The binary, chrome on glass masks are fabricated by e-beam lithography. This approach results in a fairly simple optical system that promises both large numerical range and high accuracy. A partitioned computer generated hologram mask was fabricated and tested. This hologram was diagonally separated outputs, compact facets and symmetry about the axis. The resultant diffraction pattern at the output plane is shown. Since the grating fringes are written at 45 deg relative to the facet boundaries, the many on-axis sidelobes from each output are seen to be diagonally separated from the adjacent output signals.
NASA Technical Reports Server (NTRS)
Horne, W. B.; Yager, T. J.; Sleeper, R. K.; Merritt, L. R.
1977-01-01
The stopping distance, brake application velocity, and time of brake application were measured for two modern jet transports, along with the NASA diagonal-braked vehicle and the British Mu-Meter on several runways, which when wetted, cover the range of slipperiness likely to be encountered in the United States. Tests were designed to determine if correlation between the aircraft and friction measuring vehicles exists. The test procedure, data reduction techniques, and preliminary test results obtained with the Boeing 727, the Douglas DC-9, and the ground vehicles are given. Time histories of the aircraft test run parameters are included.
Distilling perfect GHZ states from two copies of non-GHZ-diagonal mixed states
NASA Astrophysics Data System (ADS)
Wang, Xin-Wen; Tang, Shi-Qing; Yuan, Ji-Bing; Zhang, Deng-Yu
2017-06-01
It has been shown that a nearly pure Greenberger-Horne-Zeilinger (GHZ) state could be distilled from a large (even infinite) number of GHZ-diagonal states that can be obtained by depolarizing general multipartite mixed states (non-GHZ-diagonal states) through sequences of (probabilistic) local operations and classical communications. We here demonstrate that perfect GHZ states can be extracted, with certain probabilities, from two copies of non-GHZ-diagonal mixed states when some conditions are satisfied. This result implies that it is not necessary to depolarize these entangled mixed states to the GHZ-diagonal type, and that they are better than GHZ-diagonal states for distillation of pure GHZ states. We find a wide class of multipartite entangled mixed states that fulfill the requirements. Moreover, we display that the obtained result can be applied to practical noisy environments, e.g., amplitude-damping channels. Our findings provide an important complementarity to conventional GHZ-state distillation protocols (designed for GHZ-diagonal states) in theory, as well as having practical applications.
Iterative algorithm for joint zero diagonalization with application in blind source separation.
Zhang, Wei-Tao; Lou, Shun-Tian
2011-07-01
A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.
Active hydrodynamics of synchronization and ordering in moving oscillators
NASA Astrophysics Data System (ADS)
Banerjee, Tirthankar; Basu, Abhik
2017-08-01
The nature of emergent collective behaviors of moving interacting physical agents is a long-standing open issue in physical and biological systems alike. This calls for studies on the control of synchronization and the degree of order in a collection of diffusively moving noisy oscillators. We address this by constructing a generic hydrodynamic theory for active phase fluctuations in a collection of a large number of nearly-phase-coherent moving oscillators in two dimensions. Our theory describes the general situation where phase fluctuations and oscillator mobility mutually affect each other. We show that the interplay between the active effects and the mobility of the oscillators leads to a variety of phenomena, ranging from synchronization with long-range, nearly-long-range, and quasi-long-range orders to instabilities and desynchronization with short-range order of the oscillator phases. We highlight the complex dependences of synchronization on the active effects. These should be testable in wide-ranging systems, e.g., oscillating chemical reactions in the presence of different reaction inhibitors and facilitators, live oriented cytoskeletal extracts, and vertebrate segmentation clocks.
NASA Astrophysics Data System (ADS)
Burt, T.; Worrall, F.
2008-12-01
A 35-year record of nitrate concentration for the Slapton Wood stream, a small agricultural catchment in south west England, is presented. The study reconsiders earlier work in order to assess whether upward trends have been maintained and how controls on catchment nitrate processes have altered. The study has shown that: (i) the catchment has reached a new position of equilibrium and increases in nitrate concentration have levelled off; (ii) the occurrence of severe droughts means that records of less than a decade are misleading and only longer records can illustrate changes of system state; (iii) the change of state observed in the catchment is illustrated in the switching of long-term memory effects from a negative to a positive annual memory; (iv) a significant long-term impulsivity relationship with rainfall becomes insignificant over the course of the study period. The study shows the importance of long records in exposing changes in state in catchment systems and understanding the time constants of a range of driving processes. The study by its very nature also demonstrates the importance of maintaining long-term monitoring programmes.
Modeling off-frequency binaural masking for short- and long-duration signals.
Nitschmann, Marc; Yasin, Ifat; Henning, G Bruce; Verhey, Jesko L
2017-08-01
Experimental binaural masking-pattern data are presented together with model simulations for 12- and 600-ms signals. The masker was a diotic 11-Hz wide noise centered on 500 Hz. The tonal signal was presented either diotically or dichotically (180° interaural phase difference) with frequencies ranging from 400 to 600 Hz. The results and the modeling agree with previous data and hypotheses; simulations with a binaural model sensitive to monaural modulation cues show that the effect of duration on off-frequency binaural masking-level differences is mainly a result of modulation cues which are only available in the monaural detection of long signals.
Transition from disordered to long-range ordered nanoparticles on Al2O3/Ni3Al(111)
NASA Astrophysics Data System (ADS)
Alyabyeva, N.; Ouvrard, A.; Zakaria, A.-M.; Charra, F.; Bourguignon, B.
2018-06-01
Application of preparation recipes of the literature failed to produce an ordered array of NPs on our particular Ni3Al sample. This has motivated a systematic survey of Pd NP nucleation as a function of experimental parameters. We have shown that the increase of oxidation temperature during the preparation of Al2O3 ultra-thin film on Ni3Al(111) leads to a transition from disordered to long-range ordered Pd nanoparticle (NP) nucleation. Alumina films were prepared at different temperatures ranging from 990 to 1140 K. Crystallinity, electronic structure of the alumina film and Pd nucleation and growth have been investigated using Low Energy Electron Diffraction and Scanning Tunnelling Microscopy. NP density and long-range order nucleation along the so-called "dot structure" of 4.2 nm periodicity, strongly increase for temperatures higher than a threshold value of 1070 ± 20 K. This transition relies on the alumina film improvement and suggests that the modulation of Pd adsorption energy at nucleation centres which is necessary to nucleate NPs at ordered sites, requires higher preparation temperature. Long-range ordered NPs with a high density were obtained 140 K above reported recipes in the literature. This optimized temperature has been tested on a fresh sample (issued from the same supplier) for which just a few cleanings were enough to obtain long-range ordered NPs. Presumably the variability of the optimal oxidation temperature for our samples with respect to the literature is related to fluctuations of the stoichiometry from sample to sample.
Long-range ordering effect in electrodeposition of zinc and zinc oxide.
Liu, Tao; Wang, Sheng; Shi, Zi-Liang; Ma, Guo-Bin; Wang, Mu; Peng, Ru-Wen; Hao, Xi-Ping; Ming, Nai-Ben
2007-05-01
In this paper, we report the long-range ordering effect observed in the electro-crystallization of Zn and ZnO from an ultrathin aqueous electrolyte layer of ZnSO4 . The deposition branches are regularly angled, covered with random-looking, scalelike crystalline platelets of ZnO. Although the orientation of each crystalline platelet of ZnO appears random, transmission electron microscopy shows that they essentially possess the same crystallographic orientation as the single-crystalline zinc electrodeposit underneath. Based on the experimental observations, we suggest that this unique long-range ordering effect results from an epitaxial nucleation effect in electrocrystallization.
Topological superconductivity in the extended Kitaev-Heisenberg model
NASA Astrophysics Data System (ADS)
Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.
2018-01-01
We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ <0 , we find a competition between a time-reversal symmetry-breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.
Analysis of modified SMI method for adaptive array weight control
NASA Technical Reports Server (NTRS)
Dilsavor, R. L.; Moses, R. L.
1989-01-01
An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.
NASA Astrophysics Data System (ADS)
Lázaro, Mario
2018-01-01
In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.
Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED
NASA Astrophysics Data System (ADS)
Guo, Rongli; Wang, Fan; Hu, Xiaoying; Yang, Wenqian
2017-11-01
Off-axis digital holographic interferometry with the light source of a light emitting diode (LED) is presented and its application for quantitative phase imaging in a large range with low noise is demonstrated. The scheme is implemented in a grating based Mach-Zehnder interferometer. To achieve off-axis interferometry, firstly, the collimated beam emitted from an LED is diffracted into multiple orders by a grating and they are split into two copies by a beam splitter; secondly, in the object arm the zero order of one copy is filtered in the Fourier plane and is reshaped to illuminate the sample, while in the reference arm one of its first order of another copy is selected to serve as the reference beam, and then an off-axis hologram can be obtained at the image plane. The main advantage stemming from an LED illumination is its high spatial phase resolution, due to the subdued speckle effect. The off-axis geometry enables one-shot recording of the hologram in the millisecond scale. The utility of the proposed setup is illustrated with measurements of a resolution target and part of a wing of green-lacewing, and dynamic evaporation process of an ethanol film.
Field dependence of the magnetic correlations of the frustrated magnet SrDy 2 O 4
Gauthier, N.; Fennell, A.; Prévost, B.; ...
2017-05-30
Tmore » he frustrated magnet SrDy 2 O 4 exhibits a field-induced phase with a magnetization plateau at 1 / 3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below ≈ 0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. he long-range ordered structure in field contrasts with the short-range order found at zero field, and is most likely reached through enhanced quantum fluctuations with increasing fields.« less
Field dependence of the magnetic correlations of the frustrated magnet SrDy2O4
NASA Astrophysics Data System (ADS)
Gauthier, N.; Fennell, A.; Prévost, B.; Désilets-Benoit, A.; Dabkowska, H. A.; Zaharko, O.; Frontzek, M.; Sibille, R.; Bianchi, A. D.; Kenzelmann, M.
2017-05-01
The frustrated magnet SrDy2O4 exhibits a field-induced phase with a magnetization plateau at 1 /3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below T ≈0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. The long-range ordered structure in field contrasts with the short-range order found at zero field, and is probably reached through enhanced quantum fluctuations with increasing fields.
A low-cost through-the-wall FMCW radar for stand-off operation and activity detection
NASA Astrophysics Data System (ADS)
Chetty, Kevin; Chen, Qingchao; Ritchie, Matthew; Woodbridge, Karl
2017-05-01
In this paper we present a new through-wall (TW) FMCW radar system. The architecture of the radar enables both high sensitivity and range resolutions of <1.5 m. Moreover, the radar employs moving target indication (MTI) signal processing to remove the problematic primary wall reflection, allowing higher signal-to- noise and signal-to-interference ratios, which can be traded-off for increased operational stand-off. The TW radar operates at 5.8 GHz with a 200 MHz bandwidth. Its dual-frequency design minimises interference from signal leakage, and permits a baseband output after deramping which is digitized using an inexpensive 24-bit off-the-shelf sound card. The system is therefore an order of magnitude lower in cost than competitor ultrawideband (UWB) TW systems. The high sensitivity afforded by this wide dynamic range has allowed us to develop a wall removal technique whereby high-order digital filters provide a flexible means of MTI filtering based on the phases of the returned echoes. Experimental data demonstrates through-wall detection of individuals and groups of people in various scenarios. Target positions were located to within +/-1.25 m in range, allowing us distinguish between two closely separated targets. Furthermore, at 8.5 m standoff, our wall removal technique can recover target responses that would have otherwise been masked by the primary wall reflection, thus increasing the stand-off capability of the radar. Using phase processing, our experimental data also reveals a clear difference in the micro-Doppler signatures across various types of everyday actions
Spin-1/2 Heisenberg antiferromagnet on an anisotropic triangular lattice
NASA Astrophysics Data System (ADS)
Starykh, Oleg
2007-03-01
The Triangular lattice spin-1/2 Heisenberg AntiFerromagnet (TAF) is a prototypical model of frustrated quantum magnetism. While it is believed to exhibit long-range order in the isotropic limit, changes such as spatial anisotropy can alter the delicate balance amongst competing ground states. I will describe the static and dynamic properties of the spatially anisotropic TAF, with inter-chain diagonal exchange J' much weaker than the intrachain exchange J. Treating J' as a perturbation of decoupled Heisenberg spin-1/2 chains, I find that the ground state is spontaneously dimerized in a four-fold degenerate zig-zag pattern. This dimerization instability is driven by quantum fluctuations, which are dramatically enhanced here by the frustrated nature of inter-chain exchange. A magnetic field partially relieves frustration, by canting the spins along the field direction, and causes a quantum phase transition into a magnetically-ordered spin-density-wave phase. This is followed by cone and, finally, fully polarized (saturated) phases, as a function of increasing magnetic field. I show that many of these features are in fact observed in experiments on the celebrated material Cs2CuCl4 (J'/J =1/3). I will also discuss the significant modification of the phase diagram by symmetry-breaking anisotropic Dzyaloshinskii-Moriya (DM) interactions, present in this interesting magnet. In addition to static and thermodynamic properties, the proposed ``one-dimensional'' approach offers a compelling explanation of the unusual experimentally measured dynamical structure factor of Cs2CuCl4 in terms of descendants of one-dimensional spinons. Quite generally, I find characteristic features of a momentum-dependent spinon bound state and a dispersing incoherent excitation in the structure factor, in agreement with experiments.
Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review
NASA Technical Reports Server (NTRS)
Kennedy, Christopher A.; Carpenter, Mark H.
2016-01-01
A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances.
Zubiaga, A; Tuomisto, F; Puska, M J
2015-01-29
We investigate the modeling of positronium (Ps) states and their pick-off annihilation trapped at open volumes pockets in condensed molecular matter. Our starting point is the interacting many-body system of Ps and a He atom because it is the smallest entity that can mimic the energy gap between the highest occupied and lowest unoccupied molecular orbitals of molecules, and yet the many-body structure of the HePs system can be calculated accurately enough. The exact-diagonalization solution of the HePs system enables us to construct a pairwise full-correlation single-particle potential for the Ps-He interaction, and the total potential in solids is obtained as a superposition of the pairwise potentials. We study in detail Ps states and their pick-off annihilation rates in voids inside solid He and analyze experimental results for Ps-induced voids in liquid He obtaining the radii of the voids. More importantly, we generalize our conclusions by testing the validity of the Tao-Eldrup model, widely used to analyze ortho-Ps annihilation measurements for voids in molecular matter, against our theoretical results for the solid He. Moreover, we discuss the influence of the partial charges of polar molecules and the strength of the van der Waals interaction on the pick-off annihilation rate.
Reflectionless CMV Matrices and Scattering Theory
NASA Astrophysics Data System (ADS)
Chu, Sherry; Landon, Benjamin; Panangaden, Jane
2015-04-01
Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient, a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associated to the coupled and decoupled operators are derived. In particular, it is shown that a CMV matrix is reflectionless iff the scattering matrix is off-diagonal which in turn provides a short proof of an important result of Breuer et al. (Commun Math Phys 295:531-550, 2010). These developments parallel those recently obtained for Jacobi matrices Jakšić et al. (Commun Math Phys 827-838, 2014).
Design rules for quasi-linear nonlinear optical structures
NASA Astrophysics Data System (ADS)
Lytel, Richard; Mossman, Sean M.; Kuzyk, Mark G.
2015-09-01
The maximization of the intrinsic optical nonlinearities of quantum structures for ultrafast applications requires a spectrum scaling as the square of the energy eigenstate number or faster. This is a necessary condition for an intrinsic response approaching the fundamental limits. A second condition is a design generating eigenstates whose ground and lowest excited state probability densities are spatially separated to produce large differences in dipole moments while maintaining a reasonable spatial overlap to produce large off-diagonal transition moments. A structure whose design meets both conditions will necessarily have large first or second hyperpolarizabilities. These two conditions are fundamental heuristics for the design of any nonlinear optical structure.
Dimension-5 C P -odd operators: QCD mixing and renormalization
Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; ...
2015-12-23
Here, we study the off-shell mixing and renormalization of flavor-diagonal dimension-five T- and P-odd operators involving quarks, gluons, and photons, including quark electric dipole and chromoelectric dipole operators. Furthermore, we present the renormalization matrix to one loop in themore » $$\\bar{MS}$$ scheme. We also provide a definition of the quark chromoelectric dipole operator in a regularization-independent momentum-subtraction scheme suitable for nonperturbative lattice calculations and present the matching coefficients with the $$\\bar{MS}$$ scheme to one loop in perturbation theory, using both the naïve dimensional regularization and ’t Hooft–Veltman prescriptions for γ 5.« less
NASA Astrophysics Data System (ADS)
Kolesniková, Lucie; Koucký, Jan; Kania, Patrik; Uhlíková, Tereza; Beckers, Helmut; Urban, Štěpán
2018-01-01
The resonance crossing of rotational levels with different fine-structure components and different k rotational quantum numbers was observed in the rotational spectra of the symmetric top fluorosulfate radical FSO3rad. Detailed measurements were performed to analyze these weak resonances as well as the A1-A2 splittings of the K = 3 and K = 6 transitions. The resonance level crossing enabled the experimental determination of "forbidden" parameters, the rotational A and the centrifugal distortion DK constants as well as the corresponding resonance off-diagonal matrix element.
Efficient continuous-variable state tomography using Padua points
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier; Govia, Luke C. G.; Clerk, Aashish A.
Further development of quantum technologies calls for efficient characterization methods for quantum systems. While recent work has focused on discrete systems of qubits, much remains to be done for continuous-variable systems such as a microwave mode in a cavity. We introduce a novel technique to reconstruct the full Husimi Q or Wigner function from measurements done at the Padua points in phase space, the optimal sampling points for interpolation in 2D. Our technique not only reduces the number of experimental measurements, but remarkably, also allows for the direct estimation of any density matrix element in the Fock basis, including off-diagonal elements. OLC acknowledges financial support from NSERC.
León-Montiel, Roberto de J.; Quiroz-Juárez, Mario A.; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L.; Moya-Cessa, Héctor M.; Torres, Juan P.; Aragón, José L.
2015-01-01
Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed. PMID:26610864
NASA Astrophysics Data System (ADS)
Beaubois, F.; Claverie, T.; Marcerou, J. P.; Rouillon, J. C.; Nguyen, H. T.; Garland, C. W.; Haga, H.
1997-11-01
The birefringence Δn, the specific heat Cp, and the layer compressional elastic modulus B are reported for two liquid crystals near the nematic (N) to smectic-A (SmA) phase transition. As predicted long ago by MacMillan and de Gennes [P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993)] the coupling of the nematic orientational order parameter to the smectic-A layering order parameter can substantially alter the critical behavior near the N-SmA transition if the nematic range is small and the nematic order parameter susceptibility is large. In this paper, we present a direct experimental comparison of two compounds: 4-octyloxy-4'-cyanobiphenyl (8OCB) with a short nematic range and 4-octyloxybenzoyloxy-4'-cyanotolane (C8tolane) with a very large N range. The temperature variations of the apparent birefringence Δn and the specific heat Cp across the N-SmA phase transition show the definite influence of the proximity of the isotropic phase in the case of 8OCB while the C8tolane behaves as expected for the three-dimensional XY universality class. The elastic modulus B in the SmA phase, measured at several wave vectors by the second-sound resonance technique, was studied with high resolution as a function of temperature on approaching Tc(N-SmA). These elastic data confirm the B leveling off in both cases with an apparent breakdown of hydrodynamics in the case of the C8tolane compound.
Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model
Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; ...
2016-08-25
We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1/2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d-density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionicmore » symmetry-protected topological phase. This state—protected by time-reversal and reflection symmetries—cannot be connected adiabatically to a free-fermion topological phase.« less
Time-dependent generalized Gibbs ensembles in open quantum systems
NASA Astrophysics Data System (ADS)
Lange, Florian; Lenarčič, Zala; Rosch, Achim
2018-04-01
Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.
Quantum interferometer based on GaAs/InAs core/shell nanowires connected to superconducting contacts
NASA Astrophysics Data System (ADS)
Haas, F.; Dickheuer, S.; Zellekens, P.; Rieger, T.; Lepsa, M. I.; Lüth, H.; Grützmacher, D.; Schäpers, Th
2018-06-01
An interferometer structure was realized based on a GaAs/InAs core/shell nanowire and Nb superconducting electrodes. Two pairs of Nb contacts are attached to the side facets of the nanowire allowing for carrier transport in three different orientations. Owing to the core/shell geometry, the current flows in the tubular conductive InAs shell. In transport measurements with superconducting electrodes directly facing each other, indications of a Josephson supercurrent are found. In contrast for junctions in diagonal and longitudinal configuration a deficiency current is observed, owing to the weaker coupling on longer distances. By applying a magnetic field along the nanowires axis pronounced h/2e flux-periodic oscillations are measured in all three contact configurations. The appearance of these oscillations is explained in terms of interference effects in the Josephson supercurrent and long-range phase-coherent Andreev reflection.
Experimental investigation of the ordering pathway in a Ni-33 at.%Cr alloy
Gwalani, B.; Alam, T.; Miller, C.; ...
2016-06-17
The present study involves a detailed experimental investigation of the concurrent compositional clustering and long-range ordering tendencies in a Ni-33 at.%Cr alloy, carried out by coupling synchrotron-based X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). Synchrotron-based XRD results clearly exhibited progressively increasing lattice contraction in the matrix with increasing isothermal aging time, at 475 degrees C, eventually leading to the development of long-range ordering (LRO) of the Pt2Mo-type. Detailed TEM and APT investigations revealed that this LRO in the matrix is manifested in the form of nanometer-scale ordered domains, and the spatial distribution, size, morphology andmore » compositional evolution of these domains have been carefully investigated. Here, the APT results also revealed the early stages of compositional clustering prior to the onset of long-range ordering in this alloy and such compositional clustering can potentially be correlated to the lattice contraction and previously proposed short-range ordering tendencies.« less
Positional short-range order in the nematic phase of n BABAs
NASA Astrophysics Data System (ADS)
Usha Deniz, K.; Pepy, G.; Parette, G.; Keller, P.
1991-10-01
The positional short-range order, SRO ⊥, perpendicular to the nematic director n̂ has been studied in the fibre-type nematics, nBABAs, by neutron diffraction. SRO ⊥ is found to be dependent on other types of nematic short-range order but not on the orientational long-range order.
Dynamic testing of a two-dimensional box truss beam
NASA Technical Reports Server (NTRS)
White, Charles W.
1987-01-01
Testing to determine the effects of joint freeplay and pretensioning of diagonal members on the dynamic characteristics of a two-dimensional box truss beam was conducted. The test article was ten bays of planar truss suspended by long wires at each joint. Each bay measured 2 meters per side. Pins of varying size were used to simulate various joint freeplay conditions. Single-point random excitation was the primary method of test. The rational fraction polynomial method was used to extract modal characteristics from test data. A finite element model of the test article was generated from which modal characteristics were predicted. These were compared with those obtained from tests. With the exception of the fundamental mode, correlation of theoretical and experimental results was poor, caused by the resonant coupling of local truss member bending modes with global truss beam modes. This coupling introduced many modes in the frequency range of interest whose frequencies were sensitive to joint boundary conditions. It was concluded that local/global coupling must be avoided in the frequency range where accurate modal characteristics are required.
Anisotropic Poroelasticity in a Rock With Cracks
NASA Astrophysics Data System (ADS)
Wong, Teng-Fong
2017-10-01
Deformation of a saturated rock in the field and laboratory may occur in a broad range of conditions, ranging from undrained to drained. The poromechanical response is often anisotropic, and in a brittle rock, closely related to preexisting and stress-induced cracks. This can be modeled as a rock matrix embedded with an anisotropic system of cracks. Assuming microisotropy, expressions for three of the poroelastic coefficients of a transversely isotropic rock were derived in terms of the crack density tensor. Together with published results for the five effective elastic moduli, this provides a complete micromechanical description of the eight independent poroelastic coefficients of such a cracked rock. Relatively simple expressions were obtained for the Skempton pore pressure tensor, which allow one to infer the crack density tensor from undrained measurement in the laboratory, and also to infer the Biot-Willis effective stress coefficients. The model assumes a dilute concentration of noninteractive penny-shaped cracks, and it shows good agreement with experimental data for Berea sandstone, with crack density values up to 0.6. Whereas predictions on the storage coefficient and normal components of the elastic stiffness tensor also seem reasonable, significant discrepancy between model and measurement was observed regarding the off-diagonal and shear components of the stiffness. A plausible model had been proposed for development of very strong anisotropy in the undrained response of a fault zone, and the model here placed geometric constraints on the associated fracture system.
First Principle Predictions of Isotopic Shifts in H2O
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2002-01-01
We compute isotope independent first and second order corrections to the Born-Oppenheimer approximation for water and use them to predict isotopic shifts. For the diagonal correction, we use icMRCI wavefunctions and derivatives with respect to mass dependent, internal coordinates to generate the mass independent correction functions. For the non-adiabatic correction, we use scaled SCF/CIS wave functions and a generalization of the Handy method to obtain mass independent correction functions. We find that including the non-adiabatic correction gives significantly improved results compared to just including the diagonal correction when the Born-Oppenheimer potential energy surface is optimized for H2O-16. The agreement with experimental results for deuterium and tritium containing isotopes is nearly as good as our best empirical correction, however, the present correction is expected to be more reliable for higher, uncharacterized levels.
Ortega, Eduardo; Santiago, Ulises; Giuliani, Jason G; Monton, Carlos; Ponce, Arturo
2018-05-01
Magnetic nanostructures of different size, shape, and composition possess a great potential to improve current technologies like data storage and electromagnetic sensing. In thin ferromagnetic nanowires, their magnetization behavior is dominated by the competition between magnetocrystalline anisotropy (related to the crystalline structure) and shape anisotropy. In this way electron diffraction methods like precession electron diffraction (PED) can be used to link the magnetic behavior observed by Electron Holography (EH) with its crystallinity. Using off-axis electron holography under Lorentz conditions, we can experimentally determine the magnetization distribution over neighboring nanostructures and their diamagnetic matrix. In the case of a single row of nickel nanowires within the alumina template, the thin TEM samples showed a dominant antiferromagnetic arrangement demonstrating long-range magnetostatic interactions playing a major role.
NASA Astrophysics Data System (ADS)
Ortega, Eduardo; Santiago, Ulises; Giuliani, Jason G.; Monton, Carlos; Ponce, Arturo
2018-05-01
Magnetic nanostructures of different size, shape, and composition possess a great potential to improve current technologies like data storage and electromagnetic sensing. In thin ferromagnetic nanowires, their magnetization behavior is dominated by the competition between magnetocrystalline anisotropy (related to the crystalline structure) and shape anisotropy. In this way electron diffraction methods like precession electron diffraction (PED) can be used to link the magnetic behavior observed by Electron Holography (EH) with its crystallinity. Using off-axis electron holography under Lorentz conditions, we can experimentally determine the magnetization distribution over neighboring nanostructures and their diamagnetic matrix. In the case of a single row of nickel nanowires within the alumina template, the thin TEM samples showed a dominant antiferromagnetic arrangement demonstrating long-range magnetostatic interactions playing a major role.
HNBody: A Simulation Package for Hierarchical N-Body Systems
NASA Astrophysics Data System (ADS)
Rauch, Kevin P.
2018-04-01
HNBody (http://www.hnbody.org/) is an extensible software package forintegrating the dynamics of N-body systems. Although general purpose, itincorporates several features and algorithms particularly well-suited tosystems containing a hierarchy (wide dynamic range) of masses. HNBodyversion 1 focused heavily on symplectic integration of nearly-Kepleriansystems. Here I describe the capabilities of the redesigned and expandedpackage version 2, which includes: symplectic integrators up to eighth order(both leap frog and Wisdom-Holman type methods), with symplectic corrector andclose encounter support; variable-order, variable-timestep Bulirsch-Stoer andStörmer integrators; post-Newtonian and multipole physics options; advancedround-off control for improved long-term stability; multi-threading and SIMDvectorization enhancements; seamless availability of extended precisionarithmetic for all calculations; extremely flexible configuration andoutput. Tests of the physical correctness of the algorithms are presentedusing JPL Horizons ephemerides (https://ssd.jpl.nasa.gov/?horizons) andpreviously published results for reference. The features and performanceof HNBody are also compared to several other freely available N-body codes,including MERCURY (Chambers), SWIFT (Levison & Duncan) and WHFAST (Rein &Tamayo).
Refusing to Twist: Demonstration of a Line Hexatic Phase in DNA Liquid Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strey, H. H.; NICHD/LPSB, National Institutes of Health, Building 12A/2041, Bethesda, Maryland 20892-5626; Wang, J.
2000-04-03
We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules. (c) 2000more » The American Physical Society.« less
Measurement of Residual Flexibility for Substructures Having Prominent Flexible Interfaces
NASA Technical Reports Server (NTRS)
Tinker, Michael L.; Bookout, Paul S.
1994-01-01
Verification of a dynamic model of a constrained structure requires a modal survey test of the physical structure and subsequent modification of the model to obtain the best agreement possible with test data. Constrained-boundary or fixed-base testing has historically been the most common approach for verifying constrained mathematical models, since the boundary conditions of the test article are designed to match the actual constraints in service. However, there are difficulties involved with fixed-base testing, in some cases making the approach impractical. It is not possible to conduct a truly fixed-base test due to coupling between the test article and the fixture. In addition, it is often difficult to accurately simulate the actual boundary constraints, and the cost of designing and constructing the fixture may be prohibitive. For use when fixed-base testing proves impractical or undesirable, alternate free-boundary test methods have been investigated, including the residual flexibility technique. The residual flexibility approach has been treated analytically in considerable detail and has had limited frequency response measurements for the method. This concern is well-justified for a number of reasons. First, residual flexibilities are very small numbers, typically on the order of 1.0E-6 in/lb for translational diagonal terms, and orders of magnitude smaller for off-diagonal values. This poses difficulty in obtaining accurate and noise-free measurements, especially for points removed from the excitation source. A second difficulty encountered in residual measurements lies in obtaining a clean residual function in the process of subtracting synthesized modal data from a measured response function. Inaccuracies occur since modes are not subtracted exactly, but only to the accuracy of the curve fits for each mode; these errors are compounded with increasing distance from the excitation point. In this paper, the residual flexibility method is applied to a simple structure in both test and analysis. Measured and predicted residual functions are compared, and regions of poor data in the measured curves are described. It is found that for accurate residual measurements, frequency response functions having prominent stiffness lines in the acceleration/force format are needed. The lack of such stiffness lines increases measurement errors. Interface drive point frequency respose functions for shuttle orbiter payloads exhibit dominant stiffness lines, making the residual test approach a good candidate for payload modal tests when constrained tests are inappropriate. Difficulties in extracting a residual flexibility value from noisy test data are discussed. It is shown that use of a weighted second order least-squares curve fit of the measured residual function allows identification of residual flexibility that compares very well with predictions for the simple structure. This approach also provides an estimate of second order residual mass effects.
Rydberg-Dressed Magneto-optical Trap
NASA Astrophysics Data System (ADS)
Bounds, A. D.; Jackson, N. C.; Hanley, R. K.; Faoro, R.; Bridge, E. M.; Huillery, P.; Jones, M. P. A.
2018-05-01
We propose and demonstrate the laser cooling and trapping of Rydberg-dressed Sr atoms. By off-resonantly coupling the excited state of a narrow (7 kHz) cooling transition to a high-lying Rydberg state, we transfer Rydberg properties such as enhanced electric polarizability to a stable magneto-optical trap operating at <1 μ K . Simulations show that it is possible to reach a regime where the long-range interaction between Rydberg-dressed atoms becomes comparable to the kinetic energy, opening a route to combining laser cooling with tunable long-range interactions.
Vibrational Analysis of the SiCN tilde{X} ^2Π System
NASA Astrophysics Data System (ADS)
Fukushima, Masaru; Ishiwata, Takashi
2016-06-01
The laser induced fluorescence ( LIF ) spectrum of the tilde{A} 2Δ - tilde{X} ^Π transition was obtained for SiCN generated by laser ablation under supersonic free jet expansion. The vibrational structure of the dispersed fluorescence ( DF ) spectra from single vibronic levels ( SVL's ) was analyzed by numerical diagonalization procedure, in which Renner-Teller ( R-T ), anhamonicity, spin-orbit ( SO ), Herzberg-Teller ( H-T ), Fermi, and Sears interactions have been considered, where the Sears resonance is a second-order interaction combined from SO and H-T interactions with Δ K = ±1, Δ Σ = ∓1, and Δ P = 0. Four vibronic levels, (01^10) ; μ ; Σ1/2(-), κ ; Σ1/2(+), (02^00) ; μ and κ ; Π1/2, are almost closed within the four basis functions by R-T and Sears interactions ( i.e. the four-by-four transformation matrix below is close to ortho-normal ); ( |(01^10) ; μ ; ^2Σ(-)rangle |(01^10) ; κ ; ^2Σ(+)rangle |(02^00) ; μ ; ^2Π1/2rangle |(02^00) ; κ ; ^2Π1/2rangle ) ( 0.9 & -0.4 & 0.0 & 0.0 0.4 & 0.8 & 0.3 & -0.2 0.2 & 0.4 & -0.8 & 0.4 0.0 & 0.0 & -0.5 & -0.8 ) ( | - rangle | +1/2 rangle ; | 0; 1, +1 rangle | + rangle | +1/2 rangle ; | 0; 1, -1 rangle | + rangle | -1/2 rangle ; | +1; 2, 0 rangle | - rangle | -1/2 rangle ; | +1; 2, +2 rangle ), where | Λ rangle | Σ rangle | K; v_2, l rangle = | - rangle | +1/2 rangle | 0; 1, +1 rangle etc. are basis functions of the vibronic Hamiltonian for the numerical diagonalization, and | Λ rangle, | Σ rangle, and | K; v_2, l rangle are basis functions of electronic, electron spin, and two dimensional harmonic oscillator, respectively. if0 The two levels, (01^10) ; κ ; Σ1/2(+) and (02^00) ; μ ; Π1/2, with Δ K = ±1 and Δ P = 0, show typical example of Sears resonance with an almost one-to-one mixing; ( |(01^10) ; κ ; ^2Σ(+)rangle |(02^00) ; μ ; ^2Π1/2rangle ) ( 0.8 & 0.3 0.4 & -0.8 ) ( | + rangle | +1/2 rangle ; | 0; 1, -1 rangle | + rangle | -1/2 rangle ; | +1; 2, 0 rangle ) ; + ; ( 0.4 & -0.2 0.2 & 0.4 ) ( | - rangle | +1/2 rangle ; | 0; 1, +1 rangle | - rangle | -1/2 rangle ; | +1; 2, +2 rangle ) ; , where the off-diagonal terms are caused by Sears resonance, while the diagonals are came from R-T mostly. The mixing coefficients of the two vibronic levels agree with those obtained from computational studies The two levels among the four above, (01^10) ; κ ; Σ1/2(+) and (02^00) ; μ ; Π1/2, with Δ K = ±1 and Δ P = 0, show typical example of Sears resonance with an almost one-to-one mixing. Even for levels lying at ˜ 1,000 cm-1, some of them are mixed heavily and widely with several levels, and their vibrational quantum numbers are thus meaningless. V. Brites, A. O. Mitrushchenkov, and C. Léonard, J. Chem. Phys. 138, 104311 (2013); C. Léonard, Private communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Jiasen; Yu Changshui; Song Heshan
We propose a scheme for identifying an unknown Bell diagonal state. In our scheme the measurements are performed on the probe qubits instead of the Bell diagonal state. The distinct advantage is that the quantum state of the evolved Bell diagonal state ensemble plus probe states will still collapse on the original Bell diagonal state ensemble after the measurement on probe states; i.e., our identification is quantum state nondestructive. How to realize our scheme in the framework of cavity electrodynamics is also shown.
NASA Astrophysics Data System (ADS)
Hashemi, R.; Predoi-Cross, A.; Nikitin, A. V.; Tyuterev, Vl. G.; Sung, K.; Smith, M. A. H.; Malathy Devi, V.
2017-01-01
Due to the importance of methane as a trace atmospheric gas and a greenhouse gas, we have carried out a precise line-shape study to obtain the CH4-CH4 and CH4-air half-width coefficients, CH4-CH4 and CH4-air shift coefficients and off-diagonal relaxation matrix element coefficients for methane transitions in the spectral range known as the "methane Octad". In addition, the associated temperature dependences of these coefficients have been measured in the 4300-4500 cm-1 region of the Octad. The high signal to noise ratio spectra of pure methane and of dilute mixtures of methane in dry air with high resolution have been recorded at temperatures from 148 K to room temperature using the Bruker IFS 125 HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California. The analysis of spectra was done using a multispectrum non-linear least-squares curve fitting technique. Theoretical calculations have been performed and the results are compared with the previously published line positions, intensities and with the line parameters available in the GEISA and HITRAN2012 databases.
Thouless energy and multifractality across the many-body localization transition
NASA Astrophysics Data System (ADS)
Serbyn, Maksym; Papić, Z.; Abanin, Dmitry A.
2017-09-01
Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across this transition in two different models of disordered spin chains. We show that the behavior of matrix elements can be used to characterize the breakdown of thermalization and to extract the many-body Thouless energy. We find that upon increasing the disorder strength the system enters a critical region around the many-body localization transition. The properties of the system in this region are: (i) the Thouless energy becomes smaller than the level spacing, (ii) the matrix elements show critical dependence on the energy difference, and (iii) the matrix elements, viewed as amplitudes of a fictitious wave function, exhibit strong multifractality. This critical region decreases with the system size, which we interpret as evidence for a diverging correlation length at the many-body localization transition. Our findings show that the correlation length becomes larger than the accessible system sizes in a broad range of disorder strength values and shed light on the critical behavior near the many-body localization transition.
NASA Technical Reports Server (NTRS)
Smith, MaryAnn H.; Benner, D. Chris; Predoi-Cross, Adriana; Venkataraman, Malathy Devi
2009-01-01
Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.
Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units.
Cawkwell, M J; Sanville, E J; Mniszewski, S M; Niklasson, Anders M N
2012-11-13
The self-consistent solution of a Schrödinger-like equation for the density matrix is a critical and computationally demanding step in quantum-based models of interatomic bonding. This step was tackled historically via the diagonalization of the Hamiltonian. We have investigated the performance and accuracy of the second-order spectral projection (SP2) algorithm for the computation of the density matrix via a recursive expansion of the Fermi operator in a series of generalized matrix-matrix multiplications. We demonstrate that owing to its simplicity, the SP2 algorithm [Niklasson, A. M. N. Phys. Rev. B2002, 66, 155115] is exceptionally well suited to implementation on graphics processing units (GPUs). The performance in double and single precision arithmetic of a hybrid GPU/central processing unit (CPU) and full GPU implementation of the SP2 algorithm exceed those of a CPU-only implementation of the SP2 algorithm and traditional matrix diagonalization when the dimensions of the matrices exceed about 2000 × 2000. Padding schemes for arrays allocated in the GPU memory that optimize the performance of the CUBLAS implementations of the level 3 BLAS DGEMM and SGEMM subroutines for generalized matrix-matrix multiplications are described in detail. The analysis of the relative performance of the hybrid CPU/GPU and full GPU implementations indicate that the transfer of arrays between the GPU and CPU constitutes only a small fraction of the total computation time. The errors measured in the self-consistent density matrices computed using the SP2 algorithm are generally smaller than those measured in matrices computed via diagonalization. Furthermore, the errors in the density matrices computed using the SP2 algorithm do not exhibit any dependence of system size, whereas the errors increase linearly with the number of orbitals when diagonalization is employed.
Bischoff, Adrianne R; Pokhvisneva, Irina; Léger, Étienne; Gaudreau, Hélène; Steiner, Meir; Kennedy, James L; O'Donnell, Kieran J; Diorio, Josie; Meaney, Michael J; Silveira, Patrícia P
2017-01-01
Fetal adversity, evidenced by poor fetal growth for instance, is associated with increased risk for several diseases later in life. Classical cut-offs to characterize small (SGA) and large for gestational age (LGA) newborns are used to define long term vulnerability. We aimed at exploring the possible dynamism of different birth weight cut-offs in defining vulnerability in developmental outcomes (through the Bayley Scales of Infant and Toddler Development), using the example of a gene vs. fetal adversity interaction considering gene choices based on functional relevance to the studied outcome. 36-month-old children from an established prospective birth cohort (Maternal Adversity, Vulnerability, and Neurodevelopment) were classified according to birth weight ratio (BWR) (SGA ≤0.85, LGA >1.15, exploring a wide range of other cut-offs) and genotyped for polymorphisms associated with dopamine signaling (TaqIA-A1 allele, DRD2-141C Ins/Ins, DRD4 7-repeat, DAT1-10- repeat, Met/Met-COMT), composing a score based on the described function, in which hypofunctional variants received lower scores. There were 251 children (123 girls and 128 boys). Using the classic cut-offs (0.85 and 1.15), there were no statistically significant interactions between the neonatal groups and the dopamine genetic score. However, when changing the cut-offs, it is possible to see ranges of BWR that could be associated with vulnerability to poorer development according to the variation in the dopamine function. The classic birth weight cut-offs to define SGA and LGA newborns should be seen with caution, as depending on the outcome in question, the protocols for long-term follow up could be either too inclusive-therefore most costly, or unable to screen true vulnerabilities-and therefore ineffective to establish early interventions and primary prevention.
Pressure profiles in detonation cells with rectangular and diagonal structures
NASA Astrophysics Data System (ADS)
Hanana, M.; Lefebvre, M. H.
Experimental results presented in this work enable us to classify the three-dimensional structure of the detonation into two fundamental types: a rectangular structure and a diagonal structure. The rectangular structure is well documented in the literature and consists of orthogonal waves travelling independently from each another. The soot record in this case shows the classical diamond detonation cell exhibiting `slapping waves'. The experiments indicate that the diagonal structure is a structure with the triple point intersections moving along the diagonal line of the tube cross section. The axes of the transverse waves are canted at 45 degrees to the wall, accounting for the lack of slapping waves. It is possible to reproduce these diagonal structures by appropriately controlling the experimental ignition procedure. The characteristics of the diagonal structure show some similarities with detonation structure in round tube. Pressure measurements recorded along the central axis of the cellular structure show a series of pressure peaks, depending on the type of structure and the position inside the detonation cell. Pressure profiles measured for the whole length of the two types of detonation cells show that the intensity of the shock front is higher and the length of the detonation cell is shorter for the diagonal structures.
Sun, Zhihua; Chen, Tianliang; Liu, Xitao; Hong, Maochun; Luo, Junhua
2015-12-23
To switch bulk nonlinear optical (NLO) effects represents an exciting new branch of NLO material science, whereas it remains a great challenge to achieve high contrast for "on/off" of quadratic NLO effects in crystalline materials. Here, we report the supereminent NLO-switching behaviors of a single-component plastic crystal, 2-(hydroxymethyl)-2-nitro-1,3-propanediol (1), which shows a record high contrast of at least ∼150, exceeding all the known crystalline switches. Such a breakthrough is clearly elucidated from the slowing down of highly isotropic molecular motions during plastic-to-rigid transition. The deep understanding of its intrinsic plasticity and superior NLO property allows the construction of a feasible switching mechanism. As a unique class of substances with short-range disorder embedded in long-range ordered crystalline lattice, plastic crystals enable response to external stimuli and fulfill specific photoelectric functions, which open a newly conceptual avenue for the designing of new functional materials.
Spiking and bursting patterns of fractional-order Izhikevich model
NASA Astrophysics Data System (ADS)
Teka, Wondimu W.; Upadhyay, Ranjit Kumar; Mondal, Argha
2018-03-01
Bursting and spiking oscillations play major roles in processing and transmitting information in the brain through cortical neurons that respond differently to the same signal. These oscillations display complex dynamics that might be produced by using neuronal models and varying many model parameters. Recent studies have shown that models with fractional order can produce several types of history-dependent neuronal activities without the adjustment of several parameters. We studied the fractional-order Izhikevich model and analyzed different kinds of oscillations that emerge from the fractional dynamics. The model produces a wide range of neuronal spike responses, including regular spiking, fast spiking, intrinsic bursting, mixed mode oscillations, regular bursting and chattering, by adjusting only the fractional order. Both the active and silent phase of the burst increase when the fractional-order model further deviates from the classical model. For smaller fractional order, the model produces memory dependent spiking activity after the pulse signal turned off. This special spiking activity and other properties of the fractional-order model are caused by the memory trace that emerges from the fractional-order dynamics and integrates all the past activities of the neuron. On the network level, the response of the neuronal network shifts from random to scale-free spiking. Our results suggest that the complex dynamics of spiking and bursting can be the result of the long-term dependence and interaction of intracellular and extracellular ionic currents.
Efficient Storage Scheme of Covariance Matrix during Inverse Modeling
NASA Astrophysics Data System (ADS)
Mao, D.; Yeh, T. J.
2013-12-01
During stochastic inverse modeling, the covariance matrix of geostatistical based methods carries the information about the geologic structure. Its update during iterations reflects the decrease of uncertainty with the incorporation of observed data. For large scale problem, its storage and update cost too much memory and computational resources. In this study, we propose a new efficient storage scheme for storage and update. Compressed Sparse Column (CSC) format is utilized to storage the covariance matrix, and users can assign how many data they prefer to store based on correlation scales since the data beyond several correlation scales are usually not very informative for inverse modeling. After every iteration, only the diagonal terms of the covariance matrix are updated. The off diagonal terms are calculated and updated based on shortened correlation scales with a pre-assigned exponential model. The correlation scales are shortened by a coefficient, i.e. 0.95, every iteration to show the decrease of uncertainty. There is no universal coefficient for all the problems and users are encouraged to try several times. This new scheme is tested with 1D examples first. The estimated results and uncertainty are compared with the traditional full storage method. In the end, a large scale numerical model is utilized to validate this new scheme.