Sample records for off-diagonal matrix element

  1. A new fast direct solver for the boundary element method

    NASA Astrophysics Data System (ADS)

    Huang, S.; Liu, Y. J.

    2017-09-01

    A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.

  2. Line Interference Effects Using a Refined Robert-Bonamy Formalism: the Test Case of the Isotropic Raman Spectra of Autoperturbed N2

    NASA Technical Reports Server (NTRS)

    Boulet, Christian; Ma, Qiancheng; Thibault, Franck

    2014-01-01

    A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N2 for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While in the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N2, opening the way to the analysis of more complex molecular systems.

  3. Transferring elements of a density matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allahverdyan, Armen E.; Hovhannisyan, Karen V.; Yerevan State University, A. Manoogian Street 1, Yerevan

    2010-01-15

    We study restrictions imposed by quantum mechanics on the process of matrix-element transfer. This problem is at the core of quantum measurements and state transfer. Given two systems A and B with initial density matrices lambda and r, respectively, we consider interactions that lead to transferring certain matrix elements of unknown lambda into those of the final state r-tilde of B. We find that this process eliminates the memory on the transferred (or certain other) matrix elements from the final state of A. If one diagonal matrix element is transferred, r(tilde sign){sub aa}=lambda{sub aa}, the memory on each nondiagonal elementmore » lambda{sub an}ot ={sub b} is completely eliminated from the final density operator of A. Consider the following three quantities, Relambda{sub an}ot ={sub b}, Imlambda{sub an}ot ={sub b}, and lambda{sub aa}-lambda{sub bb} (the real and imaginary part of a nondiagonal element and the corresponding difference between diagonal elements). Transferring one of them, e.g., Rer(tilde sign){sub an}ot ={sub b}=Relambda{sub an}ot ={sub b}, erases the memory on two others from the final state of A. Generalization of these setups to a finite-accuracy transfer brings in a trade-off between the accuracy and the amount of preserved memory. This trade-off is expressed via system-independent uncertainty relations that account for local aspects of the accuracy-disturbance trade-off in quantum measurements. Thus, the general aspect of state disturbance in quantum measurements is elimination of memory on non-diagonal elements, rather than diagonalization.« less

  4. Line interference effects using a refined Robert-Bonamy formalism: The test case of the isotropic Raman spectra of autoperturbed N{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulet, Christian, E-mail: Christian.boulet@u-psud.fr; Ma, Qiancheng; Thibault, Franck

    A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N{sub 2} for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While inmore » the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N{sub 2}, opening the way to the analysis of more complex molecular systems.« less

  5. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    NASA Astrophysics Data System (ADS)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  6. Decay of correlations between cross-polarized electromagnetic waves in a two-dimensional random medium.

    PubMed

    Gorodnichev, E E

    2018-04-01

    The problem of multiple scattering of polarized light in a two-dimensional medium composed of fiberlike inhomogeneities is studied. The attenuation lengths for the density matrix elements are calculated. For a highly absorbing medium it is found that, as the sample thickness increases, the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the sample thickness, the off-diagonal elements which are responsible for correlations between the cross-polarized waves disappear. In the asymptotic limit of very thick samples the scattered light proves to be polarized perpendicular to the fibers. The difference in the attenuation lengths between the density matrix elements results in a nonmonotonic depth dependence of the degree of polarization. In the opposite case of a weakly absorbing medium, the off-diagonal element of the density matrix and, correspondingly, the correlations between the cross-polarized fields are shown to decay faster than the intensity of waves polarized along and perpendicular to the fibers.

  7. On the Origins of the Linear Free Energy Relationships: Exploring the Nature of the Off-Diagonal Coupling Elements in SN2 Reactions

    PubMed Central

    Rosta, Edina; Warshel, Arieh

    2012-01-01

    Understanding the relationship between the adiabatic free energy profiles of chemical reactions and the underlining diabatic states is central to the description of chemical reactivity. The diabatic states form the theoretical basis of Linear Free Energy Relationships (LFERs) and thus play a major role in physical organic chemistry and related fields. However, the theoretical justification for some of the implicit LFER assumptions has not been fully established by quantum mechanical studies. This study follows our earlier works1,2 and uses the ab initio frozen density functional theory (FDFT) method3 to evaluate both the diabatic and adiabatic free energy surfaces and to determine the corresponding off-diagonal coupling matrix elements for a series of SN2 reactions. It is found that the off-diagonal coupling matrix elements are almost the same regardless of the nucleophile and the leaving group but change upon changing the central group. Furthermore, it is also found that the off diagonal elements are basically the same in gas phase and in solution, even when the solvent is explicitly included in the ab initio calculations. Furthermore, our study establishes that the FDFT diabatic profiles are parabolic to a good approximation thus providing a first principle support to the origin of LFER. These findings further support the basic approximation of the EVB treatment. PMID:23329895

  8. Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui

    2017-01-01

    Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm-1.

  9. Weak interaction probes of light nuclei

    NASA Astrophysics Data System (ADS)

    Towner, I. S.

    1986-03-01

    Experimental evidence for pion enhancement in axial charge transitions as predicted by softpion theorems is reviewed. Corrections from non-soft-pion terms seem to be limited. For transitions involving the space part of the axial-vector current, soft-pion theorems are powerless. Meson-exchange currents then involve a complicated interplay among competing process. Explicit calculations in the hard-pion model for closed-shell-plus (or minus)-one nuclei, A=15 and A= =17, are in reasonable agreement with experiment. Quenching in the off-diagonal spin-flip matrix element is larger than in the diagonal matrix element.

  10. Negative tunnel magnetoresistance and differential conductance in transport through double quantum dots

    NASA Astrophysics Data System (ADS)

    Trocha, Piotr; Weymann, Ireneusz; Barnaś, Józef

    2009-10-01

    Spin-dependent transport through two coupled single-level quantum dots weakly connected to ferromagnetic leads with collinear magnetizations is considered theoretically. Transport characteristics, including the current, linear and nonlinear conductances, and tunnel magnetoresistance are calculated using the real-time diagrammatic technique in the parallel, serial, and intermediate geometries. The effects due to virtual tunneling processes between the two dots via the leads, associated with off-diagonal coupling matrix elements, are also considered. Negative differential conductance and negative tunnel magnetoresistance have been found in the case of serial and intermediate geometries, while no such behavior has been observed for double quantum dots coupled in parallel. It is also shown that transport characteristics strongly depend on the magnitude of the off-diagonal coupling matrix elements.

  11. Harnessing molecular excited states with Lanczos chains.

    PubMed

    Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O; Saad, Yousef; Umari, Paolo; Xian, Jiawei

    2010-02-24

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  12. Harnessing molecular excited states with Lanczos chains

    NASA Astrophysics Data System (ADS)

    Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O.; Saad, Yousef; Umari, Paolo; Xian, Jiawei

    2010-02-01

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  13. Parallel algorithms for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Amin-Javaheri, Masoud; Orin, David E.

    1989-01-01

    The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.

  14. Relaxation Matrix for Symmetric Tops with Inversion Symmetry: Line Coupling and Line Mixing Effects on NH3 Lines in the V4 Band

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2017-01-01

    Line shape parameters including the half-widths and the off-diagonal elements of the relaxation matrix have been calculated for self-broadened NH3 lines in the perpendicular v4 band. As in the pure rotational and the parallel v1 bands, the small inversion splitting in this band causes a complete failure of the isolated line approximation. As a result, one has to use formalisms not relying on this approximation. However, due to differences between parallel and perpendicular bands of NH3, the applicability of the formalism used in our previous studies of the v1 band and other parallel bands must be carefully verified. We have found that, as long as potential models only contain components with K1 equals K2 equals 0, whose matrix elements require the selection rule delta k equals 0, the formalism is applicable for the v4 band with some minor adjustments. Based on both theoretical considerations and results from numerical calculations, the non-diagonality of the relaxation matrices in all the PP, RP, PQ, RQ, PR, and RR branches is discussed. Theoretically calculated self-broadened half-widths are compared with measurements and the values listed in HITRAN 2012. With respect to line coupling effects, we have compared our calculated intra-doublet off-diagonal elements of the relaxation matrix with reliable measurements carried out in the PP branch where the spectral environment is favorable. The agreement is rather good since our results do well reproduce the observed k and j dependences of these elements, thus validating our formalism.

  15. On optimal improvements of classical iterative schemes for Z-matrices

    NASA Astrophysics Data System (ADS)

    Noutsos, D.; Tzoumas, M.

    2006-04-01

    Many researchers have considered preconditioners, applied to linear systems, whose matrix coefficient is a Z- or an M-matrix, that make the associated Jacobi and Gauss-Seidel methods converge asymptotically faster than the unpreconditioned ones. Such preconditioners are chosen so that they eliminate the off-diagonal elements of the same column or the elements of the first upper diagonal [Milaszewicz, LAA 93 (1987) 161-170], Gunawardena et al. [LAA 154-156 (1991) 123-143]. In this work we generalize the previous preconditioners to obtain optimal methods. "Good" Jacobi and Gauss-Seidel algorithms are given and preconditioners, that eliminate more than one entry per row, are also proposed and analyzed. Moreover, the behavior of the above preconditioners to the Krylov subspace methods is studied.

  16. Quantum correlation of path-entangled two-photon states in waveguide arrays with defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Yiling; Xu, Lei; Han, Bin

    We study the quantum correlation of path-entangled states of two photons in coupled one-dimensional waveguide arrays with lattice defects. Both off-diagonal and diagonal defects are considered, which show different effects on the quantum correlation of path-entangled two-photon states. Two-photon bunching or anti-bunching effects can be observed and controlled. The two photons are found to have a tendency to bunch at the side lobes with a repulsive off-diagonal defect, and the path-entanglement of the input two-photon state can be preserved during the propagation. We also found that defect modes may play an important role on the two-photon correlation of path-entangled statesmore » in the waveguide arrays. Due to the quantum interference effect, intriguing evolution dynamics of the two-photon correlation matrix elements with oscillation frequencies being either twice of or the same as that of a classical light wave, depending on the position of the correlation matrix element, is observed. Our results show that it is possible to manipulate the two-photon correlation properties of path-entangled states in waveguide arrays with lattice defects.« less

  17. A theoretical study of the dissociative recombination of SH+ with electrons through the 2Π states of SH.

    PubMed

    Kashinski, D O; Talbi, D; Hickman, A P; Di Nallo, O E; Colboc, F; Chakrabarti, K; Schneider, I F; Mezei, J Zs

    2017-05-28

    A quantitative theoretical study of the dissociative recombination of SH + with electrons has been carried out. Multireference, configuration interaction calculations were used to determine accurate potential energy curves for SH + and SH. The block diagonalization method was used to disentangle strongly interacting SH valence and Rydberg states and to construct a diabatic Hamiltonian whose diagonal matrix elements provide the diabatic potential energy curves. The off-diagonal elements are related to the electronic valence-Rydberg couplings. Cross sections and rate coefficients for the dissociative recombination reaction were calculated with a stepwise version of the multichannel quantum defect theory, using the molecular data provided by the block diagonalization method. The calculated rates are compared with the most recent measurements performed on the ion Test Storage Ring (TSR) in Heidelberg, Germany.

  18. Derivation of a formula for the resonance integral for a nonorthogonal basis set

    PubMed Central

    Yim, Yung-Chang; Eyring, Henry

    1981-01-01

    In a self-consistent field calculation, a formula for the off-diagonal matrix elements of the core Hamiltonian is derived for a nonorthogonal basis set by a polyatomic approach. A set of parameters is then introduced for the repulsion integral formula of Mataga-Nishimoto to fit the experimental data. The matrix elements computed for the nonorthogonal basis set in the π-electron approximation are transformed to those for an orthogonal basis set by the Löwdin symmetrical orthogonalization. PMID:16593009

  19. Distribution of Off-Diagonal Cross Sections in Quantum Chaotic Scattering: Exact Results and Data Comparison.

    PubMed

    Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim

    2017-12-15

    The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.

  20. Distribution of Off-Diagonal Cross Sections in Quantum Chaotic Scattering: Exact Results and Data Comparison

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim

    2017-12-01

    The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.

  1. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Ma, Q.

    2015-12-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS and IOS models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism to address the line mixing for Raman and infrared spectra of molecules such as N2, C2H2, CO2, NH3, and H2O. By carrying out rigorous calculations, our calculated relaxation matrices are in good agreement with both experimental data and results derived from the ECS model.

  2. Partially coherent electron transport in terahertz quantum cascade lasers based on a Markovian master equation for the density matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, O.; Karimi, F.; Knezevic, I.

    2016-08-01

    We derive a Markovian master equation for the single-electron density matrix, applicable to quantum cascade lasers (QCLs). The equation conserves the positivity of the density matrix, includes off-diagonal elements (coherences) as well as in-plane dynamics, and accounts for electron scattering with phonons and impurities. We use the model to simulate a terahertz-frequency QCL, and compare the results with both experiment and simulation via nonequilibrium Green's functions (NEGF). We obtain very good agreement with both experiment and NEGF when the QCL is biased for optimal lasing. For the considered device, we show that the magnitude of coherences can be a significantmore » fraction of the diagonal matrix elements, which demonstrates their importance when describing THz QCLs. We show that the in-plane energy distribution can deviate far from a heated Maxwellian distribution, which suggests that the assumption of thermalized subbands in simplified density-matrix models is inadequate. As a result, we also show that the current density and subband occupations relax towards their steady-state values on very different time scales.« less

  3. Propagation of Circularly Polarized Light Through a Two-Dimensional Random Medium

    NASA Astrophysics Data System (ADS)

    Gorodnichev, E. E.

    2017-12-01

    The problem of small-angle multiple-scattering of circularly polarized light in a two-dimensional medium with large fiberlike inhomogeneities is studied. The attenuation lengths for elements the density matrix are calculated. It is found that with increasing the sample thickness the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the thickness, the off-diagonal element which is responsible for correlation between the cross-polarized waves dissapears. In the case of very thick samples the scattered field proves to be polarized perpendicular to the fibers. It is shown that the difference in the attenuation lengths of the density matrix elements results in a non-monotonic depth dependence of the degree of polarization.

  4. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2015-01-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS (Energy-Corrected Sudden) and IOS (Infinite-Order Sudden) models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism to address the line mixing for Raman and infrared spectra of molecules such as N2, C2H2, CO2, NH3, and H2O. By carrying out rigorous calculations, our calculated relaxation matrices are in good agreement with both experimental data and results derived from the ECS model.

  5. Inertial sensor and method of use

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2003-01-01

    The inertial sensor of the present invention utilizes a proof mass suspended from spring structures forming a nearly degenerate resonant structure into which a perturbation is introduced, causing a split in frequency of the two modes so that the mode shape become uniquely defined, and to the first order, remains orthogonal. The resonator is provided with a mass or inertia tensor with off-diagonal elements. These off-diagonal elements are large enough to change the mode shape of the two nearly degenerate modes from the original coordinate frame. The spring tensor is then provided with a compensating off-diagonal element, such that the mode shape is again defined in the original coordinate frame. The compensating off-diagonal element in the spring tensor is provided by a biasing voltage that softens certain elements in the spring tensor. Acceleration disturbs the compensation and the mode shape again changes from the original coordinate frame. By measuring the change in the mode shape, the acceleration is measured.

  6. Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1989-01-01

    The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.

  7. An Empirical State Error Covariance Matrix for Batch State Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty. Also, in its most straight forward form, the technique only requires supplemental calculations to be added to existing batch algorithms. The generation of this direct, empirical form of the state error covariance matrix is independent of the dimensionality of the observations. Mixed degrees of freedom for an observation set are allowed. As is the case with any simple, empirical sample variance problems, the presented approach offers an opportunity (at least in the case of weighted least squares) to investigate confidence interval estimates for the error covariance matrix elements. The diagonal or variance terms of the error covariance matrix have a particularly simple form to associate with either a multiple degree of freedom chi-square distribution (more approximate) or with a gamma distribution (less approximate). The off diagonal or covariance terms of the matrix are less clear in their statistical behavior. However, the off diagonal covariance matrix elements still lend themselves to standard confidence interval error analysis. The distributional forms associated with the off diagonal terms are more varied and, perhaps, more approximate than those associated with the diagonal terms. Using a simple weighted least squares sample problem, results obtained through use of the proposed technique are presented. The example consists of a simple, two observer, triangulation problem with range only measurements. Variations of this problem reflect an ideal case (perfect knowledge of the range errors) and a mismodeled case (incorrect knowledge of the range errors).

  8. A multi-state fragment charge difference approach for diabatic states in electron transfer: Extension and automation

    NASA Astrophysics Data System (ADS)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2013-10-01

    The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.

  9. On the Assessment of Psychometric Adequacy in Correlation Matrices.

    ERIC Educational Resources Information Center

    Dziuban, Charles D.; Shirkey, Edwin C.

    Three techniques for assessing the adequacy of correlation matrices for factor analysis were applied to four examples from the literature. The methods compared were: (1) inspection of the off diagonal elements of the anti-image covariance matrix S(to the 2nd) R(to the -1) and S(to the 2nd); (2) the Measure of Sampling Adequacy (M.S.A.), and (3)…

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William H., E-mail: millerwh@berkeley.edu; Cotton, Stephen J., E-mail: StephenJCotton47@gmail.com

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of themore » action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William H.; Cotton, Stephen J.

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory - e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer valuesmore » of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states - and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.« less

  12. Robotic Compliant Motion Control for Aircraft Refueling Applications

    DTIC Science & Technology

    1988-12-01

    J. DUVALL 29 SEP 88 C-26 SUBROUTINE IMPCONST(CONST,MINV, BMAT ) Abstract: This subroutine calculates the 25 constants used by the Fortran subroutine...mass with center of gravity along the joint 6 axis. The desired mass and the damping ( BMAT ) matrices are assumed to be diagonal. Joints angles 4,5...constants. MINV -- A 2x2 matrix containing the elements of the inverse desired mass matrix (diagonal). BMAT -- A 2x2 matrix of damping coefficents (diagonal

  13. Line mixing in a N2-broadened CO2 Q branch observed with a tunable diode laser

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; Strow, L. Larrabee

    1987-01-01

    Line-mixing effects have been observed in the infrared Q branch of the (11/1/0,03/1/0)I-00/0/0 band of CO2 at 2076/cm. A tunable diode laser spectrometer was used to record spectra of CO2 broadened by N2 and O2 at total pressures ranging from 100 to 720 torr. The observed absorption coefficients are up to 65 percent lower than those calculated using an isolated Lorentzian line approximation. A simple energy gap scaling law is used to determine the off-diagonal relaxation matrix elements from the known pressure-broadening coefficients. The spectra calculated using these matrix elements reproduces the observed absorption coefficients to within several percent.

  14. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix

    DOE PAGES

    Miller, William H.; Cotton, Stephen J.

    2016-08-28

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory - e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer valuesmore » of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states - and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.« less

  15. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix.

    PubMed

    Miller, William H; Cotton, Stephen J

    2016-08-28

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory-e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states-and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.

  16. Commander and User Perceptions of the Army’s Intransit Visibility (ITV) Architecture

    DTIC Science & Technology

    2007-03-01

    covariance matrix; (c) Bartlett’s test of Sphericity; and (d) Kaiser-Meyer- Olkin ( KMO ) measure of sampling adequacy. The inter-item correlation matrix...001), and all diagonal terms had a value of 1 while off-diagonal terms were 0. The KMO measure of sampling adequacy reflects the homogeneity...amongst the variables and serves as an index for comparing the magnitudes of correlation coefficients to partial correlation coefficients. KMO values at

  17. Efficient continuous-variable state tomography using Padua points

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier; Govia, Luke C. G.; Clerk, Aashish A.

    Further development of quantum technologies calls for efficient characterization methods for quantum systems. While recent work has focused on discrete systems of qubits, much remains to be done for continuous-variable systems such as a microwave mode in a cavity. We introduce a novel technique to reconstruct the full Husimi Q or Wigner function from measurements done at the Padua points in phase space, the optimal sampling points for interpolation in 2D. Our technique not only reduces the number of experimental measurements, but remarkably, also allows for the direct estimation of any density matrix element in the Fock basis, including off-diagonal elements. OLC acknowledges financial support from NSERC.

  18. Two Dimensional Symmetric Correlation Functions of the S Operator and Two Dimensional Fourier Transforms: Considering the Line Coupling for P and R Lines of Linear Molecules

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  19. Thouless energy and multifractality across the many-body localization transition

    NASA Astrophysics Data System (ADS)

    Serbyn, Maksym; Papić, Z.; Abanin, Dmitry A.

    2017-09-01

    Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across this transition in two different models of disordered spin chains. We show that the behavior of matrix elements can be used to characterize the breakdown of thermalization and to extract the many-body Thouless energy. We find that upon increasing the disorder strength the system enters a critical region around the many-body localization transition. The properties of the system in this region are: (i) the Thouless energy becomes smaller than the level spacing, (ii) the matrix elements show critical dependence on the energy difference, and (iii) the matrix elements, viewed as amplitudes of a fictitious wave function, exhibit strong multifractality. This critical region decreases with the system size, which we interpret as evidence for a diverging correlation length at the many-body localization transition. Our findings show that the correlation length becomes larger than the accessible system sizes in a broad range of disorder strength values and shed light on the critical behavior near the many-body localization transition.

  20. Features of quark and lepton mixing from differential geometry of curves on surfaces

    NASA Astrophysics Data System (ADS)

    Bordes, José; Hong-Mo, Chan; Pfaudler, Jakov; Sheung Tsun, Tsou

    1998-09-01

    It is noted that the Cabibbo-Kobayashi-Moskawa (CKM) matrix elements for both quarks and leptons as conceived in the dualized standard model (DSM) can be interpreted as direction cosines obtained by moving the Darboux trihedron (a 3-frame) along a trajectory on a sphere traced out through changing energy scales by a 3-vector factorized from the mass matrix. From the Darboux analogues of the well-known Serret-Frenet formulas for space curves, it is seen that the corner elements (Vub,Vtd for quarks, and Ue3,Uτ1 for leptons) are associated with the (geodesic) torsion, while the other off-diagonal elements (Vus,Vcd and Vcb,Vts for quarks, and Ue2,Uμ1 and Uμ3,Uτ2 for leptons) with the (respectively, geodesic and normal) curvatures of the trajectory. From this it follows that (i) the corner elements in both matrices are much smaller than the other elements, and (ii) the Uμ3,Uτ2 elements for the lepton CKM matrix are much larger than their counterparts in the quark matrix. Both these conclusions are strongly borne out by experiment, for quarks in hadron decays and for leptons in neutrino oscillations, and by previous explicit calculations within the DSM scheme.

  1. Large Eddy Simulation of Bubbly Ship Wakes

    DTIC Science & Technology

    2005-08-01

    as, [Cm +BI(p)+ DE (u)+D,(u,)] (2.28) aRm, =-[E,+FE )(p) (229O•., L pe•,z+_tpjj.( F.(]-](2.29) where Ci and EP represent the convective terms, Bi is the...discrete operator for the pressure gradient term, DE and D, (FE and FI) are discrete operators for the explicitly treated off diagonal terms and the...Bashforth scheme is employed for all the other terms. The off diagonal viscous terms ( DE ) are treated explicitly in order to simplify the LHS matrix of the

  2. Fidelity decay of the two-level bosonic embedded ensembles of random matrices

    NASA Astrophysics Data System (ADS)

    Benet, Luis; Hernández-Quiroz, Saúl; Seligman, Thomas H.

    2010-12-01

    We study the fidelity decay of the k-body embedded ensembles of random matrices for bosons distributed over two single-particle states. Fidelity is defined in terms of a reference Hamiltonian, which is a purely diagonal matrix consisting of a fixed one-body term and includes the diagonal of the perturbing k-body embedded ensemble matrix, and the perturbed Hamiltonian which includes the residual off-diagonal elements of the k-body interaction. This choice mimics the typical mean-field basis used in many calculations. We study separately the cases k = 2 and 3. We compute the ensemble-averaged fidelity decay as well as the fidelity of typical members with respect to an initial random state. Average fidelity displays a revival at the Heisenberg time, t = tH = 1, and a freeze in the fidelity decay, during which periodic revivals of period tH are observed. We obtain the relevant scaling properties with respect to the number of bosons and the strength of the perturbation. For certain members of the ensemble, we find that the period of the revivals during the freeze of fidelity occurs at fractional times of tH. These fractional periodic revivals are related to the dominance of specific k-body terms in the perturbation.

  3. High-efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J. S.; Centre for Quantum Technologies and Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117542; Wei, L. F.

    We propose a high-efficiency scheme to tomographically reconstruct an unknown quantum state by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the qubits are implemented by probing the stationary transmissions through a driven dispersively coupled resonator. It is shown that only one kind of QND measurement is sufficient to determine all the diagonal elements of the density matrix of the detected quantum state. The remaining nondiagonal elements can be similarly determined by transferring them to the diagonal locations after a series of unitary operations. Compared with the tomographic reconstructions based on the usual destructive projectivemore » measurements (wherein one such measurement can determine only one diagonal element of the density matrix), the present reconstructive approach exhibits significantly high efficiency. Specifically, our generic proposal is demonstrated by the experimental circuit quantum electrodynamics systems with a few Josephson charge qubits.« less

  4. Are we living near the center of a local void?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cusin, Giulia; Pitrou, Cyril; Uzan, Jean-Philippe, E-mail: giulia.cusin@unige.ch, E-mail: pitrou@iap.fr, E-mail: uzan@iap.fr

    The properties of the cosmic microwave background (CMB) temperature and polarisation anisotropies measured by a static, off-centered observer located in a local spherically symmetric void, are described. In particular in this paper we compute, together with the standard 2-point angular correlation functions, the off-diagonal correlators, which are no more vanishing by symmetry. While the energy shift induced by the off-centered position of the observer can be suppressed by a proper choice of the observer velocity, a lensing-like effect on the CMB emission point remains. This latter effect is genuinely geometrical (e.g. non-degenerate with a boost) and reflects in the structuremore » of the off-diagonal correlators. At lowest order in this effect, the temperature and polarisation correlation matrices have non-vanishing diagonal elements, as usual, and all the off-diagonal terms are excited. This particular signature of a local void model allows one, in principle, to disentangle geometrical effects from local kinematical ones in CMB observations.« less

  5. Gravitational collapse and Hawking-like radiation of a shell in AdS spacetime

    NASA Astrophysics Data System (ADS)

    Saini, Anshul; Stojkovic, Dejan

    2018-01-01

    In this paper, we study the collapse of a massive shell in 2 +1 and 3 +1 dimensional gravity with anti-de Sitter asymptotics. Using the Gauss-Codazzi method, we derive gravitational equations of motion of the shell. We then use the functional Schrödinger formalism to calculate the spectrum of particles produced during the collapse. At the late time, radiation agrees very well with the standard Hawking results. In 3 +1 dimensions, we reproduce the Hawking-Page transition. We then construct the density matrix of this collapsing system and analyze the information content in the emitted radiation. We find that the off-diagonal elements of the density matrix are very important in preserving the unitarity of the system.

  6. The eigenstate thermalization hypothesis in constrained Hilbert spaces: A case study in non-Abelian anyon chains

    NASA Astrophysics Data System (ADS)

    Chandran, A.; Schulz, Marc D.; Burnell, F. J.

    2016-12-01

    Many phases of matter, including superconductors, fractional quantum Hall fluids, and spin liquids, are described by gauge theories with constrained Hilbert spaces. However, thermalization and the applicability of quantum statistical mechanics has primarily been studied in unconstrained Hilbert spaces. In this paper, we investigate whether constrained Hilbert spaces permit local thermalization. Specifically, we explore whether the eigenstate thermalization hypothesis (ETH) holds in a pinned Fibonacci anyon chain, which serves as a representative case study. We first establish that the constrained Hilbert space admits a notion of locality by showing that the influence of a measurement decays exponentially in space. This suggests that the constraints are no impediment to thermalization. We then provide numerical evidence that ETH holds for the diagonal and off-diagonal matrix elements of various local observables in a generic disorder-free nonintegrable model. We also find that certain nonlocal observables obey ETH.

  7. Probing coherence aspects of adiabatic quantum computation and control.

    PubMed

    Goswami, Debabrata

    2007-09-28

    Quantum interference between multiple excitation pathways can be used to cancel the couplings to the unwanted, nonradiative channels resulting in robustly controlling decoherence through adiabatic coherent control approaches. We propose a useful quantification of the two-level character in a multilevel system by considering the evolution of the coherent character in the quantum system as represented by the off-diagonal density matrix elements, which switches from real to imaginary as the excitation process changes from being resonant to completely adiabatic. Such counterintuitive results can be explained in terms of continuous population exchange in comparison to no population exchange under the adiabatic condition.

  8. The density matrix renormalization group algorithm on kilo-processor architectures: Implementation and trade-offs

    NASA Astrophysics Data System (ADS)

    Nemes, Csaba; Barcza, Gergely; Nagy, Zoltán; Legeza, Örs; Szolgay, Péter

    2014-06-01

    In the numerical analysis of strongly correlated quantum lattice models one of the leading algorithms developed to balance the size of the effective Hilbert space and the accuracy of the simulation is the density matrix renormalization group (DMRG) algorithm, in which the run-time is dominated by the iterative diagonalization of the Hamilton operator. As the most time-dominant step of the diagonalization can be expressed as a list of dense matrix operations, the DMRG is an appealing candidate to fully utilize the computing power residing in novel kilo-processor architectures. In the paper a smart hybrid CPU-GPU implementation is presented, which exploits the power of both CPU and GPU and tolerates problems exceeding the GPU memory size. Furthermore, a new CUDA kernel has been designed for asymmetric matrix-vector multiplication to accelerate the rest of the diagonalization. Besides the evaluation of the GPU implementation, the practical limits of an FPGA implementation are also discussed.

  9. The neutrino–neutrino interaction effects in supernovae: The point of view from the ‘matter’ basis

    DOE PAGES

    Galais, Sebastien; Kneller, James; Volpe, Cristina

    2012-01-19

    We consider the Hamiltonian for neutrino oscillations in matter in the case of arbitrary potentials including off-diagonal complex terms. We derive the expressions for the corresponding Hamiltonian in the basis of the instantaneous eigenstates in matter, in terms of quantities one can derive from the flavor-basis Hamiltonian and its derivative, for an arbitrary number of neutrino flavors. We make our expressions explicit for the two-neutrino flavor case and apply our results to the neutrino propagation in core-collapse supernovae where the Hamiltonian includes both coupling to matter and to neutrinos. We show that the neutrino flavor evolution depends on the mixingmore » matrix derivatives involving not only the derivative of the matter mixing angles but also of the phases. In particular, we point out the important role of the phase derivatives, that appear due to the neutrino-neutrino interaction, and show how it can cause an oscillating degeneracy between the diagonal elements of the Hamiltonian in the basis of the eigenstates in matter. Lastly, our results also reveal that the end of the synchronization regime is due to a rapid increase of the phase derivative and identify the condition to be fulfilled for the onset of bipolar oscillations involving both the off-diagonal neutrino-neutrino interaction contributions and the vacuum terms.« less

  10. Multi-color incomplete Cholesky conjugate gradient methods for vector computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, E.L.

    1986-01-01

    This research is concerned with the solution on vector computers of linear systems of equations. Ax = b, where A is a large, sparse symmetric positive definite matrix with non-zero elements lying only along a few diagonals of the matrix. The system is solved using the incomplete Cholesky conjugate gradient method (ICCG). Multi-color orderings are used of the unknowns in the linear system to obtain p-color matrices for which a no-fill block ICCG method is implemented on the CYBER 205 with O(N/p) length vector operations in both the decomposition of A and, more importantly, in the forward and back solvesmore » necessary at each iteration of the method. (N is the number of unknowns and p is a small constant). A p-colored matrix is a matrix that can be partitioned into a p x p block matrix where the diagonal blocks are diagonal matrices. The matrix is stored by diagonals and matrix multiplication by diagonals is used to carry out the decomposition of A and the forward and back solves. Additionally, if the vectors across adjacent blocks line up, then some of the overhead associated with vector startups can be eliminated in the matrix vector multiplication necessary at each conjugate gradient iteration. Necessary and sufficient conditions are given to determine which multi-color orderings of the unknowns correspond to p-color matrices, and a process is indicated for choosing multi-color orderings.« less

  11. Naval Research Logistics Quarterly. Volume 28, Number 4,

    DTIC Science & Technology

    1981-12-01

    Fan [31 and an observation by Meijerink and van der Vorst [181 guarantee that after pivoting on any diagonal element of a diagonally dominant M- matrix...Science, 3, 255-269 (1957). 1181 Meijerink, J. and H. Van der Vorst, "An Iterative Solution Method for Linear Systems of which the Coefficient Matrix Is a...Hee, K., A. Hordijk and J. Van der Wal, "Successive Approximations for Convergent Dynamic Programming," in Markov Decision Theory, H. Tijms and J

  12. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter

    In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less

  13. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization

    DOE PAGES

    Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...

    2016-06-30

    In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less

  14. On the cross-stream spectral method for the Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.; Hodge, Steven L.

    1993-01-01

    Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.

  15. The Density Matrix for Single-mode Light after k-Photon Absorption

    NASA Astrophysics Data System (ADS)

    Voigt, H.; Bandilla, A.

    In order to continue and generalize the studies of the density matrix of a light field undergoing k-photon absorption, in this paper we put the emphasis on the off-diagonal elements. The solution obtained earlier for the diagonal elements describing the photon statistics can be found as a special case but will not be discussed again. The general solution calculated by recursion shows an asymptotic behaviour if the initial photon number is sufficiently high. Only the initial phase information survives. Illustrating the solution we start with coherent light and a generalized coherent state.Translated AbstractDie Dichtematrix eines Lichtstrahls nach k-Photonen-Absorption aus einer ModeWir führen die Betrachtungen über das Verhalten der Dichtematrix eines Lichtfeldes nach k-Photonen-Absorption aus einer Mode verallgemeinernd weiter und konzentrieren uns auf die Nichtdiagonalelemente. Die im folgenden angegebene allgemeine Lösung, die durch Rekursion gefunden wurde, enthält die schon früher erhaltene, jedoch hier nicht weiter diskutierte Lösung für die Diagonalelemente als Spezialfall. Sie zeigt ferner, daß es einen asymptotischen Zustand gibt, der eine von der Ausgangsintensität unabhängige Information über die Ausgangsphase enthält. Zur Diskussion der Lösung werden verschiedene Anfangsbedingungen betrachtet, so z. B. kohärentes Licht und kohärentes Licht, das ein Medium mit nichtlinearem Brechungsindex durchlaufen hat (Kerr-Effekt).

  16. Properties of quantum systems via diagonalization of transition amplitudes. II. Systematic improvements of short-time propagation

    NASA Astrophysics Data System (ADS)

    Vidanović, Ivana; Bogojević, Aleksandar; Balaž, Antun; Belić, Aleksandar

    2009-12-01

    In this paper, building on a previous analysis [I. Vidanović, A. Bogojević, and A. Belić, preceding paper, Phys. Rev. E 80, 066705 (2009)] of exact diagonalization of the space-discretized evolution operator for the study of properties of nonrelativistic quantum systems, we present a substantial improvement to this method. We apply recently introduced effective action approach for obtaining short-time expansion of the propagator up to very high orders to calculate matrix elements of space-discretized evolution operator. This improves by many orders of magnitude previously used approximations for discretized matrix elements and allows us to numerically obtain large numbers of accurate energy eigenvalues and eigenstates using numerical diagonalization. We illustrate this approach on several one- and two-dimensional models. The quality of numerically calculated higher-order eigenstates is assessed by comparison with semiclassical cumulative density of states.

  17. Fourier transform emission spectra and deperturbation analysis of the A2Π - X2Σ+ and B2Σ+ - X2Σ+ electronic transitions of ZnH

    NASA Astrophysics Data System (ADS)

    Abbasi, Mahdi; Shayesteh, Alireza

    2017-10-01

    A discharge-furnace emission source was used to generate the A2Π → X2Σ+ and B2Σ+ → X2Σ+ spectra of ZnH radical. High resolution emission spectra were recorded with a Fourier transform spectrometer, and several bands have been assigned for the 64ZnH major isotopologue. The data span the v″ = 0-6 levels of the X2Σ+ ground state, the v‧ = 0-3 levels of the A2Π state, and the v‧ = 0-2 levels of the B2Σ+ state, extending to high rotational quantum numbers near and above the dissociation asymptote of the ground state. Large local perturbations were observed in the A2Π and B2Σ+ electronic states, and a deperturbation analysis was carried out using a single Hamiltonian matrix that includes 2Π and 2Σ+ matrix elements, as well as off-diagonal elements coupling vibrational levels of the two electronic states. Band constants and Dunham coefficients were obtained for the A2Π and B2Σ+ excited states by least-squares-fitting of all the experimental data. The equilibrium vibrational constants ωe and ωexe have been determined to be 1907.528(4) and 38.674(2) cm-1, respectively, for the A2Π state, and 1021.135(94) and 17.725(80) cm-1, for the B2Σ+ state, and the equilibrium Zn-H distances (re) are 1.511662(2) Å and 2.26805(7) Å for the A2Π and B2Σ+ states, respectively. The RKR potential curves were constructed for the A2Π and B2Σ+ states, and vibrational radial overlap integrals were computed. The off-diagonal matrix elements coupling the electronic wavefunctions of the A2Π and B2Σ+ states, i.e., a+ and b, were determined to be 228 ± 3 cm-1 and 0.73 ± 0.01, respectively, for the ZnH molecule.

  18. Generalized Gibbs state with modified Redfield solution: Exact agreement up to second order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thingna, Juzar; Wang, Jian-Sheng; Haenggi, Peter

    A novel scheme for the steady state solution of the standard Redfield quantum master equation is developed which yields agreement with the exact result for the corresponding reduced density matrix up to second order in the system-bath coupling strength. We achieve this objective by use of an analytic continuation of the off-diagonal matrix elements of the Redfield solution towards its diagonal limit. Notably, our scheme does not require the provision of yet higher order relaxation tensors. Testing this modified method for a heat bath consisting of a collection of harmonic oscillators we assess that the system relaxes towards its correctmore » coupling-dependent, generalized quantum Gibbs state in second order. We numerically compare our formulation for a damped quantum harmonic system with the nonequilibrium Green's function formalism: we find good agreement at low temperatures for coupling strengths that are even larger than expected from the very regime of validity of the second-order Redfield quantum master equation. Yet another advantage of our method is that it markedly reduces the numerical complexity of the problem; thus, allowing to study efficiently large-sized system Hilbert spaces.« less

  19. Two dimensional symmetric correlation functions of the S-circumflex operator and two dimensional Fourier transforms: Considering the line coupling for P and R lines of linear molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS{sub 1} − S{sub 2} introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonalmore » elements do not require extra correlation functions of the S-circumflex operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters’ two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C{sub 2}H{sub 2} broadened by N{sub 2}. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.« less

  20. Research on numerical algorithms for large space structures

    NASA Technical Reports Server (NTRS)

    Denman, E. D.

    1981-01-01

    Numerical algorithms for analysis and design of large space structures are investigated. The sign algorithm and its application to decoupling of differential equations are presented. The generalized sign algorithm is given and its application to several problems discussed. The Laplace transforms of matrix functions and the diagonalization procedure for a finite element equation are discussed. The diagonalization of matrix polynomials is considered. The quadrature method and Laplace transforms is discussed and the identification of linear systems by the quadrature method investigated.

  1. Resonance rotational level crossing in the fluorosulfate radical FSO3rad and experimental determination of the rotational A and the centrifugal distortion DK constants

    NASA Astrophysics Data System (ADS)

    Kolesniková, Lucie; Koucký, Jan; Kania, Patrik; Uhlíková, Tereza; Beckers, Helmut; Urban, Štěpán

    2018-01-01

    The resonance crossing of rotational levels with different fine-structure components and different k rotational quantum numbers was observed in the rotational spectra of the symmetric top fluorosulfate radical FSO3rad. Detailed measurements were performed to analyze these weak resonances as well as the A1-A2 splittings of the K = 3 and K = 6 transitions. The resonance level crossing enabled the experimental determination of "forbidden" parameters, the rotational A and the centrifugal distortion DK constants as well as the corresponding resonance off-diagonal matrix element.

  2. Measurement of the Spectroscopic Quadrupole Moment for the 2+1 State in 10Be:. Testing AB Initio Calculations

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Djongolov, M.; Navratil, P.; Ball, G.; Garnsworthy, A. B.; Hackman, G.; Lassen, J.; Meissner, J.; Pearson, C. J.; Li, R.; Milovanovic, L.; Sjue, S. K. L.; Teigelhoefer, A.; Triambak, S.; Williams, S. J.; Falou, H. Al; Drake, T. E.; Andreoiu, C.; Cross, D.; Kshetri, R.; Finlay, P.; Garrett, P. E.; Leach, K. G.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Wong, J.; Forssen, C.; Hayes, A. B.; Sarazin, F.; Stoyer, M. A.; Wu, C. Y.

    2013-03-01

    The highly efficient and segmented TIGRESS HPGe γ-ray array at TRIUMF has been used to perform a reorientation effect Coulomb excitation study of the 2+1 state at 3.368 MeV in 10Be. This is the first Coulomb excitation measurement that provides information on diagonal matrix elements for such a high lying first excited state from μ-ray data. With the availability of accurate lifetime data, a restriction on the diagonal < 2+1|M({E}2)|2+1> matrix element is determined. This result is compared to a no core shell model calculation with the CD-Bonn 2000 two nucleon potential.

  3. Numerical radius and zero pattern of matrices

    NASA Astrophysics Data System (ADS)

    Nikiforov, Vladimir

    2008-01-01

    Let A be an n×n complex matrix and r be the maximum size of its principal submatrices with no off-diagonal zero entries. Suppose A has zero main diagonal and x is a unit n-vector. Then, letting ||A|| be the Frobenius norm of A, we show that2[less-than-or-equals, slant](1-1/2r-1/2n)||A||2. This inequality is tight within an additive term O(rn-2). If the matrix A is Hermitian, then2[less-than-or-equals, slant](1-1/r)||A||2. This inequality is sharp; moreover, it implies the Turán theorem for graphs.

  4. Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in Silica matrix

    NASA Astrophysics Data System (ADS)

    Hocini, Abdesselam; Moukhtari, Riad; Khedrouche, Djamel; Kahlouche, Ahmed; Zamani, Mehdi

    2017-02-01

    Using the three-dimensional finite difference time domain method (3D FDTD) with perfectly matched layers (PML), optical and magneto-optical properties of two-dimensional magneto-photonic crystals micro-cavity is studied. This micro-cavity is fabricated by SiO2/ZrO2 or SiO2/TiO2 matrix doped with magnetic nanoparticles, in which the refractive index varied in the range of 1.51-1.58. We demonstrate that the Q factor for the designed cavity increases as the refractive index increases, and we find that the Q factor decreases as the volume fraction VF% due to off-diagonal elements increases. These magnetic microcavities may serve as a fundamental structure in a variety of ultra compact magneto photonic devices such as optical isolators, circulators and modulators in the future.

  5. Measurement of spin correlation between top and antitop quarks produced in $$p\\bar{p}$$ collisions at $$\\sqrt{s} = 1.96$$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abazov, Victor Mukhamedovich

    Here, we present a measurement of the correlation between the spins of t and tbar quarks produced in proton-antiproton collisions at the Tevatron Collider at a center-of-mass energy of 1.96 TeV. We apply a matrix element technique to dilepton and single-lepton+jets final states in data accumulated with the D0 detector that correspond to an integrated luminosity of 9.7 fbmore » $$^{-1}$$. The measured value of the correlation coefficient in the off-diagonal basis, $$O_{off} = 0.89 \\pm 0.22$$ (stat + syst), is in agreement with the standard model prediction, and represents evidence for a top-antitop quark spin correlation difference from zero at a level of 4.2 standard deviations.« less

  6. Measurement of spin correlation between top and antitop quarks produced in $$p\\bar{p}$$ collisions at $$\\sqrt{s} = 1.96$$ TeV

    DOE PAGES

    Abazov, Victor Mukhamedovich

    2016-03-25

    Here, we present a measurement of the correlation between the spins of t and tbar quarks produced in proton-antiproton collisions at the Tevatron Collider at a center-of-mass energy of 1.96 TeV. We apply a matrix element technique to dilepton and single-lepton+jets final states in data accumulated with the D0 detector that correspond to an integrated luminosity of 9.7 fbmore » $$^{-1}$$. The measured value of the correlation coefficient in the off-diagonal basis, $$O_{off} = 0.89 \\pm 0.22$$ (stat + syst), is in agreement with the standard model prediction, and represents evidence for a top-antitop quark spin correlation difference from zero at a level of 4.2 standard deviations.« less

  7. Reorientation-effect measurement of the <21+∥E2̂∥21+> matrix element in 10Be

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Drake, T. E.; Djongolov, M. K.; Navrátil, P.; Triambak, S.; Ball, G. C.; Al Falou, H.; Churchman, R.; Cross, D. S.; Finlay, P.; Forssén, C.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hayes, A. B.; Kshetri, R.; Lassen, J.; Leach, K. G.; Li, R.; Meissner, J.; Pearson, C. J.; Rand, E. T.; Sarazin, F.; Sjue, S. K. L.; Stoyer, M. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Teigelhoefer, A.; Williams, S. J.; Wong, J.; Wu, C. Y.

    2012-10-01

    The highly-efficient and segmented TIGRESS γ-ray spectrometer at TRIUMF has been used to perform a reorientation-effect Coulomb-excitation study of the 21+ state at 3.368 MeV in 10Be. This is the first Coulomb-excitation measurement that enables one to obtain information on diagonal matrix elements for such a high-lying first excited state from γ-ray data. With the availability of accurate lifetime data, a value of -0.110±0.087 eb is determined for the <21+∥E2̂∥21+> diagonal matrix element, which assuming the rotor model, leads to a negative spectroscopic quadrupole moment of QS(21+)=-0.083±0.066 eb. This result is in agreement with both no-core shell-model calculations performed in this work with the CD-Bonn 2000 two-nucleon potential and large shell-model spaces, and Green's function Monte Carlo predictions with two- plus three-nucleon potentials.

  8. Modeling and simulation of a Stewart platform type parallel structure robot

    NASA Technical Reports Server (NTRS)

    Lim, Gee Kwang; Freeman, Robert A.; Tesar, Delbert

    1989-01-01

    The kinematics and dynamics of a Stewart Platform type parallel structure robot (NASA's Dynamic Docking Test System) were modeled using the method of kinematic influence coefficients (KIC) and isomorphic transformations of system dependence from one set of generalized coordinates to another. By specifying the end-effector (platform) time trajectory, the required generalized input forces which would theoretically yield the desired motion were determined. It was found that the relationship between the platform motion and the actuators motion was nonlinear. In addition, the contribution to the total generalized forces, required at the actuators, from the acceleration related terms were found to be more significant than the velocity related terms. Hence, the curve representing the total required actuator force generally resembled the curve for the acceleration related force. Another observation revealed that the acceleration related effective inertia matrix I sub dd had the tendency to decouple, with the elements on the main diagonal of I sub dd being larger than the off-diagonal elements, while the velocity related inertia power array P sub ddd did not show such tendency. This tendency results in the acceleration related force curve of a given actuator resembling the acceleration profile of that particular actuator. Furthermore, it was indicated that the effective inertia matrix for the legs is more decoupled than that for the platform. These observations provide essential information for further research to develop an effective control strategy for real-time control of the Dynamic Docking Test System.

  9. An efficient sparse matrix multiplication scheme for the CYBER 205 computer

    NASA Technical Reports Server (NTRS)

    Lambiotte, Jules J., Jr.

    1988-01-01

    This paper describes the development of an efficient algorithm for computing the product of a matrix and vector on a CYBER 205 vector computer. The desire to provide software which allows the user to choose between the often conflicting goals of minimizing central processing unit (CPU) time or storage requirements has led to a diagonal-based algorithm in which one of four types of storage is selected for each diagonal. The candidate storage types employed were chosen to be efficient on the CYBER 205 for diagonals which have nonzero structure which is dense, moderately sparse, very sparse and short, or very sparse and long; however, for many densities, no diagonal type is most efficient with respect to both resource requirements, and a trade-off must be made. For each diagonal, an initialization subroutine estimates the CPU time and storage required for each storage type based on results from previously performed numerical experimentation. These requirements are adjusted by weights provided by the user which reflect the relative importance the user places on the two resources. The adjusted resource requirements are then compared to select the most efficient storage and computational scheme.

  10. Boundary Quantum Knizhnik-Zamolodchikov Equations and Bethe Vectors

    NASA Astrophysics Data System (ADS)

    Reshetikhin, Nicolai; Stokman, Jasper; Vlaar, Bart

    2015-06-01

    Solutions to boundary quantum Knizhnik-Zamolodchikov equations are constructed as bilateral sums involving "off-shell" Bethe vectors in case the reflection matrix is diagonal and only the 2-dimensional representation of is involved. We also consider their rational and classical degenerations.

  11. Atomistic absorption spectra and non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model

    NASA Astrophysics Data System (ADS)

    Glowacki, David

    Recently, we outlined an efficient multi-tiered parallel excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground/excited state energies and gradients of large supramolecular complexes in atomistic detail. In this paper, we apply our ab initioexciton framework to the 27 coupled bacteriocholorophyll-a chromophores which make up the LH2 complex, using it to compute linear absorption spectra and short-time, on-the-fly nonadiabatic surface-hopping (SH) dynamics of electronically excited LH2. Our ab initio exciton model includes two key parameters whose values are determined by fitting to experiment: d, which is added to the diagonal elements, corrects for the error in TDDFT vertical excitation energies on a single chromophore; and e, which occurs on the off-diagonal matrix elements, describes the average dielectric screening of the inter-chromophore transition-dipole coupling. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, best-fit values of both d and e were obtained by fitting to the thermally broadened experimental absorption spectrum within the Frank-Condon approximation, providing a linear absorption spectrum that agrees reasonably well with the experimental observations. We follow the nonadiabatic dynamics using surface hopping to construct time-resolved visualizations of the EET dynamics in the sub-picosecond regime following photoexcitation. This provides some qualitative insight into the excitonic energy transfer (EET) that results from atomically resolved vibrational fluctuations of the chromophores. The dynamical picture that emerges is one of rapidly fluctuating eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the underlying chromophore vibrational dynamics. The eigenstate fluctuations arise from disorder in both the diagonal chromophore site energies and the off-diagonal inter-chromophore couplings. The scalability of our excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.

  12. Decoherence dynamics of interacting qubits coupled to a bath of local optical phonons

    NASA Astrophysics Data System (ADS)

    Lone, Muzaffar Qadir; Yarlagadda, S.

    2016-04-01

    We study decoherence in an interacting qubit system described by infinite range Heisenberg model (IRHM) in a situation where the system is coupled to a bath of local optical phonons. Using perturbation theory in polaron frame of reference, we derive an effective Hamiltonian that is valid in the regime of strong spin-phonon coupling under nonadiabatic conditions. It is shown that the effective Hamiltonian commutes with the IRHM upto leading orders of perturbation and thus has the same eigenstates as the IRHM. Using a quantum master equation with Markovian approximation of dynamical evolution, we show that the off-diagonal elements of the density matrix do not decay in the energy eigen basis of IRHM.

  13. Anisotropic resonator analysis using the Fourier-Bessel mode solver

    NASA Astrophysics Data System (ADS)

    Gauthier, Robert C.

    2018-03-01

    A numerical mode solver for optical structures that conform to cylindrical symmetry using Faraday's and Ampere's laws as starting expressions is developed when electric or magnetic anisotropy is present. The technique builds on the existing Fourier-Bessel mode solver which allows resonator states to be computed exploiting the symmetry properties of the resonator and states to reduce the matrix system. The introduction of anisotropy into the theoretical frame work facilitates the inclusion of PML borders permitting the computation of open ended structures and a better estimation of the resonator state quality factor. Matrix populating expressions are provided that can accommodate any material anisotropy with arbitrary orientation in the computation domain. Several example of electrical anisotropic computations are provided for rationally symmetric structures such as standard optical fibers, axial Bragg-ring fibers and bottle resonators. The anisotropy present in the materials introduces off diagonal matrix elements in the permittivity tensor when expressed in cylindrical coordinates. The effects of the anisotropy of computed states are presented and discussed.

  14. Unitary irreducible representations of SL(2,C) in discrete and continuous SU(1,1) bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrady, Florian; Hnybida, Jeff; Department of Physics, University of Waterloo, Waterloo, Ontario

    2011-01-15

    We derive the matrix elements of generators of unitary irreducible representations of SL(2,C) with respect to basis states arising from a decomposition into irreducible representations of SU(1,1). This is done with regard to a discrete basis diagonalized by J{sup 3} and a continuous basis diagonalized by K{sup 1}, and for both the discrete and continuous series of SU(1,1). For completeness, we also treat the more conventional SU(2) decomposition as a fifth case. The derivation proceeds in a functional/differential framework and exploits the fact that state functions and differential operators have a similar structure in all five cases. The states aremore » defined explicitly and related to SU(1,1) and SU(2) matrix elements.« less

  15. Off-diagonal Jacobian support for Nodal BCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, John W.; Andrs, David; Gaston, Derek R.

    In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite elementmore » codes in general: 1. The ability to zero out entire Jacobian matrix rows after \

  16. Analysis of modified SMI method for adaptive array weight control

    NASA Technical Reports Server (NTRS)

    Dilsavor, R. L.; Moses, R. L.

    1989-01-01

    An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.

  17. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.

    PubMed

    Plantet, C; Meimon, S; Conan, J-M; Fusco, T

    2015-11-02

    Exoplanet direct imaging with large ground based telescopes requires eXtreme Adaptive Optics that couples high-order adaptive optics and coronagraphy. A key element of such systems is the high-order wavefront sensor. We study here several high-order wavefront sensing approaches, and more precisely compare their sensitivity to noise. Three techniques are considered: the classical Shack-Hartmann sensor, the pyramid sensor and the recently proposed LIFTed Shack-Hartmann sensor. They are compared in a unified framework based on precise diffractive models and on the Fisher information matrix, which conveys the information present in the data whatever the estimation method. The diagonal elements of the inverse of the Fisher information matrix, which we use as a figure of merit, are similar to noise propagation coefficients. With these diagonal elements, so called "Fisher coefficients", we show that the LIFTed Shack-Hartmann and pyramid sensors outperform the classical Shack-Hartmann sensor. In photon noise regime, the LIFTed Shack-Hartmann and modulated pyramid sensors obtain a similar overall noise propagation. The LIFTed Shack-Hartmann sensor however provides attractive noise properties on high orders.

  18. Estimation of a cover-type change matrix from error-prone data

    Treesearch

    Steen Magnussen

    2009-01-01

    Coregistration and classification errors seriously compromise per-pixel estimates of land cover change. A more robust estimation of change is proposed in which adjacent pixels are grouped into 3x3 clusters and treated as a unit of observation. A complete change matrix is recovered in a two-step process. The diagonal elements of a change matrix are recovered from...

  19. On the Maximum Storage Capacity of the Hopfield Model

    PubMed Central

    Folli, Viola; Leonetti, Marco; Ruocco, Giancarlo

    2017-01-01

    Recurrent neural networks (RNN) have traditionally been of great interest for their capacity to store memories. In past years, several works have been devoted to determine the maximum storage capacity of RNN, especially for the case of the Hopfield network, the most popular kind of RNN. Analyzing the thermodynamic limit of the statistical properties of the Hamiltonian corresponding to the Hopfield neural network, it has been shown in the literature that the retrieval errors diverge when the number of stored memory patterns (P) exceeds a fraction (≈ 14%) of the network size N. In this paper, we study the storage performance of a generalized Hopfield model, where the diagonal elements of the connection matrix are allowed to be different from zero. We investigate this model at finite N. We give an analytical expression for the number of retrieval errors and show that, by increasing the number of stored patterns over a certain threshold, the errors start to decrease and reach values below unit for P ≫ N. We demonstrate that the strongest trade-off between efficiency and effectiveness relies on the number of patterns (P) that are stored in the network by appropriately fixing the connection weights. When P≫N and the diagonal elements of the adjacency matrix are not forced to be zero, the optimal storage capacity is obtained with a number of stored memories much larger than previously reported. This theory paves the way to the design of RNN with high storage capacity and able to retrieve the desired pattern without distortions. PMID:28119595

  20. E-beam generated holographic masks for optical vector-matrix multiplication

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Case, S. K.

    1981-01-01

    An optical vector matrix multiplication scheme that encodes the matrix elements as a holographic mask consisting of linear diffraction gratings is proposed. The binary, chrome on glass masks are fabricated by e-beam lithography. This approach results in a fairly simple optical system that promises both large numerical range and high accuracy. A partitioned computer generated hologram mask was fabricated and tested. This hologram was diagonally separated outputs, compact facets and symmetry about the axis. The resultant diffraction pattern at the output plane is shown. Since the grating fringes are written at 45 deg relative to the facet boundaries, the many on-axis sidelobes from each output are seen to be diagonally separated from the adjacent output signals.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkas, R. R.; Foot, R.; He, X.

    The universal QCD color theory is extended to an SU(3)/sub 1//direct product/SU(3)/sub 2//direct product/SU(3)/sub 3/ gauge theory, where quarks of the /ital i/th generation transform as triplets under SU(3)/sub /ital i// and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamentalmore » issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements.« less

  2. Reflection matrices with U q [osp(2) (2|2m)] symmetry

    NASA Astrophysics Data System (ADS)

    Vieira, R. S.; Lima-Santos, A.

    2017-09-01

    We propose a classification of the reflection K-matrices (solutions of the boundary Yang-Baxter equation) for the Uq[osp(2)(2\\vert 2m)]=Uq[C(2)(m+1)] vertex-model. We found four families of solutions, namely, the complete solutions, in which no elements of the reflection K-matrix is null, the block-diagonal solutions, the X-shape solutions and the diagonal solutions. We highlight that these diagonal K-matrices also hold for the Uq[osp(2)(2n+2\\vert 2m)]=Uq[D(2)(n+1, m)] vertex-model.

  3. An Alternating Least Squares Method for the Weighted Approximation of a Symmetric Matrix.

    ERIC Educational Resources Information Center

    ten Berge, Jos M. F.; Kiers, Henk A. L.

    1993-01-01

    R. A. Bailey and J. C. Gower explored approximating a symmetric matrix "B" by another, "C," in the least squares sense when the squared discrepancies for diagonal elements receive specific nonunit weights. A solution is proposed where "C" is constrained to be positive semidefinite and of a fixed rank. (SLD)

  4. Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation.

    PubMed

    Lam, Clifford; Fan, Jianqing

    2009-01-01

    This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that are zero are actually estimated as zero with probability tending to one. Depending on the case of applications, sparsity priori may occur on the covariance matrix, its inverse or its Cholesky decomposition. We study these three sparsity exploration problems under a unified framework with a general penalty function. We show that the rates of convergence for these problems under the Frobenius norm are of order (s(n) log p(n)/n)(1/2), where s(n) is the number of nonzero elements, p(n) is the size of the covariance matrix and n is the sample size. This explicitly spells out the contribution of high-dimensionality is merely of a logarithmic factor. The conditions on the rate with which the tuning parameter λ(n) goes to 0 have been made explicit and compared under different penalties. As a result, for the L(1)-penalty, to guarantee the sparsistency and optimal rate of convergence, the number of nonzero elements should be small: sn'=O(pn) at most, among O(pn2) parameters, for estimating sparse covariance or correlation matrix, sparse precision or inverse correlation matrix or sparse Cholesky factor, where sn' is the number of the nonzero elements on the off-diagonal entries. On the other hand, using the SCAD or hard-thresholding penalty functions, there is no such a restriction.

  5. The Quantum-to-Classical Transition in Strongly Interacting Nanoscale Systems

    NASA Astrophysics Data System (ADS)

    Benatov, Latchezar Latchezarov

    This thesis comprises two separate but related studies, dealing with two strongly interacting nanoscale systems on the border between the quantum and classical domains. In Part 1, we use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing in the presence of a momentum-coupled detector bath and a position-coupled environmental bath. Besides, the full master equation clearly shows that half of the detector back-action is correlated with electron tunneling, indicating a departure from the model of the detector as an effective bath and suggesting that a future calculation valid at lower bias voltage, stronger tunneling and/or stronger coupling might reveal interesting quantum effects in the oscillator dynamics. In the second part of the thesis, we study the subsystem dynamics and thermalization of an oscillator-spin star model, where a nanomechanical resonator is coupled to a few two-level systems (TLS's). We use a fourth-order Runge-Kutta numerical algorithm to integrate the Schrodinger equation for the system and obtain our results. We find that the oscillator reaches a Boltzmann steady state when the TLS bath is initially in a thermal state at a temperature higher than the oscillator phonon energy. This occurs in both chaotic and integrable systems, and despite the small number of spins (only six) and the lack of couplings between them. At the same time, pure initial states do not thermalize well in our system, indicating that mixed state thermalization stems from the thermal nature of the initial bath state. Under the influence of a thermal TLS bath, oscillator Fock states decay in an approximately exponential manner, but there is also a concave-down trend at very early times, possibly indicative of Gaussian decay. In the case of initial Fock state superpositions, the diagonal density matrix element behaves very similarly to single initial Fock states, while the off-diagonal matrix element decays sinusoidally with an exponentially decreasing amplitude. The off-diagonal decay time is much smaller then the diagonal one, indicating that superposition states decohere much faster than they decay. Both decay times decrease with increasing Fock state number, but more slowly than the 1/n dependence seen in the presence of an external ohmic bath.

  6. Creating a Test-Validated Finite-Element Model of the X-56A Aircraft Structure

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in a finite-element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the X-56A Multi-Utility Technology Testbed aircraft is the flight demonstration of active flutter suppression and, therefore, in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground-vibration test-validated structural dynamic finite-element model of the X-56A aircraft is created in this study. The structural dynamic finite-element model of the X-56A aircraft is improved using a model-tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, whereas other properties such as c.g. location, total weight, and off-diagonal terms of the mass orthogonality matrix were used as constraints. The end result was an improved structural dynamic finite-element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  7. Truncation of Spherical Harmonic Series and its Influence on Gravity Field Modelling

    NASA Astrophysics Data System (ADS)

    Fecher, T.; Gruber, T.; Rummel, R.

    2009-04-01

    Least-squares adjustment is a very common and effective tool for the calculation of global gravity field models in terms of spherical harmonic series. However, since the gravity field is a continuous field function its optimal representation by a finite series of spherical harmonics is connected with a set of fundamental problems. Particularly worth mentioning here are cut off errors and aliasing effects. These problems stem from the truncation of the spherical harmonic series and from the fact that the spherical harmonic coefficients cannot be determined independently of each other within the adjustment process in case of discrete observations. The latter is shown by the non-diagonal variance-covariance matrices of gravity field solutions. Sneeuw described in 1994 that the off-diagonal matrix elements - at least if data are equally weighted - are the result of a loss of orthogonality of Legendre polynomials on regular grids. The poster addresses questions arising from the truncation of spherical harmonic series in spherical harmonic analysis and synthesis. Such questions are: (1) How does the high frequency data content (outside the parameter space) affect the estimated spherical harmonic coefficients; (2) Where to truncate the spherical harmonic series in the adjustment process in order to avoid high frequency leakage?; (3) Given a set of spherical harmonic coefficients resulting from an adjustment, what is the effect of using only a truncated version of it?

  8. Exploiting the Spatio-Temporal Coherence of Ocean Ambient Noise for Passive Tomography

    DTIC Science & Technology

    2012-09-30

    ˆ kfCij and corresponds to the entry (i,j) of cross-covariance matrix for the selected horizontal triangular array, denoted );( ˆ kfC at the...diagonal elements );( ˆ kfCii (i=1..3) of the matrix );( ˆ kfC were set to zero to mitigate the bias due to electronic noise and the large

  9. A similarity measure for partially folded proteins: application to unfolded and native-like conformational fluctuations

    NASA Astrophysics Data System (ADS)

    Larios, Edgar; Yang, Wei Y.; Schulten, K.; Gruebele, M.

    2004-12-01

    Computing the root-mean-square deviation (RMSD) of a partially folded protein structure from the folded state requires the two structures to be translationally and rotationally aligned. We examine the constraint matrix L that preserves orthogonality of the rotation matrix during minimization of the RMSD. L is proportional to the sensitivity of the RMSD to the rotational alignment matrix. Its trace yields an isotropic reaction coordinate, while its off-diagonal matrix elements are related to the moment of inertia derivative tensor that encodes anisotropic information about the structure. We use L to compare λ-repressor fragment 6-85 (λ 6-85) to several partially folded structures obtained from molecular dynamics simulation (MD), and find that L as a reaction coordinate indeed encodes some information about protein topology. We also apply C α RMSD, L and tryptophan sidechain mobility as criteria for native state structural fluctuations of several λ 6-85 mutants. The mutants' denaturation curves and fluorescence quenching are measured experimentally for comparison. The results are in accord with a recent proposal that structural fluctuations near the chromophore can induce increased native state fluorescence or hyperfluorescence during unfolding of proteins.

  10. Entropy of isolated quantum systems after a quench.

    PubMed

    Santos, Lea F; Polkovnikov, Anatoli; Rigol, Marcos

    2011-07-22

    A diagonal entropy, which depends only on the diagonal elements of the system's density matrix in the energy representation, has been recently introduced as the proper definition of thermodynamic entropy in out-of-equilibrium quantum systems. We study this quantity after an interaction quench in lattice hard-core bosons and spinless fermions, and after a local chemical potential quench in a system of hard-core bosons in a superlattice potential. The former systems have a chaotic regime, where the diagonal entropy becomes equivalent to the equilibrium microcanonical entropy, coinciding with the onset of thermalization. The latter system is integrable. We show that its diagonal entropy is additive and different from the entropy of a generalized Gibbs ensemble, which has been introduced to account for the effects of conserved quantities at integrability.

  11. Reflectionless CMV Matrices and Scattering Theory

    NASA Astrophysics Data System (ADS)

    Chu, Sherry; Landon, Benjamin; Panangaden, Jane

    2015-04-01

    Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient, a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associated to the coupled and decoupled operators are derived. In particular, it is shown that a CMV matrix is reflectionless iff the scattering matrix is off-diagonal which in turn provides a short proof of an important result of Breuer et al. (Commun Math Phys 295:531-550, 2010). These developments parallel those recently obtained for Jacobi matrices Jakšić et al. (Commun Math Phys 827-838, 2014).

  12. Convergence of Chahine's nonlinear relaxation inversion method used for limb viewing remote sensing

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1985-01-01

    The application of Chahine's (1970) inversion technique to remote sensing problems utilizing the limb viewing geometry is discussed. The problem considered here involves occultation-type measurements and limb radiance-type measurements from either spacecraft or balloon platforms. The kernel matrix of the inversion problem is either an upper or lower triangular matrix. It is demonstrated that the Chahine inversion technique always converges, provided the diagonal elements of the kernel matrix are nonzero.

  13. Communication: spin-boson model with diagonal and off-diagonal coupling to two independent baths: ground-state phase transition in the deep sub-Ohmic regime.

    PubMed

    Zhao, Yang; Yao, Yao; Chernyak, Vladimir; Zhao, Yang

    2014-04-28

    We investigate a spin-boson model with two boson baths that are coupled to two perpendicular components of the spin by employing the density matrix renormalization group method with an optimized boson basis. It is revealed that in the deep sub-Ohmic regime there exists a novel second-order phase transition between two types of doubly degenerate states, which is reduced to one of the usual types for nonzero tunneling. In addition, it is found that expectation values of the spin components display jumps at the phase boundary in the absence of bias and tunneling.

  14. Diagonal dominance for the multivariable Nyquist array using function minimization

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.

    1977-01-01

    A new technique for the design of multivariable control systems using the multivariable Nyquist array method was developed. A conjugate direction function minimization algorithm is utilized to achieve a diagonal dominant condition over the extended frequency range of the control system. The minimization is performed on the ratio of the moduli of the off-diagonal terms to the moduli of the diagonal terms of either the inverse or direct open loop transfer function matrix. Several new feedback design concepts were also developed, including: (1) dominance control parameters for each control loop; (2) compensator normalization to evaluate open loop conditions for alternative design configurations; and (3) an interaction index to determine the degree and type of system interaction when all feedback loops are closed simultaneously. This new design capability was implemented on an IBM 360/75 in a batch mode but can be easily adapted to an interactive computer facility. The method was applied to the Pratt and Whitney F100 turbofan engine.

  15. Atypicality of Most Few-Body Observables

    NASA Astrophysics Data System (ADS)

    Hamazaki, Ryusuke; Ueda, Masahito

    2018-02-01

    The eigenstate thermalization hypothesis (ETH), which dictates that all diagonal matrix elements within a small energy shell be almost equal, is a major candidate to explain thermalization in isolated quantum systems. According to the typicality argument, the maximum variations of such matrix elements should decrease exponentially with increasing the size of the system, which implies the ETH. We show, however, that the typicality argument does not apply to most few-body observables for few-body Hamiltonians when the width of the energy shell decreases at most polynomially with increasing the size of the system.

  16. Solving an inverse eigenvalue problem with triple constraints on eigenvalues, singular values, and diagonal elements

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-Jhih; Chu, Moody T.

    2017-08-01

    An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.

  17. Application of wavelet based MFDFA on Mueller matrix images for cervical pre-cancer detection

    NASA Astrophysics Data System (ADS)

    Zaffar, Mohammad; Pradhan, Asima

    2018-02-01

    A systematic study has been conducted on application of wavelet based multifractal de-trended fluctuation analysis (MFDFA) on Mueller matrix (MM) images of cervical tissue sections for early cancer detection. Changes in multiple scattering and orientation of fibers are observed by utilizing a discrete wavelet transform (Daubechies) which identifies fluctuations over polynomial trends. Fluctuation profiles, after 9th level decomposition, for all elements of MM qualitatively establish a demarcation of different grades of cancer from normal tissue. Moreover, applying MFDFA on MM images, Hurst exponent profiles for images of MM qualitatively are seen to display differences. In addition, the values of Hurst exponent increase for the diagonal elements of MM with increasing grades of the cervical cancer, while the value for the elements which correspond to linear polarizance decrease. However, for circular polarizance the value increases with increasing grades. These fluctuation profiles reveal the trend of local variation of refractive -indices and along with Hurst exponent profile, may serve as a useful biological metric in the early detection of cervical cancer. The quantitative measurements of Hurst exponent for diagonal and first column (polarizance governing elements) elements which reflect changes in multiple scattering and structural anisotropy in stroma, may be sensitive indicators of pre-cancer.

  18. Theoretical treatment of the spin-orbit coupling in the rare gas oxides NeO, ArO, KrO, and XeO

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.

    1980-01-01

    Off-diagonal spin-orbit matrix elements are calculated as a function of internuclear distance for the rare gas oxides NeO, ArO, KrO, and XeO using the full microscopic spin-orbit Hamiltonian, including all one- and two-electron integrals, and POL-CI wave functions comparable to those of Dunning and Hay (1977). A good agreement was found when comparing these results in detail with the calculations of Cohen, Wadt and Hay (1979) that utilize an effective one-electron one-center spin-orbit operator. For the rare gas oxide molecules, it is suggested that the numerical results are a more sensitive test of the wave functions (particularly to the extent of charge transfer) than the exact evaluation of all terms in the full spin-orbit operator.

  19. Reflection K-matrices for a nineteen vertex model with Uq [ osp (2 | 2) (2) ] symmetry

    NASA Astrophysics Data System (ADS)

    Vieira, R. S.; Lima Santos, A.

    2017-09-01

    We derive the solutions of the boundary Yang-Baxter equation associated with a supersymmetric nineteen vertex model constructed from the three-dimensional representation of the twisted quantum affine Lie superalgebra Uq [ osp (2 | 2) (2) ]. We found three classes of solutions. The type I solution is characterized by three boundary free-parameters and all elements of the corresponding reflection K-matrix are different from zero. In the type II solution, the reflection K-matrix is even (every element of the K-matrix with an odd parity is null) and it has only one boundary free-parameter. Finally, the type III solution corresponds to a diagonal reflection K-matrix with two boundary free-parameters.

  20. Erratum to Dynamic stresses, Coulomb failure, and remote triggering and to Surface wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Hill (2008) and Hill (2010) contain two technical errors: (1) a missing factor of 2 for computed Love‐wave amplitudes, and (2) a sign error in the off‐diagonal elements in the Euler rotation matrix.

  1. The K-Grid Fourier Analysis of Multigrid-Type Iterative Methods.

    DTIC Science & Technology

    1987-07-01

    I C ( 71 ’,AMI AS iUl l i ’c 22a NAME OF RESPONSIBLE INi7VIDUAl 12.’t iVi N fH WU( ( ’u p I, ) 2 OI|hiF SYMIO[ Mai. John Thomas _ ._ 2767-5026 .I M...equivalent to Z (M,4kal’ )k C’,,k,r,w ( MCr at )k- (3.13) j-i (1) Let A, := (Mk ,, Ci,, ) A,: (3.14) 3.3 Bounds on the Off-Diagonal Elements of Mm. When...444 .345 .282 .240 .210 4 . 318 .254 .212 .183 .161 310 E... M.- M. " N NJ I 7 vT Kr - 3.5 Bounds on the Diagonal Elements of tim Recall that the

  2. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    NASA Astrophysics Data System (ADS)

    Dinh, Thanh-Chung; Renger, Thomas

    2015-01-01

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Qy transition dipole moments in Chl b homodimers is larger by about 9∘ than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.

  3. Polar and singular value decomposition of 3×3 magic squares

    NASA Astrophysics Data System (ADS)

    Trenkler, Götz; Schmidt, Karsten; Trenkler, Dietrich

    2013-07-01

    In this note, we find polar as well as singular value decompositions of a 3×3 magic square, i.e. a 3×3 matrix M with real elements where each row, column and diagonal adds up to the magic sum s of the magic square.

  4. Fiscal Capacity and Educational Finance: Some Further Variations.

    ERIC Educational Resources Information Center

    Dziuban, Charles; And Others

    The school district fiscal capacity data (1962 and 1967) of the National Finance Project were analyzed for psychometric adequacy and robustness of component composition. The procedures involved: (1) the computation of the Kaiser, Meyer, Olkin Measure of Sampling Adequacy, (2) inspection of the off-diagonal elements of the antiimage covariance…

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filinov, A.V.; Golubnychiy, V.O.; Bonitz, M.

    Extending our previous work [A.V. Filinov et al., J. Phys. A 36, 5957 (2003)], we present a detailed discussion of accuracy and practical applications of finite-temperature pseudopotentials for two-component Coulomb systems. Different pseudopotentials are discussed: (i) the diagonal Kelbg potential, (ii) the off-diagonal Kelbg potential, (iii) the improved diagonal Kelbg potential, (iv) an effective potential obtained with the Feynman-Kleinert variational principle, and (v) the 'exact' quantum pair potential derived from the two-particle density matrix. For the improved diagonal Kelbg potential, a simple temperature-dependent fit is derived which accurately reproduces the 'exact' pair potential in the whole temperature range. The derivedmore » pseudopotentials are then used in path integral Monte Carlo and molecular-dynamics (MD) simulations to obtain thermodynamical properties of strongly coupled hydrogen. It is demonstrated that classical MD simulations with spin-dependent interaction potentials for the electrons allow for an accurate description of the internal energy of hydrogen in the difficult regime of partial ionization down to the temperatures of about 60 000 K. Finally, we point out an interesting relationship between the quantum potentials and the effective potentials used in density-functional theory.« less

  6. Three flavor neutrino oscillations in matter: Flavor diagonal potentials, the adiabatic basis, and the CP phase

    NASA Astrophysics Data System (ADS)

    Kneller, James P.; McLaughlin, Gail C.

    2009-09-01

    We discuss the three neutrino flavor evolution problem with general, flavor-diagonal, matter potentials and a fully parametrized mixing matrix that includes CP violation, and derive expressions for the eigenvalues, mixing angles, and phases. We demonstrate that, in the limit that the mu and tau potentials are equal, the eigenvalues and matter mixing angles θ˜12 and θ˜13 are independent of the CP phase, although θ˜23 does have CP dependence. Since we are interested in developing a framework that can be used for S matrix calculations of neutrino flavor transformation, it is useful to work in a basis that contains only off-diagonal entries in the Hamiltonian. We derive the “nonadiabaticity” parameters that appear in the Hamiltonian in this basis. We then introduce the neutrino S matrix, derive its evolution equation and the integral solution. We find that this new Hamiltonian, and therefore the S matrix, in the limit that the μ and τ neutrino potentials are the same, is independent of both θ˜23 and the CP violating phase. In this limit, any CP violation in the flavor basis can only be introduced via the rotation matrices, and so effects which derive from the CP phase are then straightforward to determine. We then show explicitly that the electron neutrino and electron antineutrino survival probability is independent of the CP phase in this limit. Conversely, if the CP phase is nonzero and mu and tau matter potentials are not equal, then the electron neutrino survival probability cannot be independent of the CP phase.

  7. Estimation of geopotential from satellite-to-satellite range rate data: Numerical results

    NASA Technical Reports Server (NTRS)

    Thobe, Glenn E.; Bose, Sam C.

    1987-01-01

    A technique for high-resolution geopotential field estimation by recovering the harmonic coefficients from satellite-to-satellite range rate data is presented and tested against both a controlled analytical simulation of a one-day satellite mission (maximum degree and order 8) and then against a Cowell method simulation of a 32-day mission (maximum degree and order 180). Innovations include: (1) a new frequency-domain observation equation based on kinetic energy perturbations which avoids much of the complication of the usual Keplerian element perturbation approaches; (2) a new method for computing the normalized inclination functions which unlike previous methods is both efficient and numerically stable even for large harmonic degrees and orders; (3) the application of a mass storage FFT to the entire mission range rate history; (4) the exploitation of newly discovered symmetries in the block diagonal observation matrix which reduce each block to the product of (a) a real diagonal matrix factor, (b) a real trapezoidal factor with half the number of rows as before, and (c) a complex diagonal factor; (5) a block-by-block least-squares solution of the observation equation by means of a custom-designed Givens orthogonal rotation method which is both numerically stable and tailored to the trapezoidal matrix structure for fast execution.

  8. Advanced diffraction-based overlay for double patterning

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Yongdong; Dasari, Prasad; Hu, Jiangtao; Smith, Nigel; Kritsun, Oleg; Volkman, Catherine

    2010-03-01

    Diffraction based overlay (DBO) technologies have been developed to address the tighter overlay control challenges as the dimensions of integrated circuit continue to shrink. Several studies published recently have demonstrated that the performance of DBO technologies has the potential to meet the overlay metrology budget for 22nm technology node. However, several hurdles must be cleared before DBO can be used in production. One of the major hurdles is that most DBO technologies require specially designed targets that consist of multiple measurement pads, which consume too much space and increase measurement time. A more advanced spectroscopic ellipsometry (SE) technology-Mueller Matrix SE (MM-SE) is developed to address the challenge. We use a double patterning sample to demonstrate the potential of MM-SE as a DBO candidate. Sample matrix (the matrix that describes the effects of the sample on the incident optical beam) obtained from MM-SE contains up to 16 elements. We show that the Mueller elements from the off-diagonal 2x2 blocks respond to overlay linearly and are zero when overlay errors are absent. This superior property enables empirical DBO (eDBO) using two pads per direction. Furthermore, the rich information in Mueller matrix and its direct response to overlay make it feasible to extract overlay errors from only one pad per direction using modeling approach (mDBO). We here present the Mueller overlay results using both eDBO and mDBO and compare the results with image-based overlay (IBO) and CD-SEM results. We also report the tool induced shifts (TIS) and dynamic repeatability.

  9. Maximal coherence and the resource theory of purity

    NASA Astrophysics Data System (ADS)

    Streltsov, Alexander; Kampermann, Hermann; Wölk, Sabine; Gessner, Manuel; Bruß, Dagmar

    2018-05-01

    The resource theory of quantum coherence studies the off-diagonal elements of a density matrix in a distinguished basis, whereas the resource theory of purity studies all deviations from the maximally mixed state. We establish a direct connection between the two resource theories, by identifying purity as the maximal coherence which is achievable by unitary operations. The states that saturate this maximum identify a universal family of maximally coherent mixed states. These states are optimal resources under maximally incoherent operations, and thus independent of the way coherence is quantified. For all distance-based coherence quantifiers the maximal coherence can be evaluated exactly, and is shown to coincide with the corresponding distance-based purity quantifier. We further show that purity bounds the maximal amount of entanglement and discord that can be generated by unitary operations, thus demonstrating that purity is the most elementary resource for quantum information processing.

  10. A Hybrid Program for Fitting Rotationally Resolved Spectra of Floppy Molecules with One Large-Amplitude Rotatory Motion and One Large-Amplitude Oscillatory Motion

    PubMed Central

    Kleiner, Isabelle; Hougen, Jon T.

    2015-01-01

    A new hybrid-model fitting program for methylamine-like molecules has been developed, based on an effective Hamiltonian in which the ammonia-like inversion motion is treated using a tunneling formalism, while the internal-rotation motion is treated using an explicit kinetic energy operator and potential energy function. The Hamiltonian in the computer program is set up as a 2×2 partitioned matrix, where each diagonal block contains a traditional torsion-rotation Hamiltonian (as in the earlier program BELGI), and the two off-diagonal blocks contain tunneling terms. This hybrid formulation permits the use of the permutation-inversion group G6 (isomorphic to C3v) for terms in the two diagonal blocks, but requires G12 for terms in the off-diagonal blocks. The first application of the new program is to 2-methylmalonaldehyde. Microwave data for this molecule were previously fit using an all-tunneling Hamiltonian formalism to treat both large-amplitude-motions. For 2-methylmalonaldehyde, the hybrid program achieves the same quality of fit as was obtained with the all-tunneling program, but fits with the hybrid program eliminate a large discrepancy between internal rotation barriers in the OH and OD isotopologs of 2-methylmalonaldehyde that arose in fits with the all-tunneling program. This large isotopic shift in internal rotation barrier is thus almost certainly an artifact of the all-tunneling model. Other molecules for application of the hybrid program are mentioned. PMID:26439709

  11. Improving stochastic estimates with inference methods: calculating matrix diagonals.

    PubMed

    Selig, Marco; Oppermann, Niels; Ensslin, Torsten A

    2012-02-01

    Estimating the diagonal entries of a matrix, that is not directly accessible but only available as a linear operator in the form of a computer routine, is a common necessity in many computational applications, especially in image reconstruction and statistical inference. Here, methods of statistical inference are used to improve the accuracy or the computational costs of matrix probing methods to estimate matrix diagonals. In particular, the generalized Wiener filter methodology, as developed within information field theory, is shown to significantly improve estimates based on only a few sampling probes, in cases in which some form of continuity of the solution can be assumed. The strength, length scale, and precise functional form of the exploited autocorrelation function of the matrix diagonal is determined from the probes themselves. The developed algorithm is successfully applied to mock and real world problems. These performance tests show that, in situations where a matrix diagonal has to be calculated from only a small number of computationally expensive probes, a speedup by a factor of 2 to 10 is possible with the proposed method. © 2012 American Physical Society

  12. Diffusion of Conserved Charges in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Greif, Moritz; Fotakis, Jan. A.; Denicol, Gabriel S.; Greiner, Carsten

    2018-06-01

    We demonstrate that the diffusion currents do not depend only on gradients of their corresponding charge density, but that the different diffusion charge currents are coupled. This happens in such a way that it is possible for density gradients of a given charge to generate dissipative currents of another charge. Within this scheme, the charge diffusion coefficient is best viewed as a matrix, in which the diagonal terms correspond to the usual charge diffusion coefficients, while the off-diagonal terms describe the coupling between the different currents. In this Letter, we calculate for the first time the complete diffusion matrix for hot and dense nuclear matter, including baryon, electric, and strangeness charges. We find that the baryon diffusion current is strongly affected by baryon charge gradients but also by its coupling to gradients in strangeness. The electric charge diffusion current is found to be strongly affected by electric and strangeness gradients, whereas strangeness currents depend mostly on strange and baryon gradients.

  13. Tuning maps for setpoint changes and load disturbance upsets in a three capacity process under multivariable control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Smith, Ira C.

    1991-01-01

    Tuning maps are an aid in the controller tuning process because they provide a convenient way for the plant operator to determine the consequences of adjusting different controller parameters. In this application the maps provide a graphical representation of the effect of varying the gains in the state feedback matrix on startup and load disturbance transients for a three capacity process. Nominally, the three tank system, represented in diagonal form, has a Proportional-Integral control on each loop. Cross coupling is then introduced between the loops by using non-zero off-diagonal proportional parameters. Changes in transient behavior due to setpoint and load changes are examined by varying the gains of the cross coupling terms.

  14. Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jinting; Lu, Liqiao; Zhu, Fei

    2018-01-01

    Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.

  15. A Partitioning Algorithm for Block-Diagonal Matrices With Overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy Antoine Atenekeng Kahou; Laura Grigori; Masha Sosonkina

    2008-02-02

    We present a graph partitioning algorithm that aims at partitioning a sparse matrix into a block-diagonal form, such that any two consecutive blocks overlap. We denote this form of the matrix as the overlapped block-diagonal matrix. The partitioned matrix is suitable for applying the explicit formulation of Multiplicative Schwarz preconditioner (EFMS) described in [3]. The graph partitioning algorithm partitions the graph of the input matrix into K partitions, such that every partition {Omega}{sub i} has at most two neighbors {Omega}{sub i-1} and {Omega}{sub i+1}. First, an ordering algorithm, such as the reverse Cuthill-McKee algorithm, that reduces the matrix profile ismore » performed. An initial overlapped block-diagonal partition is obtained from the profile of the matrix. An iterative strategy is then used to further refine the partitioning by allowing nodes to be transferred between neighboring partitions. Experiments are performed on matrices arising from real-world applications to show the feasibility and usefulness of this approach.« less

  16. Efficient Storage Scheme of Covariance Matrix during Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Mao, D.; Yeh, T. J.

    2013-12-01

    During stochastic inverse modeling, the covariance matrix of geostatistical based methods carries the information about the geologic structure. Its update during iterations reflects the decrease of uncertainty with the incorporation of observed data. For large scale problem, its storage and update cost too much memory and computational resources. In this study, we propose a new efficient storage scheme for storage and update. Compressed Sparse Column (CSC) format is utilized to storage the covariance matrix, and users can assign how many data they prefer to store based on correlation scales since the data beyond several correlation scales are usually not very informative for inverse modeling. After every iteration, only the diagonal terms of the covariance matrix are updated. The off diagonal terms are calculated and updated based on shortened correlation scales with a pre-assigned exponential model. The correlation scales are shortened by a coefficient, i.e. 0.95, every iteration to show the decrease of uncertainty. There is no universal coefficient for all the problems and users are encouraged to try several times. This new scheme is tested with 1D examples first. The estimated results and uncertainty are compared with the traditional full storage method. In the end, a large scale numerical model is utilized to validate this new scheme.

  17. Using Least Squares for Error Propagation

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2015-01-01

    The method of least-squares (LS) has a built-in procedure for estimating the standard errors (SEs) of the adjustable parameters in the fit model: They are the square roots of the diagonal elements of the covariance matrix. This means that one can use least-squares to obtain numerical values of propagated errors by defining the target quantities as…

  18. Computer Control and Activation of Six-Degree-of-Freedom Simulator

    DTIC Science & Technology

    1983-01-01

    Evaluation of Matrices 54 Calculation of Linear Coefficients 54 Off-Line Calculations for Aircraft 59 Off-Line Calculations for Combat Vehicle 61 Table...468 in. 59 Physical concept tail-boom control system 203 Vlll 60 Tail-boom control system block diagram 204 61 Block diagram for position...configuration. Now, since Z must be diagonal, it follows that the principal elements of Z are given by 13 where and a) = ^11 ^12’ 2 2 ^21 ^22 ’ 61

  19. Multi-Target Angle Tracking Algorithm for Bistatic MIMO Radar Based on the Elements of the Covariance Matrix

    PubMed Central

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-01-01

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar. PMID:29518957

  20. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix.

    PubMed

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-03-07

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  1. An attempt to determine the effect of increase of observation correlations on detectability and identifiability of a single gross error

    NASA Astrophysics Data System (ADS)

    Prószyński, Witold; Kwaśniak, Mieczysław

    2016-12-01

    The paper presents the results of investigating the effect of increase of observation correlations on detectability and identifiability of a single gross error, the outlier test sensitivity and also the response-based measures of internal reliability of networks. To reduce in a research a practically incomputable number of possible test options when considering all the non-diagonal elements of the correlation matrix as variables, its simplest representation was used being a matrix with all non-diagonal elements of equal values, termed uniform correlation. By raising the common correlation value incrementally, a sequence of matrix configurations could be obtained corresponding to the increasing level of observation correlations. For each of the measures characterizing the above mentioned features of network reliability the effect is presented in a diagram form as a function of the increasing level of observation correlations. The influence of observation correlations on sensitivity of the w-test for correlated observations (Förstner 1983, Teunissen 2006) is investigated in comparison with the original Baarda's w-test designated for uncorrelated observations, to determine the character of expected sensitivity degradation of the latter when used for correlated observations. The correlation effects obtained for different reliability measures exhibit mutual consistency in a satisfactory extent. As a by-product of the analyses, a simple formula valid for any arbitrary correlation matrix is proposed for transforming the Baarda's w-test statistics into the w-test statistics for correlated observations.

  2. Multistate metadynamics for automatic exploration of conical intersections

    NASA Astrophysics Data System (ADS)

    Lindner, Joachim O.; Röhr, Merle I. S.; Mitrić, Roland

    2018-05-01

    We introduce multistate metadynamics for automatic exploration of conical intersection seams between adiabatic Born-Oppenheimer potential energy surfaces in molecular systems. By choosing the energy gap between the electronic states as a collective variable the metadynamics drives the system from an arbitrary ground-state configuration toward the intersection seam. Upon reaching the seam, the multistate electronic Hamiltonian is extended by introducing biasing potentials into the off-diagonal elements, and the molecular dynamics is continued on a modified potential energy surface obtained by diagonalization of the latter. The off-diagonal bias serves to locally open the energy gap and push the system to the next intersection point. In this way, the conical intersection energy landscape can be explored, identifying minimum energy crossing points and the barriers separating them. We illustrate the method on the example of furan, a prototype organic molecule exhibiting rich photophysics. The multistate metadynamics reveals plateaus on the conical intersection energy landscape from which the minimum energy crossing points with characteristic geometries can be extracted. The method can be combined with the broad spectrum of electronic structure methods and represents a generally applicable tool for the exploration of photophysics and photochemistry in complex molecules and materials.

  3. Thermodynamic framework for the ground state of a simple quantum system

    NASA Astrophysics Data System (ADS)

    Souza, Andre M. C.; Nobre, Fernando D.

    2017-01-01

    The ground state of a two-level system (associated with probabilities p and 1 -p , respectively) defined by a general Hamiltonian H ̂=Ĥ0+λ V ̂ is studied. The simple case characterized by λ =0 , whose Hamiltonian Ĥ0 is represented by a diagonal matrix, is well established and solvable within Boltzmann-Gibbs statistical mechanics; in particular, it follows the third law of thermodynamics, presenting zero entropy (SBG=0 ) at zero temperature (T =0 ). Herein it is shown that the introduction of a perturbation λ V ̂ (λ >0 ) in the Hamiltonian may lead to a nontrivial ground state, characterized by an entropy S [p ] (with S [p ] ≠SBG[p ] ), if the Hermitian operator V ̂ is represented by a 2 ×2 matrix, defined by nonzero off-diagonal elements V12=V21=-z , where z is a real positive number. Hence, this new term in the Hamiltonian, presenting V12≠0 , may produce physically significant changes in the ground state, and especially, it allows for the introduction of an effective temperature θ (θ ∝λ z ), which is shown to be a parameter conjugated to the entropy S . Based on this, one introduces an infinitesimal heatlike quantity, δ Q =θ d S , leading to a consistent thermodynamic framework, and by proposing an infinitesimal form for the first law, a Carnot cycle and thermodynamic potentials are obtained. All results found are very similar to those of usual thermodynamics, through the identification T ↔θ , and particularly the form for the efficiency of the proposed Carnot Cycle. Moreover, S also follows a behavior typical of a third law, i.e., S →0 , when θ →0 .

  4. Thermodynamic framework for the ground state of a simple quantum system.

    PubMed

    Souza, Andre M C; Nobre, Fernando D

    2017-01-01

    The ground state of a two-level system (associated with probabilities p and 1-p, respectively) defined by a general Hamiltonian H[over ̂]=H[over ̂]_{0}+λV[over ̂] is studied. The simple case characterized by λ=0, whose Hamiltonian H[over ̂]_{0} is represented by a diagonal matrix, is well established and solvable within Boltzmann-Gibbs statistical mechanics; in particular, it follows the third law of thermodynamics, presenting zero entropy (S_{BG}=0) at zero temperature (T=0). Herein it is shown that the introduction of a perturbation λV[over ̂] (λ>0) in the Hamiltonian may lead to a nontrivial ground state, characterized by an entropy S[p] (with S[p]≠S_{BG}[p]), if the Hermitian operator V[over ̂] is represented by a 2×2 matrix, defined by nonzero off-diagonal elements V_{12}=V_{21}=-z, where z is a real positive number. Hence, this new term in the Hamiltonian, presenting V_{12}≠0, may produce physically significant changes in the ground state, and especially, it allows for the introduction of an effective temperature θ (θ∝λz), which is shown to be a parameter conjugated to the entropy S. Based on this, one introduces an infinitesimal heatlike quantity, δQ=θdS, leading to a consistent thermodynamic framework, and by proposing an infinitesimal form for the first law, a Carnot cycle and thermodynamic potentials are obtained. All results found are very similar to those of usual thermodynamics, through the identification T↔θ, and particularly the form for the efficiency of the proposed Carnot Cycle. Moreover, S also follows a behavior typical of a third law, i.e., S→0, when θ→0.

  5. Singular value decomposition utilizing parallel algorithms on graphical processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotas, Charlotte W; Barhen, Jacob

    2011-01-01

    One of the current challenges in underwater acoustic array signal processing is the detection of quiet targets in the presence of noise. In order to enable robust detection, one of the key processing steps requires data and replica whitening. This, in turn, involves the eigen-decomposition of the sample spectral matrix, Cx = 1/K xKX(k)XH(k) where X(k) denotes a single frequency snapshot with an element for each element of the array. By employing the singular value decomposition (SVD) method, the eigenvectors and eigenvalues can be determined directly from the data without computing the sample covariance matrix, reducing the computational requirements formore » a given level of accuracy (van Trees, Optimum Array Processing). (Recall that the SVD of a complex matrix A involves determining V, , and U such that A = U VH where U and V are orthonormal and is a positive, real, diagonal matrix containing the singular values of A. U and V are the eigenvectors of AAH and AHA, respectively, while the singular values are the square roots of the eigenvalues of AAH.) Because it is desirable to be able to compute these quantities in real time, an efficient technique for computing the SVD is vital. In addition, emerging multicore processors like graphical processing units (GPUs) are bringing parallel processing capabilities to an ever increasing number of users. Since the computational tasks involved in array signal processing are well suited for parallelization, it is expected that these computations will be implemented using GPUs as soon as users have the necessary computational tools available to them. Thus, it is important to have an SVD algorithm that is suitable for these processors. This work explores the effectiveness of two different parallel SVD implementations on an NVIDIA Tesla C2050 GPU (14 multiprocessors, 32 cores per multiprocessor, 1.15 GHz clock - peed). The first algorithm is based on a two-step algorithm which bidiagonalizes the matrix using Householder transformations, and then diagonalizes the intermediate bidiagonal matrix through implicit QR shifts. This is similar to that implemented for real matrices by Lahabar and Narayanan ("Singular Value Decomposition on GPU using CUDA", IEEE International Parallel Distributed Processing Symposium 2009). The implementation is done in a hybrid manner, with the bidiagonalization stage done using the GPU while the diagonalization stage is done using the CPU, with the GPU used to update the U and V matrices. The second algorithm is based on a one-sided Jacobi scheme utilizing a sequence of pair-wise column orthogonalizations such that A is replaced by AV until the resulting matrix is sufficiently orthogonal (that is, equal to U ). V is obtained from the sequence of orthogonalizations, while can be found from the square root of the diagonal elements of AH A and, once is known, U can be found from column scaling the resulting matrix. These implementations utilize CUDA Fortran and NVIDIA's CUB LAS library. The primary goal of this study is to quantify the comparative performance of these two techniques against themselves and other standard implementations (for example, MATLAB). Considering that there is significant overhead associated with transferring data to the GPU and with synchronization between the GPU and the host CPU, it is also important to understand when it is worthwhile to use the GPU in terms of the matrix size and number of concurrent SVDs to be calculated.« less

  6. Efficient diagonalization of the sparse matrices produced within the framework of the UK R-matrix molecular codes

    NASA Astrophysics Data System (ADS)

    Galiatsatos, P. G.; Tennyson, J.

    2012-11-01

    The most time consuming step within the framework of the UK R-matrix molecular codes is that of the diagonalization of the inner region Hamiltonian matrix (IRHM). Here we present the method that we follow to speed up this step. We use shared memory machines (SMM), distributed memory machines (DMM), the OpenMP directive based parallel language, the MPI function based parallel language, the sparse matrix diagonalizers ARPACK and PARPACK, a variation for real symmetric matrices of the official coordinate sparse matrix format and finally a parallel sparse matrix-vector product (PSMV). The efficient application of the previous techniques rely on two important facts: the sparsity of the matrix is large enough (more than 98%) and in order to get back converged results we need a small only part of the matrix spectrum.

  7. Apparent mass matrix of standing subjects exposed to multi-axial whole-body vibration.

    PubMed

    Tarabini, Marco; Solbiati, Stefano; Saggin, Bortolino; Scaccabarozzi, Diego

    2016-08-01

    This paper describes the experimental characterisation of the apparent mass matrix of eight male subjects in standing position and the identification of nonlinearities under both mono-axial and dual-axis whole-body vibration. The nonlinear behaviour of the response was studied using the conditioned response techniques considering models of increasing complexity. Results showed that the cross-axis terms are comparable to the diagonal terms. The contribution of the nonlinear effects are minor and can be endorsed to the change of modal parameters during the tests. The nonlinearity generated by the vibration magnitude is more evident in the subject response, since magnitude-dependent effects in the population are overlaid by the scatter in the subjects' biometric data. The biodynamic response is influenced by the addition of a secondary vibration axis and, in case of dual-axis vibrations, the overall magnitude has a marginal contribution. Practitioner Summary: We have measured both the diagonal and cross-axis elements of the apparent mass matrix. The effect of nonlinearities and the simultaneous presence of vibration along two axes are smaller than the inter-subject variability.

  8. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tongsong, E-mail: jiangtongsong@sina.com; Department of Mathematics, Heze University, Heze, Shandong 274015; Jiang, Ziwu

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  9. Matrix-product-state method with local basis optimization for nonequilibrium electron-phonon systems

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian; Brockt, Christoph; Dorfner, Florian; Vidmar, Lev; Jeckelmann, Eric

    We present a method for simulating the time evolution of quasi-one-dimensional correlated systems with strongly fluctuating bosonic degrees of freedom (e.g., phonons) using matrix product states. For this purpose we combine the time-evolving block decimation (TEBD) algorithm with a local basis optimization (LBO) approach. We discuss the performance of our approach in comparison to TEBD with a bare boson basis, exact diagonalization, and diagonalization in a limited functional space. TEBD with LBO can reduce the computational cost by orders of magnitude when boson fluctuations are large and thus it allows one to investigate problems that are out of reach of other approaches. First, we test our method on the non-equilibrium dynamics of a Holstein polaron and show that it allows us to study the regime of strong electron-phonon coupling. Second, the method is applied to the scattering of an electronic wave packet off a region with electron-phonon coupling. Our study reveals a rich physics including transient self-trapping and dissipation. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 1807.

  10. Determining Diagonal Branches in Mine Ventilation Networks

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej

    2014-12-01

    The present paper discusses determining diagonal branches in a mine ventilation network by means of a method based on the relationship A⊗ PT(k, l) = M, which states that the nodal-branch incidence matrix A, modulo-2 multiplied by the transposed path matrix PT(k, l ) from node no. k to node no. l, yields the matrix M where all the elements in rows k and l - corresponding to the start and the end node - are 1, and where the elements in the remaining rows are 0, exclusively. If a row of the matrix M is to contain only "0" elements, the following condition has to be fulfilled: after multiplying the elements of a row of the matrix A by the elements of a column of the matrix PT(k, l), i.e. by the elements of a proper row of the matrix P(k, l ), the result row must display only "0" elements or an even number of "1" entries, as only such a number of "1" entries yields 0 when modulo-2 added - and since the rows of the matrix A correspond to the graph nodes, and the path nodes level is 2 (apart from the nodes k and l, whose level is 1), then the number of "1" elements in a row has to be 0 or 2. If, in turn, the rows k and l of the matrix M are to contain only "1" elements, the following condition has to be fulfilled: after multiplying the elements of the row k or l of the matrix A by the elements of a column of the matrix PT(k, l), the result row must display an uneven number of "1" entries, as only such a number of "1" entries yields 1 when modulo-2 added - and since the rows of the matrix A correspond to the graph nodes, and the level of the i and j path nodes is 1, then the number of "1" elements in a row has to be 1. The process of determining diagonal branches by means of this method was demonstrated using the example of a simple ventilation network with two upcast shafts and one downcast shaft. W artykule przedstawiono metodę wyznaczania bocznic przekątnych w sieci wentylacyjnej kopalni metodą bazującą na zależności A⊗PT(k, l) = M, która podaje, że macierz incydencji węzłowo bocznicowej A pomnożona modulo 2 przez transponowaną macierz ścieżek PT(k, l) od węzła nr k do węzła nr l daje w wyniku macierz M o takich własnościach że ma same jedynki w wierszach k i l, odpowiadającym węzłom początkowemu i końcowemu i same zera w pozostałych wierszach. Warunkiem na to, aby w wierszu macierzy M były same zera jest aby po pomnożeniu elementów wiersza macierzy A przez elementy kolumny macierzy PT(k, l), czyli przez elementy odpowiedniego wiersza macierzy P(k, l), w wierszu wynikowym były same zera lub parzysta liczba jedynek, ponieważ tylko taka liczba jedynek zsumowana modulo 2 daje w wyniku 0, a ponieważ wiersze macierzy A odpowiadają węzłom grafu, a węzły ścieżki są stopnia 2 (oprócz węzłów k i l, które są stopnia 1), to liczba jedynek w wierszu musi być równa 0 lub 2. Natomiast warunkiem na to, aby w wierszach k i l macierzy M były same jedynki jest aby po pomnożeniu elementów wiersza k lub l macierzy A przez elementy kolumny macierzy PT(k, l) w wierszu wynikowym była nieparzysta liczba jedynek, ponieważ tylko taka liczba jedynek zsumowana modulo 2 daje w wyniku 1, a ponieważ wiersze macierzy A odpowiadają węzłom grafu, a węzły k i j ścieżki są stopnia 1, to liczba jedynek w wierszu musi być równa 1. Wyznaczanie bocznic przekątnych tą metodą pokazano na przykładzie prostej sieci wentylacyjnej z dwoma szybami wydechowymi i jednym wdechowym.

  11. A fully redundant double difference algorithm for obtaining minimum variance estimates from GPS observations

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.

    1986-01-01

    In double differencing a regression system obtained from concurrent Global Positioning System (GPS) observation sequences, one either undersamples the system to avoid introducing colored measurement statistics, or one fully samples the system incurring the resulting non-diagonal covariance matrix for the differenced measurement errors. A suboptimal estimation result will be obtained in the undersampling case and will also be obtained in the fully sampled case unless the color noise statistics are taken into account. The latter approach requires a least squares weighting matrix derived from inversion of a non-diagonal covariance matrix for the differenced measurement errors instead of inversion of the customary diagonal one associated with white noise processes. Presented is the so-called fully redundant double differencing algorithm for generating a weighted double differenced regression system that yields equivalent estimation results, but features for certain cases a diagonal weighting matrix even though the differenced measurement error statistics are highly colored.

  12. Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Have, Jonas; Pedersen, Thomas G.

    2018-03-01

    The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.

  13. Bethe states of the trigonometric SU(3) spin chain with generic open boundaries

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Xin, Zhirong; Qiao, Yi; Wen, Fakai; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Tao; Yang, Wen-Li; Shi, Kangjie

    2018-06-01

    By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU (3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T - Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.

  14. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk

    2016-08-14

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less

  15. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    NASA Astrophysics Data System (ADS)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  16. Inelastic Transitions in Slow Collisions of Anti-Hydrogen with Hydrogen Atoms

    NASA Astrophysics Data System (ADS)

    Harrison, Robert; Krstic, Predrag

    2007-06-01

    We calculate excited adiabatic states and nonadiabatic coupling matrix elements of a quasimolecular system containing hydrogen and anti-hydrogen atoms, for a range of internuclear distances from 0.2 to 20 Bohrs. High accuracy is achieved by exact diagonalization of the molecular Hamiltionian in a large Gaussian basis. Nonadiabatic dynamics was calculated by solving MOCC equations. Positronium states are included in the consideration.

  17. An efficient basis set representation for calculating electrons in molecules

    DOE PAGES

    Jones, Jeremiah R.; Rouet, Francois -Henry; Lawler, Keith V.; ...

    2016-04-27

    The method of McCurdy, Baertschy, and Rescigno, is generalised to obtain a straightforward, surprisingly accurate, and scalable numerical representation for calculating the electronic wave functions of molecules. It uses a basis set of product sinc functions arrayed on a Cartesian grid, and yields 1 kcal/mol precision for valence transition energies with a grid resolution of approximately 0.1 bohr. The Coulomb matrix elements are replaced with matrix elements obtained from the kinetic energy operator. A resolution-of-the-identity approximation renders the primitive one- and two-electron matrix elements diagonal; in other words, the Coulomb operator is local with respect to the grid indices. Themore » calculation of contracted two-electron matrix elements among orbitals requires only O( Nlog (N)) multiplication operations, not O( N 4), where N is the number of basis functions; N = n 3 on cubic grids. The representation not only is numerically expedient, but also produces energies and properties superior to those calculated variationally. Absolute energies, absorption cross sections, transition energies, and ionisation potentials are reported for 1- (He +, H + 2), 2- (H 2, He), 10- (CH 4), and 56-electron (C 8H 8) systems.« less

  18. Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2016-01-01

    Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (in)homogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé-Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.

  19. Recovering hidden diagonal structures via non-negative matrix factorization with multiple constraints.

    PubMed

    Yang, Xi; Han, Guoqiang; Cai, Hongmin; Song, Yan

    2017-03-31

    Revealing data with intrinsically diagonal block structures is particularly useful for analyzing groups of highly correlated variables. Earlier researches based on non-negative matrix factorization (NMF) have been shown to be effective in representing such data by decomposing the observed data into two factors, where one factor is considered to be the feature and the other the expansion loading from a linear algebra perspective. If the data are sampled from multiple independent subspaces, the loading factor would possess a diagonal structure under an ideal matrix decomposition. However, the standard NMF method and its variants have not been reported to exploit this type of data via direct estimation. To address this issue, a non-negative matrix factorization with multiple constraints model is proposed in this paper. The constraints include an sparsity norm on the feature matrix and a total variational norm on each column of the loading matrix. The proposed model is shown to be capable of efficiently recovering diagonal block structures hidden in observed samples. An efficient numerical algorithm using the alternating direction method of multipliers model is proposed for optimizing the new model. Compared with several benchmark models, the proposed method performs robustly and effectively for simulated and real biological data.

  20. An optimized and low-cost FPGA-based DNA sequence alignment--a step towards personal genomics.

    PubMed

    Shah, Hurmat Ali; Hasan, Laiq; Ahmad, Nasir

    2013-01-01

    DNA sequence alignment is a cardinal process in computational biology but also is much expensive computationally when performing through traditional computational platforms like CPU. Of many off the shelf platforms explored for speeding up the computation process, FPGA stands as the best candidate due to its performance per dollar spent and performance per watt. These two advantages make FPGA as the most appropriate choice for realizing the aim of personal genomics. The previous implementation of DNA sequence alignment did not take into consideration the price of the device on which optimization was performed. This paper presents optimization over previous FPGA implementation that increases the overall speed-up achieved as well as the price incurred by the platform that was optimized. The optimizations are (1) The array of processing elements is made to run on change in input value and not on clock, so eliminating the need for tight clock synchronization, (2) the implementation is unrestrained by the size of the sequences to be aligned, (3) the waiting time required for the sequences to load to FPGA is reduced to the minimum possible and (4) an efficient method is devised to store the output matrix that make possible to save the diagonal elements to be used in next pass, in parallel with the computation of output matrix. Implemented on Spartan3 FPGA, this implementation achieved 20 times performance improvement in terms of CUPS over GPP implementation.

  1. Weak Measurement and Quantum Smoothing of a Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Tan, Dian

    In quantum mechanics, the measurement outcome of an observable in a quantum system is intrinsically random, yielding a probability distribution. The state of the quantum system can be described by a density matrix rho(t), which depends on the information accumulated until time t, and represents our knowledge about the system. The density matrix rho(t) gives probabilities for the outcomes of measurements at time t. Further probing of the quantum system allows us to refine our prediction in hindsight. In this thesis, we experimentally examine a quantum smoothing theory in a superconducting qubit by introducing an auxiliary matrix E(t) which is conditioned on information obtained from time t to a final time T. With the complete information before and after time t, the pair of matrices [rho(t), E(t)] can be used to make smoothed predictions for the measurement outcome at time t. We apply the quantum smoothing theory in the case of continuous weak measurement unveiling the retrodicted quantum trajectories and weak values. In the case of strong projective measurement, while the density matrix rho(t) with only diagonal elements in a given basis |n〉 may be treated as a classical mixture, we demonstrate a failure of this classical mixture description in determining the smoothed probabilities for the measurement outcome at time t with both diagonal rho(t) and diagonal E(t). We study the correlations between quantum states and weak measurement signals and examine aspects of the time symmetry of continuous quantum measurement. We also extend our study of quantum smoothing theory to the case of resonance fluorescence of a superconducting qubit with homodyne measurement and observe some interesting effects such as the modification of the excited state probabilities, weak values, and evolution of the predicted and retrodicted trajectories.

  2. A methodology for formulating a minimal uncertainty model for robust control system design and analysis

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1989-01-01

    In the design and analysis of robust control systems for uncertain plants, the technique of formulating what is termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents the transfer function matrix M(s) of the nominal system, and delta represents an uncertainty matrix acting on M(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unstructured uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, and for real parameter variations the diagonal elements are real. As stated in the literature, this structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the literature addresses methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty. Since have a delta matrix of minimum order would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta model would be useful. A generalized method of obtaining a minimal M-delta structure for systems with real parameter variations is given.

  3. Characterization of high order spatial discretizations and lumping techniques for discontinuous finite element SN transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, P. G.; Ragusa, J. C.; Morel, J. E.

    2013-07-01

    We examine several possible methods of mass matrix lumping for discontinuous finite element discrete ordinates transport using a Lagrange interpolatory polynomial trial space. Though positive outflow angular flux is guaranteed with traditional mass matrix lumping in a purely absorbing 1-D slab cell for the linear discontinuous approximation, we show that when used with higher degree interpolatory polynomial trial spaces, traditional lumping does yield strictly positive outflows and does not increase in accuracy with an increase in trial space polynomial degree. As an alternative, we examine methods which are 'self-lumping'. Self-lumping methods yield diagonal mass matrices by using numerical quadrature restrictedmore » to the Lagrange interpolatory points. Using equally-spaced interpolatory points, self-lumping is achieved through the use of closed Newton-Cotes formulas, resulting in strictly positive outflows in pure absorbers for odd power polynomials in 1-D slab geometry. By changing interpolatory points from the traditional equally-spaced points to the quadrature points of the Gauss-Legendre or Lobatto-Gauss-Legendre quadratures, it is possible to generate solution representations with a diagonal mass matrix and a strictly positive outflow for any degree polynomial solution representation in a pure absorber medium in 1-D slab geometry. Further, there is no inherent limit to local truncation error order of accuracy when using interpolatory points that correspond to the quadrature points of high order accuracy numerical quadrature schemes. (authors)« less

  4. Tensor-product preconditioners for a space-time discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Diosady, Laslo T.; Murman, Scott M.

    2014-10-01

    A space-time discontinuous Galerkin spectral element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is presented. A diagonalized alternating direction implicit preconditioner is extended to a space-time formulation using entropy variables. The effectiveness of this technique is demonstrated for the direct numerical simulation of turbulent flow in a channel.

  5. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken-Hush and block diagonalization methods

    NASA Astrophysics Data System (ADS)

    Cave, Robert J.; Newton, Marshall D.

    1997-06-01

    Two independent methods are presented for the nonperturbative calculation of the electronic coupling matrix element (Hab) for electron transfer reactions using ab initio electronic structure theory. The first is based on the generalized Mulliken-Hush (GMH) model, a multistate generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on the block diagonalization (BD) approach of Cederbaum, Domcke, and co-workers. Detailed quantitative comparisons of the two methods are carried out based on results for (a) several states of the system Zn2OH2+ and (b) the low-lying states of the benzene-Cl atom complex and its contact ion pair. Generally good agreement between the two methods is obtained over a range of geometries. Either method can be applied at an arbitrary nuclear geometry and, as a result, may be used to test the validity of the Condon approximation. Examples of nonmonotonic behavior of the electronic coupling as a function of nuclear coordinates are observed for Zn2OH2+. Both methods also yield a natural definition of the effective distance (rDA) between donor (D) and acceptor (A) sites, in contrast to earlier approaches which required independent estimates of rDA, generally based on molecular structure data.

  6. Non-LTE radiative transfer with lambda-acceleration - Convergence properties using exact full and diagonal lambda-operators

    NASA Technical Reports Server (NTRS)

    Macfarlane, J. J.

    1992-01-01

    We investigate the convergence properties of Lambda-acceleration methods for non-LTE radiative transfer problems in planar and spherical geometry. Matrix elements of the 'exact' A-operator are used to accelerate convergence to a solution in which both the radiative transfer and atomic rate equations are simultaneously satisfied. Convergence properties of two-level and multilevel atomic systems are investigated for methods using: (1) the complete Lambda-operator, and (2) the diagonal of the Lambda-operator. We find that the convergence properties for the method utilizing the complete Lambda-operator are significantly better than those of the diagonal Lambda-operator method, often reducing the number of iterations needed for convergence by a factor of between two and seven. However, the overall computational time required for large scale calculations - that is, those with many atomic levels and spatial zones - is typically a factor of a few larger for the complete Lambda-operator method, suggesting that the approach should be best applied to problems in which convergence is especially difficult.

  7. Symmetry of semi-reduced lattices.

    PubMed

    Stróż, Kazimierz

    2015-05-01

    The main result of this work is extension of the famous characterization of Bravais lattices according to their metrical, algebraic and geometric properties onto a wide class of primitive lattices (including Buerger-reduced, nearly Buerger-reduced and a substantial part of Delaunay-reduced) related to low-restricted semi-reduced descriptions (s.r.d.'s). While the `geometric' operations in Bravais lattices map the basis vectors into themselves, the `arithmetic' operators in s.r.d. transform the basis vectors into cell vectors (basis vectors, face or space diagonals) and are represented by matrices from the set {\\bb V} of all 960 matrices with the determinant ±1 and elements {0, ±1} of the matrix powers. A lattice is in s.r.d. if the moduli of off-diagonal elements in both the metric tensors M and M(-1) are smaller than corresponding diagonal elements sharing the same column or row. Such lattices are split into 379 s.r.d. types relative to the arithmetic holohedries. Metrical criteria for each type do not need to be explicitly given but may be modelled as linear derivatives {\\bb M}(p,q,r), where {\\bb M} denotes the set of 39 highest-symmetry metric tensors, and p,q,r describe changes of appropriate interplanar distances. A sole filtering of {\\bb V} according to an experimental s.r.d. metric and subsequent geometric interpretation of the filtered matrices lead to mathematically stable and rich information on the Bravais-lattice symmetry and deviations from the exact symmetry. The emphasis on the crystallographic features of lattices was obtained by shifting the focus (i) from analysis of a lattice metric to analysis of symmetry matrices [Himes & Mighell (1987). Acta Cryst. A43, 375-384], (ii) from the isometric approach and invariant subspaces to the orthogonality concept {some ideas in Le Page [J. Appl. Cryst. (1982), 15, 255-259]} and splitting indices [Stróż (2011). Acta Cryst. A67, 421-429] and (iii) from fixed cell transformations to transformations derivable via geometric information (Himes & Mighell, 1987; Le Page, 1982). It is illustrated that corresponding arithmetic and geometric holohedries share space distribution of symmetry elements. Moreover, completeness of the s.r.d. types reveals their combinatorial structure and simplifies the crystallographic description of structural phase transitions, especially those observed with the use of powder diffraction. The research proves that there are excellent theoretical and practical reasons for looking at crystal lattice symmetry from an entirely new and surprising point of view - the combinatorial set {\\bb V} of matrices, their semi-reduced lattice context and their geometric properties.

  8. Modeling anomalous radial transport in kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2009-11-01

    Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.

  9. Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach

    NASA Astrophysics Data System (ADS)

    Chen, Lipeng; Zhao, Yang

    2017-12-01

    Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.

  10. On the interpretation of kernels - Computer simulation of responses to impulse pairs

    NASA Technical Reports Server (NTRS)

    Hung, G.; Stark, L.; Eykhoff, P.

    1983-01-01

    A method is presented for the use of a unit impulse response and responses to impulse pairs of variable separation in the calculation of the second-degree kernels of a quadratic system. A quadratic system may be built from simple linear terms of known dynamics and a multiplier. Computer simulation results on quadratic systems with building elements of various time constants indicate reasonably that the larger time constant term before multiplication dominates in the envelope of the off-diagonal kernel curves as these move perpendicular to and away from the main diagonal. The smaller time constant term before multiplication combines with the effect of the time constant after multiplication to dominate in the kernel curves in the direction of the second-degree impulse response, i.e., parallel to the main diagonal. Such types of insight may be helpful in recognizing essential aspects of (second-degree) kernels; they may be used in simplifying the model structure and, perhaps, add to the physical/physiological understanding of the underlying processes.

  11. 3DFEMWATER: A three-dimensional finite element model of water flow through saturated-unsaturated media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, G.T.

    1987-08-01

    The 3DFEMWATER model is designed to treat heterogeneous and anisotropic media consisting of as many geologic formations as desired, consider both distributed and point sources/sinks that are spatially and temporally dependent, accept the prescribed initial conditions or obtain them by simulating a steady state version of the system under consideration, deal with a transient head distributed over the Dirichlet boundary, handle time-dependent fluxes due to pressure gradient varying along the Neumann boundary, treat time-dependent total fluxes distributed over the Cauchy boundary, automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface, include the off-diagonal hydraulic conductivitymore » components in the modified Richards equation for dealing with cases when the coordinate system does not coincide with the principal directions of the hydraulic conductivity tensor, give three options for estimating the nonlinear matrix, include two options (successive subregion block iterations and successive point interactions) for solving the linearized matrix equations, automatically reset time step size when boundary conditions or source/sinks change abruptly, and check the mass balance computation over the entire region for every time step. The model is verified with analytical solutions or other numerical models for three examples.« less

  12. Diagonalization of complex symmetric matrices: Generalized Householder reflections, iterative deflation and implicit shifts

    NASA Astrophysics Data System (ADS)

    Noble, J. H.; Lubasch, M.; Stevens, J.; Jentschura, U. D.

    2017-12-01

    We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A ̲ =A̲T, which is based on a two-step algorithm involving generalized Householder reflections based on the indefinite inner product 〈 u ̲ , v ̲ 〉 ∗ =∑iuivi. This inner product is linear in both arguments and avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form using generalized Householder transformations (first step). An iterative, generalized QL decomposition of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step). The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered "prematurely" on the super-/sub-diagonal. The algorithm allows for a reliable and computationally efficient computation of resonance and antiresonance energies which emerge from complex-scaled Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian and PT-symmetric Hamilton matrices. Numerical reference values are provided.

  13. Le Châtelier reciprocal relations and the mechanical analog

    NASA Astrophysics Data System (ADS)

    Gilmore, Robert

    1983-08-01

    Le Châtelier's principle is discussed carefully in terms of two sets of simple thermodynamic examples. The principle is then formulated quantitatively for general thermodynamic systems. The formulation is in terms of a perturbation-response matrix, the Le Châtelier matrix [L]. Le Châtelier's principle is contained in the diagonal elements of this matrix, all of which exceed one. These matrix elements describe the response of a system to a perturbation of either its extensive or intensive variables. These response ratios are inverses of each other. The Le Châtelier matrix is symmetric, so that a new set of thermodynamic reciprocal relations is derived. This quantitative formulation is illustrated by a single simple example which includes the original examples and shows the reciprocities among them. The assumptions underlying this new quantitative formulation of Le Châtelier's principle are general and applicable to a wide variety of nonthermodynamic systems. Le Châtelier's principle is formulated quantitatively for mechanical systems in static equilibrium, and mechanical examples of this formulation are given.

  14. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice.

    PubMed

    Dong, Qianli; Li, Ning; Li, Xiaochong; Yuan, Zan; Xie, Dejian; Wang, Xiaofei; Li, Jianing; Yu, Yanan; Wang, Jinbin; Ding, Baoxu; Zhang, Zhibin; Li, Changping; Bian, Yao; Zhang, Ai; Wu, Ying; Liu, Bao; Gong, Lei

    2018-06-01

    The non-random spatial packing of chromosomes in the nucleus plays a critical role in orchestrating gene expression and genome function. Here, we present a Hi-C analysis of the chromatin interaction patterns in rice (Oryza sativa L.) at hierarchical architectural levels. We confirm that rice chromosomes occupy their own territories with certain preferential inter-chromosomal associations. Moderate compartment delimitation and extensive TADs (Topologically Associated Domains) were determined to be associated with heterogeneous genomic compositions and epigenetic marks in the rice genome. We found subtle features including chromatin loops, gene loops, and off-/near-diagonal intensive interaction regions. Gene chromatin loops associated with H3K27me3 could be positively involved in gene expression. In addition to insulated enhancing effects for neighbor gene expression, the identified rice gene loops could bi-directionally (+/-) affect the expression of looped genes themselves. Finally, web-interleaved off-diagonal IHIs/KEEs (Interactive Heterochromatic Islands or KNOT ENGAGED ELEMENTs) could trap transposable elements (TEs) via the enrichment of silencing epigenetic marks. In parallel, the near-diagonal FIREs (Frequently Interacting Regions) could positively affect the expression of involved genes. Our results suggest that the chromatin packing pattern in rice is generally similar to that in Arabidopsis thaliana but with clear differences at specific structural levels. We conclude that genomic composition, epigenetic modification, and transcriptional activity could act in combination to shape global and local chromatin packing in rice. Our results confirm recent observations in rice and A. thaliana but also provide additional insights into the patterns and features of chromatin organization in higher plants. © 2018 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  15. Bayesian block-diagonal variable selection and model averaging

    PubMed Central

    Papaspiliopoulos, O.; Rossell, D.

    2018-01-01

    Summary We propose a scalable algorithmic framework for exact Bayesian variable selection and model averaging in linear models under the assumption that the Gram matrix is block-diagonal, and as a heuristic for exploring the model space for general designs. In block-diagonal designs our approach returns the most probable model of any given size without resorting to numerical integration. The algorithm also provides a novel and efficient solution to the frequentist best subset selection problem for block-diagonal designs. Posterior probabilities for any number of models are obtained by evaluating a single one-dimensional integral, and other quantities of interest such as variable inclusion probabilities and model-averaged regression estimates are obtained by an adaptive, deterministic one-dimensional numerical integration. The overall computational cost scales linearly with the number of blocks, which can be processed in parallel, and exponentially with the block size, rendering it most adequate in situations where predictors are organized in many moderately-sized blocks. For general designs, we approximate the Gram matrix by a block-diagonal matrix using spectral clustering and propose an iterative algorithm that capitalizes on the block-diagonal algorithms to explore efficiently the model space. All methods proposed in this paper are implemented in the R library mombf. PMID:29861501

  16. Finite difference method accelerated with sparse solvers for structural analysis of the metal-organic complexes

    NASA Astrophysics Data System (ADS)

    Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.

    2016-05-01

    Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.

  17. Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Diosady, Laslo T.; Murman, Scott M.

    2017-02-01

    A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  18. Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2016-01-01

    space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  19. Generalized Reich-Moore R-matrix approximation

    NASA Astrophysics Data System (ADS)

    Arbanas, Goran; Sobes, Vladimir; Holcomb, Andrew; Ducru, Pablo; Pigni, Marco; Wiarda, Dorothea

    2017-09-01

    A conventional Reich-Moore approximation (RMA) of R-matrix is generalized into a manifestly unitary form by introducing a set of resonant capture channels treated explicitly in a generalized, reduced R-matrix. A dramatic reduction of channel space witnessed in conventional RMA, from Nc × Nc full R-matrix to Np × Np reduced R-matrix, where Nc = Np + Nγ, Np and Nγ denoting the number of particle and γ-ray channels, respectively, is due to Np < Nγ. A corresponding reduction of channel space in generalized RMA (GRMA) is from Nc × Nc full R-matrix to N × N, where N = Np + N, and where N is the number of capture channels defined in GRMA. We show that N = Nλ where Nλ is the number of R-matrix levels. This reduction in channel space, although not as dramatic as in the conventional RMA, could be significant for medium and heavy nuclides where N < Nγ. The resonant capture channels defined by GRMA accommodate level-level interference (via capture channels) neglected in conventional RMA. The expression for total capture cross section in GRMA is formally equal to that of the full Nc × NcR-matrix. This suggests that GRMA could yield improved nuclear data evaluations in the resolved resonance range at a cost of introducing N(N - 1)/2 resonant capture width parameters relative to conventional RMA. Manifest unitarity of GRMA justifies a method advocated by Fröhner and implemented in the SAMMY nuclear data evaluation code for enforcing unitarity of conventional RMA. Capture widths of GRMA are exactly convertible into alternative R-matrix parameters via Brune tranform. Application of idealized statistical methods to GRMA shows that variance among conventional RMA capture widths in extant RMA evaluations could be used to estimate variance among off-diagonal elements neglected by conventional RMA. Significant departure of capture widths from an idealized distribution may indicate the presence of underlying doorway states.

  20. Chiral asymmetry of anti-symmetric coordinates studied by the Raman differential bond polarizability of S-phenylethylamine

    NASA Astrophysics Data System (ADS)

    Shen, Hong-Xia; Wu, Guo-Zhen; Wang, Pei-Jie

    2012-12-01

    The Raman optical activity (ROA) study on S-phenylethylamine is presented by the intensity analyses via bond polarizability and differential bond polarizability. Ample information concerning the physical picture of this chiral system is obtained, and its ROA mechanism is constructed. Especially, we propose that the asymmetric modes and/or the off-diagonal elements of the electronic polarizability tensor are the potential keys to the exploration of ROA.

  1. Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green's function analysis

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Kubis, Tillmann; Jie Wang, Qi; Klimeck, Gerhard

    2012-03-01

    The nonequilibrium Green's function approach is applied to the design of three-well indirect pumping terahertz (THz) quantum cascade lasers (QCLs) based on a resonant phonon depopulation scheme. The effects of the anticrossing of the injector states and the dipole matrix element of the laser levels on the optical gain of THz QCLs are studied. The results show that a design that results in a more pronounced anticrossing of the injector states will achieve a higher optical gain in the indirect pumping scheme compared to the traditional resonant-tunneling injection scheme. This offers in general a more efficient coherent resonant-tunneling transport of electrons in the indirect pumping scheme. It is also shown that, for operating temperatures below 200 K and low lasing frequencies, larger dipole matrix elements, i.e., vertical optical transitions, offer a higher optical gain. In contrast, in the case of high lasing frequencies, smaller dipole matrix elements, i.e., diagonal optical transitions are better for achieving a higher optical gain.

  2. Quadrupole collectivity in 42Ca from low-energy Coulomb excitation with AGATA

    NASA Astrophysics Data System (ADS)

    Hadyńska-Klęk, K.; Napiorkowski, P. J.; Zielińska, M.; Srebrny, J.; Maj, A.; Azaiez, F.; Valiente Dobón, J. J.; Kicińska-Habior, M.; Nowacki, F.; Naïdja, H.; Bounthong, B.; Rodríguez, T. R.; de Angelis, G.; Abraham, T.; Anil Kumar, G.; Bazzacco, D.; Bellato, M.; Bortolato, D.; Bednarczyk, P.; Benzoni, G.; Berti, L.; Birkenbach, B.; Bruyneel, B.; Brambilla, S.; Camera, F.; Chavas, J.; Cederwall, B.; Charles, L.; Ciemała, M.; Cocconi, P.; Coleman-Smith, P.; Colombo, A.; Corsi, A.; Crespi, F. C. L.; Cullen, D. M.; Czermak, A.; Désesquelles, P.; Doherty, D. T.; Dulny, B.; Eberth, J.; Farnea, E.; Fornal, B.; Franchoo, S.; Gadea, A.; Giaz, A.; Gottardo, A.; Grave, X.; Grębosz, J.; Görgen, A.; Gulmini, M.; Habermann, T.; Hess, H.; Isocrate, R.; Iwanicki, J.; Jaworski, G.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Kmiecik, M.; Karpiński, D.; Kisieliński, M.; Kondratyev, N.; Korichi, A.; Komorowska, M.; Kowalczyk, M.; Korten, W.; Krzysiek, M.; Lehaut, G.; Leoni, S.; Ljungvall, J.; Lopez-Martens, A.; Lunardi, S.; Maron, G.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Merchán, E.; Męczyński, W.; Michelagnoli, C.; Million, B.; Myalski, S.; Napoli, D. R.; Niikura, M.; Obertelli, A.; Özmen, S. F.; Palacz, M.; Próchniak, L.; Pullia, A.; Quintana, B.; Rampazzo, G.; Recchia, F.; Redon, N.; Reiter, P.; Rosso, D.; Rusek, K.; Sahin, E.; Salsac, M.-D.; Söderström, P.-A.; Stefan, I.; Stézowski, O.; Styczeń, J.; Theisen, Ch.; Toniolo, N.; Ur, C. A.; Wadsworth, R.; Wasilewska, B.; Wiens, A.; Wood, J. L.; Wrzosek-Lipska, K.; Ziębliński, M.

    2018-02-01

    A Coulomb-excitation experiment to study electromagnetic properties of 42Ca was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in 42Ca were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E 2 matrix elements coupling six low-lying states in 42Ca, including the diagonal E 2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E 2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2 + and 21,2 + states, as well as triaxiality for 01,2 + states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in 42Ca. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in 42Ca.

  3. The diagonalization of cubic matrices

    NASA Astrophysics Data System (ADS)

    Cocolicchio, D.; Viggiano, M.

    2000-08-01

    This paper is devoted to analysing the problem of the diagonalization of cubic matrices. We extend the familiar algebraic approach which is based on the Cardano formulae. We rewrite the complex roots of the associated resolvent secular equation in terms of transcendental functions and we derive the diagonalizing matrix.

  4. VLBI-derived troposphere parameters during CONT08

    NASA Astrophysics Data System (ADS)

    Heinkelmann, R.; Böhm, J.; Bolotin, S.; Engelhardt, G.; Haas, R.; Lanotte, R.; MacMillan, D. S.; Negusini, M.; Skurikhina, E.; Titov, O.; Schuh, H.

    2011-07-01

    Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays ( ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12-26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.

  5. Condition number estimation of preconditioned matrices.

    PubMed

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.

  6. Morphology-Dependent Resonances of Spherical Droplets with Numerous Microscopic Inclusions

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2014-01-01

    We use the recently extended superposition T-matrix method to study the behavior of a sharp Lorenz-Mie resonance upon filling a spherical micrometer-sized droplet with tens and hundreds of randomly positioned microscopic inclusions. We show that as the number of inclusions increases, the extinction cross-section peak and the sharp asymmetry-parameter minimum become suppressed, widen, and move toward smaller droplet size parameters, while ratios of diagonal elements of the scattering matrix exhibit sharp angular features indicative of a distinctly nonspherical particle. Our results highlight the limitedness of the concept of an effective refractive index of an inhomogeneous spherical particle.

  7. Chaos in non-diagonal spatially homogeneous cosmological models in spacetime dimensions <=10

    NASA Astrophysics Data System (ADS)

    Demaret, Jacques; de Rop, Yves; Henneaux, Marc

    1988-08-01

    It is shown that the chaotic oscillatory behaviour, absent in diagonal homogeneous cosmological models in spacetime dimensions between 5 and 10, can be reestablished when off-diagonal terms are included. Also at Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile

  8. A comparative study of methods for describing non-adiabatic coupling: diabatic representation of the 1Sigma +/1Pi HOH and HHO conical intersections

    NASA Astrophysics Data System (ADS)

    Dobbyn, Abigail J.; Knowles, Peter J.

    A number of established techniques for obtaining diabatic electronic states in small molecules are critically compared for the example of the X and B states in the water molecule, which contribute to the two lowest-energy conical intersections. Integration of the coupling matrix elements and analysis of configuration mixing coefficients both produce reliable diabatic states globally. Methods relying on diagonalization of dipole moment and angular momentum operators are shown to fail in large regions of coordinate space. However, the use of transition angular momentum matrix elements involving the A state, which is degenerate with B at the conical intersections, is successful globally, provided that an appropriate choice of coordinates is made. Long range damping of non-adiabatic coupling to give correct asymptotic mixing angles also is investigated.

  9. GW study of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3: Beyond the perturbative one-shot approach

    NASA Astrophysics Data System (ADS)

    Aguilera, Irene; Friedrich, Christoph; Bihlmayer, Gustav; Blügel, Stefan

    2013-07-01

    We present GW calculations of the topological insulators Bi2Se3, Bi2Te3, and Sb2Te3 within the all-electron full-potential linearized augmented-plane-wave formalism. Quasiparticle effects produce significant qualitative changes in the band structures of these materials when compared to density functional theory (DFT), especially at the Γ point, where band inversion takes place. There, the widely used perturbative one-shot GW approach can produce unphysical band dispersions, as the quasiparticle wave functions are forced to be identical to the noninteracting single-particle states. We show that a treatment beyond the perturbative approach, which incorporates the off-diagonal GW matrix elements and thus enables many-body hybridization to be effective in the quasiparticle wave functions, is crucial in these cases to describe the characteristics of the band inversion around the Γ point in an appropriate way. In addition, this beyond one-shot GW approach allows us to calculate the values of the Z2 topological invariants and compare them with those previously obtained within DFT.

  10. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques.

    PubMed

    Schmitz, Gunnar; Hättig, Christof

    2016-12-21

    We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.

  11. Topological electronic liquids: Electronic physics of one dimension beyond the one spatial dimension

    NASA Astrophysics Data System (ADS)

    Wiegmann, P. B.

    1999-06-01

    There is a class of electronic liquids in dimensions greater than 1 that shows all essential properties of one-dimensional electronic physics. These are topological liquids-correlated electronic systems with a spectral flow. Compressible topological electronic liquids are superfluids. In this paper we present a study of a conventional model of a topological superfluid in two spatial dimensions. This model is thought to be relevant to a doped Mott insulator. We show how the spectral flow leads to the superfluid hydrodynamics and how the orthogonality catastrophe affects off-diagonal matrix elements. We also compute the major electronic correlation functions. Among them are the spectral function, the pair wave function, and various tunneling amplitudes. To compute correlation functions we develop a method of current algebra-an extension of the bosonization technique of one spatial dimension. In order to emphasize a similarity between electronic liquids in one dimension and topological liquids in dimensions greater than 1, we first review the Fröhlich-Peierls mechanism of ideal conductivity in one dimension and then extend the physics and the methods into two spatial dimensions.

  12. Hierarchical Equation of Motion Investigation of Decoherence and Relaxation Dynamics in Nonequilibrium Transport through Interacting Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hartle, Rainer; Cohen, Guy; Reichman, David R.; Millis, Andrew J.

    2014-03-01

    A recently developed hierarchical quantum master equation approach is used to investigate nonequilibrium electron transport through an interacting double quantum dot system in the regime where the inter-dot coupling is weaker than the coupling to the electrodes. The corresponding eigenstates provide tunneling paths that may interfere constructively or destructively, depending on the energy of the tunneling electrons. Electron-electron interactions are shown to quench these interference effects in bias-voltage dependent ways, leading, in particular, to negative differential resistance, population inversion and an enhanced broadening of resonances in the respective transport characteristics. Relaxation times are found to be very long, and to be correlated with very slow dynamics of the inter-dot coherences (off diagonal density matrix elements). The ability of the hierarchical quantum master equation approach to access very long time scales is crucial for the study of this physics. This work is supported by the National Science Foundation (NSF DMR-1006282 and NSF CHE-1213247), the Yad Hanadiv-Rothschild Foundation (via a Rothschild Fellowship for GC) and the Alexander von Humboldt Foundation (via a Feodor Lynen fellowship for RH).

  13. Tensorial Calibration. 2. Second Order Tensorial Calibration.

    DTIC Science & Technology

    1987-10-12

    index is repeated more than once only in one side of an equation, it implies a summation over the index valid range. 12 To avoid confusion of terms...and higher order tensor, the rank can be higher than the maximum dimensionality. 13 ,ON 6 LINEAR SECOND ORDER TENSORIAL CALIBRATION MODEL From...these equations are valid only if all the elements of the diagonal matrix B3 are non-zero because its inverse (-1) must be computed. This implies that M

  14. Minutia Tensor Matrix: A New Strategy for Fingerprint Matching

    PubMed Central

    Fu, Xiang; Feng, Jufu

    2015-01-01

    Establishing correspondences between two minutia sets is a fundamental issue in fingerprint recognition. This paper proposes a new tensor matching strategy. First, the concept of minutia tensor matrix (simplified as MTM) is proposed. It describes the first-order features and second-order features of a matching pair. In the MTM, the diagonal elements indicate similarities of minutia pairs and non-diagonal elements indicate pairwise compatibilities between minutia pairs. Correct minutia pairs are likely to establish both large similarities and large compatibilities, so they form a dense sub-block. Minutia matching is then formulated as recovering the dense sub-block in the MTM. This is a new tensor matching strategy for fingerprint recognition. Second, as fingerprint images show both local rigidity and global nonlinearity, we design two different kinds of MTMs: local MTM and global MTM. Meanwhile, a two-level matching algorithm is proposed. For local matching level, the local MTM is constructed and a novel local similarity calculation strategy is proposed. It makes full use of local rigidity in fingerprints. For global matching level, the global MTM is constructed to calculate similarities of entire minutia sets. It makes full use of global compatibility in fingerprints. Proposed method has stronger description ability and better robustness to noise and nonlinearity. Experiments conducted on Fingerprint Verification Competition databases (FVC2002 and FVC2004) demonstrate the effectiveness and the efficiency. PMID:25822489

  15. Optimum modulation and demodulation matrices for solar polarimetry.

    PubMed

    del Toro Iniesta, J C; Collados, M

    2000-04-01

    Both temporal and/or spatial modulation are mandatory in current solar polarimetry [Appl. Opt. 24, 3893 (1985); 26, 3838 (1987)]. The modulating and demodulating processes are mathematically described by matrices O and D, respectively, on whose structure the accuracy of Stokes parameter measurements depend. We demonstrate, based on the definition of polarimetric efficiency [Instituto de Astrofísica de Canarias Internal Report (1994); ASP Conf. Ser. 184, 3 (1999)], that the maximum efficiencies of an ideal polarimeter are unity for Stokes I and for (Q(2) + U(2) + V(2))(1/2) and that this occurs if and only if O(T)O is diagonal; given a general (possibly nonideal) modulation matrix O, the optimum demodulation matrix turns out to be D = (O(T)O)(-1)O(T); and the maximum efficiencies in the nonideal case are given by the rms value of the column elements of matrix O and are reached by modulation matrices such that O(T)O is diagonal. From these analytical results we distill two recipes useful in the practical design of polarimeters. Their usefulness is illustrated by discussing cases of currently available solar polarimeters. Although specifically devoted to solar polarimetry, the results here may be applied in practically all other branches of science for which polarimetric measurements are needed.

  16. Equations of motion for a spectrum-generating algebra: Lipkin Meshkov Glick model

    NASA Astrophysics Data System (ADS)

    Rosensteel, G.; Rowe, D. J.; Ho, S. Y.

    2008-01-01

    For a spectrum-generating Lie algebra, a generalized equations-of-motion scheme determines numerical values of excitation energies and algebra matrix elements. In the approach to the infinite particle number limit or, more generally, whenever the dimension of the quantum state space is very large, the equations-of-motion method may achieve results that are impractical to obtain by diagonalization of the Hamiltonian matrix. To test the method's effectiveness, we apply it to the well-known Lipkin-Meshkov-Glick (LMG) model to find its low-energy spectrum and associated generator matrix elements in the eigenenergy basis. When the dimension of the LMG representation space is 106, computation time on a notebook computer is a few minutes. For a large particle number in the LMG model, the low-energy spectrum makes a quantum phase transition from a nondegenerate harmonic vibrator to a twofold degenerate harmonic oscillator. The equations-of-motion method computes critical exponents at the transition point.

  17. Introduction to Computational Chemistry: Teaching Hu¨ckel Molecular Orbital Theory Using an Excel Workbook for Matrix Diagonalization

    ERIC Educational Resources Information Center

    Litofsky, Joshua; Viswanathan, Rama

    2015-01-01

    Matrix diagonalization, the key technique at the heart of modern computational chemistry for the numerical solution of the Schrödinger equation, can be easily introduced in the physical chemistry curriculum in a pedagogical context using simple Hückel molecular orbital theory for p bonding in molecules. We present details and results of…

  18. Bubble nucleation and inflationary perturbations

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Jazayeri, Sadra; Karami, Asieh; Rostami, Tahereh

    2017-12-01

    In this work we study the imprints of bubble nucleation on primordial inflationary perturbations. We assume that the bubble is formed via the tunneling of a spectator field from the false vacuum of its potential to its true vacuum. We consider the configuration in which the observable CMB sphere is initially outside of the bubble. As the bubble expands, more and more regions of the exterior false vacuum, including our CMB sphere, fall into the interior of the bubble. The modes which leave the horizon during inflation at the time when the bubble wall collides with the observable CMB sphere are affected the most. The bubble wall induces non-trivial anisotropic and scale dependent corrections in the two point function of the curvature perturbation. The corrections in the curvature perturbation and the diagonal and off-diagonal elements of CMB power spectrum are estimated.

  19. ANALYSIS OF A CLASSIFICATION ERROR MATRIX USING CATEGORICAL DATA TECHNIQUES.

    USGS Publications Warehouse

    Rosenfield, George H.; Fitzpatrick-Lins, Katherine

    1984-01-01

    Summary form only given. A classification error matrix typically contains tabulation results of an accuracy evaluation of a thematic classification, such as that of a land use and land cover map. The diagonal elements of the matrix represent the counts corrected, and the usual designation of classification accuracy has been the total percent correct. The nondiagonal elements of the matrix have usually been neglected. The classification error matrix is known in statistical terms as a contingency table of categorical data. As an example, an application of these methodologies to a problem of remotely sensed data concerning two photointerpreters and four categories of classification indicated that there is no significant difference in the interpretation between the two photointerpreters, and that there are significant differences among the interpreted category classifications. However, two categories, oak and cottonwood, are not separable in classification in this experiment at the 0. 51 percent probability. A coefficient of agreement is determined for the interpreted map as a whole, and individually for each of the interpreted categories. A conditional coefficient of agreement for the individual categories is compared to other methods for expressing category accuracy which have already been presented in the remote sensing literature.

  20. Reduced order feedback control equations for linear time and frequency domain analysis

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1981-01-01

    An algorithm was developed which can be used to obtain the equations. In a more general context, the algorithm computes a real nonsingular similarity transformation matrix which reduces a real nonsymmetric matrix to block diagonal form, each block of which is a real quasi upper triangular matrix. The algorithm works with both defective and derogatory matrices and when and if it fails, the resultant output can be used as a guide for the reformulation of the mathematical equations that lead up to the ill conditioned matrix which could not be block diagonalized.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratap, Surender; Sarkar, Niladri, E-mail: niladri@pilani.bits-pilani.ac.in

    Self-Consistent Quantum Method using Schrodinger-Poisson equations have been used for determining the Channel electron density of Nano-Scale MOSFETs for 6nm and 9nm thick channels. The 6nm thick MOSFET show the peak of the electron density at the middle where as the 9nm thick MOSFET shows the accumulation of the electrons at the oxide/semiconductor interface. The electron density in the channel is obtained from the diagonal elements of the density matrix; [ρ]=[1/(1+exp(β(H − μ)))] A Tridiagonal Hamiltonian Matrix [H] is constructed for the oxide/channel/oxide 1D structure for the dual gate MOSFET. This structure is discretized and Finite-Difference method is used formore » constructing the matrix equation. The comparison of these results which are obtained by Quantum methods are done with Semi-Classical methods.« less

  2. RANDOM MATRIX DIAGONALIZATION--A COMPUTER PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchel, K.; Greibach, R.J.; Porter, C.E.

    A computer prograra is described which generates random matrices, diagonalizes them and sorts appropriately the resulting eigenvalues and eigenvector components. FAP and FORTRAN listings for the IBM 7090 computer are included. (auth)

  3. Population control of self-replicating systems

    NASA Technical Reports Server (NTRS)

    Mccord, R. L.

    1982-01-01

    The literature concerning fibonacci sequence and the mathematics of self replication are reviewed. One option allows each primary to generate n-replicas, one in each sequential time frame after its own generation with no restrictions on the number of ancestors per replica. The state vector of the replicas in an efficient manner is determined. Option-B has a fixed number of replicas per primary and no restrictions on the number of ancestors for a replica. Any element fij represents the number of elements of type-j in time frame k+1 generated from type-i in time frame k. Option-D is a diagonal matrix whose eigenvalues are precisely those of f.

  4. Effects on Calculated Half-Widths and Shifts from the Line Coupling for Asymmetric-Top Molecules

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy formalism by considering the line coupling for linear molecules developed in our previous studies [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013); 140, 104304 (2014)] have been extended to asymmetric-top molecules. For H2O immersed in N2 bath, the line coupling selection rules applicable for the pure rotational band to determine whether two specified lines are coupled or not are established. Meanwhile, because the coupling strengths are determined by relative importance of off-diagonal matrix elements versus diagonal elements of the operator -iS1 -S2, quantitative tools are developed with which one is able to remove weakly coupled lines from consideration. By applying these tools, we have found that within reasonable tolerances, most of the H2O lines in the pure rotational band are not coupled. This reflects the fact that differences of energy levels of the H2O states are pretty large. But, there are several dozen strongly coupled lines and they can be categorized into different groups such that the line couplings occur only within the same groups. In practice, to identify those strongly coupled lines and to confine them into sub-linespaces are crucial steps in considering the line coupling. We have calculated half-widths and shifts for some groups, including the line coupling. Based on these calculations, one can conclude that for most of the H2O lines, it is unnecessary to consider the line coupling. However, for several dozens of lines, effects on the calculated half-widths from the line coupling are small, but remain noticeable and reductions of calculated half-widths due to including the line coupling could reach to 5%. Meanwhile, effects on the calculated shifts are very significant and variations of calculated shifts could be as large as 25%.

  5. Effects on calculated half-widths and shifts from the line coupling for asymmetric-top molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-06-28

    The refinement of the Robert-Bonamy formalism by considering the line coupling for linear molecules developed in our previous studies [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013); 140, 104304 (2014)] have been extended to asymmetric-top molecules. For H{sub 2}O immersed in N{sub 2} bath, the line coupling selection rules applicable for the pure rotational band to determine whether two specified lines are coupled or not are established. Meanwhile, because the coupling strengths are determined by relative importance of off-diagonal matrix elements versus diagonal elements of the operator −iS{sub 1} − S{sub 2}, quantitative toolsmore » are developed with which one is able to remove weakly coupled lines from consideration. By applying these tools, we have found that within reasonable tolerances, most of the H{sub 2}O lines in the pure rotational band are not coupled. This reflects the fact that differences of energy levels of the H{sub 2}O states are pretty large. But, there are several dozen strongly coupled lines and they can be categorized into different groups such that the line couplings occur only within the same groups. In practice, to identify those strongly coupled lines and to confine them into sub-linespaces are crucial steps in considering the line coupling. We have calculated half-widths and shifts for some groups, including the line coupling. Based on these calculations, one can conclude that for most of the H{sub 2}O lines, it is unnecessary to consider the line coupling. However, for several dozens of lines, effects on the calculated half-widths from the line coupling are small, but remain noticeable and reductions of calculated half-widths due to including the line coupling could reach to 5%. Meanwhile, effects on the calculated shifts are very significant and variations of calculated shifts could be as large as 25%.« less

  6. Triple collocation-based estimation of spatially correlated observation error covariance in remote sensing soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Shu, Hong; Nie, Lei; Jiao, Zhenhang

    2018-01-01

    Spatially correlated errors are typically ignored in data assimilation, thus degenerating the observation error covariance R to a diagonal matrix. We argue that a nondiagonal R carries more observation information making assimilation results more accurate. A method, denoted TC_Cov, was proposed for soil moisture data assimilation to estimate spatially correlated observation error covariance based on triple collocation (TC). Assimilation experiments were carried out to test the performance of TC_Cov. AMSR-E soil moisture was assimilated with a diagonal R matrix computed using the TC and assimilated using a nondiagonal R matrix, as estimated by proposed TC_Cov. The ensemble Kalman filter was considered as the assimilation method. Our assimilation results were validated against climate change initiative data and ground-based soil moisture measurements using the Pearson correlation coefficient and unbiased root mean square difference metrics. These experiments confirmed that deterioration of diagonal R assimilation results occurred when model simulation is more accurate than observation data. Furthermore, nondiagonal R achieved higher correlation coefficient and lower ubRMSD values over diagonal R in experiments and demonstrated the effectiveness of TC_Cov to estimate richly structuralized R in data assimilation. In sum, compared with diagonal R, nondiagonal R may relieve the detrimental effects of assimilation when simulated model results outperform observation data.

  7. Determinant representations of spin-operator matrix elements in the XX spin chain and their applications

    NASA Astrophysics Data System (ADS)

    Wu, Ning

    2018-01-01

    For the one-dimensional spin-1/2 XX model with either periodic or open boundary conditions, it is shown by using a fermionic approach that the matrix element of the spin operator Sj- (Sj-Sj'+ ) between two eigenstates with numbers of excitations n and n +1 (n and n ) can be expressed as the determinant of an appropriate (n +1 )×(n +1 ) matrix whose entries involve the coefficients of the canonical transformations diagonalizing the model. In the special case of a homogeneous periodic XX chain, the matrix element of Sj- reduces to a variant of the Cauchy determinant that can be evaluated analytically to yield a factorized expression. The obtained compact representations of these matrix elements are then applied to two physical scenarios: (i) Nonlinear optical response of molecular aggregates, for which the determinant representation of the transition dipole matrix elements between eigenstates provides a convenient way to calculate the third-order nonlinear responses for aggregates from small to large sizes compared with the optical wavelength; and (ii) real-time dynamics of an interacting Dicke model consisting of a single bosonic mode coupled to a one-dimensional XX spin bath. In this setup, full quantum calculation up to N ≤16 spins for vanishing intrabath coupling shows that the decay of the reduced bosonic occupation number approaches a finite plateau value (in the long-time limit) that depends on the ratio between the number of excitations and the total number of spins. Our results can find useful applications in various "system-bath" systems, with the system part inhomogeneously coupled to an interacting XX chain.

  8. Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units.

    PubMed

    Cawkwell, M J; Sanville, E J; Mniszewski, S M; Niklasson, Anders M N

    2012-11-13

    The self-consistent solution of a Schrödinger-like equation for the density matrix is a critical and computationally demanding step in quantum-based models of interatomic bonding. This step was tackled historically via the diagonalization of the Hamiltonian. We have investigated the performance and accuracy of the second-order spectral projection (SP2) algorithm for the computation of the density matrix via a recursive expansion of the Fermi operator in a series of generalized matrix-matrix multiplications. We demonstrate that owing to its simplicity, the SP2 algorithm [Niklasson, A. M. N. Phys. Rev. B2002, 66, 155115] is exceptionally well suited to implementation on graphics processing units (GPUs). The performance in double and single precision arithmetic of a hybrid GPU/central processing unit (CPU) and full GPU implementation of the SP2 algorithm exceed those of a CPU-only implementation of the SP2 algorithm and traditional matrix diagonalization when the dimensions of the matrices exceed about 2000 × 2000. Padding schemes for arrays allocated in the GPU memory that optimize the performance of the CUBLAS implementations of the level 3 BLAS DGEMM and SGEMM subroutines for generalized matrix-matrix multiplications are described in detail. The analysis of the relative performance of the hybrid CPU/GPU and full GPU implementations indicate that the transfer of arrays between the GPU and CPU constitutes only a small fraction of the total computation time. The errors measured in the self-consistent density matrices computed using the SP2 algorithm are generally smaller than those measured in matrices computed via diagonalization. Furthermore, the errors in the density matrices computed using the SP2 algorithm do not exhibit any dependence of system size, whereas the errors increase linearly with the number of orbitals when diagonalization is employed.

  9. Analysis of Modified SMI Method for Adaptive Array Weight Control. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dilsavor, Ronald Louis

    1989-01-01

    An adaptive array is used to receive a desired signal in the presence of weak interference signals which need to be suppressed. A modified sample matrix inversion (SMI) algorithm controls the array weights. The modification leads to increased interference suppression by subtracting a fraction of the noise power from the diagonal elements of the covariance matrix. The modified algorithm maximizes an intuitive power ratio criterion. The expected values and variances of the array weights, output powers, and power ratios as functions of the fraction and the number of snapshots are found and compared to computer simulation and real experimental array performance. Reduced-rank covariance approximations and errors in the estimated covariance are also described.

  10. Eigensolver for a Sparse, Large Hermitian Matrix

    NASA Technical Reports Server (NTRS)

    Tisdale, E. Robert; Oyafuso, Fabiano; Klimeck, Gerhard; Brown, R. Chris

    2003-01-01

    A parallel-processing computer program finds a few eigenvalues in a sparse Hermitian matrix that contains as many as 100 million diagonal elements. This program finds the eigenvalues faster, using less memory, than do other, comparable eigensolver programs. This program implements a Lanczos algorithm in the American National Standards Institute/ International Organization for Standardization (ANSI/ISO) C computing language, using the Message Passing Interface (MPI) standard to complement an eigensolver in PARPACK. [PARPACK (Parallel Arnoldi Package) is an extension, to parallel-processing computer architectures, of ARPACK (Arnoldi Package), which is a collection of Fortran 77 subroutines that solve large-scale eigenvalue problems.] The eigensolver runs on Beowulf clusters of computers at the Jet Propulsion Laboratory (JPL).

  11. Workshop report on large-scale matrix diagonalization methods in chemistry theory institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S.

    The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems asmore » well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of« less

  12. Low-temperature anomalies in the dynamic elastic moduli of cubic AIIBVI crystals with 3d-transition metal impurities

    NASA Astrophysics Data System (ADS)

    Lonchakov, A. T.

    2011-04-01

    A negative paramagnetic contribution to the dynamic elastic moduli is identified in AIIBVI:3d wide band-gap compounds for the first time. It appears as a paramagnetic elastic, or, briefly, paraelastic, susceptibility. These compounds are found to have a linear temperature dependence for the inverse paraelastic susceptibility. This is explained by a contribution from the diagonal matrix elements of the orbit-lattice interaction operators in the energy of the spin-orbital states of the 3d-ion as a function of applied stress (by analogy with the Curie contribution to the magnetic susceptibility). The inverse paraelastic susceptibility of AIIBVI crystals containing non-Kramers 3d-ions is found to deviate from linearity with decreasing temperature and reaches saturation. This effect is explained by a contribution from nondiagonal matrix elements (analogous to the well known van Vleck contribution to the magnetic susceptibility of paramagnets).

  13. Influences of the coordinate dependent noncommutative space on charged and spin currents

    NASA Astrophysics Data System (ADS)

    Ren, Ya-Jie; Ma, Kai

    2018-06-01

    We study the charged and spin currents on a coordinate dependent noncommutative space. Starting from the noncommutative extended relativistic equation of motion, the nonrelativistic approximation is obtained by using the Foldy-Wouthuysen transformation, and then the charged and spin currents are derived by using the extended Drude model. We find that the charged current is twisted by modifying the off-diagonal elements of the Hall conductivity, however, the spin current is not affected up to leading order of the noncommutative parameter.

  14. Condition Number Estimation of Preconditioned Matrices

    PubMed Central

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331

  15. On efficient randomized algorithms for finding the PageRank vector

    NASA Astrophysics Data System (ADS)

    Gasnikov, A. V.; Dmitriev, D. Yu.

    2015-03-01

    Two randomized methods are considered for finding the PageRank vector; in other words, the solution of the system p T = p T P with a stochastic n × n matrix P, where n ˜ 107-109, is sought (in the class of probability distributions) with accuracy ɛ: ɛ ≫ n -1. Thus, the possibility of brute-force multiplication of P by the column is ruled out in the case of dense objects. The first method is based on the idea of Markov chain Monte Carlo algorithms. This approach is efficient when the iterative process p {/t+1 T} = p {/t T} P quickly reaches a steady state. Additionally, it takes into account another specific feature of P, namely, the nonzero off-diagonal elements of P are equal in rows (this property is used to organize a random walk over the graph with the matrix P). Based on modern concentration-of-measure inequalities, new bounds for the running time of this method are presented that take into account the specific features of P. In the second method, the search for a ranking vector is reduced to finding the equilibrium in the antagonistic matrix game where S n (1) is a unit simplex in ℝ n and I is the identity matrix. The arising problem is solved by applying a slightly modified Grigoriadis-Khachiyan algorithm (1995). This technique, like the Nazin-Polyak method (2009), is a randomized version of Nemirovski's mirror descent method. The difference is that randomization in the Grigoriadis-Khachiyan algorithm is used when the gradient is projected onto the simplex rather than when the stochastic gradient is computed. For sparse matrices P, the method proposed yields noticeably better results.

  16. Role of quantum coherence in shaping the line shape of an exciton interacting with a spatially and temporally correlated bath

    PubMed Central

    Dutta, Rajesh; Bagchi, Kaushik

    2017-01-01

    Kubo’s fluctuation theory of line shape forms the backbone of our understanding of optical and vibrational line shapes, through such concepts as static heterogeneity and motional narrowing. However, the theory does not properly address the effects of quantum coherences on optical line shape, especially in extended systems where a large number of eigenstates are present. In this work, we study the line shape of an exciton in a one-dimensional lattice consisting of regularly placed and equally separated optical two level systems. We consider both linear array and cyclic ring systems of different sizes. Detailed analytical calculations of line shape have been carried out by using Kubo’s stochastic Liouville equation (SLE). We make use of the observation that in the site representation, the Hamiltonian of our system with constant off-diagonal coupling J is a tridiagonal Toeplitz matrix (TDTM) whose eigenvalues and eigenfunctions are known analytically. This identification is particularly useful for long chains where the eigenvalues of TDTM help understanding crossover between static and fast modulation limits. We summarize the new results as follows. (i) In the slow modulation limit when the bath correlation time is large, the effects of spatial correlation are not negligible. Here the line shape is broadened and the number of peaks increases beyond the ones obtained from TDTM (constant off-diagonal coupling element J and no fluctuation). (ii) However, in the fast modulation limit when the bath correlation time is small, the spatial correlation is less important. In this limit, the line shape shows motional narrowing with peaks at the values predicted by TDTM (constant J and no fluctuation). (iii) Importantly, we find that the line shape can capture that quantum coherence affects in the two limits differently. (iv) In addition to linear chains of two level systems, we also consider a cyclic tetramer. The cyclic polymers can be designed for experimental verification. (v) We also build a connection between line shape and population transfer dynamics. In the fast modulation limit, both the line shape and the population relaxation, for both correlated and uncorrelated bath, show similar behavior. However, in slow modulation limit, they show profoundly different behavior. (vi) This study explains the unique role of the rate of fluctuation (inverse of the bath correlation time) in the sustenance and propagation of coherence. We also examine the effects of off-diagonal fluctuation in spectral line shape. Finally, we use Tanimura-Kubo formalism to derive a set of coupled equations to include temperature effects (partly neglected in the SLE employed here) and effects of vibrational mode in energy transfer dynamics. PMID:28527457

  17. Polarizabilities of Impurity Doped Quantum Dots Under Pulsed Field: Role of Multiplicative White Noise

    NASA Astrophysics Data System (ADS)

    Saha, Surajit; Ghosh, Manas

    2016-02-01

    We perform a rigorous analysis of the profiles of a few diagonal and off-diagonal components of linear ( α xx , α yy , α xy , and α yx ), first nonlinear ( β xxx , β yyy , β xyy , and β yxx ), and second nonlinear ( γ xxxx , γ yyyy , γ xxyy , and γ yyxx ) polarizabilities of quantum dots exposed to an external pulsed field. Simultaneous presence of multiplicative white noise has also been taken into account. The quantum dot contains a dopant represented by a Gaussian potential. The number of pulse and the dopant location have been found to fabricate the said profiles through their interplay. Moreover, a variation in the noise strength also contributes evidently in designing the profiles of above polarizability components. In general, the off-diagonal components have been found to be somewhat more responsive to a variation of noise strength. However, we have found some exception to the above fact for the off-diagonal β yxx component. The study projects some pathways of achieving stable, enhanced, and often maximized output of linear and nonlinear polarizabilities of doped quantum dots driven by multiplicative noise.

  18. Breaking Megrelishvili protocol using matrix diagonalization

    NASA Astrophysics Data System (ADS)

    Arzaki, Muhammad; Triantoro Murdiansyah, Danang; Adi Prabowo, Satrio

    2018-03-01

    In this article we conduct a theoretical security analysis of Megrelishvili protocol—a linear algebra-based key agreement between two participants. We study the computational complexity of Megrelishvili vector-matrix problem (MVMP) as a mathematical problem that strongly relates to the security of Megrelishvili protocol. In particular, we investigate the asymptotic upper bounds for the running time and memory requirement of the MVMP that involves diagonalizable public matrix. Specifically, we devise a diagonalization method for solving the MVMP that is asymptotically faster than all of the previously existing algorithms. We also found an important counterintuitive result: the utilization of primitive matrix in Megrelishvili protocol makes the protocol more vulnerable to attacks.

  19. Long-Range Adiabatic Corrections to the Ground Molecular State of Alkali-Metal Dimers.

    NASA Astrophysics Data System (ADS)

    Marinescu, M.; Dalgarno, A.

    1997-04-01

    The structure of the long-range limit of the diagonal adiabatic corrections to the ground molecular state of diatomic molecules, may be expressed as a series of inverse powers of internuclear distance, R. The coefficients of this expansion are proportional to the inverse of the nuclear mass. Thus, they may be interpreted as a nuclear mass-dependent corrections to the dispersion coefficients. Using perturbation theory we have calculated the long-range coefficients of the diagonal adiabatic corrections up to the order of R-10. The final expressions are in terms of integrals over imaginary frequencies of products of atomic matrix elements involving Green's functions of complex energy. Thus, in our approach the molecular problem is reduced to an atomic one. Numerical evaluations have been done for all alkali-metal dimers. We acknowledge the support of the U.S. Dept. of Energy.

  20. Parallel conjugate gradient algorithms for manipulator dynamic simulation

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheld, Robert E.

    1989-01-01

    Parallel conjugate gradient algorithms for the computation of multibody dynamics are developed for the specialized case of a robot manipulator. For an n-dimensional positive-definite linear system, the Classical Conjugate Gradient (CCG) algorithms are guaranteed to converge in n iterations, each with a computation cost of O(n); this leads to a total computational cost of O(n sq) on a serial processor. A conjugate gradient algorithms is presented that provide greater efficiency using a preconditioner, which reduces the number of iterations required, and by exploiting parallelism, which reduces the cost of each iteration. Two Preconditioned Conjugate Gradient (PCG) algorithms are proposed which respectively use a diagonal and a tridiagonal matrix, composed of the diagonal and tridiagonal elements of the mass matrix, as preconditioners. Parallel algorithms are developed to compute the preconditioners and their inversions in O(log sub 2 n) steps using n processors. A parallel algorithm is also presented which, on the same architecture, achieves the computational time of O(log sub 2 n) for each iteration. Simulation results for a seven degree-of-freedom manipulator are presented. Variants of the proposed algorithms are also developed which can be efficiently implemented on the Robot Mathematics Processor (RMP).

  1. Atom and Bond Fukui Functions and Matrices: A Hirshfeld-I Atoms-in-Molecule Approach.

    PubMed

    Oña, Ofelia B; De Clercq, Olivier; Alcoba, Diego R; Torre, Alicia; Lain, Luis; Van Neck, Dimitri; Bultinck, Patrick

    2016-09-19

    The Fukui function is often used in its atom-condensed form by isolating it from the molecular Fukui function using a chosen weight function for the atom in the molecule. Recently, Fukui functions and matrices for both atoms and bonds separately were introduced for semiempirical and ab initio levels of theory using Hückel and Mulliken atoms-in-molecule models. In this work, a double partitioning method of the Fukui matrix is proposed within the Hirshfeld-I atoms-in-molecule framework. Diagonalizing the resulting atomic and bond matrices gives eigenvalues and eigenvectors (Fukui orbitals) describing the reactivity of atoms and bonds. The Fukui function is the diagonal element of the Fukui matrix and may be resolved in atom and bond contributions. The extra information contained in the atom and bond resolution of the Fukui matrices and functions is highlighted. The effect of the choice of weight function arising from the Hirshfeld-I approach to obtain atom- and bond-condensed Fukui functions is studied. A comparison of the results with those generated by using the Mulliken atoms-in-molecule approach shows low correlation between the two partitioning schemes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken{endash}Hush and block diagonalization methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cave, R.J.; Newton, M.D.

    1997-06-01

    Two independent methods are presented for the nonperturbative calculation of the electronic coupling matrix element (H{sub ab}) for electron transfer reactions using {ital ab initio} electronic structure theory. The first is based on the generalized Mulliken{endash}Hush (GMH) model, a multistate generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on the block diagonalization (BD) approach of Cederbaum, Domcke, and co-workers. Detailed quantitative comparisons of the two methods are carried out based on results for (a) several states of the system Zn{sub 2}OH{sub 2}{sup +} and (b) the low-lying states of the benzene{endash}Cl atom complex andmore » its contact ion pair. Generally good agreement between the two methods is obtained over a range of geometries. Either method can be applied at an arbitrary nuclear geometry and, as a result, may be used to test the validity of the Condon approximation. Examples of nonmonotonic behavior of the electronic coupling as a function of nuclear coordinates are observed for Zn{sub 2}OH{sub 2}{sup +}. Both methods also yield a natural definition of the effective distance (r{sub DA}) between donor (D) and acceptor (A) sites, in contrast to earlier approaches which required independent estimates of r{sub DA}, generally based on molecular structure data. {copyright} {ital 1997 American Institute of Physics.}« less

  3. A minimum drives automatic target definition procedure for multi-axis random control testing

    NASA Astrophysics Data System (ADS)

    Musella, Umberto; D'Elia, Giacomo; Carrella, Alex; Peeters, Bart; Mucchi, Emiliano; Marulo, Francesco; Guillaume, Patrick

    2018-07-01

    Multiple-Input Multiple-Output (MIMO) vibration control tests are able to closely replicate, via shakers excitation, the vibration environment that a structure needs to withstand during its operational life. This feature is fundamental to accurately verify the experienced stress state, and ultimately the fatigue life, of the tested structure. In case of MIMO random tests, the control target is a full reference Spectral Density Matrix in the frequency band of interest. The diagonal terms are the Power Spectral Densities (PSDs), representative for the acceleration operational levels, and the off-diagonal terms are the Cross Spectral Densities (CSDs). The specifications of random vibration tests are however often given in terms of PSDs only, coming from a legacy of single axis testing. Information about the CSDs is often missing. An accurate definition of the CSD profiles can further enhance the MIMO random testing practice, as these terms influence both the responses and the shaker's voltages (the so-called drives). The challenges are linked to the algebraic constraint that the full reference matrix must be positive semi-definite in the entire bandwidth, with no flexibility in modifying the given PSDs. This paper proposes a newly developed method that automatically provides the full reference matrix without modifying the PSDs, considered as test specifications. The innovative feature is the capability of minimizing the drives required to match the reference PSDs and, at the same time, to directly guarantee that the obtained full matrix is positive semi-definite. The drives minimization aims on one hand to reach the fixed test specifications without stressing the delicate excitation system; on the other hand it potentially allows to further increase the test levels. The detailed analytic derivation and implementation steps of the proposed method are followed by real-life testing considering different scenarios.

  4. A Wave Chaotic Study of Quantum Graphs with Microwave Networks

    NASA Astrophysics Data System (ADS)

    Fu, Ziyuan

    Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.

  5. Enhanced magneto-optical Kerr effect at Fe/insulator interfaces

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Takahashi, Saburo; Maekawa, Sadamichi

    2017-12-01

    Using density functional theory calculations, we have found an enhanced magneto-optical Kerr effect in Fe/insulator interfaces. The results of our study indicate that interfacial Fe atoms in the Fe films have a low-dimensional nature, which causes the following two effects: (i) The diagonal component σx x of the optical conductivity decreases dramatically because the hopping integral for electrons between Fe atoms is suppressed by the low dimensionality. (ii) The off-diagonal component σx y of the optical conductivity does not change at low photon energies, but it is enhanced at photon energies around 2 eV, where we obtain enhanced orbital magnetic moments and spin-orbit correlations for the interfacial Fe atoms. A large Kerr angle develops in proportion to the ratio σx y/σx x . Our findings indicate an efficient way to enhance the effect of spin-orbit coupling at metal/insulator interfaces without using heavy elements.

  6. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  7. High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieper, Andreas; Kreutzer, Moritz; Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de

    2016-11-15

    We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need formore » matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.« less

  8. Dimension-5 C P -odd operators: QCD mixing and renormalization

    DOE PAGES

    Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; ...

    2015-12-23

    Here, we study the off-shell mixing and renormalization of flavor-diagonal dimension-five T- and P-odd operators involving quarks, gluons, and photons, including quark electric dipole and chromoelectric dipole operators. Furthermore, we present the renormalization matrix to one loop in themore » $$\\bar{MS}$$ scheme. We also provide a definition of the quark chromoelectric dipole operator in a regularization-independent momentum-subtraction scheme suitable for nonperturbative lattice calculations and present the matching coefficients with the $$\\bar{MS}$$ scheme to one loop in perturbation theory, using both the naïve dimensional regularization and ’t Hooft–Veltman prescriptions for γ 5.« less

  9. On generalized Mulliken-Hush approach of electronic transfer: Inclusion of non-zero off-diagonal diabatic dipole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryachko, E.S.

    1999-06-03

    The electronic coupling between the initial and final diabatic states is the major factor that determines the rate of electron transfer. A general formula for the adiabatic-to-diabatic mixing angle in terms of the electronic dipole moments is derived within a two-state model. It expresses the electronic coupling determining the rate of electronic transfer in terms of the off-diagonal diabatic dipole moment.

  10. On the formulation of a minimal uncertainty model for robust control with structured uncertainty

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1991-01-01

    In the design and analysis of robust control systems for uncertain plants, representing the system transfer matrix in the form of what has come to be termed an M-delta model has become widely accepted and applied in the robust control literature. The M represents a transfer function matrix M(s) of the nominal closed loop system, and the delta represents an uncertainty matrix acting on M(s). The nominal closed loop system M(s) results from closing the feedback control system, K(s), around a nominal plant interconnection structure P(s). The uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple unsaturated uncertainties from unmodeled dynamics and other neglected phenomena. In general, delta is a block diagonal matrix, but for real parameter variations delta is a diagonal matrix of real elements. Conceptually, the M-delta structure can always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturbations. However, very little of the currently available literature addresses computational methods for obtaining this structure, and none of this literature addresses a general methodology for obtaining a minimal M-delta model for a wide class of uncertainty, where the term minimal refers to the dimension of the delta matrix. Since having a minimally dimensioned delta matrix would improve the efficiency of structured singular value (or multivariable stability margin) computations, a method of obtaining a minimal M-delta would be useful. Hence, a method of obtaining the interconnection system P(s) is required. A generalized procedure for obtaining a minimal P-delta structure for systems with real parameter variations is presented. Using this model, the minimal M-delta model can then be easily obtained by closing the feedback loop. The procedure involves representing the system in a cascade-form state-space realization, determining the minimal uncertainty matrix, delta, and constructing the state-space representation of P(s). Three examples are presented to illustrate the procedure.

  11. Convergence of Transition Probability Matrix in CLVMarkov Models

    NASA Astrophysics Data System (ADS)

    Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.

    2018-04-01

    A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.

  12. Quantum entanglement and spin control in silicon nanocrystal.

    PubMed

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.

  13. Local delamination in laminates with angle ply matrix cracks. Part 1: Tension tests and stress analysis

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Hooper, S. J.

    1991-01-01

    Quasi-static tension tests were conducted on AS4/3501-6 graphite epoxy laminates. Dye penetrant enhanced x-radiography was used to document the onset of matrix cracking and the onset of local delaminations at the intersection of the matrix cracks and the free edge. Edge micrographs taken after the onset of damage were used to verify the location of the matrix cracks and local delamination through the laminate thickness. A quasi-3D finite element analysis was conducted to calculate the stresses responsible for matrix cracking in the off-axis plies. Laminated plate theory indicated that the transverse normal stresses were compressive. However, the finite element analysis yielded tensile transverse normal stresses near the free edge. Matrix cracks formed in the off-axis plies near the free edge where in-plane transverse stresses were tensile and had their greatest magnitude. The influence of the matrix crack on interlaminar stresses is also discussed.

  14. Diagonalization of transfer matrix of supersymmetry U{sub q}(sl-caret(M+1|N+1)) chain with a boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Takeo

    2013-04-15

    We study the supersymmetry U{sub q}(sl-caret(M+1|N+1)) analogue of the supersymmetric t-J model with a boundary. Our approach is based on the algebraic analysis method of solvable lattice models. We diagonalize the commuting transfer matrix by using the bosonizations of the vertex operators associated with the quantum affine supersymmetry U{sub q}(sl-caret(M+1|N+1)).

  15. Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.

    PubMed

    Papenbrock, T; Reimann, S M; Kavoulakis, G M

    2012-02-17

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  16. Implementation of a finite-amplitude method in a relativistic meson-exchange model

    NASA Astrophysics Data System (ADS)

    Sun, Xuwei; Lu, Dinghui

    2017-08-01

    The finite-amplitude method is a feasible numerical approach to large scale random phase approximation calculations. It avoids the storage and calculation of residual interaction elements as well as the diagonalization of the RPA matrix, which will be prohibitive when the configuration space is huge. In this work we finished the implementation of a finite-amplitude method in a relativistic meson exchange mean field model with axial symmetry. The direct variation approach makes our FAM scheme capable of being extended to the multipole excitation case.

  17. Three dimensional thermal stresses in angle-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Griffin, O. Hayden, Jr.

    1988-01-01

    The room temperature stress distributions and shapes of a family of angle ply graphite/epoxy laminates have been obtained using a three-dimensional linear finite element analysis. The sensitivity of the corners to fiber angle variations is examined, in addition to the errors introduced by assuming planes of symmetry which do not exist in angle-ply laminates. The results show that angle ply laminates with 'clustered' plies will tend to delaminate at diagonally opposite corners, and that matrix cracks in this family of laminates will be initiated in the laminate interior.

  18. Spectroscopic line parameters of 12CH4 for atmospheric composition retrievals in the 4300-4500 cm-1 region

    NASA Astrophysics Data System (ADS)

    Hashemi, R.; Predoi-Cross, A.; Nikitin, A. V.; Tyuterev, Vl. G.; Sung, K.; Smith, M. A. H.; Malathy Devi, V.

    2017-01-01

    Due to the importance of methane as a trace atmospheric gas and a greenhouse gas, we have carried out a precise line-shape study to obtain the CH4-CH4 and CH4-air half-width coefficients, CH4-CH4 and CH4-air shift coefficients and off-diagonal relaxation matrix element coefficients for methane transitions in the spectral range known as the "methane Octad". In addition, the associated temperature dependences of these coefficients have been measured in the 4300-4500 cm-1 region of the Octad. The high signal to noise ratio spectra of pure methane and of dilute mixtures of methane in dry air with high resolution have been recorded at temperatures from 148 K to room temperature using the Bruker IFS 125 HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California. The analysis of spectra was done using a multispectrum non-linear least-squares curve fitting technique. Theoretical calculations have been performed and the results are compared with the previously published line positions, intensities and with the line parameters available in the GEISA and HITRAN2012 databases.

  19. Multispectrum Analysis of 12CH4 in the v4 Band: I. Air-Broadened Half Widths, Pressure-Induced Shifts, Temperature Dependences and Line Mixing

    NASA Technical Reports Server (NTRS)

    Smith, MaryAnn H.; Benner, D. Chris; Predoi-Cross, Adriana; Venkataraman, Malathy Devi

    2009-01-01

    Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.

  20. Vibronic bands in the HOMO-LUMO excitation of linear polyyne molecules

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Tomonari; Wada, Yoriko; Iwahara, Naoya; Sato, Tohru

    2013-04-01

    Hydrogen-capped linear carbon chain molecules, namely polyynes H(C≡C)nH (n>=2), give rise to three excited states in the HOMO-LUMO excitation. Electric dipole transition from the ground state is fully allowed to one of the three excited states, while forbidden for the other two low-lying excited states. In addition to the strong absorption bands in the UV for the allowed transition, the molecules exhibit weak absorption and emission bands in the near UV and visible wavelength regions. The weak features are the vibronic bands in the forbidden transition. In this article, symmetry considerations are presented for the optical transitions in the centrosymmetric linear polyyne molecule. The argument includes Herzberg-Teller expansion for the state mixing induced by nuclear displacements along the normal coordinate of the molecule, intensity borrowing from fully allowed transitions, and inducing vibrational modes excited in the vibronic transition. The vibronic coupling considered here includes off-diagonal matrix elements for second derivatives along the normal coordinate. The vibronic selection rule for the forbidden transition is derived and associated with the transition moment with respect to the molecular axis. Experimental approaches are proposed for the assignment of the observed vibronic bands.

  1. ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains

    PubMed Central

    Canova, Carlos; Denker, Michael; Gerstein, George; Helias, Moritz

    2016-01-01

    With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity. PMID:27420734

  2. Precision measurement of transition matrix elements via light shift cancellation.

    PubMed

    Herold, C D; Vaidya, V D; Li, X; Rolston, S L; Porto, J V; Safronova, M S

    2012-12-14

    We present a method for accurate determination of atomic transition matrix elements at the 10(-3) level. Measurements of the ac Stark (light) shift around "magic-zero" wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s - 6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3235(9)ea(0) and 0.5230(8)ea(0) for the 5s - 6p(1/2) and 5s - 6p(3/2) elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information.

  3. Iterative algorithm for joint zero diagonalization with application in blind source separation.

    PubMed

    Zhang, Wei-Tao; Lou, Shun-Tian

    2011-07-01

    A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.

  4. Single-Sided Noinvasive Inspection of Multielement Sample Using Fan-Beam Multiplexed Compton Scatter Tomography

    DTIC Science & Technology

    2000-05-01

    a vector , ρ "# represents the set of voxel densities sorted into a vector , and ( )A ρ $# "# represents a 8 mapping of the voxel densities to...density vector in equation (4) suggests that solving for ρ "# by direct inversion is not possible, calling for an iterative technique beginning with...the vector of measured spectra, and D is the diagonal matrix of the inverse of the variances. The diagonal matrix provides weighting terms, which

  5. The Development and Application of Random Matrix Theory in Adaptive Signal Processing in the Sample Deficient Regime

    DTIC Science & Technology

    2014-09-01

    optimal diagonal loading which minimizes the MSE. The be- havior of optimal diagonal loading when the arrival process is composed of plane waves embedded...observation vectors. The examples of the ensemble correlation matrix corresponding to the input process consisting of a single or multiple plane waves...Y ∗ij is a complex-conjugate of Yij. This result is used in order to evaluate the expectations of different quadratic forms. The Poincare -Nash

  6. Neutrino quantum kinetic equations: The collision term

    DOE PAGES

    Blaschke, Daniel N.; Cirigliano, Vincenzo

    2016-08-01

    We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes ofmore » the two helicity states. As a result, the isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.« less

  7. Spin-memory loss due to spin-orbit coupling at ferromagnet/heavy-metal interfaces: Ab initio spin-density matrix approach

    NASA Astrophysics Data System (ADS)

    Dolui, Kapildeb; Nikolić, Branislav K.

    2017-12-01

    Spin-memory loss (SML) of electrons traversing ferromagnetic-metal/heavy-metal (FM/HM), FM/normal-metal (FM/NM), and HM/NM interfaces is a fundamental phenomenon that must be invoked to explain consistently large numbers of spintronic experiments. However, its strength extracted by fitting experimental data to phenomenological semiclassical theory, which replaces each interface by a fictitious bulk diffusive layer, is poorly understood from a microscopic quantum framework and/or materials properties. Here we describe an ensemble of flowing spin quantum states using spin-density matrix, so that SML is measured like any decoherence process by the decay of its off-diagonal elements or, equivalently, by the reduction of the magnitude of polarization vector. By combining this framework with density functional theory, we examine how all three components of the polarization vector change at Co/Ta, Co/Pt, Co/Cu, Pt/Cu, and Pt/Au interfaces embedded within Cu/FM/HM/Cu vertical heterostructures. In addition, we use ab initio Green's functions to compute spectral functions and spin textures over FM, HM, and NM monolayers around these interfaces which quantify interfacial spin-orbit coupling and explain the microscopic origin of SML in long-standing puzzles, such as why it is nonzero at the Co/Cu interface; why it is very large at the Pt/Cu interface; and why it occurs even in the absence of disorder, intermixing and magnons at the interface.

  8. Einstein A coefficients for rovibronic lines of the A2Π → X2Σ+ and B2Σ+ → X2Σ+ transitions of CaH and CaD

    NASA Astrophysics Data System (ADS)

    Alavi, S. Fatemeh; Shayesteh, Alireza

    2018-02-01

    Calcium monohydride is an important diatomic molecule appearing in the spectra of sunspots and M dwarfs. We report complete line lists with Einstein A coefficients for the A2Π-X2Σ+ and B2Σ+-X2Σ+ electronic transitions of CaH and CaD radicals. The most recent ab initio transition dipole moments and potential energy curves were used for the calculation of vibronic band intensities, taking the Herman-Wallis effect into account, and the rotational line strengths were calculated using the PGOPHER program of Western. For the A2Π and B2Σ+ excited states of CaH and CaD, new off-diagonal electronic matrix elements were included in the Hamiltonian matrix, and new sets of spectroscopic constants were determined in order to accurately reproduce the line positions and relative intensities of the observed branches in laboratory spectra. For both CaH and CaD isotopologues, Einstein A coefficients were calculated for all possible rovibronic transitions from the v΄ = 0-3 vibrational levels of the A2Π state and the v΄ = 0-2 vibrational levels of the B2Σ+ state to the v″ = 0-4 vibrational levels of the X2Σ+ ground state. The line lists and intensities reported here can be used to accurately determine the amounts of CaH and CaD in stellar environments.

  9. Implementing the SU(2) Symmetry for the DMRG

    NASA Astrophysics Data System (ADS)

    Alvarez, Gonzalo

    2010-03-01

    In the Density Matrix Renormalization Group (DMRG) algorithm (White, 1992), Hamiltonian symmetries play an important role. Using symmetries, the matrix representation of the Hamiltonian can be blocked. Diagonalizing each matrix block is more efficient than diagonalizing the original matrix. This talk will explain how the DMRG++ codefootnotetextarXiv:0902.3185 or Computer Physics Communications 180 (2009) 1572-1578. has been extended to handle the non-local SU(2) symmetry in a model independent way. Improvements in CPU times compared to runs with only local symmetries will be discussed for typical tight-binding models of strongly correlated electronic systems. The computational bottleneck of the algorithm, and the use of shared memory parallelization will also be addressed. Finally, a roadmap for future work on DMRG++ will be presented.

  10. Implementation of the SU(2) Hamiltonian Symmetry for the DMRG Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Gonzalo

    2012-01-01

    In the Density Matrix Renormalization Group (DMRG) algorithm (White, 1992, 1993) and Hamiltonian symmetries play an important role. Using symmetries, the matrix representation of the Hamiltonian can be blocked. Diagonalizing each matrix block is more efficient than diagonalizing the original matrix. This paper explains how the the DMRG++ code (Alvarez, 2009) has been extended to handle the non-local SU(2) symmetry in a model independent way. Improvements in CPU times compared to runs with only local symmetries are discussed for the one-orbital Hubbard model, and for a two-orbital Hubbard model for iron-based superconductors. The computational bottleneck of the algorithm and themore » use of shared memory parallelization are also addressed.« less

  11. Characterizing the inverses of block tridiagonal, block Toeplitz matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boffi, Nicholas M.; Hill, Judith C.; Reuter, Matthew G.

    2014-12-04

    We consider the inversion of block tridiagonal, block Toeplitz matrices and comment on the behaviour of these inverses as one moves away from the diagonal. Using matrix M bius transformations, we first present an O(1) representation (with respect to the number of block rows and block columns) for the inverse matrix and subsequently use this representation to characterize the inverse matrix. There are four symmetry-distinct cases where the blocks of the inverse matrix (i) decay to zero on both sides of the diagonal, (ii) oscillate on both sides, (iii) decay on one side and oscillate on the other and (iv)more » decay on one side and grow on the other. This characterization exposes the necessary conditions for the inverse matrix to be numerically banded and may also aid in the design of preconditioners and fast algorithms. Finally, we present numerical examples of these matrix types.« less

  12. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms.

    PubMed

    Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian

    2015-02-09

    A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible.

  13. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms

    PubMed Central

    Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian

    2015-01-01

    A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible. PMID:25836207

  14. Sparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Qi; Liu, Jing

    2016-04-14

    In this paper, a novel sparsity-aware direction of arrival (DOA) estimation scheme for a noncircular source is proposed in multiple-input multiple-output (MIMO) radar. In the proposed method, the reduced-dimensional transformation technique is adopted to eliminate the redundant elements. Then, exploiting the noncircularity of signals, a joint sparsity-aware scheme based on the reweighted l1 norm penalty is formulated for DOA estimation, in which the diagonal elements of the weight matrix are the coefficients of the noncircular MUSIC-like (NC MUSIC-like) spectrum. Compared to the existing l1 norm penalty-based methods, the proposed scheme provides higher angular resolution and better DOA estimation performance. Results from numerical experiments are used to show the effectiveness of our proposed method.

  15. Decoupling correction system in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trbojevic, D.; Tepikian, S.; Peggs, S.

    A global linear decoupling in the Relativistic Heavy Ion Collider (RHIC) is going to be performed with the three families of skew quadrupoles. The operating horizontal and vertical betatron tunes in the RHIC will be separated by one unit [nu][sub x]=28.19 and [nu][sub y]=29.18. The linear coupling is corrected by minimizing the tune splitting [Delta][nu]-the off diagonal matrix [bold m] (defined by Edwards and Teng). The skew quadrupole correction system is located close to each of the six interaction regions. A detail study of the system is presented by the use of the TEAPOT accelerator physics code. [copyright] 1994 Americanmore » Institute of Physics« less

  16. Magnetic field induced evolution of intertwined orders in the Kitaev magnet β -Li2IrO3

    NASA Astrophysics Data System (ADS)

    Rousochatzakis, Ioannis; Perkins, Natalia B.

    2018-05-01

    Recent scattering experiments in the 3D Kitaev magnet β -Li2IrO3 have shown that a relatively weak magnetic field along the crystallographic b axis drives the system from its incommensurate counter-rotating order to a correlated magnet, with a significant uniform `zigzag' component superimposing the magnetization along the field. Here it is shown that the zigzag order is not emerging from its linear coupling to the field (via a staggered, off-diagonal element of the g tensor) but from its intertwining with the incommensurate order and the longitudinal magnetization. The emerging picture explains all qualitative experimental findings at zero and finite fields, including the rapid decline of the incommensurate order with field and the so-called intensity sum rule. The latter are shown to be independent signatures of the smallness of the Heisenberg exchange J , compared to the Kitaev coupling K and the off-diagonal anisotropy Γ . Remarkably, in the regime of interest, the field H* at which the incommensurate component vanishes, depends essentially only on J , which allows us to extract an estimate of J ≃4 K from reported measurements of H*. We also comment on recent experiments in pressurized β -Li2IrO3 and conclude that J decreases with pressure.

  17. Photoinduced piezooptics effect in TeO2-Ga2O3 glasses

    NASA Astrophysics Data System (ADS)

    Ozga, K.; Fedorchuk, A. O.; Armand, P.

    2015-08-01

    We have found that during the bicolor illumination by two boicolor coherent wavelengths 1540 nm/770 nm there occurred substantial changes of the elastooptical non-diagonal coefficients at 1150 nm cw laser wavelength. They are maximal at power densities 400 … 500 MW/cm2. The studies have shown that the maximal effect exists for ultra-fast quenching glasses and occurs after the 1-2 min of the treatment. The switching off of the optical treatment leads to the disappearance of the photoinduced piezooptics at about 100 ms. The observed changes are explained within the photoinduced changes of the charge density distribution for the principal structural clusters within a framework of the DFT approach. The studies were done both for diagonal as well as off-diagonal piezooptical effect (POE) tensor components.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ke-Wei; Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Fujihashi, Yuta

    A master equation approach based on an optimized polaron transformation is adopted for dynamics simulation with simultaneous diagonal and off-diagonal spin-boson coupling. Two types of bath spectral density functions are considered, the Ohmic and the sub-Ohmic. The off-diagonal coupling leads asymptotically to a thermal equilibrium with a nonzero population difference P{sub z}(t → ∞) ≠ 0, which implies localization of the system, and it also plays a role in restraining coherent dynamics for the sub-Ohmic case. Since the new method can extend to the stronger coupling regime, we can investigate the coherent-incoherent transition in the sub-Ohmic environment. Relevant phase diagramsmore » are obtained for different temperatures. It is found that the sub-Ohmic environment allows coherent dynamics at a higher temperature than the Ohmic environment.« less

  19. Equivalent off-diagonal cosmological models and ekpyrotic scenarios in -modified, massive, and einstein gravity

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2015-04-01

    We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and -modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painlevé-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed.

  20. Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers

    DOE PAGES

    Chan, Chun Wang I.; Albo, Asaf; Hu, Qing; ...

    2016-11-14

    Contemporary research into diagonal active region terahertz quantum cascade lasers for high temperature operation has yielded little success. We present evidence that the failure of high diagonality alone as a design strategy is due to a fundamental trade-off between large optical oscillator strength and long upper-level lifetime. Here, we hypothesize that diagonality needs to be paired with increased doping in order to succeed, and present evidence that highly diagonal designs can benefit from much higher doping than normally found in terahertz quantum cascade lasers. In assuming the benefits of high diagonality paired with high doping, we also highlight important challengesmore » that need to be overcome, specifically the increased importance of carrier induced band-bending and impurity scattering.« less

  1. US Army Research Laboratory Power-Line UAV Modeling and Simulation (ARL-PLUMS Ver 2.x) Software Tool: User Manual and Technical Report

    DTIC Science & Technology

    2015-09-01

    shown have units of pF/m. This is the capacitance matrix for the 115-kV 3-phase circuit seen in Fig. 24.....................................24 Fig. 29...The window that appears when one clicks “Calculate Lambdas ”. These are the linear charge densities for the 115-kV 3-phase circuit seen in Fig. 24...calculate the capacitance matrix (Fig. 28). The diagonal entries are called the coefficients of capacitance, and the non-diagonal entries are called

  2. Analysis of solar spectra in the middle ultraviolet and visible for atmospheric trace constituents measurements. [hydroxyl radicals

    NASA Technical Reports Server (NTRS)

    Goldman, A.

    1980-01-01

    Individual spectral line parameters including line positions, strengths, and intensities were generated for the sq Alpha Sigma - sq Chi Pi (0,0) band of OH, applicable to atmospheric and high temperatures. Energy levels and transition frequencies are calculated by numerically diagonalizing the Hamiltonian. Line strengths are calculated using the dipole matrix and eigenvectors derived from energy matrix diagonalization. The line strengths are compared to those calculated from previously published algebraic line strength formulas. Tables of line parameters are presented for 240 K and 4600 K.

  3. Preliminary results in implementing a model of the world economy on the CYBER 205: A case of large sparse nonsymmetric linear equations

    NASA Technical Reports Server (NTRS)

    Szyld, D. B.

    1984-01-01

    A brief description of the Model of the World Economy implemented at the Institute for Economic Analysis is presented, together with our experience in converting the software to vector code. For each time period, the model is reduced to a linear system of over 2000 variables. The matrix of coefficients has a bordered block diagonal structure, and we show how some of the matrix operations can be carried out on all diagonal blocks at once.

  4. Towards first-principles calculation of electronic excitations in the ring of the protein-bound bacteriochlorophylls

    NASA Astrophysics Data System (ADS)

    Polyakov, Igor V.; Khrenova, Maria G.; Moskovsky, Alexander A.; Shabanov, Boris M.; Nemukhin, Alexander V.

    2018-04-01

    Modeling electronic excitation of bacteriochlorophyll (BChl) molecules in light-harvesting (LH) antennae from photosynthetic centers presents a challenge for the quantum theory. We report on a quantum chemical study of the ring of 32 BChl molecules from the bacterial core complex LH1-RC. Diagonal and off-diagonal elements of the excitonic Hamiltonian matrices are estimated in quantum chemical calculations of relevant fragments using the TD-DFT and CIS approaches. The deviation of the computed excitation energy of this BChl system from the experimental data related to the Qy band maximum of this LH1-RC complex is about 0.2 eV. We demonstrate that corrections due to improvement in modeling of an individual BChl molecule and due to contributions from the protein environment are in the range of the obtained discrepancy between theory and experiment. Differences between results of the excitonic model and direct quantum chemical calculations of BChl aggregates fall in the same range.

  5. Relative merits of rCW(A) and XiX heteronuclear spin decoupling in solid-state magic-angle-spinning NMR spectroscopy: A bimodal Floquet analysis.

    PubMed

    Equbal, Asif; Leskes, Michal; Nielsen, Niels Chr; Madhu, P K; Vega, Shimon

    2016-02-01

    We present a bimodal Floquet analysis of the recently introduced refocused continuous wave (rCW) solid-state NMR heteronuclear dipolar decoupling method and compare it with the similar looking X-inverse X (XiX) scheme. The description is formulated in the rf interaction frame and is valid for both finite and ideal π pulse rCW irradiation that forms the refocusing element in the rCW scheme. The effective heteronuclear dipolar coupling Hamiltonian up to first order is described. The analysis delineates the difference between the two sequences to different orders of their Hamiltonians for both diagonal and off-diagonal parts. All the resonance conditions observed in experiments and simulations have been characterised and their influence on residual line broadening is highlighted. The theoretical comparison substantiates the numerical simulations and experimental results to a large extent. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effective friction of granular flows made of non-spherical particles

    NASA Astrophysics Data System (ADS)

    Somfai, Ellák; Nagy, Dániel B.; Claudin, Philippe; Favier, Adeline; Kálmán, Dávid; Börzsönyi, Tamás

    2017-06-01

    Understanding the rheology of dense granular matter is a long standing problem and is important both from the fundamental and the applied point of view. As the basic building blocks of granular materials are macroscopic particles, the nature of both the response to deformations and the dissipation is very different from that of molecular materials. In the absence of large gradients, the best approach formulates the constitutive equation as an effective friction: for sheared granular matter the ratio of the off-diagonal and the diagonal elements of the stress tensor depends only on dynamical parameters, in particular the inertial number. In this work we employ numerical simulations to extend this formalism to granular packings made of frictionless elongated particles. We measured how the shape of the particles affects the effective friction, volume fraction and first normal stress difference, and compared it to the spherical particle case. We had to introduce polydispersity in particle size in order to keep the systems of the more elongated particles disordered.

  7. Underlying theory of a model for the Renner-Teller effect in tetra-atomic molecules: X(2)Πu electronic state of C2H2(+).

    PubMed

    Perić, M; Jerosimić, S; Mitić, M; Milovanović, M; Ranković, R

    2015-05-07

    In the present study, we prove the plausibility of a simple model for the Renner-Teller effect in tetra-atomic molecules with linear equilibrium geometry by ab initio calculations of the electronic energy surfaces and non-adiabatic matrix elements for the X(2)Πu state of C2H2 (+). This phenomenon is considered as a combination of the usual Renner-Teller effect, appearing in triatomic species, and a kind of the Jahn-Teller effect, similar to the original one arising in highly symmetric molecules. Only four parameters (plus the spin-orbit constant, if the spin effects are taken into account), which can be extracted from ab initio calculations carried out at five appropriate (planar) molecular geometries, are sufficient for building up the Hamiltonian matrix whose diagonalization results in the complete low-energy (bending) vibronic spectrum. The main result of the present study is the proof that the diabatization scheme, hidden beneath the apparent simplicity of the model, can safely be carried out, at small-amplitude bending vibrations, without cumbersome computation of non-adiabatic matrix elements at large number of molecular geometries.

  8. Orthogonal bases of invariants in tensor models

    NASA Astrophysics Data System (ADS)

    Diaz, Pablo; Rey, Soo-Jong

    2018-02-01

    Representation theory provides an efficient framework to count and classify invariants in tensor models of (gauge) symmetry G d = U( N 1) ⊗ · · · ⊗ U( N d ) . We show that there are two natural ways of counting invariants, one for arbitrary G d and another valid for large rank of G d . We construct basis of invariant operators based on the counting, and compute correlators of their elements. The basis associated with finite rank of G d diagonalizes two-point function. It is analogous to the restricted Schur basis used in matrix models. We comment on future directions for investigation.

  9. Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells

    NASA Astrophysics Data System (ADS)

    Lloyd-Williams, Jonathan; Monserrat, Bartomeu

    Quantities derived from electron-phonon coupling matrix elements require a fine sampling of the vibrational Brillouin zone. Converged results are typically not obtainable using the direct method, in which a perturbation is frozen into the system and the total energy derivatives are calculated using a finite difference approach, because the size of simulation cell needed is prohibitively large. We show that it is possible to determine the response of a periodic system to a perturbation characterized by a wave vector with reduced fractional coordinates (m1 /n1 ,m2 /n2 ,m3 /n3) using a supercell containing a number of primitive cells equal to the least common multiple of n1, n2, and n3. This is accomplished by utilizing supercell matrices containing nonzero off-diagonal elements. We present the results of electron-phonon coupling calculations using the direct method to sample the vibrational Brillouin zone with grids of unprecedented size for a range of systems, including the canonical example of diamond. We also demonstrate that the use of nondiagonal supercells reduces by over an order of magnitude the computational cost of obtaining converged vibrational densities of states and phonon dispersion curves. J.L.-W. is supported by the Engineering and Physical Sciences Research Council (EPSRC). B.M. is supported by Robinson College, Cambridge, and the Cambridge Philosophical Society. This work was supported by EPSRC Grants EP/J017639/1 and EP/K013564/1.

  10. Off-diagonal series expansion for quantum partition functions

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2018-05-01

    We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.

  11. Retrieve the Bethe states of quantum integrable models solved via the off-diagonal Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Yuan-Yuan; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2015-05-01

    Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, a systematic method for retrieving the Bethe-type eigenstates of integrable models without obvious reference state is developed by employing certain orthogonal basis of the Hilbert space. With the XXZ spin torus model and the open XXX spin- \\frac{1}{2} chain as examples, we show that for a given inhomogeneous T-Q relation and the associated Bethe Ansatz equations, the constructed Bethe-type eigenstate has a well-defined homogeneous limit.

  12. Ground-state magnetic phase diagram of bow-tie graphene nanoflakes in external magnetic field

    NASA Astrophysics Data System (ADS)

    Szałowski, Karol

    2013-12-01

    The magnetic phase diagram of a ground state is studied theoretically for graphene nanoflakes of bow-tie shape and various sizes in external in-plane magnetic field. The tight-binding Hamiltonian supplemented with Hubbard term is used to model the electronic structure of the systems in question. The existence of the antiferromagnetic phase with magnetic moments localized at the sides of the bow-tie is found for low field and a field-induced spin-flip transition to ferromagnetic state is predicted to occur in charge-undoped structures. For small nanoflake doped with a single charge carrier, the low-field phase is ferrimagnetic and a metamagnetic transition to ferromagnetic ordering can be forced by the field. The critical field is found to decrease with increasing size of the nanoflake. The influence of diagonal and off-diagonal disorder on the mentioned magnetic properties is studied. The effect of off-diagonal disorder is found to be more important than that of diagonal disorder, leading to significantly widened distribution of critical fields for disordered population of nanoflakes.

  13. Multi-color incomplete Cholesky conjugate gradient methods for vector computers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Poole, E. L.

    1986-01-01

    In this research, we are concerned with the solution on vector computers of linear systems of equations, Ax = b, where A is a larger, sparse symmetric positive definite matrix. We solve the system using an iterative method, the incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color strategy to obtain p-color matrices for which a block-oriented ICCG method is implemented on the CYBER 205. (A p-colored matrix is a matrix which can be partitioned into a pXp block matrix where the diagonal blocks are diagonal matrices). This algorithm, which is based on a no-fill strategy, achieves O(N/p) length vector operations in both the decomposition of A and in the forward and back solves necessary at each iteration of the method. We discuss the natural ordering of the unknowns as an ordering that minimizes the number of diagonals in the matrix and define multi-color orderings in terms of disjoint sets of the unknowns. We give necessary and sufficient conditions to determine which multi-color orderings of the unknowns correpond to p-color matrices. A performance model is given which is used both to predict execution time for ICCG methods and also to compare an ICCG method to conjugate gradient without preconditioning or another ICCG method. Results are given from runs on the CYBER 205 at NASA's Langley Research Center for four model problems.

  14. Gyrokinetic modelling of the quasilinear particle flux for plasmas with neutral-beam fuelling

    NASA Astrophysics Data System (ADS)

    Narita, E.; Honda, M.; Nakata, M.; Yoshida, M.; Takenaga, H.; Hayashi, N.

    2018-02-01

    A quasilinear particle flux is modelled based on gyrokinetic calculations. The particle flux is estimated by determining factors, namely, coefficients of off-diagonal terms and a particle diffusivity. In this paper, the methodology to estimate the factors is presented using a subset of JT-60U plasmas. First, the coefficients of off-diagonal terms are estimated by linear gyrokinetic calculations. Next, to obtain the particle diffusivity, a semi-empirical approach is taken. Most experimental analyses for particle transport have assumed that turbulent particle fluxes are zero in the core region. On the other hand, even in the stationary state, the plasmas in question have a finite turbulent particle flux due to neutral-beam fuelling. By combining estimates of the experimental turbulent particle flux and the coefficients of off-diagonal terms calculated earlier, the particle diffusivity is obtained. The particle diffusivity should reflect a saturation amplitude of instabilities. The particle diffusivity is investigated in terms of the effects of the linear instability and linear zonal flow response, and it is found that a formula including these effects roughly reproduces the particle diffusivity. The developed framework for prediction of the particle flux is flexible to add terms neglected in the current model. The methodology to estimate the quasilinear particle flux requires so low computational cost that a database consisting of the resultant coefficients of off-diagonal terms and particle diffusivity can be constructed to train a neural network. The development of the methodology is the first step towards a neural-network-based particle transport model for fast prediction of the particle flux.

  15. Sparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Qi; Liu, Jing

    2016-01-01

    In this paper, a novel sparsity-aware direction of arrival (DOA) estimation scheme for a noncircular source is proposed in multiple-input multiple-output (MIMO) radar. In the proposed method, the reduced-dimensional transformation technique is adopted to eliminate the redundant elements. Then, exploiting the noncircularity of signals, a joint sparsity-aware scheme based on the reweighted l1 norm penalty is formulated for DOA estimation, in which the diagonal elements of the weight matrix are the coefficients of the noncircular MUSIC-like (NC MUSIC-like) spectrum. Compared to the existing l1 norm penalty-based methods, the proposed scheme provides higher angular resolution and better DOA estimation performance. Results from numerical experiments are used to show the effectiveness of our proposed method. PMID:27089345

  16. Multidimensional Coherent Spectroscopy of GaAs Excitons and Quantum Microcavity Polaritons

    NASA Astrophysics Data System (ADS)

    Wilmer, Brian L.

    Light-matter interactions associated with excitons and exciton related complexes are explored in bulk GaAs and semiconductor microcavities using multidimensional coherent spectroscopy (MDCS). This approach provides rich spectra determining quantum excitation pathways, structural influences on the excitons, and coherence times. Polarization, excitation density, and temperature-dependent MDCS is performed on excitons in strained bulk GaAs layers, probing the coherent response for differing amounts of strain. Biaxial tensile strain lifts the degeneracy of heavy-hole and light-hole valence states, leading to an observed splitting of the associated excitons at low temperature. Increasing the strain increases the magnitude of the heavy-/light- hole exciton peak splitting, induces an asymmetry in the off-diagonal interaction coherences, increases the difference in the heavy- and light- hole exciton homogenous linewidths, and increases the inhomogeneous broadening of both exciton species. All results arise from strain-induced variations in the local electronic environment, which is not uniform along the growth direction of the thin layers. For cross-linear polarized excitation, wherein excitonic signals give way to biexcitonic signals, the high-strain sample shows evidence of bound light-, heavy- and mixed- hole biexcitons. 2DCS maps the anticrossing associated with normal mode splitting in a semiconductor microcavity. For a detuning range near zero, it is observed that there are two diagonal features related to the intra-action of exciton-polariton branches and two off-diagonal features related to coherent interaction between the polaritons. At negative detuning, the line shape properties of the diagonal intra-action features are distinguishable and can be associated with cavity-like and exciton-like modes. A biexcitonic companion feature is observed, shifted from the exciton feature by the biexciton binding energy. Closer to zero detuning, all features are enhanced and the diagonal intra-action features become nearly equal in amplitude and linewidth. At positive detuning the exciton-like and cavity-like characteristics return to the diagonal intra-action features. Off-diagonal interaction features exhibit asymmetry in their amplitudes throughout the detuning range. The amplitudes are strongly modulated as the lower polariton branch crosses the bound biexciton energy determined from negatively detuned spectra.

  17. Block LU factorization

    NASA Technical Reports Server (NTRS)

    Demmel, James W.; Higham, Nicholas J.; Schreiber, Robert S.

    1992-01-01

    Many of the currently popular 'block algorithms' are scalar algorithms in which the operations have been grouped and reordered into matrix operations. One genuine block algorithm in practical use is block LU factorization, and this has recently been shown by Demmel and Higham to be unstable in general. It is shown here that block LU factorization is stable if A is block diagonally dominant by columns. Moreover, for a general matrix the level of instability in block LU factorization can be founded in terms of the condition number kappa(A) and the growth factor for Gaussian elimination without pivoting. A consequence is that block LU factorization is stable for a matrix A that is symmetric positive definite or point diagonally dominant by rows or columns as long as A is well-conditioned.

  18. Propagation of polarised light in bent hi-bi spun fibres

    NASA Astrophysics Data System (ADS)

    Przhiyalkovsky, Ya V.; Morshnev, S. K.; Starostin, N. I.; Gubin, V. P.

    2015-11-01

    The evolution of polarisation states (PS's) of broadband light propagating through a bent optical fibre with a helical structure of its refractive index anisotropy (hi-bi spun fibre) has been studied theoretically and experimentally. It has been shown that there exists a coordinate system of PS's in which the differential Jones matrix can be replaced by a diagonal matrix, which allows the polarisation parameters of the output broadband light to be readily calculated with sufficient accuracy. We have derived a formula for evaluating the magneto-optical sensitivity of a bent spun fibre. An approach has been proposed for restoring the degree of polarisation of light in a bent hi-bi spun fibre and, as a consequence, the visibility (contrast) of the interferometer in a current sensor with a sensing element based on the fibre under consideration.

  19. Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.

    PubMed

    Chevallier, Maguelonne; Krauth, Werner

    2007-11-01

    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.

  20. A diagonal implicit scheme for computing flows with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Imlay, Scott

    1990-01-01

    A new algorithm for solving steady, finite-rate chemistry, flow problems is presented. The new scheme eliminates the expense of inverting large block matrices that arise when species conservation equations are introduced. The source Jacobian matrix is replaced by a diagonal matrix which is tailored to account for the fastest reactions in the chemical system. A point-implicit procedure is discussed and then the algorithm is included into the LU-SGS scheme. Solutions are presented for hypervelocity reentry and Hydrogen-Oxygen combustion. For the LU-SGS scheme a CFL number in excess of 10,000 has been achieved.

  1. A New 1DVAR Retrieval for AMSR2 and GMI: Validation and Sensitivites

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Kummerow, C. D.

    2015-12-01

    A new non-raining retrieval has been developed for microwave imagers and applied to the GMI and AMSR2 sensors. With the Community Radiative Transfer Model (CRTM) as the forward model for the physical retrieval, a 1-dimensional variational method finds the atmospheric state which minimizes the difference between observed and simulated brightness temperatures. A key innovation of the algorithm development is a method to calculate the sensor error covariance matrix that is specific to the forward model employed and includes off-diagonal elements, allowing the algorithm to handle various forward models and sensors with little cross-talk. The water vapor profile is resolved by way of empirical orthogonal functions (EOFs) and then summed to get total precipitable water (TPW). Validation of retrieved 10m wind speed, TPW, and sea surface temperature (SST) is performed via comparison with buoys and radiosondes as well as global models and other remotely sensed products. In addition to the validation, sensitivity experiments investigate the impact of ancillary data on the under-constrained retrieval, a concern for climate data records that strive to be independent of model biases. The introduction of model analysis data is found to aid the algorithm most at high frequency channels and affect TPW retrievals, whereas wind and cloud water retrievals show little effect from ingesting further ancillary data.

  2. Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations

    NASA Astrophysics Data System (ADS)

    Cerino, Luca; Puglisi, Andrea; Vulpiani, Angelo

    2016-04-01

    We investigate a kinetic heat engine model composed of particles enclosed in a box where one side acts as a thermostat and the opposite side is a piston exerting a given pressure. Pressure and temperature are varied in a cyclical protocol of period τ : their relative excursions, δ and ɛ , respectively, constitute the thermodynamic forces dragging the system out of equilibrium. The analysis of the entropy production of the system allows us to define the conjugated fluxes, which are proportional to the extracted work and the consumed heat. In the limit of small δ and ɛ the fluxes are linear in the forces through a τ -dependent Onsager matrix whose off-diagonal elements satisfy a reciprocal relation. The dynamics of the piston can be approximated, through a coarse-graining procedure, by a Klein-Kramers equation which—in the linear regime—yields analytic expressions for the Onsager coefficients and the entropy production. A study of the efficiency at maximum power shows that the Curzon-Ahlborn formula is always an upper limit which is approached at increasing values of the thermodynamic forces, i.e., outside of the linear regime. In all our analysis the adiabatic limit τ →∞ and the the small-force limit δ ,ɛ →0 are not directly related.

  3. Spins Dynamics in a Dissipative Environment: Hierarchal Equations of Motion Approach Using a Graphics Processing Unit (GPU).

    PubMed

    Tsuchimoto, Masashi; Tanimura, Yoshitaka

    2015-08-11

    A system with many energy states coupled to a harmonic oscillator bath is considered. To study quantum non-Markovian system-bath dynamics numerically rigorously and nonperturbatively, we developed a computer code for the reduced hierarchy equations of motion (HEOM) for a graphics processor unit (GPU) that can treat the system as large as 4096 energy states. The code employs a Padé spectrum decomposition (PSD) for a construction of HEOM and the exponential integrators. Dynamics of a quantum spin glass system are studied by calculating the free induction decay signal for the cases of 3 × 2 to 3 × 4 triangular lattices with antiferromagnetic interactions. We found that spins relax faster at lower temperature due to transitions through a quantum coherent state, as represented by the off-diagonal elements of the reduced density matrix, while it has been known that the spins relax slower due to suppression of thermal activation in a classical case. The decay of the spins are qualitatively similar regardless of the lattice sizes. The pathway of spin relaxation is analyzed under a sudden temperature drop condition. The Compute Unified Device Architecture (CUDA) based source code used in the present calculations is provided as Supporting Information .

  4. Discriminating Majorana neutrino textures in light of the baryon asymmetry

    NASA Astrophysics Data System (ADS)

    Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar

    2015-06-01

    We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.

  5. The relaxation matrix for symmetric tops with inversion symmetry. I. Effects of line coupling on self-broadened ν1 and pure rotational bands of NH3.

    PubMed

    Ma, Q; Boulet, C

    2016-06-14

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of self-broadened NH3. The half-widths and shifts in the ν1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  6. The Relaxation Matrix for Symmetric Tops with Inversion Symmetry. I. Effects of Line Coupling on Self-Broadened v (sub 1) and Pure Rotational Bands of NH3

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.

    2016-01-01

    The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of spectral lines for decades. This formalism is based on several approximations. Among them, two have not been fully addressed: the isolated line approximation and the neglect of coupling between the translational and internal motions. Recently, we have shown that the isolated line approximation is not necessary in developing semi-classical line shape theories. Based on this progress, we have been able to develop a new formalism that enables not only to reduce uncertainties on calculated half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge of the intermolecular potential. In our previous studies, the new formalism had been applied to linear and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure of the isolated line approximation. We have calculated the complex relaxation matrices of selfbroadened NH3. The half-widths and shifts in the ?1 and the pure rotational bands are reported in the present paper. When compared with measurements, the calculated half-widths match the experimental data very well, since the inapplicable isolated line approximation has been removed. With respect to the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of the relaxation matrix and a comparison with the observed line mixing effects are reported in the companion paper (Paper II).

  7. Optical computing using optical flip-flops in Fourier processors: use in matrix multiplication and discrete linear transforms.

    PubMed

    Ando, S; Sekine, S; Mita, M; Katsuo, S

    1989-12-15

    An architecture and the algorithms for matrix multiplication using optical flip-flops (OFFs) in optical processors are proposed based on residue arithmetic. The proposed system is capable of processing all elements of matrices in parallel utilizing the information retrieving ability of optical Fourier processors. The employment of OFFs enables bidirectional data flow leading to a simpler architecture and the burden of residue-to-decimal (or residue-to-binary) conversion to operation time can be largely reduced by processing all elements in parallel. The calculated characteristics of operation time suggest a promising use of the system in a real time 2-D linear transform.

  8. Invariant operators, orthogonal bases and correlators in general tensor models

    NASA Astrophysics Data System (ADS)

    Diaz, Pablo; Rey, Soo-Jong

    2018-07-01

    We study invariant operators in general tensor models. We show that representation theory provides an efficient framework to count and classify invariants in tensor models of (gauge) symmetry Gd = U (N1) ⊗ ⋯ ⊗ U (Nd). As a continuation and completion of our earlier work, we present two natural ways of counting invariants, one for arbitrary Gd and another valid for large rank of Gd. We construct bases of invariant operators based on the counting, and compute correlators of their elements. The basis associated with finite rank of Gd diagonalizes the two-point function of the free theory. It is analogous to the restricted Schur basis used in matrix models. We show that the constructions get almost identical as we swap the Littlewood-Richardson numbers in multi-matrix models with Kronecker coefficients in general tensor models. We explore the parallelism between matrix model and tensor model in depth from the perspective of representation theory and comment on several ideas for future investigation.

  9. Partial-mouth periodontal examination protocols for the determination of the prevalence and extent of gingival bleeding in adolescents.

    PubMed

    Machado, Michely Ediani; Tomazoni, Fernanda; Casarin, Maísa; Ardenghi, Thiago M; Zanatta, Fabricio Batistin

    2017-10-01

    To compare the performance of partial-mouth periodontal examination (PMPE) protocols with different cut-off points to the full-mouth examination (FME) in the assessment of the prevalence and extent of gingival bleeding in adolescents. A cross-sectional study was conducted involving 12-year-old adolescents. Following a systematic two-stage cluster sampling process, 1134 individuals were evaluated. Different PMPE protocols were compared to the FME with six sites per tooth. Sensitivity, specificity, area under the ROC curve (AUC), intraclass correlation coefficient (ICC), relative and absolute biases and the inflation factor were assessed for each PMPE protocol with different cut-off points for the severity of gingival bleeding. The highest AUC values were found for the six-site two-diagonal quadrant (2-4) (0.97), six-site random half-mouth (0.95) and Community Periodontal Index (0.95) protocols. The assessment of three sites [mesiobuccal (MB), buccal (B) and distolingual (DL)] in two diagonal quadrants and the random half-mouth protocol had higher sensitivity and lower specificity than the same protocols with distobuccal (DB) sites. However, the use of DB sites led to better specificity and improved the balance between sensitivity and specificity, except for the two-diagonal quadrant (1-3) protocol. The ≥1 cut-off point led to the most discrepant results from the FME. Six-site two-diagonal quadrant (2-4) and random half-mouth assessments perform better in the evaluation of gingival bleeding in adolescents. However, when a faster protocol is needed, a two-diagonal quadrant assessment using only MB, B and DL sites can be used with no important loss of information. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Higher-order gravitational lensing reconstruction using Feynman diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Elizabeth E.; Manohar, Aneesh V.; Yadav, Amit P.S.

    2014-09-01

    We develop a method for calculating the correlation structure of the Cosmic Microwave Background (CMB) using Feynman diagrams, when the CMB has been modified by gravitational lensing, Faraday rotation, patchy reionization, or other distorting effects. This method is used to calculate the bias of the Hu-Okamoto quadratic estimator in reconstructing the lensing power spectrum up to  O (φ{sup 4}) in the lensing potential φ. We consider both the diagonal noise TT TT, EB EB, etc. and, for the first time, the off-diagonal noise TT TE, TB EB, etc. The previously noted large  O (φ{sup 4}) term in the second order noise ismore » identified to come from a particular class of diagrams. It can be significantly reduced by a reorganization of the φ expansion. These improved estimators have almost no bias for the off-diagonal case involving only one B component of the CMB, such as EE EB.« less

  11. Carcinogenesis: alterations in reciprocal interactions of normal functional structure of biologic systems.

    PubMed

    Davydyan, Garri

    2015-12-01

    The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA  > 0) and also positive values of matrix determinant ( detA  > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what changes in mechanism of cell differentiation may lead to cancer development.

  12. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO4)2 frustrated honeycomb-lattice magnet.

    PubMed

    Regnault, L-P; Boullier, C; Lorenzo, J E

    2018-01-01

    The magnetic properties of the cobaltite BaCo 2 (AsO 4 ) 2 , a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q , we have been able to determine the low-temperature magnetic structure of BaCo 2 (AsO 4 ) 2 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector [Formula: see text], with [Formula: see text] and [Formula: see text]) appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component [Formula: see text]/Co 2+ , representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements [Formula: see text] and [Formula: see text] of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors [Formula: see text] and [Formula: see text] (energy transfer [Formula: see text] meV), no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic [Formula: see text] and [Formula: see text] matrix elements can be understood by assuming that the magnetic excitations in BaCo 2 (AsO 4 ) 2 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.

  13. Exact diagonalization library for quantum electron models

    NASA Astrophysics Data System (ADS)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  14. A parallel algorithm for Hamiltonian matrix construction in electron-molecule collision calculations: MPI-SCATCI

    NASA Astrophysics Data System (ADS)

    Al-Refaie, Ahmed F.; Tennyson, Jonathan

    2017-12-01

    Construction and diagonalization of the Hamiltonian matrix is the rate-limiting step in most low-energy electron - molecule collision calculations. Tennyson (1996) implemented a novel algorithm for Hamiltonian construction which took advantage of the structure of the wavefunction in such calculations. This algorithm is re-engineered to make use of modern computer architectures and the use of appropriate diagonalizers is considered. Test calculations demonstrate that significant speed-ups can be gained using multiple CPUs. This opens the way to calculations which consider higher collision energies, larger molecules and / or more target states. The methodology, which is implemented as part of the UK molecular R-matrix codes (UKRMol and UKRMol+) can also be used for studies of bound molecular Rydberg states, photoionization and positron-molecule collisions.

  15. Biomechanical pole and leg characteristics during uphill diagonal roller skiing.

    PubMed

    Lindinger, Stefan Josef; Göpfert, Caroline; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer

    2009-11-01

    Diagonal skiing as a major classical technique has hardly been investigated over the last two decades, although technique and racing velocities have developed substantially. The aims of the present study were to 1) analyse pole and leg kinetics and kinematics during submaximal uphill diagonal roller skiing and 2) identify biomechanical factors related to performance. Twelve elite skiers performed a time to exhaustion (performance) test on a treadmill. Joint kinematics and pole/plantar forces were recorded separately during diagonal roller skiing (9 degrees; 11 km/h). Performance was correlated to cycle length (r = 0.77; P < 0.05), relative leg swing (r = 0.71), and gliding time (r = 0.74), hip flexion range of motion (ROM) during swing (r = 0.73) and knee extension ROM during gliding (r = 0.71). Push-off demonstrated performance correlations for impulse of leg force (r = 0.84), relative duration (r= -0.76) and knee flexion (r = 0.73) and extension ROM (r = 0.74). Relative time to peak pole force was associated with performance (r = 0.73). In summary, diagonal roller skiing performance was linked to 1) longer cycle length, 2) greater impulse of force during a shorter push-off with larger flexion/extension ROMs in leg joints, 3) longer leg swing, and 4) later peak pole force, demonstrating the major key characteristics to be emphasised in training.

  16. Analytic tools for investigating the structure of network reliability measures with regard to observation correlations

    NASA Astrophysics Data System (ADS)

    Prószyński, W.; Kwaśniak, M.

    2018-03-01

    A global measure of observation correlations in a network is proposed, together with the auxiliary indices related to non-diagonal elements of the correlation matrix. Based on the above global measure, a specific representation of the correlation matrix is presented, being the result of rigorously proven theorem formulated within the present research. According to the theorem, each positive definite correlation matrix can be expressed by a scale factor and a so-called internal weight matrix. Such a representation made it possible to investigate the structure of the basic reliability measures with regard to observation correlations. Numerical examples carried out for two test networks illustrate the structure of those measures that proved to be dependent on global correlation index. Also, the levels of global correlation are proposed. It is shown that one can readily find an approximate value of the global correlation index, and hence the correlation level, for the expected values of auxiliary indices being the only knowledge about a correlation matrix of interest. The paper is an extended continuation of the previous study of authors that was confined to the elementary case termed uniform correlation. The extension covers arbitrary correlation matrices and a structure of correlation effect.

  17. Asymmetric rotor-like probes to polarized fluorescence study of the macroscopically oriented uniaxial media: Model parameters recognition

    NASA Astrophysics Data System (ADS)

    Buczkowski, M.; Fisz, J. J.

    2008-07-01

    In this paper the possibility of the numerical data modelling in the case of angle- and time-resolved fluorescence spectroscopy is investigated. The asymmetric fluorescence probes are assumed to undergo the restricted rotational diffusion in a hosting medium. This process is described quantitatively by the diffusion tensor and the aligning potential. The evolution of the system is expressed in terms of the Smoluchowski equation with an appropriate time-developing operator. A matrix representation of this operator is calculated, then symmetrized and diagonalized. The resulting propagator is used to generate the synthetic noisy data set that imitates results of experimental measurements. The data set serves as a groundwork to the χ2 optimization, performed by the genetic algorithm followed by the gradient search, in order to recover model parameters, which are diagonal elements of the diffusion tensor, aligning potential expansion coefficients and directions of the electronic dipole moments. This whole procedure properly identifies model parameters, showing that the outlined formalism should be taken in the account in the case of analysing real experimental data.

  18. Empirical Bayes method for reducing false discovery rates of correlation matrices with block diagonal structure.

    PubMed

    Pacini, Clare; Ajioka, James W; Micklem, Gos

    2017-04-12

    Correlation matrices are important in inferring relationships and networks between regulatory or signalling elements in biological systems. With currently available technology sample sizes for experiments are typically small, meaning that these correlations can be difficult to estimate. At a genome-wide scale estimation of correlation matrices can also be computationally demanding. We develop an empirical Bayes approach to improve covariance estimates for gene expression, where we assume the covariance matrix takes a block diagonal form. Our method shows lower false discovery rates than existing methods on simulated data. Applied to a real data set from Bacillus subtilis we demonstrate it's ability to detecting known regulatory units and interactions between them. We demonstrate that, compared to existing methods, our method is able to find significant covariances and also to control false discovery rates, even when the sample size is small (n=10). The method can be used to find potential regulatory networks, and it may also be used as a pre-processing step for methods that calculate, for example, partial correlations, so enabling the inference of the causal and hierarchical structure of the networks.

  19. The g Factors of Ground State of Ruby and Their Pressure-Induced Shifts

    NASA Astrophysics Data System (ADS)

    Ma, Dongping; Zhang, Hongmei; Chen, Jurong; Liu, Yanyun

    1998-12-01

    By using the theory of pressure-induced shifts and the eigenfunctions at normal and various pressures obtained from the diagonalization of the complete d3 energy matrix adopting C3v symmetry, g factors of the ground state of ruby and their pressure-induced shifts have been calculated. The results are in very good agreement with the experimental data. For the precise calculation of properties of the ground skate, it is necessary to take into account the effects of all the excited states by the diagonalization of the complete energy matrix. The project (Grant No. 19744001) supported by National Natural Science Foundation of China

  20. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    NASA Technical Reports Server (NTRS)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  1. Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization

    NASA Astrophysics Data System (ADS)

    Jentschura, Ulrich; Noble, Jonathan

    2014-03-01

    We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.

  2. Automated enzyme-based diagonal capillary electrophoresis: application to phosphopeptide characterization

    PubMed Central

    Wojcik, Roza; Vannatta, Michael

    2010-01-01

    Diagonal capillary electrophoresis is a form of two-dimensional capillary electrophoresis that employs identical separation modes in each dimension. The distal end of the first capillary incorporates an enzyme-based microreactor. Analytes that are not modified by the reactor will have identical migration times in the two capillaries and will generate spots that fall on the diagonal in a reconstructed two-dimensional electropherogram. Analytes that undergo enzymatic modification in the reactor will have a different migration time in the second capillary and will generate spots that fall off the diagonal in the electropherogram. We demonstrate the system with immobilized alkaline phosphatase to monitor the phosphorylation status of a mixture of peptides. This enzyme-based diagonal capillary electrophoresis assay appears to be generalizable; any post-translational modification can be detected as long as an immobilized enzyme is available that reacts with the modification under electrophoretic conditions. PMID:20099889

  3. Cobimaximal lepton mixing from soft symmetry breaking

    NASA Astrophysics Data System (ADS)

    Grimus, W.; Lavoura, L.

    2017-11-01

    Cobimaximal lepton mixing, i.e.θ23 = 45 ° and δ = ± 90 ° in the lepton mixing matrix V, arises as a consequence of SV =V* P, where S is the permutation matrix that interchanges the second and third rows of V and P is a diagonal matrix of phase factors. We prove that any such V may be written in the form V = URP, where U is any predefined unitary matrix satisfying SU =U*, R is an orthogonal, i.e. real, matrix, and P is a diagonal matrix satisfying P2 = P. Using this theorem, we demonstrate the equivalence of two ways of constructing models for cobimaximal mixing-one way that uses a standard CP symmetry and a different way that uses a CP symmetry including μ-τ interchange. We also present two simple seesaw models to illustrate this equivalence; those models have, in addition to the CP symmetry, flavour symmetries broken softly by the Majorana mass terms of the right-handed neutrino singlets. Since each of the two models needs four scalar doublets, we investigate how to accommodate the Standard Model Higgs particle in them.

  4. Group Sparse Optimization by Alternating Direction Method

    DTIC Science & Technology

    2012-11-22

    to solving the following linear system: (β1G TG+ β2A TA)x = β1G T z −GTλ1 + β2AT b+ATλ2. (3.5) Note that GTG ∈ Rn×n is a diagonal matrix whose i-th...diagonal entry is the number of repetitions of xi in x̃. When the groups form an complete cover of the solution, the diagonal entries of GTG will be...positive, so GTG is invertible. In the next subsection, we will show that an incomplete cover case can be converted to a complete cover case by

  5. Pressure effects on band structures in dense lithium

    NASA Astrophysics Data System (ADS)

    Goto, Naoyuki; Nagara, Hitose

    2012-07-01

    We studied the change of the band structures in some structures of Li predicted at high pressures, using GGA and GW calculations. The width of the 1s band coming from the 1s electron of Li shows broadening by the pressurization, which is the normal behavior of bands at high pressure. The width of the band just below the Fermi level decreases by the pressurization, which is an opposite behavior to the normal bands. The character of this narrowing band is mostly p-like with a little s-like portion. The band gaps in some structures are really observed even by the GGA calculations. The gaps by the GW calculations increase to about 1.5 times the GGA values. Generally the one-shot GW calculation (diagonal only calculations) gives more reliable values than the GGA, but it may fail to predict band gaps for the case where band dispersion shows complex crossing near the Fermi level. There remains some structures for which GW calculations with off-diagonal elements taken into account are needed to identify the phase to be metallic or semiconducting.

  6. Propagation of polarised light in bent hi-bi spun fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przhiyalkovsky, Ya V; Morshnev, S K; Starostin, N I

    The evolution of polarisation states (PS's) of broadband light propagating through a bent optical fibre with a helical structure of its refractive index anisotropy (hi-bi spun fibre) has been studied theoretically and experimentally. It has been shown that there exists a coordinate system of PS's in which the differential Jones matrix can be replaced by a diagonal matrix, which allows the polarisation parameters of the output broadband light to be readily calculated with sufficient accuracy. We have derived a formula for evaluating the magneto-optical sensitivity of a bent spun fibre. An approach has been proposed for restoring the degree ofmore » polarisation of light in a bent hi-bi spun fibre and, as a consequence, the visibility (contrast) of the interferometer in a current sensor with a sensing element based on the fibre under consideration. (optical fibres)« less

  7. Design of a Variational Multiscale Method for Turbulent Compressible Flows

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo Tibor; Murman, Scott M.

    2013-01-01

    A spectral-element framework is presented for the simulation of subsonic compressible high-Reynolds-number flows. The focus of the work is maximizing the efficiency of the computational schemes to enable unsteady simulations with a large number of spatial and temporal degrees of freedom. A collocation scheme is combined with optimized computational kernels to provide a residual evaluation with computational cost independent of order of accuracy up to 16th order. The optimized residual routines are used to develop a low-memory implicit scheme based on a matrix-free Newton-Krylov method. A preconditioner based on the finite-difference diagonalized ADI scheme is developed which maintains the low memory of the matrix-free implicit solver, while providing improved convergence properties. Emphasis on low memory usage throughout the solver development is leveraged to implement a coupled space-time DG solver which may offer further efficiency gains through adaptivity in both space and time.

  8. The difference between two random mixed quantum states: exact and asymptotic spectral analysis

    NASA Astrophysics Data System (ADS)

    Mejía, José; Zapata, Camilo; Botero, Alonso

    2017-01-01

    We investigate the spectral statistics of the difference of two density matrices, each of which is independently obtained by partially tracing a random bipartite pure quantum state. We first show how a closed-form expression for the exact joint eigenvalue probability density function for arbitrary dimensions can be obtained from the joint probability density function of the diagonal elements of the difference matrix, which is straightforward to compute. Subsequently, we use standard results from free probability theory to derive a relatively simple analytic expression for the asymptotic eigenvalue density (AED) of the difference matrix ensemble, and using Carlson’s theorem, we obtain an expression for its absolute moments. These results allow us to quantify the typical asymptotic distance between the two random mixed states using various distance measures; in particular, we obtain the almost sure asymptotic behavior of the operator norm distance and the trace distance.

  9. Gigantic transverse voltage induced via off-diagonal thermoelectric effect in CaxCoO2 thin films

    NASA Astrophysics Data System (ADS)

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Adachi, Hideaki; Yamada, Yuka

    2010-07-01

    Gigantic transverse voltages exceeding several tens volt have been observed in CaxCoO2 thin films with tilted c-axis orientation upon illumination of nanosecond laser pulses. The voltage signals were highly anisotropic within the film surface showing close relation with the c-axis tilt direction. The magnitude and the decay time of the voltage strongly depended on the film thickness. These results confirm that the large laser-induced voltage originates from a phenomenon termed the off-diagonal thermoelectric effect, by which a film out-of-plane temperature gradient leads to generation of a film in-plane voltage.

  10. NON-GAUSSIANITIES IN THE LOCAL CURVATURE OF THE FIVE-YEAR WMAP DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudjord, Oeystein; Groeneboom, Nicolaas E.; Hansen, Frode K.

    Using the five-year WMAP data, we re-investigate claims of non-Gaussianities and asymmetries detected in local curvature statistics of the one-year WMAP data. In Hansen et al., it was found that the northern ecliptic hemisphere was non-Gaussian at the {approx}1% level testing the densities of hill, lake, and saddle points based on the second derivatives of the cosmic microwave background temperature map. The five-year WMAP data have a much lower noise level and better control of systematics. Using these, we find that the anomalies are still present at a consistent level. Also the direction of maximum non-Gaussianity remains. Due to limitedmore » availability of computer resources, Hansen et al. were unable to calculate the full covariance matrix for the {chi}{sup 2}-test used. Here, we apply the full covariance matrix instead of the diagonal approximation and find that the non-Gaussianities disappear and there is no preferred non-Gaussian direction. We compare with simulations of weak lensing to see if this may cause the observed non-Gaussianity when using a diagonal covariance matrix. We conclude that weak lensing does not produce non-Gaussianity in the local curvature statistics at the scales investigated in this paper. The cause of the non-Gaussian detection in the case of a diagonal matrix remains unclear.« less

  11. Major Fault Patterns in Zanjan State of Iran Based of GECO Global Geoid Model

    NASA Astrophysics Data System (ADS)

    Beheshty, Sayyed Amir Hossein; Abrari Vajari, Mohammad; Raoufikelachayeh, SeyedehSusan

    2016-04-01

    A new Earth Gravitational Model (GECO) to degree 2190 has been developed incorporates EGM2008 and the latest GOCE based satellite solutions. Satellite gradiometry data are more sensitive information of the long- and medium- wavelengths of the gravity field than the conventional satellite tracking data. Hence, by utilizing this new technique, more accurate, reliable and higher degrees/orders of the spherical harmonic expansion of the gravity field can be achieved. Gravity gradients can also be useful in geophysical interpretation and prospecting. We have presented the concept of gravity gradients with some simple interpretations. A MATLAB based computer programs were developed and utilized for determining the gravity and gradient components of the gravity field using the GGMs, followed by a case study in Zanjan State of Iran. Our numerical studies show strong (more than 72%) correlations between gravity anomalies and the diagonal elements of the gradient tensor. Also, strong correlations were revealed between the components of the deflection of vertical and the off-diagonal elements as well as between the horizontal gradient and magnitude of the deflection of vertical. We clearly distinguished two big faults in North and South of Zanjan city based on the current information. Also, several minor faults were detected in the study area. Therefore, the same geophysical interpretation can be stated for gravity gradient components too. Our mathematical derivations support some of these correlations.

  12. Exact solution of the XXX Gaudin model with generic open boundaries

    NASA Astrophysics Data System (ADS)

    Hao, Kun; Cao, Junpeng; Yang, Tao; Yang, Wen-Li

    2015-03-01

    The XXX Gaudin model with generic integrable open boundaries specified by the most general non-diagonal reflecting matrices is studied. Besides the inhomogeneous parameters, the associated Gaudin operators have six free parameters which break the U(1) -symmetry. With the help of the off-diagonal Bethe ansatz, we successfully obtained the eigenvalues of these Gaudin operators and the corresponding Bethe ansatz equations.

  13. Efficient, massively parallel eigenvalue computation

    NASA Technical Reports Server (NTRS)

    Huo, Yan; Schreiber, Robert

    1993-01-01

    In numerical simulations of disordered electronic systems, one of the most common approaches is to diagonalize random Hamiltonian matrices and to study the eigenvalues and eigenfunctions of a single electron in the presence of a random potential. An effort to implement a matrix diagonalization routine for real symmetric dense matrices on massively parallel SIMD computers, the Maspar MP-1 and MP-2 systems, is described. Results of numerical tests and timings are also presented.

  14. Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: Algorithm and limitations

    PubMed Central

    Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey

    2013-01-01

    Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large-scale and long-time simulation with an approximate accounting of hydrodynamic interactions. PMID:24089734

  15. Superfluidity or supersolidity as a consequence of off-diagonal long-range order

    NASA Astrophysics Data System (ADS)

    Shi, Yu

    2005-07-01

    We present a general derivation of Hess-Fairbank effect or nonclassical rotational inertial (NCRI), i.e., the refusal to rotate with its container, as well as the quantization of angular momentum, as consequences of off-diagonal long-range order (ODLRO) in an interacting Bose system. Afterwards, the path integral formulation of superfluid density is rederived without ignoring the centrifugal potential. Finally and in particular, for a class of variational wave functions used for solid helium, treating the constraint of single-valuedness boundary condition carefully, we show that there is no ODLRO and, especially, demonstrate explicitly that NCRI cannot be possessed in absence of defects, even though there exist zero-point motion and exchange effect.

  16. A new pre-loaded beam geometric stiffness matrix with full rigid body capabilities

    NASA Astrophysics Data System (ADS)

    Bosela, P. A.; Fertis, D. G.; Shaker, F. J.

    1992-09-01

    Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. The authors have previously shown that the grounding phenomenon is caused by a lack of rigid body rotational capability, and is typical in beam geometric stiffness matrices formulated by others, including those which contain higher order effects. The cause of the problem was identified as the force imbalance inherent in the formulations. In this paper, the authors develop a beam geometric stiffness matrix for a directed force problem, and show that the resultant global stiffness matrix contains complete rigid body mode capabilities, and performs very well in the diagonalization methodology customarily used in dynamic analysis.

  17. General design approach and practical realization of decoupling matrices for parallel transmission coils.

    PubMed

    Mahmood, Zohaib; McDaniel, Patrick; Guérin, Bastien; Keil, Boris; Vester, Markus; Adalsteinsson, Elfar; Wald, Lawrence L; Daniel, Luca

    2016-07-01

    In a coupled parallel transmit (pTx) array, the power delivered to a channel is partially distributed to other channels because of coupling. This power is dissipated in circulators resulting in a significant reduction in power efficiency. In this study, a technique for designing robust decoupling matrices interfaced between the RF amplifiers and the coils is proposed. The decoupling matrices ensure that most forward power is delivered to the load without loss of encoding capabilities of the pTx array. The decoupling condition requires that the impedance matrix seen by the power amplifiers is a diagonal matrix whose entries match the characteristic impedance of the power amplifiers. In this work, the impedance matrix of the coupled coils is diagonalized by a successive multiplication by its eigenvectors. A general design procedure and software are developed to generate automatically the hardware that implements diagonalization using passive components. The general design method is demonstrated by decoupling two example parallel transmit arrays. Our decoupling matrices achieve better than -20 db decoupling in both cases. A robust framework for designing decoupling matrices for pTx arrays is presented and validated. The proposed decoupling strategy theoretically scales to any arbitrary number of channels. Magn Reson Med 76:329-339, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Monitoring nonadiabatic avoided crossing dynamics in molecules by ultrafast X-ray diffraction

    DOE PAGES

    Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2017-05-26

    We examine time-resolved X-ray diffraction from molecules in the gas phase which undergo nonadiabatic avoided-crossing dynamics involving strongly coupled electrons and nuclei. Several contributions to the signal are identified, representing (in decreasing strength) elastic scattering, contributions of the electronic coherences created by nonadiabatic couplings in the avoided crossing regime, and inelastic scattering. The former probes the charge density and delivers direct information on the evolving molecular geometry. The latter two contributions are weaker and carry spatial information through the transition charge densities (off-diagonal elements of the charge-density operator). Furthermore, simulations are presented for the nonadiabatic harpooning process in the excitedmore » state of sodium fluoride.« less

  19. Study on photonic angular momentum states in coaxial magneto-optical waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mu; Wu, Li-Ting; Guo, Tian-Jing

    2014-10-21

    By rigorously solving Maxwell's equations, we develop a full-wave electromagnetic theory for the study of photonic angular momentum states (PAMSs) in coaxial magneto-optical (MO) waveguides. Paying attention to a metal-MO-metal coaxial configuration, we show that the dispersion curves of the originally degenerated PAMSs experience a splitting, which are determined by the off-diagonal permittivity tensor element of the MO medium. We emphasize that this broken degeneracy in dispersion relation is accompanied by modified distributions of field component and transverse energy flux. A qualitative analysis about the connection between the split dispersion behavior and the field distribution is provided. Potential applications aremore » discussed.« less

  20. Flexible, 31 channel breast coil for enhanced parallel imaging performance at 3T

    PubMed Central

    Hancu, Ileana; Fiveland, Eric; Park, Keith; Giaquinto, Randy O.; Rohling, Kenneth; Wiesinger, Florian

    2015-01-01

    Purpose To design, build and characterize the performance of a novel 3T, 31 channel breast coil. Methods A flexible breast coil, accommodating all breast sizes while preserving close to unity filling factors in all configurations, was designed and built. Its performance was compared to the performance of the current state-of-the-art, 16 channel breast coil (Sentinelle coil, Hologic, Bedford, MA, USA), in phantoms and in vivo. Results Better axilla coverage and lower inter-coil coupling (12% vs. 26%, as characterized by the average off-diagonal elements of the noise correlation matrix) was exhibited by our 31 channel coil compared to the 16 channel coil. Breast area SNR increases of 68% (phantom) and 28 ± 31% (in vivo) were demonstrated in the 3 volunteers studied when the 31 channel coil was used. For the 31 channel/16 channel arrays, respectively, two dimensional acceleration factors of L/R × S/I = 4.3 × 2.4 resulted in average g-factors of 1.10/1.68 (in vitro) and 1.28/2.75 (in vivo); acceleration factors of L/R × A/P = 3.0 × 2.8 resulted in average g-factors of 1.06/1.54 (in vitro) and 1.05/1.12 (in vivo). Conclusion A high performance breast coil was built; its capabilities were demonstrated in phantom and normal volunteer imaging experiments. PMID:25772214

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noor, Fatimah A., E-mail: fatimah@fi.itb.ac.id; Iskandar, Ferry; Abdullah, Mikrajuddin

    In this paper, we discuss the electron transmittance and tunneling current in high-k-based-MOS capacitors with trapping charge by including the off-diagonal effective-mass tensor elements and the effect of coupling between transverse and longitudinal energies represented by an electron velocity in the gate. The HfSiO{sub x}N/SiO{sub 2} dual ultrathin layer is used as the gate oxide in an n{sup +} poly- Si/oxide/Si capacitor to replace SiO{sub 2}. The main problem of using HfSiO{sub x}N is the charge trapping formed at the HfSiO{sub x}N/SiO{sub 2} interface that can influence the performance of the device. Therefore, it is important to develop a modelmore » taking into account the presence of electron traps at the HfSiO{sub x}N/SiO{sub 2} interface in the electron transmittance and tunneling current. The transmittance and tunneling current in n{sup +} poly- Si/HfSiO{sub x}N/trap/SiO2/Si(100) capacitors are calculated by using Airy wavefunctions and a transfer matrix method (TMM) as analytical and numerical approaches, respectively. The transmittance and tunneling current obtained from the Airy wavefunction are compared to those computed by the TMM. The effects of the electron velocity on the transmittance and tunneling current are also discussed.« less

  2. Reduced-Density-Matrix Description of Decoherence and Relaxation Processes for Electron-Spin Systems

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    2017-04-01

    Electron-spin systems are investigated using a reduced-density-matrix description. Applications of interest include trapped atomic systems in optical lattices, semiconductor quantum dots, and vacancy defect centers in solids. Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are self-consistently developed. The general non-perturbative and non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. Particular attention is given to decoherence and relaxation processes, as well as spectral-line broadening phenomena, that are induced by interactions with photons, phonons, nuclear spins, and external electric and magnetic fields. These processes are treated either as coherent interactions or as environmental interactions. The environmental interactions are incorporated by means of the general expressions derived for the time-domain and frequency-domain Liouville-space self-energy operators, for which the tetradic-matrix elements are explicitly evaluated in the diagonal-resolvent, lowest-order, and Markov (short-memory time) approximations. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  3. Sparse Gaussian elimination with controlled fill-in on a shared memory multiprocessor

    NASA Technical Reports Server (NTRS)

    Alaghband, Gita; Jordan, Harry F.

    1989-01-01

    It is shown that in sparse matrices arising from electronic circuits, it is possible to do computations on many diagonal elements simultaneously. A technique for obtaining an ordered compatible set directly from the ordered incompatible table is given. The ordering is based on the Markowitz number of the pivot candidates. This technique generates a set of compatible pivots with the property of generating few fills. A novel heuristic algorithm is presented that combines the idea of an order-compatible set with a limited binary tree search to generate several sets of compatible pivots in linear time. An elimination set for reducing the matrix is generated and selected on the basis of a minimum Markowitz sum number. The parallel pivoting technique presented is a stepwise algorithm and can be applied to any submatrix of the original matrix. Thus, it is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds. Parameters are suggested to obtain a balance between parallelism and fill-ins. Results of applying the proposed algorithms on several large application matrices using the HEP multiprocessor (Kowalik, 1985) are presented and analyzed.

  4. Inner Space Perturbation Theory in Matrix Product States: Replacing Expensive Iterative Diagonalization.

    PubMed

    Ren, Jiajun; Yi, Yuanping; Shuai, Zhigang

    2016-10-11

    We propose an inner space perturbation theory (isPT) to replace the expensive iterative diagonalization in the standard density matrix renormalization group theory (DMRG). The retained reduced density matrix eigenstates are partitioned into the active and secondary space. The first-order wave function and the second- and third-order energies are easily computed by using one step Davidson iteration. Our formulation has several advantages including (i) keeping a balance between the efficiency and accuracy, (ii) capturing more entanglement with the same amount of computational time, (iii) recovery of the standard DMRG when all the basis states belong to the active space. Numerical examples for the polyacenes and periacene show that the efficiency gain is considerable and the accuracy loss due to the perturbation treatment is very small, when half of the total basis states belong to the active space. Moreover, the perturbation calculations converge in all our numerical examples.

  5. Diagonalizing controller for a superconducting six-axis accelerometer

    NASA Astrophysics Data System (ADS)

    Bachrach, B.; Canavan, E. R.; Levine, W. S.

    A relatively simple MIMO (multiple input, multiple output) controller which converts an instrument with a nondiagonally dominant transfer function matrix into a strongly diagonally dominant device is developed. The instrument, which uses inductance bridges to sense the position of a magnetically levitated superconducting mass, has very lightly damped resonances and fairly strong cross coupling. By taking advantage of the particular structure of the instrument's transfer function matrix, it is possible to develop a relatively simple controller which achieves the desired decoupling. This controller consists of two parts. The first part cancels the nondiagonal terms of the open-loop transfer function matrix, while the second part is simply a set of SISO (single input, single output) controllers. The stability of the closed-loop system is studied using Rosenbrock's INA (inverse Nyguist array) technique, which produces a simple set of conditions guaranteeing stability. Simulation of the closed-loop system indicates that it should easily achieve its performance goals.

  6. Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  7. Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  8. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Characteristics of alternating current hopping conductivity in DNA sequences

    NASA Astrophysics Data System (ADS)

    Ma, Song-Shan; Xu, Hui; Wang, Huan-You; Guo, Rui

    2009-08-01

    This paper presents a model to describe alternating current (AC) conductivity of DNA sequences, in which DNA is considered as a one-dimensional (1D) disordered system, and electrons transport via hopping between localized states. It finds that AC conductivity in DNA sequences increases as the frequency of the external electric field rises, and it takes the form of øac(ω) ~ ω2 ln2(1/ω). Also AC conductivity of DNA sequences increases with the increase of temperature, this phenomenon presents characteristics of weak temperature-dependence. Meanwhile, the AC conductivity in an off-diagonally correlated case is much larger than that in the uncorrelated case of the Anderson limit in low temperatures, which indicates that the off-diagonal correlations in DNA sequences have a great effect on the AC conductivity, while at high temperature the off-diagonal correlations no longer play a vital role in electric transport. In addition, the proportion of nucleotide pairs p also plays an important role in AC electron transport of DNA sequences. For p < 0.5, the conductivity of DNA sequence decreases with the increase of p, while for p >= 0.5, the conductivity increases with the increase of p.

  9. The effect of Fisher information matrix approximation methods in population optimal design calculations.

    PubMed

    Strömberg, Eric A; Nyberg, Joakim; Hooker, Andrew C

    2016-12-01

    With the increasing popularity of optimal design in drug development it is important to understand how the approximations and implementations of the Fisher information matrix (FIM) affect the resulting optimal designs. The aim of this work was to investigate the impact on design performance when using two common approximations to the population model and the full or block-diagonal FIM implementations for optimization of sampling points. Sampling schedules for two example experiments based on population models were optimized using the FO and FOCE approximations and the full and block-diagonal FIM implementations. The number of support points was compared between the designs for each example experiment. The performance of these designs based on simulation/estimations was investigated by computing bias of the parameters as well as through the use of an empirical D-criterion confidence interval. Simulations were performed when the design was computed with the true parameter values as well as with misspecified parameter values. The FOCE approximation and the Full FIM implementation yielded designs with more support points and less clustering of sample points than designs optimized with the FO approximation and the block-diagonal implementation. The D-criterion confidence intervals showed no performance differences between the full and block diagonal FIM optimal designs when assuming true parameter values. However, the FO approximated block-reduced FIM designs had higher bias than the other designs. When assuming parameter misspecification in the design evaluation, the FO Full FIM optimal design was superior to the FO block-diagonal FIM design in both of the examples.

  10. A preliminary investigation of finite-element modeling for composite rotor blades

    NASA Technical Reports Server (NTRS)

    Lake, Renee C.; Nixon, Mark W.

    1988-01-01

    The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness.

  11. Sensitivity of coronal loop sausage mode frequencies and decay rates to radial and longitudinal density inhomogeneities: a spectral approach

    NASA Astrophysics Data System (ADS)

    Cally, Paul S.; Xiong, Ming

    2018-01-01

    Fast sausage modes in solar magnetic coronal loops are only fully contained in unrealistically short dense loops. Otherwise they are leaky, losing energy to their surrounds as outgoing waves. This causes any oscillation to decay exponentially in time. Simultaneous observations of both period and decay rate therefore reveal the eigenfrequency of the observed mode, and potentially insight into the tubes’ nonuniform internal structure. In this article, a global spectral description of the oscillations is presented that results in an implicit matrix eigenvalue equation where the eigenvalues are associated predominantly with the diagonal terms of the matrix. The off-diagonal terms vanish identically if the tube is uniform. A linearized perturbation approach, applied with respect to a uniform reference model, is developed that makes the eigenvalues explicit. The implicit eigenvalue problem is easily solved numerically though, and it is shown that knowledge of the real and imaginary parts of the eigenfrequency is sufficient to determine the width and density contrast of a boundary layer over which the tubes’ enhanced internal densities drop to ambient values. Linearized density kernels are developed that show sensitivity only to the extreme outside of the loops for radial fundamental modes, especially for small density enhancements, with no sensitivity to the core. Higher radial harmonics do show some internal sensitivity, but these will be more difficult to observe. Only kink modes are sensitive to the tube centres. Variation in internal and external Alfvén speed along the loop is shown to have little effect on the fundamental dimensionless eigenfrequency, though the associated eigenfunction becomes more compact at the loop apex as stratification increases, or may even displace from the apex.

  12. An Application of Sylvester's Rank Inequality

    ERIC Educational Resources Information Center

    Kung, Sidney H.

    2011-01-01

    Using two well known criteria for the diagonalizability of a square matrix plus an extended form of Sylvester's Rank Inequality, the author presents a new condition for the diagonalization of a real matrix from which one can obtain the eigenvectors by simply multiplying some associated matrices without solving a linear system of simultaneous…

  13. Fourier transform inequalities for phylogenetic trees.

    PubMed

    Matsen, Frederick A

    2009-01-01

    Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.

  14. A finite element code for modelling tracer transport in a non-isothermal two-phase flow system for CO2 geological storage characterization

    NASA Astrophysics Data System (ADS)

    Tong, F.; Niemi, A. P.; Yang, Z.; Fagerlund, F.; Licha, T.; Sauter, M.

    2011-12-01

    This paper presents a new finite element method (FEM) code for modeling tracer transport in a non-isothermal two-phase flow system. The main intended application is simulation of the movement of so-called novel tracers for the purpose of characterization of geologically stored CO2 and its phase partitioning and migration in deep saline formations. The governing equations are based on the conservation of mass and energy. Among the phenomena accounted for are liquid-phase flow, gas flow, heat transport and the movement of the novel tracers. The movement of tracers includes diffusion and the advection associated with the gas and liquid flow. The temperature, gas pressure, suction, concentration of tracer in liquid phase and concentration of tracer in gas phase are chosen as the five primary variables. Parameters such as the density, viscosity, thermal expansion coefficient are expressed in terms of the primary variables. The governing equations are discretized in space using the Galerkin finite element formulation, and are discretized in time by one-dimensional finite difference scheme. This leads to an ill-conditioned FEM equation that has many small entries along the diagonal of the non-symmetric coefficient matrix. In order to deal with the problem of non-symmetric ill-conditioned matrix equation, special techniques are introduced . Firstly, only nonzero elements of the matrix need to be stored. Secondly, it is avoided to directly solve the whole large matrix. Thirdly, a strategy has been used to keep the diversity of solution methods in the calculation process. Additionally, an efficient adaptive mesh technique is included in the code in order to track the wetting front. The code has been validated against several classical analytical solutions, and will be applied for simulating the CO2 injection experiment to be carried out at the Heletz site, Israel, as part of the EU FP7 project MUSTANG.

  15. Parameterized LMI Based Diagonal Dominance Compensator Study for Polynomial Linear Parameter Varying System

    NASA Astrophysics Data System (ADS)

    Han, Xiaobao; Li, Huacong; Jia, Qiusheng

    2017-12-01

    For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.

  16. Off-shell single-top production at NLO matched to parton showers

    DOE PAGES

    Frederix, R.; Frixione, S.; Papanastasiou, A. S.; ...

    2016-06-06

    We study the hadroproduction of a Wb pair in association with a light jet, focusing on the dominant t-channel contribution and including exactly at the matrix-element level all non-resonant and off-shell effects induced by the finite top-quark width. Our simulations are accurate to the next-to-leading order in QCD, and are matched to the Herwig6 and Pythia8 parton showers through the MC@NLO method. We present phenomenological results relevant to the 8 TeV LHC, and carry out a thorough comparison to the case of on-shell t-channel single-top production. Furthermore, we formulate our approach so that it can be applied to the generalmore » case of matrix elements that feature coloured intermediate resonances and are matched to parton showers.« less

  17. Efficient spares matrix multiplication scheme for the CYBER 203

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J., Jr.

    1984-01-01

    This work has been directed toward the development of an efficient algorithm for performing this computation on the CYBER-203. The desire to provide software which gives the user the choice between the often conflicting goals of minimizing central processing (CPU) time or storage requirements has led to a diagonal-based algorithm in which one of three types of storage is selected for each diagonal. For each storage type, an initialization sub-routine estimates the CPU and storage requirements based upon results from previously performed numerical experimentation. These requirements are adjusted by weights provided by the user which reflect the relative importance the user places on the resources. The three storage types employed were chosen to be efficient on the CYBER-203 for diagonals which are sparse, moderately sparse, or dense; however, for many densities, no diagonal type is most efficient with respect to both resource requirements. The user-supplied weights dictate the choice.

  18. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  19. Longitudinal elliptically polarized electromagnetic waves in off-diagonal magnetoelectric split-ring composites.

    PubMed

    Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F

    2009-07-22

    We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.

  20. The Use of Matrix Training to Promote Generative Language with Children with Autism

    ERIC Educational Resources Information Center

    Frampton, Sarah E.; Wymer, Sarah C.; Hansen, Bethany; Shillingsburg, M. Alice

    2016-01-01

    Matrix training consists of planning instruction by arranging components of desired skills across 2 axes. After training with diagonal targets that each combine 2 unique skill components, responses to nondiagonal targets, consisting of novel combinations of the components, may emerge. A multiple-probe design across participants was used to…

  1. Levy Matrices and Financial Covariances

    NASA Astrophysics Data System (ADS)

    Burda, Zdzislaw; Jurkiewicz, Jerzy; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail

    2003-10-01

    In a given market, financial covariances capture the intra-stock correlations and can be used to address statistically the bulk nature of the market as a complex system. We provide a statistical analysis of three SP500 covariances with evidence for raw tail distributions. We study the stability of these tails against reshuffling for the SP500 data and show that the covariance with the strongest tails is robust, with a spectral density in remarkable agreement with random Lévy matrix theory. We study the inverse participation ratio for the three covariances. The strong localization observed at both ends of the spectral density is analogous to the localization exhibited in the random Lévy matrix ensemble. We discuss two competitive mechanisms responsible for the occurrence of an extensive and delocalized eigenvalue at the edge of the spectrum: (a) the Lévy character of the entries of the correlation matrix and (b) a sort of off-diagonal order induced by underlying inter-stock correlations. (b) can be destroyed by reshuffling, while (a) cannot. We show that the stocks with the largest scattering are the least susceptible to correlations, and likely candidates for the localized states. We introduce a simple model for price fluctuations which captures behavior of the SP500 covariances. It may be of importance for assets diversification.

  2. Modeling of Triangular Lattice Space Structures with Curved Battens

    NASA Technical Reports Server (NTRS)

    Chen, Tzikang; Wang, John T.

    2005-01-01

    Techniques for simulating an assembly process of lattice structures with curved battens were developed. The shape of the curved battens, the tension in the diagonals, and the compression in the battens were predicted for the assembled model. To be able to perform the assembly simulation, a cable-pulley element was implemented, and geometrically nonlinear finite element analyses were performed. Three types of finite element models were created from assembled lattice structures for studying the effects of design and modeling variations on the load carrying capability. Discrepancies in the predictions from these models were discussed. The effects of diagonal constraint failure were also studied.

  3. PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra

    NASA Astrophysics Data System (ADS)

    Sibaev, Marat; Crittenden, Deborah L.

    2016-06-01

    The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).

  4. Conceptual DFT analysis of the fragility spectra of atoms along the minimum energy reaction coordinate.

    PubMed

    Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz

    2017-10-07

    Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.

  5. Conceptual DFT analysis of the fragility spectra of atoms along the minimum energy reaction coordinate

    NASA Astrophysics Data System (ADS)

    Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz

    2017-10-01

    Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.

  6. Symbolic Algebra Development for Higher-Order Electron Propagator Formulation and Implementation.

    PubMed

    Tamayo-Mendoza, Teresa; Flores-Moreno, Roberto

    2014-06-10

    Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods.

  7. New Priorities for a Changing U.S. Economy

    DTIC Science & Technology

    1999-01-08

    Stockholm, Sweden, 1991. [73] R . Malladi , J. Sethian, B. and Vermuri, "Shape modelling with front propagation: a level set approach," IEEE PAMI17...represented as n x n matrices of operators in £(£), and r (") is represented by a diagonal matrix, with diagonal entries equal to T. Denote by An...also has independent interest. Theorem 1 Assume that A’ is a *-algebra of finite dimension n. Then fa(A) = ^..(Art) for every A 6 £(£)~ r ~ Remark

  8. Gyrokinetic studies on turbulence-driven and neoclassical nondiffusive toroidal-momentum transport and the effect of residual fluctuations in strong E x B shear.

    PubMed

    Wang, W X; Hahm, T S; Ethier, S; Rewoldt, G; Lee, W W; Tang, W M; Kaye, S M; Diamond, P H

    2009-01-23

    A significant inward flux of toroidal momentum is found in global gyrokinetic simulations of ion temperature gradient turbulence, leading to core plasma rotation spin-up. The underlying mechanism is identified to be the generation of residual stress due to the k parallel symmetry breaking induced by global quasistationary zonal flow shear. Simulations also show a significant off-diagonal element associated with the ion temperature gradient in the neoclassical momentum flux, while the overall neoclassical flux is small. In addition, the residual turbulence found in the presence of strong E x B flow shear may account for neoclassical-level ion heat and anomalous momentum transport widely observed in experiments.

  9. Direct Measurement of the Density Matrix of a Quantum System

    NASA Astrophysics Data System (ADS)

    Thekkadath, G. S.; Giner, L.; Chalich, Y.; Horton, M. J.; Banker, J.; Lundeen, J. S.

    2016-09-01

    One drawback of conventional quantum state tomography is that it does not readily provide access to single density matrix elements since it requires a global reconstruction. Here, we experimentally demonstrate a scheme that can be used to directly measure individual density matrix elements of general quantum states. The scheme relies on measuring a sequence of three observables, each complementary to the last. The first two measurements are made weak to minimize the disturbance they cause to the state, while the final measurement is strong. We perform this joint measurement on polarized photons in pure and mixed states to directly measure their density matrix. The weak measurements are achieved using two walk-off crystals, each inducing a polarization-dependent spatial shift that couples the spatial and polarization degrees of freedom of the photons. This direct measurement method provides an operational meaning to the density matrix and promises to be especially useful for large dimensional states.

  10. Direct Measurement of the Density Matrix of a Quantum System.

    PubMed

    Thekkadath, G S; Giner, L; Chalich, Y; Horton, M J; Banker, J; Lundeen, J S

    2016-09-16

    One drawback of conventional quantum state tomography is that it does not readily provide access to single density matrix elements since it requires a global reconstruction. Here, we experimentally demonstrate a scheme that can be used to directly measure individual density matrix elements of general quantum states. The scheme relies on measuring a sequence of three observables, each complementary to the last. The first two measurements are made weak to minimize the disturbance they cause to the state, while the final measurement is strong. We perform this joint measurement on polarized photons in pure and mixed states to directly measure their density matrix. The weak measurements are achieved using two walk-off crystals, each inducing a polarization-dependent spatial shift that couples the spatial and polarization degrees of freedom of the photons. This direct measurement method provides an operational meaning to the density matrix and promises to be especially useful for large dimensional states.

  11. Impact of off-diagonal cross-shell interaction on 14C

    NASA Astrophysics Data System (ADS)

    Yuan, Cen-Xi

    2017-10-01

    A shell-model investigation is performed to show the impact on the structure of 14C from the off-diagonal cross-shell interaction, 〈pp|V|sdsd〉, which represents the mixing between the 0 and 2ħω configurations in the psd model space. The observed levels of the positive states in 14C can be nicely described in 0-4ħω or a larger model space through the well defined Hamiltonians, YSOX and WBP, with a reduction of the strength of the 〈pp|V|sdsd〉 interaction in the latter. The observed B(GT) values for 14C can be generally described by YSOX, while WBP and their modifications of the 〈pp|V|sdsd〉 interaction fail for some values. Further investigation shows the effect of such interactions on the configuration mixing and occupancy. The present work shows examples of how the off-diagonal cross-shell interaction strongly drives the nuclear structure. Supported by National Natural Science Foundation of China (11305272), Special Program for Applied Research on Super Computation of the NSFC Guangdong Joint Fund (the second phase), the Guangdong Natural Science Foundation (2014A030313217), the Pearl River S&T Nova Program of Guangzhou (201506010060), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (2016TQ03N575), and the Fundamental Research Funds for the Central Universities (17lgzd34)

  12. Connecting Fermion Masses and Mixings to BSM Physics - Quarks

    NASA Astrophysics Data System (ADS)

    Goldman, Terrence; Stephenson, Gerard J., Jr.

    2015-10-01

    The ``democratic'' mass matrix with BSM physics assumptions has been studied without success. We invert the process and use the ``democratic'' mass matrix plus a parametrization of all possible BSM corrections to analyze the implications of the observed masses and CKM weak interaction current mixing for the BSM parameter values for the up-quarks and down-quarks. We observe that the small mixing of the so-called ``third generation'' is directly related to the large mass gap from the two lighter generations. Conversely, the relatively large value of the Cabibbo angle arises because the mass matrices in the light sub-sector (block diagonalized from the full three channel problem) are neither diagonal nor degenerate and differ significantly between the up and down cases. Alt email:t.goldman@gmail.com

  13. FACTORING TO FIT OFF DIAGONALS.

    DTIC Science & Technology

    imply an upper bound on the number of factors. When applied to somatotype data, the method improved substantially on centroid solutions and indicated a reinterpretation of earlier factoring studies. (Author)

  14. Self-consistent approximation beyond the CPA: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, T.; Gray, L.J.

    1981-08-01

    In Part I, Professor Leath has described the substantial efforts to generalize the CPA. In this second part, a particular self-consistent approximation for random alloys developed by Kaplan, Leath, Gray, and Diehl is described. This approximation is applicable to diagonal, off-diagonal and environmental disorder, includes cluster scattering, and yields a translationally invariant and analytic (Herglotz) average Green's function. Furthermore Gray and Kaplan have shown that an approximation for alloys with short-range order can be constructed from this theory.

  15. Global analysis of data on the spin-orbit-coupled A {sup 1{Sigma}}{sub u}{sup +} and b {sup 3{Pi}}{sub u} states of Cs{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Jianmei; Ahmed, E. H.; Beser, B.

    2011-03-15

    We present experimentally derived potential curves and spin-orbit interaction functions for the strongly perturbed A {sup 1{Sigma}}{sub u}{sup +} and b {sup 3{Pi}}{sub u} states of the cesium dimer. The results are based on data from several sources. Laser-induced fluorescence Fourier transform spectroscopy (LIF FTS) was used some time ago in the Laboratoire Aime Cotton primarily to study the X {sup 1{Sigma}}{sub g}{sup +} state. More recent work at Tsinghua University provides information from moderate resolution spectroscopy on the lowest levels of the b {sup 3{Pi}}{sub 0u}{sup {+-}} state as well as additional high-resolution data. From Innsbruck University, we havemore » precision data obtained with cold Cs{sub 2} molecules. Recent data from Temple University was obtained using the optical-optical double resonance polarization spectroscopy technique, and finally, a group at the University of Latvia has added additional LIF FTS data. In the Hamiltonian matrix, we have used analytic potentials (the expanded Morse oscillator form) with both finite-difference (FD) coupled-channel and discrete variable representation (DVR) calculations of the term values. Fitted diagonal and off-diagonal spin-orbit functions are obtained and compared with ab initio results from Temple and Moscow State universities.« less

  16. Dynamical tachyons on fuzzy spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenstein, David; Institute for Advanced Study, School of Natural Science, Princeton, New Jersey 08540; Trancanelli, Diego

    2011-05-15

    We study the spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the Berenstein-Maldacena-Nastase plane wave matrix model. The displacement is along the plane of the fuzzy spheres. We find that when two fuzzy spheres intersect at angles, classical tachyons develop and that the spectrum of these modes can be computed analytically. These tachyons can be related to the familiar Nielsen-Olesen instabilities in Yang-Mills theory on a constant magnetic background. Many features of the problem become more apparent when we compare with maximally supersymmetric Yang-Mills theory on a sphere, of which this system is a truncation. We also set upmore » a simple oscillatory trajectory on the displacement between the fuzzy spheres and study the dynamics of the modes as they become tachyonic for part of the oscillations. We speculate on their role regarding the possible thermalization of the system.« less

  17. Double Stokes-Mueller polarimetry in KTP (Potassium Titanyl Phosphate) crystal

    NASA Astrophysics Data System (ADS)

    Shaji, Chitra; S B, Sruthil Lal; Sharan, Alok

    2017-04-01

    Ultra-structural properties of material are being probed by Double Stokes-Mueller polarimetry (DSMP) technique. It makes use of higher dimensions of Stokes vector (9 X 1) and Mueller matrix (4 X9) to characterize the nonlinear optical properties of a material. Second harmonic generation (SHG) at 532nm using 1064nm as fundamental cw beam from Nd: YAG laser in type II phase matched KTP (Potassium Titanyl Phosphate) crystal is studied using DSMP. The experimental measurements for determining double Mueller matrix are carried out in the ``Polarization In Polarization Out'' (PIPO) arrangement. Nine input polarization states are incident on the sample and the linear Stokes vector of the emerging light from the sample is measured. The KTP crystal is oriented such that the SHG signal efficiency at the incident horizontal and vertical polarizations is high as compared to diagonal polarization states. The susceptibility tensor components and the phase difference between them at this orientation are determined from the double Mueller matrix elements. These determined values give information regarding the crystal axis orientations. To our knowledge, this is the first report of the use of DSMP technique to determine the crystal orientations of a biaxial crystal.

  18. Off-shell amplitudes as boundary integrals of analytically continued Wilson line slope

    NASA Astrophysics Data System (ADS)

    Kotko, P.; Serino, M.; Stasto, A. M.

    2016-08-01

    One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes, if working in the light cone gauge. As shown in recent works using the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in a certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift to the Wilson line slope instead of the external momenta. While in the original BCFW procedure the boundary integrals over the complex shift vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes. The main result can thus be summarized as follows: we derive a decomposition of a helicity-fixed off-shell current into gauge invariant component given by a matrix element of a straight Wilson line plus a reminder given by a sum of products of gauge invariant and gauge dependent quantities. We give several examples realizing this relation, including the five-point next-to-MHV helicity configuration.

  19. Can nonstandard interactions jeopardize the hierarchy sensitivity of DUNE?

    NASA Astrophysics Data System (ADS)

    Deepthi, K. N.; Goswami, Srubabati; Nath, Newton

    2017-10-01

    We study the effect of nonstandard interactions (NSIs) on the propagation of neutrinos through the Earth's matter and how it affects the hierarchy sensitivity of the DUNE experiment. We emphasize the special case when the diagonal NSI parameter ɛe e=-1 , nullifying the standard matter effect. We show that if, in addition, C P violation is maximal then this gives rise to an exact intrinsic hierarchy degeneracy in the appearance channel, irrespective of the baseline and energy. Introduction of the off diagonal NSI parameter, ɛe τ, shifts the position of this degeneracy to a different ɛe e. Moreover the unknown magnitude and phases of the off diagonal NSI parameters can give rise to additional degeneracies. Overall, given the current model independent limits on NSI parameters, the hierarchy sensitivity of DUNE can get seriously impacted. However, a more precise knowledge of the NSI parameters, especially ɛe e, can give rise to an improved sensitivity. Alternatively, if a NSI exists in nature, and still DUNE shows hierarchy sensitivity, certain ranges of the NSI parameters can be excluded. Additionally, we briefly discuss the implications of ɛe e=-1 (in the Earth) on the Mikheyev-Smirnov-Wolfenstein effect in the Sun.

  20. A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method

    NASA Astrophysics Data System (ADS)

    Chen, Leilei; Zheng, Changjun; Chen, Haibo

    2013-09-01

    This paper presents a wideband fast multipole boundary element method (FMBEM) for two dimensional acoustic design sensitivity analysis based on the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The strongly singular and hypersingular integrals in the sensitivity equations can be evaluated explicitly and directly by using the piecewise constant discretization. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. A set of optimal parameters for the wideband FMBEM design sensitivity analysis are obtained by observing the performances of the wideband FMM algorithm in terms of computing time and memory usage. Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.

  1. A CLT on the SNR of Diagonally Loaded MVDR Filters

    NASA Astrophysics Data System (ADS)

    Rubio, Francisco; Mestre, Xavier; Hachem, Walid

    2012-08-01

    This paper studies the fluctuations of the signal-to-noise ratio (SNR) of minimum variance distorsionless response (MVDR) filters implementing diagonal loading in the estimation of the covariance matrix. Previous results in the signal processing literature are generalized and extended by considering both spatially as well as temporarily correlated samples. Specifically, a central limit theorem (CLT) is established for the fluctuations of the SNR of the diagonally loaded MVDR filter, under both supervised and unsupervised training settings in adaptive filtering applications. Our second-order analysis is based on the Nash-Poincar\\'e inequality and the integration by parts formula for Gaussian functionals, as well as classical tools from statistical asymptotic theory. Numerical evaluations validating the accuracy of the CLT confirm the asymptotic Gaussianity of the fluctuations of the SNR of the MVDR filter.

  2. On the use of symmetry in the ab initio quantum mechanical simulation of nanotubes and related materials.

    PubMed

    Noel, Yves; D'arco, Philippe; Demichelis, Raffaella; Zicovich-Wilson, Claudio M; Dovesi, Roberto

    2010-03-01

    Nanotubes can be characterized by a very high point symmetry, comparable or even larger than the one of the most symmetric crystalline systems (cubic, 48 point symmetry operators). For example, N = 2n rototranslation symmetry operators connect the atoms of the (n,0) nanotubes. This symmetry is fully exploited in the CRYSTAL code. As a result, ab initio quantum mechanical large basis set calculations of carbon nanotubes containing more than 150 atoms in the unit cell become very cheap, because the irreducible part of the unit cell reduces to two atoms only. The nanotube symmetry is exploited at three levels in the present implementation. First, for the automatic generation of the nanotube structure (and then of the input file for the SCF calculation) starting from a two-dimensional structure (in the specific case, graphene). Second, the nanotube symmetry is used for the calculation of the mono- and bi-electronic integrals that enter into the Fock (Kohn-Sham) matrix definition. Only the irreducible wedge of the Fock matrix is computed, with a saving factor close to N. Finally, the symmetry is exploited for the diagonalization, where each irreducible representation is separately treated. When M atomic orbitals per carbon atom are used, the diagonalization computing time is close to Nt, where t is the time required for the diagonalization of each 2M x 2M matrix. The efficiency and accuracy of the computational scheme is documented. (c) 2009 Wiley Periodicals, Inc.

  3. An improved semi-implicit method for structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Park, K. C.

    1982-01-01

    A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.

  4. Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform

    NASA Astrophysics Data System (ADS)

    Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin

    2013-12-01

    Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.

  5. Closed-form eigensolutions of nonviscously, nonproportionally damped systems based on continuous damping sensitivity

    NASA Astrophysics Data System (ADS)

    Lázaro, Mario

    2018-01-01

    In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.

  6. A simple molecular mechanics integrator in mixed rigid body and dihedral angle space

    PubMed Central

    Vitalis, Andreas; Pappu, Rohit V.

    2014-01-01

    We propose a numerical scheme to integrate equations of motion in a mixed space of rigid-body and dihedral angle coordinates. The focus of the presentation is biomolecular systems and the framework is applicable to polymers with tree-like topology. By approximating the effective mass matrix as diagonal and lumping all bias torques into the time dependencies of the diagonal elements, we take advantage of the formal decoupling of individual equations of motion. We impose energy conservation independently for every degree of freedom and this is used to derive a numerical integration scheme. The cost of all auxiliary operations is linear in the number of atoms. By coupling the scheme to one of two popular thermostats, we extend the method to sample constant temperature ensembles. We demonstrate that the integrator of choice yields satisfactory stability and is free of mass-metric tensor artifacts, which is expected by construction of the algorithm. Two fundamentally different systems, viz., liquid water and an α-helical peptide in a continuum solvent are used to establish the applicability of our method to a wide range of problems. The resultant constant temperature ensembles are shown to be thermodynamically accurate. The latter relies on detailed, quantitative comparisons to data from reference sampling schemes operating on exactly the same sets of degrees of freedom. PMID:25053299

  7. Neutron Multiplicity: LANL W Covariance Matrix for Curve Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, James G.

    2016-12-08

    In neutron multiplicity counting one may fit a curve by minimizing an objective function, χmore » $$2\\atop{n}$$. The objective function includes the inverse of an n by n matrix of covariances, W. The inverse of the W matrix has a closed form solution. In addition W -1 is a tri-diagonal matrix. The closed form and tridiagonal nature allows for a simpler expression of the objective function χ$$2\\atop{n}$$. Minimization of this simpler expression will provide the optimal parameters for the fitted curve.« less

  8. Effective field theory in the harmonic oscillator basis

    DOE PAGES

    Binder, S.; Ekström, Jan A.; Hagen, Gaute; ...

    2016-04-25

    In this paper, we develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. In oscillator EFT, matrix elements of EFTs formulated for continuous momenta are evaluated at the discrete momenta that stem from the diagonalization of the kinetic energy in the finite oscillator space. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leadingmore » order. Finally, many-body coupled-cluster calculations of nuclei up to 132Sn converge fast for the ground-state energies and radii in feasible model spaces.« less

  9. Optical gain in type–II InGaAs/GaAsSb quantum well nano-heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nirmal, H. K.; Yadav, Nisha; Lal, Pyare

    2015-08-28

    In this paper, we have simulated optical gain in type-II InGaAs/GaAsSb quantum well based nano-scale heterostructure. In order to simulate the optical gain, the heterostructure has been modeled with the help of six band k.p method. The 6 × 6 diagonalized k.p Hamiltonian has been solved to evaluate the valence sub-bands (i.e. light and heavy hole energies); and then optical matrix elements and optical gain within TE (Transverse Electric) mode has been calculated. The results obtained suggest that peak optical gain in the heterostructure can be achieved at the lasing wavelength ~ 1.95 µm (SWIR region) and at corresponding energy ~more » 0.635 eV.« less

  10. Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU-GPU Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran-Nair, Kiran; Ma, Wenjing; Krishnamoorthy, Sriram

    2013-04-09

    A novel parallel algorithm for non-iterative multireference coupled cluster (MRCC) theories, which merges recently introduced reference-level parallelism (RLP) [K. Bhaskaran-Nair, J.Brabec, E. Aprà, H.J.J. van Dam, J. Pittner, K. Kowalski, J. Chem. Phys. 137, 094112 (2012)] with the possibility of accelerating numerical calculations using graphics processing unit (GPU) is presented. We discuss the performance of this algorithm on the example of the MRCCSD(T) method (iterative singles and doubles and perturbative triples), where the corrections due to triples are added to the diagonal elements of the MRCCSD (iterative singles and doubles) effective Hamiltonian matrix. The performance of the combined RLP/GPU algorithmmore » is illustrated on the example of the Brillouin-Wigner (BW) and Mukherjee (Mk) state-specific MRCCSD(T) formulations.« less

  11. Reduced conservatism in stability robustness bounds by state transformation

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.; Liang, Z.

    1986-01-01

    This note addresses the issue of 'conservatism' in the time domain stability robustness bounds obtained by the Liapunov approach. A state transformation is employed to improve the upper bounds on the linear time-varying perturbation of an asymptotically stable linear time-invariant system for robust stability. This improvement is due to the variance of the conservatism of the Liapunov approach with respect to the basis of the vector space in which the Liapunov function is constructed. Improved bounds are obtained, using a transformation, on elemental and vector norms of perturbations (i.e., structured perturbations) as well as on a matrix norm of perturbations (i.e., unstructured perturbations). For the case of a diagonal transformation, an algorithm is proposed to find the 'optimal' transformation. Several examples are presented to illustrate the proposed analysis.

  12. N-H stretching modes of adenosine monomer in solution studied by ultrafast nonlinear infrared spectroscopy and ab initio calculations.

    PubMed

    Greve, Christian; Preketes, Nicholas K; Costard, Rene; Koeppe, Benjamin; Fidder, Henk; Nibbering, Erik T J; Temps, Friedrich; Mukamel, Shaul; Elsaesser, Thomas

    2012-07-26

    The N-H stretching vibrations of adenine, one of the building blocks of DNA, are studied by combining infrared absorption and nonlinear two-dimensional infrared spectroscopy with ab initio calculations. We determine diagonal and off-diagonal anharmonicities of N-H stretching vibrations in chemically modified adenosine monomer dissolved in chloroform. For the single-quantum excitation manifold, the normal mode picture with symmetric and asymmetric NH(2) stretching vibrations is fully appropriate. For the two-quantum excitation manifold, however, the interplay between intermode coupling and frequency shifts due to a large diagonal anharmonicity leads to a situation where strong mixing does not occur. We compare our findings with previously reported values obtained on overtone spectroscopy of coupled hydrogen stretching oscillators.

  13. Morse oscillator propagator in the high temperature limit I: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae

    2017-02-15

    In an earlier work of the author the time evolution of Morse oscillator was studied analytically and exactly at low temperatures whereupon optical correlation functions were calculated using Morse oscillator coherent states were employed. Morse oscillator propagator in the high temperature limit is derived and a closed form of its corresponding canonical partition function is obtained. Both diagonal and off-diagonal forms of Morse oscillator propagator are derived in the high temperature limit. Partition functions of diatomic molecules are calculated. - Highlights: • Derives the quantum propagator of Morse oscillator in the high temperature limit. • Uses the resulting diagonal propagatormore » to derive a closed form of Morse oscillator partition function. • Provides a more sophisticated formula of the quantum propagator to test the accuracy of the herein results.« less

  14. Two modulator generalized ellipsometer for complete mueller matrix measurement

    DOEpatents

    Jellison, Jr., Gerald E.; Modine, Frank A.

    1999-01-01

    A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.

  15. Quantum Glass of Interacting Bosons with Off-Diagonal Disorder

    NASA Astrophysics Data System (ADS)

    Piekarska, A. M.; Kopeć, T. K.

    2018-04-01

    We study disordered interacting bosons described by the Bose-Hubbard model with Gaussian-distributed random tunneling amplitudes. It is shown that the off-diagonal disorder induces a spin-glass-like ground state, characterized by randomly frozen quantum-mechanical U(1) phases of bosons. To access criticality, we employ the "n -replica trick," as in the spin-glass theory, and the Trotter-Suzuki method for decomposition of the statistical density operator, along with numerical calculations. The interplay between disorder, quantum, and thermal fluctuations leads to phase diagrams exhibiting a glassy state of bosons, which are studied as a function of model parameters. The considered system may be relevant for quantum simulators of optical-lattice bosons, where the randomness can be introduced in a controlled way. The latter is supported by a proposition of experimental realization of the system in question.

  16. Hidden symmetries for ellipsoid-solitonic deformations of Kerr-Sen black holes and quantum anomalies

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2013-02-01

    We prove the existence of hidden symmetries in the general relativity theory defined by exact solutions with generic off-diagonal metrics, nonholonomic (non-integrable) constraints, and deformations of the frame and linear connection structure. A special role in characterization of such spacetimes is played by the corresponding nonholonomic generalizations of Stackel-Killing and Killing-Yano tensors. There are constructed new classes of black hole solutions and we study hidden symmetries for ellipsoidal and/or solitonic deformations of "prime" Kerr-Sen black holes into "target" off-diagonal metrics. In general, the classical conserved quantities (integrable and not-integrable) do not transfer to the quantized systems and produce quantum gravitational anomalies. We prove that such anomalies can be eliminated via corresponding nonholonomic deformations of fundamental geometric objects (connections and corresponding Riemannian and Ricci tensors) and by frame transforms.

  17. Technical note: Avoiding the direct inversion of the numerator relationship matrix for genotyped animals in single-step genomic best linear unbiased prediction solved with the preconditioned conjugate gradient.

    PubMed

    Masuda, Y; Misztal, I; Legarra, A; Tsuruta, S; Lourenco, D A L; Fragomeni, B O; Aguilar, I

    2017-01-01

    This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix () including genotyped animals and their ancestors. The elements of were rapidly calculated with the Henderson's rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix-vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssGBLUP are solved with the PCG algorithm, is no longer a limiting factor in the computations.

  18. The calculated rovibronic spectrum of scandium hydride, ScH

    NASA Astrophysics Data System (ADS)

    Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-07-01

    The electronic structure of six low-lying electronic states of scandium hydride, X 1Σ+, a 3Δ, b 3Π, A 1Δ, c 3Σ+ and B 1Π, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular rovibronic transitions for 45ScH.

  19. A simple molecular orbital treatment of current distributions in quantum transport through molecular junctions

    NASA Astrophysics Data System (ADS)

    Jhan, Sin-Mu; Jin, Bih-Yaw

    2017-11-01

    A simple molecular orbital treatment of local current distributions inside single molecular junctions is developed in this paper. Using the first-order perturbation theory and nonequilibrium Green's function techniques in the framework of Hückel theory, we show that the leading contributions to local current distributions are directly proportional to the off-diagonal elements of transition density matrices. Under the orbital approximation, the major contributions to local currents come from a few dominant molecular orbital pairs which are mixed by the interactions between the molecule and electrodes. A few simple molecular junctions consisting of single- and multi-ring conjugated systems are used to demonstrate that local current distributions inside molecular junctions can be decomposed by partial sums of a few leading contributing transition density matrices.

  20. Multidimensional FEM-FCT schemes for arbitrary time stepping

    NASA Astrophysics Data System (ADS)

    Kuzmin, D.; Möller, M.; Turek, S.

    2003-05-01

    The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.

  1. Information extraction from multivariate images

    NASA Technical Reports Server (NTRS)

    Park, S. K.; Kegley, K. A.; Schiess, J. R.

    1986-01-01

    An overview of several multivariate image processing techniques is presented, with emphasis on techniques based upon the principal component transformation (PCT). Multiimages in various formats have a multivariate pixel value, associated with each pixel location, which has been scaled and quantized into a gray level vector, and the bivariate of the extent to which two images are correlated. The PCT of a multiimage decorrelates the multiimage to reduce its dimensionality and reveal its intercomponent dependencies if some off-diagonal elements are not small, and for the purposes of display the principal component images must be postprocessed into multiimage format. The principal component analysis of a multiimage is a statistical analysis based upon the PCT whose primary application is to determine the intrinsic component dimensionality of the multiimage. Computational considerations are also discussed.

  2. Analyzing thematic maps and mapping for accuracy

    USGS Publications Warehouse

    Rosenfield, G.H.

    1982-01-01

    Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by either the row totals or the column totals from the original classification error matrices. In hypothesis testing, when the results of tests of multiple sample cases prove to be significant, some form of statistical test must be used to separate any results that differ significantly from the others. In the past, many analyses of the data in this error matrix were made by comparing the relative magnitudes of the percentage of correct classifications, for either individual categories, the entire map or both. More rigorous analyses have used data transformations and (or) two-way classification analysis of variance. A more sophisticated step of data analysis techniques would be to use the entire classification error matrices using the methods of discrete multivariate analysis or of multiviariate analysis of variance.

  3. Ranking and combining multiple predictors without labeled data

    PubMed Central

    Parisi, Fabio; Strino, Francesco; Nadler, Boaz; Kluger, Yuval

    2014-01-01

    In a broad range of classification and decision-making problems, one is given the advice or predictions of several classifiers, of unknown reliability, over multiple questions or queries. This scenario is different from the standard supervised setting, where each classifier’s accuracy can be assessed using available labeled data, and raises two questions: Given only the predictions of several classifiers over a large set of unlabeled test data, is it possible to (i) reliably rank them and (ii) construct a metaclassifier more accurate than most classifiers in the ensemble? Here we present a spectral approach to address these questions. First, assuming conditional independence between classifiers, we show that the off-diagonal entries of their covariance matrix correspond to a rank-one matrix. Moreover, the classifiers can be ranked using the leading eigenvector of this covariance matrix, because its entries are proportional to their balanced accuracies. Second, via a linear approximation to the maximum likelihood estimator, we derive the Spectral Meta-Learner (SML), an unsupervised ensemble classifier whose weights are equal to these eigenvector entries. On both simulated and real data, SML typically achieves a higher accuracy than most classifiers in the ensemble and can provide a better starting point than majority voting for estimating the maximum likelihood solution. Furthermore, SML is robust to the presence of small malicious groups of classifiers designed to veer the ensemble prediction away from the (unknown) ground truth. PMID:24474744

  4. Influence of seismic anisotropy on the cross correlation tensor: numerical investigations

    NASA Astrophysics Data System (ADS)

    Saade, M.; Montagner, J. P.; Roux, P.; Cupillard, P.; Durand, S.; Brenguier, F.

    2015-05-01

    Temporal changes in seismic anisotropy can be interpreted as variations in the orientation of cracks in seismogenic zones, and thus as variations in the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes, although they are still not well understood. In this study, we investigate the azimuthal polarization of surface waves in anisotropic media with respect to the orientation of anisotropy, from a numerical point of view. This technique is based on the observation of the signature of anisotropy on the nine-component cross-correlation tensor (CCT) computed from seismic ambient noise recorded on pairs of three-component sensors. If noise sources are spatially distributed in a homogeneous medium, the CCT allows the reconstruction of the surface wave Green's tensor between the station pairs. In homogeneous, isotropic medium, four off-diagonal terms of the surface wave Green's tensor are null, but not in anisotropic medium. This technique is applied to three-component synthetic seismograms computed in a transversely isotropic medium with a horizontal symmetry axis, using a spectral element code. The CCT is computed between each pair of stations and then rotated, to approximate the surface wave Green's tensor by minimizing the off-diagonal components. This procedure allows the calculation of the azimuthal variation of quasi-Rayleigh and quasi-Love waves. In an anisotropic medium, in some cases, the azimuth of seismic anisotropy can induce a large variation in the horizontal polarization of surface waves. This variation depends on the relative angle between a pair of stations and the direction of anisotropy, the amplitude of the anisotropy, the frequency band of the signal and the depth of the anisotropic layer.

  5. Drude weight of the spin-(1)/(2) XXZ chain: Density matrix renormalization group versus exact diagonalization

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Hauschild, J.; Langer, S.; Heidrich-Meisner, F.

    2013-06-01

    We revisit the problem of the spin Drude weight D of the integrable spin-1/2 XXZ chain using two complementary approaches, exact diagonalization (ED) and the time-dependent density-matrix renormalization group (tDMRG). We pursue two main goals. First, we present extensive results for the temperature dependence of D. By exploiting time translation invariance within tDMRG, one can extract D for significantly lower temperatures than in previous tDMRG studies. Second, we discuss the numerical quality of the tDMRG data and elaborate on details of the finite-size scaling of the ED results, comparing calculations carried out in the canonical and grand-canonical ensembles. Furthermore, we analyze the behavior of the Drude weight as the point with SU(2)-symmetric exchange is approached and discuss the relative contribution of the Drude weight to the sum rule as a function of temperature.

  6. The Reverse Time Migration technique coupled with Interior Penalty Discontinuous Galerkin method.

    NASA Astrophysics Data System (ADS)

    Baldassari, C.; Barucq, H.; Calandra, H.; Denel, B.; Diaz, J.

    2009-04-01

    Seismic imaging is based on the seismic reflection method which produces an image of the subsurface from reflected waves recordings by using a tomography process and seismic migration is the industrial standard to improve the quality of the images. The migration process consists in replacing the recorded wavefields at their actual place by using various mathematical and numerical methods but each of them follows the same schedule, according to the pioneering idea of Claerbout: numerical propagation of the source function (propagation) and of the recorded wavefields (retropropagation) and next, construction of the image by applying an imaging condition. The retropropagation step can be realized accouting for the time reversibility of the wave equation and the resulting algorithm is currently called Reverse Time Migration (RTM). To be efficient, especially in three dimensional domain, the RTM requires the solution of the full wave equation by fast numerical methods. Finite element methods are considered as the best discretization method for solving the wave equation, even if they lead to the solution of huge systems with several millions of degrees of freedom, since they use meshes adapted to the domain topography and the boundary conditions are naturally taken into account in the variational formulation. Among the different finite element families, the spectral element one (SEM) is very interesting because it leads to a diagonal mass matrix which dramatically reduces the cost of the numerical computation. Moreover this method is very accurate since it allows the use of high order finite elements. However, SEM uses meshes of the domain made of quadrangles in 2D or hexaedra in 3D which are difficult to compute and not always suitable for complex topographies. Recently, Grote et al. applied the IPDG (Interior Penalty Discontinuous Galerkin) method to the wave equation. This approach is very interesting since it relies on meshes with triangles in 2D or tetrahedra in 3D, which allows to handle the topography of the domain very accurately. Moreover, the fact that the resulting mass matrix is block-diagonal and that IPDG is compatible with the use of high-order finite element may let us suppose that its performances are similar to the ones of the SEM. In this presentation, we study the performances of IDPG through numerical comparisons with the SEM in 1D and 2D. We compare in particular the accuracy of the solutions obtained by the two methods with various order of approximation and the computational burden of the algorithms. The conclusion is IPDG and SEM perform similarly when considering low order finite elements while IPDG outperforms SEM in case of high order finite elements. Next we illustrate the impact of IPDG on the RTM, first through a simple configuration test (two-layered medium), then through realistic industrial applications in 2D.

  7. Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Singer, J.; Armstrong, J. T.

    2016-12-01

    Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.

  8. Diagonal and off-diagonal susceptibilities of conserved quantities in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arghya; Chatterjee, Sandeep; Nayak, Tapan K.; Ranjan Sahoo, Nihar

    2016-12-01

    Susceptibilities of conserved quantities, such as baryon number, strangeness and electric charge are sensitive to the onset of quantum chromodynamics phase transition, and are expected to provide information on the matter produced in heavy-ion collision experiments. A comprehensive study of the second order diagonal susceptibilities and cross correlations has been made within a thermal model approach of the hadron resonance gas model as well as with a hadronic transport model, ultra-relativistic quantum molecular dynamics. We perform a detailed analysis of the effect of detector acceptances and choice of particle species in the experimental measurements of the susceptibilities for heavy-ion collisions corresponding to \\sqrt{{s}{NN}} = 4 GeV to 200 GeV. The transverse momentum cutoff dependence of suitably normalised susceptibilities are proposed as useful observables to probe the properties of the medium at freezeout.

  9. Simple Approach to Renormalize the Cabibbo-Kobayashi-Maskawa Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniehl, Bernd A.; Sirlin, Alberto

    2006-12-01

    We present an on-shell scheme to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass and gauge-dependent wave function renormalization contributions, and to implement the on-shell renormalization of the former with nondiagonal mass counterterm matrices. Diagonalization of the complete mass matrix leads to an explicit CKM counterterm matrix, which automatically satisfies all the following important properties: it is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.

  10. NLTE steady-state response matrix method.

    NASA Astrophysics Data System (ADS)

    Faussurier, G.; More, R. M.

    2000-05-01

    A connection between atomic kinetics and non-equilibrium thermodynamics has been recently established by using a collisional-radiative model modified to include line absorption. The calculated net emission can be expressed as a non-local thermodynamic equilibrium (NLTE) symmetric response matrix. In the paper, this connection is extended to both cases of the average-atom model and the Busquet's model (RAdiative-Dependent IOnization Model, RADIOM). The main properties of the response matrix still remain valid. The RADIOM source function found in the literature leads to a diagonal response matrix, stressing the absence of any frequency redistribution among the frequency groups at this order of calculation.

  11. Simple expression for the quantum Fisher information matrix

    NASA Astrophysics Data System (ADS)

    Šafránek, Dominik

    2018-04-01

    Quantum Fisher information matrix (QFIM) is a cornerstone of modern quantum metrology and quantum information geometry. Apart from optimal estimation, it finds applications in description of quantum speed limits, quantum criticality, quantum phase transitions, coherence, entanglement, and irreversibility. We derive a surprisingly simple formula for this quantity, which, unlike previously known general expression, does not require diagonalization of the density matrix, and is provably at least as efficient. With a minor modification, this formula can be used to compute QFIM for any finite-dimensional density matrix. Because of its simplicity, it could also shed more light on the quantum information geometry in general.

  12. Symmetric tridiagonal structure preserving finite element model updating problem for the quadratic model

    NASA Astrophysics Data System (ADS)

    Rakshit, Suman; Khare, Swanand R.; Datta, Biswa Nath

    2018-07-01

    One of the most important yet difficult aspect of the Finite Element Model Updating Problem is to preserve the finite element inherited structures in the updated model. Finite element matrices are in general symmetric, positive definite (or semi-definite) and banded (tridiagonal, diagonal, penta-diagonal, etc.). Though a large number of papers have been published in recent years on various aspects of solutions of this problem, papers dealing with structure preservation almost do not exist. A novel optimization based approach that preserves the symmetric tridiagonal structures of the stiffness and damping matrices is proposed in this paper. An analytical expression for the global minimum solution of the associated optimization problem along with the results of numerical experiments obtained by both the analytical expressions and by an appropriate numerical optimization algorithm are presented. The results of numerical experiments support the validity of the proposed method.

  13. A Generalization of the Simultaneous Diagonalization of Hermitian Matrices and its Relation to Quantum Estimation Theory

    NASA Astrophysics Data System (ADS)

    Nagaoka, Hiroshi

    We study the problem of minimizing a quadratic quantity defined for given two Hermitian matrices X, Y and a positive-definite Hermitian matrix. This problem is reduced to the simultaneous diagonalization of X, Y when XY = YX. We derive a lower bound for the quantity, and in some special cases solve the problem by showing that the lower bound is achievable. This problem is closely related to a simultaneous measurement of quantum mechanical observables which are not commuting and has an application in the theory of quantum state estimation.

  14. Convergence to Diagonal Form of Block Jacobi-type Processes

    NASA Astrophysics Data System (ADS)

    Hari, Vjeran

    2008-09-01

    The main result of recent research on convergence to diagonal form of block Jacobi-type processes is presented. For this purpose, all notions needed to describe the result are introduced. In particular, elementary block transformation matrices, simple and non-simple algorithms, block pivot strategies together with the appropriate equivalence relations are defined. The general block Jacobi-type process considered here can be specialized to take the form of almost any known Jacobi-type method for solving the ordinary or the generalized matrix eigenvalue and singular value problems. The assumptions used in the result are satisfied by many concrete methods.

  15. Effects of Electronic Quantum Interference, Photonic-Crystal Cavity, Longitudinal Field and Surface-Plasmon- Polariton for Optical Amplification

    DTIC Science & Technology

    2008-04-09

    tfrequency of the probe field, h̄ωij is the energy separation between levels i and j , and βij,mn stands for the diagonal and off-diagonal radiative-decay rates...between levels i and j coupled by a dipole moment erij . In Fig. 1(b), we consider another three-level system with the upper two levels resonantly...broadening proportional to ΩR12 = Ω R 13. Electron scattering is found to create a dephasing to the induced optical coherence ρij with i 6= j . When the

  16. Selecting band combinations with thematic mapper data

    NASA Technical Reports Server (NTRS)

    Sheffield, C. A.

    1983-01-01

    A problem arises in making color composite images because there are 210 different possible color presentations of TM three-band images. A method is given for reducing that 210 to a single choice, decided by the statistics of a scene or subscene, and taking into full account any correlations that exist between different bands. Instead of using total variance as the measure for information content of the band triplets, the ellipsoid of maximum volume is selected which discourages selection of bands with high correlation. The band triplet is obtained by computing and ranking in order the determinants of each 3 x 3 principal submatrix of the original matrix M. After selection of the best triplet, the assignment of colors is made by using the actual variances (the diagonal elements of M): green (maximum variance), red (second largest variance), blue (smallest variance).

  17. Particle Tracking on the BNL Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell, G. F.

    1986-08-07

    Tracking studies including the effects of random multipole errors as well as the effects of random and systematic multipole errors have been made for RHIC. Initial results for operating at an off diagonal working point are discussed.

  18. Spinon excitation spectra of the J1-J2 chain from analytical calculations in the dimer basis and exact diagonalization

    NASA Astrophysics Data System (ADS)

    Lavarélo, Arthur; Roux, Guillaume

    2014-10-01

    The excitation spectrum of the frustrated spin-1/2 Heisenberg chain is reexamined using variational and exact diagonalization calculations. We show that the overlap matrix of the short-range resonating valence bond states basis can be inverted which yields tractable equations for single and two spinons excitations. Older results are recovered and new ones, such as the bond-state dispersion relation and its size with momentum at the Majumdar-Ghosh point are found. In particular, this approach yields a gap opening at J 2 = 0.25 J 1 and an onset of incommensurability in the dispersion relation at J 2 = 9/17 J 1 as in [S. Brehmer et al., J. Phys.: Condens. Matter 10, 1103 (1998)]. These analytical results provide a good support for the understanding of exact diagonalization spectra, assuming an independent spinons picture.

  19. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-09-01

    Multiconjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wave-front control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10-2 Hz, i.e., 4-5 orders of magnitude lower than the typical 103 Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  20. Novel formulations of CKM matrix renormalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniehl, Bernd A.; Sirlin, Alberto

    2009-12-17

    We review two recently proposed on-shell schemes for the renormalization of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix in the Standard Model. One first constructs gauge-independent mass counterterm matrices for the up- and down-type quarks complying with the hermiticity of the complete mass matrices. Diagonalization of the latter then leads to explicit expressions for the CKM counterterm matrix, which are gauge independent, preserve unitarity, and lead to renormalized amplitudes that are non-singular in the limit in which any two quarks become mass degenerate. One of the schemes also automatically satisfies flavor democracy.

  1. Spectral Line Parameters Including Temperature Dependences of Self- and Air-Broadening in the 2 (left arrow) 0 Band of CO at 2.3 micrometers

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Predoi-Cross, A.

    2012-01-01

    Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2<--0 band of C-12 O-16 from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high- purity (greater than or equal to 99.5% C-12-enriched) CO samples and CO diluted with dry air(research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman-Wallis coefficients), rather than determining individual line positions and intensities. Self-and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air-line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.

  2. Application of Statistical Learning Theory to Plankton Image Analysis

    DTIC Science & Technology

    2006-06-01

    linear distance interval from 1 to 40 pixels and two directions formula (horizontal & vertical, and diagonals), EF2 is EF with 7 ex- ponential distance...and four directions formula (horizontal, vertical and two diagonals). It is clear that exponential distance inter- val works better than the linear ...PSI - PS by Vincent, linear and pseudo opening and closing spectra, each has 40 elements, total feature length of 160. PS2 - PS modified from Mei- jster

  3. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meek, Garrett A.; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplingsmore » at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.« less

  4. Fast, exact k-space sample density compensation for trajectories composed of rotationally symmetric segments, and the SNR-optimized image reconstruction from non-Cartesian samples.

    PubMed

    Mitsouras, Dimitris; Mulkern, Robert V; Rybicki, Frank J

    2008-08-01

    A recently developed method for exact density compensation of non uniformly arranged samples relies on the analytically known cross-correlations of Fourier basis functions corresponding to the traced k-space trajectory. This method produces a linear system whose solution represents compensated samples that normalize the contribution of each independent element of information that can be expressed by the underlying trajectory. Unfortunately, linear system-based density compensation approaches quickly become computationally demanding with increasing number of samples (i.e., image resolution). Here, it is shown that when a trajectory is composed of rotationally symmetric interleaves, such as spiral and PROPELLER trajectories, this cross-correlations method leads to a highly simplified system of equations. Specifically, it is shown that the system matrix is circulant block-Toeplitz so that the linear system is easily block-diagonalized. The method is described and demonstrated for 32-way interleaved spiral trajectories designed for 256 image matrices; samples are compensated non iteratively in a few seconds by solving the small independent block-diagonalized linear systems in parallel. Because the method is exact and considers all the interactions between all acquired samples, up to a 10% reduction in reconstruction error concurrently with an up to 30% increase in signal to noise ratio are achieved compared to standard density compensation methods. (c) 2008 Wiley-Liss, Inc.

  5. A simple molecular mechanics integrator in mixed rigid body and dihedral angle space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitalis, Andreas, E-mail: a.vitalis@bioc.uzh.ch; Pappu, Rohit V.

    2014-07-21

    We propose a numerical scheme to integrate equations of motion in a mixed space of rigid-body and dihedral angle coordinates. The focus of the presentation is biomolecular systems and the framework is applicable to polymers with tree-like topology. By approximating the effective mass matrix as diagonal and lumping all bias torques into the time dependencies of the diagonal elements, we take advantage of the formal decoupling of individual equations of motion. We impose energy conservation independently for every degree of freedom and this is used to derive a numerical integration scheme. The cost of all auxiliary operations is linear inmore » the number of atoms. By coupling the scheme to one of two popular thermostats, we extend the method to sample constant temperature ensembles. We demonstrate that the integrator of choice yields satisfactory stability and is free of mass-metric tensor artifacts, which is expected by construction of the algorithm. Two fundamentally different systems, viz., liquid water and an α-helical peptide in a continuum solvent are used to establish the applicability of our method to a wide range of problems. The resultant constant temperature ensembles are shown to be thermodynamically accurate. The latter relies on detailed, quantitative comparisons to data from reference sampling schemes operating on exactly the same sets of degrees of freedom.« less

  6. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections

    NASA Astrophysics Data System (ADS)

    Meek, Garrett A.; Levine, Benjamin G.

    2016-05-01

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  7. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.

    PubMed

    Meek, Garrett A; Levine, Benjamin G

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  8. Laser photoelectron spectroscopy of MnH - and FeH - : Electronic structures of the metal hydrides, identification of a low-spin excited state of MnH, and evidence for a low-spin ground state of FeH

    NASA Astrophysics Data System (ADS)

    Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.

    1983-05-01

    The laser photoelectron spectra of MnH- and MnD-, and FeH- and FeD- are reported. A qualitative description of the electronic structure of the low-spin and high-spin states of the metal hydrides is developed, and used to interpret the spectra. A diagonal transition in the photodetachment to the known high-spin, 7Σ+, ground state of MnH is observed. An intense off-diagonal transition to a state of MnH, at 1725±50 cm-1 excitation energy, is attributed to loss of an antibonding electron from MnH-, to yield a low-spin quintet state of MnH. For FeH- the photodetachment to the ground state is an off-diagonal transition, attributed to loss of the antibonding electron from FeH-, to yield a low-spin quartet ground state of FeH. A diagonal transition results in an FeH state at 1945±55 cm-1; this state of FeH is assigned as the lowest-lying high-spin sextet state of FeH. An additional excited state of MnH and two other excited states of FeH are observed. Excitation energies for all the states are reported; vibrational frequencies and bond lengths for the ions and several states of the neutrals are also determined from the spectra. The electron affinity of MnH is found to be 0.869±0.010 eV; and the electron affinity of FeH is determined to be 0.934±0.011 eV. Spectroscopic constants for the various deuterides are also reported.

  9. Irreducible Brillouin conditions and contracted Schrödinger equations for n-electron systems. III. Systems of noninteracting electrons.

    PubMed

    Kutzelnigg, Werner; Mukherjee, Debashis

    2004-04-22

    We analyze the structure and the solutions of the irreducible k-particle Brillouin conditions (IBCk) and the irreducible contracted Schrödinger equations (ICSEk) for an n-electron system without electron interaction. This exercise is very instructive in that it gives one both the perspective and the strategies to be followed in applying the IBC and ICSE to physically realistic systems with electron interaction. The IBC1 leads to a Liouville equation for the one-particle density matrix gamma1=gamma, consistent with our earlier analysis that the IBC1 holds both for a pure and an ensemble state. The IBC1 or the ICSE1 must be solved subject to the constraints imposed by the n-representability condition, which is particularly simple for gamma. For a closed-shell state gamma is idempotent, i.e., all natural spin orbitals (NSO's) have occupation numbers 0 or 1, and all cumulants lambdak with k> or =2 vanish. For open-shell states there are NSO's with fractional occupation number, and at the same time nonvanishing elements of lambda2, which are related to spin and symmetry coupling. It is often useful to describe an open-shell state by a totally symmetric ensemble state. If one wants to treat a one-particle perturbation by means of perturbation theory, this mainly as a run-up for the study of a two-particle perturbation, one is faced with the problem that the perturbation expansion of the Liouville equation gives information only on the nondiagonal elements (in a basis of the unperturbed states) of gamma. There are essentially three possibilities to construct the diagonal elements of gamma: (i) to consider the perturbation expansion of the characteristic polynomial of gamma, especially the idempotency for closed-shell states, (ii) to rely on the ICSE1, which (at variance with the IBC1) also gives information on the diagonal elements, though not in a very efficient manner, and (iii) to formulate the perturbation theory in terms of a unitary transformation in Fock space. The latter is particularly powerful, especially, when one wishes to study realistic Hamiltonians with a two-body interaction. (c) 2004 American Institute of Physics

  10. Improvements in aircraft extraction programs

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.; Maine, R. E.

    1976-01-01

    Flight data from an F-8 Corsair and a Cessna 172 was analyzed to demonstrate specific improvements in the LRC parameter extraction computer program. The Cramer-Rao bounds were shown to provide a satisfactory relative measure of goodness of parameter estimates. It was not used as an absolute measure due to an inherent uncertainty within a multiplicative factor, traced in turn to the uncertainty in the noise bandwidth in the statistical theory of parameter estimation. The measure was also derived on an entirely nonstatistical basis, yielding thereby also an interpretation of the significance of off-diagonal terms in the dispersion matrix. The distinction between coefficients as linear and non-linear was shown to be important in its implication to a recommended order of parameter iteration. Techniques of improving convergence generally, were developed, and tested out on flight data. In particular, an easily implemented modification incorporating a gradient search was shown to improve initial estimates and thus remove a common cause for lack of convergence.

  11. New f-values in C I and the CNO abundances in the sun

    NASA Astrophysics Data System (ADS)

    Biemont, E.; Hibbert, A.; Godefroid, M.; Vaeck, N.

    1993-07-01

    In an attempt to refine our knowledge of the solar abundances of the CNO elements, we discuss the implications of a new accurate set of oscillator strengths recently calculated in intermediate coupling for the 2p(2Po)nl-2p(2Po)(n-prime)(l-prime) E1 transitions of astrophysical interest in C I and also for the forbidden transitions within the 2p-squared ground configuration. As with previous analyses devoted to nitrogen and oxygen, configuration interaction effects have been considered in the calculations in a detailed way and empirical adjustments have been introduced in the diagonal Hamiltonian matrix elements in order to improve the agreement between theoretical eigenvalues and experimental energy differences. The new LTE result, based on a sample of 55 E1 transitions observed in the visible and in the near-IR regions, is A(C) = 8.60 +/- 0.03 in the usual logarithmic scale. Taking departures from LTE into account leads, for a sample of 31 weak lines, to a mean result A(C) = 8.57 +/- 0.03 in agreement with recent determinations.

  12. Characterization of Fatigue Damage for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Paris, Isabelle; Cvitkovich, Michael; Krueger, Ronald

    2008-01-01

    The fatigue damage was characterized in specimens which consisted of a tapered composite flange bonded onto a composite skin. Quasi-static tension tests were performed first to determine the failure load. Subsequently, tension fatigue tests were performed at 40%, 50%, 60% and 70% of the failure load to evaluate the debonding mechanisms. For four specimens, the cycling loading was stopped at intervals. Photographs of the polished specimen edges were taken under a light microscope to document the damage. At two diagonally opposite corners of the flange, a delamination appeared to initiate at the flange tip from a matrix crack in the top 45deg skin ply and propagated at the top 45deg/-45deg skin ply interface. At the other two diagonally opposite corners, a delamination running in the bondline initiated from a matrix crack in the adhesive pocket. In addition, two specimens were cut longitudinally into several sections. Micrographs revealed a more complex pattern inside the specimen where the two delamination patterns observed at the edges are present simultaneously across most of the width of the specimen. The observations suggest that a more sophisticated nondestructive evaluation technique is required to capture the complex damage pattern of matrix cracking and multi-level delaminations.

  13. Interparameter trade-off quantification and reduction in isotropic-elastic full-waveform inversion: synthetic experiments and Hussar land data set application

    NASA Astrophysics Data System (ADS)

    Pan, Wenyong; Geng, Yu; Innanen, Kristopher A.

    2018-05-01

    The problem of inverting for multiple physical parameters in the subsurface using seismic full-waveform inversion (FWI) is complicated by interparameter trade-off arising from inherent ambiguities between different physical parameters. Parameter resolution is often characterized using scattering radiation patterns, but these neglect some important aspects of interparameter trade-off. More general analysis and mitigation of interparameter trade-off in isotropic-elastic FWI is possible through judiciously chosen multiparameter Hessian matrix-vector products. We show that products of multiparameter Hessian off-diagonal blocks with model perturbation vectors, referred to as interparameter contamination kernels, are central to the approach. We apply the multiparameter Hessian to various vectors designed to provide information regarding the strengths and characteristics of interparameter contamination, both locally and within the whole volume. With numerical experiments, we observe that S-wave velocity perturbations introduce strong contaminations into density and phase-reversed contaminations into P-wave velocity, but themselves experience only limited contaminations from other parameters. Based on these findings, we introduce a novel strategy to mitigate the influence of interparameter trade-off with approximate contamination kernels. Furthermore, we recommend that the local spatial and interparameter trade-off of the inverted models be quantified using extended multiparameter point spread functions (EMPSFs) obtained with pre-conditioned conjugate-gradient algorithm. Compared to traditional point spread functions, the EMPSFs appear to provide more accurate measurements for resolution analysis, by de-blurring the estimations, scaling magnitudes and mitigating interparameter contamination. Approximate eigenvalue volumes constructed with stochastic probing approach are proposed to evaluate the resolution of the inverted models within the whole model. With a synthetic Marmousi model example and a land seismic field data set from Hussar, Alberta, Canada, we confirm that the new inversion strategy suppresses the interparameter contamination effectively and provides more reliable density estimations in isotropic-elastic FWI as compared to standard simultaneous inversion approach.

  14. Understanding the determinants of volatility clustering in terms of stationary Markovian processes

    NASA Astrophysics Data System (ADS)

    Miccichè, S.

    2016-11-01

    Volatility is a key variable in the modeling of financial markets. The most striking feature of volatility is that it is a long-range correlated stochastic variable, i.e. its autocorrelation function decays like a power-law τ-β for large time lags. In the present work we investigate the determinants of such feature, starting from the empirical observation that the exponent β of a certain stock's volatility is a linear function of the average correlation of such stock's volatility with all other volatilities. We propose a simple approach consisting in diagonalizing the cross-correlation matrix of volatilities and investigating whether or not the diagonalized volatilities still keep some of the original volatility stylized facts. As a result, the diagonalized volatilities result to share with the original volatilities either the power-law decay of the probability density function and the power-law decay of the autocorrelation function. This would indicate that volatility clustering is already present in the diagonalized un-correlated volatilities. We therefore present a parsimonious univariate model based on a non-linear Langevin equation that well reproduces these two stylized facts of volatility. The model helps us in understanding that the main source of volatility clustering, once volatilities have been diagonalized, is that the economic forces driving volatility can be modeled in terms of a Smoluchowski potential with logarithmic tails.

  15. Effective Methods for Solving Band SLEs after Parabolic Nonlinear PDEs

    NASA Astrophysics Data System (ADS)

    Veneva, Milena; Ayriyan, Alexander

    2018-04-01

    A class of models of heat transfer processes in a multilayer domain is considered. The governing equation is a nonlinear heat-transfer equation with different temperature-dependent densities and thermal coefficients in each layer. Homogeneous Neumann boundary conditions and ideal contact ones are applied. A finite difference scheme on a special uneven mesh with a second-order approximation in the case of a piecewise constant spatial step is built. This discretization leads to a pentadiagonal system of linear equations (SLEs) with a matrix which is neither diagonally dominant, nor positive definite. Two different methods for solving such a SLE are developed - diagonal dominantization and symbolic algorithms.

  16. Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Fathololoumi, S.; Dupont, E.; Wasilewski, Z. R.; Chan, C. W. I.; Razavipour, S. G.; Laframboise, S. R.; Huang, Shengxi; Hu, Q.; Ban, D.; Liu, H. C.

    2013-03-01

    We experimentally investigated the effect of oscillator strength (radiative transition diagonality) on the performance of resonant phonon-based terahertz quantum cascade lasers that have been optimized using a simplified density matrix formalism. Our results show that the maximum lasing temperature (Tmax) is roughly independent of laser transition diagonality within the lasing frequency range of the devices under test (3.2-3.7 THz) when cavity loss is kept low. Furthermore, the threshold current can be lowered by employing more diagonal transition designs, which can effectively suppress parasitic leakage caused by intermediate resonance between the injection and the downstream extraction levels. Nevertheless, the current carrying capacity through the designed lasing channel in more diagonal designs may sacrifice even more, leading to electrical instability and, potentially, complete inhibition of the device's lasing operation. We propose a hypothesis based on electric-field domain formation and competition/switching of different current-carrying channels to explain observed electrical instability in devices with lower oscillator strengths. The study indicates that not only should designers maximize Tmax during device optimization but also they should always consider the risk of electrical instability in device operation.

  17. Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers

    NASA Astrophysics Data System (ADS)

    Bury, Marcin; van Hameren, Andreas; Jung, Hannes; Kutak, Krzysztof; Sapeta, Sebastian; Serino, Mirko

    2018-02-01

    A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high p_t dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization.

  18. Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers.

    PubMed

    Bury, Marcin; van Hameren, Andreas; Jung, Hannes; Kutak, Krzysztof; Sapeta, Sebastian; Serino, Mirko

    2018-01-01

    A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high [Formula: see text] dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization.

  19. Construction of SO(5)⊃SO(3) spherical harmonics and Clebsch-Gordan coefficients

    NASA Astrophysics Data System (ADS)

    Caprio, M. A.; Rowe, D. J.; Welsh, T. A.

    2009-07-01

    The SO(5)⊃SO(3) spherical harmonics form a natural basis for expansion of nuclear collective model angular wave functions. They underlie the recently-proposed algebraic method for diagonalization of the nuclear collective model Hamiltonian in an SU(1,1)×SO(5) basis. We present a computer code for explicit construction of the SO(5)⊃SO(3) spherical harmonics and use them to compute the Clebsch-Gordan coefficients needed for collective model calculations in an SO(3)-coupled basis. With these Clebsch-Gordan coefficients it becomes possible to compute the matrix elements of collective model observables by purely algebraic methods. Program summaryProgram title: GammaHarmonic Catalogue identifier: AECY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 346 421 No. of bytes in distributed program, including test data, etc.: 16 037 234 Distribution format: tar.gz Programming language: Mathematica 6 Computer: Any which supports Mathematica Operating system: Any which supports Mathematica; tested under Microsoft Windows XP and Linux Classification: 4.2 Nature of problem: Explicit construction of SO(5) ⊃ SO(3) spherical harmonics on S. Evaluation of SO(3)-reduced matrix elements and SO(5) ⊃ SO(3) Clebsch-Gordan coefficients (isoscalar factors). Solution method: Construction of SO(5) ⊃ SO(3) spherical harmonics by orthonormalization, obtained from a generating set of functions, according to the method of Rowe, Turner, and Repka [1]. Matrix elements and Clebsch-Gordan coefficients follow by construction and integration of SO(3) scalar products. Running time: Depends strongly on the maximum SO(5) and SO(3) representation labels involved. A few minutes for the calculation in the Mathematica notebook. References: [1] D.J. Rowe, P.S. Turner, J. Repka, J. Math. Phys. 45 (2004) 2761.

  20. Connective stability of nonlinear matrix systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1974-01-01

    Consideration of stability under structural perturbations of free dynamic systems described by the differential equation dx/dt = A(t,x)x, where the matrix A(t,x) has time-varying nonlinear elements. The concept of 'connective stability' is introduced to study the structural properties of competitive-cooperative nonlinear matrix systems. It is shown that stability reliability in such systems is high and that they remain stable despite time-varying (including 'on-off') interaction among individual agents present in the system. The results obtained can be used to study stability aspects of mathematical models arising in as diverse fields as economics, biology, arms races, and transistor circuits.

  1. Analytical effective tensor for flow-through composites

    DOEpatents

    Sviercoski, Rosangela De Fatima [Los Alamos, NM

    2012-06-19

    A machine, method and computer-usable medium for modeling an average flow of a substance through a composite material. Such a modeling includes an analytical calculation of an effective tensor K.sup.a suitable for use with a variety of media. The analytical calculation corresponds to an approximation to the tensor K, and follows by first computing the diagonal values, and then identifying symmetries of the heterogeneity distribution. Additional calculations include determining the center of mass of the heterogeneous cell and its angle according to a defined Cartesian system, and utilizing this angle into a rotation formula to compute the off-diagonal values and determining its sign.

  2. Unveiling magnetic interactions of ruthenium trichloride via constraining direction of orbital moments: Potential routes to realize a quantum spin liquid

    NASA Astrophysics Data System (ADS)

    Hou, Y. S.; Xiang, H. J.; Gong, X. G.

    2017-08-01

    Recent experiments reveal that the honeycomb ruthenium trichloride α -RuC l3 is a prime candidate of the Kitaev quantum spin liquid (QSL). However, there is no theoretical model which can properly describe its experimental dynamical response due to the lack of a full understanding of its magnetic interactions. Here, we propose a general scheme to calculate the magnetic interactions in systems (e.g., α -RuC l3 ) with nonnegligible orbital moments by constraining the directions of orbital moments. With this scheme, we put forward a minimal J1-K1-Γ1-J3-K3 model for α -RuC l3 and find that: (I) The third nearest neighbor (NN) antiferromagnetic Heisenberg interaction J3 stabilizes the zigzag antiferromagnetic order; (II) The NN symmetric off-diagonal exchange Γ1 plays a pivotal role in determining the preferred direction of magnetic moments and generating the spin wave gap. An exact diagonalization study on this model shows that the Kitaev QSL can be realized by suppressing the NN symmetric off-diagonal exchange Γ1 and the third NN Heisenberg interaction J3. Thus, we not only propose a powerful general scheme for investigating the intriguing magnetism of Jeff=1 /2 magnets, but also point out future directions for realizing the Kitaev QSL in the honeycomb ruthenium trichloride α -RuC l3 .

  3. Bending response of cross-ply laminated composite plates with diagonally perturbed localized interfacial degeneration.

    PubMed

    Kam, Chee Zhou; Kueh, Ahmad Beng Hong

    2013-01-01

    A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.

  4. An Unsteady Preconditioning Scheme Based on Convective-Upwind Split-Pressure (CUSP) Artificial Dissipation

    DTIC Science & Technology

    2014-01-07

    this can have a disastrous effect on convergence rate. Even if steady state is obtained for low Mach number flows (after many iterations ), the results...rally lead do a diagonally dominant left-hand-side matrix, which causes stability problems for implicit Gauss - Seidel schemes. For this reason, matrix... convergence at the stagnation point. The iterations for each airfoil is also reported in Fig. 2. Without preconditioning, dramatic efficiency problems are seen

  5. Excitation energies of particle-hole states in {sup 208}Pb and the surface delta interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heusler, A., E-mail: A.Heusler@mpi-hd.mpg.de; Jolos, R. V., E-mail: Jolos@theor.jinr.ru; Brentano, P. von, E-mail: Brentano@ikp.uni-koeln.de

    2013-07-15

    The schematic shell model without residual interaction (SSM) assumes the same excitation energy for all spins in each particle-hole configuration multiplet. In {sup 208}Pb, more than forty states are known to contain almost the full strength of a single particle-hole configuration. The experimental excitation energy for a state with a certain spin differs from the energy predicted by the SSM by -0.2 to +0.6 MeV. The multiplet splitting is calculated with the surface delta interaction; it corresponds to the diagonal matrix element of the residual interaction in the SSM. For states containing more than 90% strength of a certain configurationmore » and for the centroid of several completely observed configurations, the calculated multiplet splitting often approximates the experimental excitation energy within 30 keV. The strong mixing within some pairs of states containing the full strengths of two configurations is explained.« less

  6. Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle.

    PubMed

    Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu

    2017-02-26

    In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions.

  7. Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle

    PubMed Central

    Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu

    2017-01-01

    In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions. PMID:28245634

  8. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.

    1990-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  9. High-performance equation solvers and their impact on finite element analysis

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. D., Jr.

    1992-01-01

    The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.

  10. Nuclear quantum shape-phase transitions in odd-mass systems

    NASA Astrophysics Data System (ADS)

    Quan, S.; Li, Z. P.; Vretenar, D.; Meng, J.

    2018-03-01

    Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E 2 reduced transition matrix elements accurately reproduce available data and exhibit more-pronounced discontinuities at neutron number N =90 compared with the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared with the corresponding Sm isotopes.

  11. Some properties of the two-body effective interaction in the /sup 208/Pb region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groleau, R.

    The (/sup 3/He,d) and (/sup 4/He,t) single proton transfer reactions on /sup 208/Pb and /sup 209/Bi were studied using 30 and 40 MeV He beams from the Princeton Cyclotron Laboratory. The outgoing d and t were detected by a position sensitive proportional counter in the focal plane of a Q-3D spectrometer. The resolution varied between 10 and 14 keV (FWHM). Using the ratio of the cross-sections for the (/sup 3/He,d) and (/sup 4/He,t) reactions to determine the magnitude of the angular momentum transfers, the spectroscopic factors for the reaction on /sup 209/Bi have been measured relative to the transitions tomore » the single particle states in these reactions on /sup 208/Pb. Sum rules as developed by Bansal and French are used to study the configurations vertical bar h/sub 9/2 x h/sub 9/2/>, vertical bar h/sub 9/2/ x f/sub 7/2/>, vertical bar h/sub 9/2 x i/sub 13/2/>, vertical bar h/sub 9/2/ x f/sub 5/2/>and part of vertical bar h/sub 9/2/ x p/sub 3/2/> and vertical bar h/sub 9/2/ x p/sub 1/2>. Using the linear energy weighted sum rule, the diagonal matrix elements of the effective interaction between valence protons around the /sup 208/Pb core are deduced. The matrix elements obtained from a simple empirical interaction V/sub I//sup T=1/ of a pure Wigner type are compared to the extracted matrix elements. The interaction is characterized by an attractive short-range (0.82j and a repulsive long-range (8.2fm) potential: V/sub I//sup T = 1/ (MeV =-/96 e/sup - (r/0.82) /sup 2// + 0.51 e/sup -(r/8.2)/sup 2/. The core polarization is studied using the experimental static electric quadrupole and magnetic dipole moments of the nuclei in the /sup 208/Pb region. In general, the magnetic moments of multiple valence nucleon nuclei are well predicted by simple rules of Racah algebra. The three and four valence proton spectra (/sup 211/At and /sup 212/Rn) calculated with the experimental two particle matrix elements agree well with the experimental spectra.« less

  12. Log-Linear Modeling of Agreement among Expert Exposure Assessors

    PubMed Central

    Hunt, Phillip R.; Friesen, Melissa C.; Sama, Susan; Ryan, Louise; Milton, Donald

    2015-01-01

    Background: Evaluation of expert assessment of exposure depends, in the absence of a validation measurement, upon measures of agreement among the expert raters. Agreement is typically measured using Cohen’s Kappa statistic, however, there are some well-known limitations to this approach. We demonstrate an alternate method that uses log-linear models designed to model agreement. These models contain parameters that distinguish between exact agreement (diagonals of agreement matrix) and non-exact associations (off-diagonals). In addition, they can incorporate covariates to examine whether agreement differs across strata. Methods: We applied these models to evaluate agreement among expert ratings of exposure to sensitizers (none, likely, high) in a study of occupational asthma. Results: Traditional analyses using weighted kappa suggested potential differences in agreement by blue/white collar jobs and office/non-office jobs, but not case/control status. However, the evaluation of the covariates and their interaction terms in log-linear models found no differences in agreement with these covariates and provided evidence that the differences observed using kappa were the result of marginal differences in the distribution of ratings rather than differences in agreement. Differences in agreement were predicted across the exposure scale, with the likely moderately exposed category more difficult for the experts to differentiate from the highly exposed category than from the unexposed category. Conclusions: The log-linear models provided valuable information about patterns of agreement and the structure of the data that were not revealed in analyses using kappa. The models’ lack of dependence on marginal distributions and the ease of evaluating covariates allow reliable detection of observational bias in exposure data. PMID:25748517

  13. Diffusion in silicate melts: III. Empirical models for multicomponent diffusion

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Richter, Frank M.; Chamberlin, Laurinda

    1997-12-01

    Empirical models for multicomponent diffusion in an isotropic fluid were derived by splitting the component's dispersion velocity into two parts: (a) an intrinsic velocity which is proportional to each component's electrochemical potential gradient and independent of reference frame and (b) a net interaction velocity which is both model and reference frame dependent. Simple molecules (e.g., M pO q) were chosen as endmember components. The interaction velocity is assumed to be either the same for each component (leading to a common relaxation velocity U) or proportional to a common interaction force ( F). U or F is constrained by requiring no local buildup in either volume or charge. The most general form of the model-derived diffusion matrix [ D] can be written as a product of a model-dependent kinetic matrix [ L] and a model independent thermodynamic matrix [ G], [ D] = [ L] · [ G]. The elements of [ G] are functions of derivatives of chemical potential with respect to concentration. The elements of [ L] are functions of concentration and partial molar volume of the endmember components, Cio and Vio, and self diffusivity Di, and charge number zi of individual diffusing species. When component n is taken as the dependent variable they can be written in a common form L ij = D jδ ij + C io[V noD n - V joD j)A i + (p nz nD n - p jz jD j)B i] where the functional forms of the scaling factors Ai and Bi depend on the model considered. The off-diagonal element Lij ( i ≠ j) is directly proportional to the concentration of component i, and thus negligible when i is a dilute component. The salient feature of kinetic interaction or relaxation is to slow down larger (volume or charge) and faster diffusing components and to speed up smaller (volume or charge) and slower moving species, in order to prevent local volume or charge buildup. Empirical models for multicomponent diffusion were tested in the ternary system CaOAl 2O 3SiO 2 at 1500°C and 1 GPa over a large range of melt compositions. Model-derived diffusion matrices calculated using measured self diffusivities (Ca, Al, Si, and O), partial molar volumes, and activities were compared with experimentally derived diffusion matrices at two melt compositions. Chemical diffusion profiles computed using the model-derived diffusion matrices, accounting for the compositional dependency of self diffusivities and activity coefficients, were also compared with the experimentally measured ones. Good agreement was found between the ionic common-force model derived diffusion profiles and the experimentally measured ones. Secondary misfits could result from either inadequacies of the model or inaccuracies in activity-composition relationship. The results show that both kinetic interactions and thermodynamic nonideality contribute significantly to the observed diffusive coupling in the molten CaOAl 2O 3SiO 2.

  14. An experimental SMI adaptive antenna array simulator for weak interfering signals

    NASA Technical Reports Server (NTRS)

    Dilsavor, Ronald S.; Gupta, Inder J.

    1991-01-01

    An experimental sample matrix inversion (SMI) adaptive antenna array for suppressing weak interfering signals is described. The experimental adaptive array uses a modified SMI algorithm to increase the interference suppression. In the modified SMI algorithm, the sample covariance matrix is redefined to reduce the effect of thermal noise on the weights of an adaptive array. This is accomplished by subtracting a fraction of the smallest eigenvalue of the original covariance matrix from its diagonal entries. The test results obtained using the experimental system are compared with theoretical results. The two show a good agreement.

  15. Harmonizing Automatic Test System Assets, Drivers, and Control Methodologies

    DTIC Science & Technology

    1999-07-18

    ORGANIZATION PRINCIPAL AREAS OF INTEREST TO ATS NAME 1394 TA Firewire Trade Association Defining high speed bus protocol Active Group Accelerating ActiveX ...System Assets, Drivers, and Control Methodologies 17 JUL, 1999 component is a diagonal matrix containing scaling values such that when the three

  16. Dirac neutrinos with S4 flavor symmetry in warped extra dimensions

    NASA Astrophysics Data System (ADS)

    Ding, Gui-Jun; Zhou, Ye-Ling

    2013-11-01

    We present a warped extra dimension model with the custodial symmetry SU(2×SU(2×U(1×PLR based on the flavor symmetry S4×Z2×Z2', and the neutrinos are taken to be Dirac particles. At leading order, the democratic lepton mixing is derived exactly, and the high-dimensional operators introduce corrections of order λc to all the three lepton mixing angles such that agreement with the experimental data can be achieved. The neutrino mass spectrum is predicted to be of the inverted hierarchy and the second octant of θ23 is preferred. We suggest the modified democratic mixing, which is obtained by permuting the second and the third rows of the democratic mixing matrix, should be a good first order approximation to understanding sizable θ13 and the first octant of θ23. The constraints on the model from the electroweak precision measurements are discussed. Furthermore, we investigate the lepton mixing patterns for all the possible residual symmetries Gν and Gl in the neutrino and charged lepton sectors, respectively. For convenience, we work in the base in which m≡mlml† is diagonal, where ml is the charged lepton mass matrix. It is easy to see that the symmetry transformation matrix Gl, which is determined by the condition Gl†mGl=m, is a diagonal and non-degenerate 3×3 phase matrix. In the case that neutrinos are Majorana particles, the light neutrino mass matrix for DC mixing is of the form mνDC=UDC*diag(m1,m2,m3)UDC†. The symmetry transformations Gi, which satisfy GiTmνDCGi=mνDC, are determined to be G1=+u1u1†-u2u2†-u3u3†, G2=-u1u1†+u2u2†-u3u3† and G3=-u1u1†-u2u2†+u3u3† besides the identity transformation, where ui is the ith column of UDC. They satisfy Gi2=1, GiGj=GjGi=Gk(i≠j≠k). Consequently the symmetry group of the neutrino mass matrix mνDC is the Klein four group K4≅Z2×Z2. Denoting the underlying family symmetry group at high energies as G, then the symmetry transformations Gl and Gi should be the elements of G. In the case of G being a finite group, there should be some integers n and mi such that Gln=(=1 with n⩾3 which results from the requirement that Gl is non-degenerate. We have performed a systematic scan of the possible values of n up to n=200, we are unable to find solutions for the integers mi such that (=1, and hence the symmetry groups in these cases are infinite. Therefore we conclude that there is no discrete flavor symmetry group that contains all of the symmetries needed for the DC mixing, although one cannot rule out the possibility of a discrete group with a very large order. This is the reason why the discrete flavor symmetry origin of the DC mixing has not been proposed so far. Note that the S×S symmetry can immediately lead to the so-called democratic mass matrix in which each matrix element has the same value [53], where S and S are symmetric groups of degree three acting on the left-handed and the right-handed fermion fields respectively. However, the DC mixing cannot be uniquely determined by the democratic mass matrix, and in fact only the third row of DC mixing matrix is fixed.

  17. Direct recovery of mean gravity anomalies from satellite to satellite tracking

    NASA Technical Reports Server (NTRS)

    Hajela, D. P.

    1974-01-01

    The direct recovery was investigated of mean gravity anomalies from summed range rate observations, the signal path being ground station to a geosynchronous relay satellite to a close satellite significantly perturbed by the short wave features of the earth's gravitational field. To ensure realistic observations, these were simulated with the nominal orbital elements for the relay satellite corresponding to ATS-6, and for two different close satellites (one at about 250 km height, and the other at about 900 km height) corresponding to the nominal values for GEOS-C. The earth's gravitational field was represented by a reference set of potential coefficients up to degree and order 12, considered as known values, and by residual gravity anomalies obtained by subtracting the anomalies, implied by the potential coefficients, from their terrestrial estimates. It was found that gravity anomalies could be recovered from strong signal without using any a-priori terrestrial information, i.e. considering their initial values as zero and also assigning them a zero weight matrix. While recovering them from weak signal, it was necessary to use the a-priori estimate of the standard deviation of the anomalies to form their a-priori diagonal weight matrix.

  18. Strategies for vectorizing the sparse matrix vector product on the CRAY XMP, CRAY 2, and CYBER 205

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry

    1987-01-01

    Large, randomly sparse matrix vector products are important in a number of applications in computational chemistry, such as matrix diagonalization and the solution of simultaneous equations. Vectorization of this process is considered for the CRAY XMP, CRAY 2, and CYBER 205, using a matrix of dimension of 20,000 with from 1 percent to 6 percent nonzeros. Efficient scatter/gather capabilities add coding flexibility and yield significant improvements in performance. For the CYBER 205, it is shown that minor changes in the IO can reduce the CPU time by a factor of 50. Similar changes in the CRAY codes make a far smaller improvement.

  19. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics.

    PubMed

    Gilles, Luc; Ellerbroek, Brent L; Vogel, Curtis R

    2003-09-10

    Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

  20. Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves

    USGS Publications Warehouse

    Haney, Matthew M.; Mikesell, T. Dylan; van Wijk, Kasper; Nakahara, Hisashi

    2012-01-01

    Using ambient seismic noise for imaging subsurface structure dates back to the development of the spatial autocorrelation (SPAC) method in the 1950s. We present a theoretical analysis of the SPAC method for multicomponent recordings of surface waves to determine the complete 3 × 3 matrix of correlations between all pairs of three-component motions, called the correlation matrix. In the case of isotropic incidence, when either Rayleigh or Love waves arrive from all directions with equal power, the only non-zero off-diagonal terms in the matrix are the vertical–radial (ZR) and radial–vertical (RZ) correlations in the presence of Rayleigh waves. Such combinations were not considered in the development of the SPAC method. The method originally addressed the vertical–vertical (ZZ), RR and TT correlations, hence the name spatial autocorrelation. The theoretical expressions we derive for the ZR and RZ correlations offer additional ways to measure Rayleigh wave dispersion within the SPAC framework. Expanding on the results for isotropic incidence, we derive the complete correlation matrix in the case of generally anisotropic incidence. We show that the ZR and RZ correlations have advantageous properties in the presence of an out-of-plane directional wavefield compared to ZZ and RR correlations. We apply the results for mixed-component correlations to a data set from Akutan Volcano, Alaska and find consistent estimates of Rayleigh wave phase velocity from ZR compared to ZZ correlations. This work together with the recently discovered connections between the SPAC method and time-domain correlations of ambient noise provide further insights into the retrieval of surface wave Green’s functions from seismic noise.

  1. Extraction-controlled terahertz frequency quantum cascade lasers with a diagonal LO-phonon extraction and injection stage.

    PubMed

    Han, Y J; Li, L H; Grier, A; Chen, L; Valavanis, A; Zhu, J; Freeman, J R; Isac, N; Colombelli, R; Dean, P; Davies, A G; Linfield, E H

    2016-12-12

    We report an extraction-controlled terahertz (THz)-frequency quantum cascade laser design in which a diagonal LO-phonon scattering process is used to achieve efficient current injection into the upper laser level of each period and simultaneously extract electrons from the adjacent period. The effects of the diagonality of the radiative transition are investigated, and a design with a scaled oscillator strength of 0.45 is shown experimentally to provide the highest temperature performance. A 3.3 THz device processed into a double-metal waveguide configuration operated up to 123 K in pulsed mode, with a threshold current density of 1.3 kA/cm2 at 10 K. The QCL structures are modeled using an extended density matrix approach, and the large threshold current is attributed to parasitic current paths associated with the upper laser levels. The simplicity of this design makes it an ideal platform to investigate the scattering injection process.

  2. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method

    DOE PAGES

    Grayver, Alexander V.; Kolev, Tzanio V.

    2015-11-01

    Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less

  3. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayver, Alexander V.; Kolev, Tzanio V.

    Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less

  4. Symmetrized density matrix renormalization group algorithm for low-lying excited states of conjugated carbon systems: Application to 1,12-benzoperylene and polychrysene

    NASA Astrophysics Data System (ADS)

    Prodhan, Suryoday; Ramasesha, S.

    2018-05-01

    The symmetry adapted density matrix renormalization group (SDMRG) technique has been an efficient method for studying low-lying eigenstates in one- and quasi-one-dimensional electronic systems. However, the SDMRG method had bottlenecks involving the construction of linearly independent symmetry adapted basis states as the symmetry matrices in the DMRG basis were not sparse. We have developed a modified algorithm to overcome this bottleneck. The new method incorporates end-to-end interchange symmetry (C2) , electron-hole symmetry (J ) , and parity or spin-flip symmetry (P ) in these calculations. The one-to-one correspondence between direct-product basis states in the DMRG Hilbert space for these symmetry operations renders the symmetry matrices in the new basis with maximum sparseness, just one nonzero matrix element per row. Using methods similar to those employed in the exact diagonalization technique for Pariser-Parr-Pople (PPP) models, developed in the 1980s, it is possible to construct orthogonal SDMRG basis states while bypassing the slow step of the Gram-Schmidt orthonormalization procedure. The method together with the PPP model which incorporates long-range electronic correlations is employed to study the correlated excited-state spectra of 1,12-benzoperylene and a narrow mixed graphene nanoribbon with a chrysene molecule as the building unit, comprising both zigzag and cove-edge structures.

  5. Isovector and isoscalar tensor charges of the nucleon from lattice QCD

    DOE PAGES

    Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Cohen, Saul D.; ...

    2015-11-01

    Here, we present results for the isovector and flavor diagonal tensor charges g u–d T, g u T, g d T, and g s T needed to probe novel tensor interactions at the TeV scale in neutron and nuclear β-decays and the contribution of the quark electric dipole moment (EDM) to the neutron EDM. The lattice QCD calculations were done using nine ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2+1+1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06, 0.09 and 0.12 fm and three quark masses corresponding to the pionmore » masses M π ≈ 130, 220 and 310 MeV. Using estimates from these ensembles, we quantify all systematic uncertainties and perform a simultaneous extrapolation in the lattice spacing, volume and light quark masses for the connected contributions. The final estimates of the connected nucleon (proton) tensor charge for the isovector combination is g u–d T = 1.020(76) in the MS¯ scheme at 2 GeV. The additional disconnected quark loop contributions needed for the flavor-diagonal matrix elements are calculated using a stochastic estimator employing the truncated solver method with the all-mode-averaging technique. We find that the size of the disconnected contribution is smaller than the statistical error in the connected contribution. This allows us to bound the disconnected contribution and include it as an additional uncertainty in the flavor-diagonal charges. After a continuum extrapolation, we find g u T = 0.774(66), g d T = –0.233(28) and g u+d T = 0.541(67). The strangeness tensor charge, that can make a significant contribution to the neutron EDM due to the large ratio m s/m u,d, is g s T = 0.008(9) in the continuum limit.« less

  6. Separability and Entanglement in the Hilbert Space Reference Frames Related Through the Generic Unitary Transform for Four Level System

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Markovich, L. A.

    2018-02-01

    Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.

  7. Dynamic current susceptibility as a probe of Majorana bound states in nanowire-based Josephson junctions

    NASA Astrophysics Data System (ADS)

    Trif, Mircea; Dmytruk, Olesia; Bouchiat, Hélène; Aguado, Ramón; Simon, Pascal

    2018-02-01

    We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density-matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-dependent susceptibility using both microscopic and effective low-energy descriptions for the nanowire. We find that the diagonal component of the susceptibility, associated with the dynamics of the Majorana state populations, dominates over the standard Kubo contribution for a wide range of experimentally relevant parameters. The diagonal term, explored, in this Rapid Communication, in the context of Majorana physics, allows probing accurately the presence of Majorana bound states in the junction.

  8. Efficient Broadband Simulation of Fluid-Structure Coupling for Membrane-Type Acoustic Transducer Arrays Using the Multilevel Fast Multipole Algorithm.

    PubMed

    Shieh, Bernard; Sabra, Karim G; Degertekin, F Levent

    2016-11-01

    A boundary element model provides great flexibility for the simulation of membrane-type micromachined ultrasonic transducers (MUTs) in terms of membrane shape, actuating mechanism, and array layout. Acoustic crosstalk is accounted for through a mutual impedance matrix that captures the primary crosstalk mechanism of dispersive-guided modes generated at the fluid-solid interface. However, finding the solution to the fully populated boundary element matrix equation using standard techniques requires computation time and memory usage that scales by the cube and by the square of the number of nodes, respectively, limiting simulation to a small number of membranes. We implement a solver with improved speed and efficiency through the application of a multilevel fast multipole algorithm (FMA). By approximating the fields of collections of nodes using multipole expansions of the free-space Green's function, an FMA solver can enable the simulation of hundreds of thousands of nodes while incurring an approximation error that is controllable. Convergence is drastically improved using a problem-specific block-diagonal preconditioner. We demonstrate the solver's capabilities by simulating a 32-element 7-MHz 1-D capacitive MUT (CMUT) phased array with 2880 membranes. The array is simulated using 233280 nodes for a very wide frequency band up to 50 MHz. For a simulation with 15210 nodes, the FMA solver performed ten times faster and used 32 times less memory than a standard solver based on LU decomposition. We investigate the effects of mesh density and phasing on the predicted array response and find that it is necessary to use about seven nodes over the width of the membrane to observe convergence of the solution-even below the first membrane resonance frequency-due to the influence of higher order membrane modes.

  9. Efficient Parallel Formulations of Hierarchical Methods and Their Applications

    NASA Astrophysics Data System (ADS)

    Grama, Ananth Y.

    1996-01-01

    Hierarchical methods such as the Fast Multipole Method (FMM) and Barnes-Hut (BH) are used for rapid evaluation of potential (gravitational, electrostatic) fields in particle systems. They are also used for solving integral equations using boundary element methods. The linear systems arising from these methods are dense and are solved iteratively. Hierarchical methods reduce the complexity of the core matrix-vector product from O(n^2) to O(n log n) and the memory requirement from O(n^2) to O(n). We have developed highly scalable parallel formulations of a hybrid FMM/BH method that are capable of handling arbitrarily irregular distributions. We apply these formulations to astrophysical simulations of Plummer and Gaussian galaxies. We have used our parallel formulations to solve the integral form of the Laplace equation. We show that our parallel hierarchical mat-vecs yield high efficiency and overall performance even on relatively small problems. A problem containing approximately 200K nodes takes under a second to compute on 256 processors and yet yields over 85% efficiency. The efficiency and raw performance is expected to increase for bigger problems. For the 200K node problem, our code delivers about 5 GFLOPS of performance on a 256 processor T3D. This is impressive considering the fact that the problem has floating point divides and roots, and very little locality resulting in poor cache performance. A dense matrix-vector product of the same dimensions would require about 0.5 TeraBytes of memory and about 770 TeraFLOPS of computing speed. Clearly, if the loss in accuracy resulting from the use of hierarchical methods is acceptable, our code yields significant savings in time and memory. We also study the convergence of a GMRES solver built around this mat-vec. We accelerate the convergence of the solver using three preconditioning techniques: diagonal scaling, block-diagonal preconditioning, and inner-outer preconditioning. We study the performance and parallel efficiency of these preconditioned solvers. Using this solver, we solve dense linear systems with hundreds of thousands of unknowns. Solving a 105K unknown problem takes about 10 minutes on a 64 processor T3D. Until very recently, boundary element problems of this magnitude could not even be generated, let alone solved.

  10. Molecular origin of differences in hole and electron mobility in amorphous Alq3--a multiscale simulation study.

    PubMed

    Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian

    2012-03-28

    In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.

  11. Minimizing energy dissipation of matrix multiplication kernel on Virtex-II

    NASA Astrophysics Data System (ADS)

    Choi, Seonil; Prasanna, Viktor K.; Jang, Ju-wook

    2002-07-01

    In this paper, we develop energy-efficient designs for matrix multiplication on FPGAs. To analyze the energy dissipation, we develop a high-level model using domain-specific modeling techniques. In this model, we identify architecture parameters that significantly affect the total energy (system-wide energy) dissipation. Then, we explore design trade-offs by varying these parameters to minimize the system-wide energy. For matrix multiplication, we consider a uniprocessor architecture and a linear array architecture to develop energy-efficient designs. For the uniprocessor architecture, the cache size is a parameter that affects the I/O complexity and the system-wide energy. For the linear array architecture, the amount of storage per processing element is a parameter affecting the system-wide energy. By using maximum amount of storage per processing element and minimum number of multipliers, we obtain a design that minimizes the system-wide energy. We develop several energy-efficient designs for matrix multiplication. For example, for 6×6 matrix multiplication, energy savings of upto 52% for the uniprocessor architecture and 36% for the linear arrary architecture is achieved over an optimized library for Virtex-II FPGA from Xilinx.

  12. Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales

    NASA Astrophysics Data System (ADS)

    Winter, Stephen M.; Li, Ying; Jeschke, Harald O.; Valentí, Roser

    2016-06-01

    In this study, we reanalyze the magnetic interactions in the Kitaev spin-liquid candidate materials Na2IrO3,α -RuCl3 , and α -Li2IrO3 using nonperturbative exact diagonalization methods. These methods are more appropriate given the relatively itinerant nature of the systems suggested in previous works. We treat all interactions up to third neighbors on equal footing. The computed terms reveal significant long-range coupling, bond anisotropy, and/or off-diagonal couplings which we argue naturally explain the observed ordered phases in these systems. Given these observations, the potential for realizing the spin-liquid state in real materials is analyzed, and synthetic challenges are defined and explained.

  13. Detail of tension bars at end posts western truss. Shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of tension bars at end posts western truss. Shows adjustable bars at top of structure; diagonal and vertical members on truss are not adjustable. Looking north from civilian land. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  14. Obtaining manufactured geometries of deep-drawn components through a model updating procedure using geometric shape parameters

    NASA Astrophysics Data System (ADS)

    Balla, Vamsi Krishna; Coox, Laurens; Deckers, Elke; Plyumers, Bert; Desmet, Wim; Marudachalam, Kannan

    2018-01-01

    The vibration response of a component or system can be predicted using the finite element method after ensuring numerical models represent realistic behaviour of the actual system under study. One of the methods to build high-fidelity finite element models is through a model updating procedure. In this work, a novel model updating method of deep-drawn components is demonstrated. Since the component is manufactured with a high draw ratio, significant deviations in both profile and thickness distributions occurred in the manufacturing process. A conventional model updating, involving Young's modulus, density and damping ratios, does not lead to a satisfactory match between simulated and experimental results. Hence a new model updating process is proposed, where geometry shape variables are incorporated, by carrying out morphing of the finite element model. This morphing process imitates the changes that occurred during the deep drawing process. An optimization procedure that uses the Global Response Surface Method (GRSM) algorithm to maximize diagonal terms of the Modal Assurance Criterion (MAC) matrix is presented. This optimization results in a more accurate finite element model. The advantage of the proposed methodology is that the CAD surface of the updated finite element model can be readily obtained after optimization. This CAD model can be used for carrying out analysis, as it represents the manufactured part more accurately. Hence, simulations performed using this updated model with an accurate geometry, will therefore yield more reliable results.

  15. Diffusion of multi-isotopic chemical species in molten silicates

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Liang, Yan; Richter, Frank; Ryerson, Frederick J.; DePaolo, Donald J.

    2014-08-01

    Diffusion experiments in a simplified Na2O-CaO-SiO2 liquid system are used to develop a general formulation for the fractionation of Ca isotopes during liquid-phase diffusion. Although chemical diffusion is a well-studied process, the mathematical description of the effects of diffusion on the separate isotopes of a chemical element is surprisingly underdeveloped and uncertain. Kinetic theory predicts a mass dependence on isotopic mobility, but it is unknown how this translates into a mass dependence on effective binary diffusion coefficients, or more generally, the chemical diffusion coefficients that are housed in a multicomponent diffusion matrix. Our experiments are designed to measure Ca mobility, effective binary diffusion coefficients, the multicomponent diffusion matrix, and the effects of chemical diffusion on Ca isotopes in a liquid of single composition. We carried out two chemical diffusion experiments and one self-diffusion experiment, all at 1250 °C and 0.7 GPa and using a bulk composition for which other information is available from the literature. The self-diffusion experiment is used to determine the mobility of Ca in the absence of diffusive fluxes of other liquid components. The chemical diffusion experiments are designed to determine the effect on Ca isotope fractionation of changing the counter-diffusing component from fast-diffusing Na2O to slow-diffusing SiO2. When Na2O is the main counter-diffusing species, CaO diffusion is fast and larger Ca isotopic effects are generated. When SiO2 is the main counter-diffusing species, CaO diffusion is slow and smaller Ca isotopic effects are observed. In both experiments, the liquid is initially isotopically homogeneous, and during the experiment Ca isotopes become fractionated by diffusion. The results are used as a test of a new general expression for the diffusion of isotopes in a multicomponent liquid system that accounts for both self diffusion and the effects of counter-diffusing species. Our results show that (1) diffusive isotopic fractionations depend on the direction of diffusion in composition space, (2) diffusive isotopic fractionations scale with effective binary diffusion coefficient, as previously noted by Watkins et al. (2011), (3) self-diffusion is not decoupled from chemical diffusion, (4) self diffusion can be faster than or slower than chemical diffusion and (5) off-diagonal terms in the chemical diffusion matrix have isotopic mass-dependence. The results imply that relatively large isotopic fractionations can be generated by multicomponent diffusion even in the absence of large concentration gradients of the diffusing element. The new formulations for isotope diffusion can be tested with further experimentation and provide an improved framework for interpreting mass-dependent isotopic variations in natural liquids.

  16. Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix

    NASA Technical Reports Server (NTRS)

    Llama, Eduardo Garcia

    2011-01-01

    In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.

  17. Bayesian source term determination with unknown covariance of measurements

    NASA Astrophysics Data System (ADS)

    Belal, Alkomiet; Tichý, Ondřej; Šmídl, Václav

    2017-04-01

    Determination of a source term of release of a hazardous material into the atmosphere is a very important task for emergency response. We are concerned with the problem of estimation of the source term in the conventional linear inverse problem, y = Mx, where the relationship between the vector of observations y is described using the source-receptor-sensitivity (SRS) matrix M and the unknown source term x. Since the system is typically ill-conditioned, the problem is recast as an optimization problem minR,B(y - Mx)TR-1(y - Mx) + xTB-1x. The first term minimizes the error of the measurements with covariance matrix R, and the second term is a regularization of the source term. There are different types of regularization arising for different choices of matrices R and B, for example, Tikhonov regularization assumes covariance matrix B as the identity matrix multiplied by scalar parameter. In this contribution, we adopt a Bayesian approach to make inference on the unknown source term x as well as unknown R and B. We assume prior on x to be a Gaussian with zero mean and unknown diagonal covariance matrix B. The covariance matrix of the likelihood R is also unknown. We consider two potential choices of the structure of the matrix R. First is the diagonal matrix and the second is a locally correlated structure using information on topology of the measuring network. Since the inference of the model is intractable, iterative variational Bayes algorithm is used for simultaneous estimation of all model parameters. The practical usefulness of our contribution is demonstrated on an application of the resulting algorithm to real data from the European Tracer Experiment (ETEX). This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI).

  18. A Diagonal-Steering-Based Binaural Beamforming Algorithm Incorporating a Diagonal Speech Localizer for Persons With Bilateral Hearing Impairment.

    PubMed

    Lee, Jun Chang; Nam, Kyoung Won; Jang, Dong Pyo; Kim, In Young

    2015-12-01

    Previously suggested diagonal-steering algorithms for binaural hearing support devices have commonly assumed that the direction of the speech signal is known in advance, which is not always the case in many real circumstances. In this study, a new diagonal-steering-based binaural speech localization (BSL) algorithm is proposed, and the performances of the BSL algorithm and the binaural beamforming algorithm, which integrates the BSL and diagonal-steering algorithms, were evaluated using actual speech-in-noise signals in several simulated listening scenarios. Testing sounds were recorded in a KEMAR mannequin setup and two objective indices, improvements in signal-to-noise ratio (SNRi ) and segmental SNR (segSNRi ), were utilized for performance evaluation. Experimental results demonstrated that the accuracy of the BSL was in the 90-100% range when input SNR was -10 to +5 dB range. The average differences between the γ-adjusted and γ-fixed diagonal-steering algorithms (for -15 to +5 dB input SNR) in the talking in the restaurant scenario were 0.203-0.937 dB for SNRi and 0.052-0.437 dB for segSNRi , and in the listening while car driving scenario, the differences were 0.387-0.835 dB for SNRi and 0.259-1.175 dB for segSNRi . In addition, the average difference between the BSL-turned-on and the BSL-turned-off cases for the binaural beamforming algorithm in the listening while car driving scenario was 1.631-4.246 dB for SNRi and 0.574-2.784 dB for segSNRi . In all testing conditions, the γ-adjusted diagonal-steering and BSL algorithm improved the values of the indices more than the conventional algorithms. The binaural beamforming algorithm, which integrates the proposed BSL and diagonal-steering algorithm, is expected to improve the performance of the binaural hearing support devices in noisy situations. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  20. Quench action and Rényi entropies in integrable systems

    NASA Astrophysics Data System (ADS)

    Alba, Vincenzo; Calabrese, Pasquale

    2017-09-01

    Entropy is a fundamental concept in equilibrium statistical mechanics, yet its origin in the nonequilibrium dynamics of isolated quantum systems is not fully understood. A strong consensus is emerging around the idea that the stationary thermodynamic entropy is the von Neumann entanglement entropy of a large subsystem embedded in an infinite system. Also motivated by cold-atom experiments, here we consider the generalization to Rényi entropies. We develop a new technique to calculate the diagonal Rényi entropy in the quench action formalism. In the spirit of the replica treatment for the entanglement entropy, the diagonal Rényi entropies are generalized free energies evaluated over a thermodynamic macrostate which depends on the Rényi index and, in particular, is not the same state describing von Neumann entropy. The technical reason for this perhaps surprising result is that the evaluation of the moments of the diagonal density matrix shifts the saddle point of the quench action. An interesting consequence is that different Rényi entropies encode information about different regions of the spectrum of the postquench Hamiltonian. Our approach provides a very simple proof of the long-standing issue that, for integrable systems, the diagonal entropy is half of the thermodynamic one and it allows us to generalize this result to the case of arbitrary Rényi entropy.

  1. Dipole-resonance assisted isomerization in the electronic ground state using few-cycle infrared pulses.

    PubMed

    Skocek, Oliver; Uiberacker, Christoph; Jakubetz, Werner

    2011-06-30

    A computational investigation of HCN → HNC isomerization in the electronic ground state by one- and few-cycle infrared pulses is presented. Starting from a vibrationally pre-excited reagent state, isomerization yields of more than 50% are obtained using single one- to five-cycle pulses. The principal mechanism includes two steps of population transfer by dipole-resonance (DR), and hence, the success of the method is closely linked to the polarity of the system and, in particular, the stepwise change of the dipole moment from reactant to transition state and on to products. The yield drops massively if the diagonal dipole matrix elements are artificially set to zero. In detail, the mechanism includes DR-induced preparation of a delocalized vibrational wavepacket, which traverses the barrier region and is finally trapped in the product well by DR-dominated de-excitation. The excitation and de-excitation steps are triggered by pulse lobes of opposite field direction. As the number of optical cycles is increased, the leading field lobes prepare a vibrational superposition state by off-resonant ladder climbing, which is then subjected to the three steps of the principal isomerization mechanism. DR excitation is more efficient from a preformed vibrational wavepacket than from a molecular eigenstate. The entire process can be loosely described as Tannor-Kosloff-Rice type transfer mechanism on a single potential surface effected by a single pulse, individual field lobes assuming the roles of pump- and dump-pulses. Pre-excitation to a transient wavepacket can be enhanced by applying a separate, comparatively weak few-cycle prepulse, in which the prepulse prepares a vibrational wavepacket. The two-pulse setup corresponds to a double Tannor-Kosloff-Rice control scheme on a single potential surface.

  2. Line parameters for CO2- and self-broadening in the ν3 band of HD16O

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Smith, Mary Ann H.; Mantz, Arlan W.; Villanueva, Geronimo L.

    2017-12-01

    Pressure-broadened line shape parameters of transitions in the ν3 band of HDO (ν0 = 3707.4 cm-1) were measured from spectra of HDO and mixtures of HDO and CO2 for application to accurate retrievals of HDO abundances and D/H ratios for CO2-rich planetary atmospheres of Mars and Venus. A few calculated line lists have recently been published on HDO-CO2 line shapes and their temperature dependences, but the present study represents the first laboratory measurements of those parameters in the ν3 band; Measurements for nearly 100 transitions in the ν3 band have been made. Room temperature measurements of self-broadened width and shift coefficients for all of these transitions, line mixing via off-diagonal relaxation matrix element coefficients and quadratic speed dependence parameter were measured for the majority of these transitions. All these measurements were made by simultaneously fitting eleven high-resolution spectra of HDO and HDO-CO2 mixtures at various temperatures and pressures recorded with the Bruker Fourier transform spectrometer at the Jet Propulsion Laboratory. Two specially built coolable absorption cells with path lengths of 20.38 cm and 20.941 m were used to contain the sample mixtures. Multispectrum nonlinear least squares fitting algorithm was employed in the analysis. Calculations using the Modified Complex Robert-Bonamy formalism (MCRB) were made for the half-width coefficients, their temperature dependences and pressure shift coefficients for the HDO-CO2 and HDO-HDO collision systems. The calculations were made for all ν3 band transitions in the 1100-4100 cm-1 region on the HITRAN2012 database. Present measurements are compared with the MCRB calculations and other literature values.

  3. Line Shape Parameters of Water Vapor Transitions in the 3645-3975 cm^{-1} Region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.; Vispoel, Bastien; Renaud, Candice L.; Smith, Mary Ann H.; Sams, Robert L.; Blake, Thomas A.

    2017-06-01

    A Bruker IFS 120HR Fourier transform spectrometer (FTS) at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra in the regions of the ν_1 and ν_3 bands of H_2O. The samples included low pressures of pure H_2O as well as H_2O broadened by air at different pressures, temperatures and volume mixing ratios. We fit simultaneously 16 high-resolution (0.008 cm^{-1}), high S/N ratio absorption spectra recorded at 268, 296 and 353 K (L=19.95 cm), employing a multispectrum fitting technique to retrieve accurate line positions, relative intensities, Lorentz air-broadened half-width and pressure-shift coefficients and their temperature dependences for more than 220 H_2O transitions. Self-broadened half-width and self-shift coefficients were measured for over 100 transitions. For select sets of transition pairs for the H_2O-air system we determined collisional line mixing coefficients via the off-diagonal relaxation matrix element formalism, and we also measured speed dependence parameters for 85 transitions. Modified Complex Robert Bonamy (MCRB) calculations of the half-widths, line shifts, and temperature dependences were made for self-, N_2-, O_2-, and air-broadening. The measurements and calculations are compared with each other and with similar parameters reported in the literature. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith, D. Atkins, JQSRT 53 (1995) 705-721. A. Levy, N. Lacome, C. Chackerian, Collisional line mixing, in Spectroscopy of the Earth's Atmosphere and Interstellar Medium, Academic Press, Inc., Boston (1992) 261-337.

  4. Self- and Air-Broadened Line Shapes in the 2v3 P and R Branches of 12CH4

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Yu, Shanshan; Brown, Linda R.; Smith, Mary Ann H.; Mantz, Arlan W.; Boudon, Vincent; Ismail, Syed

    2015-01-01

    In this paper we report line shape parameters of 12CH4 for several hundred 2V(sub 3) transitions in the spectral regions 5891-5996 cm( exp -1) (P branch) and 6015-6115 cm(exp -1) (R branch). Air- and self-broadening coefficients were measured as a function of temperature; line mixing via off-diagonal relaxation matrix element coefficients was also obtained for 47 transition pairs. In total, nearly 1517 positions and intensities were retrieved, but many transitions were too weak for the line shape study. For this analysis, we used 25 high-resolution (0.0056 and 0.0067 cm(ex[ -1) and high signal-to-noise (S/N) spectra of high-purity 12CH4 and the same high-purity 12CH4 broadened by dry air recorded at different sample temperatures between 130 K and 295 K with the Bruker IFS 125HR Fourier transform spectrometer at JPL. Three different absorption cells were used (1) a White cell set to a path length of 13.09 m for room temperature data, (2) a single-pass 0.2038 m long coolable cell (for self-broadening) and (3) a multipass cell with 20.941 m total path coolable Herriott cell (for air-broadening). In total there were 13 spectra with pure 12CH4 (0.27-599 Torr) and 12 air-broadened spectra with total sample pressures of 80-805 Torr and volume mixing ratios (VMR) of methane between 0.18 and 1.0. An interactive multispectrum nonlinear least-squares technique was employed to fit the individual P10-P1 and R0-R10 manifolds in all the spectra simultaneously. Results obtained from the present analysis are compared to other recent measurements.

  5. The massive soft anomalous dimension matrix at two loops

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Sterman, George; Sung, Ilmo

    2009-05-01

    We study two-loop anomalous dimension matrices in QCD and related gauge theories for products of Wilson lines coupled at a point. We verify by an analysis in Euclidean space that the contributions to these matrices from diagrams that link three massive Wilson lines do not vanish in general. We show, however, that for two-to-two processes the two-loop anomalous dimension matrix is diagonal in the same color-exchange basis as the one-loop matrix for arbitrary masses at absolute threshold and for scattering at 90 degrees in the center of mass. This result is important for applications of threshold resummation in heavy quark production.

  6. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less

  7. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    DOE PAGES

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.; ...

    2016-10-11

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less

  8. Error due to unresolved scales in estimation problems for atmospheric data assimilation

    NASA Astrophysics Data System (ADS)

    Janjic, Tijana

    The error arising due to unresolved scales in data assimilation procedures is examined. The problem of estimating the projection of the state of a passive scalar undergoing advection at a sequence of times is considered. The projection belongs to a finite- dimensional function space and is defined on the continuum. Using the continuum projection of the state of a passive scalar, a mathematical definition is obtained for the error arising due to the presence, in the continuum system, of scales unresolved by the discrete dynamical model. This error affects the estimation procedure through point observations that include the unresolved scales. In this work, two approximate methods for taking into account the error due to unresolved scales and the resulting correlations are developed and employed in the estimation procedure. The resulting formulas resemble the Schmidt-Kalman filter and the usual discrete Kalman filter, respectively. For this reason, the newly developed filters are called the Schmidt-Kalman filter and the traditional filter. In order to test the assimilation methods, a two- dimensional advection model with nonstationary spectrum was developed for passive scalar transport in the atmosphere. An analytical solution on the sphere was found depicting the model dynamics evolution. Using this analytical solution the model error is avoided, and the error due to unresolved scales is the only error left in the estimation problem. It is demonstrated that the traditional and the Schmidt- Kalman filter work well provided the exact covariance function of the unresolved scales is known. However, this requirement is not satisfied in practice, and the covariance function must be modeled. The Schmidt-Kalman filter cannot be computed in practice without further approximations. Therefore, the traditional filter is better suited for practical use. Also, the traditional filter does not require modeling of the full covariance function of the unresolved scales, but only modeling of the covariance matrix obtained by evaluating the covariance function at the observation points. We first assumed that this covariance matrix is stationary and that the unresolved scales are not correlated between the observation points, i.e., the matrix is diagonal, and that the values along the diagonal are constant. Tests with these assumptions were unsuccessful, indicating that a more sophisticated model of the covariance is needed for assimilation of data with nonstationary spectrum. A new method for modeling the covariance matrix based on an extended set of modeling assumptions is proposed. First, it is assumed that the covariance matrix is diagonal, that is, that the unresolved scales are not correlated between the observation points. It is postulated that the values on the diagonal depend on a wavenumber that is characteristic for the unresolved part of the spectrum. It is further postulated that this characteristic wavenumber can be diagnosed from the observations and from the estimate of the projection of the state that is being estimated. It is demonstrated that the new method successfully overcomes previously encountered difficulties.

  9. Benchmark of Dynamic Electron Correlation Models for Seniority-Zero Wave Functions and Their Application to Thermochemistry.

    PubMed

    Boguslawski, Katharina; Tecmer, Paweł

    2017-12-12

    Wave functions restricted to electron-pair states are promising models to describe static/nondynamic electron correlation effects encountered, for instance, in bond-dissociation processes and transition-metal and actinide chemistry. To reach spectroscopic accuracy, however, the missing dynamic electron correlation effects that cannot be described by electron-pair states need to be included a posteriori. In this Article, we extend the previously presented perturbation theory models with an Antisymmetric Product of 1-reference orbital Geminal (AP1roG) reference function that allows us to describe both static/nondynamic and dynamic electron correlation effects. Specifically, our perturbation theory models combine a diagonal and off-diagonal zero-order Hamiltonian, a single-reference and multireference dual state, and different excitation operators used to construct the projection manifold. We benchmark all proposed models as well as an a posteriori Linearized Coupled Cluster correction on top of AP1roG against CR-CC(2,3) reference data for reaction energies of several closed-shell molecules that are extrapolated to the basis set limit. Moreover, we test the performance of our new methods for multiple bond breaking processes in the homonuclear N 2 , C 2 , and F 2 dimers as well as the heteronuclear BN, CO, and CN + dimers against MRCI-SD, MRCI-SD+Q, and CR-CC(2,3) reference data. Our numerical results indicate that the best performance is obtained from a Linearized Coupled Cluster correction as well as second-order perturbation theory corrections employing a diagonal and off-diagonal zero-order Hamiltonian and a single-determinant dual state. These dynamic corrections on top of AP1roG provide substantial improvements for binding energies and spectroscopic properties obtained with the AP1roG approach, while allowing us to approach chemical accuracy for reaction energies involving closed-shell species.

  10. Golden Matrix Families

    ERIC Educational Resources Information Center

    Fontaine, Anne; Hurley, Susan

    2011-01-01

    This student research project explores the properties of a family of matrices of zeros and ones that arises from the study of the diagonal lengths in a regular polygon. There is one family for each n greater than 2. A series of exercises guides the student to discover the eigenvalues and eigenvectors of the matrices, which leads in turn to…

  11. Wavelets in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Modisette, Jason Perry

    1997-09-01

    Ab initio calculations of the electronic structure of bulk materials and large clusters are not possible on today's computers using current techniques. The storage and diagonalization of the Hamiltonian matrix are the limiting factors in both memory and execution time. The scaling of both quantities with problem size can be reduced by using approximate diagonalization or direct minimization of the total energy with respect to the density matrix in conjunction with a localized basis. Wavelet basis members are much more localized than conventional bases such as Gaussians or numerical atomic orbitals. This localization leads to sparse matrices of the operators that arise in SCF multi-electron calculations. We have investigated the construction of the one-electron Hamiltonian, and also the effective one- electron Hamiltonians that appear in density-functional and Hartree-Fock theories. We develop efficient methods for the generation of the kinetic energy and potential matrices, the Hartree and exchange potentials, and the local exchange-correlation potential of the LDA. Test calculations are performed on one-electron problems with a variety of potentials in one and three dimensions.

  12. Universal relations of an ultracold Fermi gas with arbitrary spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Jie, Jianwen; Qi, Ran; Zhang, Peng

    2018-05-01

    We derive the universal relations for an ultracold two-component Fermi gas with a spin-orbit coupling (SOC) ∑α,β =x ,y ,zλα βσαpβ , where px ,y ,z and σx ,y ,z are the single-atom momentum and Pauli operators for pseudospin, respectively, and the SOC intensity λα β could take an arbitrary value. We consider the system with an s -wave short-range interspecies interaction, and ignore the SOC-induced modification for the value of the scattering length. Using the first-quantized approach developed by Tan [S. Tan, Phys. Rev. Lett. 107, 145302 (2011), 10.1103/PhysRevLett.107.145302], we obtain the short-range and high-momentum expansions for the one-body real-space correlation function and momentum distribution function, respectively. For our system these functions are a 2 ×2 matrix in the pseudospin basis. We find that the leading-order (1 /k4 ) behavior of the diagonal elements of the momentum distribution function, i.e., n↑↑(k ) and n↓↓(k ) , are not modified by the SOC. However, the SOC can significantly modify the large-k behaviors of the distribution difference δ n (k ) ≡n↑↑(k ) -n↓↓(k ) as well as the nondiagonal elements of the momentum distribution function, i.e., n↑↓(k ) and n↓↑(k ) . In the absence of the SOC, the leading order of δ n (k ) , n↑↓(k ) , and n↓↑(k ) is O (1 /k6) . When SOC appears, it can induce a term on the order of 1 /k5 for these elements. We further derive the adiabatic relation and the energy functional. Our results show that the SOC can induce an additional term in the energy functional, which describes the contribution from the SOC to the total energy. In addition, the form of the adiabatic relation for our system is not modified by the SOC. Our results are applicable for the systems with any type of single-atom trapping potential, which could be either diagonal or nondiagonal in the pseudospin basis.

  13. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    NASA Astrophysics Data System (ADS)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José

    2017-05-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly costlier than the QSEM when a comparable numerical accuracy is required.

  14. Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu

    2013-12-15

    The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less

  15. Large Electroweak Corrections to Vector-Boson Scattering at the Large Hadron Collider.

    PubMed

    Biedermann, Benedikt; Denner, Ansgar; Pellen, Mathieu

    2017-06-30

    For the first time full next-to-leading-order electroweak corrections to off-shell vector-boson scattering are presented. The computation features the complete matrix elements, including all nonresonant and off-shell contributions, to the electroweak process pp→μ^{+}ν_{μ}e^{+}ν_{e}jj and is fully differential. We find surprisingly large corrections, reaching -16% for the fiducial cross section, as an intrinsic feature of the vector-boson-scattering processes. We elucidate the origin of these large electroweak corrections upon using the double-pole approximation and the effective vector-boson approximation along with leading-logarithmic corrections.

  16. Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Jia, Weile; Lin, Lin

    2017-10-01

    Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.

  17. Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory.

    PubMed

    Jia, Weile; Lin, Lin

    2017-10-14

    Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.

  18. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.

    PubMed

    Ismail-Beigi, Sohrab

    2017-09-27

    The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.

  19. A fuller flavour treatment of N-dominated leptogenesis

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Di Bari, Pasquale; Jones, David A.; King, Steve F.

    2012-03-01

    We discuss N-dominated leptogenesis in the presence of flavour dependent effects that have hitherto been neglected, in particular the off-diagonal entries of the flavour coupling matrix that connects the total flavour asymmetries, distributed in different particle species, to the lepton and Higgs doublet asymmetries. We derive analytical formulae for the final asymmetry including the flavour coupling at the N-decay stage as well as at the stage of wash-out by the lightest right-handed neutrino N. Moreover, we point out that in general part of the electron and muon asymmetries (phantom terms), can completely escape the wash-out at the production and a total B-L asymmetry can be generated by the lightest RH neutrino wash-out yielding so-called phantom leptogenesis. However, the phantom terms are proportional to the initial N abundance and in particular they vanish for initial zero N-abundance. Taking any of these new effects into account can significantly modify the final asymmetry produced by the decays of the next-to-lightest RH neutrinos, opening up new interesting possibilities for N-dominated thermal leptogenesis.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry

    Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less

  1. Steady bipartite coherence induced by non-equilibrium environment

    NASA Astrophysics Data System (ADS)

    Huangfu, Yong; Jing, Jun

    2018-01-01

    We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.

  2. Optimizing cosmological surveys in a crowded market

    NASA Astrophysics Data System (ADS)

    Bassett, Bruce A.

    2005-04-01

    Optimizing the major next-generation cosmological surveys (such as SNAP, KAOS, etc.) is a key problem given our ignorance of the physics underlying cosmic acceleration and the plethora of surveys planned. We propose a Bayesian design framework which (1) maximizes the discrimination power of a survey without assuming any underlying dark-energy model, (2) finds the best niche survey geometry given current data and future competing experiments, (3) maximizes the cross section for serendipitous discoveries and (4) can be adapted to answer specific questions (such as “is dark energy dynamical?”). Integrated parameter-space optimization (IPSO) is a design framework that integrates projected parameter errors over an entire dark energy parameter space and then extremizes a figure of merit (such as Shannon entropy gain which we show is stable to off-diagonal covariance matrix perturbations) as a function of survey parameters using analytical, grid or MCMC techniques. We discuss examples where the optimization can be performed analytically. IPSO is thus a general, model-independent and scalable framework that allows us to appropriately use prior information to design the best possible surveys.

  3. An Efficient Multicore Implementation of a Novel HSS-Structured Multifrontal Solver Using Randomized Sampling

    DOE PAGES

    Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry; ...

    2016-10-27

    Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less

  4. Programmable synaptic chip for electronic neural networks

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Langenbacher, H.; Thakoor, A. P.; Khanna, S. K.

    1988-01-01

    A binary synaptic matrix chip has been developed for electronic neural networks. The matrix chip contains a programmable 32X32 array of 'long channel' NMOSFET binary connection elements implemented in a 3-micron bulk CMOS process. Since the neurons are kept off-chip, the synaptic chip serves as a 'cascadable' building block for a multi-chip synaptic network as large as 512X512 in size. As an alternative to the programmable NMOSFET (long channel) connection elements, tailored thin film resistors are deposited, in series with FET switches, on some CMOS test chips, to obtain the weak synaptic connections. Although deposition and patterning of the resistors require additional processing steps, they promise substantial savings in silicon area. The performance of synaptic chip in a 32-neuron breadboard system in an associative memory test application is discussed.

  5. Advanced Covariance-Based Stochastic Inversion and Neuro-Genetic Optimization for Rosetta CONSERT Radar Data to Improve Spatial Resolution of Multi-Fractal Depth Profiles for Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Edenhofer, Peter; Ulamec, Stephan

    2015-04-01

    The paper is devoted to results of doctoral research work at University of Bochum as applied to the radar transmission experiment CONSERT of the ESA cometary mission Rosetta. This research aims at achieving the limits of optimum spatial (and temporal) resolution for radar remote sensing by implementation of covariance informations concerned with error-balanced control as well as coherence of wave propagation effects through random composite media involved (based on Joel Franklin's approach of extended stochastic inversion). As a consequence the well-known inherent numerical instabilities of remote sensing are significantly reduced in a robust way by increasing the weight of main diagonal elements of the resulting composite matrix to be inverted with respect to off-diagonal elements following synergy relations as to the principle of correlation receiver in wireless telecommunications. It is shown that the enhancement of resolution for remote sensing holds for an integral and differential equation approach of inversion as well. In addition to that the paper presents a discussion on how the efficiency of inversion for radar data gets achieved by an overall optimization of inversion due to a novel neuro-genetic approach. Such kind of approach is in synergy with the priority research program "Organic Computing" of DFG / German Research Organization. This Neuro-Genetic Optimization (NGO) turns out, firstly, to take into account more detailed physical informations supporting further improved resolution such as the process of accretion for cometary nucleus, wave propagation effects from rough surfaces, ground clutter, nonlinear focusing, etc. as well as, secondly, to accelerate the computing process of inversion in a really significantly enhanced and fast way, e.g., enabling online-control of autonomous processes such as detection of unknown objects, navigation, etc. The paper describes in some detail how this neuro-genetic approach of optimization is incorporated into the procedure of data inversion by combining inverted artificial neural networks of adequately chosen topology and learning routines for short access times with the concept of genetic algorithms enabling to achieve a multi-dimensional global optimum subject to a properly constructed and problem-oriented target function, ensemble selection rules, etc. Finally the paper discusses how the power of realistic simulation of the structures of the interior of a cometary nucleus can be improved by applying Benoit Mandelbrot's concept of fractal structures. It is shown how the fractal volumetric modelling of the nucleus of a comet can be accomplished by finite 3D elements of flexibility (serving topography and morphology as well) such as of tetrahedron shape with specific scaling factors of self similarity and a Maxwellian type of distribution function. By applying the widely accepted fBm-concept of fractal Brownian motion basically each of the corresponding Hurst exponents 0 (rough) < H < 1 (smooth) can be derived for the multi-fractal depth (and terrain) profiles of the equivalent dielectric constant per tomographic angular orbital segment of intersection by transmissive radar ray paths with the nucleus of the comet. Cooperative efforts and work are in progress to achieve numerical results of depth profiles for the nucleus of comet 67P/Churyumov-Gerasimenko.

  6. Angle and frequency dependence of self-energy from spin fluctuation mediated d-wave pairing for high temperature superconductors.

    PubMed

    Hong, Seung Hwan; Choi, Han-Yong

    2013-09-11

    We investigated the characteristics of spin fluctuation mediated superconductivity employing the Eliashberg formalism. The effective interaction between electrons was modeled in terms of the spin susceptibility measured by inelastic neutron scattering experiments on single crystal La(2-x)Sr(x)CuO4 superconductors. The diagonal self-energy and off-diagonal self-energy were calculated by solving the coupled Eliashberg equation self-consistently for the chosen spin susceptibility and tight-binding dispersion of electrons. The full momentum and frequency dependence of the self-energy is presented for optimally doped, overdoped, and underdoped LSCO cuprates in a superconductive state. These results may be compared with the experimentally deduced self-energy from ARPES experiments.

  7. Massively parallel sparse matrix function calculations with NTPoly

    NASA Astrophysics Data System (ADS)

    Dawson, William; Nakajima, Takahito

    2018-04-01

    We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.

  8. Toric Calabi-Yau threefolds as quantum integrable systems. R-matrix and RTT relations

    NASA Astrophysics Data System (ADS)

    Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor

    2016-10-01

    R-matrix is explicitly constructed for simplest representations of the Ding-Iohara-Miki algebra. Calculation is straightforward and significantly simpler than the one through the universal R-matrix used for a similar calculation in the Yangian case by A. Smirnov but less general. We investigate the interplay between the R-matrix structure and the structure of DIM algebra intertwiners, i.e. of refined topological vertices and show that the R-matrix is diagonalized by the action of the spectral duality belonging to the SL(2, ℤ) group of DIM algebra automorphisms. We also construct the T-operators satisfying the RTT relations with the R-matrix from refined amplitudes on resolved conifold. We thus show that topological string theories on the toric Calabi-Yau threefolds can be naturally interpreted as lattice integrable models. Integrals of motion for these systems are related to q-deformation of the reflection matrices of the Liouville/Toda theories.

  9. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    PubMed Central

    Matochko, Wadim L.; Derda, Ratmir

    2013-01-01

    Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N × 1 frequency vector n = ||ni||, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N × N matrix and a stochastic sampling operator (S a). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of S a and use them to define the sequencing operator (S e q). Sequencing without any bias and errors is S e q = S a IN, where IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (C E N), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process. PMID:24416071

  10. Slowest kinetic modes revealed by metabasin renormalization

    NASA Astrophysics Data System (ADS)

    Okushima, Teruaki; Niiyama, Tomoaki; Ikeda, Kensuke S.; Shimizu, Yasushi

    2018-02-01

    Understanding the slowest relaxations of complex systems, such as relaxation of glass-forming materials, diffusion in nanoclusters, and folding of biomolecules, is important for physics, chemistry, and biology. For a kinetic system, the relaxation modes are determined by diagonalizing its transition rate matrix. However, for realistic systems of interest, numerical diagonalization, as well as extracting physical understanding from the diagonalization results, is difficult due to the high dimensionality. Here, we develop an alternative and generally applicable method of extracting the long-time scale relaxation dynamics by combining the metabasin analysis of Okushima et al. [Phys. Rev. E 80, 036112 (2009), 10.1103/PhysRevE.80.036112] and a Jacobi method. We test the method on an illustrative model of a four-funnel model, for which we obtain a renormalized kinematic equation of much lower dimension sufficient for determining slow relaxation modes precisely. The method is successfully applied to the vacancy transport problem in ionic nanoparticles [Niiyama et al., Chem. Phys. Lett. 654, 52 (2016), 10.1016/j.cplett.2016.04.088], allowing a clear physical interpretation that the final relaxation consists of two successive, characteristic processes.

  11. A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Ke, Rihuan; Ng, Michael K.; Sun, Hai-Wei

    2015-12-01

    In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks system which arises from the time-fractional partial differential equation. Existing fast numerical solver (e.g., fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. The main contribution of this paper is to propose a fast direct method for solving this linear system, and to illustrate that the proposed method is much faster than the classical block forward substitution method for solving this linear system. Our idea is based on the divide-and-conquer strategy and together with the fast Fourier transforms for calculating Toeplitz matrix-vector multiplication. The complexity needs O (MNlog2 ⁡ M) arithmetic operations, where M is the number of blocks (the number of time steps) in the system and N is the size (number of spatial grid points) of each block. Numerical examples from the finite difference discretization of time-fractional partial differential equations are also given to demonstrate the efficiency of the proposed method.

  12. Analysis of high-purity germanium dioxide by ETV-ICP-AES with preliminary concentration of trace elements.

    PubMed

    Medvedev, Nickolay S; Shaverina, Anastasiya V; Tsygankova, Alphiya R; Saprykin, Anatoly I

    2016-08-01

    The paper presents a combined technique of germanium dioxide analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) with preconcentration of trace elements by distilling off matrix and electrothermal (ETV) introduction of the trace elements concentrate into the ICP. Evaluation of metrological characteristics of the developed technique of high-purity germanium dioxide analysis was performed. The limits of detection (LODs) for 25 trace elements ranged from 0.05 to 20ng/g. The accuracy of proposed technique is confirmed by "added-found" («or spiking») experiment and comparing the results of ETV-ICP-AES and ICP-AES analysis of high purity germanium dioxide samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Non-adiabatic dynamics around a conical intersection with surface-hopping coupled coherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humeniuk, Alexander; Mitrić, Roland, E-mail: roland.mitric@uni-wuerzburg.de

    A surface-hopping extension of the coupled coherent states-method [D. Shalashilin and M. Child, Chem. Phys. 304, 103-120 (2004)] for simulating non-adiabatic dynamics with quantum effects of the nuclei is put forward. The time-dependent Schrödinger equation for the motion of the nuclei is solved in a moving basis set. The basis set is guided by classical trajectories, which can hop stochastically between different electronic potential energy surfaces. The non-adiabatic transitions are modelled by a modified version of Tully’s fewest switches algorithm. The trajectories consist of Gaussians in the phase space of the nuclei (coherent states) combined with amplitudes for an electronicmore » wave function. The time-dependent matrix elements between different coherent states determine the amplitude of each trajectory in the total multistate wave function; the diagonal matrix elements determine the hopping probabilities and gradients. In this way, both interference effects and non-adiabatic transitions can be described in a very compact fashion, leading to the exact solution if convergence with respect to the number of trajectories is achieved and the potential energy surfaces are known globally. The method is tested on a 2D model for a conical intersection [A. Ferretti, J. Chem. Phys. 104, 5517 (1996)], where a nuclear wavepacket encircles the point of degeneracy between two potential energy surfaces and interferes with itself. These interference effects are absent in classical trajectory-based molecular dynamics but can be fully incorpo rated if trajectories are replaced by surface hopping coupled coherent states.« less

  14. Methods for Scaling to Doubly Stochastic Form,

    DTIC Science & Technology

    1981-06-26

    Frobenius -Konig Theorem (MARCUS and MINC [1964],p 97) A nonnegative n xn matrix without support contains an s x t zero subma- trix where: s +t =n + -3...that YA(k) has row sums 1. Then normalize the columns by a diagonal similarity transform defined as follows: Let x = (zx , • z,,) be a left Perron vector

  15. Exact Fundamental Limits of the First and Second Hyperpolarizabilities

    NASA Astrophysics Data System (ADS)

    Lytel, Rick; Mossman, Sean; Crowell, Ethan; Kuzyk, Mark G.

    2017-08-01

    Nonlinear optical interactions of light with materials originate in the microscopic response of the molecular constituents to excitation by an optical field, and are expressed by the first (β ) and second (γ ) hyperpolarizabilities. Upper bounds to these quantities were derived seventeen years ago using approximate, truncated state models that violated completeness and unitarity, and far exceed those achieved by potential optimization of analytical systems. This Letter determines the fundamental limits of the first and second hyperpolarizability tensors using Monte Carlo sampling of energy spectra and transition moments constrained by the diagonal Thomas-Reiche-Kuhn (TRK) sum rules and filtered by the off-diagonal TRK sum rules. The upper bounds of β and γ are determined from these quantities by applying error-refined extrapolation to perfect compliance with the sum rules. The method yields the largest diagonal component of the hyperpolarizabilities for an arbitrary number of interacting electrons in any number of dimensions. The new method provides design insight to the synthetic chemist and nanophysicist for approaching the limits. This analysis also reveals that the special cases which lead to divergent nonlinearities in the many-state catastrophe are not physically realizable.

  16. Block Preconditioning to Enable Physics-Compatible Implicit Multifluid Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Phillips, Edward; Shadid, John; Cyr, Eric; Miller, Sean

    2017-10-01

    Multifluid plasma simulations involve large systems of partial differential equations in which many time-scales ranging over many orders of magnitude arise. Since the fastest of these time-scales may set a restrictively small time-step limit for explicit methods, the use of implicit or implicit-explicit time integrators can be more tractable for obtaining dynamics at time-scales of interest. Furthermore, to enforce properties such as charge conservation and divergence-free magnetic field, mixed discretizations using volume, nodal, edge-based, and face-based degrees of freedom are often employed in some form. Together with the presence of stiff modes due to integrating over fast time-scales, the mixed discretization makes the required linear solves for implicit methods particularly difficult for black box and monolithic solvers. This work presents a block preconditioning strategy for multifluid plasma systems that segregates the linear system based on discretization type and approximates off-diagonal coupling in block diagonal Schur complement operators. By employing multilevel methods for the block diagonal subsolves, this strategy yields algorithmic and parallel scalability which we demonstrate on a range of problems.

  17. Size Reduction of Hamiltonian Matrix for Large-Scale Energy Band Calculations Using Plane Wave Bases

    NASA Astrophysics Data System (ADS)

    Morifuji, Masato

    2018-01-01

    We present a method of reducing the size of a Hamiltonian matrix used in calculations of electronic states. In the electronic states calculations using plane wave basis functions, a large number of plane waves are often required to obtain precise results. Even using state-of-the-art techniques, the Hamiltonian matrix often becomes very large. The large computational time and memory necessary for diagonalization limit the widespread use of band calculations. We show a procedure of deriving a reduced Hamiltonian constructed using a small number of low-energy bases by renormalizing high-energy bases. We demonstrate numerically that the significant speedup of eigenstates evaluation is achieved without losing accuracy.

  18. Neutrino mass matrices with two vanishing cofactors and Fritzsch texture for charged lepton mass matrix

    NASA Astrophysics Data System (ADS)

    Wang, Weijian; Guo, Shu-Yuan; Wang, Zhi-Gang

    2016-04-01

    In this paper, we study the cofactor 2 zero neutrino mass matrices with the Fritzsch-type structure in charged lepton mass matrix (CLMM). In the numerical analysis, we perform a scan over the parameter space of all the 15 possible patterns to get a large sample of viable scattering points. Among the 15 possible patterns, three of them can accommodate the latest lepton mixing and neutrino mass data. We compare the predictions of the allowed patterns with their counterparts with diagonal CLMM. In this case, the severe cosmology bound on the neutrino mass set a strong constraint on the parameter space, rendering two patterns only marginally allowed. The Fritzsch-type CLMM will have impact on the viable parameter space and give rise to different phenomenological predictions. Each allowed pattern predicts the strong correlations between physical variables, which is essential for model selection and can be probed in future experiments. It is found that under the no-diagonal CLMM, the cofactor zeros structure in neutrino mass matrix is unstable as the running of renormalization group (RG) from seesaw scale to the electroweak scale. A way out of the problem is to propose the flavor symmetry under the models with a TeV seesaw scale. The inverse seesaw model and a loop-induced model are given as two examples.

  19. A theory for modeling ground-water flow in heterogeneous media

    USGS Publications Warehouse

    Cooley, Richard L.

    2004-01-01

    Construction of a ground-water model for a field area is not a straightforward process. Data are virtually never complete or detailed enough to allow substitution into the model equations and direct computation of the results of interest. Formal model calibration through optimization, statistical, and geostatistical methods is being applied to an increasing extent to deal with this problem and provide for quantitative evaluation and uncertainty analysis of the model. However, these approaches are hampered by two pervasive problems: 1) nonlinearity of the solution of the model equations with respect to some of the model (or hydrogeologic) input variables (termed in this report system characteristics) and 2) detailed and generally unknown spatial variability (heterogeneity) of some of the system characteristics such as log hydraulic conductivity, specific storage, recharge and discharge, and boundary conditions. A theory is developed in this report to address these problems. The theory allows construction and analysis of a ground-water model of flow (and, by extension, transport) in heterogeneous media using a small number of lumped or smoothed system characteristics (termed parameters). The theory fully addresses both nonlinearity and heterogeneity in such a way that the parameters are not assumed to be effective values. The ground-water flow system is assumed to be adequately characterized by a set of spatially and temporally distributed discrete values, ?, of the system characteristics. This set contains both small-scale variability that cannot be described in a model and large-scale variability that can. The spatial and temporal variability in ? are accounted for by imagining ? to be generated by a stochastic process wherein ? is normally distributed, although normality is not essential. Because ? has too large a dimension to be estimated using the data normally available, for modeling purposes ? is replaced by a smoothed or lumped approximation y?. (where y is a spatial and temporal interpolation matrix). Set y?. has the same form as the expected value of ?, y 'line' ? , where 'line' ? is the set of drift parameters of the stochastic process; ?. is a best-fit vector to ?. A model function f(?), such as a computed hydraulic head or flux, is assumed to accurately represent an actual field quantity, but the same function written using y?., f(y?.), contains error from lumping or smoothing of ? using y?.. Thus, the replacement of ? by y?. yields nonzero mean model errors of the form E(f(?)-f(y?.)) throughout the model and covariances between model errors at points throughout the model. These nonzero means and covariances are evaluated through third and fifth-order accuracy, respectively, using Taylor series expansions. They can have a significant effect on construction and interpretation of a model that is calibrated by estimating ?.. Vector ?.. is estimated as 'hat' ? using weighted nonlinear least squares techniques to fit a set of model functions f(y'hat' ?) to a. corresponding set of observations of f(?), Y. These observations are assumed to be corrupted by zero-mean, normally distributed observation errors, although, as for ?, normality is not essential. An analytical approximation of the nonlinear least squares solution is obtained using Taylor series expansions and perturbation techniques that assume model and observation errors to be small. This solution is used to evaluate biases and other results to second-order accuracy in the errors. The correct weight matrix to use in the analysis is shown to be the inverse of the second-moment matrix E(Y-f(y?.))(Y-f(y?.))', but the weight matrix is assumed to be arbitrary in most developments. The best diagonal approximation is the inverse of the matrix of diagonal elements of E(Y-f(y?.))(Y-f(y?.))', and a method of estimating this diagonal matrix when it is unknown is developed using a special objective function to compute 'hat' ?. When considered to be an estimate of f

  20. Twistor-strings and gravity tree amplitudes

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Mason, Lionel

    2013-04-01

    Recently we discussed how Einstein supergravity tree amplitudes might be obtained from the original Witten and Berkovits twistor-string theory when external conformal gravitons are restricted to be Einstein gravitons. Here we obtain a more systematic understanding of the relationship between conformal and Einstein gravity amplitudes in that twistor-string theory. We show that although it does not in general yield Einstein amplitudes, we can nevertheless obtain some partial twistor-string interpretation of the remarkable formulae recently been found by Hodges and generalized to all tree amplitudes by Cachazo and Skinner. The Hodges matrix and its higher degree generalizations encode the world sheet correlators of the twistor string. These matrices control both Einstein amplitudes and those of the conformal gravity arising from the Witten and Berkovits twistor-string. Amplitudes in the latter case arise from products of the diagonal elements of the generalized Hodges matrices and reduced determinants give the former. The reduced determinants arise if the contractions in the worldsheet correlator are restricted to form connected trees at MHV. The (generalized) Hodges matrices arise as weighted Laplacian matrices for the graph of possible contractions in the correlators and the reduced determinants of these weighted Laplacian matrices give the sum of the connected tree contributions by an extension of the matrix-tree theorem.

  1. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices.

    PubMed

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-05-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan.

  2. Knowledge of damage identification about tensegrities via flexibility disassembly

    NASA Astrophysics Data System (ADS)

    Jiang, Ge; Feng, Xiaodong; Du, Shigui

    2017-12-01

    Tensegrity structures composing of continuous cables and discrete struts are under tension and compression, respectively. In order to determine the damage extents of tensegrity structures, a new method for tensegrity structural damage identification is presented based on flexibility disassembly. To decompose a tensegrity structural flexibility matrix into the matrix represention of the connectivity between degress-of-freedoms and the diagonal matrix comprising of magnitude informations. Step 1: Calculate perturbation flexibility; Step 2: Compute the flexibility connectivity matrix and perturbation flexibility parameters; Step 3: Calculate the perturbation stiffness parameters. The efficiency of the proposed method is demonstrated by a numeical example comprising of 12 cables and 4 struts with pretensioned. Accurate identification of local damage depends on the availability of good measured data, an accurate and reasonable algorithm.

  3. Prosthetic misfit of implant-supported prosthesis obtained by an alternative section method

    PubMed Central

    Falcão-Filho, Hilmo Barreto Leite; de Aguiar, Fábio Afrânio; Rodrigues, Renata Cristina Silveira; de Mattos, Maria da Gloria Chiarello; Ribeiro, Ricardo Faria

    2012-01-01

    PURPOSE Adequate passive-fitting of one-piece cast 3-element implant-supported frameworks is hard to achieve. This short communication aims to present an alternative method for section of one-piece cast frameworks and for casting implant-supported frameworks. MATERIALS AND METHODS Three-unit implant-supported nickel-chromium (Ni-Cr) frameworks were tested for vertical misfit (n = 6). The frameworks were cast as one-piece (Group A) and later transversally sectioned through a diagonal axis (Group B) and compared to frameworks that were cast diagonally separated (Group C). All separated frameworks were laser welded. Only one side of the frameworks was screwed. RESULTS The results on the tightened side were significantly lower in Group C (6.43 ± 3.24 µm) when compared to Groups A (16.50 ± 7.55 µm) and B (16.27 ± 1.71 µm) (P<.05). On the opposite side, the diagonal section of the one-piece castings for laser welding showed significant improvement in the levels of misfit of the frameworks (Group A, 58.66±14.30 µm; Group B, 39.48±12.03 µm; Group C, 23.13±8.24 µm) (P<.05). CONCLUSION Casting diagonally sectioned frameworks lowers the misfit levels. Lower misfit levels for the frameworks can be achieved by diagonally sectioning one-piece frameworks. PMID:22737313

  4. High pressure effect on optical gain in type-II InGaAs/GaAsSb nano-heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Nisha; Nirmal, H. K.; Yadav, Rashmi

    This paper reports the simulation of optical gain in type-II InGaAs/GaAsSb quantum well based nano-scale heterostructure. In order to simulate the optical gain, the heterostructure has been modeled with the help of six band k.p method. The 6 × 6 diagonalized k.p Hamiltonian has been solved to evaluate the valence sub-bands (i.e. light and heavy hole energies); and then optical matrix elements and optical gain within TE (Transverse Electric) mode has been calculated. The results obtained suggest that peak optical gain of the order of ∼ 9000 /cm in the heterostructure can be achieved at the lasing wavelength ∼ 1.95 µmmore » (SWIR region). The application of high pressure (2 and 5 GPa) on the structure shows that the gain as well as lasing wavelength both approach to higher values. Thus, the structure can be tuned externally by the application of high pressure.« less

  5. Iterative universal state selective correction for the Brillouin-Wigner multireference coupled-cluster theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banik, Subrata; Ravichandran, Lalitha; Brabec, Jiri

    2015-03-21

    As a further development of the previously introduced a posteriori Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011)] and [Brabec et al., J. Chem. Phys., 136, 124102 (2012)], we suggest an iterative form of the USS correction by means of correcting effective Hamiltonian matrix elements. We also formulate USS corrections via the left Bloch equations. The convergence of the USS corrections with excitation level towards the FCI limit is also investigated. Various forms of the USS and simplified diagonal USSD corrections at the SD and SD(T) levels are numerically assessed on several model systems and onmore » the ozone and tetramethyleneethane molecules. It is shown that the iterative USS correction can successfully replace the previously developed a posteriori BWCC size-extensivity correction, while it is not sensitive to intruder states and performs well also in other cases when the a posteriori one fails, like e.g. for the asymmetric vibration mode of ozone.« less

  6. A direct approach to the design of linear multivariable systems

    NASA Technical Reports Server (NTRS)

    Agrawal, B. L.

    1974-01-01

    Design of multivariable systems is considered and design procedures are formulated in the light of the most recent work on model matching. The word model matching is used exclusively to mean matching the input-output behavior of two systems. The term is used in the frequency domain to indicate the comparison of two transfer matrices containing transfer functions as elements. Design methods where non-interaction is not used as a criteria were studied. Two design methods are considered. The first method of design is based solely upon the specification of generalized error coefficients for each individual transfer function of the overall system transfer matrix. The second design method is called the pole fixing method because all the system poles are fixed at preassigned positions. The zeros of terms either above or below the diagonal are partially fixed via steady state error coefficients. The advantages and disadvantages of each method are discussed and an example is worked to demonstrate their uses. The special cases of triangular decoupling and minimum constraints are discussed.

  7. Proposed framework for thermomechanical life modeling of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.

    1993-01-01

    The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed framework.

  8. Modified conjugate gradient method for diagonalizing large matrices.

    PubMed

    Jie, Quanlin; Liu, Dunhuan

    2003-11-01

    We present an iterative method to diagonalize large matrices. The basic idea is the same as the conjugate gradient (CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroducing errors to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well as some previous trial vectors. The gradient, together with the previous trial vectors, play a similar role as the conjugate gradient of the original CG algorithm. Our numeric tests indicate that this method converges significantly faster than the original CG method. And the computational cost of one iteration step is about the same as the original CG method. It is suitable for first principle calculations.

  9. Application of solid phase extraction procedures for rare earth elements determination in environmental samples.

    PubMed

    Pyrzynska, Krystyna; Kubiak, Anna; Wysocka, Irena

    2016-07-01

    Determination of rare earth elements in environmental samples requires often pre-concentration and separation step due to a low metal content and high concentration of the interfering matrix components. A solid phase extraction technique with different kind of solid sorbents offers a high enrichment factor, rapid phase separation and the possibility of its combination with various detection techniques used either in on-line or off-line mode. The recent developments in this area published over the last five years are presented and discussed in this paper. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A parallel algorithm for 2D visco-acoustic frequency-domain full-waveform inversion: application to a dense OBS data set

    NASA Astrophysics Data System (ADS)

    Sourbier, F.; Operto, S.; Virieux, J.

    2006-12-01

    We present a distributed-memory parallel algorithm for 2D visco-acoustic full-waveform inversion of wide-angle seismic data. Our code is written in fortran90 and use MPI for parallelism. The algorithm was applied to real wide-angle data set recorded by 100 OBSs with a 1-km spacing in the eastern-Nankai trough (Japan) to image the deep structure of the subduction zone. Full-waveform inversion is applied sequentially to discrete frequencies by proceeding from the low to the high frequencies. The inverse problem is solved with a classic gradient method. Full-waveform modeling is performed with a frequency-domain finite-difference method. In the frequency-domain, solving the wave equation requires resolution of a large unsymmetric system of linear equations. We use the massively parallel direct solver MUMPS (http://www.enseeiht.fr/irit/apo/MUMPS) for distributed-memory computer to solve this system. The MUMPS solver is based on a multifrontal method for the parallel factorization. The MUMPS algorithm is subdivided in 3 main steps: a symbolic analysis step that performs re-ordering of the matrix coefficients to minimize the fill-in of the matrix during the subsequent factorization and an estimation of the assembly tree of the matrix. Second, the factorization is performed with dynamic scheduling to accomodate numerical pivoting and provides the LU factors distributed over all the processors. Third, the resolution is performed for multiple sources. To compute the gradient of the cost function, 2 simulations per shot are required (one to compute the forward wavefield and one to back-propagate residuals). The multi-source resolutions can be performed in parallel with MUMPS. In the end, each processor stores in core a sub-domain of all the solutions. These distributed solutions can be exploited to compute in parallel the gradient of the cost function. Since the gradient of the cost function is a weighted stack of the shot and residual solutions of MUMPS, each processor computes the corresponding sub-domain of the gradient. In the end, the gradient is centralized on the master processor using a collective communation. The gradient is scaled by the diagonal elements of the Hessian matrix. This scaling is computed only once per frequency before the first iteration of the inversion. Estimation of the diagonal terms of the Hessian requires performing one simulation per non redondant shot and receiver position. The same strategy that the one used for the gradient is used to compute the diagonal Hessian in parallel. This algorithm was applied to a dense wide-angle data set recorded by 100 OBSs in the eastern Nankai trough, offshore Japan. Thirteen frequencies ranging from 3 and 15 Hz were inverted. Tweny iterations per frequency were computed leading to 260 tomographic velocity models of increasing resolution. The velocity model dimensions are 105 km x 25 km corresponding to a finite-difference grid of 4201 x 1001 grid with a 25-m grid interval. The number of shot was 1005 and the number of inverted OBS gathers was 93. The inversion requires 20 days on 6 32-bits bi-processor nodes with 4 Gbytes of RAM memory per node when only the LU factorization is performed in parallel. Preliminary estimations of the time required to perform the inversion with the fully-parallelized code is 6 and 4 days using 20 and 50 processors respectively.

  11. Dynamics of arbitrary shaped propellers driven by a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Morozov, Konstantin I.; Mirzae, Yoni; Kenneth, Oded; Leshansky, Alexander M.

    2017-04-01

    Motion in fluids at the micro(nano)metric scale is dominated by viscosity. One efficient propulsion method relies on a weak uniform rotating magnetic field that drives a chiral object. From bacterial flagella to artificial magnetic micro- or nanohelices, rotation of a corkscrew is considered as a universally efficient propulsion gait in viscous environments. However, recent experimental studies have demonstrated that geometrically achiral microscale objects or random-shaped magnetic aggregates can propel similarly to helical micromotors. Although approximate theories concerning dynamics of helical magnetic propellers are available, propulsion of achiral particles or objects with complex shapes is not understood. Here we present a general theory of rotation and propulsion of magnetized object of arbitrary shape driven by a rotating magnetic field. Intrinsic symmetries of the viscous mobility tensors yield compact classification of stable rotational states depending on the orientation of the magnetic moment with respect to principal rotation axes of the object. Propulsion velocity can be written in terms of geometry-dependent chirality matrix Ch , where both the diagonal elements (owing to orientation-dependent handedness) and off-diagonal entries (that do not necessitate handedness) contribute in a similar way. In general, the theory anticipates multiplicity of stable rotational states corresponding to two (complimentary to π ) angles the magnetization forms with the field rotation axis. Thus, two identical magnetic objects may propel with different speeds or even in opposite directions. However, for a class of simple achiral objects, there is a particular magnetization whereas the pair of symmetric rotational states gives rise to a unique chiral-like propulsion gait, closely resembling that of an ideal helical propeller. In other words, a geometrically achiral object can acquire apparent chirality due to its interaction with the external magnetic field. The developed theory is further applied to study the dynamics of achiral, chiral, and random-shaped magnetic propellers, rationalizing previously unexplained experimental observations. The genetic search algorithm based on the proposed theory reveals that an arc-shaped segment is the optimal (fastest) achiral propeller, while the optimal skew-symmetric shape deviates considerably from a helix. Remarkably, an optimized arc-shaped propeller warrants propulsion speeds comparable to those of the optimally magnetized helix. Although random shaped magnetic aggregates appear to be poor swimmers at low actuation frequency, at higher frequency, whereas the helical propeller ceases to rotate in-sync with the field, the propulsion speed of the aggregates could be comparable, or even higher, than that of a helix.

  12. Simulations of anti-parallel reconnection using a nonlocal heat flux closure

    DOE PAGES

    Ng, Jonathan; Hakim, Ammar; Bhattacharjee, A.; ...

    2017-08-08

    The integration of kinetic effects in fluid models is important for global simulations of the Earth's magnetosphere. In particular, it has been shown that ion kinetics play a crucial role in the dynamics of large reconnecting systems, and that higher-order fluid moment models can account for some of these effects. Here, we use a ten-moment model for electrons and ions, which includes the off diagonal elements of the pressure tensor that are important for magnetic reconnection. Kinetic effects are recovered by using a nonlocal heat flux closure, which approximates linear Landau damping in the fluid framework. Moreover, the closure ismore » tested using the island coalescence problem, which is sensitive to ion dynamics. We also demonstrate that the nonlocal closure is able to self-consistently reproduce the structure of the ion diffusion region, pressure tensor, and ion velocity without the need for fine-tuning of relaxation coefficients present in earlier models.« less

  13. Ground-state properties of Na2IrO3 determined from an ab initio Hamiltonian and its extensions containing Kitaev and extended Heisenberg interactions

    NASA Astrophysics Data System (ADS)

    Okubo, Tsuyoshi; Shinjo, Kazuya; Yamaji, Youhei; Kawashima, Naoki; Sota, Shigetoshi; Tohyama, Takami; Imada, Masatoshi

    2017-08-01

    We investigate the ground state properties of Na2IrO3 based on numerical calculations of the recently proposed ab initio Hamiltonian represented by Kitaev and extended Heisenberg interactions. To overcome the limitation posed by small tractable system sizes in the exact diagonalization study employed in a previous study [Y. Yamaji et al., Phys. Rev. Lett. 113, 107201 (2014), 10.1103/PhysRevLett.113.107201], we apply a two-dimensional density matrix renormalization group and an infinite-size tensor-network method. By calculating at much larger system sizes, we critically test the validity of the exact diagonalization results. The results consistently indicate that the ground state of Na2IrO3 is a magnetically ordered state with zigzag configuration in agreement with experimental observations and the previous diagonalization study. Applications of the two independent methods in addition to the exact diagonalization study further uncover a consistent and rich phase diagram near the zigzag phase beyond the accessibility of the exact diagonalization. For example, in the parameter space away from the ab initio value of Na2IrO3 controlled by the trigonal distortion, we find three phases: (i) an ordered phase with the magnetic moment aligned mutually in 120 degrees orientation on every third hexagon, (ii) a magnetically ordered phase with a 16-site unit cell, and (iii) an ordered phase with presumably incommensurate periodicity of the moment. It suggests that potentially rich magnetic structures may appear in A2IrO3 compounds for A other than Na. The present results also serve to establish the accuracy of the first-principles approach in reproducing the available experimental results thereby further contributing to finding a route to realize the Kitaev spin liquid.

  14. Matrix-Product-State Algorithm for Finite Fractional Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Bhatt, R. N.

    2015-09-01

    Exact diagonalization is a powerful tool to study fractional quantum Hall (FQH) systems. However, its capability is limited by the exponentially increasing computational cost. In order to overcome this difficulty, density-matrix-renormalization-group (DMRG) algorithms were developed for much larger system sizes. Very recently, it was realized that some model FQH states have exact matrix-product-state (MPS) representation. Motivated by this, here we report a MPS code, which is closely related to, but different from traditional DMRG language, for finite FQH systems on the cylinder geometry. By representing the many-body Hamiltonian as a matrix-product-operator (MPO) and using single-site update and density matrix correction, we show that our code can efficiently search the ground state of various FQH systems. We also compare the performance of our code with traditional DMRG. The possible generalization of our code to infinite FQH systems and other physical systems is also discussed.

  15. Stochastic determination of matrix determinants

    NASA Astrophysics Data System (ADS)

    Dorn, Sebastian; Enßlin, Torsten A.

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations—matrices—acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.

  16. Stochastic determination of matrix determinants.

    PubMed

    Dorn, Sebastian; Ensslin, Torsten A

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.

  17. Totally endoscopic sequential arterial coronary artery bypass grafting on the beating heart

    PubMed Central

    Ak, Koray; Wimmer-Greinecker, Gerhard; Dzemali, Omer; Moritz, Anton; Dogan, Selami

    2007-01-01

    A 50-year-old man was referred to the Department of Thoracic and Cardiovascular Surgery at the Johann Wolfgang-Goethe University (Frankfurt, Germany) with angina on exertion. An evaluation revealed critical stenosis involving the proximal portion of the left anterior descending artery and the first diagonal branch. The patient underwent successful sequential grafting of the left internal mammary artery to the left anterior descending artery and the diagonal branch using a totally endoscopic coronary artery bypass grafting technique on the beating heart with a new version of the da Vinci Surgical System (Intuitive Surgical, USA). To the authors’ knowledge, this is the first report in literature to describe sequential arterial off-pump grafting of two anterior wall target vessels using a totally endoscopic technique on the beating heart. PMID:17440646

  18. Hydrodynamic impeller stiffness, damping, and inertia in the rotordynamics of centrifugal flow pumps

    NASA Technical Reports Server (NTRS)

    Jery, S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1984-01-01

    The lateral hydrodynamic forces experienced by a centrifugal pump impeller performing circular whirl motions within several volute geometries were measured. The lateral forces were decomposed into: (1) time averaged lateral forces and (2) hydrodynamic force matrices representing the variation of the lateral forces with position of the impeller center. It is found that these force matrices essentially consist of equal diagonal terms and skew symmetric off diagonal terms. One consequence of this is that during its whirl motion the impeller experiences forces acting normal and tangential to the locus of whirl. Data on these normal and tangential forces are presented; it is shown that there exists a region of positive reduced whirl frequencies, within which the hydrodynamic forces can be destablizing with respect to whirl.

  19. SAMSAN- MODERN NUMERICAL METHODS FOR CLASSICAL SAMPLED SYSTEM ANALYSIS

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    SAMSAN was developed to aid the control system analyst by providing a self consistent set of computer algorithms that support large order control system design and evaluation studies, with an emphasis placed on sampled system analysis. Control system analysts have access to a vast array of published algorithms to solve an equally large spectrum of controls related computational problems. The analyst usually spends considerable time and effort bringing these published algorithms to an integrated operational status and often finds them less general than desired. SAMSAN reduces the burden on the analyst by providing a set of algorithms that have been well tested and documented, and that can be readily integrated for solving control system problems. Algorithm selection for SAMSAN has been biased toward numerical accuracy for large order systems with computational speed and portability being considered important but not paramount. In addition to containing relevant subroutines from EISPAK for eigen-analysis and from LINPAK for the solution of linear systems and related problems, SAMSAN contains the following not so generally available capabilities: 1) Reduction of a real non-symmetric matrix to block diagonal form via a real similarity transformation matrix which is well conditioned with respect to inversion, 2) Solution of the generalized eigenvalue problem with balancing and grading, 3) Computation of all zeros of the determinant of a matrix of polynomials, 4) Matrix exponentiation and the evaluation of integrals involving the matrix exponential, with option to first block diagonalize, 5) Root locus and frequency response for single variable transfer functions in the S, Z, and W domains, 6) Several methods of computing zeros for linear systems, and 7) The ability to generate documentation "on demand". All matrix operations in the SAMSAN algorithms assume non-symmetric matrices with real double precision elements. There is no fixed size limit on any matrix in any SAMSAN algorithm; however, it is generally agreed by experienced users, and in the numerical error analysis literature, that computation with non-symmetric matrices of order greater than about 200 should be avoided or treated with extreme care. SAMSAN attempts to support the needs of application oriented analysis by providing: 1) a methodology with unlimited growth potential, 2) a methodology to insure that associated documentation is current and available "on demand", 3) a foundation of basic computational algorithms that most controls analysis procedures are based upon, 4) a set of check out and evaluation programs which demonstrate usage of the algorithms on a series of problems which are structured to expose the limits of each algorithm's applicability, and 5) capabilities which support both a priori and a posteriori error analysis for the computational algorithms provided. The SAMSAN algorithms are coded in FORTRAN 77 for batch or interactive execution and have been implemented on a DEC VAX computer under VMS 4.7. An effort was made to assure that the FORTRAN source code was portable and thus SAMSAN may be adaptable to other machine environments. The documentation is included on the distribution tape or can be purchased separately at the price below. SAMSAN version 2.0 was developed in 1982 and updated to version 3.0 in 1988.

  20. A Spectral Element Discretisation on Unstructured Triangle / Tetrahedral Meshes for Elastodynamics

    NASA Astrophysics Data System (ADS)

    May, Dave A.; Gabriel, Alice-A.

    2017-04-01

    The spectral element method (SEM) defined over quadrilateral and hexahedral element geometries has proven to be a fast, accurate and scalable approach to study wave propagation phenomena. In the context of regional scale seismology and or simulations incorporating finite earthquake sources, the geometric restrictions associated with hexahedral elements can limit the applicability of the classical quad./hex. SEM. Here we describe a continuous Galerkin spectral element discretisation defined over unstructured meshes composed of triangles (2D), or tetrahedra (3D). The method uses a stable, nodal basis constructed from PKD polynomials and thus retains the spectral accuracy and low dispersive properties of the classical SEM, in addition to the geometric versatility provided by unstructured simplex meshes. For the particular basis and quadrature rule we have adopted, the discretisation results in a mass matrix which is not diagonal, thereby mandating linear solvers be utilised. To that end, we have developed efficient solvers and preconditioners which are robust with respect to the polynomial order (p), and possess high arithmetic intensity. Furthermore, we also consider using implicit time integrators, together with a p-multigrid preconditioner to circumvent the CFL condition. Implicit time integrators become particularly relevant when considering solving problems on poor quality meshes, or meshes containing elements with a widely varying range of length scales - both of which frequently arise when meshing non-trivial geometries. We demonstrate the applicability of the new method by examining a number of two- and three-dimensional wave propagation scenarios. These scenarios serve to characterise the accuracy and cost of the new method. Lastly, we will assess the potential benefits of using implicit time integrators for regional scale wave propagation simulations.

Top