Science.gov

Sample records for off-gas system pluggages

  1. Glass melter off-gas system

    DOEpatents

    Jantzen, Carol M.

    1997-01-01

    Apparatus and method for melting glass in a glass melter in such a way as to reduce deposition of particulates in the off-gas duct. Deposit accumulation is reduced by achieving an off-gas velocity above approximately 15 meters/second and an off-gas temperature as close as possible to, but not higher than, the glass softening point. Because the deposits are largely water-soluble, those that do form on the interior surface of the duct can be readily removed by injecting water or steam directly into the off-gas duct from its entrance or exit.

  2. Simple hobby computer-based off-gas analysis system

    SciTech Connect

    Forrest, E.H.; Jansen, N.B.; Flickinger, M.C.; Tsao, G.T.

    1981-02-01

    An Apple II computer has been adapted to monitor fermentation offgas in laboratory and pilot scale fermentors. It can calculate oxygen uptake rates, carbon dioxide evolution rates, respiratory quotient as well as initiating recalibration procedures. In this report the computer-based off-gas analysis system is described.

  3. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    SciTech Connect

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  4. Cesium determination for the DWPF off-gas system performance test

    SciTech Connect

    Andrews, M.K.; Elder, H.H.; Boyce, W.T.

    1996-04-11

    In an effort to determine the cesium decontamination factors (DF`s) of the Defense Waste Processing Facility (DWPF) melter off-gas system at the Savannah River Site, the system was verified during an off-gas performance test. The off-gas performance test occurred during the DWPF waste Qualification Campaigns, WP-16 and WP-17. The verification of the off-gas system, which eliminated the need for a startup test involving a radioactive cesium addition, was based on the analysis of nonradioactive cesium across the first and second stage High Efficiency Particulate Air (HEPA) filters. The amount of cesium on the first and second stage HEPA filters was determined by leaching samples from each HEPA filter with nitric acid and analyzing the leachate using Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). The ICP-MS method has been demonstrated to be sufficiently sensitive to measure small quantities of cesium on filters. Based on the cesium results of the HEPA filter, cesium DF`s were calculated. The DF`s indicated that the DWPF HEPA filters performed better than the design basis. In addition to the HEPA filters, a determination of the cesium concentration in the melter feed, the canister glass and the off-gas condensate was made. These analyses provided information on cesium flow through the DWPF. This paper will focus on the methods used in the determination of nonradioactive cesium and the calculation of the DF`s for the DWPF melter off-gas system.

  5. Fabrication of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    SciTech Connect

    Walker, Jr., Joseph Franklin; Jubin, Robert Thomas

    2015-04-30

    A small sorbent-based capture system was designed that could be placed in the off-gas line from the fuel dissolver in the ATALANTE hot cells with minimal modifications to the ATALANTE dissolver off-gas system. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system have been specified, procured, and received on site at Oak Ridge National Laboratory (ORNL), meeting the April 30, 2015, milestone for completing the fabrication of the ATALANTE dissolver off-gas capture system. This system will be tested at ORNL to verify operation and to ensure that all design requirements for ATALANTE are met. Modifications to the system will be made, as indicated by the testing, before the system is shipped to ATALANTE for installation in the hot cell facility.

  6. ART CCIM Phase II-A Off-Gas System Evaluation Test Plan

    SciTech Connect

    Nick Soelberg; Jay Roach

    2009-01-01

    This test plan defines testing to be performed using the Idaho National Laboratory (INL) engineering-scale cold crucible induction melter (CCIM) test system for Phase II-A of the Advanced Remediation Technologies (ART) CCIM Project. The multi-phase ART-CCIM Project is developing a conceptual design for replacing the joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) with a cold crucible induction melter. The INL CCIM test system includes all feed, melter off-gas control, and process control subsystems needed for fully integrated operation and testing. Testing will include operation of the melter system while feeding a non-radioactive slurry mixture prepared to simulate the same type of waste feed presently being processed in the DWPF. Process monitoring and sample collection and analysis will be used to characterize the off-gas composition and properties, and to show the fate of feed constituents, to provide data that shows how the CCIM retrofit conceptual design can operate with the existing DWPF off-gas control system.

  7. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    SciTech Connect

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems.

  8. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    SciTech Connect

    Nick Soelberg

    2005-09-01

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost.

  9. Selective Trapping of Volatile Fission Products with an Off-Gas Treatment System

    SciTech Connect

    B.R. Westphal; J.J. Park; J.M. Shin; G.I. Park; K.J. Bateman; D.L. Wahlquist

    2008-07-01

    A head-end processing step, termed DEOX for its emphasis on decladding via oxidation, is being developed for the treatment of spent oxide fuel by pyroprocessing techniques. The head-end step employs high temperatures to oxidize UO2 to U3O8 resulting in the separation of fuel from cladding and the removal of volatile fission products. Development of the head-end step is being performed in collaboration with the Korean Atomic Energy Research Institute (KAERI) through an International Nuclear Energy Research Initiative. Following the initial experimentation for the removal of volatile fission products, an off-gas treatment system was designed in conjunction with KAERI to collect specific fission gases. The primary volatile species targeted for trapping were iodine, technetium, and cesium. Each species is intended to be collected in distinct zones of the off-gas system and within those zones, on individual filters. Separation of the volatile off-gases is achieved thermally as well as chemically given the composition of the filter media. A description of the filter media and a basis for its selection will be given along with the collection mechanisms and design considerations. In addition, results from testing with the off-gas treatment system will be presented.

  10. Design, Fabrication, and Shakeout Testing of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    SciTech Connect

    Walker, Jr, Joseph Franklin; Jubin, Robert Thomas; Jordan, Jacob A.; Bruffey, Stephanie H.

    2015-07-31

    A sorbent-based capture system designed for integration into the existing dissolver off-gas (DOG) treatment system at the ATelier Alpha et Laboratoires pour ANalyses, Transuraniens et Etudes de retraitement (ATALANTE) facility has been successfully designed and fabricated and has undergone shakeout testing. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system were specified, procured, and received on site at Oak Ridge National Laboratory (ORNL). The system was then fabricated and tested at ORNL to verify operation. Shakeout testing resulted in a simplified system. This system should be easily installed into the existing facility and should be straightforward to operate during future experimental testing. All parts were selected to be compatible with ATALANTE power supplies, space requirements, and the existing DOG treatment system. Additionally, the system was demonstrated to meet all of four design requirements. These include (1) a dissolver off-gas flow rate of ≤100 L/h (1.67 L/min), (2) an external temperature of ≤50°C for all system components placed in the hot cell, (3) a sorbent bed temperature of ~150°C, and (4) a gas temperature of ~150°C upon entry into the sorbent bed. The system will be ready for shipment and installation in the existing DOG treatment system at ATALANTE in FY 2016.

  11. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    SciTech Connect

    Reigel, M. M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  12. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    SciTech Connect

    Reigel, M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  13. Efficiency analysis of a hydrogen-fueled solid oxide fuel cell system with anode off-gas recirculation

    NASA Astrophysics Data System (ADS)

    Peters, Roland; Deja, Robert; Engelbracht, Maximilian; Frank, Matthias; Nguyen, Van Nhu; Blum, Ludger; Stolten, Detlef

    2016-10-01

    This study analyzes different hydrogen-fueled solid oxide fuel cell (SOFC) system layouts. It begins with a simple system layout without any anode off-gas recirculation, continues with a configuration equipped with off-gas recirculation, including steam condensation and then considers a layout with a dead-end anode off-gas loop. Operational parameters such as stack fuel utilization, as well as the recirculation rate, are modified, with the aim of achieving the highest efficiency values. Drawing on experiments and the accumulated experience of the SOFC group at the Forschungszentrum Jülich, a set of operational parameters were defined and applied to the simulations. It was found that anode off-gas recirculation, including steam condensation, improves electrical efficiency by up to 11.9 percentage-points compared to a layout without recirculation of the same stack fuel utilization. A system layout with a dead-end anode off-gas loop was also found to be capable of reaching electrical efficiencies of more than 61%.

  14. ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT

    SciTech Connect

    Nick Soelberg

    2009-04-01

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. A simulant of the DWPF SB4 feed was successfully fed and melted in a small pilot-scale CCIM system during two test series. The OGSE tests provide initial results that (a) provide melter operating conditions while feeding a DWPF SB4 simulant feed, (b) determine the fate of feed organic and metal feed constituents and metals partitioning, and (c) characterize the melter off-gas source term to a downstream off-gas system. The INL CCIM test system was operated continuously for about 30 hours during the parametric test series, and for about 58 hours during the OGSE test. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter

  15. Release model for in situ vitrification large-field test off-gas treatment system

    SciTech Connect

    Pafford, D.J.; Tung, V.X.

    1992-03-01

    A conceptual model for the vapor and aerosol transport and deposition in the in situ vitrification large-field test off-gas system (OGS) has been developed. This model can be used to predict the emissions from the OGS under normal and off-normal conditions. Results generated by the model can be used to evaluate design and/or procedural modifications, define tests, and predict results. The OGS vapor and aerosol transport and deposition is modeled using the PULSE/MOD-ISV/VER 1.0.0 developmental computer code. Input data requirements for this code include the specific geometries of the OGS components; the composition, rate, and temperature of the vapors and aerosols entering the OGS; and the OGS component surface temperatures or heat fluxes. Currently, not all of these model inputs are available. Therefore, conceptual input parameters are developed. Using this input data, preliminary calculations with the code have been performed. These calculations include a demonstration that the code predicts convergent results, a comparison of predicted results with performance data for one of the OGS components, and a preliminary sensitivity study of the complete model.

  16. Particulate Scrubbing Performance of the High Level Caves Off-Gas System

    SciTech Connect

    Wright, G.T.

    2001-08-16

    Performance tests were conducted at the ETF using off-gas from the Small Cylindrical Melter (SCM) -2. The purpose of these tests was to develop data for comparing small and full scale equipment performance. This reports discusses those test results.

  17. Process system evaluation-consolidated letters. Volume 1. Alternatives for the off-gas treatment system for the low-level waste vitrification process

    SciTech Connect

    Peurrung, L.M.; Deforest, T.J; Richards, J.R.

    1996-03-01

    This report provides an evaluation of alternatives for treating off-gas from the low-level waste (LLW) melter. The study used expertise obtained from the commercial nonradioactive off-gas treatment industry. It was assumed that contact maintenance is possible, although the subsequent risk to maintenance personnel was qualitatively considered in selecting equipment. Some adaptations to the alternatives described may be required, depending on the extent of contact maintenance that can be achieved. This evaluation identified key issues for the off-gas system design. To provide background information, technology reviews were assembled for various classifications of off-gas treatment equipment, including off-gas cooling, particulate control, acid gas control, mist elimination, NO{sub x} reduction, and SO{sub 2} removal. An order-of-magnitude cost estimate for one of the off-gas systems considered is provided using both the off-gas characteristics associated with the Joule-heated and combustion-fired melters. The key issues identified and a description of the preferred off-gas system options are provided below. Five candidate treatment systems were evaluated. All of the systems are appropriate for the different melting/feed preparations currently being considered. The lowest technical risk is achieved using option 1, which is similar to designs for high-level waste (HLW) vitrification in the Hanford Waste Vitrification Project (HWVP) and the West Valley. Demonstration Project. Option 1 uses a film cooler, submerged bed scrubber (SBS), and high-efficiency mist eliminator (HEME) prior to NO{sub x} reduction and high-efficiency particulate air (HEPA) filtration. However, several advantages were identified for option 2, which uses high-temperature filtration. Based on the evaluation, option 2 was identified as the preferred alternative. The characteristics of this option are described below.

  18. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    SciTech Connect

    Nick Soelberg; Joe Enneking

    2011-05-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  19. System Design Description and Requirements for Modeling the Off-Gas Systems for Fuel Recycling Facilities

    SciTech Connect

    Daryl R. Haefner; Jack D. Law; Troy J. Tranter

    2010-08-01

    This document provides descriptions of the off-gases evolved during spent nuclear fuel processing and the systems used to capture the gases of concern. Two reprocessing techniques are discussed, namely aqueous separations and electrochemical (pyrochemical) processing. The unit operations associated with each process are described in enough detail so that computer models to mimic their behavior can be developed. The document also lists the general requirements for the desired computer models.

  20. Peer review panel summary report for technical determination of mixed waste incineration off-gas systems for Rocky Flats; Appendix A

    SciTech Connect

    1992-12-31

    A Peer Review Panel was convened on September 15-17, 1992 in Boulder, Co. The members of this panel included representatives from DOE, EPA, and DOE contractors along with invited experts in the fields of air pollution control and waste incineration. The primary purpose of this review panel was to make a technical determination of a hold, test and release off gas capture system should be implemented in the proposed RF Pland mixed waste incineration system; or if a state of the art continuous air pollution control and monitoring system should be utilized as the sole off-gas control system. All of the evaluations by the panel were based upon the use of the fluidized bed unit proposed by Rocky Flats and cannot be generalized to other systems.

  1. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.

    PubMed

    Suetens, T; Guo, M; Van Acker, K; Blanpain, B

    2015-04-28

    To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber.

  2. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM - PRELIMINARY REPORT

    SciTech Connect

    Zamecnik, J.; Choi, A.

    2009-03-25

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  3. Comparison of a fuel-driven and steam-driven ejector in solid oxide fuel cell systems with anode off-gas recirculation: Part-load behavior

    NASA Astrophysics Data System (ADS)

    Engelbracht, Maximilian; Peters, Roland; Blum, Ludger; Stolten, Detlef

    2015-03-01

    This paper investigates the use of ejectors for recirculating anode off-gas in an SOFC system, focusing on the part-load capability of two different systems. In the first system, recirculation was enabled by a fuel-driven ejector. The part-load threshold of this system was determined by carbon formation and was 77.8% assuming a fuel utilization of 70% and suitable ejector geometry. The second system was based on a steam-driven ejector. The simulation results for this system showed an improved part-load capability of 37.8% as well as a slightly improved electrical efficiency. Here, the minimal part load was determined by the condensation temperature of the condenser used in the system.

  4. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    SciTech Connect

    Zamecnik, J.; Choi, A.

    2010-08-18

    chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly

  5. Adsorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  6. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    SciTech Connect

    Edwards, T.; Lambert, D.

    2014-08-27

    . Sample calculations of the system are also included in this report. Please note that the system developed and documented in this report is intended as an alternative to the current, analytically-driven system being utilized by DWPF; the proposed system is not intended to eliminate the current system. Also note that the system developed in this report to track antifoam mass in the AMFT, SRAT, and SME will be applicable beyond just Sludge Batch 8. While the model used to determine acceptability of the SME product with respect to melter off-gas flammability controls must be reassessed for each change in sludge batch, the antifoam mass tracking methodology is independent of sludge batch composition and as such will be transferable to future sludge batches.

  7. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel

  8. Optimization of UA of heat exchangers and BOG compressor exit pressure of LNG boil-off gas reliquefaction system using exergy analysis

    NASA Astrophysics Data System (ADS)

    Kochunni, Sarun Kumar; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2015-12-01

    Boil-off gas (BOG) generation and its handling are important issues in Liquefied natural gas (LNG) value chain because of economic, environment and safety reasons. Several variants of reliquefaction systems of BOG have been proposed by researchers. Thermodynamic analyses help to configure them and size their components for improving performance. In this paper, exergy analysis of reliquefaction system based on nitrogen-driven reverse Brayton cycle is carried out through simulation using Aspen Hysys 8.6®, a process simulator and the effects of heat exchanger size with and without related pressure drop and BOG compressor exit pressure are evaluated. Nondimensionalization of parameters with respect to the BOG load allows one to scale up or down the design. The process heat exchanger (PHX) requires much higher surface area than that of BOG condenser and it helps to reduce the quantity of methane vented out to atmosphere. As pressure drop destroys exergy, optimum UA of PHX decreases for highest system performance if pressure drop is taken into account. Again, for fixed sizes of heat exchangers, as there is a range of discharge pressures of BOG compressor at which the loss of methane in vent minimizes, the designer should consider choosing the pressure at lower value.

  9. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    SciTech Connect

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The operational requirements for the River Protection Project - Waste Treatment Plant (RPP-WTP) Low Activity Waste (LAW) and High Level Waste (HLW) melter systems, together with the feed constituents, impose a number of challenges to the off-gas treatment system. The system must be robust from the standpoints of operational reliability and minimization of maintenance. The system must effectively control and remove a wide range of solid particulate matter, acid mists and gases, and organic constituents (including those arising from products of incomplete combustion of sugar and organics in the feed) to concentration levels below those imposed by regulatory requirements. The baseline design for the RPP-WTP LAW primary off-gas system includes a submerged bed scrubber (SBS), a wet electrostatic precipitator (WESP), and a high efficiency particulate air (HEPA) filter. The secondary off-gas system includes a sulfur-impregnated activated carbon bed (AC-S), a thermal catalytic oxidizer (TCO), a single-stage selective catalytic reduction NOx treatment system (SCR), and a packed-bed caustic scrubber (PBS). The baseline design for the RPP-WTP HLW primary off-gas system includes an SBS, a WESP, a high efficiency mist eliminator (HEME), and a HEPA filter. The HLW secondary off-gas system includes a sulfur-impregnated activated carbon bed, a silver mordenite bed, a TCO, and a single-stage SCR. The one-third scale HLW DM1200 Pilot Melter installed at the Vitreous State Laboratory (VSL) was equipped with a prototypical off-gas train to meet the needs for testing and confirmation of the performance of the baseline off-gas system design. Various modifications have been made to the DM1200 system as the details of the WTP design have evolved, including the installation of a silver mordenite column and an AC-S column for testing on a slipstream of the off-gas flow; the installation of a full-flow AC-S bed for the present tests was completed prior to initiation of testing. The DM1200

  10. A system of miniaturized stirred bioreactors for parallel continuous cultivation of yeast with online measurement of dissolved oxygen and off-gas.

    PubMed

    Klein, Tobias; Schneider, Konstantin; Heinzle, Elmar

    2013-02-01

    Chemostat cultivation is a powerful tool for physiological studies of microorganisms. We report the construction and application of a set of eight parallel small-scale bioreactors with a working volume of 10 mL for continuous cultivation. Hungate tubes were used as culture vessels connected to multichannel-peristaltic pumps for feeding fresh media and removal of culture broth and off-gas. Water saturated air is sucked into the bioreactors by applying negative pressure, and small stirrer bars inside the culture vessels allow sufficient mixing and oxygen transfer. Optical sensors are used for non-invasive online measurement of dissolved oxygen, which proved to be a powerful indicator of the physiological state of the cultures, particularly of steady-state conditions. Analysis of culture exhaust-gas by means of mass spectrometry enables balancing of carbon. The capacity of the developed small-scale bioreactor system was validated using the fission yeast Schizosaccharomyces pombe, focusing on the metabolic shift from respiratory to respiro-fermentative metabolism, as well as studies on consumption of different substrates such as glucose, fructose, and gluconate. In all cases, an almost completely closed carbon balance was obtained proving the reliability of the experimental setup.

  11. Off gas film cooler cleaner

    SciTech Connect

    Dhingra, H.S.; Koch, W.C.; Burns, D.C.

    1995-12-31

    An apparatus is described for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remotely controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter. The main application for this invention is to clean the off gas cooler of a radioactive waste vitrification unit.

  12. HC-21C off-gas test procedure. Revision 1

    SciTech Connect

    Cunningham, L.T.

    1995-02-02

    Stabilization of plutonium bearing scrap material occurs in furnaces, FUR-21C-1 and FUR-21C-2, located in glovebox HC-21C. During previous testing and processing operations, water has been observed forming in the off-gas rotameters, FI-21C-1 and FI-21C-2. The off-gas is filtered through a 2 micron ceramic filter, F-21C-1 or F-21C-2, before discharge into the 26 inch vacuum system. The goal of this test plan is to determine the cause and location of water formation in the sludge stabilization off-gas system. The results should help determine what design improvements or processing steps will be implemented to prevent this phenomena from occurring in the future.

  13. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER SAMPLE

    SciTech Connect

    Newell, J.

    2011-11-14

    The Savannah River National Laboratory (SRNL) recently received a deposit sample from the Melter Primary Off Gas System (POG) of the Defense Waste Processing Facility (DWPF). This sample was composed of material that had been collected while the quencher was in operation January 27, 2011 through March 31, 2011. DWPF requested, through a technical assistance request, characterization of the melter off-gas deposits by x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The purpose of the Melter Off-Gas System is to reduce the amount of radioactive particles and mercury in the gases vented to the atmosphere. Gases emitted from the melter pass through the primary film cooler, quencher, Off-Gas Condensate Tank (OGCT), Steam Atomized Scrubbers (SAS), a condenser, a high efficiency mist eliminator, and a high efficiency particulate air filter, before being vented to the Process Vessel Vent System. The film coolers cool the gases leaving the melter vapor space from {approx}750 C to {approx}375 C, by introducing air and steam to the flow. In the next step, the quencher cools the gas to about 60 C by bringing the condensate from the OGCT in contact with the effluent (Figure 1). Most of the steam in the effluent is then condensed and the melter vapor space pressure is reduced. The purpose of the OGCT is to collect and store the condensate formed during the melter operation. Condensate from the OGCT is circulated to the SAS and atomized with steam. This atomized condensate is mixed with the off-gas to wet and join the particulate which is then removed in the cyclone. The next stage incorporates a chilled water condenser which separates the vapors and elemental mercury from the off-gas steam. Primary off-gas deposit samples from the DWPF melter have previously been analyzed. In 2003, samples from just past the film cooler, from the inlet of the quencher and inside the quencher were analyzed at SRNL. It was determined that the samples were a

  14. FY-2001 Accomplishments in Off-gas Treatment Technology Development

    SciTech Connect

    Marshall, Douglas William

    2001-09-01

    This report summarizes the efforts funded by the Tank Focus Area to investigate nitrogen oxide (NOx) destruction (a.k.a. deNOx) technologies and off-gas scrubber system designs. The primary deNOx technologies that were considered are staged combustion (a.k.a. NOx reburning), selective catalytic reduction, selective non-catalytic reduction, and steam reformation. After engineering studies and a team evaluation were completed, selective catalytic reduction and staged combustion were considered the most likely candidate technologies to be deployed in a sodium-bearing waste vitrification facility. The outcome of the team evaluation factored heavily in the establishing a baseline configuration for off-gas and secondary waste treatment systems.

  15. Microwave off-gas treatment apparatus and process

    DOEpatents

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  16. Dynamic Absorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge

    2011-07-01

    Modeling and simulations will aid in the future design of U.S. advanced reprocessing plants for the recovery and recycle of actinides in used nuclear fuel. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, a rate based, dynamic absorption model is being developed in gPROMS software. Inputs include liquid and gas stream constituents, column properties, liquid and gas phase reactions, number of stages, and inlet conditions. It simulates multiple component absorption with countercurrent flow and accounts for absorption by mass transfer and chemical reaction. The assumption of each stage being a discrete well-mixed entity was made. Therefore, the model is solved stagewise. The simulation outputs component concentrations in both phases as a function of time from which the rate of absorption is determined. Temperature of both phases is output as a function of time also. The model will be used able to be used as a standalone model in addition to in series with other off-gas separation unit operations. The current model is being generated based on NOx absorption; however, a future goal is to develop a CO2 specific model. The model will have the capability to be modified for additional absorption systems. The off-gas models, both adsorption and absorption, will be made available via the server or web for evaluation by customers.

  17. Melter Off-Gas Flammability Analysis

    SciTech Connect

    Smith, FG III

    2003-12-12

    The objective of this work was to develop predictive models to assess offgas flammability for a low activity radioactive waste melter. The models had to be comprehensive enough to explicitly describe the effects of key melter operating variables such as total organic carbon in the feed, melter air purge and vapor space temperature. Once validated against pilot melter data, these models were used to simulate a series of safety scenarios involving over-batching of sugar, used as a reducing agent, and off-gas surges. The overall scope of the work was broken down into two parts, each focusing on a physically distinct region in the melter.

  18. Off-gas adsorption model and simulation - OSPREY

    SciTech Connect

    Rutledge, V.J.

    2013-07-01

    A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and Recovery (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed. (author)

  19. Off-gas Adsorption Model and Simulation - OSPREY

    SciTech Connect

    Veronica J Rutledge

    2013-10-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.

  20. Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory

    SciTech Connect

    1995-01-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation.

  1. Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices

    NASA Astrophysics Data System (ADS)

    Steinparzer, T.; Haider, M.; Fleischanderl, A.; Hampel, A.; Enickl, G.; Zauner, F.

    2012-11-01

    The fluctuating thermal emissions of electric arc furnaces require energy storage systems to provide downstream consumers with a continuous amount of thermal energy or electricity. Heat recovery systems based on thermal energy storage are presented. A comparison of different thermal energy storage systems has been performed. For the purpose, suitable heat exchangers for the off-gas heat have been developed. Dynamic process simulations of the heat recovery plants were necessary to check the feasibility of the systems and consider the non-steady-state off-gas emissions of the steelmaking devices. The implementation of a pilot plant into an existing off-gas duct of an electric arc furnace was required to check the real behavior of the heat exchanger and determine suitable materials in view of corrosion issues. The pilot plant is presented in this paper.

  2. Adsorption modeling for off-gas treatment

    SciTech Connect

    Ladshaw, A.; Sharma, K.; Yiacoumi, S.; Tsouris, C.; De Paoli, D.W.

    2013-07-01

    Off-gas generated from the reprocessing of used nuclear fuel contains a mixture of several radioactive gases including {sup 129}I{sub 2}, {sup 85}Kr, HTO, and {sup 14}CO{sub 2}. Over the past few decades, various separation and recovery processes have been studied for capturing these gases. Adsorption data for gaseous mixtures of species can be difficult to determine experimentally. Therefore, procedures capable of predicting the adsorption behavior of mixtures need to be developed from the individual isotherms of each of the pure species. A particular isotherm model of interest for the pure species is the Generalized Statistical Thermodynamic Adsorption isotherm. This model contains an adjustable number of parameters and will therefore describe a wide range of adsorption isotherms for a variety of components. A code has been developed in C++ to perform the non-linear regression analysis necessary for the determination of the isotherm parameters, as well as the least number of parameters needed to describe an entire set of data. (authors)

  3. Sorption Modeling and Verification for Off-Gas Treatment

    SciTech Connect

    Tavlarides, Lawrence L.; Lin, Ronghong; Nan, Yue; Yiacoumi, Sotira; Tsouris, Costas; Ladshaw, Austin; Sharma, Ketki; Gabitto, Jorge; DePaoli, David

    2015-04-29

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  4. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    SciTech Connect

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R; Storey, John Morse

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in which hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.

  5. Air classification: Potential treatment method for optimized recycling or utilization of fine-grained air pollution control residues obtained from dry off-gas cleaning high-temperature processing systems.

    PubMed

    Lanzerstorfer, Christof

    2015-11-01

    In the dust collected from the off-gas of high-temperature processes, usually components that are volatile at the process temperature are enriched. In the recycling of the dust, the concentration of these volatile components is frequently limited to avoid operation problems. Also, for external utilization the concentration of such volatile components, especially heavy metals, is often restricted. The concentration of the volatile components is usually higher in the fine fractions of the collected dust. Therefore, air classification is a potential treatment method to deplete the coarse material from these volatile components by splitting off a fines fraction with an increased concentration of those volatile components. In this work, the procedure of a sequential classification using a laboratory air classifier and the calculations required for the evaluation of air classification for a certain application were demonstrated by taking the example of a fly ash sample from a biomass combustion plant. In the investigated example, the Pb content in the coarse fraction could be reduced to 60% by separation of 20% fines. For the non-volatile Mg the content was almost constant. It can be concluded that air classification is an appropriate method for the treatment of off-gas cleaning residues.

  6. Development of silver impregnated alumina for iodine separation from off-gas streams

    SciTech Connect

    Funabashi, Kiyomi; Fukasawa, Tetsuo; Kikuchi, Makoto

    1995-02-01

    An inorganic iodine adsorbent, silver impregnated alumina (AgA), has been developed to separate iodine effectively from off-gas streams of nuclear facilities and to decrease the volume of waste (spent adsorbent). Iodine removal efficiency was improved at relatively high humidity by using alumina carrier with two different pore diameters. Waste volume reduction was achieved by impregnating relatively large amounts of silver into the alumina pores. The developed adsorbent was tested first with simulated off-gas streams under various experimental conditions and finally with actual off-gas streams of the Karlsruhe reprocessing plant. The decontamination factor (DF) was about 100 with the AgA bed depth of 2cm at 70% relative humidity, which was a DF one order higher than that when AgA with one pore size was used. Iodine adsorption capacity was checked by passing excess iodine into the AgA bed. Values were about 0.12 and 0.35 g-I/cm`-AgA bed for 10 and 24wt% silver impregnated AgA, respectively. The results obtained in this study demonstrated the applicability of the developed AgA to the off-gas treatment system of nuclear facilities.

  7. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    SciTech Connect

    Ramsey, William G.; Esparza, Brian P.

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  8. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    SciTech Connect

    Taylor-Pashow, Kathryn M.L.; McCabe, Daniel J.

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  9. Validation of DWPF Melter Off-Gas Combustion Model

    SciTech Connect

    Choi, A.S.

    2000-08-23

    The empirical melter off-gas combustion model currently used in the DWPF safety basis calculations is valid at melter vapor space temperatures above 570 degrees C, as measured in the thermowell. This lower temperature bound coincides with that of the off-gas data used as the basis of the model. In this study, the applicability of the empirical model in a wider temperature range was assessed using the off-gas data collected during two small-scale research melter runs. The first data set came from the Small Cylindrical Melter-2 run in 1985 with the sludge feed coupled with the precipitate hydrolysis product. The second data set came from the 774-A melter run in 1996 with the sludge-only feed prepared with the modified acid addition strategy during the feed pretreatment step. The results of the assessment showed that the data from these two melter runs agreed well with the existing model, and further provided the basis for extending the lower temperature bound of the model to the measured melter vapor space temperature of 445 degrees C.

  10. Method for treating a nuclear process off-gas stream

    DOEpatents

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  11. Process for off-gas particulate removal and apparatus therefor

    DOEpatents

    Carl, D.E.

    1997-10-21

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

  12. Process for off-gas particulate removal and apparatus therefor

    DOEpatents

    Carl, Daniel E.

    1997-01-01

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

  13. Cooler and particulate separator for an off-gas stack

    DOEpatents

    Wright, G.T.

    1991-04-08

    This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  14. Cooler and particulate separator for an off-gas stack

    DOEpatents

    Wright, George T.

    1992-01-01

    An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  15. Selection among aqueous and off-gas treatment technologies for synthetic organic chemicals

    SciTech Connect

    Dvorak, B.I.; Herbeck, C.J.; Meurer, C.P.; Lawler, D.F.; Speitel, G.E. Jr.

    1996-07-01

    A methodology for selecting the least-cost treatment technology for waters contaminated by organic wastes was developed using performance and cost models. This methodology simplifies the selection of the least expensive treatment process(es) for a given set of conditions. Two aqueous-phase treatment options were considered: air stripping and liquid-phase adsorption (granular activated carbon). When the off-gases from air stripping must be treated, four off-gas treatment options were considered: gas-phase adsorption (with both on- and off-site regeneration of the granular activated carbon), thermal incineration, and catalytic oxidation. Methodologies were developed for rapidly selecting the least-cost off-gas treatment option [for volatile organic compound (VOC) sources such as an air stripping tower], for selecting the least-cost overall (liquid and gas phase treatment) system, and for selecting the least-cost overall system for a multicomponent mixture. The comparison methodology is based on physical parameters of the target chemical: Henry`s constant and the solute distribution parameter. The results are a set of diagrams and heuristics for rapid identification of cases for which one treatment option is significantly less expensive than the other.

  16. Literature search for offsite data to improve the DWPF melter off-gas model

    SciTech Connect

    Daniel, W.E.

    2000-05-04

    This report documents the literature search performed and any relevant data that may help relax some of the constraints on the DWPF melter off-gas model. The objective of this task was to look for outside sources of technical data to help reduce some of the conservatism built in the DWPF melter off-gas model.

  17. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    SciTech Connect

    Taylor-Pashow, K.; McCabe, D.

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  18. Airborne waste management technology applicable for use in reprocessing plants for control of iodine and other off-gas constituents

    SciTech Connect

    Jubin, R.T.

    1988-02-01

    Extensive work in the area of iodine removal from reprocessing plant off-gas streams using various types of solid sorbent materials has been conducted worldwide over the past two decades. This work has focused on the use of carbon filters, primarily for power plant applications. More recently, the use of silver-containing sorbents has been the subject of considerable research. The most recent work in the United States has addressed the use of silver-exchanged faujasites and mordenites. The chemical reactions of iodine with silver on the sorbent are not well defined, but it is generally believed that chemisorbed iodides and iodates are formed. The process for iodine recovery generally involves passage of the iodine-laden gas stream through a packed bed of the adsorbent material preheated to a temperature of about 150/degree/C. Most iodine removal system designs utilizing silver-containing solid sorbents assume only a 30 to 50% silver utilization. Based on laboratory tests, potentially 60 to 70% of the silver contained in the sorbents can be reacted with iodine. To overcome the high cost of silver associated with these materials, various approaches have been explored. Among these are the regeneration of the silver-containing sorbent by stripping the iodine and trapping the iodine on a sorbent that has undergone only partial silver exchange and is capable of attaining a much higher silver utilization. This summary report describes the US work in regeneration of iodine-loaded solid sorbent material. In addition, the report discusses the broader subject of plant off-gas treatment including system design. The off-gas technologies to recovery No/sub x/ and to recover and dispose of Kr, /sup 14/C, and I are described as to their impacts on the design of an integrated off-gas system. The effect of ventilation philosophy for the reprocessing plant is discussed as an integral part of the overall treatment philosophy of the plant off-gas. 103 refs., 5 figs., 8 tabs.

  19. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  20. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    SciTech Connect

    Pence, D T; Kirstein, B E

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m/sup 3//h (15-ft/sup 3//min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed.

  1. Detailed Design Data Package item 3.9a: Cadmium buildup in off-gas lines

    SciTech Connect

    Perez, J.M.; Buchmiller, W.C.; Anderson, L.D.; Whittington, G.A.

    1996-04-01

    Waste currently stored at the Hanford Reservation in underground double-shell and single-shell tanks is being considered for vitrification and disposal. To achieve this, Hanford is conducting a Hanford Waste Vitrification Plant Technology Development Project melter campaign. In this campaign, a requirement was identified to quantify the amount of cadmium depositing in the off-gas line between the liquid-fed ceramic melter and the submerged bed scrubber. This issue of cadmium volatility was raised due to the limited data on cadmium volatility in HLW vitrification. Prior to the start of slurry processing, the off-gas line sections were removed and inspects. Any pre-existing deposits were removed. Following the melter campaign, the lines were again removed and solids deposits were sampled and the quantity of deposits were estimated. The data presented in this package include chemical analysis of feed, glass, line deposits, in-ling off-gas stream, and SBS condensate samples. Process data includes melter feeding and glass production rates, off- gas flow rate, and plenum and off-gas stream temperatures.

  2. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  3. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also

  4. Systematic selection of off-gas treatment at the Savannah River Site

    SciTech Connect

    McKillip, S.T.; Rehder, T.E.

    1992-05-01

    At the Savannah River Site (SRS), from 1958--1985, effluent waste from the reactor fuel and target rod fabrication area (M-Area) was discharged to a settling basin. In 1981, monitoring wells detected groundwater contamination, specifically trichloroethylene and tetrachloroethylene, in the immediate vicinity of the basin. Under the auspices of Resource Conservation and Recovery Act (RCRA) the M-Area contamination must be addressed by a corrective action program until the volatile organic compound (VOC) concentrations reach Drinking Water Standards. This was initiated in 1985 with startup of a full-scale pump-and-treat air stripper system. Recently, remediation efforts have focused on vacuum extraction to treat vadose zone contamination not addressed by the original recovery wells, and additional pump-and-treat systems to achieve hydraulic control of the plume. Regulatory requirements allowed for discharge of VOCs to the atmosphere when the original remediation system was installed; however, 1990 amendments to the Clean Air Act will eventually require treatment of VOC contaminated air prior to discharge. This has ramifications to systems currently being design, as well as the existing systems. In response to the 1990 Clean Air Act amendments, SRS initiated a study to assess commercially available off-gas treatment technologies. These included carbon adsorption, thermal incineration, catalytic oxidation, absorption, condensation, and UV/peroxide destruction, and xenon flashlamp. Criteria used to evaluate the technologies were the thirty (30) year life cycle cost, permitting considerations, and manpower requirements. The study concluded that catalytic oxidation provided the most desirable combination of these elements.

  5. Systematic selection of off-gas treatment at the Savannah River Site

    SciTech Connect

    McKillip, S.T.; Rehder, T.E.

    1992-01-01

    At the Savannah River Site (SRS), from 1958--1985, effluent waste from the reactor fuel and target rod fabrication area (M-Area) was discharged to a settling basin. In 1981, monitoring wells detected groundwater contamination, specifically trichloroethylene and tetrachloroethylene, in the immediate vicinity of the basin. Under the auspices of Resource Conservation and Recovery Act (RCRA) the M-Area contamination must be addressed by a corrective action program until the volatile organic compound (VOC) concentrations reach Drinking Water Standards. This was initiated in 1985 with startup of a full-scale pump-and-treat air stripper system. Recently, remediation efforts have focused on vacuum extraction to treat vadose zone contamination not addressed by the original recovery wells, and additional pump-and-treat systems to achieve hydraulic control of the plume. Regulatory requirements allowed for discharge of VOCs to the atmosphere when the original remediation system was installed; however, 1990 amendments to the Clean Air Act will eventually require treatment of VOC contaminated air prior to discharge. This has ramifications to systems currently being design, as well as the existing systems. In response to the 1990 Clean Air Act amendments, SRS initiated a study to assess commercially available off-gas treatment technologies. These included carbon adsorption, thermal incineration, catalytic oxidation, absorption, condensation, and UV/peroxide destruction, and xenon flashlamp. Criteria used to evaluate the technologies were the thirty (30) year life cycle cost, permitting considerations, and manpower requirements. The study concluded that catalytic oxidation provided the most desirable combination of these elements.

  6. Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes

    DOEpatents

    Siemer, Darryl D.; Lewis, Leroy C.

    1990-01-01

    A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.

  7. Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes

    DOEpatents

    Siemer, Darryl D.; Lewis, Leroy C.

    1990-08-07

    A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.

  8. Graphite fuels combustion off-gas treatment options

    SciTech Connect

    Kirkham, R.J.; Lords, R.E.

    1993-03-01

    Scenarios for burning bulk graphite and for burning crushed fuel particles from graphite spent nuclear fuels have been considered. Particulates can be removed with sintered metal filters. Subsequent cooling would then condense semi-volatile fission products into or onto a particulate. These particulates would be trapped by a second sintered metal filter or downstream packed bed. A packed bed scrub column can be used to eliminate most of the iodine-129 and tritium. A molecular sieve bed is proposed to collect the residual {sup 129}I and other tramp radionuclides downstream (Ruthenium, etc.). Krypton-85 can be recovered, if need be, either by cryogenics or by the KALC process (Krypton Adsorption in Liquid Carbon dioxide). Likewise carbon-14 in the form of carbon dioxide could be collected with a caustic or lime scrub solution and incorporated into a grout. Sulfur dioxide present will be well below regulatory concern level of 4.0 tons per year and most of it would be removed by the scrubber. Carbon monoxide emissions will depend on the choice of burner and start-up conditions. Should the system exceed the regulatory concern level, a catalytic converter in the final packed bed will be provided. Radon and its daughters have sufficiently short half-lives (less than two minutes). If necessary, an additional holdup bed can be added before the final HEPA filters or additional volume can be added to the molecular sieve bed to limit radon emissions. The calculated total effective dose equivalent at the Idaho National Engineering Laboratory boundary from a single release of all the {sup 3}, {sup 14}C, {sup 85}Kr, and {sup 129}I in the total fuel mass if 0.43 mrem/year.

  9. Modeling of off-gas emissions from wood pellets during marine transportation.

    PubMed

    Pa, Ann; Bi, Xiaotao T

    2010-10-01

    After a fatal accident during the discharge of wood pellets at Helsingborg, emissions from pellets during marine transportation became a concern for the safe handling and storage of wood pellets. In this paper, a two-compartment model has been developed for the first time to predict the concentrations of CO, CO₂, CH₄, and O₂ inside the cargo ship and the time and rate of forced ventilation required before the safe entry into the stairway adjacent to the storage hatch. The hatch and stairway are treated as two perfectly mixed tanks. The gas exchange rate between these two rooms and the gas exchange rate with the atmosphere are fitted to satisfy a measured tracer final concentration of 33 p.p.m.v. in the stairway and an average final hatch to stairway CO, CO₂, and CH₄ concentration ratio of 1.62 based on measurement from five other hatch and stairway systems. The reaction kinetics obtained from a laboratory unit using a different batch of pellets, however, need to be scaled in order to bring the prediction to close agreement with onboard measured emission data at the end of voyage. Using the adjusted kinetic data, the model was able to predict the general trend of data recorded in the first 12.5 days of the voyage. Further validation, however, requires the data recorded over the whole journey. The model was applied to predict the effect of ocean temperature on the off-gas emissions and the buildup of concentrations in the hatch and stairway. For safe entry to the cargo ship, the current model predicted that a minimal ventilation rate of 4.4 hr⁻¹ is required for the stairway's CO concentration to lower to a safe concentration of 25 p.p.m.v. At 4.4 hr⁻¹, 10 min of ventilation time is required for the safe entry into the stairway studied.

  10. Modeling of off-gas emissions from wood pellets during marine transportation.

    PubMed

    Pa, Ann; Bi, Xiaotao T

    2010-10-01

    After a fatal accident during the discharge of wood pellets at Helsingborg, emissions from pellets during marine transportation became a concern for the safe handling and storage of wood pellets. In this paper, a two-compartment model has been developed for the first time to predict the concentrations of CO, CO₂, CH₄, and O₂ inside the cargo ship and the time and rate of forced ventilation required before the safe entry into the stairway adjacent to the storage hatch. The hatch and stairway are treated as two perfectly mixed tanks. The gas exchange rate between these two rooms and the gas exchange rate with the atmosphere are fitted to satisfy a measured tracer final concentration of 33 p.p.m.v. in the stairway and an average final hatch to stairway CO, CO₂, and CH₄ concentration ratio of 1.62 based on measurement from five other hatch and stairway systems. The reaction kinetics obtained from a laboratory unit using a different batch of pellets, however, need to be scaled in order to bring the prediction to close agreement with onboard measured emission data at the end of voyage. Using the adjusted kinetic data, the model was able to predict the general trend of data recorded in the first 12.5 days of the voyage. Further validation, however, requires the data recorded over the whole journey. The model was applied to predict the effect of ocean temperature on the off-gas emissions and the buildup of concentrations in the hatch and stairway. For safe entry to the cargo ship, the current model predicted that a minimal ventilation rate of 4.4 hr⁻¹ is required for the stairway's CO concentration to lower to a safe concentration of 25 p.p.m.v. At 4.4 hr⁻¹, 10 min of ventilation time is required for the safe entry into the stairway studied. PMID:20603277

  11. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  12. Regulatory Off-Gas Analysis from the Evaporator of Hanford Simulated Waste Spiked with Organic Compounds

    SciTech Connect

    Calloway, T.B.

    2002-08-21

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, remaining low activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation prior to being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile and pesticide compounds, and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River Technology Center. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using EPA SW-846 Methods.

  13. A Literature Survey to Identify Potentially Volatile Iodine-Bearing Species Present in Off-Gas Streams

    SciTech Connect

    Bruffey, S. H.; Spencer, B. B.; Strachan, D. M.; Jubin, R. T.; Soelberg, N. R.; Riley, B. J.

    2015-06-30

    Four radionuclides have been identified as being sufficiently volatile in the reprocessing of nuclear fuel that their gaseous release needs to be controlled to meet regulatory requirements (Jubin et al. 2011, 2012). These radionuclides are 3H, 14C, 85Kr, and 129I. Of these, 129I has the longest half-life and potentially high biological impact. Accordingly, control of the release of 129I is most critical with respect to the regulations for the release of radioactive material in stack emissions. It is estimated that current EPA regulations (EPA 2010) would require any reprocessing plant in the United States to limit 129I release to less than 0.05 Ci/MTIHM for a typical fuel burnup of 55 gigawatt days per metric tonne (GWd/t) (Jubin 2011). The study of inorganic iodide in off-gas systems has been almost exclusively limited to I2 and the focus of organic iodide studies has been CH3I. In this document, we provide the results of an examination of publically available literature that is relevant to the presence and sources of both inorganic and organic iodine-bearing species in reprocessing plants. We especially focus on those that have the potential to be poorly sequestered with traditional capture methodologies. Based on the results of the literature survey and some limited thermodynamic modeling, the inorganic iodine species hypoiodous acid (HOI) and iodine monochloride (ICl) were identified as potentially low-sorbing iodine species that could present in off-gas systems. Organic species of interest included both short chain alkyl iodides such as methyl iodide (CH3I) and longer alkyl iodides up to iodododecane (C10H21I). It was found that fuel dissolution may provide conditions conducive to HOI formation and has been shown to result in volatile long-chain alkyl iodides, though these may not volatilize until later in the reprocessing sequence. Solvent extraction processes were found to be significant sources of various organic iodine-bearing species; formation of these

  14. Dissolver Off-gas Hot Operations Authorization (AFCI CETE Milestone Report)

    SciTech Connect

    Jubin, Robert Thomas

    2009-06-01

    The head-end processing of the Coupled-End-to-End (CETE) Demonstration includes fuel receipt, fuel disassembly, exposure of fuel (e.g., by segmenting the fuel pins), voloxidation of the fuel to separate tritium, and fuel dissolution. All of these processing steps with the exception of the dissolution step will be accomplished in the Irradiated Fuels Examination Laboratory (IFEL) (Building 3525). The final headend step will be performed in the Radiochemical Engineering Development Center (Building 7920). The primary purpose of the fuel dissolution step is to prepare the solid fuel for subsequent liquid separations steps. This is accomplished by dissolving the fuel solids using nitric acid. During the dissolution process gases are evolved. Oxides of nitrogen are the primary off-gas components generated by the reactions of nitric acid and the fuel oxides however, during the dissolution and sparging of the resulting solution, iodine, C-14 as carbon dioxide, xenon, and krypton gasses are also released to the off-gas stream. The Dissolver Off-gas treatment rack provides a means of trapping these volatile fission products and other gases via various trapping media. Specifically the rack will recover iodine on a solid sorbent bed, scrub NOx in a water/acid column, scrub CO{sub 2} in a caustic scrubber column, remove moisture with solid sorbent drier beds and recover Xe and Kr using solid absorbent beds. The primary purpose of this experimental rack and the off-gas rack associated with the voloxidation equipment located at IFEL is to close the material balances around the volatile gases and to provide an understanding of the impacts of specific processing conditions on the fractions of the volatile components released from the various head-end processing steps.

  15. On The Impact of Borescope Camera Air Purge on DWPF Melter Off-Gas Flammability

    SciTech Connect

    CHOI, ALEXANDER

    2004-07-22

    DWPF Engineering personnel requested that a new minimum backup film cooler air flow rate, which will meet the off-gas safety basis limits for both normal and seismic sludge-only operations, be calculated when the air purge to the borescope cameras is isolated from the melter. Specifically, it was requested that the latest calculations which were used to set the off-gas flammability safety bases for the sludge batch 2 and 3 feeds be revised, while maintaining all other process variables affecting off-gas flammability such as total organic carbon (TOC), feed rate, melter air purges, and vapor space temperature at their current respective maximum or minimum limits. Before attempting to calculate the new minimum backup film cooler air flow, some of the key elements of the combustion model were reviewed, and it was determined that the current minimum backup film cooler air flow of 233 lb/hr is adequate to satisfy the off-gas flammability safety bases for both normal and seismic operations i n the absence of any borescope camera air purge. It is, therefore, concluded that there is no need to revise the reference E-7 calculations. This conclusion is in essence based on the fact that the current minimum backup film cooler air flow was set to satisfy the minimum combustion air requirement under the worst-case operating scenario involving a design basis earthquake during which all the air purges not only to the borescope cameras but to the seal pot are presumed to be lost due to pipe ruptures. The minimum combustion air purge is currently set at 150 per cent of the stoichiometric air flow required to combust 3 times the normal flow of flammable gases. The DWPF control strategy has been that 100 per cent of the required minimum combustion air is to be provided by the controlled air purge through the backup film cooler alone.

  16. Regulatory Off-Gas Analysis from the Evaporation of Hanford Simulated Waste Spiked with Organic Compounds

    SciTech Connect

    Saito, H.H.

    2001-03-28

    The purposes of this work were to: (1) develop preliminary operating data such as expected concentration endpoints for flow sheet development and evaporator design, and (2) examine the regulatory off-gas emission impacts from the evaporation of relatively organic-rich Hanford Tank 241-AN-107 Envelope C waste simulant containing 14 volatile, semi-volatile and pesticide organic compounds potentially present in actual Hanford RPP waste.

  17. Regulatory Off-Gas Analysis from the Evaporation of Hanford Simulated Waste Spiked with Organic Compounds

    SciTech Connect

    Calloway, T.B. Jr.

    2003-10-23

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, remaining low activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation prior to being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile and pesticide compounds, and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River Technology Center. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using EPA SW-846 Methods. Volatile and light semi-volatile organic compounds in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate and off-gas streams with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI ESP model is constrained by available literature data.

  18. OFF-GAS MERCURY CONTROL USING SULFUR-IMPREGNATED ACTIVATED CARBON – TEST RESULTS

    SciTech Connect

    Nick Soelberg

    2007-05-01

    Several laboratory and pilot-scale tests since the year 2000 have included demonstrations of off-gas mercury control using fixed bed, sulfur-impregnated activated carbon. These demonstrations have included operation of carbon beds with gas streams containing a wide range of mercury and other gas species concentrations representing off-gas from several U.S. Department of Energy (DOE) mixed waste treatment processes including electrical resistance heated (joule-heated) glass melters, fluidized bed calciners, and fluidized bed steam reformers. Surrogates of various DOE mixed waste streams (or surrogates of offgas from DOE mixed waste streams) including INL “sodium bearing waste” (SBW), liquid “low activity waste” (LAW) from the Pacific Northwest National Laboratory, and liquid waste from Savannah River National Laboratory (“Tank 48H waste”) have been tested. Test results demonstrate mercury control efficiencies up to 99.999%, high enough to comply with the Hazardous Waste (HWC) Combustor Maximum Achievable Control Technology (MACT) standards even when the uncontrolled off-gas mercury concentrations exceed 400,000 ug/dscm (at 7% O2), and confirm carbon bed design parameters for such high efficiencies. Results of several different pilot-scale and engineering-scale test programs performed over several years are presented and compared.

  19. Theory to boil-off gas cooled shields for cryogenic storage vessels

    NASA Astrophysics Data System (ADS)

    Hofmann, A.

    2004-03-01

    An intermediate refrigeration with boil-off gas cooled shields using the boil-off gas stream is an alternative method to the conventional intermediate refrigeration with a cryogenic liquid. By using an analytical calculation method relations are derived, which enable complete predictions about the effectiveness of an intermediate refrigeration with boil-off gas cooled shields as a function of the number of shields for the different stored cryogenic liquids. For this theoretical derivation however, the restrictive assumption must be made that the thermal conductivity of the used insulation material has a constant value between the considered temperature boundaries. For purposes of a more exact calculation a numerical method is therefore suggested, which takes into consideration that the thermal conductivity is temperature-dependent. For a liquid hydrogen storage vessel with a perlite-vacuum insulation e.g., the effectiveness of one shield and its equilibrium temperature are given as a function of the position of the shield in the insulation space.

  20. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER AND STEAM ATOMIZED SCRUBBER DEPOSIT SAMPLES

    SciTech Connect

    Zeigler, K; Ned Bibler, N

    2007-06-06

    This report summarizes the results from the characterization of deposits from the inlets of the primary off-gas Quencher and Steam Atomized Scrubber (SAS) in the Defense Waste Processing Facility (DWPF), as requested by a technical assistance request. DWPF requested elemental analysis and compound identification to help determine the potential causes for the substance formation. This information will be fed into Savannah River National Laboratory modeling programs to determine if there is a way to decrease the formation of the deposits. The general approach to the characterization of these samples included x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The following conclusions are drawn from the analytical results found in this report: (1) The deposits are not high level waste glass from the DWPF melt pool based on comparison of the compositions of deposits to the composition of a sample of glass taken from the pour stream of the melter during processing of Sludge Batch 3. (2) Chemical composition results suggest that the deposits are probably a combination of sludge and frit particles entrained in the off-gas. (3) Gamma emitters, such as Co-60, Cs-137, Eu-154, Am-241, and Am-243 were detected in both the Quencher and SAS samples with Cs-137 having the highest concentration of the gamma emitters. (4) No evidence existed for accumulation of fissile material (U-233, U-235, and Pu-239) relative to Fe in either deposit. (5) XRD results indicated both samples were primarily amorphorous and contained some crystals of the iron oxides, hematite and magnetite (Fe{sub 2}O{sub 3} and Fe(Fe{sub 2}O{sub 4})), along with sodium nitrate (NaNO{sub 3}). The other main crystalline compound in the SAS deposit was mercurous chloride. The main crystalline compound in the Quencher deposit was a uranium oxide compound. These are all sludge components. (6) SEM analysis of the Quencher deposit revealed crystalline uranium compounds within the sample

  1. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    SciTech Connect

    Goles, R.W.

    1996-03-01

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed.

  2. FY-12 INL KR CAPTURE ACTIVITIES SUPPORTING THE OFF-GAS SIGMA TEAM

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D Law

    2012-08-01

    Tasks performed this year by INL Kr capture off-gas team members can be segregated into three separate task sub-sections which include: 1) The development and testing of a new engineered form sorbent, 2) An initial NDA gamma scan effort performed on the drum containing the Legacy Kr-85 sample materials, and 3) Collaborative research efforts with PNNL involving the testing of the Ni-DOBDC MOF and an initial attempt to make powdered chalcogel material into an engineered form using our binding process. This document describes the routes to success for the three task sub-sections.

  3. [Comparative evaluation of Russian and foreign methods of off-gas testing of polymer materials].

    PubMed

    Pashin, S S; Ushakov, V F; Solomin, G I; Marchenko, L V

    1998-01-01

    Comparative evaluation of Russian and foreign (NASA/USA) off-gas tests for polymers proposed for use onboard the NASA space vehicles was fulfilled with a polymer hardware model. Qualitative and quantitative composition of gases emitted in the model was determined with the gas-chromatographic technique. Data of the evaluation allow the suggestion that informational capacity of the NASA technique is insufficient for making conclusions on suitability of a polymer or a device for long-operating manned vehicles. Discussed are the options for development of a short-cut test method that might combine desirable characteristics of the methods practiced in two countries.

  4. Remediation of MTBE from drinking water: air stripping followed by off-gas adsorption.

    PubMed

    Ramakrishnan, Balaji; Sorial, George A; Speth, Thomas F; Clark, Patrick; Zaffiro, Alan; Patterson, Craig; Hand, David W

    2004-05-01

    The widespread use of methyl tertiary butyl ether (MTBE) as an oxygenate in gasoline has resulted in the contamination of a large number of ground and surface water sources. Even though air stripping has been proven to be an effective treatment technology for MTBE removal, off-gas treatment often is required in conjunction with it. This study evaluated the combined treatment technologies of air stripping followed by off-gas adsorption on a pilot scale for the treatment of MTBE-contaminated water. The effect of air/water ratios on the treatment efficiency was studied, and the mass transfer coefficient was determined. Air/water ratios of 105:1, 151:1, 177:1, 190:1, 202:1, and 206:1 were used, and a treatment efficiency of >99% was achieved for all the runs conducted. The depth of packing required to achieve maximum treatment efficiency decreased with increasing air/water ratio. Relative humidity (RH) impacts on the MTBE adsorption capacity of a granular activated carbon (GAC) and carbonaceous resin were determined from pilot plant studies. Breakthrough profiles obtained from the pilot plant studies conducted at 20, 30, and 50% RH indicated that GAC has a higher adsorptive capacity than resin. The adsorptive capacity of GAC decreased with increasing RH, whereas RH did not impact the resin adsorptive capacity.

  5. Method of measurement of VOCs in the off-gas and wastewater of wastewater treatment plants

    SciTech Connect

    Min Wang; Keener, T.C.; Orton, T.L.; Zhu, H.; Bishop, P.; Pekonen, S.; Siddiqui, K.

    1997-12-31

    VOCs need to be controlled according to Title 3 of the 1990 Clean Air Act Amendments (CAAA), so an accurate estimation of the total VOC emissions must be attained. This paper reports on a study where EPA method 624 was revised so that this method could be used for VOC analysis both in the water and off-gas of wastewater treatment plants. The revised method uses the same approach and equipment as water and soil analyses, thereby providing a great time and cost advantage for anyone needing to perform this type of analysis. Without using a cryogenic preconcentration step, gas samples from Tedlar bags are easily analyzed to concentrations of approximately 20 ppb using scan mode in a GC-MS unit. For the wastewater, scan mode was still used for the identification, but Selected Ion Monitoring (SIM) mode was used for quantitative analysis because of lower VOC concentration in the water. The results show that this method`s detection limit (MDL) was lowered 2--3 orders of magnitude when compared with scan mode. The modified method has been successfully applied to the identification and quantitative analysis of wastewater and off-gas VOCs from a publicly owned treatment works (POTW) aeration basin (120 MGD).

  6. Respiratory response to formaldehyde and off-gas of urea formaldehyde foam insulation.

    PubMed Central

    Day, J H; Lees, R E; Clark, R H; Pattee, P L

    1984-01-01

    In 18 subjects, 9 of whom had previously complained of various nonrespiratory adverse effects from the urea formaldehyde foam insulation (UFFI) in their homes, pulmonary function was assessed before and after exposure in a laboratory. On separate occasions formaldehyde, 1 part per million (ppm), and UFFI off-gas yielding a formaldehyde concentration of 1.2 ppm, were delivered to each subject in an environmental chamber for 90 minutes and a fume hood for 30 minutes respectively. None of the measures of pulmonary function used (forced vital capacity, forced expiratory volume in 1 second or maximal midexpiratory flow rate) showed any clinically or statistically significant response to the exposure either immediately after or 8 hours after its beginning. There were no statistically significant differences between the responses of the group that had previously complained of adverse effects and of the group that had not. There was no evidence that either formaldehyde or UFFI off-gas operates as a lower airway allergen or important bronchospastic irritant in this heterogeneous population. Images Fig. 1 PMID:6388780

  7. Assessment of the impact of TOA partitioning on DWPF off-gas flammability

    SciTech Connect

    Daniel, W. E.

    2013-06-01

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in the effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.

  8. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    SciTech Connect

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V.

    1997-08-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs.

  9. Study on Indirect Measuring Technology of EAF Steelmaking Decarburization Rate by Off-gas Analysis Technique in Hot State Experiment

    NASA Astrophysics Data System (ADS)

    Dong, Kai; Liu, Wenjuan; Zhu, Rong

    2015-10-01

    In this paper, measurement method of EAF Steelmaking decarburization rate is studied. Because of the fuel gas blown and air mixed, the composition of hot temperature off-gas is measurand unreally, and the flow rate is unknown too, the direct measurement of EAF decarburization rate by furnace gas analysis is unrealized. Firstly, the off-gas generation process is discussed. After that, dynamic concentration of CO2, CO, and O2 in off-gas and EAF oxygen supply rate are monitored in real time. Finally, the concentration and volume flow rate of off-gas are obtained to measure the EAF decarburization rate indirectly. The results of the hot state experiments show that the decarburization rate in oxidization step can reach up to about 0.53 mol/s, and the forecasting carbon concentration is 1.14% corresponding to the average carbon concentration (1.43%) in finial metal samples. The measurement of decarburization rate by off-gas analysis technique can be reasonable in EAF production process.

  10. Detailed off-gas measurements for improved modelling of the aeration performance at the WWTP of Eindhoven.

    PubMed

    Amerlinck, Y; Bellandi, G; Amaral, A; Weijers, S; Nopens, I

    2016-01-01

    At wastewater treatment plants (WWTPs), the aerobic conversion processes in the bioreactor are driven by the presence of dissolved oxygen (DO). Within these conversion processes, the oxygen transfer is a rate limiting step as well as being the largest energy consumer. Despite this high importance, WWTP models often lack detail on the aeration part. An extensive measurement campaign with off-gas tests was performed at the WWTP of Eindhoven to provide more information on the performance and behaviour of the aeration system. A high spatial and temporal variability in the oxygen transfer efficiency was observed. Applying this gathered system knowledge in the aeration model resulted in an improved prediction of the DO concentrations. Moreover, an important consequence of this was that ammonium predictions could be improved by resetting the ammonium half-saturation index for autotrophs to its default value. This again proves the importance of balancing sub-models with respect to the need for model calibration as well as model predictive power.

  11. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    SciTech Connect

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  12. MELTER OFF-GAS FLAMMABILITY ASSESSMENT FOR DWPF ALTERNATE REDUCTANT FLOWSHEET OPTIONS

    SciTech Connect

    Choi, A.

    2011-07-08

    Glycolic acid and sugar are being considered as potential candidates to substitute for much of the formic acid currently being added to the Defense Waste Processing Facility (DWPF) melter feed as a reductant. A series of small-scale melter tests were conducted at the Vitreous State Laboratory (VSL) in January 2011 to collect necessary data for the assessment of the impact of these alternate reductants on the melter off-gas flammability. The DM10 melter with a 0.021 m{sup 2} melt surface area was run with three different feeds which were prepared at SRNL based on; (1) the baseline formic/nitric acid flowsheet, (2) glycolic/formic/nitric acid flowsheet, and (3) sugar/formic/nitric acid flowsheet - these feeds will be called the baseline, glycolic, and sugar flowsheet feeds, respectively, hereafter. The actual addition of sugar to the sugar flowsheet feed was made at VSL before it was fed to the melter. For each feed, the DM10 was run under both bubbled (with argon) and non-bubbled conditions at varying melter vapor space temperatures. The goal was to lower its vapor space temperature from nominal 500 C to less than 300 C at 50 C increments and maintain steady state at each temperature at least for one hour, preferentially for two hours, while collecting off-gas data including CO, CO{sub 2}, and H{sub 2} concentrations. Just a few hours into the first test with the baseline feed, it was discovered that the DM10 vapor space temperature would not readily fall below 350 C simply by ramping up the feed rate as the test plan called for. To overcome this, ambient air was introduced directly into the vapor space through a dilution air damper in addition to the natural air inleakage occurring at the operating melter pressure of -1 inch H{sub 2}O. A detailed description of the DM10 run along with all the data taken is given in the report issued by VSL. The SRNL personnel have analyzed the DM10 data and identified 25 steady state periods lasting from 32 to 92 minutes for all

  13. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    SciTech Connect

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPF to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.

  14. Innovative method for increased methane recovery from two-phase anaerobic digestion of food waste through reutilization of acidogenic off-gas in methanogenic reactor.

    PubMed

    Yan, Bing Hua; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    In this study, the performance of a two-phase anaerobic digestion reactor treating food waste with the reutilization of acidogenic off-gas was investigated with the objective to improve the hydrogen availability for the methanogenic reactor. As a comparison a treatment without off-gas reutilization was also set up. Results showed that acidogenic off-gas utilization in the upflow anaerobic sludge blanket (UASB) reactor increased the methane recovery up to 38.6%. In addition, a 27% increase in the production of cumulative chemical oxygen demand (COD) together with an improved soluble microbial products recovery dominated by butyrate was observed in the acidogenic leach bed reactor (LBR) with off-gas reutilization. Of the increased methane recovery, ∼8% was contributed by the utilization of acidogenic off-gas in UASB. Results indicated that utilization of acidogenic off-gas in methanogenic reactor is a viable technique for improving overall methane recovery.

  15. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    SciTech Connect

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-23

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development`s VOC`s in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry.

  16. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  17. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams

    NASA Astrophysics Data System (ADS)

    Matyáš, Josef; Canfield, Nathan; Sulaiman, Sannoh; Zumhoff, Mac

    2016-08-01

    A high selectivity and sorption capacity for iodine and a feasible consolidation to a durable SiO2-based waste form makes silver-functionalized silica aerogel (Ag0-aerogel) an attractive choice for the removal and sequestration of iodine compounds from the off-gas of a nuclear fuel reprocessing plant. Hot uniaxial pressing of iodine-loaded Ag0-aerogel (20.2 mass% iodine) at 1200 °C for 30 min under 29 MPa pressure provided a partially sintered product with residual open porosity of 16.9% that retained ∼93% of sorbed iodine. Highly iodine-loaded Ag0-aerogel was successfully consolidated by hot isostatic pressing at 1200 °C with a 30-min hold and under 207 MPa. The fully densified waste form had a bulk density of 3.3 × 103 kg/m3 and contained ∼39 mass% iodine. The iodine was retained in the form of nano- and micro-particles of AgI that were uniformly distributed inside and along boundaries of fused silica grains.

  18. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    SciTech Connect

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; Kuang, Xingya; Melin, Staffan; Yazdanpanah, Fahimeh; Sokhansanj, Shahab

    2015-03-02

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, at 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.

  19. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE PAGES

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; Kuang, Xingya; Melin, Staffan; Yazdanpanah, Fahimeh; Sokhansanj, Shahab

    2015-03-02

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  20. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    SciTech Connect

    Reigel, M.

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  1. Letter report: Evaluation of LFCM off-gas system technologies for the HWVP

    SciTech Connect

    Goles, R.W.; Mishima, J.; Schmidt, A.J.

    1996-03-01

    Radioactive high-level liquid waste (HLLW), a byproduct of defense nuclear fuel reprocessing activities, is currently being stored in underground tanks at several US sites. Because its mobility poses significant environmental risks, HLLW is not a suitable waste form for long-term storage. Thus, high-temperature processes for solidifying and isolating the radioactive components of HLLW have been developed and demonstrated by the US Department of Energy (DOE) and its contractors. Vitrification using liquidfed ceramic melters (LFCMs) is the reference process for converting US HLLW into a borosilicate glass. Two vitrification plants are currently under construction in the United States: the West Valley Demonstration Plant (WVDP) being built at the former West Valley Nuclear Fuels Services site in West Valley, New York; and the Defense Waste Processing Facility (DWPF), which is currently 85% complete at DOE`s Savannah River Plant (SRP). A third facility, the Hanford Waste Vitrification Plant (HWVP), is being designed at DOE`s Hanford Site.

  2. SNL Sigma Off-Gas Team Contribution to the FY15 DOE/NE-MRWFD Campaign Accomplishments Report.

    SciTech Connect

    Nenoff, Tina M.

    2015-08-21

    This program at Sandia is focused on Iodine waste form development for Fuel Cycle R&D needs. Our research has a general theme of “Capture and Storage of Iodine Fission Gas “ in which we are focused on silver loaded zeolite waste forms, evaluation of iodine loaded getter materials (eg., mordenite zeolite), and the development of low temperature glass waste forms that successfully incorporate iodine loaded getter materials from I2, organic iodide, etc. containing off-gas streams.

  3. Deactivation of titanium dioxide photocatalyst by oxidation of polydimethylsiloxane and silicon sealant off-gas in a recirculating batch reactor.

    PubMed

    Chemweno, Maurice K; Cernohlavek, Leemer G; Jacoby, William A

    2008-01-01

    We have studied deactivation of titanium dioxide (TiO2) photocatalyst by oxidation of polydimethylsiloxane and silicone sealant off-gas in a recirculating batch reactor. Polydimethylsiloxane vapor is a model indoor air pollutant. It does not adsorb strongly on TiO2 in the dark, but undergoes oxidation when the ultraviolet (UV) photons are also present. Commercial silicone (room-temperature vulcanizing) sealant off-gas is an actual indoor air pollutant subject to short-term spikes in concentration. It does adsorb on the TiO2 surface in the dark, but UV photons also catalyze its oxidation. The oxidation of the Si-containing vapors was monitored using a Fourier transform infrared spectroscope equipped with a gas cell. Subsequent to each incremental exposure, a hexane oxidation reaction was performed to track the titania catalyst's activity. The exposures were repeated until substantial deactivation was achieved. We have also documented the regenerative effect of washing the catalyst surface with water. Surface science techniques were used to view the topography of the catalyst and to identify the elements causing the deactivation. Procedural observations of interest in the context of our recirculating batch reactor include the following: the rate of oxidation of hexane was used to assess the activity of a photocatalyst sample; hexane is an appropriate choice of a probe molecule because it does not adsorb in the dark and it undergoes photocatalytic oxidation (PCO) completely, forming CO2; and hexane does not deactivate the photocatalyst surface.

  4. DEVELOPMENT OF A HYDROGEN MORDENITE SORBENT FOR THE CAPTURE OF KRYPTON FROM USED NUCLEAR FUEL REPROCESSING OFF-GAS STREAMS

    SciTech Connect

    Mitchell Greenhalgh; Troy G. Garn; Jack D. Law

    2014-04-01

    A novel new sorbent for the separation of krypton from off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A hydrogen mordenite powder was successfully incorporated into a macroporous polymer binder and formed into spherical beads. The engineered form sorbent retained the characteristic surface area and microporosity indicative of mordenite powder. The sorbent was evaluated for krypton adsorption capacities utilizing thermal swing operations achieving capacities of 100 mmol of krypton per kilogram of sorbent at a temperature of 191 K. A krypton adsorption isotherm was also obtained at 191 K with varying krypton feed gas concentrations. Adsorption/desorption cycling effects were also evaluated with results indicating that the sorbent experienced no decrease in krypton capacity throughout testing.

  5. Cement solidification of simulated off-gas condensates from vitrification of low-level nuclear waste solutions.

    PubMed

    Katz, A; Brough, A R; Kirkpatrick, R J; Struble, L J; Sun, G K; Young, J F

    2001-01-01

    Solidification in a cementitious matrix is a viable alternative for low-level nuclear waste management; it is therefore important to understand the behavior and properties of such wasteforms. We have examined the cementitious solidification of simulated off-gas waste streams resulting from the vitrification of low-level nuclear waste. Different possible methods for scrubbing the off-gasses from a vitrifier give rise to three possible types of waste compositions: acidic (from aqueous dissolution of volatile NOx and POx carried over from the vitrifier), basic (from neutralizing the former with sodium hydroxide), and fully carbonated (arising from a direct-combustion vitrifier). Six binder compositions were tested in which ordinary Portland cement was replaced at different proportions by fly ash and/or ground granulated blast furnace slag. A high solution to binder ratio of 1l/1 kg was used to minimize the volume of the wasteform and 10% attapulgite clay was added to all mixes to ensure that the fresh mix did not segregate prior to setting. The 28-day compressive strengths decreased when a high proportion of cement was replaced with fly ash, but were increased significantly when the cement was replaced with slag. The heats of hydration at early age for the various solids compositions decreased when cement was replaced with either fly ash or slag; however, for the fly ash mix the low heat was also associated with a significant decrease in compressive strength. High curing temperature (60 degrees C) or the use of extra-fine slag did not significantly affect the compressive strength. Recommendations for choice of binder formulations and treatment of off-gas condensates are discussed.

  6. OFF-GAS ANALYSIS RESULTS AND FINE PORE RETROFIT INFORMATION FOR GLASTONBURY, CONNECTICUT

    EPA Science Inventory

    In the summer of 1984, the Glastonbury, Connecticut Water Pollution Control Plant underwent a retrofit from a spiral roll coarse bubble to a spiral roll fine pore aeration system. Only diffuser replacement was performed in the aeration tanks. From November 1985 through Septembe...

  7. OFF-GAS ANALYSIS RESULTS AND FINE PORE RETROFIT CASE HISTORY FOR HARTFORD, CONNECTICUT

    EPA Science Inventory

    In the summer of 1982, the Hartford Metropolitan District Commission, Hartford County, Connecticut, Water Pollution Control Facility underwent a retrofit form a spiral roll coarse bubble to a full floor coverage fine pore aeration system. Work performed included all new in-tank ...

  8. Steady-state and dynamic simulation study on boil-off gas minimization and recovery strategies at LNG exporting terminals

    NASA Astrophysics Data System (ADS)

    Kurle, Yogesh

    Liquefied natural gas (LNG) is becoming one of the prominent clean energy sources with its abundance, high calorific value, low emission, and price. Vapors generated from LNG due to heat leak are called boil-off gas (BOG). As world-wide LNG productions are increasing fast, BOG generation and handling problems are becoming more critical. Also, due to stringent environmental regulations, flaring of BOG is not a viable option. In this study, typical Propane-and-Mixed-Refrigerant (C3-MR) process, storage facilities, and loading facilities are modeled and simulated to study BOG generation at LNG exporting terminals, including LNG processing, storage, and berth loading areas. Factors causing BOG are presented, and quantities of BOG generated due to each factor at each location are calculated under different LNG temperatures. Various strategies to minimize, recover, and reuse BOG are also studied for their feasibility and energy requirements. Rate of BOG generation during LNG loading---Jetty BOG (JBOG)---changes significantly with loading time. In this study, LNG vessel loading is simulated using dynamic process simulation software to obtain JBOG generation profile and to study JBOG recovery strategies. Also, fuel requirements for LNG plant to run steam-turbine driven compressors and gas-turbine driven compressors are calculated. Handling of JBOG generated from multiple loadings is also considered. The study would help proper handling of BOG problems in terms of minimizing flaring at LNG exporting terminals, and thus reducing waste, saving energy, and protecting surrounding environments.

  9. Novel sorbent development and evaluation for the capture of krypton and xenon from nuclear fuel reprocessing off-gas stream

    SciTech Connect

    Garn, T.G.; Greenhalgh, M.R.; Law, J.D.

    2013-07-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, Idaho National Laboratory sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up. (authors)

  10. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  11. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  12. Step-feed biofiltration: a low cost alternative configuration for off-gas treatment.

    PubMed

    Estrada, José M; Quijano, Guillermo; Lebrero, Raquel; Muñoz, Raúl

    2013-09-01

    Clogging due to biomass accumulation and the loss of structural stability of the packing media are common operational drawbacks of standard gas biofiltration inherent to the traditional biofilter design, which result in prohibitive pressure drop buildups and media channeling. In this work, an innovative step-feed biofilter configuration, with the air emission supplied in either two or three locations along the biofilter height, was tested and compared with a standard biofilter using toluene as a model pollutant and two packing materials: compost and perlite. When using compost, the step-feed biofilter supported similar elimination capacities (EC ≈ 80 g m(-3) h(-1)) and CO2 production rates (200 g m(-3) h(-1)) to those achieved in the standard biofilter. However, while the pressure drop in the step-feed system remained below 300 Pa m bed(-1) for 61 days, the standard biofilter reached this value in only 14 days and 4000 Pa m bed(-1) by day 30, consuming 75% more compression energy throughout the entire operational period. Operation with perlite supported lower ECs compared to compost in both the step-feed and standard biofilters (≈ 30 g m(-3) h(-1)), probably due to the high indigenous microbial diversity present in this organic packing material. The step-feed biofilter exhibited 65% lower compression energy requirements than the standard biofilter during operation with perlite, while supporting similar ECs. In brief, step-feed biofiltration constitutes a promising operational strategy capable of drastically reducing the operating costs of biofiltration due to a reduced energy consumption and an increased packing material lifespan. PMID:23764582

  13. Step-feed biofiltration: a low cost alternative configuration for off-gas treatment.

    PubMed

    Estrada, José M; Quijano, Guillermo; Lebrero, Raquel; Muñoz, Raúl

    2013-09-01

    Clogging due to biomass accumulation and the loss of structural stability of the packing media are common operational drawbacks of standard gas biofiltration inherent to the traditional biofilter design, which result in prohibitive pressure drop buildups and media channeling. In this work, an innovative step-feed biofilter configuration, with the air emission supplied in either two or three locations along the biofilter height, was tested and compared with a standard biofilter using toluene as a model pollutant and two packing materials: compost and perlite. When using compost, the step-feed biofilter supported similar elimination capacities (EC ≈ 80 g m(-3) h(-1)) and CO2 production rates (200 g m(-3) h(-1)) to those achieved in the standard biofilter. However, while the pressure drop in the step-feed system remained below 300 Pa m bed(-1) for 61 days, the standard biofilter reached this value in only 14 days and 4000 Pa m bed(-1) by day 30, consuming 75% more compression energy throughout the entire operational period. Operation with perlite supported lower ECs compared to compost in both the step-feed and standard biofilters (≈ 30 g m(-3) h(-1)), probably due to the high indigenous microbial diversity present in this organic packing material. The step-feed biofilter exhibited 65% lower compression energy requirements than the standard biofilter during operation with perlite, while supporting similar ECs. In brief, step-feed biofiltration constitutes a promising operational strategy capable of drastically reducing the operating costs of biofiltration due to a reduced energy consumption and an increased packing material lifespan.

  14. Evaluation of new concepts for in situ vitrification: Power system, melt insulation, and off-gas containment

    SciTech Connect

    Luey, J.; Powell, T.D.; Heath, W.O.; Richardson, R.L.

    1992-07-01

    In situ vitrification (ISV) is a thermal process that converts contaminated soil into a highly leach-resistant material resembling natural obsidian. The ISV process was developed by the Pacific Northwest Laboratory (PNL)(a) for the US Department of Energy (DOE) to treat soils contaminated with transuranics. Since 1980, ISV has grown from a concept to an innovative technology through bench-, engineering-, intermediate-, and full-scale tests. Efforts by PNL have developed ISV into a technology considered available for limited deployment to remediate contaminated soil. The technology has been transferred to a licensee for commercial application. In September 1991, PNL conducted an operational acceptance test (OAT) of the modified engineering-scale unit. The OAT provided an opportunity to conduct proof-of-principle testing of new concepts for ISV technology. This additional testing was permitted since it was determined that testing of these new concepts would have no impact on the OAT objective. In discussing the proof-of-principle portion of the engineering-scale test, this report presents conclusions from this work and also describes the conceptual bases of the tested concepts, the engineering-scale test equipment and setup, and test results.

  15. Field investigation of FGD system chemistry. Final report

    SciTech Connect

    Litherland, S.T.; Colley, J.D.; Glover, R.L.; Maller, G.; Behrens, G.P.

    1984-12-01

    Three full-scale wet limestone FGD systems were investigated to gain a better understanding of FGD system operation and chemistry. The three plants which participated in the program were South Mississippi Electric Power Association's R. D. Morrow Station, Colorado-Ute Electric Association's Craig Station, and Central Illinois Light Company's Duck Creek Station. Each FGD system was characterized with respect to SO/sub 2/ removal, liquid and solid phase chemistry, and calcium sulfite and calcium sulfate relative saturation. Mist eliminator chemistry and performance were documented at Morrow and Duck Creek. Solutions to severe mist eliminator scaling and pluggage were demonstrated at Duck Creek. A technical and econ

  16. Efficient carbon dioxide utilization and simultaneous hydrogen enrichment from off-gas of acetone-butanol-ethanol fermentation by succinic acid producing Escherichia coli.

    PubMed

    He, Aiyong; Kong, Xiangping; Wang, Chao; Wu, Hao; Jiang, Min; Ma, Jiangfeng; Ouyang, Pingkai

    2016-08-01

    The off-gas from acetone-butanol-ethanol (ABE) fermentation was firstly used to be CO2 source (co-substrate) for succinic acid production. The optimum ratio of H2/CO2 indicated higher CO2 partial pressures with presence of H2 could enhance C4 pathway flux and reductive product productivity. Moreover, when an inner recycling bioreactor was used for CO2 recycling at a high total pressure (0.2Mpa), a maximum succinic acid concentration of 65.7g·L(-1) was obtained, and a productivity of 0.76g·L(-1)·h(-1) and a high yield of 0.86g·g(-1) glucose were achieved. Furthermore, the hydrogen content was simultaneously enriched to 92.7%. These results showed one successful attempt to reuse the off-gas of ABE fermentation which can be an attractive CO2 source for succinic acid production. PMID:27142628

  17. Rate and peak concentrations of off-gas emissions in stored wood pellets sensitivities to temperature, relative humidity, and headspace volume

    SciTech Connect

    Kuang, Xingya; Shankar, T.J.; Bi, X.T.; Lim, C. Jim; Sokhansanj, Shahabaddine; Melin, Staffan

    2009-08-01

    Wood pellets emit CO, CO2, CH4 and other volatiles during storage. Increased concentration of these gases in a sealed storage causes depletion of concentration of oxygen. The storage environment becomes toxic to those who operate in and around these storages. The objective of this study was to investigate the effects of temperature, moisture and storage headspace on emissions from wood pellets in an enclosed space. Twelve 10-liter plastic containers were used to study the effects of headspace ratio (25%, 50%, and 75% of container volume) and temperatures (10-50oC). Another eight containers were set in uncontrolled storage relative humidity and temperature. Concentrations of CO2, CO and CH4 were measured by a gas chromatography (GC). The results showed that emissions of CO2, CO and CH4 from stored wood pellets are most sensitive to storage temperature. Higher peak emission factors are associated with higher temperatures. Increased headspace volume ratio increases peak off-gas emissions because of the availability of oxygen for pellet decomposition. Increased relative humidity in the enclosed container increases the rate of off-gas emissions of CO2, CO and CH4 and oxygen depletion.

  18. Investigation of the effects of beam scattering and beam wandering on laser beams passing thorough the off-gas duct of an Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Alikhanzadeh, Amirhossein

    The project sets to determine the effects of scattering and beam wandering on light that passes through the off-gas of EAF. The effects of light scattering from metallic dust and beam wandering due to temperature gradient and turbulence in the medium are investigated. Using Matlab, a model was developed based on Mie theory to calculate light transmission when the optical properties are known; most importantly refractive index of the dust as well as incident wavelength, particle size and concentration of the particles per cm 3 of the gas. The model was validated and was used to show that as the particle size parameter increases, the scattering losses decreases. Turbulence and temperature gradients in the air cause the laser beam to change shape. Using a big collection lens can minimize the signal fluctuation caused by the beam wandering. A thorough understanding of these phenomena helps in designing optical sensors in the industry.

  19. Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging

    NASA Astrophysics Data System (ADS)

    Meyer, Quentin; Ashton, Sean; Curnick, Oliver; Reisch, Tobias; Adcock, Paul; Ronaszegi, Krisztian; Robinson, James B.; Brett, Daniel J. L.

    2014-05-01

    Dead-ended anode operation, with intermittent purge, is increasingly being used in polymer electrolyte fuel cells as it simplifies the mass flow control of feed and improves fuel efficiency. However, performance is affected through a reduction in voltage during dead-ended operation, particularly at high current density. This study uses electrochemical impedance spectroscopy (EIS), off-gas analysis and high resolution thermal imaging to examine the source of performance decay during dead-ended operation. A novel, 'reconstructed impedance' technique is applied to acquire complete EIS spectra with a temporal resolution that allows the dynamics of cell processes to be studied. The results provide evidence that upon entering dead-ended operation, there is an initial increase in performance associated with an increase in anode compartment pressure and improved hydration of the membrane electrolyte. Subsequent reduction in performance is associated with an increase in mass transport losses due to a combination of water management issues and build-up of N2 in the anode. The purge process rapidly recovers performance. Understanding of the processes involved in the dead-end/purge cycle provides a rationale for determining the optimum cycle frequency and duration as a function of current density.

  20. Off gas film cooler cleaner

    DOEpatents

    Dhingra, H.S.; Koch, W.C.; Burns, D.C.

    1997-08-26

    An apparatus is described for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter. 5 figs.

  1. Off gas film cooler cleaner

    DOEpatents

    Dhingra, Hardip S.; Koch, William C.; Burns, David C.

    1997-01-01

    An apparatus for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter.

  2. Utilization of Common Automotive Three-Way NO{sub x} Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094

    SciTech Connect

    Foster, Adam L.; Ki Song, P.E.

    2013-07-01

    Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO{sub x} reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO{sub x} reduction performance of the THOR process, a common Three-Way catalytic NO{sub x} reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO{sub x} unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO{sub x} to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO{sub x} concentration upstream and downstream of the catalytic DeNO{sub x} unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO{sub x} reduction capability of the catalytic DeNO{sub x} unit. The NO{sub x} destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO{sub x} reduction efficiencies of greater than 99.9% with an average NO{sub x} reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO{sub x} concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm), dry

  3. Checkout and start-up of the integrated DWPF (Defense Waste Processing Facility) melter system

    SciTech Connect

    Smith, M.E.; Hutson, N.D.; Miller, D.H.; Morrison, J.; Shah, H.; Shuford, J.A.; Glascock, J.; Wurzinger, F.H.; Zamecnik, J.R.

    1989-11-11

    The Integrated DWPF Melter System (IDMS) is a one-ninth-scale demonstration of the Defense Waste Processing Facility (DWPF) feed preparation, melter, and off-gas systems. The IDMS will be the first engineering-scale melter system at SRL to process mercury and flowsheet levels of halides and sulfates. This report includes a summary of the IDMS program objectives, system and equipment descriptions, and detailed discussions of the system checkout and start-up. 10 refs., 44 figs., 20 tabs.

  4. Application of artificial intelligence to melter control: Realtime process advisor for the scale melter facility

    SciTech Connect

    Edwards, Jr, R E

    1988-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP) is currently under construction and when completed will process high-level radioactive waste into a borosilicate glass wasteform. This facility will consist of numerous batch chemical processing steps as well as the continuous operation of a joule-heated melter and its off-gas treatment system. A realtime process advisor system based on Artificial Intelligence (AI) techniques has been developed and is currently in use at the semiworks facility, which is operating a 2/3 scale of the DWPF joule-heated melter. The melter advisor system interfaces to the existing data collection and control system and monitors current operations of this facility. The advisor then provides advice to operators and engineers when it identifies process problems. The current system is capable of identifying process problems such as feed system pluggages and thermocouple failures and providing recommended actions. The system also provides facilities normally with distributed control systems. These include the ability to display process flowsheets, monitor alarm conditions, and check the status of process interlocks. 7 figs.

  5. Resolving Coffee Roasting-Degree Phases Based on the Analysis of Volatile Compounds in the Roasting Off-Gas by Photoionization Time-of-Flight Mass Spectrometry (PI-TOFMS) and Statistical Data Analysis: Toward a PI-TOFMS Roasting Model.

    PubMed

    Czech, Hendryk; Schepler, Claudia; Klingbeil, Sophie; Ehlert, Sven; Howell, Jessalin; Zimmermann, Ralf

    2016-06-29

    Coffee beans of two cultivars, Arabica (Mexico) and Robusta (Vietnam), were roasted in a small-scale drum roaster at different temperature profiles. Evolving volatile compounds out of the roasting off-gas were analyzed by photoionization mass spectrometry at four different wavelengths, either with single-photon ionization (SPI) or resonance-enhanced multiphoton ionization (REMPI). The different analyte selectivities at the four wavelengths and their relevance for the examination of the roasting process were discussed. Furthermore, intensities of observed m/z were grouped by non-negative matrix factorization (NMF) to reveal the temporal evolutions of four roasting phases ("evaporation", "early roast", "late roast", and "overroast") from NMF scores and the corresponding molecular composition from the NMF factor loadings, giving chemically sound results concerning the roasting phases. Finally, linear classifiers were constructed from real mass spectra at maximum NMF scores by linear discriminant analysis to obtain quantities which are simple to measure for real-time analysis of the roasting process. PMID:27309797

  6. Resolving Coffee Roasting-Degree Phases Based on the Analysis of Volatile Compounds in the Roasting Off-Gas by Photoionization Time-of-Flight Mass Spectrometry (PI-TOFMS) and Statistical Data Analysis: Toward a PI-TOFMS Roasting Model.

    PubMed

    Czech, Hendryk; Schepler, Claudia; Klingbeil, Sophie; Ehlert, Sven; Howell, Jessalin; Zimmermann, Ralf

    2016-06-29

    Coffee beans of two cultivars, Arabica (Mexico) and Robusta (Vietnam), were roasted in a small-scale drum roaster at different temperature profiles. Evolving volatile compounds out of the roasting off-gas were analyzed by photoionization mass spectrometry at four different wavelengths, either with single-photon ionization (SPI) or resonance-enhanced multiphoton ionization (REMPI). The different analyte selectivities at the four wavelengths and their relevance for the examination of the roasting process were discussed. Furthermore, intensities of observed m/z were grouped by non-negative matrix factorization (NMF) to reveal the temporal evolutions of four roasting phases ("evaporation", "early roast", "late roast", and "overroast") from NMF scores and the corresponding molecular composition from the NMF factor loadings, giving chemically sound results concerning the roasting phases. Finally, linear classifiers were constructed from real mass spectra at maximum NMF scores by linear discriminant analysis to obtain quantities which are simple to measure for real-time analysis of the roasting process.

  7. Methods to optimize myxobacterial fermentations using off-gas analysis

    PubMed Central

    2012-01-01

    Background The influence of carbon dioxide and oxygen on microbial secondary metabolite producers and the maintenance of these two parameters at optimal levels have been studied extensively. Nevertheless, most studies have focussed on their influence on specific product formation and condition optimization of established processes. Considerably less attention has been paid to the influence of reduced or elevated carbon dioxide and oxygen levels on the overall metabolite profiles of the investigated organisms. The synergistic action of both gases has garnered even less attention. Results We show that the composition of the gas phase is highly important for the production of different metabolites and present a simple approach that enables the maintenance of defined concentrations of both O2 and CO2 during bioprocesses over broad concentration ranges with a minimal instrumental setup by using endogenously produced CO2. The metabolite profiles of a myxobacterium belonging to the genus Chondromyces grown under various concentrations of CO2 and O2 showed considerable differences. Production of two unknown, highly cytotoxic compounds and one antimicrobial substance was found to increase depending on the gas composition. In addition, the observation of CO2 and O2 in the exhaust gas allowed optimization and control of production processes. Conclusions Myxobacteria are becoming increasingly important due to their potential for bioactive secondary metabolite production. Our studies show that the influence of different gas partial pressures should not be underestimated during screening processes for novel compounds and that our described method provides a simple tool to investigate this question. PMID:22571441

  8. Evaporation of iodine-containing off-gas scrubber solution

    DOEpatents

    Partridge, J.A.; Bosuego, G.P.

    1980-07-14

    Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

  9. Impact Of Melter Internal Design On Off-Gas Flammability

    SciTech Connect

    Choi, A. S.; Lee, S. Y.

    2012-05-30

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good.

  10. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    SciTech Connect

    J.G. Wijmans; R. Daniels; R. Olsen

    2000-01-13

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used methods of remediating soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC.-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Carbon adsorption and catalytic incineration, the most common methods of treating these gas streams, suffer from significant drawbacks. Membrane Technology and Research, Inc. (NITR) proposes an alternative treatment technology, based on permselective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. The technology we propose to develop can be applied to all of these off-gas streams and is not tied to a particular off-gas generating source. We propose to develop a completely self-contained system because remediation projects are frequently in remote locations where access to trained operators and utilities is limited. The system will be a turnkey unit, skid-mounted and completely automatic, requiring power but no other utilities. The system will process the off-gas, producing a concentrated liquid VOC stream and a purified gas containing less than 10 ppm VOC that can be discharged or recycled to the gas-generating process.

  11. Recent Process and Equipment Improvements to Increase High Level Waste Throughput at The Defense Waste Processing Facility (DWPF)

    SciTech Connect

    O'Driscoll, R.J.; Barnes, A.B.; Coleman, J.R.; Glover, T.L.; Hopkins, R.C.; Iverson, D.C.; Leita, J.N.

    2008-07-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in an 8 % waste throughput increase over the standard 28 % waste loading based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (7 %), glass surge (siphon) protection software (2 %), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2 %) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3 %) for a total increase in canister production of 14 %. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed. (authors)

  12. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

    2008-01-15

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

  13. System design description for the whole element furnace testing system

    SciTech Connect

    Ritter, G.A.; Marschman, S.C.; MacFarlan, P.J.; King, D.A.

    1998-05-01

    This document provides a detailed description of the Hanford Spent Nuclear Fuel (SNF) Whole Element Furnace Testing System located in the Postirradiation Testing Laboratory G-Cell (327 Building). Equipment specifications, system schematics, general operating modes, maintenance and calibration requirements, and other supporting information are provided in this document. This system was developed for performing cold vacuum drying and hot vacuum drying testing of whole N-Reactor fuel elements, which were sampled from the 105-K East and K West Basins. The proposed drying processes are intended to allow dry storage of the SNF for long periods of time. The furnace testing system is used to evaluate these processes by simulating drying sequences with a single fuel element and measuring key system parameters such as internal pressures, temperatures, moisture levels, and off-gas composition.

  14. New energy saving system for future LNG carriers

    SciTech Connect

    Kahara, Susumu; Suetake, Yoshihiro; Ishimaru, Junshiro; Hiraoka, Kazuyoshi

    1994-12-31

    Steam turbine plant, which burns BOG (Boil-Off Gas) as fuel, has bene installed for LNG carriers with the necessity of disposing BOG safely. Are other plants unpractical for LNG carriers? To answer to this question, this paper evaluates (1) dual fuel diesel, (2) diesel with reliquefaction plant, (3) diesel with auxiliary boiler and power assist motor, (4) gas turbine/steam turbine and (5) steam turbine with CRP (Contra Rotating Propeller) from several aspects, such as safety and reliability, maintainability and operability, economy and effect on environment. Based on the above studies, this paper proposes Steam turbine with CRP plant as a new energy saving system for future LNG carriers.

  15. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  16. Qualification of helium measurement system for detection of fuel failures in a BWR

    NASA Astrophysics Data System (ADS)

    Larsson, I.; Sihver, L.; Loner, H.; Grundin, A.; Helmersson, J.-O.; Ledergerber, G.

    2014-05-01

    There are several methods for surveillance of fuel integrity during the operation of a boiling water reactor (BWR). The detection of fuel failures is usually performed by analysis of grab samples of off-gas and coolant activities, where a measured increased level of ionizing radiation serves as an indication of new failure or degradation of an already existing one. At some nuclear power plants the detection of fuel failures is performed by on-line nuclide specific measurements of the released fission gases in the off-gas system. However, it can be difficult to distinguish primary fuel failures from degradation of already existing failures. In this paper, a helium measuring system installed in connection to a nuclide specific measuring system to support detection of fuel failures and separate primary fuel failures from secondary ones is presented. Helium measurements provide valuable additional information to measurements of the gamma emitting fission gases for detection of primary fuel failures, since helium is used as a fill gas in the fuel rods during fabrication. The ability to detect fuel failures using helium measurements was studied by injection of helium into the feed water systems at the Forsmark nuclear power plant (NPP) in Sweden and at the nuclear power plant Leibstadt (KKL) in Switzerland. In addition, the influence of an off-gas delay line on the helium measurements was examined at KKL by injecting helium into the off-gas system. By using different injection rates, several types of fuel failures with different helium release rates were simulated. From these measurements, it was confirmed that the helium released by a failed fuel can be detected. It was also shown that the helium measurements for the detection of fuel failures should be performed at a sampling point located before any delay system. Hence, these studies showed that helium measurements can be useful to support detection of fuel failures. However, not all fuel failures which occurred at

  17. Integrated system for the destruction of organics by hydrolysis and oxidation with peroxydisulfate

    DOEpatents

    Cooper, John F.; Balazs, G. Bryan; Hsu, Peter; Lewis, Patricia R.; Adamson, Martyn G.

    2000-01-01

    An integrated system for destruction of organic waste comprises a hydrolysis step at moderate temperature and pressure, followed by direct chemical oxidation using peroxydisulfate. This system can be used to quantitatively destroy volatile or water-insoluble halogenated organic solvents, contaminated soils and sludges, and the organic component of mixed waste. The hydrolysis step results in a substantially single phase of less volatile, more water soluble hydrolysis products, thus enabling the oxidation step to proceed rapidly and with minimal loss of organic substrate in the off-gas.

  18. Practical primer on design of electric arc furnace emission control systems

    SciTech Connect

    Brand, P.G.A.; Manten, R.W. )

    1994-09-01

    The paper will cover the methodology for designing environmentally acceptable and cost-effective emission control systems in modern electric arc furnace meltshops. Fundamental requirements for effective direct evacuation control (DEC) of electric and ladle furnace melting operations and canopy/local hood control of secondary emissions from electric arc furnace charging and tapping emissions will be addressed. The following topics will be included: considerations in selecting appropriate DEC exhaust rates for effective emission control; water-cooled elbow, combustion gap and water-cooled duct design for maximizing post combustion and minimizing slag deposit build-up; off-gas cooling; deep storage-type canopy hood design for electric arc furnace charging emission control; local hood design for control of EBT emissions; furnace enclosures for improved secondary fume control and meltshop environment; off-gas system control philosophy; selecting appropriate equipment such as baghouses, fans and material handling systems; and common shortcomings of fume control systems. Emphasis will be on practical design aspects of meltshop emission control systems with guidelines on typical gas flow rates, system configuration, sizing and costs for effective fume control. The objective is to provide steelmakers with a practical guide toward improved electric arc furnace meltshop emission control system design.

  19. Low cost dressing system for separation of low zinc fractions from BOF filter dust

    SciTech Connect

    Erdmann, R.

    1995-12-31

    Today the BOF filter dusts and sludges are mainly dumped due to their zinc contents. By typically ranging from 2 to 5% they prevent the filter dusts and sludges from being recycled via the blast furnace route. Based on the different discharge kinetics of iron and zinc during the main blowing period in a bottom stirred BOF a simple and efficient system for recovery of low zinc fractions has been developed. The obtained material is suitable for recycling without risk of shell formation in the blast furnace. Different subsequent development steps have been performed. By starting with a very simple time dependent model the sludge from the BOF off gas cleaning system was collected in two different sludge channel systems. This model based on the fact that most of the scrap based zinc is discharged from the melt within the first eight to ten minutes of the BOF process. To improve the system a spectroscopic zinc sensor was installed at the hot section of the off gas cleaning system to get more reliable information on the actual zinc concentration of the BOF dust. By use of the system up to 50% of the BOF sludge can be recycled.

  20. Design features of the radioactive Liquid-Fed Ceramic Melter system

    SciTech Connect

    Holton, L.K. Jr.

    1985-06-01

    During 1983, the Pacific Northwest Laboratory (PNL), at the request of the Department of Energy (DOE), undertook a program with the principal objective of testing the Liquid-Fed Ceramic Melter (LFCM) process in actual radioactive operations. This activity, termed the Radioactive LFCM (RLFCM) Operations is being conducted in existing shielded hot-cell facilities in B-Cell of the 324 Building, 300 Area, located at Hanford, Washington. This report summarizes the design features of the RLFCM system. These features include: a waste preparation and feed system which uses pulse-agitated waste preparation tanks for waste slurry agitation and an air displacement slurry pump for transferring waste slurries to the LFCM; a waste vitrification system (LFCM) - the design features, design approach, and reasoning for the design of the LFCM are described; a canister-handling turntable for positioning canisters underneath the RLFCM discharge port; a gamma source positioning and detection system for monitoring the glass fill level of the product canisters; and a primary off-gas treatment system for removing the majority of the radionuclide contamination from the RLFCM off gas. 8 refs., 48 figs., 6 tabs.

  1. Removal of dissolved VOCs from water with an air stripper/membrane vapor separation system

    SciTech Connect

    Wijmans, J.G.; Kamaruddin, H.D.; Segelke, S.V.; Wessling, M.; Baker, R.W.

    1997-09-01

    Treatment of water contaminated with volatile organic compounds (VOCs) is a major problem for the United States chemical industry. Currently, VOCs are removed from moderately contaminated wastewater streams by processes such as steam stripping and from dilute wastewaters by air stripping combined with a carbon adsorption off-gas treatment system. This paper describes the development and performance of a hybrid process that combines air stripping with membrane organic-vapor separation to recover VOCs from the stripper off-gas. A number of prototype systems have been constructed and evaluated. The optimum system appears to be a tray stripper fitted with a high-pressure compression-condensation membrane separation unit. Such a system can remove 95 to 99% of the VOCs present in contaminated water; the removed VOCs are recovered as a liquid condensate. The economics of the technology are competitive with alternative processes, particularly for streams containing more than 500 ppm VOC and having flow rates less than 10 to 30 gal/min.

  2. Erace--an integrated system for treating organic-contaminated sites

    SciTech Connect

    Caley, S.M.; Heath, W.O.; Bergsman, T.M.; Gauglitz, P.A.; Pillay, C.; Moss, R.W.; Shah, R.R.; Goheen, S.C.; Camiaoni, D.M.

    1994-11-01

    The U.S. Department of Energy`s (DOE) Pacific Northwest Laboratory (PNL) is developing a suite of electrical technologies for treating sites contaminated with hazardous organic compounds. These include: (1) Six-Phase Soil Heating (SPSH) to remove volatile and semi-volatile organic compounds from soils; (2) In Situ Corona (ISC) to decompose nonvolatile and bound organic contaminants in soils; (3) High-Energy Corona (HEC) to treat contaminated off-gases; and (4) Liquid Corona (LC) to treat contaminated liquids. These four technologies comprise ERACE (Electrical Remediation at Contaminated Environments), an integrated system for accomplishing site remediation with little or no secondary wastes produced that would require off-site treatment or disposal. Each ERACE technology can be employed individually as a stand-alone treatment process, or combined as a system for total site remediation. For example, an ERACE system for treating sites contaminated with volatile organics would integrate SPSH to remove the contaminants from the soil, LC to continuously treat an aqueous stream condensed out of the soil off-gas, and HEC to treat non-condensibles remaining in the off-gas, before atmospheric release.

  3. DWPF GC FILTER ASSEMBLY SAMPLING AND ANALYSIS

    SciTech Connect

    Bannochie, C.; Imrich, K.

    2009-11-11

    On March 18, 2009 a Defense Waste Processing Facility (DWPF) GC Line Filter Assembly was received at the Savannah River National Laboratory (SRNL). This filter assembly was removed from operation following the completion of Sludge Batch 4 processing in the DWPF. Work on this sample was requested in a Technical Assistance Request. This document reports the pictures, observations, samples collected, and analytical results for the assembly. The assembly arrived at SRNL separated into its three component filters: high efficiency particulate air (HEPA)-1, HEPA-2, and a high efficiency mist evaporator (HEME). Each stage of the assembly's media was sampled and examined visually and by scanning electron microscopy (SEM). Solids built up in the filter housing following the first stage HEME, were dissolved in dilute nitric acid and analyzed by ICP-AES and the undissolved white solids were analyzed by x-ray diffraction (XRD). The vast majority of the material in each of the three stages of the DWPF GC Line Filter Assembly appears to be contaminated with a Hg compound that is {approx}59 wt% Hg on a total solids basis. The Hg species was identified by XRD analysis to contain a mixture of Hg{sub 4}(OH)(NO{sub 3}){sub 3} and Hg{sub 10}(OH){sub 4}(NO{sub 3}){sub 6}. Only in the core sample of the second stage HEPA, did this material appear to be completely covering portions of the filter media, possibly explaining the pressure drops observed by DWPF. The fact that the material migrates through the HEME filter and both HEPA filters, and that it was seen collecting on the outlet side of the HEME filter, would seem to indicate that these filters are not efficient at removing this material. Further SRAT off-gas system modeling should help determine the extent of Hg breakthrough past the Mercury Water Wash Tank (MWWT). The SRAT off-gas system has not been modeled since startup of the facility. Improvements to the efficiency of Hg stripping prior to the ammonia scrubber would seem to be

  4. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    SciTech Connect

    J.G. Wijmans

    2003-11-17

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  5. Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system

    SciTech Connect

    Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.

    1996-03-01

    (This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles.

  6. HYDROFLUORIC ACID SCRUBBER SYSTEMS

    SciTech Connect

    PANESKO JV; MERRITT HD

    2011-05-18

    Each year over a million gallons of water are used to scrub hydrogen fluoride (HP) vapors from waste off-gas streams. Use of other potential scrubber solutions such as potassium hydroxide (KOH), aluminum nitrate nonahydrate (ANN), and monobasic aluminum nitrate (monoban) would result in significant volume reductions. A laboratory study was initiated to (1) demonstrate the effectiveness of these scrubber solutions to sorb HF, (2) determine if unexpected reactions occurred at flowsheet conditions, and (3) determine the consequences of deviation from flowsheet conditions. Caustic or aluminum scrubber solutions remove hydrogen fluoride from off-gas streams. Solids which appear with aluminum could be avoided by heating the scrubber solution.

  7. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    SciTech Connect

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  8. Direct Chlorination Process for geothermal power plant off-gas - hydrogen sulfide abatement

    SciTech Connect

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5% hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90% excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process Compared to the Stretford Process, the Direct Chlorination process requires about one-third the initial capital investment and about one-fourth the net daily expenditure. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  9. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    SciTech Connect

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

  10. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    NASA Astrophysics Data System (ADS)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  11. Oxygen Effects on Thermophilic Microbial Populations in Biofilters Treating Nitric Oxide Containing Off-Gas Streams

    SciTech Connect

    Lee, Brady Douglas; Apel, William Arnold; Smith, William Aaron

    2004-04-01

    Electricity generation from coal has increased by an average of 51 billion kWh per year over the past 3 years. For this reason cost-effective strategies to control nitrogen oxides (NOx) from coal-fired power plant combustion gases must be developed. Compost biofilters operated at 55°C at an empty bed contact time (EBCT) of 13 seconds were shown to be feasible for removal of nitric oxide (NO) from synthetic flue gas. Denitrifying microbial populations in these biofilters were shown to reduce influent NO feeds by 90 to 95% at inlet NO concentrations of 500 ppmv. Oxygen was shown to have a significant effect on the NO removal efficiency demonstrated by these biofilters. Two biofilters were set up under identical conditions for the purpose of monitoring NO removal as well as changes in the microbial population in the bed medium under anaerobic and aerobic conditions. Changes in the microbial population were monitored to determine the maximum oxygen tolerance of a denitrifying biofilter as well as methods of optimizing microbial populations capable of denitrification in the presence of low oxygen concentrations. Nitric oxide removal dropped to between 10 and 20% when oxygen was present in the influent stream. The inactive compost used to pack the biofilters may have also caused the decreased NO removal efficiency compared to previous biofiltration experiments. Analysis of the bed medium microbial population using environmental scanning electron microscopy indicated significant increases in biomass populating the surface of the compost when compared to unacclimated compost.

  12. AIR STRIPPING AND OFF-GAS ADSORPTION FOR THE REMOVAL OF MTBE FROM DRINKING WATER

    EPA Science Inventory

    Methyl-tertiary butyl ether (MTBE) is a synthetic organic chemical, primarily used for oxgenating fuel. The 1990 Federal Clean Air Act Amendments mandated the use of fuel oxgenates in areas where air quality did not meet national standards, which led to widespread use of MTBE in...

  13. Low-Level waste phase 1 melter testing off gas and mass balance evaluation

    SciTech Connect

    Wilson, C.N.

    1996-06-28

    Commercially available melter technologies were tested during 1994-95 as part of a multiphase program to test candidate technologies for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of Hanford Site tank wastes. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes were also tested. Various feed material samples, product glass samples, and process offgas streams were characterized to provide data for evaluation of process decontamination factors and material mass balances for each vitrification technology. This report describes the melter mass balance evaluations and results for six of the Phase 1 LLW melter vendor demonstration tests.

  14. Mercuric iodate precipitation from radioiodine-containing off-gas scrubber solution

    DOEpatents

    Partridge, Jerry A.; Bosuego, Gail P.

    1982-01-01

    Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

  15. Off-Gas Generation Rate during Chemical Cleaning Operations at the Savannah River Site - 12499

    SciTech Connect

    Wiersma, Bruce J.; Subramanian, Karthik H.; Ketusky, Edward T.

    2012-07-01

    The enhanced chemical cleaning process (ECC) is being developed at the Savannah River Site (SRS) to remove the residual radioactive sludge heel that remains in a liquid waste storage tank. Oxalic acid is the chemical agent utilized for this purpose. However, the acid also corrodes the carbon steel tank wall and cooling coils. If the oxalic acid has little interaction with the sludge, hydrogen gas could conceivably evolve at cathodic areas due to the corrosion of the carbon steel. Scenarios where hydrogen evolution could occur during ECC include the initial filling of the tank prior to agitation and near the end of the process when there is little or no sludge present. The purpose of this activity was to provide a bounding estimate for the hydrogen generation rate during the ECC process. Sealed vessel coupon tests were performed to estimate the hydrogen generation rate due to corrosion of carbon steel by oxalic acid. These tests determined the maximum instantaneous hydrogen generation rate, the rate at which the generation rate decays, and the total hydrogen generated. The tests were performed with polished ASTM A285 Grade C carbon steel coupons. This steel is representative of the Type I and II waste tanks at SRS. Bounding conditions were determined for the solution environment. The oxalic acid concentration was 2.5 wt.% and the test temperature was 75 deg. C. The test solution was agitated and contained no sludge simulant. Duplicate tests were performed and showed excellent reproducibility for the hydrogen generation rate and total hydrogen generated. The results showed that the hydrogen generation rate was initially high, but decayed rapidly within a couple of days. A statistical model was developed to predict the instantaneous hydrogen generation rate as a function of exposure time by combining both sets of data. An upper bound on the maximum hydrogen generation rate was determined from the upper 95% confidence limit. The upper bound limit on the maximum instantaneous generation rate at 5 hours was 6.1 x 10{sup -5} m{sup 3}/m{sup 2}/minute. After two and five days the upper bound limit decayed to 7.9 x 10{sup -6} and 1.3 x 10{sup -6} m{sup 3}/m{sup 2}/minute, respectively. The total volume of hydrogen gas generated during the test was calculated from the model equation. An upper bound on the total gas generated was determined from the upper 95% confidence limit. The upper bound limit on the total hydrogen generated during the 163 hour test was 0.101 m{sup 3}/m{sup 2}. Corrosion rates were determined from the coupon tests and also calculated from the measured hydrogen generation rates. Excellent agreement was achieved between the time averaged corrosion rate calculated from the hydrogen generation rates and the corrosion rates determined from the coupon tests. The corrosion rates were on the order of 0.45 mmpy. Good agreement was also observed between the maximum instantaneous corrosion rate as calculated from the hydrogen generation rate and the corrosion rate determined by previous electrochemical tests. (authors)

  16. Reduction of combustion irreversibility in a gas turbine power plant through off-gas recycling

    SciTech Connect

    Harvey, S.P.; Richter, H.J.; Knoche, K.F.

    1995-01-01

    Combustion in conventional fossil-fueled power plants is highly irreversible, resulting in poor overall energy conversion efficiency values (less than 40 percent in many cases). The objective of this paper is to discuss means by which this combustion irreversibility might be reduced in gas turbine power cycles, and the conversion efficiency thus improved upon. One such means is thermochemical recuperation of exhaust heat. The proposed cycle recycles part of the exhaust gases, then mixes them with fuel prior to injection into a reformer. The heat required for the endothermic reforming reactions is provided by the hot turbine exhaust gases. Assuming state-of-the-art technology, and making a number of simplifying assumptions, an overall efficiency of 65.4 percent was attained for the cycle, based on the lower heating value (LHV) of the methane fuel. The proposed cycle is compared to a Humid Air Turbine (HAT) cycle with similar features that achieves an overall efficiency of 64.0 percent. The gain in cycle efficiency that can be attributed to the improved fuel oxidation process is 1.4 percentage points. Compared to current high-efficiency gas turbine cycles, the high efficiency of both cycles studied therefore results mainly from the use of staged compression and expansion with intermediate cooling and reheating, respectively.

  17. TREATMENT TANK OFF-GAS TESTING FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    SciTech Connect

    Wiersma, B.

    2011-08-29

    The purpose of this activity was to provide a bounding estimate of the volume of hydrogen gas generated during Enhanced Chemical Cleaning (ECC) of residual sludge remaining in a Type I or Type II treatment tank as well as to provide results independent of the sludge volume in the waste tank to be cleaned. Previous testing to support Chemical Cleaning was based on a 20:1 oxalic acid to sludge ratio. Hydrogen gas evolution is the primary safety concern. Sealed vessel coupon tests were performed to estimate the hydrogen generation rate due to corrosion of carbon steel by 2.5 wt.% oxalic acid. These tests determined the maximum instantaneous hydrogen generation rate, the rate at which the generation rate decays, and the total hydrogen generated. These values were quantified based on a small scale methodology similar to the one described in WSRC-STI-2007-00209, Rev. 0. The measured rates support identified Safety Class functions. The tests were performed with ASTM A285 Grade C carbon steel coupons. Bounding conditions were determined for the solution environment. The oxalic acid concentration was 2.5 wt.% and the test temperature was 75 C. The test solution was agitated and contained no sludge simulant. Duplicate tests were performed and showed excellent reproducibility for the hydrogen generation rate and total hydrogen generated. The results showed that the hydrogen generation rate was initially high, but decayed rapidly within a couple of days. A statistical model was developed to predict the instantaneous hydrogen generation rate as a function of exposure time by combining both sets of data. An upper bound on the maximum hydrogen generation rate was determined from the upper 95% confidence limit. The upper bound confidence limit for the hydrogen generation rate is represented by the following equation. ln (G{sub v}) = -8.22-0.0584 t + 0.0002 t{sup 2}. This equation should be utilized to estimate the instantaneous hydrogen generation rate per unit surface area, G{sub v}, at a given time, t. The units for G{sub v} and t are ft{sup 3}/ft{sup 2}/min and hours, respectively. The total volume of hydrogen gas generated during the test was calculated from the model equation. An upper bound on the total gas generated was determined from the upper 95% confidence limit. The upper bound limit on the total hydrogen generated during the 163 hour test was 0.332 ft{sup 3}/ft{sup 2}. The maximum instantaneous hydrogen generation rate for this scenario is greater than that previously measured in the 8 wt.% oxalic acid tests due to both the absence of sludge in the test (i.e., greater than 20:1 ratio of acid to sludge) and the use of polished coupons (vs. mill scale coupons). However, due to passivation of the carbon steel surface, the corrosion rate decays by an order of magnitude within the first three days of exposure such that the instantaneous hydrogen generation rates are less than that previously measure in the 8 wt.% oxalic acid tests. While the results of these tests are bounding, the conditions used in this study may not be representative of the ECC flowsheet, and the applicability of these results to the flowsheet should be evaluated for the following reasons: (1) The absence of sludge results in higher instantaneous hydrogen generation rates than when the sludge is present; and (2) Polished coupons do not represent the condition of the carbon steel interior of the tank, which are covered with mill scale. Based on lower instantaneous corrosion rates measured on mill scale coupons exposed to oxalic acid, lower instantaneous hydrogen generation rates are expected for the tank interior than measured on the polished coupons. Corrosion rates were determined from the coupon tests and also calculated from the measured hydrogen generation rates. Excellent agreement was achieved between the time averaged corrosion rate calculated from the hydrogen generation rates and the corrosion rates determined from the coupon tests. The corrosion rates were on the order of 18 to 28 mpy. Good agreement was also observed between the maximum instantaneous corrosion rate as calculated from the hydrogen generation rate and the corrosion rate determined by previous electrochemical tests.

  18. Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey

    SciTech Connect

    Daryl Haefner

    2007-02-01

    A literature survey was conducted to collect information and summarize the methods available to capture iodine from fuel reprocessing off-gases. Techniques were categorized as either wet scrubbing or solid adsorbent methods, and each method was generally described as it might be used under reprocessing conditions. Decontamination factors are quoted only to give a rough indication of the effectiveness of the method. No attempt is made to identify a preferred capture method at this time, although activities are proposed that would provide a consistent baseline that would aid in evaluating technologies.

  19. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    DOEpatents

    Mendelsohn, Marshall H.; Livengood, C. David

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  20. Continuous nitrous oxide abatement in a novel denitrifying off-gas bioscrubber.

    PubMed

    Frutos, Osvaldo D; Arvelo, Ilan A; Pérez, Rebeca; Quijano, Guillermo; Muñoz, Raúl

    2015-04-01

    The potential of a bioscrubber composed of a packed bed absorption column coupled to a stirred tank denitrification bioreactor (STR) was assessed for 95 days for the continuous abatement of a diluted air emission of N2O at different liquid recycling velocities. N2O removal efficiencies of up to 40 ± 1 % were achieved at the highest recirculation velocity (8 m h(-1)) at an empty bed residence time of 3 min using a synthetic air emission containing N2O at 104 ± 12 ppmv. N2O was absorbed in the packed bed column and further reduced in the STR at efficiencies >80 % using methanol as electron donor. The long-term operation of the bioscrubber suggested that the specialized N2O degrading community established was not able to use N2O as nitrogen source. Additional nitrification assays showed that the activated sludge used as inoculum was not capable of aerobically oxidizing N2O to nitrate or nitrite, regardless of the inorganic carbon concentration tested. Denitrification assays confirmed the ability of non-acclimated activated sludge to readily denitrify N2O at a specific rate of 3.9 mg N2O g VSS h(-1) using methanol as electron donor. This study constitutes, to the best of our knowledge, the first systematic assessment of the continuous abatement of N2O in air emission. A characterization of the structure of the microbial population in the absorption column by DGGE-sequencing revealed a high microbial diversity and the presence of heterotrophic denitrifying methylotrophs. PMID:25547842

  1. Fine pore diffuser system evaluation for the Green Bay Metropolitan Sewerage District. Project report

    SciTech Connect

    Marx, J.J.

    1994-08-01

    The Green Bay Metropolitan Sewerage District retrofitted two quadrants of their activated sludge aeration system with ceramic and membrane fine pore diffusers to provide savings in energy usage compared to the sparged turbine aerators originally installed. Because significant diffuser fouling was expected, the two diffuser types were closely monitored over an 18-month period. The oxygen transfer efficiencies of the full-scale systems were measured using off-gas techniques. The effects of diffuser fouling and the effectiveness of cleaning procedures were evaluated in the laboratory using dynamic wet pressure and steady-state clean water oxygen transfer tests. Although fouling was significant on both types of diffusers, cost-effective cleaning procedures were developed. The ceramic disc diffuser provided better long-term performance than the membrane tube diffusers, which irreversibly lost oxygen transfer efficiency with time in use. Collectively, the fine pore diffuser systems provided a 30% savings in electrical power usage compared to the original sparged turbine aerators.

  2. Simulation test of aerosol generation from vessels in the pre-treatment system of fuel reprocessing

    SciTech Connect

    Fujine, Sachio; Kitamura, Koichiro; Kihara, Takehiro

    1997-08-01

    Aerosol concentration and droplet size are measured in off-gas of vessel under various conditions by changing off-gas flow rate, stirring air flow rate, salts concentration and temperature of nitrate solution. Aerosols are also measured under evaporation and air-lift operation. 4 refs., 6 figs.

  3. Improvements of gas-fired kiln by use of a microcomputer control system for the porcelain manufacture

    SciTech Connect

    Loong, H.; Liang, C.C.; Tseng, K.T.

    1988-01-01

    The use of microcomputer control system to gas-fired kiln not only enhanced the porcelain kiln's productivity from 75% to 95% but also saved its operation cost around US$ 200,000 per year. The self-designed microcomputer control system can simultaneous set and control the firing conditions of the period kiln which was built up in our laboratory. Our period kiln having volume of 4 M/sup 3/ was insulated by ceramic fiber which is different from use of refractory in traditional kilns. At the bottom of the kiln is an off-gas tunnel connected with a chimney. Besides the auto start-up and continuous operation of kiln, the main functions of this microcomputer control system are summarized.

  4. Conceptual design of soil venting systems

    SciTech Connect

    DePaoli, D.W.; Wilson, J.H.; Thomas, C.O.

    1996-05-01

    A method for economically based conceptual design of soil venting systems is described. The objective of this method is to provide a means of estimating the cost and schedule of site cleanup for the purposes of technology selection and for focusing detailed system design. Idealized treatments of contaminant volatilization and flow of gas in the soil are employed to obtain estimates of transient off-gas concentration and the vacuum required at the extraction vents for a given set of site and system design conditions. Capital and operating costs of blowers and emissions control devices are estimated using standard techniques, allowing comparison of the required processing cost for cleanup under various design strategies. The utility of this technique is illustrated for an example case of a 95,000-L (25,000-gal) JP-4 jet fuel spill. The results for this test case indicate that emissions control predictably increases cleanup cost, with carbon adsorption being more costly than catalytic oxidation. This treatment predicts that an optimum flow rate and system size exist for each design strategy at a particular site.

  5. Using spacecraft trace contaminant control systems to cure sick building syndrome

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1994-01-01

    Many residential and commercial buildings with centralized, recirculating, heating ventilation and air conditioning systems suffer from 'Sick Building Syndrome.' Ventilation rates are reduced to save energy costs, synthetic building materials off-gas contaminants, and unsafe levels of volatile organic compounds (VOC's) accumulate. These unsafe levels of contaminants can cause irritation of eyes and throat, fatigue and dizziness to building occupants. Increased ventilation, the primary method of treating Sick Building Syndrome is expensive (due to increased energy costs) and recently, the effectiveness of increased ventilation has been questioned. On spacecraft venting is not allowed, so the primary methods of air quality control are; source control, active filtering, and destruction of VOC's. Four non-venting contaminant removal technologies; strict material selection to provide source control, ambient temperature catalytic oxidation, photocatalytic oxidation, and uptake by higher plants, may have potential application for indoor air quality control.

  6. FINAL REPORT START-UP AND COMMISSIONING TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-01R0100-2 REV 0 1/20/03

    SciTech Connect

    KRUGER AA; MATLACK KS; KOT WK; BRANDYS M; WILSON CN; SCHATZ TR; GONG W; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter{trademark} 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

  7. Fluidized bed charcoal particle production system

    SciTech Connect

    Sowards, N.K.

    1985-04-09

    A fluidized bed charcoal particle production system, including apparatus and method, wherein pieces of combustible waste, such as sawdust, fragments of wood, etc., are continuously disposed within a fluidized bed of a pyrolytic vessel. Preferably, the fluidized bed is caused to reach operating temperatures by use of an external pre-heater. The fluidized bed is situated above an air delivery system at the bottom of the vessel, which supports pyrolysis within the fluidized bed. Charcoal particles are thus formed within the bed from the combustible waste and are lifted from the bed and placed in suspension above the bed by forced air passing upwardly through the bed. The suspended charcoal particles and the gaseous medium in which the particles are suspended are displaced from the vessel into a cyclone mechanism where the charcoal particles are separated. The separated charcoal particles are quenched with water to terminate all further charcoal oxidation. The remaining off-gas is burned and, preferably, the heat therefrom used to generate steam, kiln dry lumber, etc. Preferably, the bed material is continuously recirculated and purified by removing tramp material.

  8. System and method for the analysis of one or more compounds and/or species produced by a solution-based nuclear reactor

    DOEpatents

    Policke, Timothy A; Nygaard, Eric T

    2014-05-06

    The present invention relates generally to both a system and method for determining the composition of an off-gas from a solution nuclear reactor (e.g., an Aqueous Homogeneous Reactor (AHR)) and the composition of the fissioning solution from those measurements. In one embodiment, the present invention utilizes at least one quadrupole mass spectrometer (QMS) in a system and/or method designed to determine at least one or more of: (i) the rate of production of at least one gas and/or gas species from a nuclear reactor; (ii) the effect on pH by one or more nitrogen species; (iii) the rate of production of one or more fission gases; and/or (iv) the effect on pH of at least one gas and/or gas species other than one or more nitrogen species from a nuclear reactor.

  9. The design and management of system components for in situ methanotrophic bioremediation of chlorinated hydrocarbons

    SciTech Connect

    Lombard, K.H.; Borthen, J.W.; Hazen, T.C.

    1992-12-31

    The successful operation of an in situ bioremediation system is inherent within its design. Well-organized system components enable ease of maintenance, limited down time, and relatively rapid data acquisition. The design effort in this project focused on injection of a low-pressure air/methane mixture into a horizontal well below the water table, a methane-blending system that provided control of the injected mixture, redundant safety interlocks, vapor-phase extraction from a second horizontal well, and an off-gas treatment system that provided efficient thermal catalytic oxidation of the extracted contaminant vapors. The control instrumentation provided sufficient redundancies to allow the system to remain in operation in the event of a component failure, and equally important, the safe shut down of the system should any designed safety parameters be exceeded (i.e., high methane concentration). Final design approval took into consideration the reliability of the equipment and the components specified. Product knowledge and proper application limited the risk of a component or system failure while providing a safe, efficient, and cost-effective remediation system. Microprocessor data acquisition and system control were integrated with an autodialer to provide 24 hr emergency response and operation without on-site supervision. This integrated system also insured accurate data analysis and minimum downtime. Since operations commenced, the system has operated a total of 7,760 hours out of the possible 8,837 hours available. This equates to an operating efficiency of 87.8%.

  10. Systems Requirement Document for the MSRE U-233 Conversion System

    SciTech Connect

    Aigner, R.D.

    2001-01-11

    The fissile material reclamation activities for the MSRE remediation project include the removal and recovery of uranium from the off-gas system, from the stored fuel salt, and finally, from the uranium-laden charcoal in the Auxiliary Charcoal Bed (ACB). Each of these operations produces an uranium/fluoride compound that is not suitable for long-term storage. The uranium-fluoride compounds can be stored for a limited period of time in pressure vessels. The interim-storage vessels are designed to handle the internal pressure buildup from gases formed by radiolysis of the uranium-fluoride compounds. The conversion process will take the pressurized vessels from interim storage and process the materials in a hot cell located at Building 4501. The gas in the vessels will be vented through chemical traps and then the traps will be processed to convert the various uranium-fluoride compounds to a stable uranium oxide form. This will be done one trap at a time. The chemical form of uranium being extracted from the off-gas system and from fuel salt fluorination process is uranium hexafluoride UF{sub 6}. During the operations at MSRE, the UF{sub 6} is chemisorbed onto sodium fluoride (NaF) traps where it forms the complex, 2NaF{center_dot}UF{sub 6}. The conversion process that will be installed in the Building 4501 Hot Cell D will recover the UF{sub 6} from the NaF traps by decomposition of the binary complex at elevated temperatures (>300 C). After the uranium is extracted from the NaF traps, it is collected in the conversion process reaction vessel. The reaction vessel is then hydrolized and heated through several step operations up to 900 C in order to convert the material to a stable uranium oxide. The ACB at MSRE contains uranium-laden charcoal with unstable C{sub x}F compounds. After extraction at MSRE, this material will be delivered to Building 4501 Hot Cell D for processing to a stable oxide. The charcoal conversion process is still under development, with mockup and

  11. High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate

    SciTech Connect

    2009-12-01

    Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus’ process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

  12. Nitrification inhibition by hexavalent chromium Cr(VI)--Microbial ecology, gene expression and off-gas emissions.

    PubMed

    Kim, Young Mo; Park, Hongkeun; Chandran, Kartik

    2016-04-01

    The goal of this study was to investigate the responses in the physiology, microbial ecology and gene expression of nitrifying bacteria to imposition of and recovery from Cr(VI) loading in a lab-scale nitrification bioreactor. Exposure to Cr(VI) in the reactor strongly inhibited nitrification performance resulting in a parallel decrease in nitrate production and ammonia consumption. Cr(VI) exposure also led to an overall decrease in total bacterial concentrations in the reactor. However, the fraction of ammonia oxidizing bacteria (AOB) decreased to a greater extent than the fraction of nitrite oxidizing bacteria (NOB). In terms of functional gene expression, a rapid decrease in the transcript concentrations of amoA gene coding for ammonia oxidation in AOB was observed in response to the Cr(VI) shock. In contrast, transcript concentrations of the nxrA gene coding for nitrite oxidation in NOB were relatively unchanged compared to Cr(VI) pre-exposure levels. Therefore, Cr(VI) exposure selectively and directly inhibited activity of AOB, which indirectly resulted in substrate (nitrite) limitation to NOB. Significantly, trends in amoA expression preceded performance trends both during imposition of and recovery from inhibition. During recovery from the Cr(VI) shock, the high ammonia concentrations in the bioreactor resulted in an irreversible shift towards AOB populations, which are expected to be more competitive in high ammonia environments. An inadvertent impact during recovery was increased emission of nitrous oxide (N2O) and nitric oxide (NO), consistent with recent findings linking AOB activity and the production of these gases. Therefore, Cr(VI) exposure elicited multiple responses on the microbial ecology, gene expression and both aqueous and gaseous nitrogenous conversion in a nitrification process. A complementary interrogation of these multiple responses facilitated an understanding of both direct and indirect inhibitory impacts on nitrification. PMID:26874778

  13. Effect of oxygen on thermophilic denitrifying populations in biofilters treating nitric oxide containing off-gas streams

    SciTech Connect

    Lee, B.D.; Apel, W.A.; Smith, W.

    1999-07-01

    Electricity generation from coal has increased by an average of 51 billion kWh per year over the past 3 years. For this reason cost effective NO{sub x} control strategies must be developed. Compost biofilters operated at 55 C at an empty bed contact time (EBCT) of 13 seconds have been shown to be feasible for removal of nitric oxide (NO) from synthetic flue gas. Denitrifying microbial populations in these biofilters have been shown to reduce influent NO feeds by 90 to 95% at inlet NO concentrations of 500 ppmv. Oxygen has been shown to have a significant effect on the NO removal efficiency demonstrated by these biofilters. Two biofilters were set up under identical conditions for the purpose of monitoring NO removal as well as changes in the microbial population in the bed medium under anaerobic and aerobic conditions. Understanding changes in the microbial population will allow for determination of maximum oxygen tolerance of a denitrifying biofilter as well as methods of optimizing microbial populations capable of denitrification in the presence of low oxygen concentrations. Both biofilters showed NO removal efficiency greater than 50% once steady anaerobic operation was achieved. One biofilter was supplied with 2% oxygen after 22 days of anaerobic operation. NO removal dropped to between 10 and 20% when oxygen was present in the influent stream. Incomplete conversion of lactate to carbon dioxide was hypothesized to be the cause for the decreased NO removal efficiency in the anaerobic biofilter compared to previous biofiltration experiments. Bed medium microbes converted the bulk of the lactate to acetate, not fully utilizing reducing equivalents present in the carbon source. The inactive compost used to pack the biofilters may have also caused the decreased NO removal efficiency compared to previous biofiltration experiments.

  14. INTEGRATED DM 1200 MELTER TESTING OF HLW C-106/AY-102 COMPOSITION USING BUBBLERS VSL-03R3800-1 REV 0 9/15/03

    SciTech Connect

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  15. Expert system for technology screening for SOC and VOC contaminated water

    SciTech Connect

    Lo, I.M.C.; Pota, A.A.

    1997-09-01

    A prototype expert system program was developed to select the best available technology used for the removal of volatile organic chemicals and synthetic organic chemicals from contaminated water. The technologies considered in this study are packed tower air stripping (AST) with and without off-gas control using gas phase granular activated carbon (GPGAC) adsorption, liquid phase granular activated carbon (LPGAC) adsorption, and their combinations. Selecting from these processes is a complex procedure because of the uncertainties associated with the process-specific feasibility parameters such as pretreatment conditions, capacity to handle variable flow and shock loading, nature of treatment goal (long term or short term), nature of regeneration facility (for LPGAC and GPGAC), and air pollution (for AST). This expert system simplifies the complex selection procedure by sifting through both least-cost design knowledge and process feasibility knowledge. The system is thus able to predict the suitability of a treatment technology based on factors other than least cost and offers this advantage over other process selection tools. The system was applied to three case studies, and the best treatment technology in each study was identified based on the given parameters.

  16. Energy and costs scoping study for plasma pyrolysis thermal processing system

    SciTech Connect

    Sherick, K.E.; Findley, J.E.

    1992-01-01

    The purpose of this study was to provide information in support of an investigation of thermal technologies as possible treatment process for buried wastes at the INEL. Material and energy balances and a cost estimate were generated for a representative plasma torch-based thermal waste treatment system operating in a pyrolysis mode. Two waste streams were selected which are representative of INEL buried wastes, large in volume, and difficult to treat by other technologies. These streams were a solidified nitrate sludge waste stream and a waste/soil mix of other buried waste components. The treatment scheme selected includes a main plasma chamber operating under pyrolyzing conditions; a plasma afterburner to provide additional residence time at high temperature to ensure complete destruction of hazardous organics; an off-gas treatment system; and a incinerator and stack to oxidize carbon monoxide to carbon dioxide and vent the clean, oxidized gases to atmosphere. The material balances generated provide materials flow and equipment duty information of sufficient accuracy to generate initial rough-order-of-magnitude (ROM) system capital and operating cost estimates for a representative plasma thermal processing system.

  17. Remote System for Characterizing, Monitoring and Inspecting the Inside of Contaminated Nuclear Stacks

    SciTech Connect

    Vargas, Mario; Mendez, William; Lagos, Dr. Leonel; Lind, Randall F; Lloyd, Peter D; Rowe, John C; Noakes, Mark W; Pin, Francois G

    2011-01-01

    The Stack Characterization System (SCS) is a collaborative project with the Robotics and Energetic Systems Group (RESG) at Oak Ridge National Laboratory (ORNL) and the Applied Research Center (ARC) at Florida International University (FIU). The SCS is a robotic system that will be deployed into off-gas stacks located around the central campus at ORNL. The system will consists of surveying equipment capable of taking surface contamination samples, radiation readings, core samples and transmit live video to its operators. Trade studies were conducted on varying concrete materials to determine the best way of retrieving loose contamination from the surface. The studies were performed at the ARC facility by DOE Fellows, where traditional cloth wipes were compared to adhesive material. The adhesive material was tested on the RESG s smear sampler to record how much loose surface material could be retrieved. The DOE Fellows completed a summer internship during which conceptual designs were created for a deployable radiation detector and core drill capable of retrieving multiple core samples.

  18. State-of-the-art hydrogen sulfide control for geothermal energy systems: 1979

    SciTech Connect

    Stephens, F.B.; Hill, J.H.; Phelps, P.L. Jr.

    1980-03-01

    Existing state-of-the-art technologies for removal of hydrogen sulfide are discussed along with a comparative assessment of their efficiencies, reliabilities and costs. Other related topics include the characteristics of vapor-dominated and liquid-dominated resources, energy conversion systems, and the sources of hydrogen sulfide emissions. It is indicated that upstream control technologies are preferred over downsteam technologies primarily because upstream removal of hydrogen sulfide inherently controls all downstream emissions including steam-stacking. Two upstream processes for vapor-dominated resources appear promising; the copper sulfate (EIC) process, and the steam converter (Coury) process combined with an off-gas abatement system such as a Stretford unit. For liquid-dominated systems that produce steam, the process where the non-condensible gases are scrubbed with spent geothermal fluid appears to be promising. An efficient downstream technology is the Stretford process for non-condensible gas removal. In this case, partitioning in the surface condenser will determine the overall abatement efficiency. Recommendations for future environmental control technology programs are included.

  19. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect

    Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2005-09-11

    This report summarizes work performed on this project from April 2005 through September 2005. In previous work, a series of laboratory scale experiments were conducted to determine the feasibility of using a SMZ system coupled with a VPB to remove and ultimately destroy the organic pollutants found in produced water. Based on the laboratory scale data, a field test of the process was conducted at the McGrath Salt Water Disposal facility in July and August of 2005. The system performed well over repeated feed and regeneration cycles demonstrating the viability of the process for long term operation. Of the BTEX components present in the produced water, benzene had the lowest adsorption affinity for the SMZ and thus controlled the sorption cycle length. Regeneration of the SMZ using air sparging was found to be sufficient in the field to maintain the SMZ adsorption capacity and to allow continuous operation of the system. As expected, the BTEX concentrations in the regeneration off gas stream were initially very high in a given regeneration cycle. However, a granular activated carbon buffering column placed upstream of the VPB reduced the peak BTEX concentrations to acceptable levels for the VPB. In this way, the VPB was able to maintain stable performance over the entire SMZ regeneration period despite the intermittent nature of the feed.

  20. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... soon as practicable. (3) Copper converter department capture system operating limits. You must... capture system when it is used to collect the process off-gas vented from batch copper converters during... process off-gas vented from batch copper converters during blowing. At a minimum, you must use...

  1. FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00

    SciTech Connect

    KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

    2011-12-29

    increased plenum temperatures due to increased thermal radiation from the melt surface (which mayor may not be desirable but the flexibility to choose may be lost). Increased volatilization is an issue both in terms of the increased challenge to the off-gas system as well as for the ability to effectively close the recycle loops for volatile species that must be immobilized in the glass product, most notably technetium and cesium. For these reasons, improved information is needed on the specific glass production rates of RPP-WTP HLW streams in DuraMelterJ systems over a range of operating conditions. Unlike the RPP-WTP LAW program, for which a pilot melter system to provide large-scale throughout information is already in operation, there is no comparable HLW activity; the results of the present study are therefore especially important. This information will reduce project risk by reducing the uncertainty associated with the amount of conservatism that mayor may not be associated with the baseline RPP-WTP HLW melter sizing decision. After the submission of the first Test Plan for this work, the RPP-WTP requested revisions to include tests to determine the processing rates that are achievable without bubbling, which was driven by the potential advantages of omitting bubblers from the HLW melter design in terms of reduced maintenance. A further objective of this effort became the determination of whether the basis of design processing rate could be achieved without bubbling. Ideally, processing rate tests would be conducted on a full-scale RPP-WTP melter system with actual HLW materials, but that is clearly unrealistic during Part B1. As a practical compromise the processing rate determinations were made with HL W simulants on a DuraMelter J system at as close to full scale as possible and the DM 1000 system at VSL was selected for that purpose. That system has a melt surface area of 1.2 m{sup 2}, which corresponds to about one-third scale based on the specific glass

  2. Scaled Vitrification System III (SVS III) Process Development and Laboratory Tests at the West Valley Demonstration Project

    SciTech Connect

    V. Jain; S. M. Barnes; B. G. Bindi; R. A. Palmer

    2000-04-30

    At the West Valley Demonstration Project (WVDP),the Vitrification Facility (VF)is designed to convert the high-level radioactive waste (HLW)stored on the site to a stable glass for disposal at a Department of Energy (DOE)-specified federal repository. The Scaled Vitrification System III (SVS-III)verification tests were conducted between February 1995 and August 1995 as a supplemental means to support the vitrification process flowsheet, but at only one seventh the scale.During these tests,the process flowsheet was refined and optimized. The SVS-III test series was conducted with a focus on confirming the applicability of the Redox Forecasting Model, which was based on the Index of Feed Oxidation (IFO)developed during the Functional and Checkout Testing of Systems (FACTS)and SVS-I tests. Additional goals were to investigate the prototypical feed preparation cycle and test the new target glass composition. Included in this report are the basis and current designs of the major components of the Scale Vitrification System and the results of the SVS-III tests.The major subsystems described are the feed preparation and delivery, melter, and off-gas treatment systems. In addition,the correlation between the melter's operation and its various parameters;which included feed rate,cold cap coverage,oxygen reduction (redox)state of the glass,melter power,plenum temperature,and airlift analysis;were developed.

  3. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment.

    PubMed

    Moustakas, K; Fatta, D; Malamis, S; Haralambous, K; Loizidou, M

    2005-08-31

    Plasma gasification/vitrification is a technologically advanced and environmentally friendly method of disposing of waste, converting it to commercially usable by-products. This process is a drastic non-incineration thermal process, which uses extremely high temperatures in an oxygen-starved environment to completely decompose input waste material into very simple molecules. The intense and versatile heat generation capabilities of plasma technology enable a plasma gasification/vitrification facility to treat a large number of waste streams in a safe and reliable manner. The by-products of the process are a combustible gas and an inert slag. Plasma gasification consistently exhibits much lower environmental levels for both air emissions and slag leachate toxicity than other thermal technologies. In the framework of a LIFE-Environment project, financed by Directorate General Environment and Viotia Prefecture in Greece, a pilot plasma gasification/vitrification system was designed, constructed and installed in Viotia Region in order to examine the efficiency of this innovative technology in treating industrial hazardous waste. The pilot plant, which was designed to treat up to 50kg waste/h, has two main sections: (i) the furnace and its related equipment and (ii) the off-gas treatment system, including the secondary combustion chamber, quench and scrubber.

  4. Integrated DWPF Melter System (IDMS) campaign report: Hanford Waste Vitrification Plan (HWVP) process demonstration

    SciTech Connect

    Hutson, N.D.

    1992-08-10

    Vitrification facilities are being developed worldwide to convert high-level nuclear waste to a durable glass form for permanent disposal. Facilities in the United States include the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the West Valley Demonstration Project (WVDP) at West Valley, NY. At each of these sites, highly radioactive defense waste will be vitrified to a stable borosilicate glass. The DWPF and WVDP are near physical completion while the HWVP is in the design phase. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. Because of the similarities of the DWPF and HWVP processes, the IDMS facility has also been used to characterize the processing behavior of a reference NCAW simulant. The demonstration was undertaken specifically to determine material balances, to characterize the evolution of offgas products (especially hydrogen), to determine the effects of noble metals, and to obtain general HWVP design data. The campaign was conducted from November, 1991 to February, 1992.

  5. 78 FR 35622 - Northwest Pipeline GP; Notice of Intent To Prepare an Environmental Assessment for the Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... per day (Dth/d), and a boil-off gas compression system.\\1\\ \\1\\ These facilities were authorized by the... the custody transfer point at the plant boundary fence; Three new 32-foot-long meter runs and a one-inch-diameter receipt meter and three-inch-diameter piping to handle boil-off-gas coming back from...

  6. Design of a californium source-driven measurement system for accountability of material recovered from the Molten Salt Reactor Experiment charcoal bed

    SciTech Connect

    Bentzinger, D.L.; Perez, R.B.; Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    1998-05-01

    The Molten Salt Reactor Experiment Facility (MSRE) operated from 1965 to 1969. The fuel was a molten salt that flowed through the reactor core which consisted of uranium tetrafluoride with molten lithium and beryllium salt used as the coolant. In 1968 the fuel was switched from {sup 235}U to {sup 233}U. The Molten Salt Reactor Experiment was canceled in 1969 at which time approximately 4800 kg of salt was transferred to the fuel drain tanks. There was about 36.3 kg of uranium, 675 grams of plutonium and various fission products present in the fuel salt. The salt was allowed to solidify in the fuel drain tanks. The salt was heated on a yearly basis to recombine the fluorine gas with the uranium salt mixture. In March 1994, a gas sample was taken from the off gas system that indicated {sup 233}U had migrated from the fuel drain tank system to the off gas system. It was found that approximately 2.6 kg of uranium had migrated to the Auxiliary Charcoal Bed (ACB). The ACB is located in the concrete-lined charcoal bed cell which is below ground level located outside the MSRE building. Therefore, there was a concern for the potential of a nuclear criticality accident, although water would have to leak into the chamber for a criticality accident to occur. Unstable carbon/fluorine compounds were also formed when the fluorine reacted with the charcoal in the charcoal bed. The purpose of the proposed measurement system was to perform an accountability measurement to determine the fissile mass of {sup 233}U in the primary vessel. The contents of the primary containment assembly will then be transferred to three smaller containers for long term storage. Calculations were performed using MCNP-DSP to determine the configuration of the measurement system. The information obtained from the time signatures can then be compared to the measurement data to determine the amount of {sup 233}U present in the primary containment assembly.

  7. Design and operating features of the high-level waste vitrification system for the West Valley demonstration project

    SciTech Connect

    Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

    1986-03-01

    A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered.

  8. Remotely operated organic liquid waste incinerator for the fuels and materials examination facility

    SciTech Connect

    Sales, W.L.; Barker, R.E.; Hershey, R.B.

    1980-01-01

    The search for a practical method for the disposal of small quantities of oraganic liquid waste, a waste product of metallographic sample preparation at the Fuels and Materials Examination Facility has led to the design of an incinerator/off-gas system to burn organic liquid wastes and selected organic solids. The incinerator is to be installed in a shielded inert-atmosphere cell, and will be remotely operated and maintained. The off-gas system is a wet-scrubber and filter system designed to release particulate-free off-gas to the FMEF Building Exhaust System.

  9. A Novel Inlet System for On-line Chemical Analysis of Semi-Volatile Submicron Particulate Matter

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Eichler, P.; Müller, M.; D'anna, B.

    2014-12-01

    We herein present the concept of a novel modular inlet system that allows using gas-phase analyzers for on-line chemical characterization of semi-volatile submicron particles. The "Chemical analysis of aerosol on-line" (CHARON) inlet consists of a gas-phase denuder for stripping off gas-phase analytes, an aerodynamic lens for particle enrichment in the sampling flow and a thermo-desorption unit for particle volatilization prior to chemical analysis. We coupled the CHARON inlet to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) which quantitatively detects most organic analytes and ammonia. The combined set-up measures submicron organic and ammonium nitrate/sulfate particles online. Proof-of-principle studies were carried out for demonstrating the analytical power of the new set-up in analyzing primarily emitted and secondarily generated particles. A promising future application is the study of the partitioning of organic compounds between the gas and the particulate phase.

  10. A novel inlet system for on-line chemical analysis of semi-volatile submicron particulate matter

    NASA Astrophysics Data System (ADS)

    Eichler, P.; Müller, M.; D'Anna, B.; Wisthaler, A.

    2014-09-01

    We herein present the concept of a novel modular inlet system that allows using gas-phase analyzers for on-line chemical characterization of semi-volatile submicron particles. The "chemical analysis of aerosol on-line" (CHARON) inlet consists of a gas-phase denuder for stripping off gas-phase analytes, an aerodynamic lens for particle enrichment in the sampling flow and a thermo-desorption unit for particle volatilization prior to chemical analysis. We coupled the CHARON inlet to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) which quantitatively detects most organic analytes and ammonia. The combined set-up measures submicron organic and ammonium nitrate/sulfate particles online. Two proof-of-principle studies were carried out for demonstrating the analytical power of the new set-up in analyzing primarily emitted and secondarily generated particles. Oxygenated organics and their partitioning between the gas and the particulate phase were observed from the reaction of limonene with ozone. Abundant quasi-molecular ions of organic particulate constituents were observed when submicron particles were sampled from diluted mainstream cigarette smoke.

  11. West Valley Demonstration Project vitrification process equipment Functional and Checkout Testing of Systems (FACTS)

    SciTech Connect

    Carl, D.E.; Paul, J.; Foran, J.M.; Brooks, R.

    1990-09-30

    The Vitrification Facility (VF) at the West Valley Demonstration Project was designed to convert stored radioactive waste into a stable glass for disposal in a federal repository. The Functional and Checkout Testing of Systems (FACTS) program was conducted from 1984 to 1989. During this time new equipment and processes were developed, installed, and implemented. Thirty-seven FACTS tests were conducted, and approximately 150,000 kg of glass were made by using nonradioactive materials to simulate the radioactive waste. By contrast, the planned radioactive operation is expected to produce approximately 500,000 kg of glass. The FACTS program demonstrated the effectiveness of equipment and procedures in the vitrification system, and the ability of the VF to produce quality glass on schedule. FACTS testing also provided data to validate the WVNS waste glass qualification method and verify that the product glass would meet federal repository acceptance requirements. The system was built and performed to standards which would have enabled it to be used in radioactive service. As a result, much of the VF tested, such as the civil construction, feed mixing and holding vessels, and the off-gas scrubber, will be converted for radioactive operation. The melter was still in good condition after being at temperature for fifty-eight of the sixty months of FACTS. However, the melter exceeded its recommended design life and will be replaced with a similar melter. Components that were not designed for remote operation and maintenance will be replaced with remote-use items. The FACTS testing was accomplished with no significant worker injury or environmental releases. During the last FACTS run, the VF processes approximated the remote-handling system that will be used in radioactive operations. Following this run the VF was disassembled for conversion to a radioactive process. Functional and checkout testing of new components will be performed prior to radioactive operation.

  12. Stand-off CWA imaging system: second sight MS

    NASA Astrophysics Data System (ADS)

    Bernascolle, Philippe F.; Elichabe, Audrey; Fervel, Franck; Haumonté, Jean-Baptiste

    2012-06-01

    In recent years, several manufactures of IR imaging devices have launched commercial models applicable to a wide range of chemical species. These cameras are rugged and sufficiently sensitive to detect low concentrations of toxic and combustible gases. Bertin Technologies, specialized in the design and supply of innovating systems for industry, defense and health, has developed a stand-off gas imaging system using a multi-spectral infrared imaging technology. With this system, the gas cloud size, localization and evolution can be displayed in real time. This technology was developed several years ago in partnership with the CEB, a French MoD CBRN organization. The goal was to meet the need for early warning caused by a chemical threat. With a night & day efficiency of up to 5 km, this process is able to detect Chemical Warfare Agents (CWA), critical Toxic Industrial Compounds (TIC) and also flammable gases. The system has been adapted to detect industrial spillage, using off-the-shelf uncooled infrared cameras, allowing 24/7 surveillance without costly frequent maintenance. The changes brought to the system are in compliance with Military Specifications (MS) and primarily focus on the signal processing improving the classification of the detected products and on the simplification of the Human Machine Interface (HMI). Second Sight MS is the only mass produced, passive stand-off CWA imaging system with a wide angle (up to 60°) already used by several regular armies around the world. This paper examines this IR gas imager performance when exposed to several CWA, TIC and simulant compounds. First, we will describe the Second Sight MS system. The theory of gas detection, visualization and classification functions has already been described elsewhere, so we will just summarize it here. We will then present the main topic of this paper which is the results of the tests done in laboratory on live agents and in open field on simulant. The sensitivity threshold of the

  13. PFBC HGCU Test Facility. Fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  14. PFBC HGCU Test Facility

    SciTech Connect

    Not Available

    1993-01-01

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  15. Vitrification of simulated radioactive Rocky Flats plutonium containing ash residue with a Stir Melter System

    SciTech Connect

    Marra, J.C.; Kormanyos, K.R.; Overcamp, T.J.

    1996-10-01

    A demonstration trial has been completed in which a simulated Rocky Flats ash consisting of an industrial fly-ash material doped with cerium oxide was vitrified in an alloy tank Stir-Melter{trademark} System. The cerium oxide served as a substitute for plutonium oxide present in the actual Rocky Flats residue stream. The glass developed falls within the SiO{sub 2} + Al{sub 2}O{sub 3}/{Sigma}Alkali/B{sub 2}O{sub 3} system. The glass batch contained approximately 40 wt% of ash, the ash was modified to contain {approximately} 5 wt% CeO{sub 2} to simulate plutonium chemistry in the glass. The ash simulant was mixed with water and fed to the Stir-Melter as a slurry with a 60 wt% water to 40 wt% solids ratio. Glass melting temperature was maintained at approximately 1,050 C during the melting trials. Melting rates as functions of impeller speed and slurry feed rate were determined. An optimal melting rate was established through a series of evolutionary variations of the control variables` settings. The optimal melting rate condition was used for a continuous six hour steady state run of the vitrification system. Glass mass flow rates of the melter were measured and correlated with the slurry feed mass flow. Melter off-gas was sampled for particulate and volatile species over a period of four hours during the steady state run. Glass composition and durability studies were run on samples collected during the steady state run.

  16. Fission product iodine during early Hanford-Site operations: Its production and behavior during fuel processing, off-gas treatment and release to the atmosphere

    SciTech Connect

    Burger, L.L.

    1991-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate the radiological dose impact that Hanford Site operations may have made on the local and regional population. This impact is estimated by examining operations involving radioactive materials that were conducted at the Hanford Site from the startup of the first reactor in 1944 to the present. HEDR Project work is divided among several technical tasks. One of these tasks, Source Terms, is designed to develop quantitative estimates of all significant emissions of radionuclides by Hanford Site operations since 1944. Radiation doses can be estimated from these emissions by accounting for specific radionuclide transport conditions and population demography. This document provides technical information to assist in the evaluation of iodine releases. 115 refs., 5 figs., 3 tabs.

  17. Space-based LH 2 propellant storage system: subscale ground testing results

    NASA Astrophysics Data System (ADS)

    Liggett, M. W.

    An orbital cryogenic liquid storage facility will be one of the essential elements of the US Space Program to realize the benefits of space-based cryogenic propulsion vehicles such as NASA's space transfer vehicle (STV) for transporting personnel and scientific packages from a space station in low earth orbit (LEO) to geosynchronous orbit (GEO), the moon and beyond. Long-term thermal control of LH 2 and LO 2 storage cryotanks is a key technical objective for many NASA and SDI programmes. Improved retention using refrigeration, boil-off vapour-cooled shields (VCSs), multilayer superinsulation (MLI) and para-ortho (P-O) hydrogen conversion are the required state-of-the-art techniques. The cryotank system level development testing (CSLDT) programme has supported the development of these technologies. Under the programme, trade studies and analyses were followed by the design and construction of a subscale LH 2 storage facility test article for steady-state and transient thermal tests. A two-stage gaseous helium (GHe) refrigerator was integrated with the test article and used to reduce boil-off and/or decrease the time required between passive test configuration steady-state conditions. The LH 2 tank, mounted in a vacuum chamber, was thermally shielded from the chamber wall by MLI blankets and two VCSs. The VCSs were cooled with either LH 2 boil-off gas (through an optional P-O converter) or refrigerated GHe. The CSLDT test article design, assembly and results from 400 hours of thermal tests are presented along with important conclusions. A comparison of predicted and measured steady-state boil-off rates is provided for 10 test configurations, and the system time constant is addressed. Also presented are some of the unique issues and challenges encountered during these tests that are related to instrumentation and control.

  18. Initial weights and dimensions of corrosion coupons installed in IDMS in August 1993

    SciTech Connect

    Imrick, K.

    1993-10-04

    New corrosion coupons were installed in the Feed Preparation System and the Melter/Off-Gas System of Integrated DWPF Melter System (IDMS) in August 1993. The new coupons are replacements for similar coupons which were in the IDMS since 1989 but were removed for metallurgical evaluation in April 1993. original coupons still remain on the corrosion racks in the Melter and the Off-Gas Stack. Baseline data for the replacement coupons are described in this report.

  19. FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03

    SciTech Connect

    KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D'ANGELO NA; SCHATZ TR; PEGG IL

    2011-12-29

    This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the

  20. Milestone Report - M4FT-14OR0312022 - Co-absorption studies - Design system complete/test plan complete

    SciTech Connect

    Bruffey, Stephanie H.; Spencer, Barry B.; Jubin, Robert Thomas

    2013-12-01

    The objective of this test plan is to describe research that will determine the effectiveness of silver mordenite and molecular sieve beds to remove iodine and water (tritium) from off-gas streams arising from used nuclear fuel recycling processes, and to demonstrate that the iodine and water can be recovered separately from one another.

  1. A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter

    NASA Astrophysics Data System (ADS)

    Eichler, P.; Müller, M.; D'Anna, B.; Wisthaler, A.

    2015-03-01

    We herein present a novel modular inlet system designed to be coupled to low-pressure gas analyzers for online chemical characterization of semi-volatile submicron particles. The "chemical analysis of aerosol online" (CHARON) inlet consists of a gas-phase denuder for stripping off gas-phase analytes, an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. The denuder was measured to remove gas-phase organics with an efficiency > 99.999% and to transmit particles in the 100-750 nm size range with a 75-90% efficiency. The measured average particle enrichment factor in the subsampling flow from the aerodynamic lens was 25.6, which is a factor of 3 lower than the calculated theoretical optimum. We coupled the CHARON inlet to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) which quantitatively detects most organic analytes and ammonia. The combined CHARON-PTR-ToF-MS setup is thus capable of measuring both the organic and the ammonium fraction in submicron particles in real time. Individual organic compounds can be detected down to levels of 10-20 ng m-3. Two proof-of-principle studies were carried out for demonstrating the analytical power of this new instrumental setup: (i) oxygenated organics and their partitioning between the gas and the particulate phase were observed from the reaction of limonene with ozone and (ii) nicotine was measured in cigarette smoke particles demonstrating that selected organic target compounds can be detected in submicron particles in real time.

  2. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREACTOR SYSTEM

    SciTech Connect

    Lynn E. Katz; Kerry A. Kinney; R.S. Bowman; E.J. Sullivan

    2003-04-01

    currently being assembled to treat the off-gas from the SMZ regeneration process.

  3. FINAL REPORT DM1200 TESTS WITH AZ 101 HLW SIMULANTS VSL-03R3800-4 REV 0 2/17/04

    SciTech Connect

    KRUGER AA; MATLACK KS; BARDAKCI T; D'ANGELO NA; GONG W; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM 1200 HLW Pilot Melter during processing of simulated HLW AZ-101 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW AZ-101 feed; determine the effect of bubbling rate and feed solids content on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post-test inspections of system components. The test objectives (including test success criteria), along with how they were met, are outlined in a table.

  4. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    SciTech Connect

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  5. Radon removal from flowing air by a water scrubber

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.; Denison, J.E.

    1994-12-31

    As part of a process that is being developed to vitrify tailings from Belgian Congo ore that is stored in large silos at a former U.S. Department of Energy uranium-processing facility in southwestern Ohio, process off-gas is produced that contains large concentrations of radon gas (on the order of hundreds of thousands of picocuries per litre). To meet U.S. Environmental Protection Agency restrictions, the process off-gas must be stripped of its radon content before it is vented to the atmosphere. It is appropriate to consider a charcoal bed as part of an off-gas treatment system for the removal of radon at the vitrification facility. However, a difficulty arises in incorporating a charcoal bed into an off-gas treatment system at a vitrification facility. That difficulty is that the capability of the charcoal bed to capture and retain radon gas decreases with increasing bed temperature. Thus, it may be necessary to include a water scrubber in the off-gas treatment system to cool the process off-gas before it is passed through the charcoal bed.

  6. Low temperature vitrification of radioiodine using AgI-Ag{sub 2}O-P{sub 2}O{sub 5} glass system

    SciTech Connect

    Fujihara, H.; Murase, T.; Nishi, T.; Noshita, K. Yoshida, T.; Matsuda, M.

    1999-07-01

    A new vitrification process for radioiodine has been developed for safe disposal of the spent iodine adsorbent generated from reprocessing off-gas systems. The proposed process consists of the following two steps: (1) separation of radioiodine as AgI from spent iodine adsorbent and (2) vitrification of the separated AgI with silver phosphate. An AgI-Ag{sub 2}O-P{sub 2}O{sub 5} glass system can homogeneously contain up to 60 mol% AgI, which leads to high volume reduction efficiency (approximately 1/25). It also can vitrify the AgI without volatilization of iodine because of its low melting temperature (below 400 C). The leachabilities of iodine from simulated vitrified waste forms were evaluated by the MCC-1 static leach test in an anaerobically controlled glove box, which was purged by nitrogen gas with 3% hydrogen. The leaching behavior of the AgI-Ag{sub 2}O-P{sub 2}O{sub 5} glass system was influenced by the composition of the actual glass, type of leachant, and redox conditions. When the leach test was carried out using simulated ground water originating from rainfall, the leach rate of iodine from 3AgI-Ag{sub 4}P{sub 2}O{sub 7} glass was 6 x 10{sup {minus}8}g/cm{sup 2}/d in the early period of the leach test at 35 C under the reducing condition, after which it decreased to 3 x 10{sup {minus}9}g/cm{sup 2}/d. This glass showed a lower leach rate in the simulated ground water originating from sea water or cement saturated water, since a precipitation layer was formed on the surface.

  7. Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility

    SciTech Connect

    Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

    2002-02-26

    The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing.

  8. Gaseous fission product management for molten salt reactors and vented fuel systems

    SciTech Connect

    Messenger, S. J.; Forsberg, C.; Massie, M.

    2012-07-01

    Fission gas disposal is one of the unresolved difficulties for Molten Salt Reactors (MSRs) and advanced reactors with vented fuel systems. As these systems operate, they produce many radioactive isotopes of xenon and krypton (e.g. {sup 135}Xe t{sub 1/2} = 9.14 hours and {sup 85}Kr t{sub 1/2}= 10.73 years). Removing these gases proves vital to the success of such reactor designs for two reasons. First, the gases act as large neutron sinks which decrease reactivity and must be counterbalanced by increasing fuel loading. Second, for MSRs, inert fission product gases naturally separate quickly from high temperature salts, thus creating high vapor pressure which poses safety concerns. For advanced reactors with solid vented fuel, the gases are allowed to escape into an off-gas system and thus must be managed. Because of time delays in transport of fission product gases in vented fuel systems, some of the shorter-lived radionuclides will decay away thereby reducing the fission gas source term relative to an MSR. To calculate the fission gas source term of a typical molten salt reactor, we modeled a 1000 MWe graphite moderated thorium MSR similar to that detailed in Mathieu et al. [1]. The fuel salt used in these calculations was LiF (78 mole percent) - (HN)F 4 (22 mole percent) with a heavy nuclide composition of 3.86% {sup 233}U and 96.14% {sup 232}Th by mass. Before we can remove the fission product gases produced by this reactor configuration, we must first develop an appropriate storage mechanism. The gases could be stored in pressurized containers but then one must be concerned about bottle failure. Methods to trap noble gases in matrices are expensive and complex. Alternatively, there are direct storage/disposal options: direct injection into the Earth or injecting a grout-based product into the Earth. Advances in drilling technologies, hydro fracture technologies, and methods for the sequestration of carbon dioxide from fossil fuel plants are creating new options

  9. Conceptual Approach For Estimating Potential Air Toxics And Radionuclide Airborne Emissions From A Temporary Exhaust System For The 216-Z-9 Crib Removal Action

    SciTech Connect

    Hopkins, A.; Sutter, C.; O'Brien, P.; Bates, J.; Klos, B.; Teal, J.; Oates, L.

    2008-07-01

    The 216-Z-9 Crib, located at the Hanford Nuclear Reservation in southeastern Washington State, was the site of a successful mining effort to recover plutonium from the contaminated soils at the disposal site. A CERCLA Action Memorandum (AM) issued by the U.S. Department of Energy (DOE) requires the removal of the buildings associated with this mining effort to facilitate a remedial action planned for the near future. The decontamination and demolition of the 216 Z-9 Crib facilities is required under a consent order between the DOE, the U.S Environmental Protection Agency (EPA) and the Washington State Department of Ecology (Ecology). Removal of the buildings located on and near the concrete cover slab over the 216-Z-9 Crib will require removal of the large soil-packaging glovebox located inside the 216-Z- 9A Building. Prior to cleaning out the glovebox, it will be necessary to provide active filtered ventilation capability to ensure a negative pressure exists between the glovebox and the adjacent airspace while hands-on work proceeds within. The glovebox floor is open to the Z-9 crib cavern environment below. For this reason the crib and glovebox currently share a common airspace. The functional requirements for safely conducting work within the glovebox include provision of a negative pressure in the box of about 0.5 inches of water gage (nominal) less than the interior of the building. In addition, the building surrounding the glovebox will be maintained at a slight negative pressure with respect to outdoor ambient pressure. In order to assess the relevant and appropriate clean air requirements for the new temporary ventilation system and associated emissions monitoring, it was necessary to reliably predict the nature of the exhaust air stream. Factors used to predict the presence and concentrations of certain radionuclide particulates and certain gases considered to be air toxics, included reliability parameters, flow rates, radionuclide content, and off-gas

  10. Field Evaluation of MERCEM Mercury Emission Analyzer System at the Oak Ridge TSCA Incinerator East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect

    2000-03-01

    The authors reached the following conclusions: (1) The two-month evaluation of the MERCEM total mercury monitor from Perkin Elmer provided a useful venue in determining the feasibility of using a CEM to measure total mercury in a saturated flue gas. (2) The MERCEM exhibited potential at a mixed waste incinerator to meet requirements proposed in PS12 under conditions of operation with liquid feeds only at stack mercury concentrations in the range of proposed MACT standards. (3) Performance of the MERCEM under conditions of incinerating solid and liquid wastes simultaneously was less reliable than while feeding liquid feeds only for the operating conditions and configuration of the host facility. (4) The permeation tube calibration method used in this test relied on the CEM internal volumetric and time constants to relate back to a concentration, whereas a compressed gas cylinder concentration is totally independent of the analyzer mass flowmeter and flowrates. (5) Mercury concentration in the compressed gas cylinders was fairly stable over a 5-month period. (6) The reliability of available reference materials was not fully demonstrated without further evaluation of their incorporation into routine operating procedures performed by facility personnel. (7) The degree of mercury control occurring in the TSCA Incinerator off-gas cleaning system could not be quantified from the data collected in this study. (8) It was possible to conduct the demonstration at a facility incinerating radioactively contaminated wastes and to release the equipment for later unrestricted use elsewhere. (9) Experience gained by this testing answered additional site-specific and general questions regarding the operation and maintenance of CEMs and their use in compliance monitoring of total mercury emissions from hazardous waste incinerators.

  11. K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN

    SciTech Connect

    Swientoniewski M.D.

    2008-02-24

    This paper discusses the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource ConservatioN and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. the incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (below down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinverator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 35 to 75 gallons per minute (gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, microfiltration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to provide portability of the WWTS to other

  12. K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN

    SciTech Connect

    Beck, Ch.A.; Tiepel, E.W.; Swientoniewski, M.D.; Crow, K.R.

    2008-07-01

    This paper will discuss the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource Conservation and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. The incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (blow down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinerator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 7.95 to 17 cubic meters per hour (m3/hr) (35 to 75 gallons per minute; gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, micro-filtration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to

  13. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    SciTech Connect

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn

  14. Insitu Cleanable Alternative HEPA Filter Media

    SciTech Connect

    Adamson, D.J.

    2002-05-14

    Two types of filter media, sintered nickel metal and ceramic monolith membrane, are being investigated as in situ regenerable/cleanable high efficiency particulate air (HEPA) filters. Particle retention testing was conducted on the filters at the Oak Ridge Filter Test Facility to ensure HEPA efficiency, greater than 99.97 percent. During simulant testing, The filters were challenged using non-radioactive simulated high-level waste materials and atmospheric dust; materials that cause filter pluggage in the field. After plugging the filters they were cleaned in situ using an aqueous solution. This innovative approach of the in situ regenerative filtration system may be a significant improvement upon the shortfalls of conventional disposable HEPA filters.

  15. Testing to reduce salt loading via wet scrubbing

    SciTech Connect

    Holmes, H.; Burns, D.B.

    1990-01-01

    Previous offgas testing indicated that excessive salt emissions generated by neutralization of acids minimize filter life of downstream control equipment, specifically, high efficient particulate air (HEPA) filters. Recent tests were conducted to characterize salt generation in wet offgas systems and to evaluate upstream offgas control equipment performance in removing the salt. The predominant conclusion was that stack salt particulate emissions responsible for rapid loading of the offgas filters resulted from carry-over of particulates formed in the scrubber, and not carry-over from those formed in the quench. HEPA filter loading tests showed no significant filter pluggage at low salt concentrations in the scrubber liquid in spite of high salt concentrations in the quench liquid. 10 figs., 2 tabs.

  16. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant.

    PubMed

    Zhou, Xiaohong; Wu, Yuanyuan; Shi, Hanchang; Song, Yanqing

    2013-02-01

    Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP, however, scarce to best of our knowledge. Through analyzing a plug flow aeration tank in the Lucun WWTP, in Wuxi, China, the oxygenation capacity of fine-bubble aerators under process conditions have been measured in-situ using the off-gas method and the non-steady-state method. The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP ha d significantly different oxygen transferperformance; furthermore, the aerators in the samecorridor shared almost equal oxygen transfer performance over the course of a day. Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water. The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount < 0.67 Nm3/hr). However, as the aeration amount reached 0.96 Nm3/hr, the discrepancy of oxygen transfer between the process condition and clean water was negligible. The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.

  17. Solar system positioning system

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Chui, Talso

    2006-01-01

    Power-rich spacecraft envisioned in Prometheus initiative open up possibilities for long-range high-rate communication. A constellation of spacecraft on orbits several A.U. from the Sun, equipped with laser transponders and precise clocks can be configured to measure their mutual distances to within few cm. High on-board power can create substantial non-inertial contribution to the spacecraft trajectory. We propose to alleviate this contribution by employing secondary ranging to a passive daughter spacecraft. Such constellation can form the basis of it navigation system capable of providing position information anywhere in the soIar system with similar accuracy. Apart from obvious Solar System exploration implications, this system can provide robust reference for GPS and its successors.

  18. Tank 26F-2F Evaporator Study

    SciTech Connect

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  19. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during

  20. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM

    SciTech Connect

    LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

    2003-10-01

    assembled to treat the off-gas from the SMZ regeneration process. These columns will be used both in the laboratory and in the proposed field testing to be conducted next year. Innocula for the columns that degrade all of the BTEX columns have been developed.

  1. Hanford Waste Vitrification program pilot-scale ceramic melter Test 23

    SciTech Connect

    Goles, R.W.; Nakaoka, R.K.

    1990-02-01

    The pilot-scale ceramic melter test, was conducted to determine the vitrification processing characteristics of simulated Hanford Waste Vitrification Plant process slurries and the integrated performance of the melter off-gas treatment system. Simulated melter feed was prepared and processed to produce glass. The vitrification system, achieved an on-stream efficiency of greater than 98%. The melter off-gas treatment system included a film cooler, submerged bed scrubber, demister, high-efficiency mist eliminator, preheater, and high-efficiency particulate air filter (HEPA). Evaluation of the off-gas system included the generation, nature, and capture efficiency of gross particulate, semivolatile, and noncondensible melter products. 17 refs., 48 figs., 61 tabs.

  2. Immune System

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immune System KidsHealth > For Teens > Immune System Print A A ... could put us out of commission. What the Immune System Does The immune (pronounced: ih-MYOON) system, which ...

  3. Control of radio-iodine at the German reprocessing plant WAK during operation and after shutdown

    SciTech Connect

    Herrmann, F.J.; Herrmann, B.; Kuhn, K.D.

    1997-08-01

    During 20 years of operation 207 metric tons of oxide fuel from nuclear power reactors with 19 kg of iodine-129 had been reprocessed in the WAK plant near Karlsruhe. In January 1991 the WAK Plant was shut down. During operation iodine releases of the plant as well as the iodine distribution over the liquid and gaseous process streams had been determined. Most of the iodine is evolved into the dissolver off-gas in volatile form. The remainder is dispersed over many aqueous, organic and especially gaseous process and waste streams. After shut down of the plant in January 1991, iodine measurements in the off-gas streams have been continued up to now. Whereas the iodine-129 concentration in the dissolver off-gas dropped during six months after shutdown by three orders of magnitude, the iodine concentrations in the vessel ventilation system of the PUREX process and the cell vent system decreased only by a factor of 10 during the same period. Iodine-129 releases of the liquid high active waste storage tanks did not decrease distinctly. The removal efficiencies of the silver impregnated iodine filters in the different off-gas streams of the WAK plant depend on the iodine concentration in the off-gas. The reason of the observed dependence of the DF on the iodine-129 concentration might be due to the presence of organic iodine compounds which are difficult to remove. 13 refs., 3 figs.

  4. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, October-December 1986

    SciTech Connect

    Brouns, R.A.; Allen, C.R.; Powell, J.A.

    1987-09-01

    This report describes the progress in developing, testing, applying, and documenting liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1987 is discussed. Topics include melting process chemistry and glass development, feed preparation and transfer systems, melter systems, off-gas systems, canister filling and handling systems, and process/product modeling.

  5. Operating Systems.

    ERIC Educational Resources Information Center

    Denning, Peter J.; Brown, Robert L.

    1984-01-01

    A computer operating system spans multiple layers of complexity, from commands entered at a keyboard to the details of electronic switching. In addition, the system is organized as a hierarchy of abstractions. Various parts of such a system and system dynamics (using the Unix operating system as an example) are described. (JN)

  6. LFCM (liquid-fed ceramic melter) vitrification technology: Quarterly progress report, July-September 1986

    SciTech Connect

    Burkholder, H.C.; Allen, C.R.; Andersen, C.M.; Bates, S.O.; Dierks, R.D.; Faletti, D.W.; Farnsworth, R.K.; Goles, R.W.; Kuhn, W.L.; Nakaoka, R.K.: Perez, J.M Jr.; Peters, R.D.; Peterson, M.E.; Pulsipher, B.A.; Reimus, P.W.

    1987-06-01

    Individual papers are processed separately for the data bases. This report documents progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in melting process chemistry and glass development, feed preparation and transfer systems, melter systems, off-gas systems, and process/product modeling and control is discussed.

  7. Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems

    SciTech Connect

    Freeman, C.J.; Abrigo, G.P.; Shafer, P.J.; Merrill, R.A.

    1995-07-01

    This report provides reviews of papers and reports for three basic categories of melters: arc/plasma-heated melters, combustion-heated melters, and joule-heated melters. The literature reviewed here represents those publications which may lend insight to phase I testing of low-level waste vitrification being performed at the Hanford Site in FY 1995. For each melter category, information from those papers and reports containing enough information to determine steady-state mass balance data is tabulated at the end of each section. The tables show the composition of the feed processed, the off-gas measured via decontamination factors, gross energy consumptions, and processing rates, among other data.

  8. Cryolite process for the solidification of radioactive wastes

    DOEpatents

    Wielang, Joseph A.; Taylor, Larry L.

    1976-01-01

    An improved method is provided for solidifying liquid wastes containing significant quantities of sodium or sodium compounds by calcining in a fluidized-bed calciner. The formation of sodium nitrate which will cause agglomeration of the fluidized-bed particles is retarded by adding aluminum and a fluoride to the waste in order to produce cryolite during calcination. The off-gas of the calciner is scrubbed with a solution containing aluminum in order to complex any fluoride which may be liberated by subsequent dissolution of cryolite and prevent corrosion in the off-gas cleanup system.

  9. Idaho Nuclear Technology and Engineering Center Sodium-Bearing Waste Treatment Research and Development FY-2002 Status Report

    SciTech Connect

    Herbst, Alan Keith; Deldebbio, John Anthony; Mc Cray, John Alan; Kirkham, Robert John; Olson, Lonnie Gene; Scholes, Bradley Adams

    2002-09-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering several optional processes for disposal of liquid sodium-bearing waste. During fiscal year 2002, immobilization-related research included of grout formulation development for sodium-bearing waste, absorption of the waste on silica gel, and off-gas system mercury collection and breakthrough using activated carbon. Experimental results indicate that sodium-bearing waste can be immobilized in grout at 70 weight percent and onto silica gel at 74 weight percent. Furthermore, a loading of 11 weight percent mercury in sulfur-impregnated activated carbon was achieved with 99.8% off-gas mercury removal efficiency.

  10. Crystal Systems.

    ERIC Educational Resources Information Center

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  11. Systems Engineering

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando

    2015-01-01

    This short course provides information on what systems engineering is and how the systems engineer guides requirements, interfaces with the discipline leads, and resolves technical issues. There are many system-wide issues that either impact or are impacted by the thermal subsystem. This course will introduce these issues and illustrate them with real life examples.

  12. Delivery Systems.

    ERIC Educational Resources Information Center

    Hutchison, Betty

    This paper on delivery systems for preparing and training early childhood educators focuses on three main topics: (1) adequacy of delivery systems and access; (2) market influences on delivery systems; and (3) linking preparation and professional development components. Questions addressed include the following: Would the current preparation and…

  13. System Effectiveness

    SciTech Connect

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    An effective risk assessment system is needed to address the threat posed by an active or passive insider who, acting alone or in collusion, could attempt diversion or theft of nuclear material. It is critical that a nuclear facility conduct a thorough self-assessment of the material protection, control, and accountability (MPC&A) system to evaluate system effectiveness. Self-assessment involves vulnerability analysis and performance testing of the MPC&A system. The process should lead to confirmation that mitigating features of the system effectively minimize the threat, or it could lead to the conclusion that system improvements or upgrades are necessary to achieve acceptable protection against the threat. Analysis of the MPC&A system is necessary to understand the limits and vulnerabilities of the system to internal threats. Self-assessment helps the facility be prepared to respond to internal threats and reduce the risk of theft or diversion of nuclear material. MSET is a self-assessment or inspection tool utilizing probabilistic risk assessment (PRA) methodology to calculate the system effectiveness of a nuclear facility's MPC&A system. MSET analyzes the effectiveness of an MPC&A system based on defined performance metrics for MPC&A functions based on U.S. and international best practices and regulations. A facility's MC&A system can be evaluated at a point in time and reevaluated after upgrades are implemented or after other system changes occur. The total system or specific subareas within the system can be evaluated. Areas of potential performance improvement or system upgrade can be assessed to determine where the most beneficial and cost-effective improvements should be made. Analyses of risk importance factors show that sustainability is essential for optimal performance. The analyses reveal where performance degradation has the greatest detrimental impact on total system risk and where performance improvements have the greatest reduction in system risk

  14. Fuel-Flexible Combustion System for Co-production Plant Applications

    SciTech Connect

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  15. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  16. [Information systems].

    PubMed

    Rodríguez Maniega, José Antonio; Trío Maseda, Reyes

    2005-03-01

    The arrival of victims of the terrorist attacks of 11 March at the hospital put the efficiency of its information systems to the test. To be most efficient, these systems should be simple and directed, above all, to the follow-up of victims and to providing the necessary information to patients and families. A specific and easy to use system is advisable. PMID:15771852

  17. CALUTRON SYSTEM

    DOEpatents

    Lawrence, E.O.

    1958-08-12

    A calutron system capable of functioning with only a portion of the separation tanks in the system operating is described. The invention is a calutron system comprssing a closed series of alternated tanks and electromagnets having a mid-yoke connecting intermediate positions of the series. dividing the series into twv-o portions, and thereby providing a closed magnetic path through either of the portions.

  18. Systemic darwinism.

    PubMed

    Winther, Rasmus Grønfeldt

    2008-08-19

    Darwin's 19th century evolutionary theory of descent with modification through natural selection opened up a multidimensional and integrative conceptual space for biology. We explore three dimensions of this space: explanatory pattern, levels of selection, and degree of difference among units of the same type. Each dimension is defined by a respective pair of poles: law and narrative explanation, organismic and hierarchical selection, and variational and essentialist thinking. As a consequence of conceptual debates in the 20th century biological sciences, the poles of each pair came to be seen as mutually exclusive opposites. A significant amount of 21st century research focuses on systems (e.g., genomic, cellular, organismic, and ecological/global). Systemic Darwinism is emerging in this context. It follows a "compositional paradigm" according to which complex systems and their hierarchical networks of parts are the focus of biological investigation. Through the investigation of systems, Systemic Darwinism promises to reintegrate each dimension of Darwin's original logical space. Moreover, this ideally and potentially unified theory of biological ontology coordinates and integrates a plurality of mathematical biological theories (e.g., self-organization/structure, cladistics/history, and evolutionary genetics/function). Integrative Systemic Darwinism requires communal articulation from a plurality of perspectives. Although it is more general than these, it draws on previous advances in Systems Theory, Systems Biology, and Hierarchy Theory. Systemic Darwinism would greatly further bioengineering research and would provide a significantly deeper and more critical understanding of biological reality. PMID:18697926

  19. Systemic darwinism.

    PubMed

    Winther, Rasmus Grønfeldt

    2008-08-19

    Darwin's 19th century evolutionary theory of descent with modification through natural selection opened up a multidimensional and integrative conceptual space for biology. We explore three dimensions of this space: explanatory pattern, levels of selection, and degree of difference among units of the same type. Each dimension is defined by a respective pair of poles: law and narrative explanation, organismic and hierarchical selection, and variational and essentialist thinking. As a consequence of conceptual debates in the 20th century biological sciences, the poles of each pair came to be seen as mutually exclusive opposites. A significant amount of 21st century research focuses on systems (e.g., genomic, cellular, organismic, and ecological/global). Systemic Darwinism is emerging in this context. It follows a "compositional paradigm" according to which complex systems and their hierarchical networks of parts are the focus of biological investigation. Through the investigation of systems, Systemic Darwinism promises to reintegrate each dimension of Darwin's original logical space. Moreover, this ideally and potentially unified theory of biological ontology coordinates and integrates a plurality of mathematical biological theories (e.g., self-organization/structure, cladistics/history, and evolutionary genetics/function). Integrative Systemic Darwinism requires communal articulation from a plurality of perspectives. Although it is more general than these, it draws on previous advances in Systems Theory, Systems Biology, and Hierarchy Theory. Systemic Darwinism would greatly further bioengineering research and would provide a significantly deeper and more critical understanding of biological reality.

  20. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    SciTech Connect

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b

  1. Power system

    DOEpatents

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  2. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the defect or deficiency as soon as practicable. (3) Copper converter department capture system... copper converters during blowing. (i) Select operating limit parameters appropriate for the capture... when it is used to collect the process off-gas vented from batch copper converters during blowing. At...

  3. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the defect or deficiency as soon as practicable. (3) Copper converter department capture system... copper converters during blowing. (i) Select operating limit parameters appropriate for the capture... when it is used to collect the process off-gas vented from batch copper converters during blowing. At...

  4. 76 FR 73609 - Cameron LNG, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... Energy Regulatory Commission Cameron LNG, LLC; Notice of Application Take notice that on November 4, 2010, Cameron LNG, LLC (Cameron), 101 Ash Street, San Diego, California 92101, filed in Docket No. CP12- 15-000... operate a boil-off gas (BOG) liquefaction system at its LNG import terminal in Cameron Parish,...

  5. Saturn Systems.

    PubMed

    U Rehman, Habib; McKee, Nida A; McKee, Michael L

    2016-01-15

    Several ring systems (Saturn systems) have been studied using DFT methods that include dispersion effects. Comparison with X-ray structures are made with three systems, and the agreement is quite good. Binding enthalpies and binding free energies in dichloromethane and toluene have been computed. The effect of an encapsulated lithium cation is accessed by comparing C60 @(C6 H4 )10 and [Li@C60 @(C6 H4 )10 ](+). The [Li@C60 ](+) cation is a much better acceptor than C60 which leads to greater donor-acceptor interactions and larger charge transfer from the ring to [Li@C60 ](+).

  6. Saturn Systems.

    PubMed

    U Rehman, Habib; McKee, Nida A; McKee, Michael L

    2016-01-15

    Several ring systems (Saturn systems) have been studied using DFT methods that include dispersion effects. Comparison with X-ray structures are made with three systems, and the agreement is quite good. Binding enthalpies and binding free energies in dichloromethane and toluene have been computed. The effect of an encapsulated lithium cation is accessed by comparing C60 @(C6 H4 )10 and [Li@C60 @(C6 H4 )10 ](+). The [Li@C60 ](+) cation is a much better acceptor than C60 which leads to greater donor-acceptor interactions and larger charge transfer from the ring to [Li@C60 ](+). PMID:26096724

  7. Electronic system

    DOEpatents

    Robison, G H; Dickson, J F

    1960-11-15

    An electronic system is designed for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. The system comprises separate input means electrically associated with the events under observation an electronic channel associated with each input means, including control means and indicating means; timing means adapted to apply a signal from the input means after a predetermined time to the control means to deactivate each of the channels; and means for resetting the system to its initial condition after the observation of each group of events. (D.L.C.)

  8. SAMPLING SYSTEM

    DOEpatents

    Hannaford, B.A.; Rosenberg, R.; Segaser, C.L.; Terry, C.L.

    1961-01-17

    An apparatus is given for the batch sampling of radioactive liquids such as slurries from a system by remote control, while providing shielding for protection of operating personnel from the harmful effects of radiation.

  9. Systems Analysis.

    ERIC Educational Resources Information Center

    Loucks, D. P.; Bell, J. M.

    1978-01-01

    Presents a literature review of the analysis of the administrative systems of various environmental programs related to water quality and pollution policy. A list of 70 references published in 1976 and 1977 is also presented. (HM)

  10. Microelectromechanical Systems

    NASA Technical Reports Server (NTRS)

    Gabriel, Kaigham J.

    1995-01-01

    Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.

  11. Recommender systems

    NASA Astrophysics Data System (ADS)

    Lü, Linyuan; Medo, Matúš; Yeung, Chi Ho; Zhang, Yi-Cheng; Zhang, Zi-Ke; Zhou, Tao

    2012-10-01

    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has great scientific depth and combines diverse research fields which makes it interesting for physicists as well as interdisciplinary researchers.

  12. Respiratory system

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  13. Laser Systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Tunable diode lasers are employed as radiation sources in high resolution infrared spectroscopy to determine spectral characteristics of gaseous compounds. With other laser systems, they are produced by Spectra-Physics, and used to monitor chemical processes, monitor production of quantity halogen lamps, etc. The Laser Analytics Division of Spectra-Physics credits the system's reliability to a program funded by Langley in the 1970s. Company no longer U.S.-owned. 5/22/97

  14. Systems and Components Fuel Delivery System, Water Delivery System, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Systems and Components - Fuel Delivery System, Water Delivery System, Derrick Crane System, and Crane System Details - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  15. Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Myasishchev, Denis; Bixler, David

    2009-04-01

    Chaos theory is a current topic in physics research and is of great scientific and applied interest. Chaotic systems include weather patterns, genetic evolution and free market economics. Modeling chaotic phenomena using electronic circuits is a convenient way to analyze nonlinear systems. We have built various types of circuits and examined the conditions under which chaos occurs. Chua's circuit and analog computing circuits (ones that directly model systems of differential equations) were in the spotlight during the fall semester. An R-C phase space diagram for the Chua's circuit was constructed and the phase transitions were examined. Different analog computing circuits were built and the resulting attractors, attractor phases, and bifurcations were recorded. A mechanical system, the two block train model, is the current focus of study. The goal is to examine attractors produced by a mechanical system, a computer simulation, and a corresponding circuit in order to prove that the same experimental results can be obtained from different sources. This way if a mechanical system is too complicated to build, it can be substituted by a suitable circuit.

  16. Systems Studies

    SciTech Connect

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.

  17. Systemic fluoride.

    PubMed

    Sampaio, Fábio Correia; Levy, Steven Marc

    2011-01-01

    There is substantial evidence that fluoride, through different applications and formulas, works to control caries development. The first observations of fluoride's effects on dental caries were linked to fluoride naturally present in the drinking water, and then from controlled water fluoridation programs. Other systemic methods to deliver fluoride were later suggested, including dietary fluoride supplements such as salt and milk. These systemic methods are now being questioned due to the fact that many studies have indicated that fluoride's action relies mainly on its post-eruptive effect from topical contact with the tooth structure. It is known that even the methods of delivering fluoride known as 'systemic' act mainly through a topical effect when they are in contact with the teeth. The effectiveness of water fluoridation in many geographic areas is lower than in previous eras due to the widespread use of other fluoride modalities. Nevertheless, this evidence should not be interpreted as an indication that systemic methods are no longer relevant ways to deliver fluoride on an individual basis or for collective health programs. Caution must be taken to avoid excess ingestion of fluoride when prescribing dietary fluoride supplements for children in order to minimize the risk of dental fluorosis, particularly if there are other relevant sources of fluoride intake - such as drinking water, salt or milk and/or dentifrice. Safe and effective doses of fluoride can be achieved when combining topical and systemic methods.

  18. Systemic trauma.

    PubMed

    Goldsmith, Rachel E; Martin, Christina Gamache; Smith, Carly Parnitzke

    2014-01-01

    Substantial theoretical, empirical, and clinical work examines trauma as it relates to individual victims and perpetrators. As trauma professionals, it is necessary to acknowledge facets of institutions, cultures, and communities that contribute to trauma and subsequent outcomes. Systemic trauma-contextual features of environments and institutions that give rise to trauma, maintain it, and impact posttraumatic responses-provides a framework for considering the full range of traumatic phenomena. The current issue of the Journal of Trauma & Dissociation is composed of articles that incorporate systemic approaches to trauma. This perspective extends conceptualizations of trauma to consider the influence of environments such as schools and universities, churches and other religious institutions, the military, workplace settings, hospitals, jails, and prisons; agencies and systems such as police, foster care, immigration, federal assistance, disaster management, and the media; conflicts involving war, torture, terrorism, and refugees; dynamics of racism, sexism, discrimination, bullying, and homophobia; and issues pertaining to conceptualizations, measurement, methodology, teaching, and intervention. Although it may be challenging to expand psychological and psychiatric paradigms of trauma, a systemic trauma perspective is necessary on both scientific and ethical grounds. Furthermore, a systemic trauma perspective reflects current approaches in the fields of global health, nursing, social work, and human rights. Empirical investigations and intervention science informed by this paradigm have the potential to advance scientific inquiry, lower the incidence of a broader range of traumatic experiences, and help to alleviate personal and societal suffering.

  19. Systemic trauma.

    PubMed

    Goldsmith, Rachel E; Martin, Christina Gamache; Smith, Carly Parnitzke

    2014-01-01

    Substantial theoretical, empirical, and clinical work examines trauma as it relates to individual victims and perpetrators. As trauma professionals, it is necessary to acknowledge facets of institutions, cultures, and communities that contribute to trauma and subsequent outcomes. Systemic trauma-contextual features of environments and institutions that give rise to trauma, maintain it, and impact posttraumatic responses-provides a framework for considering the full range of traumatic phenomena. The current issue of the Journal of Trauma & Dissociation is composed of articles that incorporate systemic approaches to trauma. This perspective extends conceptualizations of trauma to consider the influence of environments such as schools and universities, churches and other religious institutions, the military, workplace settings, hospitals, jails, and prisons; agencies and systems such as police, foster care, immigration, federal assistance, disaster management, and the media; conflicts involving war, torture, terrorism, and refugees; dynamics of racism, sexism, discrimination, bullying, and homophobia; and issues pertaining to conceptualizations, measurement, methodology, teaching, and intervention. Although it may be challenging to expand psychological and psychiatric paradigms of trauma, a systemic trauma perspective is necessary on both scientific and ethical grounds. Furthermore, a systemic trauma perspective reflects current approaches in the fields of global health, nursing, social work, and human rights. Empirical investigations and intervention science informed by this paradigm have the potential to advance scientific inquiry, lower the incidence of a broader range of traumatic experiences, and help to alleviate personal and societal suffering. PMID:24617751

  20. Systemic fluoride.

    PubMed

    Sampaio, Fábio Correia; Levy, Steven Marc

    2011-01-01

    There is substantial evidence that fluoride, through different applications and formulas, works to control caries development. The first observations of fluoride's effects on dental caries were linked to fluoride naturally present in the drinking water, and then from controlled water fluoridation programs. Other systemic methods to deliver fluoride were later suggested, including dietary fluoride supplements such as salt and milk. These systemic methods are now being questioned due to the fact that many studies have indicated that fluoride's action relies mainly on its post-eruptive effect from topical contact with the tooth structure. It is known that even the methods of delivering fluoride known as 'systemic' act mainly through a topical effect when they are in contact with the teeth. The effectiveness of water fluoridation in many geographic areas is lower than in previous eras due to the widespread use of other fluoride modalities. Nevertheless, this evidence should not be interpreted as an indication that systemic methods are no longer relevant ways to deliver fluoride on an individual basis or for collective health programs. Caution must be taken to avoid excess ingestion of fluoride when prescribing dietary fluoride supplements for children in order to minimize the risk of dental fluorosis, particularly if there are other relevant sources of fluoride intake - such as drinking water, salt or milk and/or dentifrice. Safe and effective doses of fluoride can be achieved when combining topical and systemic methods. PMID:21701196

  1. Turbine system

    DOEpatents

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  2. Microbiology System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Technology originating in a NASA-sponsored study of the measurement of microbial growth in zero gravity led to the development of Biomerieux Vitek, Inc.'s VITEK system. VITEK provides a physician with accurate diagnostic information and identifies the most effective medication. Test cards are employed to identify organisms and determine susceptibility to antibiotics. A photo-optical scanner scans the card and monitors changes in the growth of cells contained within the card. There are two configurations - VITEK and VITEK JR as well as VIDAS, a companion system that detects bacteria, viruses, etc. from patient specimens. The company was originally created by McDonnell Douglas, the NASA contractor.

  3. Complex Systems

    PubMed Central

    Goldberger, Ary L.

    2006-01-01

    Physiologic systems in health and disease display an extraordinary range of temporal behaviors and structural patterns that defy understanding based on linear constructs, reductionist strategies, and classical homeostasis. Application of concepts and computational tools derived from the contemporary study of complex systems, including nonlinear dynamics, fractals and “chaos theory,” is having an increasing impact on biology and medicine. This presentation provides a brief overview of an emerging area of biomedical research, including recent applications to cardiopulmonary medicine and chronic obstructive lung disease. PMID:16921107

  4. ELECTRONIC SYSTEM

    DOEpatents

    Robison, G.H. et al.

    1960-11-15

    An electronic system is described for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. It is comprised of separate input means electrically associated with the events under observation: an electronic channel associated with each input means including control means and indicating means; timing means associated with each of the input means and the control means and adapted to derive a signal from the input means and apply it after a predetermined time to the control means to effect deactivation of each of the channels; and means for resetting the system to its initial condition after observation of each group of events.

  5. Computer systems

    NASA Technical Reports Server (NTRS)

    Olsen, Lola

    1992-01-01

    In addition to the discussions, Ocean Climate Data Workshop hosts gave participants an opportunity to hear about, see, and test for themselves some of the latest computer tools now available for those studying climate change and the oceans. Six speakers described computer systems and their functions. The introductory talks were followed by demonstrations to small groups of participants and some opportunities for participants to get hands-on experience. After this familiarization period, attendees were invited to return during the course of the Workshop and have one-on-one discussions and further hands-on experience with these systems. Brief summaries or abstracts of introductory presentations are addressed.

  6. System Dynamics

    NASA Astrophysics Data System (ADS)

    Morecroft, John

    System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.

  7. Systems Biology

    SciTech Connect

    Wiley, H S.

    2006-06-01

    The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?

  8. Irrigation System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Under contract with Marshall Space Flight Center, Midwest Research Institute compiled a Lubrication Handbook intended as a reference source for designers and manufacturers of aerospace hardware and crews responsible for maintenance of such equipment. Engineers of Lindsay Manufacturing Company learned of this handbook through NASA Tech Briefs and used it for supplemental information in redesigning gear boxes for their center pivot agricultural irrigation system.

  9. STAR System.

    ERIC Educational Resources Information Center

    Doverspike, James E.

    The STAR System is a developmental guidance approach to be used with elementary school children in the 5th or 6th grades. Two basic purposes underlie STAR: to increase learning potential and to enhance personal growth and development. STAR refers to 4 basic skills: sensory, thinking, adapting, and revising. Major components of the 4 skills are:…

  10. Bioconversion systems

    SciTech Connect

    Wise, D.L.

    1983-01-01

    The production of higher valued products from biomass is the focus of this reference and planning guide for those who deal with the demands of energy recovery. International experts explain the processes and potentials for genetic engineering to bioenergy systems, utilizing biomass lignin and producing chemicals from biomass using wet oxidation. They present studies of possible liquid fuel production in developing countries as well as information on new research and development such as an aquatic biomass growth system integrated with an anaerobic digestion system for producing fuel gas. Several chapters describe the use of forage crops as chemical feedstocks, production of chemicals from microalgae, and the technology and economics of chemicals from wood. CONTENTS: Fuels and Chemicals from Biomass: a Role for GeneSplicing Technology. Lactic Acid Production by Pure and Mixed Bacterial Cultures. Conversion of Lignin to Useful Chemical Products. Chemicals from Microalgae. Forage Crops as Chemical Feedstocks. Biomass Conversion into Chemicals Using Wet Oxidation. Technology and Economics of Chemicals from Wood. An Integrated Anaerobic Digestion System for the Production of Energy and Livestock Fleed Based on Aquatic Biomass Production on Sand Using Seawater Spray. Liquid Fuel Production from Biomass in the Developing Countries--an Agricultural and Economic Perspective, Part I--Introduction and Background. Part II--the Tropical Environment and the Availability of Suitable Land. Part III--Agricultural Properties of Energy Crops. Part IV--Economic Analysis of Liquid Fuel Options and Summary and Conclusions. Index.

  11. Systems Science

    ERIC Educational Resources Information Center

    Christakis, Alexander; Hammond, Debora; Jackson, Michael; Laszlo, Alexander; Mitroff, Ian; Snowden, Dave; Troncale, Len; Carr-Chellman, Alison; Spector, J. Michael; Wilson, Brent

    2013-01-01

    Scholars representing the field of systems science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Alexander Christakis, Debora Hammond, Michael Jackson, Alexander Laszlo, Ian Mitroff, Dave…

  12. Immune System

    EPA Science Inventory

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  13. Manufacturing Systems

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Advanced Process Systems designed a portable purge unit for NASA use. The unit is designed to protect flight and ground crews from toxic fumes and to provide a post-landing controlled environment for sensitive electronic equipment. Although the work has future spinoff potential, it has also led to a research and development program in conjunction with several universities.

  14. Systems overview

    NASA Technical Reports Server (NTRS)

    Corban, Robert

    1993-01-01

    Charts and accompanying text are presented that provide a brief synopsis of the contracted efforts for FY-92 in assessing nuclear thermal propulsion requirements, concepts, and associated issues. The objective of the effort is to provide NASA LeRC with assistance in space nuclear propulsion system requirements management and public acceptance planning.

  15. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  16. Burner systems

    DOEpatents

    Doherty, Brian J.

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  17. Surveying System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sunrise Geodetic Surveys are setting up their equipment for a town survey. Their equipment differs from conventional surveying systems that employ transit rod and chain to measure angles and distances. They are using ISTAC Inc.'s Model 2002 positioning system, which offers fast accurate surveying with exceptional signals from orbiting satellites. The special utility of the ISTAC Model 2002 is that it can provide positioning of the highest accuracy from Navstar PPS signals because it requires no knowledge of secret codes. It operates by comparing the frequency and time phase of a Navstar signal arriving at one ISTAC receiver with the reception of the same set of signals by another receiver. Data is computer processed and translated into three dimensional position data - latitude, longitude and elevation.

  18. [Systemic sclerosis].

    PubMed

    Schinke, Susanne; Riemekasten, Gabriela

    2016-04-01

    Systemic sclerosis is a challenging and heterogeneous disease due to the involvement of multiple organs and the high impact on morbidity and quality of life. Lung fibrosis, pulmonary arterial hypertension, and cardiac manifestations are main causes of systemic sclerosis-related deaths. In addition, patients suffer from a various range of co-morbidities such as malnutrition, depression, osteoporosis, malignancies, which are increased in these patients and have to be identified and treated. Early assessment of organ damage is a key to therapeutic success. The discovery of pathogenic autoantibodies combined with increased evidence of effective immunosuppressive and vasoactive treatment strategies are major developments in the therapy of the disease. At present, several clinical studies are ongoing and some of the biological therapies are promising.

  19. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  20. Imaging System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  1. Tychonic System

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The world system proposed in 1583 by the Danish astronomer Tycho Brahe (1546-1601). Unable to accept the Copernican doctrine that the Earth moves around the Sun, he put forward the view, later disproved by Kepler (1571-1630), that the planets move around the Sun, but the Sun and Moon move around the Earth. The theory explained the observed variations of the phases of Venus, for which the Ptolemai...

  2. CONTROL SYSTEM

    DOEpatents

    Shannon, R.H.; Williamson, H.E.

    1962-10-30

    A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)

  3. Security system

    DOEpatents

    Baumann, Mark J.; Kuca, Michal; Aragon, Mona L.

    2016-02-02

    A security system includes a structure having a structural surface. The structure is sized to contain an asset therein and configured to provide a forceful breaching delay. The structure has an opening formed therein to permit predetermined access to the asset contained within the structure. The structure includes intrusion detection features within or associated with the structure that are activated in response to at least a partial breach of the structure.

  4. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  5. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  6. Copernican System

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The heliocentric (i.e. `Sun-centered') theory proposed by the Polish astronomer Nicolaus Copernicus (1473-1543), and published by him in 1543 in his book, De Revolutionibus Orbium Coelestium. In this system Copernicus placed the Sun at the center of the universe and regarded the Earth and the planets as moving around it in circular orbits. Because of his retention of the notion of circular motion...

  7. Memory systems.

    PubMed

    Eichenbaum, Howard

    2010-07-01

    The idea that there are multiple memory systems can be traced to early philosophical considerations and introspection. However, the early experimental work considered memory a unitary phenomenon and focused on finding the mechanism upon which memory is based. A full reconciliation of debates about that mechanism, and a coincidental rediscovery of the idea of multiple memory systems, emerged from studies in the cognitive neuroscience of memory. This research has identified three major forms of memory that have distinct operating principles and are supported by different brain systems. These include: (1) a cortical-hippocampal circuit that mediates declarative memory, our capacity to recollect facts and events; (2) procedural memory subsystems involving a cortical-striatal circuit that mediates habit formation and a brainstem-cerebellar circuit that mediates sensorimotor adaptations; and (3) a circuit involving subcortical and cortical pathways through the amygdala that mediates the attachment of affective status and emotional responses to previously neutral stimuli. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.

  8. Braking system

    DOEpatents

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  9. Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)

    SciTech Connect

    Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

    2003-12-31

    Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

  10. Defense waste vitrification studies during FY-1981. Summary report

    SciTech Connect

    Bjorklund, W.J.

    1982-09-01

    Both simulated alkaline defense wastes and simulated acidic defense wastes (formed by treating alkaline waste with formic acid) were successfully vitrified in direct liquid-fed melter experiments. The vitrification process was improved while using the formate-treated waste. Leach resistance was essentially the same. Off-gas entrainment was the primary mechanism for material exiting the melter. When formate waste was vitrified, the flow behavior of the off gas from the melter changed dramatically from an erratic surging behavior to a more quiet, even flow. Hydrogen and CO were detectable while processing formate feed; however, levels exceeding the flamability limits in air were never approached. Two types of melter operation were tested during the year, one involving boost power. Several boosting methods located within the melter plenum were tested. When lid heating was being used, water spray cooling in the off gas was required. Countercurrent spray cooling was more effective than cocurrent spray cooling. Materials of construction for the off-gas system were examined. Inconel-690 is preferred in the plenum area. Inspection of the pilot-scale melter found that corrosion of the K-3 refractory and Inconel-690 electrodes was minimal. An overheating incident occurred with the LFCM in which glass temperatures up to 1480/sup 0/C were experienced. Lab-scale vitrification tests to study mercury behavior were also completed this year. 53 figures, 63 tables.

  11. Utilization of coal-water fuels in fire-tube boilers. Final report, October 1990--August 1994

    SciTech Connect

    Sommer, T.; Melick, T.; Morrison, D.

    1994-12-31

    The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to the boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.

  12. Videobasierte Systeme

    NASA Astrophysics Data System (ADS)

    Knoll, Peter

    Videosensoren spielen für Fahrerassistenz systeme eine zentrale Rolle, da sie die Interpretation visueller Informationen (Objektklassifikation) gezielt unterstützen. Im Heckbereich kann die Video sensorik in der einfachsten Variante die ultraschallbasierte Einparkhilfe bei Einpark- und Rangiervorgängen unterstützen. Beim Nachtsichtsystem NightVision wird das mit Infrarotlicht angestrahlte Umfeld vor dem Fahrzeug mit einer Frontkamera aufgenommen und im Fahrzeugcockpit auf einem Display dem Fahrer angezeigt (s. Nachtsichtsysteme). Andere Fahrerassistenzsysteme verarbeiten die Videosignale und generieren daraus gezielt Informationen, die für eigenständige Funktionen (z. B. Spurverlassenswarner) oder aber als Zusatzinformation für andere Funktionen ausgewertet werden (Sensordatenfusion).

  13. Balance System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    TherEx Inc.'s AT-1 Computerized Ataxiameter precisely evaluates posture and balance disturbances that commonly accompany neurological and musculoskeletal disorders. Complete system includes two-strain gauged footplates, signal conditioning circuitry, a computer monitor, printer and a stand-alone tiltable balance platform. AT-1 serves as assessment tool, treatment monitor, and rehabilitation training device. It allows clinician to document quantitatively the outcome of treatment and analyze data over time to develop outcome standards for several classifications of patients. It can evaluate specifically the effects of surgery, drug treatment, physical therapy or prosthetic devices.

  14. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  15. Sterilization System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Cox Sterile Products, Inc.'s Rapid Heat Transfer Sterilizer employs a heat exchange process that induces rapid air movement; the air becomes the heat transfer medium, maintaining a uniform temperature of 375 degrees Fahrenheit. It features pushbutton controls for three timing cycles for different instrument loads, a six-minute cycle for standard unpackaged instruments, eight minutes for certain specialized dental/medical instruments and 12 minutes for packaged instruments which can then be stored in a drawer in sterile condition. System will stay at 375 degrees all day. Continuous operation is not expensive because of the sterilizer's very low power requirements.

  16. Bearing system

    DOEpatents

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  17. Purification system

    NASA Technical Reports Server (NTRS)

    Flanagan, David T. (Inventor); Gibbons, Randall E. (Inventor)

    1992-01-01

    A system for prolonging the life of a granulated activated charcoal (GAC) water treatment device is disclosed in which an ultraviolet light transparent material is used to constrain water to flow over carbon surfaces. It is configured to receive maximum flux from a UV radiation source for the purpose of preventing microbial proliferation on the carbon surfaces; oxidizing organic contaminants adsorbed from the water onto the carbon surfaces and from biodegradation of adsorbed microbial forms; disinfecting water; and oxidizing organic contaminants in the water.

  18. Gastrointestinal system

    PubMed Central

    Cheng, Leo K.; O’Grady, Gregory; Du, Peng; Egbuji, John U.; Windsor, John A.; Pullan, Andrew J.

    2014-01-01

    The functions of the gastrointestinal (GI) tract include digestion, absorption, excretion, and protection. In this review, we focus on the electrical activity of the stomach and small intestine, which underlies the motility of these organs, and where the most detailed systems descriptions and computational models have been based to date. Much of this discussion is also applicable to the rest of the GI tract. This review covers four major spatial scales: cell, tissue, organ, and torso, and discusses the methods of investigation and the challenges associated with each. We begin by describing the origin of the electrical activity in the interstitial cells of Cajal, and its spread to smooth muscle cells. The spread of electrical activity through the stomach and small intestine is then described, followed by the resultant electrical and magnetic activity that may be recorded on the body surface. A number of common and highly symptomatic GI conditions involve abnormal electrical and/or motor activity, which are often termed functional disorders. In the last section of this review we address approaches being used to characterize and diagnose abnormalities in the electrical activity and how these might be applied in the clinical setting. The understanding of electrophysiology and motility of the GI system remains a challenging field, and the review discusses how biophysically based mathematical models can help to bridge gaps in our current knowledge, through integration of otherwise separate concepts. PMID:20836011

  19. Expert Systems: What Is an Expert System?

    ERIC Educational Resources Information Center

    Duval, Beverly K.; Main, Linda

    1994-01-01

    Describes expert systems and discusses their use in libraries. Highlights include parts of an expert system; expert system shells; an example of how to build an expert system; a bibliography of 34 sources of information on expert systems in libraries; and a list of 10 expert system shells used in libraries. (Contains five references.) (LRW)

  20. Power systems

    NASA Astrophysics Data System (ADS)

    Kaplan, G.

    1982-01-01

    Significant events in current, prototype, and experimental utility power generating systems in 1981 are reviewed. The acceleration of licensing and the renewal of plans for reprocessing of fuel for nuclear power plants are discussed, including the rise of French reactor-produced electricity to over 40% of the country's electrical output. A 4.5 MW fuel cell neared completion in New York City, while three 2.5 MW NASA-designed windpowered generators began producing power in the state of Washington. Static bar compensators, nonflammable-liquid cooled power transformers, and ZnO surge arrestors were used by utilities for the first time, and the integration of a coal gasifier-combined cycle power plant approached the planning phase. An MHD generator was run for 1000 hours and produced 50-60 kWe, while a 20 MVA superconducting generator was readied for testing.

  1. Systems toxicology.

    PubMed

    Hartung, Thomas; van Vliet, Erwin; Jaworska, Joanna; Bonilla, Leo; Skinner, Nigel; Thomas, Russell

    2012-01-01

    The need for a more mechanistic understanding of the ways in which chemicals modulate biological pathways is urgent if we are to identify and better assess safety issues relating to a wide range of substances developed by the pharmaceutical, chemical, agri-bio, and cosmetic industries. Omics technologies provide a valuable opportunity to refine existing methods and provide information for so-called integrated testing strategies via the creation of signatures of toxicity. By mapping these signatures to underlying pathways of toxicity, some of which have been identified by toxicologists over the last few decades, and bringing them together with pathway information determined from biochemistry and molecular biology, a "systems toxicology" approach will enable virtual experiments to be conducted that can improve the prediction of hazard and the assessment of compound toxicity. PMID:22562485

  2. Transfer system

    DOEpatents

    Kurosawa, Kanji; Koga, Bunichiro; Ito, Hideki; Kiriyama, Shigeru; Higuchi, Shizuo

    2003-05-20

    A transport system includes a traveling rail (1) which constitutes a transport route and a transport body (3) which is capable of traveling on the traveling rail in the longitudinal direction of the traveling rail. Flexible drive tubes (5) are arranged on the traveling rail in the longitudinal direction of the traveling rail. The transport body includes a traveling wheel (4) which is capable of rolling on the traveling rail and drive wheels (2) which are capable of rolling on the drive tubes upon receiving the rotational drive power generated by pressure of a pressure medium supplied to the drive tubes while depressing the drive tubes. The traveling rail includes a plurality of transport sections and the transport body is capable of receiving a rotational drive force from the drive tubes at every transport sections. If necessary, a transport route changeover switch which changes over the transport route can be provided between the transport sections.

  3. AISI/DOE Advanced Process Control Program Vol. 1 of 6: Optical Sensors and Controls for Improved Basic Oxygen Furnace Operations

    SciTech Connect

    Sarah Allendorf; David Ottesen; Donald Hardesty

    2002-01-31

    The development of an optical sensor for basic oxygen furnace (BOF) off-gas composition and temperature in this Advanced Process Control project has been a laboratory spectroscopic method evolve into a pre-commercialization prototype sensor system. The sensor simultaneously detects an infrared tunable diode laser ITDL beam transmitted through the process off-gas directly above the furnace mouth, and the infrared greybody emission from the particulate-laden off-gas stream. Following developmental laboratory and field-testing, the sensor prototype was successfully tested in four long-term field trials at Bethlehem Steel's Sparrows Point plant in Baltimore, MD> The resulting optical data were analyzed and reveal correlations with four important process variables: (1) bath turndown temperature; (2) carbon monoxide post-combustion control; (2) bath carbon concentration; and (4) furnace slopping behavior. The optical sensor measurement of the off-gas temperature is modestly correlated with bath turndown temperature. A detailed regression analysis of over 200 heats suggests that a dynamic control level of +25 Degree F can be attained with a stand-alone laser-based optical sensor. The ability to track off-gas temperatures to control post-combustion lance practice is also demonstrated, and may be of great use in optimizing post-combustion efficiency in electric furnace steelmaking operations. In addition to the laser-based absorption spectroscopy data collected by this sensor, a concurrent signal generated by greybody emission from the particle-laden off-gas was collected and analyzed. A detailed regression analysis shows an excellent correlation of a single variable with final bath turndown carbon concentration. Extended field trials in 1998 and early 1999 show a response range from below 0.03% to a least 0.15% carbon concentration with a precision of +0.0007%. Finally, a strong correlation between prolonged drops in the off-gas emission signal and furnace slopping events

  4. Intelligent Engine Systems: Bearing System

    NASA Technical Reports Server (NTRS)

    Singh, Arnant P.

    2008-01-01

    The overall requirements necessary for sensing bearing distress and the related criteria to select a particular rotating sensor were established during the phase I. The current phase II efforts performed studies to evaluate the Robustness and Durability Enhancement of the rotating sensors, and to design, and develop the Built-in Telemetry System concepts for an aircraft engine differential sump. A generic test vehicle that can test the proposed bearing diagnostic system was designed, developed, and built. The Timken Company, who also assisted with testing the GE concept of using rotating sensors for the differential bearing diagnostics during previous phase, was selected as a subcontractor to assist General Electric (GE) for the design, and procurement of the test vehicle. A purchase order was prepared to define the different sub-tasks, and deliverables for this task. The University of Akron was selected to provide the necessary support for installing, and integrating the test vehicle with their newly designed test facility capable of simulating the operating environment for the planned testing. The planned testing with good and damaged bearings will be on hold pending further continuation of this effort during next phase.

  5. LFCM vitrification technology. Quarterly progress report, October-December 1985

    SciTech Connect

    Burkholder, H.C.; Jarrett, J.H.; Minor, J.E.

    1986-09-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to document progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1986 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies.

  6. Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility

    SciTech Connect

    Lyke, S.E.; Moore, R.H.

    1981-01-01

    The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

  7. Separation system

    DOEpatents

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  8. Incinerator system

    SciTech Connect

    Rathmell, R.K.

    1986-10-07

    An incineration system is described which consists of: combustion chamber structure having an inlet, an outlet, and burner structure in the combustion chamber, heat exchanger structure defining a chamber, divider structure between the heat exchanger chamber and the combustion chamber, an array of tubes extending through the heat exchanger chamber to the inlet of the combustion chamber at the divider structure. The heat exchanger chamber has an inlet coupled to the outlet of the combustion chamber for flow of the combustion products discharged from the combustion chamber through the heat exchanger chamber over the tubes in heat exchange relation, and an outlet for discharge of products from the heat exchanger chamber, aspirator sleeve structure secured to the divider structure between the heat exchanger chamber and the combustion chamber. Each aspirator sleeve receives the outlet end of a heat exchanger tube in slip fit relation so that the heat exchanger tubes are free to thermally expand longitudinally within the aspirator sleeves, and means for flowing vapor through the heat exchanger tubes into the combustion chamber at sufficiently high velocity to produce a reduced pressure effect in the aspirator sleeves in the heat exchanger chamber to draw a minor fraction of combustion products through the aspirator sleeves into the combustion chamber for reincineration.

  9. Recycling plant, human and animal wastes to plant nutrients in a closed ecological system

    NASA Technical Reports Server (NTRS)

    Meissner, H. P.; Modell, M.

    1979-01-01

    The essential minerals for plant growth are nitrogen, phosphorous, potassium (macronutrients), calcium, magnesium, sulfur (secondary nutrients), iron, manganese, boron, copper, zinc, chlorine, sodium, and molybdenum (micronutrients). The first step in recycling wastes will undoubtedly be oxidation of carbon and hydrogen to CO2 and H2O. Transformation of minerals to plant nutrients depends upon the mode of oxidation to define the state of the nutrients. For the purpose of illustrating the type of processing required, ash and off-gas compositions of an incineration process were assumed and subsequent processing requirements were identified. Several processing schemes are described for separating out sodium chloride from the ash, leading to reformulation of a nutrient solution which should be acceptable to plants.

  10. Systems approach to space plasma systems

    NASA Astrophysics Data System (ADS)

    Boynton, Richard; Walker, Simon

    The application of nonlinear system identification methodology was used to review complex space plasma systems. It is shown how the nonlinear system identification approach can lead to a comprehensive description of dynamical processes in developed space plasma turbulences. It is also explained how nonlinear system identification can access the analytical approach to complex dynamical systems such as the magnetosphere.

  11. New Systems Produced by Systemic Change

    ERIC Educational Resources Information Center

    Battino, Wendy; Clem, Jo; Caine, Renate N.; Reigeluth, Charles M.; Chapman, Carrie; Flinders, David J.; Malopinsky, Larissa V.

    2006-01-01

    This article presents new systems produced by systemic change. First is Systemic Changes in the Chugach School District by Wendy Battino and Jo Clem. Second is Systemic Changes in Public Schools through Brain-Based Learning by Renate N. Caine. Third is A Vision of an Information-Age Educational System by Charles M. Reigeluth. Fourth is Systemic…

  12. System safety education focused on system management

    NASA Technical Reports Server (NTRS)

    Grose, V. L.

    1971-01-01

    System safety is defined and characteristics of the system are outlined. Some of the principle characteristics include role of humans in hazard analysis, clear language for input and output, system interdependence, self containment, and parallel analysis of elements.

  13. Distinguishing Systemic from Systematic.

    ERIC Educational Resources Information Center

    Carr, Alison A.

    1996-01-01

    Describes the difference between systemic and systematic as they relate to school reform and instructional design. Highlights include a history of systems theory; systems engineering; instructional systems design; systemic versus reductionist thinking; social systems; and systemic change in education, including power relationships. (LRW)

  14. System design description cone penetrometer system

    SciTech Connect

    Seda, R.Y., Westinghouse Hanford

    1996-08-12

    The system design description documents in detail the design of the cone penetrometer system. The systems includes the cone penetrometer physical package, raman spectroscopy package and moisture sensor package. Information pertinent to the system design, development, fabrication and testing is provided.

  15. Networked control of microgrid system of systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  16. D0 Cryo System Control System Autodialer

    SciTech Connect

    Urbin, J.; /Fermilab

    1990-04-17

    The DO cryogenic system is controlled by a TI565-PLC based control system. This allows the system to be unmanned when in steady state operation. System experts will need to be contacted when system parameters exceed normal operating points and reach alarm setpoints. The labwide FIRUS system provides one alarm monitor and communication link. An autodialer provides a second and more flexible alarm monitor and communication link. The autodialer monitors contact points in the control system and after receiving indication of an alarm accesses a list of experts which it calls until it receives an acknowledgement. There are several manufacturers and distributors of autodialer systems. This EN explains the search process the DO cryo group used to fmd an autodialer system that fit the cryo system's needs and includes information and specs for the unit we chose.

  17. Systems Engineering Management Education in Embedded System

    NASA Astrophysics Data System (ADS)

    Inoue, Masahiro

    Engineers with system architecture design and project management abilities are required in the field of embedded system development. In university, however, educations are mainly focused on computer science and programming; systems engineering and project management education have been disregard. We implemented educational curriculum of systems engineering and project management in embedded system for graduate program. In this paper the course design, execution and evaluation are described.

  18. Systems design of long-life systems

    NASA Technical Reports Server (NTRS)

    Miles, R. F., Jr.

    1974-01-01

    A long-life system is defined as a system which cannot be life-tested in its operational environment. Another restriction is that preventive maintenance and repair shall be either impossible or economically disadvantageous. Examples of such systems include planetary spacecraft, communication satellites, undersea telephone cables, and nuclear power plants. The questions discussed are related to the implementation of system functions, approaches to determine the required level of system reliability, and aspects of tradeoffs between requirements and reliability.

  19. Multiple System Atrophy

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Multiple System Atrophy Information Page Condensed from Multiple System Atrophy ... Trials Organizations Publicaciones en Español What is Multiple System Atrophy? Multiple system atrophy (MSA) is a progressive ...

  20. Female Reproductive System

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Female Reproductive System KidsHealth > For Teens > Female Reproductive System Print A ... and female reproductive systems. continue What Is the Female Reproductive System? Most species have two sexes: male and female. ...

  1. Mechanical systems: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation of several mechanized systems is presented. The articles are contained in three sections: robotics, industrial mechanical systems, including several on linear and rotary systems and lastly mechanical control systems, such as brakes and clutches.

  2. Evaluation of materials and surface treatments for the DWPF melter pour spout bellows protective liner

    SciTech Connect

    Imrich, K.J.; Bickford, D.F.; Wicks, G.G.

    1997-06-27

    A study was undertaken to evaluate a variety of materials and coatings for the DWPF pour spout bellows liner. The intent was to identify materials that would minimize or eliminate adherence of glass on the bellows liner wall and help minimize possible pluggage during glass pouring operations in DWPF. Glass has been observed adhering to the current bellow`s liner, which is made of 304L stainless steel. Materials were identified which successfully allowed molten glass to hit these surfaces and not adhere. Results of this study suggest that if these materials are used in the pouring system glass could still fall into the canister without appreciable plugging, even if an unstable glass stream is produced. The materials should next be evaluated under the most realistic DWPF conditions possible. Other findings of this study include the following: (1) increasing coupon thickness produced a favorable increase in the glass sticking temperature; (2) highly polished surfaces, with the exception of the oxygen-free copper coupon coated with Armoloy dense chromium, did not produce a significant improvement in the glass sticking temperature, increasing angle of contact of the coupon to the falling glass did not yield a significant performance improvement; (3) electroplating with gold and silver and various diffusion coatings did not produce a significant increase in the glass sticking temperature. However, they may provide added oxidation and corrosion resistance for copper and bronze liners. Boron nitride coatings delaminated immediately after contact with the molten glass.

  3. System of systems modeling and analysis.

    SciTech Connect

    Campbell, James E.; Anderson, Dennis James; Longsine, Dennis E.; Shirah, Donald N.

    2005-01-01

    This report documents the results of an LDRD program entitled 'System of Systems Modeling and Analysis' that was conducted during FY 2003 and FY 2004. Systems that themselves consist of multiple systems (referred to here as System of Systems or SoS) introduce a level of complexity to systems performance analysis and optimization that is not readily addressable by existing capabilities. The objective of the 'System of Systems Modeling and Analysis' project was to develop an integrated modeling and simulation environment that addresses the complex SoS modeling and analysis needs. The approach to meeting this objective involved two key efforts. First, a static analysis approach, called state modeling, has been developed that is useful for analyzing the average performance of systems over defined use conditions. The state modeling capability supports analysis and optimization of multiple systems and multiple performance measures or measures of effectiveness. The second effort involves time simulation which represents every system in the simulation using an encapsulated state model (State Model Object or SMO). The time simulation can analyze any number of systems including cross-platform dependencies and a detailed treatment of the logistics required to support the systems in a defined mission.

  4. System Software Framework for System of Systems Avionics

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Peterson, Benjamin L; Thompson, Hiram C.

    2005-01-01

    Project Constellation implements NASA's vision for space exploration to expand human presence in our solar system. The engineering focus of this project is developing a system of systems architecture. This architecture allows for the incremental development of the overall program. Systems can be built and connected in a "Lego style" manner to generate configurations supporting various mission objectives. The development of the avionics or control systems of such a massive project will result in concurrent engineering. Also, each system will have software and the need to communicate with other (possibly heterogeneous) systems. Fortunately, this design problem has already been solved during the creation and evolution of systems such as the Internet and the Department of Defense's successful effort to standardize distributed simulation (now IEEE 1516). The solution relies on the use of a standard layered software framework and a communication protocol. A standard framework and communication protocol is suggested for the development and maintenance of Project Constellation systems. The ARINC 653 standard is a great start for such a common software framework. This paper proposes a common system software framework that uses the Real Time Publish/Subscribe protocol for framework-to-framework communication to extend ARINC 653. It is highly recommended that such a framework be established before development. This is important for the success of concurrent engineering. The framework provides an infrastructure for general system services and is designed for flexibility to support a spiral development effort.

  5. Real-time monitoring and control of the plasma hearth process

    SciTech Connect

    Power, M.A.; Carney, K.P.; Peters, G.G.

    1996-05-01

    A distributed monitoring and control system is proposed for a plasma hearth, which will be used to decompose hazardous organic materials, encapsulate actinide waste in an obsidian-like slag, and reduce storage volume of actinide waste. The plasma hearth will be installed at ANL-West with the assistance of SAIC. Real-time monitoring of the off-gas system is accomplished using a Sun Workstation and embedded PCs. LabWindows/CVI software serves as the graphical user interface.

  6. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  7. Air stripper VOC treatment using specialized adsorbents

    SciTech Connect

    Craven, C.N.; Blystone, P.G.; Grant, A.

    1994-12-31

    Abatement of volatile organic compound (VOC) emissions is required by federal, state and local regulatory agencies. Sources of VOC emissions include air stripping processes at groundwater remediation and industrial wastewater operations. The Purus A2000 system is an innovative emission control system that utilizes specialized adsorbent resins, on-site regeneration and solvent recovery for abatement of VOCs. This paper describes two applications in which air stripper off-gas is treated by the Purus A2000 Adsorption System. The first is a groundwater remediation pump-and-treat operation in which the air stripper off-gas contains chlorinated solvents. At the second site, benzene and styrene emissions from an industrial wastewater air stripper operation were successfully treated. At both sites the recovered solvent was recycled. Capital and operating costs will be compared to other treatment methods.

  8. [X-33 Systems

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. This portion of the report is comprised of a status report of Allied-Signal Aerospace's contribution to the program. The following is a summary of the work reviewed under their portion of the agreement: (1) Communication Systems; (2) Environmental Control Systems- Active Thermal Control System (ATCS), Purge and Vent System, Hydrogen Detection System (HDS), Avionics Bay Inerting System (ABIS), and Flush Air Data System (FADS); (2) Landing Systems; (3) Power Management and Generation Systems; (4) Flight Control Actuation System (FCAS)- Electric Power Control & Distribution System (EPCDS), and Battery Power System (BPS); and (5) Vehicle Management Systems (VMS)- VMS Hardware, VMS Software Development Activities, and System Integration Laboratory (SIL).

  9. Freedom System Text and Graphics System (TAGS)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Text and Graphics System (TAGS) is a high-resolution facsimile system that scans text or graphics material and converts the analog SCAN data into serial digital data. This video shows the TAGS in operation.

  10. Language as a System of Systems

    ERIC Educational Resources Information Center

    Mulder, J. W. F.; Hervey, S. G. J.

    1975-01-01

    Based on Mulder's previous classification of all semiotic systems designed to describe the system of discrete features in human languages, this article explores a further subclassification of the genus language into species. (CLK)

  11. Calogero-Moser Systems and Hitchin Systems

    NASA Astrophysics Data System (ADS)

    Hurtubise, J. C.; Markman, E.

    We exhibit the elliptic Calogero-Moser system as a Hitchin system of G-principal Higgs pairs. The group G, though naturally associated to any root system, is not semi-simple. We then interpret the Lax pairs with spectral parameter of d'Hoker and Phong [dP1] and Bordner, Corrigan and Sasaki [BCS1] in terms of equivariant embeddings of the Hitchin system of G into that of GL(N).

  12. Intelligent tutoring systems for systems engineering methodologies

    NASA Technical Reports Server (NTRS)

    Meyer, Richard J.; Toland, Joel; Decker, Louis

    1991-01-01

    The general goal is to provide the technology required to build systems that can provide intelligent tutoring in IDEF (Integrated Computer Aided Manufacturing Definition Method) modeling. The following subject areas are covered: intelligent tutoring systems for systems analysis methodologies; IDEF tutor architecture and components; developing cognitive skills for IDEF modeling; experimental software; and PC based prototype.

  13. CE IGCC Repowering plant sulfuric acid plant. Topical report, June 1993

    SciTech Connect

    Chester, A.M.

    1993-12-01

    A goal of the CE IGCC Repowering project is to demonstrate a hot gas clean-up system (HGCU), for the removal of sulfur from the product gas stream exiting the gasifier island. Combustion Engineering, Inc. (ABB CE) intends to use a HGCU developed by General Electric Environmental Services (GEESI). The original design of this system called for the installation of the HGCU, with a conventional cold gas clean-up system included as a full-load operational back-up. Each of these systems removes sulfur compounds and converts them into an acid off-gas. This report deals with the investigation of equipment to treat this off-gas, recovering these sulfur compounds as elemental sulfur, sulfuric acid or some other form. ABB CE contracted ABB Lummus Crest Inc. (ABB LCI) to perform an engineering evaluation to compare several such process options. This study concluded that the installation of a sulfuric acid plant represented the best option from both a technical and economic point of view. Based on this evaluation, ABB CE specified that a sulfuric acid plant be installed to remove sulfur from off-gas exiling the gas clean-up system. ABB LCI prepared a request for quotation (RFQ) for the construction of a sulfuric acid production plant. Monsanto Enviro-Chem Inc. presented the only proposal, and was eventually selected as the EPC contractor for this system.

  14. DDL system: Design systhesis of digital systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1983-01-01

    Digital Systems Design Language was integrated into the CADAT system environment of NASA-MSFC. The major technical aspects of this integration are summarized. Automatic hardware synthesis is now possible starting with a high level description of the system to be synthesized. The DDL system provides a high level design verification capability, thereby minimizing design changes in the later stages of the design cycle. An overview of the DDL system covering the translation, simulation and synthesis capabilities is provided. Two companion documents (the user's and programmer's manuals) are to be consulted for detailed discussions.

  15. Manager's assistant systems for space system planning

    NASA Technical Reports Server (NTRS)

    Bewley, William L.; Burnard, Robert; Edwards, Gary E.; Shoop, James

    1992-01-01

    This paper describes a class of knowledge-based 'assistant' systems for space system planning. Derived from technology produced for the DARPA/USAF Pilot's Associate program, these assistant systems help the human planner by doing the bookkeeping to maintain plan data and executing the procedures and heuristics currently used by the human planner to define, assess, diagnose, and revise plans. Intelligent systems for Space Station Freedom assembly sequence planning and Advanced Launch System modeling will be presented as examples. Ongoing NASA-funded work on a framework supporting the development of such tools will also be described.

  16. Tethered Satellite System control system design

    NASA Technical Reports Server (NTRS)

    Tomlin, Donald D.; Mowery, David K.; Bodley, Carl S.

    1989-01-01

    This paper discusses the control aspects of the Tethered Satellite System mission. The deployer controls system uses length-error and tension-error feedback to control in-plane libration, length, and length rate. The satellite's reaction control system is used to augment tether tension, control rates and attitude about the tether axis, and to damp in-plane and out-of-plane libration. The orbiter's reaction control system is also used to control in-plane and out-of-plane libration. Results of simulations are presented for the flight portion of the Tethered Satellite System mission.

  17. Microwave landing system autoland system analysis

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Craven, B. K.

    1991-01-01

    The objective was to investigate the ability of present day aircraft equipped with automatic flight control systems to fly advanced Microwave Landing Systems (MLS) approaches. The tactical approach used to achieve this objective included reviewing the design and autoland operation of the MD-80 aircraft, simulating the MLS approaches using a batch computer program, and assessing the performance of the autoland system from computer generated data. The results showed changes were required to present Instrument Landing System (ILS) procedures to accommodate the new MLS curved paths. It was also shown that in some cases, changes to the digital flight guidance systems would be required so that an autoland could be performed.

  18. Lighting system with thermal management system

    DOEpatents

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  19. Lighting system with thermal management system

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2015-02-24

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  20. Lighting system with thermal management system

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr, Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2016-10-11

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  1. Lighting system with thermal management system

    SciTech Connect

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2015-08-25

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  2. Systems Intelligence Inventory

    ERIC Educational Resources Information Center

    Törmänen, Juha; Hämäläinen, Raimo P.; Saarinen, Esa

    2016-01-01

    Purpose: Systems intelligence (SI) (Saarinen and Hämäläinen, 2004) is a construct defined as a person's ability to act intelligently within complex systems involving interaction and feedback. SI relates to our ability to act in systems and reason about systems to adaptively carry out productive actions within and with respect to systems such as…

  3. The LSST: A System of Systems

    NASA Astrophysics Data System (ADS)

    Claver, Chuck F.; Debois-Felsmann, G. P.; Delgado, F.; Hascall, P.; Marshall, S.; Nordby, M.; Schumacher, G.; Sebag, J.; LSST Collaboration

    2011-01-01

    The Large Synoptic Survey Telescope (LSST) is a complete observing system that acquires and archives images, processes and analyzes them, and publishes reduced images and catalogs of sources and objects. The LSST will operate over a ten year period producing a survey of 20,000 square degrees over the entire [Southern] sky in 6 filters (ugrizy) with each field having been visited several hundred times enabling a wide spectrum of science from fast transients to exploration of dark matter and dark energy. The LSST itself is a complex system of systems consisting of the 8.4m 3-mirror telescope, a 3.2 billion pixel camera, and a peta-scale data management system. The LSST project uses a Model Based Systems Engineering (MBSE) methodology to ensure an integrated approach to system design and rigorous definition of system interfaces and specifications. The MBSE methodology is applied through modeling of the LSST's systems with the System Modeling Language (SysML). The SysML modeling recursively establishes the threefold relationship between requirements, logical & physical functional decomposition and definition, and system and component behavior at successively deeper level of abstraction and detail. The LSST modeling includes the analysis and documenting the flow of command and control information and data between the suite of systems in the LSST observatory that are needed to carry out the activities of the survey. The MBSE approach is applied throughout all stages of the project from design, to validation and verification, though to commissioning.

  4. Systems Architecture for a Nationwide Healthcare System.

    PubMed

    Abin, Jorge; Nemeth, Horacio; Friedmann, Ignacio

    2015-01-01

    From a national level to give Internet technology support, the Nationwide Integrated Healthcare System in Uruguay requires a model of Information Systems Architecture. This system has multiple healthcare providers (public and private), and a strong component of supplementary services. Thus, the data processing system should have an architecture that considers this fact, while integrating the central services provided by the Ministry of Public Health. The national electronic health record, as well as other related data processing systems, should be based on this architecture. The architecture model described here conceptualizes a federated framework of electronic health record systems, according to the IHE affinity model, HL7 standards, local standards on interoperability and security, as well as technical advice provided by AGESIC. It is the outcome of the research done by AGESIC and Systems Integration Laboratory (LINS) on the development and use of the e-Government Platform since 2008, as well as the research done by the team Salud.uy since 2013.

  5. What Are Expert Systems?

    ERIC Educational Resources Information Center

    d'Agapeyeff, A.

    1986-01-01

    Intended for potential business users, this paper describes the main characteristics of expert systems; discusses practical use considerations; presents a taxonomy of the systems; and reviews several expert system development projects in business and industry. (MBR)

  6. Levonorgestrel Intrauterine System

    MedlinePlus

    ... new system inserted at any time during your menstrual cycle. If you have chosen to use a different ... of your intrauterine system and you have regular menstrual cycles, you should have the system removed during the ...

  7. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  8. Alternative Videodisc Systems.

    ERIC Educational Resources Information Center

    Heath, Ted

    1981-01-01

    Discusses consumer and industrial videodisc systems for information storage including cost, technology utilized, formats, and features. Reflective and transmissive laser optical systems are described, as well as the grooved and grooveless mechanical systems. Tables containing product data are included. (JJD)

  9. Immune System Involvement

    MedlinePlus

    ... Tips" to find out more! Email * Zipcode The Immune System and Psoriatic Disease What is an autoimmune disease? ... swollen and painful joints and tendons. Treating the immune system The immune system is not only the key ...

  10. Female Reproductive System

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Female Reproductive System KidsHealth > For Parents > Female Reproductive System Print A ... the egg or sperm. continue Components of the Female Reproductive System Unlike the male, the human female has a ...

  11. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  12. The Trinity System

    SciTech Connect

    Archer, Billy Joe; Vigil, Benny Manuel

    2015-01-13

    This paper describes the Trinity system, the first ASC Advanced Technology System (ATS-1). We describe the Trinity procurement timeline, the ASC computing strategy, the Trinity specific mission needs, and the Trinity system specifications.

  13. Electric flight systems, overview

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1982-01-01

    Materials illustrating a presentation on electric flight systems are presented. Fuel consumption, the power plant assembly, flight control technology, electromechanical actuator systems and components of possible power systems are surveyed.

  14. Spray calcination/in-can melting: effluent characterization and treatment

    SciTech Connect

    Hanson, M.S.

    1980-03-01

    According to data obtained during calcination of nonradioactive, simulated waste, ruthenium and cesium losses from the spray calciner are small, on the order of 3.5 x 10/sup -2/% and 3.4 x 10/sup -2/%, respectively. Calciner-melter and filter decontamination factors for ruthenium and cesium averaged 3.6 x 10/sup 4/ and 3.9 x 10/sup 4/, respectively. Particulate decontamination factors of 10/sup 3/ to 10/sup 4/ have been obtained using sintered stainless steel filters. A significant portion of the ruthenium and cesium lost to the process off-gas system was due to particle penetration of the filters. The particles penetrating the filters have a mass distribution centering about a size large enough to control with available technology. Processing wastes containing fluoride will probably volatilize a portion of the fluoride to the off-gas system, thus increasing the probability of corrosion problems. 34 figures, 30 tables.

  15. Final Report - Engineering Study for DWPF Bubblers, VSL-10R1770-1, Rev. 0, dated 12/22/10

    SciTech Connect

    Kruger, Albert A.; Joseph, I.; Matlack, K. S.; Kot, W. K.; Diener, G. A.; Pegg, I. L.; Callow, R. A.

    2013-11-13

    The objective of this work was to perform an engineering assessment of the impact of implementation of bubblers to improve mixing of the glass pool, and thereby increase throughput, in the Defense Waste Processing Facility (DWPF) on the melter and off-gas system. Most of the data used for this evaluation were from extensive melter tests performed on non-SRS feeds. This information was supplemented by more recent results on SRS HLW simulants that were tested on a melter system at VSL under contracts from ORP and SRR. Per the work scope, the evaluation focused on the following areas: Glass production rate; Corrosion of melter components; Power requirements; Pouring stability; Off-gas characteristics; Safety and flammability.

  16. Gas evolution during vitrification of sodium sulfate and silica

    SciTech Connect

    Ebert, W.L.; Bakel, A.J.; Rosine, S.D. |

    1997-08-01

    This paper describes the operation of an apparatus designed to identify species evolved during vitrification of hazardous waste materials and to measure the temperatures at which they are evolved. To demonstrate the utility of the apparatus for designing off-gas systems, the authors present the results of heating various sulfates alone and in the presence of silica. During vitrification, the decomposition behavior of some waste components will be affected by the chemical composition of the melt. For example, they found that when silica is present during heating, SO{sub x} gases are evolved at lower temperatures than when pure sodium sulfate is heated. Such analyses will be important in the design of off-gas units for waste vitrification systems.

  17. Performance Measurement Analysis System

    1989-06-01

    The PMAS4.0 (Performance Measurement Analysis System) is a user-oriented system designed to track the cost and schedule performance of Department of Energy (DOE) major projects (MPs) and major system acquisitions (MSAs) reporting under DOE Order 5700.4A, Project Management System. PMAS4.0 provides for the analysis of performance measurement data produced from management control systems complying with the Federal Government''s Cost and Schedule Control Systems Criteria.

  18. Systems interface biology

    PubMed Central

    Doyle, Francis J; Stelling, Jörg

    2006-01-01

    The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Hence, the interface between systems and biology is of mutual benefit to both disciplines. PMID:16971329

  19. System status display information

    NASA Technical Reports Server (NTRS)

    Summers, L. G.; Erickson, J. B.

    1984-01-01

    The system Status Display is an electronic display system which provides the flight crew with enhanced capabilities for monitoring and managing aircraft systems. Guidelines for the design of the electronic system displays were established. The technical approach involved the application of a system engineering approach to the design of candidate displays and the evaluation of a Hernative concepts by part-task simulation. The system engineering and selection of candidate displays are covered.

  20. Lightside Atmospheric Revitalization System

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Cushman, R. J.; Hultman, M. M.; Nason, J. R.

    1980-01-01

    The system was studied as a replacement to the present baseline LiOH system for extended duration shuttle missions. The system consists of three subsystems: a solid amine water desorbed regenerable carbon dioxide removal system, a water vapor electrolysis oxygen generating system, and a Sabatier reactor carbon dioxide reduction system. The system is designed for use on a solar powered shuttle vehicle. The majority of the system's power requirements are utilized on the Sun side of each orbit, when solar power is available.

  1. Umbra's system representation.

    SciTech Connect

    McDonald, Michael James

    2005-07-01

    This document describes the Umbra System representation. Umbra System representation, initially developed in the spring of 2003, is implemented in Incr/Tcl using concepts borrowed from Carnegie Mellon University's Architecture Description Language (ADL) called Acme. In the spring of 2004 through January 2005, System was converted to Umbra 4, extended slightly, and adopted as the underlying software system for a variety of Umbra applications that support Complex Systems Engineering (CSE) and Complex Adaptive Systems Engineering (CASE). System is now a standard part Of Umbra 4. While Umbra 4 also includes an XML parser for System, the XML parser and Schema are not described in this document.

  2. Control system design method

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  3. Epilogue: Systems Approaches and Systems Practice

    NASA Astrophysics Data System (ADS)

    Reynolds, Martin; Holwell, Sue

    Each of the five systems approaches discussed in this volume: system dynamics (SD), the viable systems model (VSM), strategic options development and analysis (SODA), soft systems methodology (SSM) and critical systems heuristics (CSH) has a pedigree. Not in the sense of the sometimes absurd spectacle of animals paraded at dog shows. Rather, their pedigree derives from their systems foundations, their capacity to evolve and their flexibility in use. None of the five approaches has developed out of use in restricted and controlled contexts of either low or high levels of complicatedness. Neither has any one of them evolved as a consequence of being applied only to situations with either presumed stakeholder agreement on purpose, or courteous disagreement amongst stakeholders, or stakeholder coercion. The compilation is not a celebration of abstract ‘methodologies', but of theoretically robust approaches that have a genuine pedigree in practice.

  4. Integrated Systems Health Management for Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Melcher, Kevin

    2011-01-01

    The implementation of an integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. It is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of its health. In this paper, concepts, procedures, and approaches are presented as a foundation for implementing an intelligent systems ]relevant ISHM capability. The capability stresses integration of DIaK from all elements of a system. Both ground-based (remote) and on-board ISHM capabilities are compared and contrasted. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems.

  5. Systems engineering for very large systems

    NASA Technical Reports Server (NTRS)

    Lewkowicz, Paul E.

    1993-01-01

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  6. INSENS sensor system

    SciTech Connect

    Myers, D.W.; Baker, J.; Benzel, D.M.; Fuess, D.A.

    1993-09-29

    This paper describes an unattended ground sensor system that has been developed for the immigration and Naturalization Service (INS). The system, known as INSENS, was developed at the Lawrence Livermore National Laboratory for use by the United States Border Patrol. This system assists in the detection of illegal entry of aliens and contraband (illegal drugs, etc.) into the United States along its land borders. Key to the system is its flexible modular design which allows future software and hardware enhancements to the system without altering the fundamental architecture of the system. Elements of the system include a sensor system capable of processing signals from multiple directional probes, a repeater system, and a handheld monitor system. Seismic, passive infrared (PIR), and magnetic probes are currently supported. The design of the INSENS system elements and their performance are described.

  7. Novel central nervous system drug delivery systems.

    PubMed

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  8. Site systems engineering: Systems engineering management plan

    SciTech Connect

    Grygiel, M.L.

    1996-05-03

    The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

  9. Hot Spot Removal System: System description

    SciTech Connect

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  10. Monthly progress report summary, September 1994

    SciTech Connect

    1994-09-01

    This report consists of numerous progress reports on program support, systems analysis, materials handling, chemical and physical treatments, waste destruction and stabilization, off-gas treatment, and final waste form studies. The Mixed Waste Integrated Program has responsibility for the Department of Energy`s low-level radioactive waste and hazardous material mixture characterization, treatment, and disposal. The program is undergoing transition to the Mixed Waste Focus Area.

  11. Expert Systems: An Overview.

    ERIC Educational Resources Information Center

    Adiga, Sadashiv

    1984-01-01

    Discusses: (1) the architecture of expert systems; (2) features that distinguish expert systems from conventional programs; (3) conditions necessary to select a particular application for the development of successful expert systems; (4) issues to be resolved when building expert systems; and (5) limitations. Examples of selected expert systems…

  12. Broad Bandwidth Telecommunications Systems.

    ERIC Educational Resources Information Center

    Sodolski, John

    Broad bandwidth transmission systems have been around for years. They include microwave, assorted cable systems, and recently, satellites. With the exception of some privately owned systems, broadband services have been furnished by the common carriers. Recently, a new element has been added--Cable Antenna Television (CATV) distribution systems.…

  13. Medical imaging systems

    SciTech Connect

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  14. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  15. Microsphere insulation systems

    NASA Technical Reports Server (NTRS)

    Allen, Mark S. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2005-01-01

    A new insulation system is provided that contains microspheres. This insulation system can be used to provide insulated panels and clamshells, and to insulate annular spaces around objects used to transfer, store, or transport cryogens and other temperature-sensitive materials. This insulation system provides better performance with reduced maintenance than current insulation systems.

  16. Program (systems) engineering

    NASA Technical Reports Server (NTRS)

    Baroff, Lynn E.; Easter, Robert W.; Pomphrey, Richard B.

    2004-01-01

    Program Systems Engineering applies the principles of Systems Engineering at the program level. Space programs are composed of interrelated elements which can include collections of projects, advanced technologies, information systems, etc. Some program elements are outside traditional engineering's physical systems, such as education and public outreach, public relations, resource flow, and interactions within the political environments.

  17. Computer Center: CIBE Systems.

    ERIC Educational Resources Information Center

    Crovello, Theodore J.

    1982-01-01

    Differentiates between computer systems and Computers in Biological Education (CIBE) systems (computer system intended for use in biological education). Describes several CIBE stand alone systems: single-user microcomputer; single-user microcomputer/video-disc; multiuser microcomputers; multiuser maxicomputer; and local and long distance computer…

  18. Coaches as System Leaders

    ERIC Educational Resources Information Center

    Fullan, Michael; Knight, Jim

    2011-01-01

    The role of school leadership--of principals and coaches--must be played out on a systems level to get widespread and sustainable improvement. Successful, whole-system education reform relies on capacity building, teamwork, pedagogy, and systemic reform. The strategies of good coaches and the right drivers for whole-system reform go hand in hand.…

  19. Electronic Document Supply Systems.

    ERIC Educational Resources Information Center

    Cawkell, A. E.

    1991-01-01

    Describes electronic document delivery systems used by libraries and document image processing systems used for business purposes. Topics discussed include technical specifications; analogue read-only laser videodiscs; compact discs and CD-ROM; WORM; facsimile; ADONIS (Article Delivery over Network Information System); DOCDEL; and systems at the…

  20. Identification of propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Guo, Ten-Huei; Duyar, Ahmet

    1991-01-01

    This paper presents a tutorial on the use of model identification techniques for the identification of propulsion system models. These models are important for control design, simulation, parameter estimation, and fault detection. Propulsion system identification is defined in the context of the classical description of identification as a four step process that is unique because of special considerations of data and error sources. Propulsion system models are described along with the dependence of system operation on the environment. Propulsion system simulation approaches are discussed as well as approaches to propulsion system identification with examples for both air breathing and rocket systems.

  1. On generalized Volterra systems

    NASA Astrophysics Data System (ADS)

    Charalambides, S. A.; Damianou, P. A.; Evripidou, C. A.

    2015-01-01

    We construct a large family of evidently integrable Hamiltonian systems which are generalizations of the KM system. The algorithm uses the root system of a complex simple Lie algebra. The Hamiltonian vector field is homogeneous cubic but in a number of cases a simple change of variables transforms such a system to a quadratic Lotka-Volterra system. We present in detail all such systems in the cases of A3, A4 and we also give some examples from higher dimensions. We classify all possible Lotka-Volterra systems that arise via this algorithm in the An case.

  2. What is systems engineering?

    SciTech Connect

    Bahill, A.T.

    1995-08-01

    Systems Engineering is an interdisciplinary process that ensures that the customers` needs are satisfied throughout a system`s entire life cycle. This process includes: understanding customer needs; stating the problem; specifying requirements; defining performance and cost measures, prescribing tests, validating requirements, conducting design reviews, exploring alternative concepts, sensitivity analyses, functional decomposition, system design, designing and managing interfaces, system integration, total system test, configuration management, risk management, reliability analysis; total quality management; project management; and documentation. Material for this paper was gathered from senior Systems Engineers at Sandia National Laboratories.

  3. ENVIRONMENTAL SYSTEMS MANAGEMENT AND SUSTAINABLE SYSTEMS THEORY

    EPA Science Inventory

    Environmental Systems Management is the management of environmental problems at the systems level fully accounting for the multi-dimensional nature of the environment. This includes socio-economic dimensions as well as the usual physical and life science aspects. This is importa...

  4. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  5. Performance, Performance System, and High Performance System

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  6. Efficient Evaluation System for Learning Management Systems

    ERIC Educational Resources Information Center

    Cavus, Nadire

    2009-01-01

    A learning management system (LMS) provides the platform for web-based learning environment by enabling the management, delivery, tracking of learning, testing, communication, registration process and scheduling. There are many LMS systems on the market that can be obtained for free or through payment. It has now become an important task to choose…

  7. Automated Pilot Advisory System

    NASA Technical Reports Server (NTRS)

    Parks, J. L., Jr.; Haidt, J. G.

    1981-01-01

    An Automated Pilot Advisory System (APAS) was developed and operationally tested to demonstrate the concept that low cost automated systems can provide air traffic and aviation weather advisory information at high density uncontrolled airports. The system was designed to enhance the see and be seen rule of flight, and pilots who used the system preferred it over the self announcement system presently used at uncontrolled airports.

  8. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  9. Photovoltaic systems and applications

    SciTech Connect

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  10. FNAL system patching design

    SciTech Connect

    Schmidt, Jack; Lilianstrom, Al; Romero, Andy; Dawson, Troy; Sieh, Connie; /Fermilab

    2004-01-01

    FNAL has over 5000 PCs running either Linux or Windows software. Protecting these systems efficiently against the latest vulnerabilities that arise has prompted FNAL to take a more central approach to patching systems. Due to different levels of existing support infrastructures, the patching solution for linux systems differs from that of windows systems. In either case, systems are checked for vulnerabilities by Computer Security using the Nessus tool.

  11. Satellite services system overview

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  12. Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Technology developed during a joint research program with Langley and Kinetic Systems Corporation led to Kinetic Systems' production of a high speed Computer Automated Measurement and Control (CAMAC) data acquisition system. The study, which involved the use of CAMAC equipment applied to flight simulation, significantly improved the company's technical capability and produced new applications. With Digital Equipment Corporation, Kinetic Systems is marketing the system to government and private companies for flight simulation, fusion research, turbine testing, steelmaking, etc.

  13. Fluid infusion system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Performance testing carried out in the development of the prototype zero-g fluid infusion system is described and summarized. Engineering tests were performed in the course of development, both on the original breadboard device and on the prototype system. This testing was aimed at establishing baseline system performance parameters and facilitating improvements. Acceptance testing was then performed on the prototype system to verify functional performance. Acceptance testing included a demonstration of the fluid infusion system on a laboratory animal.

  14. On evolutionary systems.

    PubMed

    Alvarez de Lorenzana, J M; Ward, L M

    1987-01-01

    This paper develops a metatheoretical framework for understanding evolutionary systems (systems that develop in ways that increase their own variety). The framework addresses shortcomings seen in other popular systems theories. It concerns both living and nonliving systems, and proposes a metahierarchy of hierarchical systems. Thus, it potentially addresses systems at all descriptive levels. We restrict our definition of system to that of a core system whose parts have a different ontological status than the system, and characterize the core system in terms of five global properties: minimal length interval, minimal time interval, system cycle, total receptive capacity, and system potential. We propose two principles through the interaction of which evolutionary systems develop. The Principle of Combinatorial Expansion describes how a core system realizes its developmental potential through a process of progressive differentiation of the single primal state up to a limit stage. The Principle of Generative Condensation describes how the components of the last stage of combinatorial expansion condense and become the environment for and components of new, enriched systems. The early evolution of the Universe after the "big bang" is discussed in light of these ideas as an example of the application of the framework.

  15. On evolutionary systems.

    PubMed

    Alvarez de Lorenzana, J M; Ward, L M

    1987-01-01

    This paper develops a metatheoretical framework for understanding evolutionary systems (systems that develop in ways that increase their own variety). The framework addresses shortcomings seen in other popular systems theories. It concerns both living and nonliving systems, and proposes a metahierarchy of hierarchical systems. Thus, it potentially addresses systems at all descriptive levels. We restrict our definition of system to that of a core system whose parts have a different ontological status than the system, and characterize the core system in terms of five global properties: minimal length interval, minimal time interval, system cycle, total receptive capacity, and system potential. We propose two principles through the interaction of which evolutionary systems develop. The Principle of Combinatorial Expansion describes how a core system realizes its developmental potential through a process of progressive differentiation of the single primal state up to a limit stage. The Principle of Generative Condensation describes how the components of the last stage of combinatorial expansion condense and become the environment for and components of new, enriched systems. The early evolution of the Universe after the "big bang" is discussed in light of these ideas as an example of the application of the framework. PMID:3689299

  16. A System of Systems Approach to the EU Energy System

    NASA Astrophysics Data System (ADS)

    Jess, Tom; Madani, Kaveh; Mahlooji, Maral; Ristic, Bora

    2016-04-01

    Around the world, measures to prevent dangerous climate change are being adopted and may change energy systems fundamentally. The European Union (EU) is committed to reducing greenhouse gas emission by 20% by 2020 and by 80-95% by 2050. In order to achieve this, EU member states aim to increase the share of renewables in the energy mix to 20% by 2020. This commitment comes as part of a series of other aims, principles, and policies to reform the EU's energy system. Cost-efficiency in the emissions reductions measures as well as strategic goals under the Resource Efficient Europe flagship initiative which would include a more prudent approach to other natural resources such as water and land. Using the "System of Systems Approach", as from Hadian and Madani (2015), energy sources' Relative Aggregate Footprints (RAF) in the EU are evaluated. RAF aggregates across four criteria: carbon footprint, water footprint, land footprint, and economic cost. The four criteria are weighted by resource availability across the EU and for each Member State. This provides an evaluation of the overall resource use efficiency of the EU's energy portfolio and gives insight into the differences in the desirability of energy sources across Member States. Broadly, nuclear, onshore wind, and geothermal are most desirable under equal criteria weights and EU average weighting introduces only small changes in the relative performance of only few technologies. The member state specific weightings show that most countries have similar energy technology preferences. However, the UK deviates most strongly from the average, with an even stronger preference for nuclear and coal. Sweden, Malta and Finland also deviate from the typical preferences indicating the complexity in play in reforming the EU energy system. Reference Hadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All Renewables Really Green? Ecological Indicators, 52, 194-206.

  17. Numerical and experimental investigation into passive hydrogen recovery scheme using vacuum ejector

    NASA Astrophysics Data System (ADS)

    Hwang, Jenn-Jiang; Cho, Ching-Chang; Wu, Wei; Chiu, Ching-Huang; Chiu, Kuo-Ching; Lin, Chih-Hong

    2015-02-01

    The current work presents a numerical and experimental investigation into a passive ejector for recovering the anode off-gas in a proton exchange membrane fuel cell (PEMFC) system. The proposed ejector is consisted of a convergent-divergent channel and a suction channel, and it is connected with the anode outlet of PEMFC system for recovery the anode off-gas into the main gas supply. Numerical simulations based on a three-dimensional compressible steady-state k-ɛ turbulent model are performed to examine the effects of the inlet mass flow rate and nozzle throat diameter on the pressure, Mach number, temperature, suction channel mass flow rate, outlet channel mass flow rate, and suction channel entrainment ratio, respectively. The numerical results are confirmed by means of an experimental investigation. It is shown that supersonic flow conditions are induced in the ejector; resulting in the induction of a vacuum pressure in the suction channel and the subsequent recovery of the anode off-gas at the outlet of the main channel. In addition, it is shown that the mass flow rate in the suction channel increases with an increasing mass flow rate at the primary channel inlet. Finally, the results show that a higher entrainment ratio is obtained as the throat diameter of the nozzle in the ejector is reduced. Overall, the results presented in this study provide a useful source of reference for developing the ejector devices applied to fuel cell systems while simultaneously avoiding extra energy consumption.

  18. NOx scrubbing at ORNL

    SciTech Connect

    Pearson, T. E.; Counce, R. M.

    1980-01-01

    Concern over the level of emission of nitrogen oxides (NO/sub x/) from nuclear fuel reprocessing facilities has focused the efforts of research, development and engineering on ways of reducing their concentration in off-gas streams. Research began back in January of 1976. A scrubber design which incorporated the research work began in mid September of 1978. The scrubber is presently being fabricated and will become a part of the Integrated Process Demonstration (IPD) facility. This paper will present an introduction to the chemistry of NO/sub x/ and will discuss the problems associated with its removal from off-gas streams. The IPD NO/sub x/ off-gas system components will be presented and the system interfaces with the other IPD systems will be shown. The computer model used to design the scrubber will be discussed and the results from the program will be presented. The paper will conclude with a brief description of other scrubber applications and will mention areas of continuing research.

  19. Durability Testing of the Direct Sulfur Recovery Process

    SciTech Connect

    Portzer, Jeffrey W.; Turk, Brian S.; Gangwal, Santosh K.

    1996-12-31

    Designs for advanced integrated gasification combined cycle (IGCC) power systems call for desulfurization of coal gasifier gas at high-temperature, high-pressure (HTHP) conditions using highly efficient, regenerable metal oxides such as zinc titanate. Regeneration of the sulfided sorbent using an oxygen-containing gas stream results in a sulfur dioxide (SO{sub 2})-containing off-gas at HTHP conditions. The patented Direct Sulfur Recovery Process (DSRP) developed by the Research Triangle Institute (RTI) with Morgantown Energy Technology Center (METC) support is an attractive option for treatment of this regeneration off-gas. Using a slipstream of coal gas as a reducing agent, it efficiently converts the SO{sub 2} to elemental sulfur, an essential industrial commodity that is easily stored and transported.

  20. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    SciTech Connect

    Yanochko, Ronald M; Corcoran, Connie

    2012-11-15

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

  1. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  2. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  3. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  4. Alkaline etch system qualification

    SciTech Connect

    Goldammer, S.E.; Pemberton, S.E.; Tucker, D.R.

    1997-04-01

    Based on the data from this qualification activity, the Atotech etch system, even with minimum characterization, was capable of etching production printed circuit products as good as those from the Chemcut system. Further characterization of the Atotech system will improve its etching capability. In addition to the improved etch quality expected from further characterization, the Atotech etch system has additional features that help reduce waste and provide for better consistency in the etching process. The programmable logic controller and computer will allow operators to operate the system manually or from pre-established recipes. The evidence and capabilities of the Atotech system made it as good as or better than the Chemcut system for etching WR products. The Printed Wiring Board Engineering Department recommended that the Atotech system be released for production. In December 1995, the Atotech system was formerly qualified for production.

  5. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  6. Rover waste assay system

    SciTech Connect

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J.

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  7. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  8. MLS: Airplane system modeling

    NASA Technical Reports Server (NTRS)

    Thompson, A. D.; Stapleton, B. P.; Walen, D. B.; Rieder, P. F.; Moss, D. G.

    1981-01-01

    Analysis, modeling, and simulations were conducted as part of a multiyear investigation of the more important airplane-system-related items of the microwave landing system (MLS). Particular emphasis was placed upon the airplane RF system, including the antenna radiation distribution, the cabling options from the antenna to the receiver, and the overall impact of the airborne system gains and losses upon the direct-path signal structure. In addition, effort was expended toward determining the impact of the MLS upon the airplane flight management system and developing the initial stages of a fast-time MLS automatic control system simulation model. Results ot these studies are presented.

  9. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  10. Programmable telemetry test system

    NASA Astrophysics Data System (ADS)

    Guadiana, J. M.

    A portable programmable telemetry test system was designed to test shipboard telemetry systems used for evaluating performance of missile systems in the surface missile fleet. The test system accurately simulates any missile in the current Navy inventory, and provides test and calibration signals to verify telemetry systems. The total test system weighs just over 15 lbs and occupies less than 1 cubic foot. Internal batteries allow testing or calibration of RF front ends out on weather decks. The modulation section consists of an FM/PAM/PCM simulator and simple control circuitry, and is programmable via an Intel 2715 EPROM, the frame format memory. A second EPROM provides a wave-form library.

  11. Experiment support system

    NASA Technical Reports Server (NTRS)

    Shannon, A. V.

    1977-01-01

    The Experiment Support System is a switchboard system with displays and controls. It routes electrical power to experiments M092, M093, and M171 equipment; gaseous nitrogen to the Blood Pressure Measurement System; receives biomedical data from all related equipment; routes the conditioned data signals to the Airlock Module Telemetry System and also displays (in digital or analog from) portions of that data which the crewmen must see to complete the experiment successfully. The Experiment Support System is interfaced to the M131 control panel to transfer conditioned data to the Airlock Module Telemetry System.

  12. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  13. Space shuttle avionics system

    NASA Technical Reports Server (NTRS)

    Hanaway, John F.; Moorehead, Robert W.

    1989-01-01

    The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.

  14. Cooperating systems: Layered MAS

    NASA Technical Reports Server (NTRS)

    Rochowiak, Daniel

    1990-01-01

    Distributed intelligent systems can be distinguished by the models that they use. The model developed focuses on layered multiagent system conceived of as a bureaucracy in which a distributed data base serves as a central means of communication. The various generic bureaus of such a system is described and a basic vocabulary for such systems is presented. In presenting the bureaus and vocabularies, special attention is given to the sorts of reasonings that are appropriate. A bureaucratic model has a hierarchy of master system and work group that organizes E agents and B agents. The master system provides the administrative services and support facilities for the work groups.

  15. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  16. Precision Pointing System Development

    SciTech Connect

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  17. Verification of Adaptive Systems

    SciTech Connect

    Pullum, Laura L; Cui, Xiaohui; Vassev, Emil; Hinchey, Mike; Rouff, Christopher; Buskens, Richard

    2012-01-01

    Adaptive systems are critical for future space and other unmanned and intelligent systems. Verification of these systems is also critical for their use in systems with potential harm to human life or with large financial investments. Due to their nondeterministic nature and extremely large state space, current methods for verification of software systems are not adequate to provide a high level of assurance for them. The combination of stabilization science, high performance computing simulations, compositional verification and traditional verification techniques, plus operational monitors, provides a complete approach to verification and deployment of adaptive systems that has not been used before. This paper gives an overview of this approach.

  18. Business System Planning Project System Requirements Specification

    SciTech Connect

    NELSON, R.E.

    2000-09-08

    The purpose of the Business Systems Planning Project System Requirements Specification (SRS) is to provide the outline and contents of the requirements for the CH2M HILL Hanford Group, Inc. (CHG) integrated business and technical information systems. The SRS will translate proposed objectives into the statement of the functions that are to be performed and data and information flows that they require. The requirements gathering methodology will use (1) facilitated group requirement sessions; (2) individual interviews; (3) surveys; and (4) document reviews. The requirements will be verified and validated through coordination of the technical requirement team and CHG Managers. The SRS document used the content and format specified in Lockheed Martin Services, Inc. Organization Standard Software Practices in conjunction with the Institute of Electrical and Electronics Engineers Standard 8340-1984 for Systems Requirements Documents.

  19. Power system interface and umbilical system study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    System requirements and basic design criteria were defined for berthing or docking a payload to the 25 kW power module which will provide electrical power and attitude control, cooling, data transfer, and communication services to free-flying and Orbiter sortie payloads. The selected umbilical system concept consists of four assemblies and command and display equipment to be installed at the Orbiter payload specialist station: (1) a movable platen assembly which is attached to the power system with EVA operable devices; (2) a slave platen assembly which is attached to the payload with EVA operable devices; (3) a fixed secondary platen permanently installed in the power system; and (4) a fixed secondary platen permanently installed on the payload. Operating modes and sequences are described.

  20. NASA's SPICE System Models the Solar System

    NASA Technical Reports Server (NTRS)

    Acton, Charles

    1996-01-01

    SPICE is NASA's multimission, multidiscipline information system for assembling, distributing, archiving, and accessing space science geometry and related data used by scientists and engineers for mission design and mission evaluation, detailed observation planning, mission operations, and science data analysis.

  1. Designing Chaotic Systems by Piecewise Affine Systems

    NASA Astrophysics Data System (ADS)

    Wu, Tiantian; Li, Qingdu; Yang, Xiao-Song

    Based on mathematical analysis, this paper provides a methodology to ensure the existence of homoclinic orbits in a class of three-dimensional piecewise affine systems. In addition, two chaotic generators are provided to illustrate the effectiveness of the method.

  2. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM

    SciTech Connect

    T. Wilson; R. Novotny

    1999-11-22

    The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES).

  3. System and method for creating expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M. (Inventor); Luczak, Edward C. (Inventor)

    1998-01-01

    A system and method provides for the creation of a highly graphical expert system without the need for programming in code. An expert system is created by initially building a data interface, defining appropriate Mission, User-Defined, Inferred, and externally-generated GenSAA (EGG) data variables whose data values will be updated and input into the expert system. Next, rules of the expert system are created by building appropriate conditions of the rules which must be satisfied and then by building appropriate actions of rules which are to be executed upon corresponding conditions being satisfied. Finally, an appropriate user interface is built which can be highly graphical in nature and which can include appropriate message display and/or modification of display characteristics of a graphical display object, to visually alert a user of the expert system of varying data values, upon conditions of a created rule being satisfied. The data interface building, rule building, and user interface building are done in an efficient manner and can be created without the need for programming in code.

  4. Integrated Systems Health Management for Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Melcher, Kevin

    2011-01-01

    The implementation of an integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. Management implies storage, distribution, sharing, maintenance, processing, reasoning, and presentation. ISHM is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of its health. In this chapter, concepts, procedures, and approaches are presented as a foundation for implementing an ISHM capability relevant to intelligent systems. The capability stresses integration of DIaK from all elements of a system, emphasizing an advance toward an on-board, autonomous capability. Both ground-based and on-board ISHM capabilities are addressed. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems.

  5. School System Empires

    ERIC Educational Resources Information Center

    Huberman, Michael

    1972-01-01

    Although most educational systems are resistant to change, there are some features of the community, of the teachers, of government, and of the system that enable one to predict the likelihood of an innovation being accepted and implemented. (AL)

  6. Immune System (For Parents)

    MedlinePlus

    ... lock onto them. T cells are like the soldiers, destroying the invaders that the intelligence system has ... can't be prevented, you can help your child's immune system stay stronger and fight illnesses by ...

  7. Cardiac conduction system

    MedlinePlus

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals ... to contract. The main components of the cardiac conduction system are the SA node, AV node, bundle ...

  8. Instructional Systems: Which One?

    ERIC Educational Resources Information Center

    Lee, A. Maughan

    1970-01-01

    Discusses the mystical aura attached to the notion of a systems approach to instruction, briefly reviews some of the instructional systems which have been advanced, and suggests a method for successful implementation of the process. (LS)

  9. Central nervous system

    MedlinePlus

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  10. Leasing Residential PV Systems

    SciTech Connect

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  11. Male Reproductive System

    MedlinePlus

    ... Surveillance Modules » Anatomy & Physiology » Reproductive System » Male Reproductive System Cancer Registration & Surveillance Modules Anatomy & Physiology Intro to the Human Body Body Functions & Life Process Anatomical Terminology Review Quiz ...

  12. Gleason grading system

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000920.htm Gleason grading system To use the sharing features on this page, ... score of between 5 and 7. Gleason Grading System Sometimes, it can be hard to predict how ...

  13. Alarm Notification System

    1995-03-12

    AN/EMS, the Alarm Notification Energy Management System, is used to monitor digital sensors in PETC buildings and to notify the safety/security operator by both a video and an audio system when a possibly hazardous condition arises.

  14. System status display evaluation

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.

    1988-01-01

    The System Status Display is an electronic display system which provides the crew with an enhanced capability for monitoring and managing the aircraft systems. A flight simulation in a fixed base cockpit simulator was used to evaluate alternative design concepts for this display system. The alternative concepts included pictorial versus alphanumeric text formats, multifunction versus dedicated controls, and integration of the procedures with the system status information versus paper checklists. Twelve pilots manually flew approach patterns with the different concepts. System malfunctions occurred which required the pilots to respond to the alert by reconfiguring the system. The pictorial display, the multifunction control interfaces collocated with the system display, and the procedures integrated with the status information all had shorter event processing times and lower subjective workloads.

  15. Male Reproductive System

    MedlinePlus

    ... gamete, the egg or ovum , meet in the female's reproductive system to create a new individual. Both the male and female reproductive systems are essential for reproduction. Humans, like other organisms, ...

  16. Male Reproductive System

    MedlinePlus

    ... gamete, the egg or ovum, meet in the female's reproductive system to create a baby. Both the male and female reproductive systems are essential for reproduction. Humans pass certain characteristics ...

  17. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  19. INL Autonomous Navigation System

    SciTech Connect

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  20. Multiplex television transmission system

    NASA Technical Reports Server (NTRS)

    Reed, W. R.

    1967-01-01

    Time-multiplexing system enables several cameras to share a single commercial television transmission channel. This system is useful in industries for visually monitoring several operating areas or instrument panels from a remote location.

  1. Secondary power systems

    SciTech Connect

    Not Available

    1985-01-01

    In aeronautical engineering secondary power systems have long played second fiddle to the airframe, the engine, and indeed, the avionics. This collection of papers is thus timely, and its publication by the Institution of Mechanical Engineers appropriate, as secondary power systems in modern aircraft present challenging mechanical engineering problems. In military aircraft demands for electrical and hydraulic power and high pressure air have grown over the past two decades. To these basic needs are added requirements for emergency power, ground power, and independent engine starting. Additionally increased reliability and maintainability is demanded from all secondary power systems. Complete contents: What is a secondary power system. Modern technology secondary power systems for next generation military aircraft; Integrated power units; Secondary power system gearbox; Starting the system - air turbine starters; Auxiliary and emergency power system; Secondary hydraulic power generation; Advanced technology electrical power generation equipment.

  2. Highly Autonomous Systems Workshop

    NASA Technical Reports Server (NTRS)

    Doyle, R.; Rasmussen, R.; Man, G.; Patel, K.

    1998-01-01

    It is our aim by launching a series of workshops on the topic of highly autonomous systems to reach out to the larger community interested in technology development for remotely deployed systems, particularly those for exploration.

  3. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  4. Information retrieval system

    NASA Technical Reports Server (NTRS)

    Berg, R. F.; Holcomb, J. E.; Kelroy, E. A.; Levine, D. A.; Mee, C., III

    1970-01-01

    Generalized information storage and retrieval system capable of generating and maintaining a file, gathering statistics, sorting output, and generating final reports for output is reviewed. File generation and file maintenance programs written for the system are general purpose routines.

  5. Advanced dive monitoring system.

    PubMed

    Sternberger, W I; Goemmer, S A

    1999-01-01

    The US Navy supports deep diving operations with a variety of mixed-gas life support systems. A systems engineering study was conducted for the Naval Experimental Dive Unit (Panama City, FL) to develop a concept design for an advanced dive monitoring system. The monitoring system is intended primarily to enhance diver safety and secondarily to support diving medicine research. Distinct monitoring categories of diver physiology, life support system, and environment are integrated in the monitoring system. A system concept is proposed that accommodates real-time and quantitative measurements, noninvasive physiological monitoring, and a flexible and expandable implementation architecture. Human factors and ergonomic design considerations have been emphasized to assure that there is no impact on the diver's primary mission. The Navy has accepted the resultant system requirements and the basic design concept. A number of monitoring components have been implemented and successfully support deep diving operations.

  6. JT-60 Control System

    SciTech Connect

    Yonekawa, I.; Kawamata, Y.; Totsuka, T.; Akasaka, H.; Sueoka, M.; Kurihara, K.; Kimura, T.

    2002-09-15

    The present status of the JT-60U control system is reported including its original design concept, the progress of the system, and various modifications since the JT-60 upgrade. This control system has features of a functionally distributed and hierarchical structure, using CAMAC interfaces initially, which have been replaced by versatile module Europe (VME)-bus interfaces, and a protective interlock system composed of both software and hard-wired interlock logics. Plant monitoring and control are performed by efficient data communication through CAMAC highways and Ethernet with TCP/IP protocols. Sequential control of plasma discharges is executed by a combination of a remodeled VME-bus system and a timing system. A real-time plasma control system and a human interface system have been continuously modified corresponding to the progress of JT-60U experiments.

  7. Silver recovery system data

    SciTech Connect

    Boulineau, B.

    1991-08-26

    In August of 1990 the Savannah River Site Photography Group began testing on a different type of silver recovery system. This paper describes the baseline study and the different phases of installation and testing of the system.

  8. Intensive care alarm system

    NASA Technical Reports Server (NTRS)

    Christensen, J. L.; Herbert, A. L.

    1973-01-01

    Inductive loop has been added to commercially available call system fitted with earphone receiver. System transmits high frequency signals to nurse's receiver to announce patient's need for help without disturbing others.

  9. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  10. Paradigms for Abstracting Systems.

    ERIC Educational Resources Information Center

    Pinto, Maria; Galvez, Carmen

    1999-01-01

    Discussion of abstracting systems focuses on the paradigm concept and identifies and explains four paradigms: communicational, or information theory; physical, including information retrieval; cognitive, including information processing and artificial intelligence; and systemic, including quality management. Emphasizes multidimensionality and…

  11. Immune System and Disorders

    MedlinePlus

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It ... t, to find and destroy them. If your immune system cannot do its job, the results can be ...

  12. Biomedical recording system

    NASA Technical Reports Server (NTRS)

    Vick, H. A.

    1970-01-01

    System collects medical data directly from patients and permanently records and displays several parameters - electrocardiograph, electroencephalograph, heart rate, respiration rate, auscultatory blood pressure, leg circumference changes, body temperature, and time. Components and operation of the system are described.

  13. Henry Ford Health Systems

    Cancer.gov

    Henry Ford Health Systems evolved from a hospital into a system delivering care to 2.5 million patients and includes the Cancer Epidemiology, Prevention and Control Program, which focuses on epidemiologic and public health aspects of cancer.

  14. Avian respiratory system disorders

    USGS Publications Warehouse

    Olsen, G.H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  15. Optical discriminator system

    NASA Technical Reports Server (NTRS)

    Robelen, D. B.

    1974-01-01

    System includes lightweight, inexpensive movie camera to record simultaneously views from three different angles on same filmstrip. This is noncritical system as it is adaptable to many applications requiring similar, but diverse, viewing areas.

  16. Validation of multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Siewiorek, D. P.; Segall, Z.; Kong, T.

    1982-01-01

    Experiments that can be used to validate fault free performance of multiprocessor systems in aerospace systems integrating flight controls and avionics are discussed. Engineering prototypes for two fault tolerant multiprocessors are tested.

  17. Versados (operating system)

    SciTech Connect

    Glaser, J.G.

    1981-01-01

    Versados is a multitasking operation system designed to meet the requirements of the real-time, online control system environment as well as to support the multiuser software-hardware engineering effort required to develop microprocessor based systems. Versados serves as a major software building block for real-time applications which use the Motorola MC68000 microprocessor and Versamodule board products. It is a modular, multilayered operating system.

  18. Space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1987-01-01

    The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

  19. Space shuttle revitalization system

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1985-01-01

    The Space Shuttle air revitalization system is discussed. The sequential steps in loop closure are examined and a schematic outline of the regenerative air revitalization system is presented. Carbon dioxide reduction subsystem concepts are compared. Schemes are drawn for: static feedwater electrolysis cell, solid polymer electrolyte water electrolysis cell, air revitalization system, nitrogen generation reactions, nitrogen subsystem staging, vapor compression distillation subsystem, thermoelectric integrated membrane evaporation subsystem, catalytic distillation water reclamation subsystem, and space shuttle solid waste management system.

  20. Goddard Ground System Environment

    NASA Technical Reports Server (NTRS)

    Liu, Ben

    2009-01-01

    This slide presentation reviews the Goddard Mission Services Evolution Center's work in providing the Ground System Infrastructure to allow for standard interfaces, and allow for a mix of heritage and new components. This software has been used by NASA and other Government users. Telemetry and command services are also provided as are mission planning and scheduling systems. Other areas that the presentation covers are work on trending systems, and data management system.

  1. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  2. Lithium battery management system

    DOEpatents

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  3. Space power systems technology

    NASA Technical Reports Server (NTRS)

    Coulman, George A.

    1994-01-01

    Reported here is a series of studies which examine several potential catalysts and electrodes for some fuel cell systems, some materials for space applications, and mathematical modeling and performance predictions for some solid oxide fuel cells and electrolyzers. The fuel cell systems have a potential for terrestrial applications in addition to solar energy conversion in space applications. Catalysts and electrodes for phosphoric acid fuel cell systems and for polymer electrolyte membrane (PEM) fuel cell and electrolyzer systems were examined.

  4. Portable Dental System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Portable dental system provides dental care in isolated communities. System includes a patient's chair and a dentist's stool, an X-ray machine and a power unit, all of which fold into compact packages. A large yellow "pumpkin" is a collapsible compressed air tank. Portable system has been used successfully in South America in out of the way communities with this back-packable system, and in American nursing homes. This product is no longer manufactured.

  5. Intermediate water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Anderson, A. R. (Editor)

    1973-01-01

    A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.

  6. What is Systems Biology?

    PubMed Central

    Breitling, Rainer

    2010-01-01

    Systems biology is increasingly popular, but to many biologists it remains unclear what this new discipline actually encompasses. This brief personal perspective starts by outlining the asthetic qualities that motivate systems biologists, discusses which activities do not belong to the core of systems biology, and finally explores the crucial link with synthetic biology. It concludes by attempting to define systems biology as the research endeavor that aims at providing the scientific foundation for successful synthetic biology. PMID:21423352

  7. Visual Alert System

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A visual alert system resulted from circuitry developed by Applied Cybernetics Systems for Langley as part of a space related telemetry system. James Campman, Applied Cybernetics president, left the company and founded Grace Industries, Inc. to manufacture security devices based on the Langley technology. His visual alert system combines visual and audible alerts for hearing impaired people. The company also manufactures an arson detection device called the electronic nose, and is currently researching additional applications of the NASA technology.

  8. Astromag data system concept

    NASA Technical Reports Server (NTRS)

    Roos, Darrell; Cheng, Chieh-San; Newsome, Penny; Nath, Nitya

    1989-01-01

    A feasible, top-level data system is defined that could accomplish and support the Astromag Data System functions and interfaces necessary to support the scientific objectives of Astromag. This data system must also be able to function in the environment of the Space Station Freedom Manned Base (SSFMB) and other anticipated NASA elements.

  9. Medical Information Systems.

    ERIC Educational Resources Information Center

    Smith, Kent A.

    1986-01-01

    Description of information services from the National Library of Medicine (NLM) highlights a new system for retrieving information from NLM's databases (GRATEFUL MED); a formal Regional Medical Library Network; DOCLINE; the Unified Medical Language System; and Integrated Academic Information Management Systems. Research and development and the…

  10. Microelectronics bioinstrumentation systems

    NASA Technical Reports Server (NTRS)

    Ko, W. H.

    1977-01-01

    Microelectronic bioinstrumentation systems to be employed in the Cardiovascular Deconditioning Program were developed. Implantable telemetry systems for long-term monitoring of animals on earth were designed to collect physiological data necessary for the understanding of the mechanisms of cardiovascular deconditioning. In-flight instrumentation systems, microelectronic instruments, and RF powering techniques for other life science experiments in the NASA program were studied.

  11. Geostar's system architectures

    NASA Technical Reports Server (NTRS)

    Lepkowski, Ronald J.

    1989-01-01

    Geostar is currently constructing a radiodetermination satellite system to provide position fixes and vehicle surveillance services, and has proposed a digital land mobile satellite service to provide data, facsimile and digitized voice services to low cost mobile users. The different system architectures for these two systems, are reviewed.

  12. FUNDAMENTALS OF TELEVISION SYSTEMS.

    ERIC Educational Resources Information Center

    KESSLER, WILLIAM J.

    DESIGNED FOR A READER WITHOUT SPECIAL TECHNICAL KNOWLEDGE, THIS ILLUSTRATED RESOURCE PAPER EXPLAINS THE COMPONENTS OF A TELEVISION SYSTEM AND RELATES THEM TO THE COMPLETE SYSTEM. SUBJECTS DISCUSSED ARE THE FOLLOWING--STUDIO ORGANIZATION AND COMPATIBLE COLOR TELEVISION PRINCIPLES, WIRED AND RADIO TRANSMISSION SYSTEMS, DIRECT VIEW AND PROJECTION…

  13. Immune System Quiz

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Quiz: Immune System KidsHealth > For Kids > Quiz: Immune System Print A A A Text Size How much do you know about your immune system? Find out by taking this quiz! View Survey ...

  14. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2016-07-12

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  15. Information extraction system

    DOEpatents

    Lemmond, Tracy D; Hanley, William G; Guensche, Joseph Wendell; Perry, Nathan C; Nitao, John J; Kidwell, Paul Brandon; Boakye, Kofi Agyeman; Glaser, Ron E; Prenger, Ryan James

    2014-05-13

    An information extraction system and methods of operating the system are provided. In particular, an information extraction system for performing meta-extraction of named entities of people, organizations, and locations as well as relationships and events from text documents are described herein.

  16. System integration report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Korein, J. D.; Meyer, C.; Manoochehri, K.; Rovins, J.; Beale, J.; Barr, B.

    1985-01-01

    Several areas that arise from the system integration issue were examined. Intersystem analysis is discussed as it relates to software development, shared data bases and interfaces between TEMPUS and PLAID, shaded graphics rendering systems, object design (BUILD), the TEMPUS animation system, anthropometric lab integration, ongoing TEMPUS support and maintenance, and the impact of UNIX and local workstations on the OSDS environment.

  17. Arkansas Technology Information System.

    ERIC Educational Resources Information Center

    VanBiervliet, Alan; Parette, Howard P., Jr.

    The Arkansas Technology Information System (ARTIS) was developed to fill a significant void in existing systems of technical support to Arkansans with disabilities by creating and maintaining a consumer-responsive statewide system of data storage and retrieval regarding assistive technology and services. ARTIS goals also include establishment of a…

  18. NPOx Decontamination System

    SciTech Connect

    Archibald, K.; Demmer, R.; Argyle, M.; Ancho, M.; Hai-Pao, J.

    2002-02-25

    The nitric acid/potassium permanganate/oxalic acid (NPOx) Phase II system is being prepared for remote operation at the Idaho National Engineering and Environmental Laboratory (INEEL). Several tests have been conducted to prepare the system for remote operation. This system performs very well with high decontamination efficiencies and very low quantities of waste generated during decontamination.

  19. Jupiter System Observer

    NASA Technical Reports Server (NTRS)

    Senske, Dave; Prockter, Louise

    2008-01-01

    This slide presentation reviews the scientific philosophy that is guiding the planning behind the Jupiter System Observer (JSO). The JSO would be a long-term platform for studying Jupiter and the complete Jovian system. The goal is to advance the understanding of the fundamental processes of planetary systems, their formation and evolution.

  20. Optimum Cassegrain baffle systems.

    PubMed

    Hales, W L

    1992-09-01

    Formulas are developed for the precise calculation of optimum stray-light baffles for Cassegrain optical systems, including systems having extreme optical curvatures such as those in infrared missile guidance systems. Minimum diffraction and maximum optical efficiency are the primary considerations.

  1. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  2. Power system restoration issues

    SciTech Connect

    Adibi, M.M. ); Kafka, R.J. )

    1991-04-01

    This article describes some of the problems encountered in the three phases of power system restoration (PSR). The three phases of PSR are: Planning for restart and reintegration of the bulk power supply; Actions during system degradation for saving and retaining critical sources of power; Restoration when the power system has stabilized at some degraded level.

  3. Contracting for Telecommunications Systems.

    ERIC Educational Resources Information Center

    Brautigam, Arthur W.

    1984-01-01

    Reasons for changing telephone systems at colleges and universities and the preparation and evaluation of requests for proposals (RFP) are discussed. The negotiation and monitoring of the contract are also addressed. It is noted that contracting for a new telecommunications system is extremely complex. Reasons for changing systems include cost…

  4. Unified Science - System.

    ERIC Educational Resources Information Center

    Thomson, Barbara S.

    The goals of this curriculum, developed as a summer course for the Young Scholars Program at The Ohio State University-Columbus, are as follows: (1) enable students to develop an understanding of the concept of a system; (2) help students gain an appreciation of the value of systems; (3) develop skills in working with systems; (4) expand skills in…

  5. System Documentation Manual.

    ERIC Educational Resources Information Center

    Semmel, Melvyn I.; Olson, Jerry

    The document is a system documentation manual of the Computer-Assisted Teacher Training System (CATTS) developed by the Center for Innovation in Teaching the Handicapped (Indiana University). CATTS is characterized as a system capable of providing continuous, instantaneous, and/or delayed feedback of relevant teacher-student interaction data to a…

  6. Economical space power systems

    NASA Technical Reports Server (NTRS)

    Burkholder, J. H.

    1980-01-01

    A commercial approach to design and fabrication of an economical space power system is investigated. Cost projections are based on a 2 kW space power system conceptual design taking into consideration the capability for serviceability, constraints of operation in space, and commercial production engineering approaches. A breakdown of the system design, documentation, fabrication, and reliability and quality assurance estimated costs are detailed.

  7. Personal Food System Mapping

    ERIC Educational Resources Information Center

    Wilsey, David; Dover, Sally

    2014-01-01

    Personal food system mapping is a practical means to engage community participants and educators in individualized and shared learning about food systems, decisions, and behaviors. Moreover, it is a useful approach for introducing the food system concept, which is somewhat abstract. We developed the approach to capture diversity of personal food…

  8. Solar tracking system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  9. A Thai Soundex System.

    ERIC Educational Resources Information Center

    Lorchirachoonkul, Vichit

    1982-01-01

    The concept of Thai soundex system for name search as method of information retrieval is developed and evaluated by extending and modifying Odell and Russell soundex system to fit specific characteristics of Thai language. Thai consonants, letter codes, and evaluation of system in name file of 61,215 records are highlighted. (EJS)

  10. Energy Systems Laboratory Groundbreaking

    SciTech Connect

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2011-01-01

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  11. Mass Storage Systems.

    ERIC Educational Resources Information Center

    Ranade, Sanjay; Schraeder, Jeff

    1991-01-01

    Presents an overview of the mass storage market and discusses mass storage systems as part of computer networks. Systems for personal computers, workstations, minicomputers, and mainframe computers are described; file servers are explained; system integration issues are raised; and future possibilities are suggested. (LRW)

  12. Types of Data Systems

    ERIC Educational Resources Information Center

    Gould, Tate; Nicholas, Amy; Ruggiero, Tony; Blandford, William; Thayer, Sara; Bull, Bruce

    2015-01-01

    There are several types of data systems that support data from Part C/619 programs. Although the system types have similarities, each has its own unique characteristics and purposes. The attributes that make one type of data system a particularly good fit for one data-related need or function can be less desirable for another need or function. In…

  13. IDC System Specification Document.

    SciTech Connect

    Clifford, David J.

    2014-12-01

    This document contains the system specifications derived to satisfy the system requirements found in the IDC System Requirements Document for the IDC Reengineering Phase 2 project. Revisions Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Reengineering Project Team Initial delivery M. Harris

  14. Small Modular Biomass Systems

    SciTech Connect

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  15. Developing Effective TV Systems.

    ERIC Educational Resources Information Center

    Rankins, Ron P.

    This case study of the planning and organization of an on-campus educational television system, designed as both an instructional and a service oriented resource, includes descriptions of the goals of the system, the equipment purchased, and problems encountered. It was found that a versatile and relatively sophisticated system could be…

  16. The complement system in systemic autoimmune disease.

    PubMed

    Chen, Min; Daha, Mohamed R; Kallenberg, Cees G M

    2010-05-01

    Complement is part of the innate immune system. Its major function is recognition and elimination of pathogens via direct killing and/or stimulation of phagocytosis. Activation of the complement system is, however, also involved in the pathogenesis of the systemic autoimmune diseases. Activation via the classical pathway has long been recognized in immune complex-mediated diseases such as cryoglobulinemic vasculitis and systemic lupus erythematosus (SLE). In SLE, the role of complement is somewhat paradoxical. It is involved in autoantibody-initiated tissue damage on the one hand, but, on the other hand, it appears to have protective features as hereditary deficiencies of classical pathway components are associated with an increased risk for SLE. There is increasing evidence that the alternative pathway of complement, even more than the classical pathway, is involved in many systemic autoimmune diseases. This is true for IgA-dominant Henoch Schönlein Purpura, in which additional activation of the lectin pathway contributes to more severe disease. In anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis the complement system was considered not to be involved since immunoglobulin deposition is generally absent in the lesions. However, recent studies, both in human and animal models, demonstrated complement activation via the alternative pathway as a major pathogenic mechanism. Insight into the role of the various pathways of complement in the systemic autoimmune diseases including the vasculitides opens up new ways of treatment by blocking effector pathways of complement. This has been demonstrated for monoclonal antibodies to C5 or C5a in experimental anti-phospholipid antibody syndrome and ANCA-associated vasculitis.

  17. Hydrothermal mineralising systems as critical systems

    NASA Astrophysics Data System (ADS)

    Hobbs, Bruce

    2015-04-01

    Hydrothermal mineralising systems as critical systems. Bruce E Hobbs1,2, Alison Ord1 and Mark A. Munro1. 1. Centre for Exploration Targeting, The University of Western Australia, M006, 35 Stirling Highway, Crawley, WA 6009, Australia. 2. CSIRO Earth and Resource Engineering, Bentley, WA, Australia Hydrothermal mineralising systems are presented as large, open chemical reactors held far from equilibrium during their life-time by the influx of heat, fluid and dissolved chemical species. As such they are nonlinear dynamical systems and need to be analysed using the tools that have been developed for such systems. Hydrothermal systems undergo a number of transitions during their evolution and this paper focuses on methods for characterising these transitions in a quantitative manner and establishing whether they resemble first or second (critical) phase transitions or whether they have some other kind of nature. Critical phase transitions are characterised by long range correlations for some parameter characteristic of the system, power-law probability distributions so that there is no characteristic length scale and a high sensitivity to perturbations; as one approaches criticality, characteristic parameters for the system scale in a power law manner with distance from the critical point. The transitions undergone in mineralised hydrothermal systems are: (i) widespread, non-localised mineral alteration involving exothermic mineral reactions that produce hydrous silicate phases, carbonates and iron-oxides, (ii) strongly localised veining, brecciation and/or stock-work formation, (iii) a series of endothermic mineral reactions involving the formation of non-hydrous silicates, sulphides and metals such as gold, (iv) multiple repetitions of transitions (ii) and (iii). We have quantified aspects of these transitions in gold deposits from the Yilgarn craton of Western Australia using wavelet transforms. This technique is convenient and fast. It enables one to establish if

  18. [Automated anesthesia record system].

    PubMed

    Zhu, Tao; Liu, Jin

    2005-12-01

    Based on Client/Server architecture, a software of automated anesthesia record system running under Windows operation system and networks has been developed and programmed with Microsoft Visual C++ 6.0, Visual Basic 6.0 and SQL Server. The system can deal with patient's information throughout the anesthesia. It can collect and integrate the data from several kinds of medical equipment such as monitor, infusion pump and anesthesia machine automatically and real-time. After that, the system presents the anesthesia sheets automatically. The record system makes the anesthesia record more accurate and integral and can raise the anesthesiologist's working efficiency.

  19. Text Exchange System

    NASA Technical Reports Server (NTRS)

    Snyder, W. V.; Hanson, R. J.

    1986-01-01

    Text Exchange System (TES) exchanges and maintains organized textual information including source code, documentation, data, and listings. System consists of two computer programs and definition of format for information storage. Comprehensive program used to create, read, and maintain TES files. TES developed to meet three goals: First, easy and efficient exchange of programs and other textual data between similar and dissimilar computer systems via magnetic tape. Second, provide transportable management system for textual information. Third, provide common user interface, over wide variety of computing systems, for all activities associated with text exchange.

  20. CNEOST Control Software System

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhao, Hai-bin; Xia, Yan; Lu, Hao; Li, Bin

    2016-01-01

    In 2013, CNEOST (China Near Earth Object Survey Telescope) adapted its hardware system for the new CCD camera. Based on the new system architecture, the control software is re-designed and implemented. The software system adopts the messaging mechanism based on the WebSocket protocol, and possesses good flexibility and expansibility. The user interface based on the responsive web design has realized the remote observations under both desktop and mobile devices. The stable operation of the software system has greatly enhanced the operation efficiency while reducing the complexity, and has also made a successful attempt for the future system design of telescope and telescope cloud.