Science.gov

Sample records for off-line mass spectrometry

  1. Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques.

    PubMed

    Kilár, Anikó; Dörnyei, Ágnes; Kocsis, Béla

    2013-01-01

    The focus of this review is the application of mass spectrometry to the structural characterization of bacterial lipopolysaccharides (LPSs), also referred to as "endotoxins," because they elicit the strong immune response in infected organisms. Recently, a wide variety of MS-based applications have been implemented to the structure elucidation of LPS. Methodological improvements, as well as on- and off-line separation procedures, proved the versatility of mass spectrometry to study complex LPS mixtures. Special attention is given in the review to the tandem mass spectrometric methods and protocols for the analyses of lipid A, the endotoxic principle of LPS. We compare and evaluate the different ionization techniques (MALDI, ESI) in view of their use in intact R- and S-type LPS and lipid A studies. Methods for sample preparation of LPS prior to mass spectrometric analysis are also described. The direct identification of intrinsic heterogeneities of most intact LPS and lipid A preparations is a particular challenge, for which separation techniques (e.g., TLC, slab-PAGE, CE, GC, HPLC) combined with mass spectrometry are often necessary. A brief summary of these combined methodologies to profile LPS molecular species is provided.

  2. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    PubMed

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  3. Determination of monomeric composition in polyhydroxyalkanoates by liquid chromatography coupled with on-line mass spectrometry and off-line nuclear magnetic resonance.

    PubMed

    Ge, Liya; Tan, Giin-Yu Amy; Wang, Lin; Chen, Chia-Lung; Li, Ling; Tan, Swee Ngin; Wang, Jing-Yuan

    2016-01-01

    Polyhydroxyalkanoates (PHAs) are commercially-valuable biocompatible and biodegradable polymers with many potential medical, pharmaceutical and other industrial applications. The analysis of PHA monomeric composition is especially challenging due to the broad chemical diversity of PHA monomers and lack of analytical standards to represent the chemically-diverse PHA monomer constituents. In this study, a novel strategy based on on-line liquid chromatography-mass spectrometry (LC-MS) and off-line liquid chromatography-nuclear magnetic resonance (LC-NMR) was established to quantify seven PHA monomers with available standards and used to elucidate the structures of unknown PHA monomers. The strategy was successfully applied for the determination of monomeric composition in bacterial PHAs isolated from Pseudomonads cultivated on different carbon sources after hydrolysis. The results of this work demonstrated that the newly-developed strategy was efficient, repeatable, and could have good potential to be employed for detailed analysis of PHA monomeric composition.

  4. Solvent system selectivities in countercurrent chromatography using Salicornia gaudichaudiana metabolites as practical example with off-line electrospray mass-spectrometry injection profiling.

    PubMed

    Costa, Fernanda das Neves; Jerz, Gerold; Figueiredo, Fabiana de Souza; Winterhalter, Peter; Leitão, Gilda Guimarães

    2015-03-13

    For the development of an efficient two-stage isolation process for high-speed countercurrent chromatography (HSCCC) with focus on principal metabolites from the ethyl acetate extract of the halophyte plant Salicornia gaudichaudiana, separation selectivities of two different biphasic solvent systems with similar polarities were evaluated using the elution and extrusion approach. Efficiency in isolation of target compounds is determined by the solvent system selectivity and their chronological use in multiple separation steps. The system n-hexane-ethyl acetate-methanol-water (0.5:6:0.5:6, v/v/v/v) resulted in a comprehensive separation of polyphenolic glycosides. The system n-hexane-n-butanol-water (1:1:2, v/v/v) was less universal but was highly efficient in the fractionation of positional isomers such as di-substituted cinnamic acid quinic acid derivatives. Multiple metabolite detection performed on recovered HSCCC tube fractions was done with rapid mass-spectrometry profiling by sequential off-line injections to electrospray mass-spectrometry (ESI-MS/MS). Selective ion traces of metabolites delivered reconstituted preparative HSCCC runs. Molecular weight distribution of target compounds in single HSCCC tube fractions and MS/MS fragment data were available. Chromatographic areas with strong co-elution effects and fractions of pure recoverable compounds were visualized. In total 11 metabolites have been identified and monitored. Result of this approach was a fast isolation protocol for S. gaudichaudiana metabolites using two solvent systems in a strategic sequence. The process could easily be scaled-up to larger lab-scale or industrial recovery.

  5. Determination of beef tallow in lard through a multidimensional off-line non-aqueous reversed phase-argentation LC method coupled to mass spectrometry.

    PubMed

    Dugo, Paola; Kumm, Tiina; Fazio, Alessia; Dugo, Giovanni; Mondello, Luigi

    2006-03-01

    The presence of tallow in lard is not easy to determine, due to the similarity of the composition of these two animal fats, which differ mainly in the distribution of fatty acids (FA) in the three positions of the glycerol molecule. The determination of the composition of the triacylglycerol (TAG) fraction of lard, tallow, and their mixtures was investigated by HPLC in combination with atmospheric pressure chemical ionization mass spectrometry (APCI-MS). The presence of tallow in lard was determined through the study of the sn-POP/sn-PPO ratio by multidimensional HPLC. The off-line bidimensional system was attained through the coupling of non-aqueous reversed phase (NARP)-HPLC and silver ion (Ag)-HPLC. The primary column eluate was fractionated and the fraction containing POP/PPO isomers was injected onto the secondary column, allowing the separation of positional isomers, unresolved in the first dimension. Peak assignment was carried out by combining retention data with APCI-MS spectral information. The fatty acid distribution along the glycerol backbone, determined by Ag-HPLC, was confirmed through diglyceride ion ratios derived from APCI-MS analysis. Method validation was carried out in preliminary applications on standard TAGs. The analytical results obtained show that even a 5% addition of tallow to lard modifies the distribution of positional isomers.

  6. Preparative mass-spectrometry profiling of bioactive metabolites in Saudi-Arabian propolis fractionated by high-speed countercurrent chromatography and off-line atmospheric pressure chemical ionization mass-spectrometry injection.

    PubMed

    Jerz, Gerold; Elnakady, Yasser A; Braun, André; Jäckel, Kristin; Sasse, Florenz; Al Ghamdi, Ahmad A; Omar, Mohamed O M; Winterhalter, Peter

    2014-06-20

    Propolis is a glue material collected by honeybees which is used to seal cracks in beehives and to protect the bee population from infections. Propolis resins have a long history in medicinal use as a natural remedy. The multiple biological properties are related to variations in their chemical compositions. Geographical settings and availability of plant sources are important factors for the occurrence of specific natural products in propolis. A propolis ethylacetate extract (800mg) from Saudi Arabia (Al-Baha region) was separated by preparative scale high-speed countercurrent chromatography (HSCCC) using a non-aqueous solvent system n-hexane-ACN (1:1, v/v). For multiple metabolite detection, the resulting HSCCC-fractions were sequentially injected off-line into an atmospheric pressure chemical ionization mass-spectrometry (APCI-MS/MS) device, and a reconstituted mass spectrometry profile of the preparative run was visualized by selected ion traces. Best ion-intensities for detected compounds were obtained in the negative APCI mode and monitored occurring co-elution effects. HSCCC and successive purification steps resulted in the isolation and characterization of various bioactive natural products such as (12E)- and (12Z)-communic acid, sandaracopimaric acid, (+)-ferruginol, (+)-totarol, and 3β-acetoxy-19(29)-taraxasten-20a-ol using EI-, APCI-MS and 1D/2D-NMR. Cycloartenol-derivatives and triterpene acetates were isolated in mixtures and elucidated by EI-MS and 1D-NMR. Free fatty acids, and two labdane fatty acid esters were identified by APCI-MS/MS. In total 19 metabolites have been identified. The novel combination of HSCCC fractionation, and APCI-MS-target-guided molecular mass profiling improve efficiency of lead-structure identification.

  7. Characterization and quantification of triacylglycerols in peanut oil by off-line comprehensive two-dimensional liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Hu, Jun; Wei, Fang; Dong, Xu-Yan; Lv, Xin; Jiang, Mu-Lan; Li, Guang-Ming; Chen, Hong

    2013-01-01

    The complexity of natural triacylglycerols (TAGs) in various edible oils is prodigious due to the hundreds of set is of TAG compositions, which makes the identification of TAGs quite difficult. In this investigation, the off-line 2D system coupling of nonaqueous RP and silver-ion HPLC with atmospheric pressure chemical ionization MS detection has been applied to the identification and quantification of TAGs in peanut oil. The method was successful in the separation of a high number of TAG solutes, and the TAG structures were evaluated by analyzing their atmospheric pressure chemical ionization mass spectra information. HPLC and MS conditions have been optimized and the fragmentation mechanisms of isomers have been validated. In addition, an internal standard approach has been developed for TAG quantification. Then this system was applied in peanut oil samples and there was a total of 48 TAGs including regioisomers that have been determined and quantified.

  8. Determination of molecular mass distribution of silicone oils by supercritical fluid chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and their off-line combination.

    PubMed

    Chmelík, J; Planeta, J; Rehulka, P; Chmelík, J

    2001-07-01

    Silicone oil samples were characterized by supercritical fluid chromatography (SFC), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI--TOF MS), and their off-line combination. SFC was used to separate samples of silicone oils on micropacked capillary columns. The fractions for the identification studies were obtained from SFC runs at defined time intervals, when the restrictor was pulled out from the chromatographic flame ionization detector (FID) and inserted into a glass vial with acetone. MALDI--TOF MS was used for the identification of individual oligomers in the fractions separated. The molecular mass distributions determined based on SFC and MALDI--TOF MS measurements were compared. From this comparison, it follows that the results are in good agreement. However, certain differences were observed: MALDI--TOF MS was capable of detecting somewhat larger oligomers than the SFC-FID, but the lower molecular mass oligomers were not present in the MALDI spectra. Differences in the region of lower molecular masses can be explained by evaporation of the more volatile low molecular mass oligomers resulting from heating of the sample during the MALDI--TOF MS measurements as a result of the absorption of the laser shot energy. The fact that no high mass discrimination effects of the MALDI--TOF MS measurements, compared with SFC, were observed is very promising for further applications of MALDI--TOF MS in characterizing synthetic polymers of moderate polydispersity.

  9. N-glycomic profiling of a glucosidase II mutant of Dictyostelium discoideum by ''off-line'' liquid chromatography and mass spectrometry.

    PubMed

    Hykollari, Alba; Dragosits, Martin; Rendić, Dubravko; Wilson, Iain B H; Paschinger, Katharina

    2014-08-01

    In this study, we have performed the first mass spectrometric analysis of N-glycans of the M31 mutant strain of the cellular slime mould Dictyostelium discoideum, previously shown to have a defect in glucosidase II. Together with glucosidase I, this enzyme mediates part of the initial processing of N-glycans; defects in either glucosidase are associated with human diseases and result in an accumulation of incorrectly processed oligosaccharides which are not, or only poor, substrates for a range of downstream enzymes. To examine the effect of the glucosidase II mutation in Dictyostelium, we employed off-line LC-MALDI-TOF MS in combination with chemical and enzymatic treatments and MS/MS to analyze the neutral and anionic N-glycans of the mutant as compared to the wild type. The major neutral species were, as expected, of the composition Hex10-11 HexNAc2-3 with one or two terminal glucose residues. Consistent with the block in processing of neutral N-glycans caused by the absence of glucosidase II, fucose was apparently absent from the N-glycans and bisecting N-acetylglucosamine was rare. The major anionic oligosaccharides were sulfated and/or methylphosphorylated forms of Hex8-11 HexNAc2-3 , many of which surprisingly lacked glucose residues entirely. As anionic N-glycans are considered to be mostly associated with lysosomal enzymes in Dictyostelium, we hypothesise that glycosidases present in the acidic compartments may act on the oligosaccharides attached to such slime mould proteins. Furthermore, our chosen analytical approach enabled us, via observation of diagnostic negative-mode MS/MS fragments, to determine the fine structure of the methylphosphorylated and sulfated N-glycans of the M31 glucosidase mutant in their native state.

  10. Off-line two dimensional isoelectrofocusing-liquid chromatography/mass spectrometry (time of flight) for the determination of the bioactive peptide lunasin.

    PubMed

    Guijarro-Díez, Miguel; García, María Concepción; Crego, Antonio Luis; Marina, María Luisa

    2014-12-05

    Progress in liquid chromatography and mass spectrometry technologies offers a great opportunity for the determination of bioactive peptides. Nevertheless, in many cases, the direct application of this technology does not enable the detection of the investigated peptides due to serious signal suppression. This is the case of lunasin, a cancer preventive, anti-inflammatory, and cholesterol-reducing peptide originally isolated from soybean and later found in some cereals. Most methods applied for the quantitation of this peptide were immunological and based on the detection of just a fragment of the lunasin sequence. At this regard, there is a peptide commercially available with a sequence similar to lunasin but differing in just one amino acid that has been wrongly used for the quantitation of lunasin. The use of high resolution mass spectrometry has enabled to be aware of this issue and of the need for new methods enabling the reliable identification and determination of lunasin. However, when different approaches were evaluated in this work for the reduction of the interferences originating signal suppression, such as matrix dilution, previous lunasin purification by reversed-phase or ion-exchange solid-phase extraction, and use of different chromatographic columns, no one resulted successful in the case of soybean. Just a one-dimensional separation of the soybean extract by isoelectrofocusing followed by a second dimension separation by reversed-phase liquid chromatography enabled a significant reduction of matrix interferences and the detection of lunasin in soybean products by high resolution mass spectrometry with a time of flight (TOF) analyzer. After method optimization, selectivity, linearity, accuracy, precision, and limits of detection and quantitation were evaluated, being possible to quantitate as low as 25ng/mL (1.5μg lunasin/g protein). Concentration of lunasin in the analyzed soybean flour and textured soybean ranged from 14.0 to 22.5mg lunasin

  11. δ13C and δD Measurement using Cavity Ring-down and Isotope Ratio Mass Spectrometry by Gas Chromatography/Combustion/Pyrolysis and Off-line Processing of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Culp, R.; Pan, H.; Saad, N.

    2015-12-01

    A comparison was made between various stable isotope measurement techniques for the purpose of quantifying each methods capability for use in hydrocarbon analyses applicable to fields such as geochemistry, agriculture, forensics and authenticity testing. Measurement techniques include: (1) Cavity Ring-down spectrometry (CRDS) using a Picarro 2120-A interfaced with a combustion module (CM) to facilitate conversion of hydrocarbons to carbon dioxide and water (2) Isotope Ratio Mass Spectrometry (IRMS) using a Thermo 253 IRMS with gas chromatographic separation prior to combustion to carbon dioxide or high temperature pyrolysis to hydrogen for isotope ratio measurement. Also, off line combustion to carbon dioxide and water with further reduction to hydrogen and dual-inlet measurement by IRMS. IRMS techniques have proven track records for measurement accuracy and precision but require independent analyses of carbon and hydrogen since one needs to oxidize carbon but reduce water to hydrogen prior to measurement or pyrolyze hydrocarbons directly into hydrogen after gas chromatographic separation. Cavity ring-down spectrometry can measure carbon dioxide and water simultaneously eliminating the need for two separate measurements of carbon and hydrogen isotopes. Although the CRDS suffers from memory effects following combustion and transfer of gases early on, new technology has reduced this to acceptable levels for accurate determinations of carbon and hydrogen isotope ratios. In this study, various hydrocarbon materials were used over an extended period of time to determine the best combination of sample size, replicate analyses and combustion column composition and life. The data presented here indicates isotopic measurements by CM-CRDS, for both solid and volatile liquid samples, compare well with GC/IRMS and off-line dual inlet methods of analysis.

  12. A new approach based on off-line coupling of high-performance liquid chromatography with gas chromatography-mass spectrometry to determine acrylamide in coffee brew.

    PubMed

    Blanch, Gracia Patricia; Morales, Francisco José; Moreno, Fernando de la Peña; del Castillo, María Luisa Ruiz

    2013-01-01

    A new method based on off-line coupling of LC with GC in replacement of conventional sample preparation techniques is proposed to analyze acrylamide in coffee brews. The method involves the preseparation of the sample by LC, the collection of the selected fraction, its concentration under nitrogen, and subsequent analysis by GC coupled with MS. The composition of the LC mobile phase and the flow rate were studied to select those conditions that allowed separation of acrylamide without coeluting compounds. Under the conditions selected recoveries close to 100% were achieved while LODs and LOQs equal to 5 and 10 μg/L for acrylamide in brewed coffee were obtained. The method developed enabled the reliable detection of acrylamide in spiked coffee beverage samples without further clean-up steps or sample manipulation.

  13. Nontargeted lipidomic characterization of porcine organs using hydrophilic interaction liquid chromatography and off-line two-dimensional liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Cífková, Eva; Holčapek, Michal; Lísa, Miroslav

    2013-09-01

    Lipids form a significant part of animal organs and they are responsible for important biological functions, such as semi-permeability and fluidity of membranes, signaling activity, anti-inflammatory processes, etc. We have performed a comprehensive nontargeted lipidomic characterization of porcine brain, heart, kidney, liver, lung, spinal cord, spleen, and stomach using hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI/MS) to describe the representation of individual lipid classes in these organs. Detailed information on identified lipid species inside classes are obtained based on relative abundances of deprotonated molecules [M-H](-) in the negative-ion ESI mass spectra, which provides important knowledge on phosphatidylethanolamines and their different forms of fatty acyl linkage (ethers and plasmalogens), phosphatidylinositols, and hexosylceramides containing nonhydroxy- and hydroxy-fatty acyls. The detailed analysis of identified lipid classes using reversed-phase liquid chromatography in the second dimension was performed for porcine brain to determine more than 160 individual lipid species containing attached fatty acyls of different acyl chain length, double-bond number, and positions on the glycerol skeleton. The fatty acid composition of porcine organs is determined by gas chromatography with flame ionization detection after the transesterification with sodium methoxide.

  14. Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry

    USGS Publications Warehouse

    Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan

    2014-01-01

    A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.

  15. Electrochemical oxidation coupled with liquid chromatography and mass spectrometry to study the oxidative stability of active pharmaceutical ingredients in solution: A comparison of off-line and on-line approaches.

    PubMed

    Torres, Susana; Brown, Roland; Zelesky, Todd; Scrivens, Garry; Szucs, Roman; Hawkins, Joel M; Taylor, Mark R

    2016-11-30

    Stability studies of pharmaceutical drug products and pharmaceutical active substances are important to research and development in order to fully understand and maintain product quality and safety throughout its shelf-life. Oxidative forced degradation studies are among the different types of stability studies performed by the pharmaceutical industry in order to understand the intrinsic stability of drug molecules. We have been comparing the use of electrochemistry as an alternative oxidative forced degradation method to traditional forced degradation and accelerated stability studies. Using the electrochemical degradation approach the substrate oxidation takes place in a commercially available electrochemical cell and the effluent of the cell can be either a) directly infused into the mass spectrometer or b) injected in a chromatographic column for separation of the different products formed prior to the mass spectrometry analysis. To enable the study of large numbers of different experimental conditions and molecules we developed a new dual pump automated electrochemical screening platform. This system used a HPLC pump and autosampler to load and wash the electrochemical cell and deliver the oxidized sample plug to a second injection loop. This system enabled the automatic sequential analyses of large numbers of different solutions under varied experimental conditions without need for operator intervention during the run sequence. Here we describe the system and evaluate its performance using a test molecule with well characterized stability and compare results to those obtained using an off-line electrochemistry approach.

  16. Separation and analysis of phenolic acids from Salvia miltiorrhiza and its related preparations by off-line two-dimensional hydrophilic interaction chromatography×reversed-phase liquid chromatography coupled with ion trap time-of-flight mass spectrometry.

    PubMed

    Sun, Wanyang; Tong, Ling; Miao, Jingzhuo; Huang, Jingyi; Li, Dongxiang; Li, Yunfei; Xiao, Hongting; Sun, Henry; Bi, Kaishun

    2016-01-29

    Salvia miltiorrhiza (SM) is one of the most widely used Traditional Chinese Medicine. Active constituents of SM mainly contain hydrophilic phenolic acids (PAs) and lipophilic tanshinones. However, due to the existing of multiple ester bonds and unsaturated bonds in the structures, PAs have numerous chemical conversion products. Many of them are so low-abundant that hard to be separated using conventional methods. In this study, an off-line two-dimensional liquid chromatography (2D-LC) method was developed to separate PAs in SM and its related preparations. In the first dimension, samples were fractionated by hydrophilic interaction chromatography (HILIC) (Acchrom×Amide, 4.6×250mm, 5μm) mainly based on the hydrogen bonding effects. The fractions were then separated on reversed-phase liquid chromatography (RP-LC) (Acquity HSS T3, 2.1×50mm, 1.7μm) according to hydrophobicity. For the selective identification of PAs, diode array detector (DAD) and electrospray ionization tandem ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) were employed. Practical and effective peak capacities of all the samples were greater than 2046 and 1130, respectively, with the orthogonalities ranged from 69.7% to 92.8%, which indicated the high efficiency and versatility of this method. By utilizing the data post-processing techniques, including mass defect filter, neutral loss filter and product ion filter, a total of 265 compounds comprising 196 potentially new PAs were tentatively characterized. Twelve kinds of derivatives, mainly including glycosylated compounds, O-alkylated compounds, condensed compounds and hydrolyzed compounds, constituted the novelty of the newly identified PAs. The HILIC×RP-LC/TOF-MS system expanded our understanding on PAs of S. miltiorrhiza and its related preparations, which could also benefit the separation and characterization of polar constituents in complicated herbal extracts.

  17. Hyphenation of a EC / OC thermal-optical carbon analyzer to photo ionization time-of-flight mass spectrometry: a new off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter

    NASA Astrophysics Data System (ADS)

    Diab, J.; Streibel, T.; Cavalli, F.; Lee, S. C.; Saathoff, H.; Mamakos, T.; Chow, J. C.; Chen, L.-W. A.; Watson, J. G.; Sippula, O.; Zimmermann, R.

    2015-01-01

    Source apportionment and exposure of primary and secondary aerosols remains a challenging research field. In particular, the organic composition of primary particles and the formation mechanism of secondary organic aerosols (SOA) warrant further investigations. Progress in this field is strongly connected to the development of novel analytical techniques. In this study an off-line aerosol mass spectrometric technique based on filter samples, a hyphenated thermal/optical analyzer-photo ionization time of flight mass spectrometer (PI-TOFMS) system, was developed. The approach extends the capability of the widely used PM carbon analysis (for elemental/organic carbon (EC / OC)) by enabling the investigation of evolved gaseous species with soft and selective (resonance enhanced multiphoton ionization, REMPI) and non-selective photo ionization (single photon ionization, SPI) techniques. SPI was tuned to be medium soft to achieve comparability with results obtained by electron ionization (EI) aerosol mass spectrometer (AMS). Different PM samples including wood combustion emission samples, smog chamber samples from the reaction of ozone with different SOA precursors, and ambient samples taken at Ispra, Italy in winter as well as in summer were tested. The EC / OC-PI-TOFMS technique increases the understanding of the processes during the thermal/optical analysis and identifies marker substances for the source apportionment. Composition of oligomeric or polymeric species present in PM can be investigated by the analysis of the thermally breakdown products. In case of wood combustion, in addition to the well-known markers at m/z ratios of 60 and 73, two new characteristic masses (m/z 70 and 98) have been revealed as potentially linked to biomass burning. All four masses were also the dominant signals in an ambient sample taken in winter time in Ispra, Italy, confirming the finding that wood burning for residential heating is a major source for particulate matter (PM) in

  18. Hyphenation of a EC / OC thermal-optical carbon analyzer to photo-ionization time-of-flight mass spectrometry: an off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter

    NASA Astrophysics Data System (ADS)

    Diab, J.; Streibel, T.; Cavalli, F.; Lee, S. C.; Saathoff, H.; Mamakos, A.; Chow, J. C.; Chen, L.-W. A.; Watson, J. G.; Sippula, O.; Zimmermann, R.

    2015-08-01

    Source apportionment and characterization of primary and secondary aerosols remains a challenging research field. In particular, the organic composition of primary particles and the formation mechanism of secondary organic aerosols (SOAs) warrant further investigations. Progress in this field is strongly connected to the development of novel analytical techniques. In this study an off-line aerosol mass spectrometric technique based on filter samples, a hyphenated thermal-optical analyzer photo-ionization time-of-flight mass spectrometer (PI-TOFMS) system, was developed. The approach extends the capability of the widely used particulate matter (PM) carbon analysis (for elemental / organic carbon, EC / OC) by enabling the investigation of evolved gaseous species with soft and selective (resonance enhanced multi-photon ionization, REMPI) and non-selective photo-ionization (single-photon ionization, SPI) techniques. SPI was tuned to be medium soft to achieve comparability with results obtained by the electron ionization aerosol mass spectrometer (AMS). Different PM samples including wood combustion emission samples, smog chamber samples from the reaction of ozone with different SOA precursors, and ambient samples taken at Ispra, Italy, in winter as well as in summer were tested. The EC / OC-PI-TOFMS technique increases the understanding of the processes during thermal-optical analysis and identifies marker substances for the source apportionment. Composition of oligomeric or polymeric species present in PM can be investigated by the analysis of the thermal breakdown products. In the case of wood combustion, in addition to the well-known markers at m/z ratios of 60 and 73, two new characteristic masses (m/z 70 and 98) have been revealed as potentially linked to biomass burning. All four masses were also the dominant signals in an ambient sample taken in winter time in Ispra, Italy, confirming the finding that wood burning for residential heating is a major source of PM

  19. Elimination of diastereomer interference to determine Telcagepant (MK-0974) in human plasma using on-line turbulent-flow technology and off-line solid-phase extraction coupled with liquid chromatography/tandem mass spectrometry.

    PubMed

    Xu, Yang; Willson, Kenneth J; Anderson, Melanie D G; Musson, Donald G; Miller-Stein, Cynthia M; Woolf, Eric J

    2009-06-01

    To eliminate the diastereomer interference on Telcagepant (MK-0974) determination during clinical study support, on-line high turbulent-flow liquid chromatography (HTLC) methods, HTLC-A and HTLC-B that covered dynamic range of 0.5-500 nM and 5-5000 nM, respectively, were developed. To meet the requirement of rapid assay transfer among multiple laboratories and analysts, a solid-phase extraction (SPE) assay was derived from the existing HTLC-B assay under the same dynamic range. The on-line HTLC assays were achieved through direct injection of plasma samples, extraction of analyte with a Cohesive C18 column (50 mm x 0.5 mm, 50 microm), followed by HPLC separation on a FluoPhase RP column (100 mm x 2.1 mm, 5 microm) and MS/MS detection. The off-line SPE assay used Waters Oasis HLB microElution plate to extract the analytes from plasma matrix before injecting on a FluoPhase RP column (150 mm x 2.1 mm, 5 microm) for LC-MS/MS analysis. Under both on-line and off-line assay conditions, the diastereomer 1c was chromatographically separated from MK-0974. Cross-validation with the pooled samples demonstrated that both on-line and off-line assays provided comparable data with a difference of < 2.6%. The assays were proved to be specific, accurate and reliable, and have been used to support multiple clinical studies. The pros and cons of on-line and off-line assays with regard to man power involved in sample preparation, total analysis time, carryover, cost efficiency, and the requirement for assay transfer are discussed.

  20. Acidolysis-based component mapping of glycosaminoglycans by reversed-phase high-performance liquid chromatography with off-line electrospray ionization-tandem mass spectrometry: evidence and tags to distinguish different glycosaminoglycans.

    PubMed

    Zhu, He; Chen, Xuan; Zhang, Xiao; Liu, Lili; Cong, Dapeng; Zhao, Xia; Yu, Guangli

    2014-11-15

    Diverse monosaccharide analysis methods have been established for a long time, but few methods are available for a complete monosaccharide analysis of glycosaminoglycans (GAGs) and certain acidolysis-resistant components derived from GAGs. In this report, a reversed-phase high-performance liquid chromatography (RP-HPLC) method with pre-column 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization was established for a complete monosaccharide analysis of GAGs. Good separation of glucosamine/mannosamine (GlcN/ManN) and glucuronic acid/iduronic acid (GlcA/IdoA) was achieved. This method can also be applied to analyze the acidolysis-resistant disaccharides derived from GAGs, and the sequences of these disaccharides were confirmed by electrospray ionization-collision-induced dissociation-tandem mass spectrometry (ESI-CID-MS/MS). These unique disaccharides could be used as markers to distinguish heparin/heparan sulfate (HP/HS), chondroitin sulfate/dermatan sulfate (CS/DS), and hyaluronic acid (HA).

  1. Determination of saturated-hydrocarbon contamination in baby foods by using on-line liquid-gas chromatography and off-line liquid chromatography-comprehensive gas chromatography combined with mass spectrometry.

    PubMed

    Mondello, Luigi; Zoccali, Mariosimone; Purcaro, Giorgia; Franchina, Flavio Antonio; Sciarrone, Danilo; Moret, Sabrina; Conte, Lanfranco; Tranchida, Peter Quinto

    2012-10-12

    The present contribution describes an investigation directed towards the use of a rapid heart-cutting multidimensional LC-GC-FID method for the analysis of mineral oil saturated hydrocarbons (MOSH), contained in different types of homogenized solid baby food (fish, meat and fruit products). The fish and meat products all contained vegetable oil (sunflower), potentially an important source of mineral-oil contamination. Sixteen commercial baby food samples were subjected to analysis, with various degrees of MOSH contamination (from 0.3mg/kg to circa 14 mg/kg) found. Hence, MOSH contamination was found not only in the meat and fish products, but also in the fruit ones. A fruit-based baby food was lab-made, using the ingredients reported on the commercial product, and was found to be contaminated. The single ingredients were then subjected to LC-GC analysis, with corn starch and sugar found to be the source of contamination. For confirmation of the analytical findings, three of the sixteen samples were analyzed in two separate laboratories, using two distinct LC-GC methods, based on different interfaces. The results were confirmed, in qualitative terms, by collecting the LC fractions, relative to some of the food samples, and subjecting them to comprehensive two-dimensional GC-quadrupole mass spectrometry. Thus, mass spectral data were attained for the saturated hydrocarbons.

  2. Countercurrent chromatography separation of saponins by skeleton type from Ampelozizyphus amazonicus for off-line ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry analysis and characterisation.

    PubMed

    de Souza Figueiredo, Fabiana; Celano, Rita; de Sousa Silva, Danila; das Neves Costa, Fernanda; Hewitson, Peter; Ignatova, Svetlana; Piccinelli, Anna Lisa; Rastrelli, Luca; Guimarães Leitão, Suzana; Guimarães Leitão, Gilda

    2017-01-20

    Ampelozizyphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria, is a climbing shrub, native to the Amazonian region, with jujubogenin glycoside saponins as main compounds. The crude extract of this plant is too complex for any kind of structural identification, and HPLC separation was not sufficient to resolve this issue. Therefore, the aim of this work was to obtain saponin enriched fractions from the bark ethanol extract by countercurrent chromatography (CCC) for further isolation and identification/characterisation of the major saponins by HPLC and MS. The butanol extract was fractionated by CCC with hexane - ethyl acetate - butanol - ethanol - water (1:6:1:1:6; v/v) solvent system yielding 4 group fractions. The collected fractions were analysed by UHPLC-HRMS (ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry) and MS(n). Group 1 presented mainly oleane type saponins, and group 3 showed mainly jujubogenin glycosides, keto-dammarane type triterpene saponins and saponins with C31 skeleton. Thus, CCC separated saponins from the butanol-rich extract by skeleton type. A further purification of group 3 by CCC (ethyl acetate - ethanol - water (1:0.2:1; v/v)) and HPLC-RI was performed in order to obtain these unusual aglycones in pure form.

  3. Capillary isoelectric focusing of probiotic bacteria from cow's milk in tapered fused silica capillary with off-line matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification.

    PubMed

    Horká, Marie; Karásek, Pavel; Salplachta, Jiří; Růžička, Filip; Vykydalová, Marie; Kubesová, Anna; Dráb, Vladimír; Roth, Michal; Slais, Karel

    2013-07-25

    In this study, combination of capillary isoelectric focusing (CIEF) in tapered fused silica (FS) capillary with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is presented as an efficient approach for unambiguous identification of probiotic bacteria in real sample. For this purpose, bacteria within genus Lactobacillus were selected as model bioanalytes and cow's milk was selected as a biological sample. CIEF analysis of both the cultivated bacteria and the bacteria in the milk was optimized and isoelectric points characterizing the examined bacteria were subsequently determined independently of the bacterial sample origin. The use of tapered FS capillary significantly enhanced the separation capacity and efficiency of the CIEF analyses performed. In addition, the cell number injected into the tapered FS capillary was quantified and an excellent linearity of the calibration curves was achieved which enabled quantitative analysis of the bacteria by CIEF with UV detection. The minimum detectable number of bacterial cells was 2×10(6) mL(-1). Finally, cow's milk spiked with the selected bacterium was analyzed by CIEF in tapered FS capillary, the focused and detected bacterial cells were collected from the capillary, deposited onto the cultivation medium, and identified using MALDI-TOF MS afterward. Our results have revealed that the proposed procedure can be advantageously used for unambiguous identification of probiotic bacteria in a real sample.

  4. Proteome analysis of Myxococcus xanthus by off-line two-dimensional chromatographic separation using monolithic poly-(styrene-divinylbenzene) columns combined with ion-trap tandem mass spectrometry.

    PubMed

    Schley, Christian; Altmeyer, Matthias O; Swart, Remco; Müller, Rolf; Huber, Christian G

    2006-10-01

    Myxobacteria are potent producers of secondary metabolites exhibiting diverse biological activities and pharmacological potential. The proteome of Myxococcus xanthus DK1622 was characterized by two-dimensional chromatographic separation of tryptic peptides from a lysate followed by tandem mass spectrometric identification. The high degree of orthogonality of the separation system employing polymer-based strong cation-exchange and monolithic reversed-phase stationary phases was clearly demonstrated. Upon automated database searching, 1312 unique peptides were identified, which were associated with 631 unique proteins. High-molecular polyketide synthetases and nonribosomal peptide synthetases, known to be involved in the biosynthesis of various secondary metabolites, were readily detected. Besides the identification of gene products associated with the production of known secondary metabolites, proteins could also be identified for six gene clusters, for which no biosynthetic product has been known so far.

  5. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  6. On-flow pulsed field gradient heteronuclear correlation spectrometry in off-line LC-SPE-NMR analysis of chemicals related to the chemical weapons convention.

    PubMed

    Koskela, Harri; Ervasti, Mia; Björk, Heikki; Vanninen, Paula

    2009-02-01

    Hyphenation of liquid chromatography with nuclear magnetic resonance spectroscopy (LC-NMR) is a useful technique in the analysis of complex samples. However, application of on-flow 1H NMR spectrometry during the LC-NMR analysis usually suffers from high intensity of eluent resonances. The poor dynamic range can be improved either with use of deuterated eluents or with various signal suppression schemes. Deuterated eluents are expensive, and peak-selective signal suppression schemes are often unsatisfactory when detection of chemicals at low concentration is needed. If the analytes have a common heteronucleus, on-flow pulsed field gradient heteronuclear correlation spectrometry can offer several benefits. The analytes can be monitored selectively, while the intense nondeuterated eluent and impurity background can be effectively eliminated. In our study, on-flow one-dimensional (1D) 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry was utilized in the analysis of characteristic organophosphorus degradation products of nerve agents sarin and soman during chromatographic separation. These chemicals were not detectable by UV, so their retention times were monitored using on-flow 1D 1H-31P HSQC. This enabled application of LC-NMR combined with solid-phase extraction (LC-SPE-NMR) in analysis of these organophosphorus chemicals in an alkaline decontamination solution. The analytes were extracted from the SPE cartridges with deuterated eluent, and the off-line NMR analysis was performed using a mass-sensitive microcoil probe head. The used on-flow 1D 1H-31P HSQC approach offered a high dynamic range and good detection limit (ca. 10 microg/55 nmol) with a high sampling frequency (1 point per 2 s) in the acquired pseudo-two-dimensional spectrum. No significant impurity background was present in the off-line NMR samples, and identification of the extracted analytes was straightforward.

  7. Mass spectrometry

    SciTech Connect

    Burlingame, A.L.; Baillie, T.A.; Derrick, P.J.

    1986-04-01

    It is the intention of the review to bring together in one source the direction of major developments in mass spectrometry and to illustrate these by citing key contributions from both fundamental and applied research. The Review is intended to provide the reader with a sense of the main currents, their breadth and depth, and probable future directions. It is also intended to provide the reader with a glimpse of the diverse discoveries and results that underpin the eventual development of new methods and instruments - the keys to obtaining new insights in all the physical, chemical, and biological sciences which depend on mass spectrometry at various levels of sophistication. Focal points for future interdisciplinary synergism might be selective quantitative derivatization of large peptides, which would convey properties that direct fragmentation providing specific sequence information, or optimization of LCMS for biooligomer sequencing and mixture analysis, or the perfect way to control or enhance the internal energy of ions of any size, or many others. 1669 references.

  8. MASS SPECTROMETRY

    DOEpatents

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  9. MASS SPECTROMETRY

    DOEpatents

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  10. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of

  11. Buffer salt effects in off-line coupling of capillary electrophoresis and mass spectrometry.

    PubMed

    Marák, Jozef; Stanová, Andrea

    2014-05-01

    In this work, the impact of buffer salts/matrix effects on the signal in direct injection MS with an electrospray interface (DI-ESI-MS) following pITP fractionation of the sample was studied. A range of buffers frequently used in CE analyses (pH 3-10) was prepared containing 10, 50, and 90% v/v of ACN, respectively. The sets of calibration solutions of cetirizine (an antihistaminic drug with an amphiprotic character) within a 0.05-2.0 mg/L concentration range were prepared in different buffers. The greatest enhancements in the MS signal (in terms of change in the slope of the calibration line) were obtained for the beta-alanine buffer (pH 3.5) in positive ionization and for the borate buffer (pH 9.2) in negative ionization, respectively. The procedure was successfully applied to the analysis of buserelin (a peptidic drug). The slope of the calibration line for solutions containing the beta-alanine buffer with 50% of ACN was 4 times higher than for water or urine, respectively. This study clearly demonstrates that the buffer salt/matrix effects in an offline combination of pITP and DI-ESI-MS can also play a positive role, as they can enhance the signal in MS. A similar influence of the above effects can also be presumed in the CE techniques combined on-line with ESI-MS.

  12. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  13. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  14. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  15. Forensic Mass Spectrometry.

    PubMed

    Hoffmann, William D; Jackson, Glen P

    2015-01-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  16. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  17. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  18. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  19. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  20. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  1. Desorption in Mass Spectrometry.

    PubMed

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed.

  2. Desorption in Mass Spectrometry

    PubMed Central

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed. PMID:28337398

  3. Hybrid instruments for mass spectrometry/mass spectrometry

    SciTech Connect

    Glish, G.L.; McLuckey, S.A.

    1986-01-01

    In order to refine further the technique of mass spectrometry/mass spectrometry efforts are being made to combine the desirable features of sector based tandem instruments with those of triple quadrupole mass spectrometers. This has resulted in the construction of tandem mass spectrometers which incorporate both sector type analyzers and quadrupole mass filters. These so-called hybrid instruments, designed specifically for mass spectrometry/mass spectrometry applications, are appearing in a variety of geometries each with unique features. This review describes the hybrid instruments reported to data and discusses general considerations for evaluating hybrid instruments with regard to application. 100 references.

  4. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  5. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  6. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  7. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  8. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  9. Mass spectrometry in environmental toxicology.

    PubMed

    Groh, Ksenia J; Suter, Marc J-F

    2014-01-01

    In environmental toxicology, mass spectrometry can be applied to evaluate both exposure to chemicals as well as their effects in organisms. Various ultra-trace techniques are employed today to measure pollutants in different environmental compartments. Increasingly, effect-directed analysis is being applied to focus chemical monitoring on sites of ecotoxicological concern. Mass spectrometry is also very instrumental for studying the interactions of chemicals with organisms on the molecular and cellular level, providing new insights into mechanisms of toxicity. In the future, diverse mass spectrometry-based techniques are expected to become even more widely used in this field, contributing to the refinement of currently used environmental risk assessment strategies.

  10. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.

  11. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  12. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  13. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  14. Instrumentation for mass spectrometry: 1997

    SciTech Connect

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  15. Mass spectrometry guided structural biology.

    PubMed

    Liko, Idlir; Allison, Timothy M; Hopper, Jonathan Ts; Robinson, Carol V

    2016-10-01

    With the convergence of breakthroughs in structural biology, specifically breaking the resolution barriers in cryo-electron microscopy and with continuing developments in crystallography, novel interfaces with other biophysical methods are emerging. Here we consider how mass spectrometry can inform these techniques by providing unambiguous definition of subunit stoichiometry. Moreover recent developments that increase mass spectral resolution enable molecular details to be ascribed to unassigned density within high-resolution maps of membrane and soluble protein complexes. Importantly we also show how developments in mass spectrometry can define optimal solution conditions to guide downstream structure determination, particularly of challenging biomolecules that refuse to crystallise.

  16. Imaging mass spectrometry in microbiology

    PubMed Central

    Watrous, Jeramie D.; Dorrestein, Pieter C.

    2013-01-01

    Mass spectrometry tools which allow for the 2-D visualization of the distribution of trace metals, metabolites, surface lipids, peptides and proteins directly from biological samples without the need for chemical tagging or antibodies are becoming increasingly useful for microbiology applications. These tools, comprised of different imaging mass spectrometry techniques, are ushering in an exciting new era of discovery by allowing for the generation of chemical hypotheses based on of the spatial mapping of atoms and molecules that can correlate to or transcend observed phenotypes. In this review, we explore the wide range of imaging mass spectrometry techniques available to microbiologists and describe their unique applications to microbiology with respect to the types of microbiology samples to be investigated. PMID:21822293

  17. Symposium on accelerator mass spectrometry

    SciTech Connect

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  18. Potential of laser mass spectrometry for the analysis of environmental dust particles--a review.

    PubMed

    Aubriet, Frédéric; Carré, Vincent

    2010-02-05

    Laser-based aerosol mass spectrometry in both on-line and off-line modes has become an essential tool to analyze airborne and industrial dust particles. The versatility of laser desorption and/or ionization appears to be a powerful tool to obtain the global composition of environment particles. Laser mass spectrometry to analyze inorganic (elemental and molecular), organic and biological aerosol components without or with a restricted number of preparation steps in both on-line and off-line modes can be regarded as an ideal analytical machine. However, some limitations are associated to this range of mass spectrometry techniques. This review presents the fundamental aspects of laser-based mass spectrometry and the different kinds of analyses, which may be done. A selected number of applications are then given which allows the reader to consider both the capabilities and the drawbacks of laser mass spectrometry to analyze dust environmental particles. Critical discussion is focused on comparison and new trends of these aerosol analytical techniques.

  19. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  20. "EMERGING" POLLUTANTS, MASS SPECTROMETRY, AND ...

    EPA Pesticide Factsheets

    A foundation for Environmental Science - Mass Spectrometry: Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry - the mainstay of analytical chemistry - the workhorse that supplies much of the definitive data that environmental scientists rely upon for identifying the molecular compositions (and ultimately the structures) of chemicals. This is not to ignore the complementary, critical roles played by the adjunct practices of sample enrichment (via any of various means of selective extraction) and analyte separation (via the myriad forms of chromatography and electrophoresis).While the power of mass spectrometry has long been highly visible to the practicing environmental chemist, it borders on continued obscurity to the lay public and most non-chemists. Even though mass spectrometry has played a long, historic (and largely invisible) role in establishing or undergirdidng our existing knowledge about environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is ususally the relevance of ssignificance of the knowledge acquired from the application of the tool that has ultimate meaning to the public and science at large - not how the knowledge was acquired. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in

  1. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  2. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  3. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  4. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    PubMed

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring

  5. Fluorine speciation analysis using reverse phase liquid chromatography coupled off-line to continuum source molecular absorption spectrometry (CS-MAS): identification and quantification of novel fluorinated organic compounds in environmental and biological samples.

    PubMed

    Qin, Zhiwei; McNee, David; Gleisner, Heike; Raab, Andrea; Kyeremeh, Kwaku; Jaspars, Marcel; Krupp, Eva; Deng, Hai; Feldmann, Jörg

    2012-07-17

    Driven by increasing demand for the monitoring of industrial perfluorinated compounds (PFCs), the identification of novel fluorine containing compounds (FOCs) and the tracking of organofluorine drugs and their degradation products, there is a clear need for sensitive, fluorine-specific detection of unknown FOCs. Here we report the first ever direct fluorine-specific (speciation) method; capable of individually detecting untargeted FOCs in environmental and biological samples through the application of continuum source molecular absorption spectrometry (CS-MAS) using a commercial CS-AAS. Two model FOCs (2,4,6, trifluorobenzoic acid (TFBA) and 5-fluoroindol-5-carboxylic acid (FICA)) were used, achieving fluorine-specific detection across a range of 0.1 to 300 ng/mL fluorine, corresponding to a limit of detection of 4 pg F and 5.26 nM for both compounds. Both TFBA and FICA showed a similar response to CS-MAS detection, potentially enabling the quantification of fluorine content in novel FOCs without having molecular standards available. This paper also reports the use of reverse-phase high performance liquid chromatography (RP-HPLC) coupled off-line with CS-MAS for the identification of single organofluorines in a mixture of FOCs via fraction collection. The linear range of both FOCs was determined to be from 1 to 500 ng/mL. The limits of detection of those species were just above 1 ng/mL (100 pg) and can therefore compete with targeted analytical methods such as ESI-MS. Finally, as a proof of principle the analysis of a fluoride-containing groundwater sample from Ghana demonstrated that this method can be used in the detection of novel FOCs, with identification achieved through parallel ESI-MS. Coupled HPLC-CS-MAS/ESI-MS is the first analytical methodology capable of selectively detecting and identifying novel FOCs, making possible the quantification of all fluorine containing compounds in one sample. This is the necessary analytical requirement to perform

  6. EMERGING POLLUTANTS, MASS SPECTROMETRY, AND ...

    EPA Pesticide Factsheets

    Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry (MS) - the mainstay of analytical chemistry - the workhorse that supplies definitive data that environmental scientists and engineers reply upon for identifying molecular compositions (and ultimately structures) of chemicals. While the power of MS has long been visible to the practicing environmental chemist, it borders on obscurity to the lay public and many scientists. While MS has played a long, historic (and largely invisible) role in establishing our knowledge of environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is usually the relevance or significance of the knowledge acquired from the application of the tool that has ultimate meaning to the public and science at large - not how the data were acquired. Methods (736/800): Mass Spectrometry and the

  7. Imaging Mass Spectrometry in Neuroscience

    PubMed Central

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  8. Mass spectrometry. [review of techniques

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  9. Glycosaminoglycan Glycomics Using Mass Spectrometry*

    PubMed Central

    Zaia, Joseph

    2013-01-01

    The fact that sulfated glycosaminoglycans (GAGs) are necessary for the functioning of all animal physiological systems drives the need to understand their biology. This understanding is limited, however, by the heterogeneous nature of GAG chains and their dynamic spatial and temporal expression patterns. GAGs have a regulated structure overlaid by heterogeneity but lack the detail necessary to build structure/function relationships. In order to provide this information, we need glycomics platforms that are sensitive, robust, high throughput, and information rich. This review summarizes progress on mass-spectrometry-based GAG glycomics methods. The areas covered include disaccharide analysis, oligosaccharide profiling, and tandem mass spectrometric sequencing. PMID:23325770

  10. A mass spectrometry primer for mass spectrometry imaging

    PubMed Central

    Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583

  11. Quantitative mass spectrometry: an overview

    NASA Astrophysics Data System (ADS)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  12. Affinity membrane introduction mass spectrometry

    SciTech Connect

    Xu, C.; Patrick, J.S.; Cooks, R.G. )

    1995-02-15

    A new technique, affinity membrane introduction mass spectrometry, is described. In this method, a chemically modified membrane is used to selectively adsorb analytes bearing a particular functional group and concentrate them from solution. Release of the bound analyte results in its transfer across the membrane and allows it to be monitored mass spectrometrically, using, in the present case, a benchtop ion trap instrument. Alkylamine-modified cellulose membranes are used to bind substituted benzaldehydes through imine formation at high pH. Release of the bound aldehyde is achieved by acid hydrolysis of the surface-bound imine. Benzaldehyde is detected with excellent specificity at 10 ppm in a complex mixture using this method. Using the enrichment capability of the membrane, a full mass spectrum of benzaldehyde can be measured at a concentration of 10 ppb. The behavior of a variety of other aldehydes is also discussed to illustrate the capabilities of the method. 21 refs., 5 figs., 2 tabs.

  13. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1987-01-01

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface.

  14. Electrophoresis-mass spectrometry probe

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1987-11-10

    The invention involves a new technique for the separation of complex mixtures of chemicals, which utilizes a unique interface probe for conventional mass spectrometers which allows the electrophoretically separated compounds to be analyzed in real-time by a mass spectrometer. This new chemical analysis interface, which couples electrophoresis with mass spectrometry, allows complex mixtures to be analyzed very rapidly, with much greater specificity, and with greater sensitivity. The interface or probe provides a means whereby large and/or polar molecules in complex mixtures to be completely characterized. The preferred embodiment of the probe utilizes a double capillary tip which allows the probe tip to be continually wetted by the buffer, which provides for increased heat dissipation, and results in a continually operating interface which is more durable and electronically stable than the illustrated single capillary tip probe interface. 8 figs.

  15. High Technology Mass Spectrometry Laboratory

    DTIC Science & Technology

    2010-08-01

    GSH, hemoglobin beta-Cys93 ( Hb -C93-AN) were monitored. The second order rate constants in M-ls-1 were: disappe 0.0806; appearance of GS-AN in whole...blood, 0.0776, appearance of Hb -C9 appearance of AbC34-AN in plasma, 0.224. The data indicate that the mos blood is Cys34 of albumin. This site...than Hb -C93 15. SUBJECT TERMS acrylonitrile, adduct, mass spectrometry, biomarker, toxic industrial chemicals 16. SECURITY CLASSIFICATION OF: a

  16. Neuroscience and Accelerator Mass Spectrometry

    SciTech Connect

    Palmblad, M N; Buchholz, B A; Hillegonds, D J; Vogel, J S

    2004-08-02

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as {sup 3}H, {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 41}Ca, with zepto- or attomole sensitivity and high precision and throughput, enabling safe human pharmacokinetic studies involving: microgram doses, agents having low bioavailability, or toxicology studies where administered doses must be kept low (<1 {micro}g/kg). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the timescale of decades. We will here review how AMS is applied in neurotoxicology and neuroscience.

  17. Neuroscience and accelerator mass spectrometry.

    PubMed

    Palmblad, Magnus; Buchholz, Bruce A; Hillegonds, Darren J; Vogel, John S

    2005-02-01

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had a great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as 3H, 14C, 26Al, 36Cl and 41Ca, with zepto- or attomole sensitivity and high precision and throughput, allowing safe human pharmacokinetic studies involving microgram doses, agents having low bioavailability or toxicology studies where administered doses must be kept low (<1 microg kg(-1)). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the time-scale of decades. We review here how AMS is applied in neurotoxicology and neuroscience.

  18. Mass spectrometry in combinatorial chemistry.

    PubMed

    Enjalbal, C; Martinez, J; Aubagnac, J L

    2000-01-01

    In the fast expanding field of combinatorial chemistry, profiling libraries has always been a matter of concern--as illustrated by the buoyant literature over the past seven years. Spectroscopic methods, including especially mass spectrometry and to a lesser extent IR and NMR, have been applied at different levels of combinatorial library synthesis: in the rehearsal phase to optimize the chemistry prior to library generation, to confirm library composition, and to characterize after screening each structure that exhibits positive response. Most of the efforts have been concentrated on library composition assessment. The difficulties of such analyses have evolved from the infancy of the combinatorial concept, where large mixtures were prepared, to the recent parallel syntheses of collections of discrete compounds. Whereas the complexity of the analyses has diminished, an increased degree of automation was simultaneously required to achieve efficient library component identification and quantification. In this respect, mass spectrometry has been found to be the method of choice, providing rapid, sensitive, and informative analyses, especially when coupled to chromatographic separation. Fully automated workstations able to cope with several hundreds of compounds per day have been designed. After a brief introduction to describe the combinatorial approach, library characterization will be discussed in detail, considering first the solution-based methodologies and secondly the support-bound material analyses.

  19. Mass Spectrometry Applications for Toxicology

    PubMed Central

    Mbughuni, Michael M.; Jannetto, Paul J.

    2016-01-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MSn) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology. PMID:28149262

  20. Mass Spectrometry Applications for Toxicology.

    PubMed

    Mbughuni, Michael M; Jannetto, Paul J; Langman, Loralie J

    2016-12-01

    Toxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both. To date, MS applications have permeated all fields of toxicology which include; environmental, clinical, and forensic toxicology. While many different analytical applications are used in these fields, MS and its hyphenated applications such as; gas chromatography MS (GC-MS), liquid chromatography MS (LC-MS), inductively coupled plasma ionization MS (ICP-MS), tandem mass spectrometry (MS/MS and MS(n)) have emerged as powerful tools used in toxicology laboratories. This review will focus on these hyphenated MS technologies and their applications for toxicology.

  1. Quantitative mass spectrometry: an overview

    PubMed Central

    2016-01-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry—especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644965

  2. Clinical Application of Ambient Ionization Mass Spectrometry

    PubMed Central

    Li, Li-Hua; Hsieh, Hua-Yi; Hsu, Cheng-Chih

    2017-01-01

    Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study. PMID:28337399

  3. Neuropeptide Signaling in Crustaceans Probed by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liang, Zhidan

    Neuropeptides are one of the most diverse classes of signaling molecules whose identities and functions are not yet fully understood. They have been implicated in the regulation of a wide range of physiological processes, including feeding-related and motivated behaviors, and also environmental adaptations. In this work, improved mass spectrometry-based analytical platforms were developed and applied to the crustacean systems to characterize signaling molecules. This dissertation begins with a review of mass spectrometry-based neuropeptide studies from both temporal- and spatial-domains. This review is then followed by several chapters detailing a few research projects related to the crustacean neuropeptidomic characterization and comparative analysis. The neuropeptidome of crayfish, Orconectes rusticus is characterized for the first time using mass spectrometry-based tools. In vivo microdialysis sampling technique offers the capability of direct sampling from extracellular space in a time-resolved manner. It is used to investigate the secreted neuropeptide and neurotransmitter content in Jonah crab, Cancer borealis, in this work. A new quantitation strategy using alternative mass spectrometry data acquisition approach is developed and applied for the first time to quantify neuropeptides. Coupling of this method with microdialysis enables the study of neuropeptide dynamics concurrent with different behaviors. Proof-of-principle experiments validating this approach have been carried out in Jonah crab, Cancer borealis to study feeding- and circadian rhythm-related neuropeptide changes using micoridialysis in a time-resolved manner. This permits a close correlation between behavioral and neurochemical changes, providing potential candidates for future validation of regulatory roles. In addition to providing spatial information, mass spectrometry imaging (MSI) technique enables the characterization of signaling molecules while preserving the temporal resolution. A

  4. Environmental analysis by inductively coupled plasma mass spectrometry.

    PubMed

    Beauchemin, Diane

    2010-01-01

    This article reviews the numerous ways in which inductively coupled plasma mass spectrometry has been used for the analysis of environmental samples since it was commercially introduced in 1983. Its multielemental isotopic capability, high sensitivity and wide linear dynamic range makes it ideally suited for environmental analysis. Provided that some care is taken during sample preparation and that appropriate calibration strategies are used to circumvent non-spectroscopic interferences, the technique is readily applicable to the analysis of a wide variety of environmental samples (natural waters, soils, rocks, sediments, vegetation, etc.), using quadrupole, time-of-flight or double-focusing sector-field mass spectrometers. In cases where spectroscopic interferences arising from the sample matrix cannot be resolved, then separation methods can be implemented either on- or off-line, which can simultaneously allow analyte preconcentration, thus further decreasing the already low detection limits that are achievable. In most cases, the blank, prepared by following the same steps as for the sample but without the sample, limits the ultimate detection limits that can be reached.

  5. Characterization of microbial siderophores by mass spectrometry.

    PubMed

    Pluháček, Tomáš; Lemr, Karel; Ghosh, Dipankar; Milde, David; Novák, Jiří; Havlíček, Vladimír

    2016-01-01

    Siderophores play important roles in microbial iron piracy, and are applied as infectious disease biomarkers and novel pharmaceutical drugs. Inductively coupled plasma and molecular mass spectrometry (ICP-MS) combined with high resolution separations allow characterization of siderophores in complex samples taking advantages of mass defect data filtering, tandem mass spectrometry, and iron-containing compound quantitation. The enrichment approaches used in siderophore analysis and current ICP-MS technologies are reviewed. The recent tools for fast dereplication of secondary metabolites and their databases are reported. This review on siderophores is concluded with their recent medical, biochemical, geochemical, and agricultural applications in mass spectrometry context.

  6. Broadband Analysis of Bioagents by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fenselau, Catherine; Wynne, Colin; Edwards, Nathan

    Mass spectrometry was first reported to provide analysis of intact metabolite biomarkers from whole cells in 1975.1 Since then advances in ionization techniques have extended our capabilities to polar lipids and, eventually, to proteins.2, 3 Mass spectrometry provides a broadband detection system, which, however, has great specificity. Bioinformatics plays an important role in providing flexible and rapid characterization of species, based on protein and peptide mass spectra collected in the field.

  7. Application of mass spectrometry in proteomics.

    PubMed

    Guerrera, Ida Chiara; Kleiner, Oliver

    2005-01-01

    Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from highly complex mixtures include accurate mass measurement of peptides derived from total proteome digests and multidimensional peptide separations coupled with mass spectrometry. Mass spectrometric analysis of intact proteins permits the characterisation of protein isoforms. Recent developments in stable isotope labelling techniques and chemical tagging allow the mass spectrometry based differential display and quantitation of proteins, and newly established affinity procedures enable the targeted characterisation of post-translationally modified proteins. Finally, advances in mass spectrometric imaging allow the gathering of specific information on the local molecular composition, relative abundance and spatial distribution of peptides and proteins in thin tissue sections.

  8. Methods for recalibration of mass spectrometry data

    DOEpatents

    Tolmachev, Aleksey V.; Smith, Richard D.

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  9. Plasma Desorption Mass Spectrometry: Coming of Age.

    ERIC Educational Resources Information Center

    Cotter, Robert J.

    1988-01-01

    Discusses the history and development of Plasma Desorption Mass Spectrometry to determine molecular weights and structures of proteins and polymers. Outlines theory, instrumentation, and sample preparation commonly used. Gives several examples of resulting spectra. (ML)

  10. Mass spectrometry in the home and garden.

    PubMed

    Pulliam, Christopher J; Bain, Ryan M; Wiley, Joshua S; Ouyang, Zheng; Cooks, R Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.

  11. Mass Spectrometry in the Home and Garden

    NASA Astrophysics Data System (ADS)

    Pulliam, Christopher J.; Bain, Ryan M.; Wiley, Joshua S.; Ouyang, Zheng; Cooks, R. Graham

    2015-02-01

    Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.

  12. On-Line and Off-Line Assessment of Metacognition

    ERIC Educational Resources Information Center

    Saraç, Seda; Karakelle, Sema

    2012-01-01

    The study investigates the interrelationships between different on-line and off-line measures for assessing metacognition. The participants were 47 fifth grade elementary students. Metacognition was assessed through two off-line and two on-line measures. The off-line measures consisted of a teacher rating scale and a self-report questionnaire. The…

  13. Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Muccilli, Vera; Cunsolo, Vincenzo; Saletti, Rosaria; Foti, Salvatore; Masci, Stefania; Lafiandra, Domenico

    2005-02-01

    Low molecular weight glutenin subunits (LMW-GS) are typically subdivided into three groups, according to their molecular weights and isoelectric points, namely the B-, C-, and D groups. Enriched B- and C-type LMW-GS fractions extracted from the bread wheat cultivar Chinese Spring were characterized using high performance liquid chromatography (HPLC) directly interfaced with electrospray ionization mass spectrometry and HPLC coupled off-line with matrix-assisted laser desorption/ionization mass spectrometry, in order to ascertain the number and relative molecular masses of the components present in each fraction and determine the number of cysteine residues. About 70 components were detected in each of the fractions examined by the combined use of these two techniques, with 18 components common to both fractions. Analysis of the fractions after alkylation with 4-vinylpyridine allowed determination of the number of the cysteines present in about 40 subunits. The proteins detected were tentatively classified based on the relative molecular masses and number of cysteine residues. Cross-contamination was found in both B- and C- fractions, along with the presence of D-type LMW-GS. The two fractions also contained unexpected components, probably lipid transfer proteins and omega-gliadins. The presence of extensive microheterogeneity was suggested by the detection of several co-eluting proteins with minor differences in their molecular masses.

  14. Mass spectrometry: a revolution in clinical microbiology?

    PubMed

    Lavigne, Jean-Philippe; Espinal, Paula; Dunyach-Remy, Catherine; Messad, Nourredine; Pantel, Alix; Sotto, Albert

    2013-02-01

    Recently, different bacteriological laboratory interventions that decrease reporting time have been developed. These promising new broad-based techniques have merit, based on their ability to identify rapidly many bacteria, organisms difficult to grow or newly emerging strains, as well as their capacity to track disease transmission. The benefit of rapid reporting of identification and/or resistance of bacteria can greatly impact patient outcomes, with an improvement in the use of antibiotics, in the reduction of the emergence of multidrug resistant bacteria and in mortality rates. Different techniques revolve around mass spectrometry (MS) technology: matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), PCR combined with electrospray ionization-mass spectrometry (PCR/ESIMS), iPLEX MassArray system and other new evolutions combining different techniques. This report emphasizes the (r)evolution of these technologies in clinical microbiology.

  15. Analytical aspects of hydrogen exchange mass spectrometry

    PubMed Central

    Engen, John R.; Wales, Thomas E.

    2016-01-01

    The analytical aspects of measuring hydrogen exchange by mass spectrometry are reviewed. The nature of analytical selectivity in hydrogen exchange is described followed by review of the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in hydrogen exchange mass spectrometry depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that could be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics. PMID:26048552

  16. Mass Spectrometry: A Technique of Many Faces

    PubMed Central

    Olshina, Maya A.; Sharon, Michal

    2016-01-01

    Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different mass spectrometry workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems. PMID:28100928

  17. Soft-landing preparative mass spectrometry.

    PubMed

    Verbeck, Guido; Hoffmann, William; Walton, Barbara

    2012-10-07

    Preparative mass spectrometry has become a diverse field that covers the spectrum of kinetic energy deposition. Of these methods, soft-landing mass spectrometry has many fundamental properties, which make it an advantageous technique for ion isolation and deposition. Its definition implies the preservation of ionic structural integrity after landing, which ensures the structure-function relationship of a molecule remains intact. Here the focus is on the instruments and applications of studying ion-surface landing in the hyperthermal and thermal kinetic energy regimes. Soft-landing preparative mass spectrometry covers the breadth of mass spectrometric ionization sources, instrumental configurations, and molecular families. Due to the diverse nature of soft landing, and to maximize readability, this review has been organized according to instrumental considerations and molecular families, with a discussion of theoretical work at the end.

  18. Mass spectrometry and the environmental sciences

    NASA Astrophysics Data System (ADS)

    Hites, Ronald A.

    1992-09-01

    Research in environmental mass spectrometry focuses on two broad areas: development of new methods for a wide range of pollutants; and using existing methods to understand the fate of pollutants in nature. This paper will present examples of both types of research. In some environmental settings it is important to have rapid analytical turnaround, which suggests that samples should be analyzed in the field rather than in a remote laboratory. Thus, there has been considerable interest in "fieldable" mass spectrometers. Volatile and water soluble analytes can be introduced into a mass spectrometer by passing the water sample over a semi-permeable membrane. The analytes of interest pass through the membrane, but the water does not. This method may be useful in situations that require a continuous readout of concentration. Like mass spectrometrists everywhere, environmental scientists have explored the many facets of liquid chromatographic mass spectrometry. Work in our laboratory has centered on continuous flow fast atom bombardment (CF-FAB) as the LCMS interface. In addition, flow injection analysis is possible using CF-FAB. By avoiding chromatographic separation, the throughput of the analytical system is increased. Frequently, tandem mass spectrometry is necessary to unscramble the chemical signals produced by this technique. Electron capture negative ionization mass spectrometry can achieve sensitivities of a few attomoles for selected compounds; furthermore, the technique can be remarkably specific. These features make it ideal for the analysis of highly chlorinated environmental contaminants such as chlorinated dioxins. Such an application will be presented in detail.

  19. Analytical pyrolysis mass spectrometry: new vistas opened by temperature-resolved in-source PYMS

    NASA Astrophysics Data System (ADS)

    Boon, Jaap J.

    1992-09-01

    Analytical pyrolysis mass spectrometry (PYMS) is introduced and its applications to the analysis of synthetic polymers, biopolymers, biomacromolecular systems and geomacromolecules are critically reviewed. Analytical pyrolysis inside the ionisation chamber of a mass spectrometer, i.e. in-source PYMS, gives a complete inventory of the pyrolysis products evolved from a solid sample. The temperature-resolved nature of the experiment gives a good insight into the temperature dependence of the volatilisation and pyrolytic dissociation processes. Chemical ionisation techniques appear to be especially suitable for the analysis of oligomeric fragments released in early stages of the pyrolysis of polymer systems. Large oligomeric fragments were observed for linear polymers such as cellulose (pentadecamer), polyhydroxyoctanoic acid (tridecamer) and polyhydroxybutyric acid (heneicosamer). New in-source PYMS data are presented on artists' paints, the plant polysaccharides cellulose and xyloglucan, several microbial polyhydroxyalkanoates, wood and enzyme-digested wood, biodegraded roots and a fossil cuticle of Miocene age. On-line and off-line pyrolysis chromatography mass spectrometric approaches are also discussed. New data presented on high temperature gas chromatography--mass spectrometry of deuterio-reduced permethylated pyrolysates of cellulose lead to a better understanding of polysaccharide dissociation mechanisms. Pyrolysis as an on-line sample pretreatment method for organic macromolecules in combination with MS techniques is a very challenging field of mass spectrometry. Pyrolytic dissociation and desorption is not at all a chaotic process but proceeds according to very specific mechanisms.

  20. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  1. Systematic study of beta-asarone-rich volatile oil from Acori graminei rhizoma by off-line supercritical CO2 extraction-gas chromatography-mass spectrometry.

    PubMed

    Dai, Jian; Ha, Chengyong; Shen, Minmin

    2008-03-01

    Supercritical CO2 extraction (SCE) technology was used to extract a volatile oil, rich in beta-asarone, from Acori graminei rhizoma (AGR). The effect of different extraction and fractionation parameters on oil yield and selectivity towards beta-asarone was investigated by SCE using commercial AGR samples. The optimal conditions (P(e)/T(e) = 10 MPa/45 degrees C; P(f1)/T(f1) = 8 MPa/-10 degrees C; P(f2)/T(f2 )= 2 MPa/10 degrees C) gave a good oil yield and selectivity for beta-asarone. The extracts were also analyzed by GC-MS and compared with the volatile oil obtained by hydrodistillation, in which 39 main constituents including beta-asarone were found. Different cultivated AGR samples obtained from three areas of China were evaluated in terms of their volatile oil compositions obtained by extraction of commercial AGR samples under optimal conditions; the extract of the Guangdong (GD) sample showed a high beta-asarone content.

  2. Fast Atom Bombardment Mass Spectrometry.

    ERIC Educational Resources Information Center

    Rinehart, Kenneth L., Jr.

    1982-01-01

    Discusses reactions and characteristics of fast atom bombardment (FAB) mass spectroscopy in which samples are ionized in a condensed state by bombardment with xenon or argon atoms, yielding positive/negative secondary ions. Includes applications of FAB to structural problems and considers future developments using the technique. (Author/JN)

  3. Targeted Quantitation of Proteins by Mass Spectrometry

    PubMed Central

    2013-01-01

    Quantitative measurement of proteins is one of the most fundamental analytical tasks in a biochemistry laboratory, but widely used immunochemical methods often have limited specificity and high measurement variation. In this review, we discuss applications of multiple-reaction monitoring (MRM) mass spectrometry, which allows sensitive, precise quantitative analyses of peptides and the proteins from which they are derived. Systematic development of MRM assays is permitted by databases of peptide mass spectra and sequences, software tools for analysis design and data analysis, and rapid evolution of tandem mass spectrometer technology. Key advantages of MRM assays are the ability to target specific peptide sequences, including variants and modified forms, and the capacity for multiplexing that allows analysis of dozens to hundreds of peptides. Different quantitative standardization methods provide options that balance precision, sensitivity, and assay cost. Targeted protein quantitation by MRM and related mass spectrometry methods can advance biochemistry by transforming approaches to protein measurement. PMID:23517332

  4. Absorption mode FTICR mass spectrometry imaging.

    PubMed

    Smith, Donald F; Kilgour, David P A; Konijnenburg, Marco; O'Connor, Peter B; Heeren, Ron M A

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here, we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image, and then, these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode "Datacubes" for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  5. Pyrolysis Mass Spectrometry of Complex Organic Materials.

    ERIC Educational Resources Information Center

    Meuzelaar, Henk L. C.; And Others

    1984-01-01

    Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…

  6. Nanostructure-initiator mass spectrometry biometrics

    DOEpatents

    Leclerc, Marion; Bowen, Benjamin; Northen, Trent

    2015-09-08

    Several embodiments described herein are drawn to methods of identifying an analyte on a subject's skin, methods of generating a fingerprint, methods of determining a physiological change in a subject, methods of diagnosing health status of a subject, and assay systems for detecting an analyte and generating a fingerprint, by nanostructure-initiator mass spectrometry (NIMS).

  7. Laser desorption mass spectrometry for molecular diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Allman, S. L.; Tang, K.; Matteson, K. J.; Chang, L. Y.; Chung, C. N.; Martin, Steve; Haff, Lawrence

    1996-04-01

    Laser desorption mass spectrometry has been used for molecular diagnosis of cystic fibrosis. Both 3-base deletion and single-base point mutation have been successfully detected by clinical samples. This new detection method can possibly speed up the diagnosis by one order of magnitude in the future. It may become a new biotechnology technique for population screening of genetic disease.

  8. Analysis of protein complexes using mass spectrometry.

    PubMed

    Gingras, Anne-Claude; Gstaiger, Matthias; Raught, Brian; Aebersold, Ruedi

    2007-08-01

    The versatile combination of affinity purification and mass spectrometry (AP-MS) has recently been applied to the detailed characterization of many protein complexes and large protein-interaction networks. The combination of AP-MS with other techniques, such as biochemical fractionation, intact mass measurement and chemical crosslinking, can help to decipher the supramolecular organization of protein complexes. AP-MS can also be combined with quantitative proteomics approaches to better understand the dynamics of protein-complex assembly.

  9. Optimization Of A Mass Spectrometry Process

    SciTech Connect

    Lopes, Jose; Alegria, F. Correa; Redondo, Luis; Barradas, N. P.; Alves, E.; Rocha, Jorge

    2011-06-01

    In this paper we present and discuss a system developed in order to optimize the mass spectrometry process of an ion implanter. The system uses a PC to control and display the mass spectrum. The operator interacts with the I/O board, that interfaces with the computer and the ion implanter by a LabVIEW code. Experimental results are shown and the capabilities of the system are discussed.

  10. Application of mass spectrometry for metabolite identification.

    PubMed

    Ma, Shuguang; Chowdhury, Swapan K; Alton, Kevin B

    2006-06-01

    Metabolism studies play a pivotal role in drug discovery and development. Characterization of metabolic "hot-spots" as well as reactive and pharmacologically active metabolites is critical to designing new drug candidates with improved metabolic stability, toxicological profile and efficacy. Metabolite identification in the preclinical species used for safety evaluation is required in order to determine whether human metabolites have been adequately tested during non-clinical safety assessment. From an instrumental standpoint, high performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) dominates all analytical tools used for metabolite identification. The general strategies employed for metabolite identification in both drug discovery and drug development settings together with sample preparation techniques are reviewed herein. These include a discussion of the various ionization methods, mass analyzers, and tandem mass spectrometry (MS/MS) techniques that are used for structural characterization in a modern drug metabolism laboratory. Mass spectrometry-based techniques, such as stable isotope labeling, on-line H/D exchange, accurate mass measurement to enhance metabolite identification and recent improvements in data acquisition and processing for accelerating metabolite identification are also described. Rounding out this review, we offer additional thoughts about the potential of alternative and less frequently used techniques such as LC-NMR/MS, CRIMS and ICPMS.

  11. Isotope ratio measurements by secondary ion mass spectrometry (SIMS) and glow discharge mass spectrometry (GDMS)

    NASA Astrophysics Data System (ADS)

    Betti, Maria

    2005-04-01

    The basic principles of secondary ion mass spectrometry and glow discharge mass spectrometry have been shortly revisited. The applications of both techniques as exploited for the isotope ratio measurements in several matrices have been reviewed. Emphasis has been given to research fields in expansions such as solar system studies, medicine, biology, environment and nuclear forensic. The characteristics of the two techniques are discussed in terms of sensitivity and methodology of quantification. Considerations on the different detection possibilities in SIMS are also presented.

  12. Space Applications of Mass Spectrometry. Chapter 31

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard

    2010-01-01

    Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.

  13. Initial results of positron ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Donohue, D. L.; Hulett, L. D., Jr.; Mcluckey, S. A.; Glish, G. L.; Eckenrode, B. A.

    1990-01-01

    The use of monoenergetic positrons for the ionization of organic molecules in the gas phase is described. The ionic products are analyzed with a time-of-flight mass spectrometer and detected to produce a mass spectrum. The ionization mechanisms which can be studied in this way include positron impact at energies above the ionization limit of the target molecules, positronium formation in the Ore gap energy range, and positron attachment at energies less than 1eV. The technique of positron ionization mass spectrometry (PIMS) may have analytical utility in that chemical selectivity is observed for one or more of these processes.

  14. Nuclear applications of inorganic mass spectrometry.

    PubMed

    De Laeter, John

    2010-01-01

    There are several basic characteristics of mass spectrometry that are not always fully appreciated by the science community. These characteristics include the distinction between relative and absolute isotope abundances, and the influence of isotope fractionation on the accuracy of isotopic measurements. These characteristics can be illustrated in the field of nuclear physics with reference to the measurement of nuclear parameters, which involve the use of enriched isotopes, and to test models of s-, r-, and p-process nucleosynthesis. The power of isotope-dilution mass spectrometry (IDMS) to measure trace elements in primitive meteorites to produce accurate Solar System abundances has been essential to the development of nuclear astrophysics. The variety of mass spectrometric instrumentation used to measure the isotopic composition of elements has sometimes been accompanied by a lack of implementation of basic mass spectrometric protocols which are applicable to all instruments. These metrological protocols are especially important in atomic weight determinations, but must also be carefully observed in cases where the anomalies might be very small, such as in studies of the daughter products of extinct radionuclides to decipher events in the early history of the Solar System. There are occasions in which misleading conclusions have been drawn from isotopic data derived from mass spectrometers where such protocols have been ignored. It is important to choose the mass spectrometer instrument most appropriate to the proposed experiment. The importance of the integrative nature of mass spectrometric measurements has been demonstrated by experiments in which long, double beta decay and geochronological decay half-lives have been measured as an alternative to costly radioactive-counting experiments. This characteristic is also illustrated in the measurement of spontaneous fission yields, which have accumulated over long periods of time. Mass spectrometry is also a

  15. Linking Mass Spectrometry with Toxicology for Emerging Water Contaminants

    EPA Science Inventory

    This overview presentation will discuss the benefits of combining mass spectrometry with toxicology. These benefits will be described for 3 main areas: (1) Toxicity assays used to test new environmental contaminants previously identified using mass spectrometry, such that furth...

  16. Mass Spectrometry Imaging under Ambient Conditions

    PubMed Central

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  17. Ultrahigh-Mass Mass Spectrometry of Single Biomolecules and Bioparticles

    NASA Astrophysics Data System (ADS)

    Chang, Huan-Cheng

    2009-07-01

    Since the advent of soft ionization methods, mass spectrometry (MS) has found widespread application in the life sciences. Mass is now known to be a critical parameter for characterization of biomolecules and their complexes; it is also a useful parameter to characterize bioparticles such as viruses and cells. However, because of the genetic diversity of these entities, it is necessary to measure their masses individually and to obtain the corresponding mean masses and mass distributions. Here, I review recent technological developments that enable mass measurement of ultrahigh-mass biomolecules and bioparticles at the single-ion level. Some representative examples include cryodetection time-of-flight MS of single-megadalton protein ions, Millikan-type mass measurements of single viruses in a cylindrical ion trap, and charge-detection quadrupole ion trap MS of single whole cells. I also discuss the promises and challenges of these new technologies in real-world applications.

  18. Biological particle analysis by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Vilker, V. L.; Platz, R. M.

    1983-01-01

    An instrument that analyzes the chemical composition of biological particles in aerosol or hydrosol form was developed. Efforts were directed toward the acquisition of mass spectra from aerosols of biomolecules and bacteria. The filament ion source was installed on the particle analysis by mass spectrometry system. Modifications of the vacuum system improved the sensitivity of the mass spectrometer. After the modifications were incorporated, detailed mass spectra of simple compounds from the three major classes of biomolecules, proteins, nucleic acids, and carbohydrates were obtained. A method of generating bacterial aerosols was developed. The aerosols generated were collected and examined in the scanning electron microscope to insure that the bacteria delivered to the mass spectrometer were intact and free from debris.

  19. Identification of carotenoids using mass spectrometry.

    PubMed

    Rivera, Sol M; Christou, Paul; Canela-Garayoa, Ramon

    2014-01-01

    The present review compiles positive MS fragmentation data of selected carotenoids obtained using various ionization techniques and matrices. In addition, new experimental data from the analysis of carotenoids in transgenic maize and rice callus are provided. Several carotenes and oxygen-functionalized carotenoids containing epoxy, hydroxyl, and ketone groups were ionized by atmospheric pressure chemical ionization (APCI)-tandem mass spectrometry (MS/MS) in positive ion mode. Thus, on the basis of the information obtained from the literature and our own experiments, we identified characteristic carotenoid ions that can be associated to functional groups in the structures of these compounds. In addition, pigments with a very similar structure were differentiated through comparison of the intensities of their fragments. The data provide a basis for the structural elucidation of carotenoids by mass spectrometry (MS).

  20. Impact of automation on mass spectrometry.

    PubMed

    Zhang, Yan Victoria; Rockwood, Alan

    2015-10-23

    Mass spectrometry coupled to liquid chromatography (LC-MS and LC-MS/MS) is an analytical technique that has rapidly grown in popularity in clinical practice. In contrast to traditional technology, mass spectrometry is superior in many respects including resolution, specificity, multiplex capability and has the ability to measure analytes in various matrices. Despite these advantages, LC-MS/MS remains high cost, labor intensive and has limited throughput. This specialized technology requires highly trained personnel and therefore has largely been limited to large institutions, academic organizations and reference laboratories. Advances in automation will be paramount to break through this bottleneck and increase its appeal for routine use. This article reviews these challenges, shares perspectives on essential features for LC-MS/MS total automation and proposes a step-wise and incremental approach to achieve total automation through reducing human intervention, increasing throughput and eventually integrating the LC-MS/MS system into the automated clinical laboratory operations.

  1. Quantitative interaction proteomics using mass spectrometry.

    PubMed

    Wepf, Alexander; Glatter, Timo; Schmidt, Alexander; Aebersold, Ruedi; Gstaiger, Matthias

    2009-03-01

    We present a mass spectrometry-based strategy for the absolute quantification of protein complex components isolated through affinity purification. We quantified bait proteins via isotope-labeled reference peptides corresponding to an affinity tag sequence and prey proteins by label-free correlational quantification using the precursor ion signal intensities of proteotypic peptides generated in reciprocal purifications. We used this method to quantitatively analyze interaction stoichiometries in the human protein phosphatase 2A network.

  2. Radiation Biomarker Research Using Mass Spectrometry

    DTIC Science & Technology

    2007-07-01

    The data was of insufficient quality to obtain definitive biomarkers. Trips were also made to AFRL/HEDR at Brooks City Base to assist with their...sample analysis using the Finnigan LTQ located there. Mr. Mullens and Ms. Nagore assisted with training personnel at AFRL/HEDR and when necessary...techniques with saliva samples and matrix- assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), we have been able to

  3. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  4. Accelerator mass spectrometry - from DNA to astrophysics

    NASA Astrophysics Data System (ADS)

    Kutschera, Walter

    2013-12-01

    A brief review of accelerator mass spectrometry (AMS) is presented. The present work touches on a few technical aspects and recent developments of AMS, and describes two specific applications of AMS, the dating of human DNA with the 14C bomb peak and the search for superheavy elements in nature. Since two extended general reviews on technical developments in AMS [1] and applications of AMS [2] will appear in 2013, frequent reference to these reviews is made.

  5. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe.

    PubMed

    Owen, Andrew W; McAulay, Edith A J; Nordon, Alison; Littlejohn, David; Lynch, Thomas P; Lancaster, J Steven; Wright, Robert G

    2014-11-07

    A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mLmin(-1), respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40°C and 20°C, respectively, at the 1L scale. Reactions in the 1L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate concentration profiles for all the components in the reaction. Also, it was possible to detect the presence of a simulated impurity of ethanol (at levels of 2.6 and 9.1% mol/mol) in butan-1-ol, and the resulting production of ethyl acetate, by DLSMS, but not by in-line MIR spectrometry.

  6. Toward Single-Molecule Nanomechanical Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Roukes, Michael

    2009-03-01

    Mass spectrometry (MS) has become a preeminent methodology of proteomics since it provides rapid and quantitative identification of protein species with relatively low sample consumption. Yet with the trend toward biological analysis at increasingly smaller scales, ultimately down to the volume of an individual cell, MS with few-to-single molecule resolution will be required. We report the first realization of MS based on single-biological-molecule detection with nanoelectromechanical systems (NEMS). NEMS provide unparalleled mass resolution, now sufficient for detection of individual molecular species in real time. However, high sensitivity is only one of several components required for MS. We demonstrate a first complete prototype NEMS-MS system for single-molecule mass spectrometry providing proof-of-principle for this new technique. Nanoparticles and protein species are introduced by electrospray injection from the fluid phase in ambient conditions into vacuum and subsequently delivered to the NEMS detector by hexapole ion optics . Mass measurements are then recorded in real-time as analytes adsorb, one-by-one, onto a phase-locked, ultrahigh frequency (UHF) NEMS resonator. These first NEMS-MS spectra, obtained with modest resolution from only several hundred mass adsorption events, presage the future capabilities of this methodology. We outline the substantial improvements feasible in near term, through recent advances and technological avenues that are unique to NEMS-MS.

  7. Mass Spectrometry of Proteins in Liquids

    NASA Astrophysics Data System (ADS)

    Baltz-Knorr, Michelle; Papantonakis, Michael; Ermer Haglund, David, Jr.

    1999-11-01

    Infrared matrix assisted laser desorption/ionization mass spectrometry (IR-MALDI) is an effective technique for mass identification and structural analysis of biomolecules. We are using liquid glycerol/water matrices in a reflectron time-of-flight mass spectrometer equipped with a liquid nitrogen cooled sample stage to provide a more natural environment for biomolecules. An Er:YAG laser (2.94 μm) and also a tunable free electron laser (2-9 μm) are used to induce desorption and ionization by exciting the O-H and CH2 stretching vibrations in the glycerol. This vibrationally enhanced ionization makes IR-MALDI very efficient, as observed in the mass spectra of small peptides. This work is a first step toward using mass spectrometry to study noncovalently bound protein complexes in vitro and to study proteins in their cellular environment. Supported by the Medical Free Electron Laser Program of the Office of Naval Research and the Vanderbilt Molecular Biophysics Training Grant of the National Institutes of Health

  8. Mass spectrometry with direct supercritical fluid injection

    SciTech Connect

    Smith, R.D.; Udseth, H.R.

    1983-12-01

    Direct fluid injection mass spectrometry utilizes supercritical fluids for solvation and transfer of materials to a mass spectrometer chemical ionization (CI) source. Available data suggest that any material soluble in a supercritical fluid is transferred efficiently to the ionization region. Mass spectra are presented for mycotoxins of the trichothecene group obtained by use of supercritical carbon dioxide with isobutane as the CI reagent gas. Direct fluid injection MS/MS is also illustrated for major ions in the isobutane chemical ionization of T-2 toxin. The effect of pressure and temperature upon solubility in supercritical fluids is described and illustrated for diacetoxycirpenol. A potential method is also demonstrated for on-line fraction during MS analysis using pressure to control supercritical fluid solubility. Mass spectra are also presented for polar compounds, using supercritical ammonia, and the extension to complex mixtures is described. The fundamental basis and experimental requirements of the direct fluid injection process are discussed. 34 references, 11 figures, 1 table.

  9. Mass spectrometry with direct supercritical fluid injection

    SciTech Connect

    Smith, R.D.; Udseth, H.R.

    1983-12-01

    Direct fluid injection mass spectrometry utilizes supercritical fluids for solvation and transfer of materials to a mass spectrometer chemical ionization (CI) source. Available data suggest that any material soluble in a supercritical fluid is transferred efficiently to the ionization region. Mass spectra are presented for mycotoxins of the trichothecene group obtained by use of supercritical carbon dioxide with isobutane as the CI reagent gas. Direct fluid injection MS/MS is also illustrated for major ions in the isobutane chemical ionization of T-2 toxin. The effect of pressure and temperature upon solubility in supercritical fluids is described and illustrated for diacetoxyscirpenol. A potential method is also demonstrated for ''on-line fractionation'' during MS analysis using pressure to control supercritical fluid solubility. Mass spectra are also presented for polar compounds, using supercritical ammonia, and the extension to complex mixtures is described. The fundamental basis and experimental requirements of the direct fluid injection process are discussed. 1 figure, 11 tables.

  10. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  11. New off-line aircraft instrumentation for non-methane hydrocarbon measurements.

    PubMed

    Bechara, Joelle; Borbon, Agnès; Jambert, Corinne; Perros, Pascal E

    2008-11-01

    New off-line instrumentation was developed to implement measurements of non-methane hydrocarbons (NMHC) on (French) research aircraft. NMHC are collected on multisorbent tubes by AMOVOC (Airborne Measurements Of Volatile Organic Compounds), a new automatic sampler. AMOVOC is a versatile and portable sampler targeting a wide range of NMHC at high frequency (sampling time of 10 min). Multisorbent tubes are analyzed on the ground by short-path thermal desorption coupled with gas chromatography and mass spectrometry. The development and optimization of both NMHC sampling and analysis are reported here. On the one hand, the paper points out technical choices that were made according to aircraft constraints and avoiding sample loss or contamination. On the other hand, it describes analytical optimization, tube storage stability, and moisture removal. The method shows high selectivity, sensitivity (limit of detection less than 10 ppt) and precision (less than 24%). Finally, NMHC data collected on French aircraft during the African Monsoon Multidisciplinary Analysis campaign are reported for the first time. The results highlight instrumentation validity and protocol efficiency for NMHC measurements in the lower and upper troposphere.

  12. Improving gene annotation using peptide mass spectrometry

    PubMed Central

    Tanner, Stephen; Shen, Zhouxin; Ng, Julio; Florea, Liliana; Guigó, Roderic; Briggs, Steven P.; Bafna, Vineet

    2007-01-01

    Annotation of protein-coding genes is a key goal of genome sequencing projects. In spite of tremendous recent advances in computational gene finding, comprehensive annotation remains a challenge. Peptide mass spectrometry is a powerful tool for researching the dynamic proteome and suggests an attractive approach to discover and validate protein-coding genes. We present algorithms to construct and efficiently search spectra against a genomic database, with no prior knowledge of encoded proteins. By searching a corpus of 18.5 million tandem mass spectra (MS/MS) from human proteomic samples, we validate 39,000 exons and 11,000 introns at the level of translation. We present translation-level evidence for novel or extended exons in 16 genes, confirm translation of 224 hypothetical proteins, and discover or confirm over 40 alternative splicing events. Polymorphisms are efficiently encoded in our database, allowing us to observe variant alleles for 308 coding SNPs. Finally, we demonstrate the use of mass spectrometry to improve automated gene prediction, adding 800 correct exons to our predictions using a simple rescoring strategy. Our results demonstrate that proteomic profiling should play a role in any genome sequencing project. PMID:17189379

  13. Mass spectrometry detection in comprehensive liquid chromatography: basic concepts, instrumental aspects, applications and trends.

    PubMed

    Donato, Paola; Cacciola, Francesco; Tranchida, Peter Quinto; Dugo, Paola; Mondello, Luigi

    2012-01-01

    The review, as can be deduced from the title, focuses on both theoretical and practical aspects of the use of mass spectrometry as a third, added dimension to a comprehensive LC (LC × LC) system, generating the most powerful analytical tool today for non-volatile analytes. The first part deals with the technical requirements for linkage of an LC × LC system to an MS one, including the choice of the mobile phase (buffer and salts), flow rate (splitting), type of ionization (interface); advantages and disadvantages of off-line and on-line methods are discussed, as well. A discussion of the various aspects of instrumentation is provided, both from a chromatographic and mass spectrometry standpoint, with particular emphasis directed to the choice of column sets, spatial resolution, mass resolving power, mass accuracy, and tandem-MS capabilities. The extent to which mass spectrometry may be of aid in unraveling column-outlet multicompound bands is highlighted, along with its effectiveness as a chromatographic detector of excellent sensitivity, universality yet with potential in terms of selectivity and amenability to quantitative analysis over a wide dynamic range. The following section of the review contains significant applications of comprehensive two-dimensional LC coupled to MS in different areas of research, with details on interfaces, column stationary phases, modulation and MS parameters. It is not the intention of the authors to provide a comprehensive description of the techniques, but merely to discuss only those aspects which are essential for successful applications of the LC-MS combination. The reader will be acquainted with the enormous potential of this hyphenated technique, and the factors and instrumental developments that have concurred to make it emerge to a central role in specialized fields, such as proteomics.

  14. Isotopic trace analysis by atomic mass spectrometry

    SciTech Connect

    Stoffels, J.J.

    1993-12-01

    All the production facilities at Hanford are now shut down. However, the legacy from half a century of plutonium production includes 177 underground storage tanks of up to one million gallons each containing the largest accumulation of high-level radioactive waste in what used to be called ``the free world.`` Hanford`s new mission, in addition to a spectrum of ongoing research and development, is radioactive waste management and environmental restoration. Isotope-ratio mass spectrometry will continue to be an essential tool in monitoring the progress of that mission.

  15. [Application of mass spectrometry in mycology].

    PubMed

    Quiles Melero, Inmaculada; Peláez, Teresa; Rezusta López, Antonio; Garcia-Rodríguez, Julio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) is becoming an essential tool in most microbiology laboratories. At present, by using a characteristic fungal profile obtained from whole cells or through simple extraction protocols, MALDI-TOF MS allows the identification of pathogenic fungi with a high performance potential. This methodology decreases the laboratory turnaround time, optimizing the detection of mycoses. This article describes the state-of-the-art of the use of MALDI-TOF MS for the detection of human clinical fungal pathogens in the laboratory and discusses the future applications of this technology, which will further improve routine mycological diagnosis.

  16. Biological accelerator mass spectrometry at Uppsala University.

    PubMed

    Salehpour, Mehran; Possnert, Göran; Bryhni, Helge; Palminger-Hallén, Ira; Ståhle, Lars

    2009-03-01

    A new research programme for the biological applications of accelerator mass spectrometry has been initiated at Uppsala University and the first results are presented. A (14)C-labelled pharmaceutical substance has been dissolved in human blood, plasma and urine and diluted over 3 orders of magnitude. The measured drug concentrations were found to be in good agreement with the predicted values. Furthermore, the effect of the sample preparation background contribution has been studied as the sample amount was varied down to sub-microl sizes.

  17. Accelerator mass spectrometry of the planetary elements

    NASA Astrophysics Data System (ADS)

    Fifield, L. K.; Clacher, A. P.; Morris, K.; King, S. J.; Cresswell, R. G.; Day, J. P.; Livens, F. R.

    1997-03-01

    Accelerator mass spectrometry has been applied for the first time to the detection of 237Np. Sensitivity approaches 105 atoms. A first measurement of the mobility of 237Np in a marine environment is reported, and lends support to the prediction that neptunium should be substantially more mobile than plutonium. Measurements of backgrounds and transmissions for plutonium and neptunium in different charge states are also reported. In addition, the relative negative ion formation probabilities for the monoxide ions of Th, U, Np and Pu have been measured.

  18. FAPA mass spectrometry of designer drugs.

    PubMed

    Smoluch, Marek; Gierczyk, Blazej; Reszke, Edward; Babij, Michal; Gotszalk, Teodor; Schroeder, Grzegorz; Silberring, Jerzy

    2016-01-01

    Application of a flowing atmospheric-pressure afterglow ion source for mass spectrometry (FAPA-MS) for the analysis of designer drugs is described. In this paper, we present application of FAPA MS for identification of exemplary psychotropic drugs: JWH-122, 4BMC, Pentedrone, 3,4-DNNC and ETH-CAT. We have utilized two approaches for introducing samples into the plasma stream; first in the form of a methanolic aerosol from the nebulizer, and the second based on a release of vapors from the electrically heated crucible by thermal desorption. The analytes were ionized by FAPA and identified in the mass analyzer. The order of release of the compounds depends on their volatility. These methods offer fast and reliable structural information, without pre-separation, and can be an alternative to the Electron Impact, GC/MS, and ESI for fast analysis of designer-, and other psychoactive drugs.

  19. Study of odor recorder using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miura, Tomohiro; Nakamoto, Takamichi; Moriizumi, Toyosaka

    It is necessary to determine the recipe of a target odor with sufficient accuracy to realize an odor recorder for recording and reproducing it. We studied the recipe measurement method of a target odor using a mass spectrometry. It was confirmed that the linear superposition was valid when the binary mixture of the apple-flavor components such as isobutyric acid and ethyl valerate was measured. The superposition of a mass spectrum pattern may enable the recipe determination of a multi-component odor easily. In this research, we succeeded in the recipe determinations of orange flavor made up of 14 component odors when its typical recipe, the equalized, the citral-enhanced and the citronellol-enhanced ones were measured.

  20. Mass Spectrometry for Rapid Characterization of Microorganisms

    NASA Astrophysics Data System (ADS)

    Demirev, Plamen A.; Fenselau, Catherine

    2008-07-01

    Advances in instrumentation, proteomics, and bioinformatics have contributed to the successful applications of mass spectrometry (MS) for detection, identification, and classification of microorganisms. These MS applications are based on the detection of organism-specific biomarker molecules, which allow differentiation between organisms to be made. Intact proteins, their proteolytic peptides, and nonribosomal peptides have been successfully utilized as biomarkers. Sequence-specific fragments for biomarkers are generated by tandem MS of intact proteins or proteolytic peptides, obtained after, for instance, microwave-assisted acid hydrolysis. In combination with proteome database searching, individual biomarker proteins are unambiguously identified from their tandem mass spectra, and from there the source microorganism is also identified. Such top-down or bottom-up proteomics approaches permit rapid, sensitive, and confident characterization of individual microorganisms in mixtures and are reviewed here. Examples of MS-based functional assays for detection of targeted microorganisms, e.g., Bacillus anthracis, in environmental or clinically relevant backgrounds are also reviewed.

  1. Radiocarbon positive-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Shanks, Richard P.; Donzel, Xavier; Gaubert, Gabriel

    2015-10-01

    Proof-of-principle of a new mass spectrometric technique for radiocarbon measurement is demonstrated. Interfering nitrogen and hydrocarbon molecules are largely eliminated in a charge-exchange cell operating on non-metallic gas. The positive-to-negative ion conversion is the reverse of that conventionally used in accelerator mass spectrometry (AMS) and is compatible with plasma ion sources that may be significantly more efficient and capable of greater output than are AMS sputter ion sources. The Nanogan electron cyclotron resonance (ECR) ion source employed exhibited no sample memory and the >50 kyrs age range of AMS was reproduced. A bespoke prototype new instrument is now required to optimise the plasma and cell physics and to realise hypothetical performance gains over AMS.

  2. Protein Sequencing with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ziady, Assem G.; Kinter, Michael

    The recent introduction of electrospray ionization techniques that are suitable for peptides and whole proteins has allowed for the design of mass spectrometric protocols that provide accurate sequence information for proteins. The advantages gained by these approaches over traditional Edman Degradation sequencing include faster analysis and femtomole, sometimes attomole, sensitivity. The ability to efficiently identify proteins has allowed investigators to conduct studies on their differential expression or modification in response to various treatments or disease states. In this chapter, we discuss the use of electrospray tandem mass spectrometry, a technique whereby protein-derived peptides are subjected to fragmentation in the gas phase, revealing sequence information for the protein. This powerful technique has been instrumental for the study of proteins and markers associated with various disorders, including heart disease, cancer, and cystic fibrosis. We use the study of protein expression in cystic fibrosis as an example.

  3. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  4. [Mass spectrometry in the clinical microbiology laboratory].

    PubMed

    Jordana-Lluch, Elena; Martró Català, Elisa; Ausina Ruiz, Vicente

    2012-12-01

    Infectious diseases are still a cause of high mortality and morbidity rates. Current microbiological diagnostic methods are based on culture and phenotypic identification of isolated microorganisms, which can be obtained in about 24-48 h. Given that the microbiological identification is of major importance for patient management, new diagnostic methods are needed in order to detect and identify microorganisms in a timely and accurate manner. Over the last few years, several molecular techniques based on the amplification of microbial nucleic acids have been developed with the aim of reducing the time needed for the identification of the microorganisms involved in different infectious processes. On the other hand, mass spectrometry has emerged as a rapid and consistent alternative to conventional methods for microorganism identification. This review describes the most widely used mass spectrometry technologies -matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization time-of-flight (ESI-TOF)-, both for protein and nucleic acid analysis, as well as the commercial platforms available. Related publications of most interest in clinical microbiology are also reviewed.

  5. Lipid imaging by mass spectrometry - a review.

    PubMed

    Gode, David; Volmer, Dietrich A

    2013-03-07

    Mass spectrometry imaging (MSI) has proven to be extremely useful for applications such as the spatial analysis of peptides and proteins in biological tissue, the performance assessment of drugs in vivo or the measurement of protein or metabolite expression as tissue classifiers or biomarkers from disease versus control tissue comparisons. The most popular MSI technique is MALDI mass spectrometry. First invented by Richard Caprioli in the mid-1990s, it is the highest performing MSI technique in terms of spatial resolution, sensitivity for intact biomolecules and application range today. The unique ability to identify and spatially resolve numerous compounds simultaneously, based on m/z values has inter alia been applied to untargeted and targeted chemical mapping of biological compartments, revealing changes of physiological states, disease pathologies and metabolic faith and distribution of xenobiotics. Many MSI applications focus on lipid species because of the lipids' diverse roles as structural components of cell membranes, their function in the surfactant cycle, and their involvement as second messengers in signalling cascades of tissues and cells. This article gives a comprehensive overview of lipid imaging techniques and applications using established MALDI and SIMS methods but also other promising MSI techniques such as DESI.

  6. Mass Spectrometry on Future Mars Landers

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  7. Research Using Accelerator Mass Spectrometry at Arizona

    NASA Astrophysics Data System (ADS)

    Jull, A.; Donahue, D. J.; Burr, G. S.; Beck, W.; Hatheway, A. L.; Biddulph, D. L.; McHargue, L. R.

    2002-12-01

    An Accelerator Mass Spectrometry (AMS) facility has been operated at the University of Arizona since 1982. This is an excellent example of a facility which has benefitted from the NSF Earth Sciences Instrumentation and Facilities Program. AMS has many applications to the fields of geochronology, geoarchaeology, paleoclimatology. A wide range of climatic, geologic and archeological records can be characterized by measuring their 14C and 10Be concentrations, using accelerator mass spectrometry (AMS). These records are found not only in the traditional sampling sites such as lake sediments and ice cores, but also in diverse natural accumulates and biogeochemical products such as: loess/paleosol deposits, corals, speleothems, and forest-fire horizons. The in-situ production of cosmogenic radionuclides in terrestrial and extraterrestrial materials provides several possibilities of determining their chronology. Thes studies are important for understanding cosmic-ray production of radionuclides in rock surfaces, by which we can draw conclusions about exposure time and erosion. Studies on extraterrestrial materials such as lunar samples allow us to determine the solar and galactic cosmic-ray fluxes in the past, and the cosmogenic 14C and 10Be in meteorites can be used to determine terrestrial ages. In this paper, we will highlight some selected applications of AMS, including dating of some interesting art works and artifacts, to show some of the great range of studies which can be undertaken.

  8. Preliminary Investigation into Pyrotechnic Chemical Products via Mass Spectrometry Techniques

    DTIC Science & Technology

    2015-03-11

    predicted by theory. 15. SUBJECT TERMS mass spectrometry, gas chromatography , pyrolysis, combustion products, pyrotechnics 16. SECURITY CLASSIFICATION OF...Eric Miklaszewski Dr. Douglas Papenmeier Matthew Neiswinger Christina Yamamoto Approach: Pyrolysis / Gas Chromatography / Mass Spectrometry (Py/GC...Oven GC Column Sample Inlet 0 Mass Spectrometer Gas Chromatography GC Transfer Line Thermo Finnigan PolarisQ Ion Trap with Trace GC/MSn with a

  9. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    SciTech Connect

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-06-16

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.

  10. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    PubMed Central

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-01-01

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics. PMID:21728281

  11. Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.

    ERIC Educational Resources Information Center

    Denoyer, Eric; And Others

    1982-01-01

    Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)

  12. Emerging capabilities of mass spectrometry for natural products.

    PubMed

    Jarmusch, Alan K; Cooks, R Graham

    2014-06-01

    Covering up to the end of 2013 A brief history of mass spectrometry in natural products research serves to identify themes which have driven progress in this area of application and in mass spectrometry itself. This account covers six decades of ionization methods, starting with traditional electron ionization and progressing through today's ambient ionization methods. Corresponding developments in mass analyzers are indicated, ranging from sector magnetic fields, through hybrid quadrupole mass filters to miniature ion traps. Current capabilities of mass spectrometry in natural products studies include direct in situ analysis, mass spectrometry imaging, and the study of biosynthetic pathways using metabolomic information. The survey concludes with a discussion of new experiments and capabilities including ion soft landing, preparative mass spectrometry, and accelerated ionic reactions in confined volumes.

  13. Characterisation of DEFB107 by mass spectrometry

    NASA Astrophysics Data System (ADS)

    McCullough, Bryan J.; Eastwood, Hayden; Clark, Dave J.; Polfer, Nick C.; Campopiano, Dominic J.; Dorin, Julia A.; Maxwell, Alison; Langley, Ross J.; Govan, John R. W.; Bernstein, Summer L.; Bowers, Michael T.; Barran, Perdita E.

    2006-05-01

    Mammalian defensins are small endogenous cationic proteins which form a class of antimicrobial peptides that is part of the innate immune response of all mammalian species [R. Lehrer, Nat. Rev. Microbiol. 2 (9) (2004) 727; T. Ganz, R.I. Lehrer, Curr. Opin. Immunol. 6 (4) (1994) 584] [1] and [2]. We have developed mass spectrometry based strategies for characterising the structure-activity relationship of defensins [D.J. Campopiano, D.J. Clarke, N.C. Polfer, P.E. Barran, R.J. Langley, J.R.W. Govan, A. Maxwell, J.R. Dorin, J. Biol. Chem. 279 (47) (2004) 48671; P.E. Barran, N.C. Polfer, D.J. Campopiano, D.J. Clarke, P.R.R. Langridge-Smith, R.J. Langley, J.R.W. Govan, A. Maxwell, J.R. Dorin, R.P. Millar, M.T. Bowers, Int. J. Mass Spectrom. 240 (2005) 273] [3] and [4], and here we present data obtained from a five cysteine containing [beta]-defensin, DEFB107. The synthetic product of this human defensin exists with a glutathione capping group, its oxidation state and disulphide connectivity have been determined via accurate mass measurements and peptide mass mapping respectively, and despite possessing three disulphide bridges, it does not fit the [beta]-defensin canonical motif. With the use of molecular modelling, we have generated candidate geometries to discern the influence of disulphide bridging on the overall tertiary structure of DEFB107. These are compared with experimental results from ion mobility measurements. Defensins display activity against a wide variety of pathogens including both gram-negative and gram-positive bacteria. Their mechanism of mode of action is unknown, but is believed to involve defensin aggregation at cell surfaces, followed by cell permeabilisation and hence deathE To probe this mechanism, the localisation of DEFB107 in synthetic vesicles was studied using H/D exchange and mass spectrometry. The results obtained are used to analyse the antimicrobial activity of DEFB107.

  14. Interfacing membrane mimetics with mass spectrometry

    PubMed Central

    Marty, Michael T.; Hoi, Kin Kuan; Robinson, Carol V.

    2017-01-01

    Conspectus Membrane proteins play critical physiological roles and make up the majority of drug targets. Due to their generally low expression levels and amphipathic nature, membrane proteins represent challenging molecular entities for biophysical study. Mass spectrometry offers several sensitive approaches to study the biophysics of membrane proteins. By preserving noncovalent interactions in the gas phase and using collisional activation to remove solubilization agents inside the mass spectrometer, native mass spectrometry (MS) is capable of studying isolated assemblies that would be insoluble in aqueous solution, such as membrane protein oligomers and protein-lipid complexes. Conventional methods use detergent to solubilize the protein prior to electrospray ionization. Gas-phase activation inside the mass spectrometer removes the detergent to yield the isolated proteins with bound ligands. This approach has proven highly successful for ionizing membrane proteins. With the appropriate choice of detergents, membrane proteins with bound lipid species can be observed, which allows characterization of protein-lipid interactions. However, detergents have several limitations. They do not necessarily replicate the native lipid bilayer environment, and only a small number of protein-lipid interactions can be resolved. In this Account, we summarize the development of different membrane mimetics as cassettes for MS analysis of membrane proteins. Examples include amphipols, bicelles, and picodiscs with a special emphasis on lipoprotein Nanodiscs. Polydispersity and heterogeneity of the membrane mimetic cassette is a critical issue for study by MS. Ever more complex datasets consisting of overlapping protein charge states and multiple lipid-bound entities have required development of new computational, theoretical, and experimental approaches to interpret both mass and ion mobility spectra. We will present the rationale and limitations of these approaches. Starting with the

  15. Characterization of Microorganisms by MALDI Mass Spectrometry

    SciTech Connect

    Petersen, Catherine E.; Valentine, Nancy B.; Wahl, Karen L.

    2008-10-02

    Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for characterization and analysis of microorganisms, specifically bacteria, is described here as a rapid screening tool. The objective of this technique is not comprehensive protein analysis of a microorganism but rather a rapid screening of the organism and the accessible protein pattern for characterization and distinction. This method is based on the ionization of the readily accessible and easily ionizable portion of the protein profile of an organism that is often characteristic of different bacterial species. The utility of this screening approach is yet to reach its full potential but could be applied to food safety, disease outbreak monitoring in hospitals, culture stock integrity and verification, microbial forensics or homeland security applications.

  16. [Future applications of mass spectrometry in microbiology].

    PubMed

    Vila, Jordi; Zboromyrska, Yuliya; Burillo, Almudena; Bouza, Emilio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) has been vigorously introduced in many clinical microbiology laboratories for the rapid and accurate identification of bacteria and fungi. In fact, the implementation of this methodology can be considered a revolution in these laboratories. In addition to microbial identification, MALDI-TOF MS is being used for the detection of some mechanisms of antibiotic resistance and for the molecular typing of bacteria. A number of current and future applications that increase the versatility of this methodology may also be mentioned. Among these are its direct application on clinical samples, the detection of toxins or specific microbial antigens, and its application in the fields of virology and parasitology.

  17. Recent trends in inorganic mass spectrometry

    SciTech Connect

    Smith, D.H.; Barshick, C.M.; Duckworth, D.C.; Riciputi, L.R.

    1996-10-01

    The field of inorganic mass spectrometry has seen substantial change in the author`s professional lifetime (over 30 years). Techniques in their infancy 30 years ago have matured; some have almost disappeared. New and previously unthought of techniques have come into being; some of these, such as ICP-MS, are reasonably mature now, while others have some distance to go before they can be so considered. Most of these new areas provide fertile fields for researchers, both in the development of new analytical techniques and by allowing fundamental studies to be undertaken that were previously difficult, impossible, or completely unforeseen. As full coverage of the field is manifestly impossible within the framework of this paper, only those areas with which the author has personal contact will be discussed. Most of the work originated in his own laboratory, but that of other laboratories is covered where it seemed appropriate.

  18. Functional phosphoproteomic mass spectrometry-based approaches

    PubMed Central

    2012-01-01

    Mass Spectrometry (MS)-based phosphoproteomics tools are crucial for understanding the structure and dynamics of signaling networks. Approaches such as affinity purification followed by MS have also been used to elucidate relevant biological questions in health and disease. The study of proteomes and phosphoproteomes as linked systems, rather than research studies of individual proteins, are necessary to understand the functions of phosphorylated and un-phosphorylated proteins under spatial and temporal conditions. Phosphoproteome studies also facilitate drug target protein identification which may be clinically useful in the near future. Here, we provide an overview of general principles of signaling pathways versus phosphorylation. Likewise, we detail chemical phosphoproteomic tools, including pros and cons with examples where these methods have been applied. In addition, basic clues of electrospray ionization and collision induced dissociation fragmentation are detailed in a simple manner for successful phosphoproteomic clinical studies. PMID:23369623

  19. Accelerator mass spectrometry (AMS) in plutonium analysis.

    PubMed

    Strumińska-Parulska, Dagmara I

    The paper summarizes the results of the (240)Pu/(239)Pu atomic ratio studies in atmospheric fallout samples collected in 1986 over Gdynia (Poland) as well as three Baltic fish species collected in 1997 using the accelerator mass spectrometry. A new generation of AMS has been developed during last years and this method is an efficient and good technique to measure long-lived radioisotopes in the environment and provides the most accurate determination of the atomic ratios between (240)Pu and (239)Pu. The nuclide compositions of plutonium in filter samples correspond to their means of production. AMS measurements of atmospheric fallout collected in April showed sufficient increase of the (240)Pu/(239)Pu atomic ratio from 0.28 from March to 0.47. Also such high increase of (240)Pu/(239)Pu atomic ratio, close to reactor core (240)Pu/(239)Pu atomic ratio, was observed in September and equaled 0.47.

  20. Detection of gunshot residues using mass spectrometry.

    PubMed

    Taudte, Regina Verena; Beavis, Alison; Blanes, Lucas; Cole, Nerida; Doble, Philip; Roux, Claude

    2014-01-01

    In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR) due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR-) like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS) coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR), although the "gold standard" for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX). This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis.

  1. Mass spectrometry and Web 2.0.

    PubMed

    Murray, Kermit K

    2007-10-01

    The term Web 2.0 is a convenient shorthand for a new era in the Internet in which users themselves are both generating and modifying existing web content. Several types of tools can be used. With social bookmarking, users assign a keyword to a web resource and the collection of the keyword 'tags' from multiple users form the classification of these resources. Blogs are a form of diary or news report published on the web in reverse chronological order and are a popular form of information sharing. A wiki is a website that can be edited using a web browser and can be used for collaborative creation of information on the site. This article is a tutorial that describes how these new ways of creating, modifying, and sharing information on the Web are being used for on-line mass spectrometry resources.

  2. Dating silk by capillary electrophoresis mass spectrometry.

    PubMed

    Moini, Mehdi; Klauenberg, Kathryn; Ballard, Mary

    2011-10-01

    A new capillary electrophoresis mass spectrometry (CE-MS) technique is introduced for age estimation of silk textiles based on amino acid racemization rates. With an L to D conversion half-life of ~2500 years for silk (B. mori) aspartic acid, the technique is capable of dating silk textiles ranging in age from several decades to a few-thousand-years-old. Analysis required only ~100 μg or less of silk fiber. Except for a 2 h acid hydrolysis at 110 °C, no other sample preparation is required. The CE-MS analysis takes ~20 min, consumes only nanoliters of the amino acid mixture, and provides both amino acid composition profiles and D/L ratios for ~11 amino acids.

  3. In situ secondary ion mass spectrometry analysis

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  4. Forensic applications of ambient ionization mass spectrometry.

    PubMed

    Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham

    2009-08-01

    This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents.

  5. Atmospheric-pressure Penning ionization mass spectrometry.

    PubMed

    Hiraoka, Kenzo; Fujimaki, Susumu; Kambara, Shizuka; Furuya, Hiroko; Okazaki, Shigemitsu

    2004-01-01

    A preliminary study on the atmospheric-pressure Penning ionization (APP(e)I) of gaseous organic compounds with Ar* has been made. The metastable argon atoms (Ar*: 11.55 eV for (3)P(2) and 11.72 eV for (3)P(0)) were generated by the negative-mode corona discharge of atmospheric-pressure argon gas. By applying a high positive voltage (+500 to +1000 V) to the stainless steel capillary for the sample introduction (0.1 mm i.d., 0.3 mm o.d.), strong ion signals could be obtained. The ions formed were sampled through an orifice into the vacuum and mass-analyzed by an orthogonal time-of-flight mass spectrometer. The major ions formed by APP(e)I are found to be molecular-related ions for alkanes, aromatics, and oxygen-containing compounds. Because only the molecules with ionization energies less than the internal energy of Ar* are ionized, the present method will be a selective and highly sensitive interface for gas chromatography/mass spectrometry.

  6. Enantioselectivity of mass spectrometry: challenges and promises.

    PubMed

    Awad, Hanan; El-Aneed, Anas

    2013-01-01

    With the fast growing market of pure enantiomer drugs and bioactive molecules, new chiral-selective analytical tools have been instigated including the use of mass spectrometry (MS). Even though MS is one of the best analytical tools that has efficiently been used in several pharmaceutical and biological applications, traditionally MS is considered as a "chiral-blind" technique. This limitation is due to the MS inability to differentiate between two enantiomers of a chiral molecule based merely on their masses. Several approaches have been explored to assess the potential role of MS in chiral analysis. The first approach depends on the use of MS-hyphenated techniques utilizing fast and sensitive chiral separation tools such as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis (CE) coupled to MS detector. More recently, several alternative separation techniques have been evaluated such as supercritical fluid chromatography (SFC) and capillary electrochromatography (CEC); the latter being a hybrid technique that combines the efficiency of CE with the selectivity of LC. The second approach is based on using the MS instrument solely for the chiral recognition. This method depends on the behavioral differences between enantiomers towards a foreign molecule and the ability of MS to monitor such differences. These behavioral differences can be divided into three types: (i) differences in the enantiomeric affinity for association with the chiral selector, (ii) differences of the enantiomeric exchange rate with a foreign reagent, and (iii) differences in the complex MS dissociation behaviors of the enantiomers. Most recently, ion mobility spectrometry was introduced to qualitatively and quantitatively evaluate chiral compounds. This article provides an overview of MS role in chiral analysis by discussing MS based methodologies and presenting the challenges and promises associated with each approach.

  7. Separation of five compounds from leaves of Andrographis paniculata (Burm. f.) Nees by off-line two-dimensional high-speed counter-current chromatography combined with gradient and recycling elution.

    PubMed

    Zhang, Li; Liu, Qi; Yu, Jingang; Zeng, Hualiang; Jiang, Shujing; Chen, Xiaoqing

    2015-05-01

    An off-line two-dimensional high-speed counter-current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n-hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4'-dihydroxyflavonoid-7-O-β-d-pyranglucuronatebutylester, 7,8-dimethoxy-2'-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high-performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and (1) H NMR spectroscopy. It has been demonstrated that the combination of off-line two-dimensional high-speed counter-current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts.

  8. Nanospray ion mobility mass spectrometry of selected high mass species.

    PubMed

    Campuzano, Iain; Giles, Kevin

    2011-01-01

    The introduction of electrospray ionization (ESI) and in particular nano-electrospray (nESI) has enabled the routine mass spectrometric (MS) analysis of large protein complexes in native aqueous buffers. Time-of-flight (ToF) mass spectrometers, in particular the hybrid quadrupole time-of-flight (Q-ToF) instruments, are well suited to the analysis of large protein complexes. When ionized under native-MS conditions, protein complexes routinely exhibit multiple charge states in excess of m/z 6,000, well above the standard mass range of many quadrupole or ion cyclotron-based instruments. The research area of native MS has expanded considerably in the last decade and has shown particular relevance in the area of protein structure determination. Researchers are now able to routinely measure intact MS spectra of protein complexes above 1 MDa in mass. The advent of ion mobility mass spectrometry (IM-MS), in combination with molecular dynamics (MD) studies, is now allowing researchers to infer the shape of the protein complex being analyzed. Herein, we describe how to acquire IM-MS data that ranges from inorganic salt clusters of caesium iodide (CsI) to large biomolecular complexes such as the chaperone protein GroEL.

  9. Advantageous Uses of Mass Spectrometry for the Quantification of Proteins

    PubMed Central

    Hale, John E.

    2013-01-01

    Quantitative protein measurements by mass spectrometry have gained wide acceptance in research settings. However, clinical uptake of mass spectrometric protein assays has not followed suit. In part, this is due to the long-standing acceptance by regulatory agencies of immunological assays such as ELISA assays. In most cases, ELISAs provide highly accurate, sensitive, relatively inexpensive, and simple assays for many analytes. The barrier to acceptance of mass spectrometry in these situations will remain high. However, mass spectrometry provides solutions to certain protein measurements that are difficult, if not impossible, to accomplish by immunological methods. Cases where mass spectrometry can provide solutions to difficult assay development include distinguishing between very closely related protein species and monitoring biological and analytical variability due to sample handling and very high multiplexing capacity. This paper will highlight several examples where mass spectrometry has made certain protein measurements possible where immunological techniques have had a great difficulty. PMID:23365751

  10. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGES

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  11. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  12. Mass Spectrometry of Acoustically Levitated Droplets

    PubMed Central

    Westphall, Michael S.; Jorabchi, Kaveh; Smith, Lloyd M.

    2008-01-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air–droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-μL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing chargere combination after ion desorption. PMID:18582090

  13. Laser ablation/Fourier transform mass spectrometry of polymers

    NASA Astrophysics Data System (ADS)

    Creasy, William R.; Brenna, J. T.

    1989-10-01

    Laser ablation/ionization followed by Fourier transform mass spectrometry is used to identify and characterize polymers. The mass spectra of several polymers are discussed, including polyimide, polyamic acid, Dupont Tefzel, and polyphenylene sulfide.

  14. Single-protein nanomechanical mass spectrometry in real time

    PubMed Central

    Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L.

    2012-01-01

    Nanoelectromechanical systems (NEMS) resonators can detect mass with exceptional sensitivity. Previously, mass spectra from several hundred adsorption events were assembled in NEMS-based mass spectrometry using statistical analysis. Here, we report the first realization of single-molecule NEMS-based mass spectrometry in real time. As each molecule in the sample adsorbs upon the NEMS resonator, its mass and the position-of-adsorption are determined by continuously tracking two driven vibrational modes of the device. We demonstrate the potential of multimode NEMS-based mass spectrometry by analyzing IgM antibody complexes in real-time. NEMS-MS is a unique and promising new form of mass spectrometry: it can resolve neutral species, provides resolving power that increases markedly for very large masses, and allows acquisition of spectra, molecule-by-molecule, in real-time. PMID:22922541

  15. PHENIX on-line and off-line computing

    NASA Astrophysics Data System (ADS)

    Adler, S. S.; Chujo, T.; Desmond, E. J.; Ewell, L.; Ghosh, T. K.; Haggerty, J. S.; Ichihara, T.; Jacak, B. V.; Johnson, S. C.; Kehayias, H.-J.; Lauret, J.; Maguire, C. F.; Messer, M.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; Ojha, I. D.; Pinkenburg, C. H.; Pollack, M.; Pope, K.; Purschke, M. L.; Sorensen, S.; Sourikova, I.; Thomas, T. L.; Velkovsky, M.; Watanabe, Y.; Witzig, C.; Yokkaichi, S.; Zajc, W. A.; PHEN. I. X. Collaboration

    2003-03-01

    Data handling in PHENIX is carried out by the On-Line Computing System (ONCS) and Off-Line Computing System (Off-Line). ONCS provides the overall control and monitoring of the front-end electronics, trigger and data acquisition system and detector ancillary systems. It configures and initializes the on-line system, monitors and controls the data flow, coordinates calibration processes, interlocks the data acquisition process with the slow control subsystems and performs a number of other functions. ONCS uses CORBA software to monitor and control the hardware. Off-Line provides all aspects of data handling not directly connected to the collection of data and monitoring, such as event simulation and reconstruction, data analysis and information management. The impact of the unprecedented data volumes on the design is presented, along with a detailed discussion of the tasks and methods of simulating, obtaining and monitoring the data.

  16. Reliability of veterinary drug residue confirmation: high resolution mass spectrometry versus tandem mass spectrometry.

    PubMed

    Kaufmann, A; Butcher, P; Maden, K; Walker, S; Widmer, M

    2015-01-26

    Confirmation of suspected residues has been a long time domain of tandem triple quadrupole mass spectrometry (QqQ). The currently most widely used confirmation strategy relies on the use of two selected reaction monitoring signals (SRM). The details of this confirmation procedure are described in detail in the Commission Decision 93/256/EC (CD). On the other hand, high resolution mass spectrometry (HRMS) is nowadays increasingly used for trace analysis. Yet its utility for confirmatory purposes has not been well explored and utilized, since established confirmation strategies like the CD do not yet include rules for modern HRMS technologies. It is the focus of this paper to evaluate the likelihood of false positive and false negative confirmation results, when using a variety of HRMS based measurement modes as compared to conventional QqQ mass spectrometry. The experimental strategy relies on the chromatographic separation of a complex blank sample (bovine liver extract) and the subsequent monitoring of a number of dummy transitions respectively dummy accurate masses. The term "dummy" refers to precursor and derived product ions (based on a realistic neutral loss) whose elemental compositions (CxHyNzOdCle) were produced by a random number generator. Monitoring a large number of such hypothetical SRM's, or accurate masses inevitably produces a number of mass traces containing chromatographic peaks (false detects) which are caused by eluting matrix compounds. The number and intensity of these peaks were recorded and standardized to permit a comparison among the two employed MS technologies. QqQ performance (compounds which happen to produce a response in two SRM traces at identical retention time) was compared with a number of different HRMS(1) and HRMS(2) detection based modes. A HRMS confirmation criterion based on two full scans (an unfragmented and an all ion fragmented) was proposed. Compared to the CD criteria, a significantly lower probability of false

  17. Multifunctional Carbon Fiber Ionization Mass Spectrometry.

    PubMed

    Wu, Meng-Xi; Wang, Hao-Yang; Zhang, Jun-Ting; Guo, Yin-Long

    2016-10-04

    A carbon fiber ionization (CFI) technique was developed for the mass spectrometric analysis of various organic compounds with different polarities. The design of the CFI technique was based on the good compatibility and dispersion of samples and solutions in different solvents on carbon fiber. As a fast, convenient, and versatile ionization method, CFI-MS is especially efficient for analyzing many low/nonpolar organic compounds, such as polycyclic aromatic hydrocarbons, long-chain aliphatic aldehydes, sensitive steroids, terpenoids, and organometallic compounds. Some of these compounds may not be well-analyzed by electrospray ionization or electron ionization mass spectrometry. On the basis of our experimental results, the major ion formation mechanism of CFI-MS was suggested to involve desorption in a steam-distillation-like process, and then, ionization occurred mainly via corona discharge under high voltage. CFI-MS could not only work alone but also be coupled with separation techniques. It works well when coupled with supercritical fluid chromatography (SFC) as well as in the analysis of exhaled human air. The high flexibility and versatility of CFI-MS has extended its applications in many areas, such as fast chemical screening, clinical testing, and forensic analysis.

  18. Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine

    SciTech Connect

    Annesley, Thomas M.; Cooks, Robert G.; Herold, David A.; Hoofnagle, Andrew N.

    2016-01-04

    Each year the journal Clinical Chemistry publishes a January special issue on a topic that is relevant to the laboratory medicine community. In January 2016 the topic is mass spectrometry, and the issue is entitled “Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine”. One popular feature in our issues is a Q&A on a topic, clearly in this case mass spectrometry. The journal is assembling a panel of 5-6 experts from various areas of mass spectrometry ranging from instrument manufacturing to practicing clinical chemists. Dick Smith is one of the scientist requested to participate in this special issue Q&A on Mass Spectrometry. The Q&A Transcript is attached

  19. Applications of Mass Spectrometry to Lipids and Membranes

    PubMed Central

    Harkewicz, Richard; Dennis, Edward A.

    2012-01-01

    Lipidomics, a major part of metabolomics, constitutes the detailed analysis and global characterization, both spatial and temporal, of the structure and function of lipids (the lipidome) within a living system. As with proteomics, mass spectrometry has earned a central analytical role in lipidomics, and this role will continue to grow with technological developments. Currently, there exist two mass spectrometry-based lipidomics approaches, one based on a division of lipids into categories and classes prior to analysis, the “comprehensive lipidomics analysis by separation simplification” (CLASS), and the other in which all lipid species are analyzed together without prior separation, shotgun. In exploring the lipidome of various living systems, novel lipids are being discovered, and mass spectrometry is helping characterize their chemical structure. Deuterium exchange mass spectrometry (DXMS) is being used to investigate the association of lipids and membranes with proteins and enzymes, and imaging mass spectrometry (IMS) is being applied to the in situ analysis of lipids in tissues. PMID:21469951

  20. US Food and Drug Administration Perspectives on Clinical Mass Spectrometry.

    PubMed

    Lathrop, Julia Tait; Jeffery, Douglas A; Shea, Yvonne R; Scholl, Peter F; Chan, Maria M

    2016-01-01

    Mass spectrometry-based in vitro diagnostic devices that measure proteins and peptides are underutilized in clinical practice, and none has been cleared or approved by the Food and Drug Administration (FDA) for marketing or for use in clinical trials. One way to increase their utilization is through enhanced interactions between the FDA and the clinical mass spectrometry community to improve the validation and regulatory review of these devices. As a reference point from which to develop these interactions, this article surveys the FDA's regulation of mass spectrometry-based devices, explains how the FDA uses guidance documents and standards in the review process, and describes the FDA's previous outreach to stakeholders. Here we also discuss how further communication and collaboration with the clinical mass spectrometry communities can identify opportunities for the FDA to provide help in the development of mass spectrometry-based devices and enhance their entry into the clinic.

  1. Exploration of cardanol-based phenolated and epoxidized resins by size exclusion chromatography and MALDI mass spectrometry.

    PubMed

    Fouquet, Thierry; Puchot, Laura; Verge, Pierre; Bomfim, João A S; Ruch, David

    2014-09-16

    Cardanol and cardanol derivatives are among the most important biobased materials currently investigated in green chemistry, as renewable and promising building blocks in lieu of traditional raw materials from non renewable resources, in particular owing to the olefinic linkages on the C15 alkyl side-chain. Despite the increasing interest they arouse, analytical chemistry dedicated to cardanol and associated resins has been rarely reported in the literature, found even poorer when dealing with chromatography and mass spectrometry. In this work, a thorough molecular characterization was conducted using matrix assisted laser desorption ionization (MALDI) mass spectrometry, size exclusion chromatography (SEC), and SEC-MALDI coupling to gain insights into the composition of phenolated, epoxidized, and epoxidized phenolated cardanol. A nomenclature was proposed to properly describe the numerous species found in these materials, while simulations of the unsaturation patterns and their comparison with the detected patterns in MALDI-MS gave useful details about the phenolation treatment expected to occur on the polyunsaturated C15 side chain. Finally, the SEC-MALDI off-line coupling allowed SEC peaks to be deconvoluted by mass spectrometry and MALDI artefacts related to matrix adduction to be pointed out.

  2. Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications.

    PubMed

    Schneider, Bradley B; Nazarov, Erkinjon G; Londry, Frank; Vouros, Paul; Covey, Thomas R

    2016-10-01

    This review of differential mobility spectrometry focuses primarily on mass spectrometry coupling, starting with the history of the development of this technique in the Soviet Union. Fundamental principles of the separation process are covered, in addition to efforts related to design optimization and advancements in computer simulations. The flexibility of differential mobility spectrometry design features is explored in detail, particularly with regards to separation capability, speed, and ion transmission. 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:687-737, 2016.

  3. Fast fingerprinting of arson accelerants by proton transfer reaction time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Whyte, Christopher; Wyche, Kevin P.; Kholia, Mitesh; Ellis, Andrew M.; Monks, Paul S.

    2007-06-01

    Current techniques for the forensic analysis of fire debris as a means to detect the presence of arson accelerants normally use off-line sampling with the collection of accelerant vapours on activated charcoal strips and further pre-chemistry prior to analysis. An alternative method for the direct detection of arson accelerants that requires no sample pre-treatment is described here. The analysis uses proton transfer reaction mass spectrometry (PTR-MS), incorporating a time-of-flight mass spectrometer for rapid multichannel compound detection. It is demonstrated that using PTR-MS volatile organic compound (VOC) fingerprints of a given fire accelerant can be collected by simple head space analysis of accelerant burned materials. Using a set of the four most common arson accelerants and four common household building materials, characteristic VOC fingerprints are shown to provide successful identification of the accelerant used to burn each material. There is the potential to develop this methodology for the rapid screening of large numbers of samples.

  4. Mass spectrometry innovations in drug discovery and development.

    PubMed

    Papac, D I; Shahrokh, Z

    2001-02-01

    This review highlights the many roles mass spectrometry plays in the discovery and development of new therapeutics by both the pharmaceutical and the biotechnology industries. Innovations in mass spectrometer source design, improvements to mass accuracy, and implementation of computer-controlled automation have accelerated the purification and characterization of compounds derived from combinatorial libraries, as well as the throughput of pharmacokinetics studies. The use of accelerator mass spectrometry, chemical reaction interface-mass spectrometry and continuous flow-isotope ratio mass spectrometry are promising alternatives for conducting mass balance studies in man. To meet the technical challenges of proteomics, discovery groups in biotechnology companies have led the way to development of instruments with greater sensitivity and mass accuracy (e.g., MALDI-TOF, ESI-Q-TOF, Ion Trap), the miniaturization of separation techniques and ion sources (e.g., capillary HPLC and nanospray), and the utilization of bioinformatics. Affinity-based methods coupled to mass spectrometry are allowing rapid and selective identification of both synthetic and biological molecules. With decreasing instrument cost and size and increasing reliability, mass spectrometers are penetrating both the manufacturing and the quality control arenas. The next generation of technologies to simplify the investigation of the complex fate of novel pharmaceutical entities in vitro and in vivo will be chip-based approaches coupled with mass spectrometry.

  5. Illustrating the Concepts of Isotopes and Mass Spectrometry in Introductory Courses: A MALDI-TOF Mass Spectrometry Laboratory Experiment

    ERIC Educational Resources Information Center

    Dopke, Nancy Carter; Lovett, Timothy Neal

    2007-01-01

    Mass spectrometry is a widely used and versatile tool for scientists in many different fields. Soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) allow for the analysis of biomolecules, polymers, and clusters. This article describes a MALDI mass spectrometry experiment designed for students in introductory…

  6. Mass Spectrometry Imaging: facts and perspectives from a non-mass spectrometrist point of view.

    PubMed

    Cameron, L C

    2012-08-01

    Mass Spectrometry Imaging (MSI, also called Imaging Mass Spectrometry) can be used to map molecules according to their chemical abundance and spatial distribution. This technique is not widely used in mass spectrometry circles and is barely known by other scientists. In this review, a brief overview of the mass spectrometer hardware used in MSI and some of the possible applications of this powerful technique are discussed. I intend to call attention to MSI uses from cell biology to histopathology for biological scientists who have little background in mass spectrometry. MSI facts and perspectives are presented from a non-mass spectrometrist point of view.

  7. Identification of Unknown Contaminants in Water Samples from ISS Employing Liquid Chromatography/Mass Spectrometry/Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Schultz, John R.

    2008-01-01

    Mass Spectrometry/Mass Spectrometry (MS/MS) is a powerful technique for identifying unknown organic compounds. For non-volatile or thermally unstable unknowns dissolved in liquids, liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) is often the variety of MS/MS used for the identification. One type of LC/MS/MS that is rapidly becoming popular is time-of-flight (TOF) mass spectrometry. This technique is now in use at the Johnson Space Center for identification of unknown nonvolatile organics in water samples from the space program. An example of the successful identification of one unknown is reviewed in detail in this paper. The advantages of time-of-flight instrumentation are demonstrated through this example as well as the strategy employed in using time-of-flight data to identify unknowns.

  8. Sleep, Off-Line Processing, and Vocal Learning

    ERIC Educational Resources Information Center

    Margoliash, Daniel; Schmidt, Marc F.

    2010-01-01

    The study of song learning and the neural song system has provided an important comparative model system for the study of speech and language acquisition. We describe some recent advances in the bird song system, focusing on the role of off-line processing including sleep in processing sensory information and in guiding developmental song…

  9. [Application of mass spectrometry to bacterial identification].

    PubMed

    Hernández, Álvaro Pascual; Ballestero-Téllez, Mónica; Galán-Sánchez, Fátima; Iglesias, Manuel Rodríguez

    2016-06-01

    Correct and rapid identification of bacteria is essential for the correct diagnosis and treatment of infected patients. Until a few years ago, biochemical, colorimetric or even antibiotic sensitivity tests were used to identify genera and species. The main limitations of these methods were the time needed for their performance and the difficulty of distinguishing between microorganisms that were little reactive, highly similar, or difficult to culture. Many of these problems have been solved by the introduction of mass spectrometry (MS) in the laboratory with the use of MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight). Knowledge of the strengths and weaknesses of this technology is essential to be able to take maximum advantage of this technique. Not all microorganisms can be identified with the same ease and reliability by MALDI-TOF and microbiologists need to know how to interpret the results obtained with this technique and the available alternatives in order to identify the microorganisms causing the most problems. This article aims to summarise the available information on the correct identification of the main human pathogenic bacteria through the use of MALDI-TOF MS, focusing on Gram-negative, Grampositive and anaerobic microorganisms. The main factors that must be taken into account for the reliable identification of any bacterium are the conditions for culture, sample preparation with the ideal extraction method and especially the use of a correct and updated database.

  10. Signatures for Mass Spectrometry Data Quality

    PubMed Central

    2014-01-01

    Ensuring data quality and proper instrument functionality is a prerequisite for scientific investigation. Manual quality assurance is time-consuming and subjective. Metrics for describing liquid chromatography mass spectrometry (LC–MS) data have been developed; however, the wide variety of LC–MS instruments and configurations precludes applying a simple cutoff. Using 1150 manually classified quality control (QC) data sets, we trained logistic regression classification models to predict whether a data set is in or out of control. Model parameters were optimized by minimizing a loss function that accounts for the trade-off between false positive and false negative errors. The classifier models detected bad data sets with high sensitivity while maintaining high specificity. Moreover, the composite classifier was dramatically more specific than single metrics. Finally, we evaluated the performance of the classifier on a separate validation set where it performed comparably to the results for the testing/training data sets. By presenting the methods and software used to create the classifier, other groups can create a classifier for their specific QC regimen, which is highly variable lab-to-lab. In total, this manuscript presents 3400 LC–MS data sets for the same QC sample (whole cell lysate of Shewanella oneidensis), deposited to the ProteomeXchange with identifiers PXD000320–PXD000324. PMID:24611607

  11. Proton Dynamics in Protein Mass Spectrometry.

    PubMed

    Li, Jinyu; Lyu, Wenping; Rossetti, Giulia; Konijnenberg, Albert; Natalello, Antonino; Ippoliti, Emiliano; Orozco, Modesto; Sobott, Frank; Grandori, Rita; Carloni, Paolo

    2017-03-16

    Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multistep simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-β peptide (Aβ(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ∼0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the picosecond-time scale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the millisecond time scale). However, the structural changes associated with the process do not significantly affect the structural determinants.

  12. Accelerator mass spectrometry of small biological samples.

    PubMed

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  13. Accelerator Mass Spectrometry in Laboratory Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Nusair, O.; Bauder, W.; Gyürky, G.; Paul, M.; Collon, P.; Fülöp, Zs; Greene, J.; Kinoshita, N.; Palchan, T.; Pardo, R.; Rehm, K. E.; Scott, R.; Vondrasek, R.

    2016-01-01

    The extreme sensitivity and discrimination power of accelerator mass spectrometry (AMS) allows for the search and the detection of rare nuclides either in natural samples or produced in the laboratory. At Argonne National Laboratory, we are developing an AMS setup aimed in particular at the detection of medium and heavy nuclides, relying on the high ion energy achievable with the ATLAS superconducting linear accelerator and on gas-filled magnet isobaric separation. The setup was recently used for the detection of the 146Sm p-process nuclide and for a new determination of the 146Sm half-life (68.7 My). AMS plays an important role in the measurement of stellar nuclear reaction cross sections by the activation method, extending thus the technique to the study of production of long-lived radionuclides. Preliminary measurements of the 147Sm(γ,n)146Sm are described. A measurement of the 142Nd(α,γ)146Sm and 142Nd(α,n)145Sm reactions is in preparation. A new laser-ablation method for the feeding of the Electron Cyclotron Resonance (ECR) ion source is described.

  14. 1912: a Titanic year for mass spectrometry.

    PubMed

    Downard, Kevin M

    2012-08-01

    The 1912 sinking of the Titanic continues to capture the imagination and fascination of the general public. The year coincides with the birth of mass spectrometry that began with the cathode ray experiments performed by Joseph John (J. J.) Thomson in Cambridge. Modifications made to Thomson's cathode ray apparatus by Francis William Aston, resulted in an increase in the brightness of the positive rays that aided their detection. This led to the discovery of heavy isotopes for many of the chemical elements in the ensuing decades. As the discovery of (22) Ne was reported in 1913, another of Thomson's students was taking part in an expedition to help save future ocean liners from the fate of the Titanic. Geoffrey Ingram Taylor took part in the first ice patrol of the North Atlantic in 1913 aboard the SS Scotia to investigate the formation and position of icebergs. This article, 100 years on, describes Taylor's work and its impact on safe ocean passage across the Atlantic.

  15. Detection of Gunshot Residues Using Mass Spectrometry

    PubMed Central

    Blanes, Lucas; Cole, Nerida; Doble, Philip; Roux, Claude

    2014-01-01

    In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR) due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR-) like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS) coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR), although the “gold standard” for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX). This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis. PMID:24977168

  16. Secondary Ion Mass Spectrometry SIMS XI

    NASA Astrophysics Data System (ADS)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  17. Charging of Proteins in Native Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Susa, Anna C.; Xia, Zijie; Tang, Henry Y. H.; Tainer, John A.; Williams, Evan R.

    2017-02-01

    Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo proton transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism.

  18. Mass spectrometry of Natural Products: Current, Emerging and Future Technologies

    PubMed Central

    Bouslimani, Amina; Sanchez, Laura M; Garg, Neha; Dorrestein, Pieter C

    2014-01-01

    Although mass spectrometry is a century old technology, we are entering into an exciting time for the analysis of molecular information directly from complex biological systems. In this viewpoint article, we highlight emerging mass spectrometric methods and tools used by the natural product community and give a perspective of future directions where the mass spectrometry field is migrating towards over the next decade. PMID:24801551

  19. 3D Imaging by Mass Spectrometry: A New Frontier

    PubMed Central

    Seeley, Erin H.; Caprioli, Richard M.

    2012-01-01

    Summary Imaging mass spectrometry can generate three-dimensional volumes showing molecular distributions in an entire organ or animal through registration and stacking of serial tissue sections. Here we review the current state of 3D imaging mass spectrometry as well as provide insights and perspectives on the process of generating 3D mass spectral data along with a discussion of the process necessary to generate a 3D image volume. PMID:22276611

  20. Characterization of Membrane Protein-Lipid Interactions by Mass Spectrometry Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Cong, Xiao; Liu, Wen; Laganowsky, Arthur

    2016-12-01

    Lipids in the biological membrane can modulate the structure and function of integral and peripheral membrane proteins. Distinguishing individual lipids that bind selectively to membrane protein complexes from an ensemble of lipid-bound species remains a daunting task. Recently, ion mobility mass spectrometry (IM-MS) has proven to be invaluable for interrogating the interactions between protein and individual lipids, where the complex undergoes collision induced unfolding followed by quantification of the unfolding pathway to assess the effect of these interactions. However, gas-phase unfolding experiments for membrane proteins are typically performed on the entire ensemble (apo and lipid bound species), raising uncertainty to the contribution of individual lipids and the species that are ejected in the unfolding process. Here, we describe the application of mass spectrometry ion mobility mass spectrometry (MS-IM-MS) for isolating ions corresponding to lipid-bound states of a model integral membrane protein, ammonia channel (AmtB) from Escherichia coli. Free of ensemble effects, MS-IM-MS reveals that bound lipids are ejected as neutral species; however, no correlation was found between the lipid-induced stabilization of complex and their equilibrium binding constants. In comparison to data obtained by IM-MS, there are surprisingly limited differences in stability measurements from IM-MS and MS-IM-MS. The approach described here to isolate ions of membrane protein complexes will be useful for other MS methods, such as surface induced dissociation or collision induced dissociation to determine the stoichiometry of hetero-oligomeric membrane protein complexes.

  1. Chromatography - mass spectrometry in aerospace industry

    NASA Astrophysics Data System (ADS)

    Buryak, A. K.; Serdyuk, T. M.

    2013-01-01

    The applications of chromatography - mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography - mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography - mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  2. Analysis of secondary organic aerosols from ozonolysis of isoprene by proton transfer reaction mass spectrometry

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Sato, Kei; Hirokawa, Jun; Sakamoto, Yosuke; Tanimoto, Hiroshi; Okumura, Motonori; Tohno, Susumu; Imamura, Takashi

    2014-11-01

    To understand the mechanism of formation of the secondary organic aerosols (SOAs) produced by the ozonolysis of isoprene, proton transfer reaction mass spectrometry (PTR-MS) was used to identify the semi-volatile organic compounds (SVOCs) produced in both the gaseous and the aerosol phases and to estimate the gas-aerosol partitioning of each SVOC in chamber experiments. To aid in the identification of the SVOCs, the products were also studied with negative ion-chemical ionization mass spectrometry (NI-CIMS), which can selectively detect carboxylic acids and hydroperoxides. The gaseous products were observed by on-line PTR-MS and NI-CIMS, whereas the SVOCs in SOAs collected on a filter were vaporized by heating the filter and were then analysed by off-line PTR-MS and NI-CIMS. The formation of oligomeric hydroperoxides involving a Criegee intermediate as a chain unit was observed in both the gaseous and the aerosol phases by NI-CIMS. PTR-MS also detected oligomeric hydroperoxides as protonated molecules from which a H2O molecule was eliminated, [M-OH]+. In the aerosol phase, oligomers involving formaldehyde and methacrolein as chain units were observed by PTR-MS in addition to oligomeric hydroperoxides. The gas-aerosol partitioning of each component was calculated from the ion signals in the gaseous and aerosol phases measured by PTR-MS. From the gas-aerosol partitioning, the saturated vapour pressures of the oligomeric hydroperoxides were estimated. Measurements by a fast-mobility-particle-sizer spectrometer revealed that the increase of the number density of the particles was complete within a few hundred seconds from the start of the reaction.

  3. Prototype of an Interface for Hyphenating Distillation with Gas Chromatography and Mass Spectrometry

    PubMed Central

    Tang, Ya-Ru; Yang, Hui-Hsien; Urban, Pawel L.

    2017-01-01

    Chemical analysis of complex matrices—containing hundreds of compounds—is challenging. Two-dimensional separation techniques provide an efficient way to reduce complexity of mixtures analyzed by mass spectrometry (MS). For example, gasoline is a mixture of numerous compounds, which can be fractionated by distillation techniques. However, coupling conventional distillation with other separations as well as MS is not straightforward. We have established an automatic system for online coupling of simple microscale distillation with gas chromatography (GC) and electron ionization MS. The developed system incorporates an interface between the distillation condenser and the injector of a fused silica capillary GC column. Development of this multidimensional separation (distillation-GC-MS) was preceded by a series of preliminary off-line experiments. In the developed technique, the components with different boiling points are fractionated and instantly analyzed by GC-MS. The obtained data sets illustrate dynamics of the distillation process. An important advantage of the distillation-GC-MS technique is that raw samples can directly be analyzed without removal of the non-volatile matrix residues that could contaminate the GC injection port and the column. Distilling the samples immediately before the injection to the GC column may reduce possible matrix effects—especially in the early phase of separation, when molecules with different volatilities co-migrate. It can also reduce losses of highly volatile components (during fraction collection and transfer). The two separation steps are partly orthogonal, what can slightly increase selectivity of the entire analysis. PMID:28337400

  4. Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry.

    PubMed

    Serna, Jorge; García-Seisdedos, David; Alcázar, Alberto; Lasunción, Miguel Ángel; Busto, Rebeca; Pastor, Óscar

    2015-07-01

    Knowledge of the plasma lipid composition is essential to clarify the specific roles of different lipid species in various pathophysiological processes. In this study, we developed an analytical strategy combining high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) and off-line coupling with matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOF/MS) to determine the composition of plasma and major lipoproteins at two levels, lipid classes and lipid species. We confirmed the suitability of MALDI-TOF/MS as a quantitative measurement tool studying the linearity and repeatability for triglycerides (TG), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). Moreover, data obtained with this method were correlated with other lipid classes and species measurements using currently available technologies. To establish the potential utility of our approach, human plasma very low density- (VLDL), low density- (LDL) and high density- (HDL) lipoproteins from 10 healthy donors were separated using ultracentrifugation, and compositions of nine lipid classes, cholesteryl esters (CE), TG, free cholesterol (FC), PE, phosphatidylinositol (PI), sulfatides (S), PC, lysophosphatidylcholine (LPC) and sphingomyelin (SM), analyzed. In total, 157 lipid species in plasma, 182 in LDL, 171 in HDL, and 148 in VLDL were quantified. The lipidomic profile was consistent with known differences in lipid classes, but also revealed unexpected differences in lipid species distribution of lipoproteins, particularly for LPC and SM. In summary, the methodology developed in this study constitutes a valid approach to determine the lipidomic composition of plasma and lipoproteins.

  5. Prototype of an Interface for Hyphenating Distillation with Gas Chromatography and Mass Spectrometry.

    PubMed

    Tang, Ya-Ru; Yang, Hui-Hsien; Urban, Pawel L

    2017-01-01

    Chemical analysis of complex matrices-containing hundreds of compounds-is challenging. Two-dimensional separation techniques provide an efficient way to reduce complexity of mixtures analyzed by mass spectrometry (MS). For example, gasoline is a mixture of numerous compounds, which can be fractionated by distillation techniques. However, coupling conventional distillation with other separations as well as MS is not straightforward. We have established an automatic system for online coupling of simple microscale distillation with gas chromatography (GC) and electron ionization MS. The developed system incorporates an interface between the distillation condenser and the injector of a fused silica capillary GC column. Development of this multidimensional separation (distillation-GC-MS) was preceded by a series of preliminary off-line experiments. In the developed technique, the components with different boiling points are fractionated and instantly analyzed by GC-MS. The obtained data sets illustrate dynamics of the distillation process. An important advantage of the distillation-GC-MS technique is that raw samples can directly be analyzed without removal of the non-volatile matrix residues that could contaminate the GC injection port and the column. Distilling the samples immediately before the injection to the GC column may reduce possible matrix effects-especially in the early phase of separation, when molecules with different volatilities co-migrate. It can also reduce losses of highly volatile components (during fraction collection and transfer). The two separation steps are partly orthogonal, what can slightly increase selectivity of the entire analysis.

  6. Mass Spectrometry-based characterization of endogenous peptides and metabolites in small volume samples

    PubMed Central

    Ong, Ta-Hsuan; Tillmaand, Emily G.; Makurath, Monika; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2015-01-01

    Technologies to assay single cells and their extracellular microenvironments are valuable in elucidating biological function, but there are challenges. Sample volumes are low, the physicochemical parameters of the analytes vary widely, and the cellular environment is chemically complex. In addition, the inherent difficulty of isolating individual cells and handling small volume samples complicates many experimental protocols. Here we highlight a number of mass spectrometry (MS)-based measurement approaches for characterizing the chemical content of small volume analytes, with a focus on methods used to detect intracellular and extracellular metabolites and peptides from samples as small as individual cells. MS has become one of the most effective means for analyzing small biological samples due to its high sensitivity, low analyte consumption, compatibility with a wide array of sampling approaches, and ability to detect a large number of analytes with different properties without preselection. Having access to a flexible portfolio of MS-based methods allows quantitative, qualitative, untargeted, targeted, multiplexed, spatially resolved investigations of single cells and their similarly scaled extracellular environments. Combining MS with on-line and off-line sample conditioning tools, such as microfluidic and capillary electrophoresis systems, significantly increases the analytical coverage of the sample’s metabolome and peptidome, and improves individual analyte characterization / identification. Small volume assays help to reveal the causes and manifestations of biological and pathological variability, as well as the functional heterogeneity of individual cells within their microenvironments and within cellular populations. PMID:25617659

  7. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    NASA Astrophysics Data System (ADS)

    Bannan, T.; Booth, M.; Benyezzar, M.; Bacak, A.; Alfarra, M. R. R.; Topping, D. O.; Percival, C.

    2015-12-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  8. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    NASA Astrophysics Data System (ADS)

    Bannan, Thomas; Booth, A. Murray; Alfarra, Rami; Bacak, Asan; Pericval, Carl

    2016-04-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  9. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging.

    PubMed

    Römpp, Andreas; Schramm, Thorsten; Hester, Alfons; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M A; Stöckli, Markus; Spengler, Bernhard

    2011-01-01

    Imaging mass spectrometry is the method of scanning a sample of interest and generating an "image" of the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra which are usually acquired with identical settings. Existing data formats are not sufficient to describe an MS imaging experiment completely. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software.For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample details) are stored in an XML file which is based on the standard data format mzML developed by HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) are connected by offset values in the XML file and are unambiguously linked by a universally unique identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file allows flexible handling of large datasets.Several imaging MS software tools already support imzML. This allows choosing from a (growing) number of processing tools. One is no longer limited to proprietary software, but is able to use the processing software which is best suited for a specific question or application. On the other hand, measurements from different instruments can be compared within one software application using identical settings for data processing. All necessary information for evaluating and implementing imzML can be found at http://www.imzML.org .

  10. Mass spectrometry of membrane proteins: a focus on aquaporins.

    PubMed

    Schey, Kevin L; Grey, Angus C; Nicklay, Joshua J

    2013-06-04

    Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein-protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein-protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins.

  11. Recent applications of mass spectrometry in forensic toxicology

    NASA Astrophysics Data System (ADS)

    Foltz, Rodger L.

    1992-09-01

    This review encompasses applications of mass spectrometry reported during the years 1989, 1990 and 1991 for the analysis of cannabinoids, cocaine, opiates, amphetamines, lysergic acid diethylamide (LSD), and their metabolites in physiological specimens.

  12. Molecular Beam Mass Spectrometry (MBMS) (Revised) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-07-01

    This fact sheet provides information about Molecular Beam Mass Spectrometry (MBMS) capabilities and applications at NREL's National Bioenergy Center. NREL has six MBMS systems that researchers and industry partners can use to understand thermochemical biomass conversion and biomass composition recalcitrance.

  13. Mass Spectrometry of Membrane Proteins: A Focus on Aquaporins

    PubMed Central

    Schey, Kevin L.; Grey, Angus C.; Nicklay, Joshua J.

    2015-01-01

    Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein–protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein–protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins. PMID:23394619

  14. Challenges and developments in tandem mass spectrometry based clinical metabolomics.

    PubMed

    Ceglarek, Uta; Leichtle, Alexander; Brügel, Mathias; Kortz, Linda; Brauer, Romy; Bresler, Kristin; Thiery, Joachim; Fiedler, Georg Martin

    2009-03-25

    'Clinical metabolomics' aims at evaluating and predicting health and disease risk in an individual by investigating metabolic signatures in body fluids or tissues, which are influenced by genetics, epigenetics, environmental exposures, diet, and behaviour. Powerful analytical techniques like liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) offers a rapid, effective and economical way to analyze metabolic alterations of pre-defined target metabolites in biological samples. Novel hyphenated technical approaches like the combination of tandem mass spectrometry combined with linear ion trap (QTrap mass spectrometry) combines both identification and quantification of known and unknown metabolic targets. We describe new concepts and developments of mass spectrometry based multi-target metabolome profiling in the field of clinical diagnostics and research. Particularly, the experiences from newborn screening provided important insights about the diagnostic potential of metabolite profiling arrays and directs to the clinical aim of predictive, preventive and personalized medicine by metabolomics.

  15. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues, 2008 Review

    EPA Science Inventory

    This biennial review covers developments in Environmental Mass Spectrometry for Emerging Environmental Contaminants over the period of 2006-2007. A few significant references that appeared between January and February 2008 are also included. Analytical Chemistry’s current polic...

  16. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    SciTech Connect

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  17. Protein Quantitation of the Developing Cochlea Using Mass Spectrometry.

    PubMed

    Darville, Lancia N F; Sokolowski, Bernd H A

    2016-01-01

    Mass spectrometry-based proteomics allows for the measurement of hundreds to thousands of proteins in a biological system. Additionally, mass spectrometry can also be used to quantify proteins and peptides. However, observing quantitative differences between biological systems using mass spectrometry-based proteomics can be challenging because it is critical to have a method that is fast, reproducible, and accurate. Therefore, to study differential protein expression in biological samples labeling or label-free quantitative methods can be used. Labeling methods have been widely used in quantitative proteomics, however label-free methods have become equally as popular and more preferred because they produce faster, cleaner, and simpler results. Here, we describe the methods by which proteins are isolated and identified from cochlear sensory epithelia tissues at different ages and quantitatively differentiated using label-free mass spectrometry.

  18. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues (2010 Review)

    EPA Science Inventory

    This biennial review covers developments in environmental mass spectrometry for emerging environmental contaminants over the period of 2008-2009. A few significant references that appeared between January and February 2010 are also included. Analytical Chemistry’s current polic...

  19. Photodissociation mass spectrometry: New tools for characterization of biological molecules

    PubMed Central

    Brodbelt, Jennifer S.

    2014-01-01

    Photodissociation mass spectrometry combines the ability to activate and fragment ions using photons with the sensitive detection of the resulting product ions by mass spectrometry. The resulting combination affords a versatile tool for characterization of biological molecules. The scope and breadth of photodissociation mass spectrometry have increased substantially over the past decade as new research groups have entered the field and developed a number of innovative applications that illustrate the ability of photodissociation to produce rich fragmentation patterns, to cleave bonds selectively, and to target specific molecules based on incorporation of chromophores. This review focuses on many of the key developments in photodissociation mass spectrometry over the past decade with a particular emphasis on its applications to biological molecules. PMID:24481009

  20. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.

    1997-05-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  1. THE APPLICATION OF MASS SPECTROMETRY TO THE STUDY OF MICROORGANISMS

    EPA Science Inventory

    The purpose of this research project is to use state-of-the-art mass spectrometric techniques, such as electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS), to provide "protein mass fingerprinting" and protein sequencing i...

  2. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    PubMed

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide.

  3. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  4. Optimizing Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments.

    PubMed

    Hecht, Elizabeth S; Oberg, Ann L; Muddiman, David C

    2016-05-01

    Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as "design of experiments" (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes 3 years after the latest DOE review (Hibbert DB, 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided.

  5. Optimizing Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments

    NASA Astrophysics Data System (ADS)

    Hecht, Elizabeth S.; Oberg, Ann L.; Muddiman, David C.

    2016-05-01

    Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as "design of experiments" (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes 3 years after the latest DOE review (Hibbert DB, 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided.

  6. Determination of nitrofuran and chloramphenicol residues by high resolution mass spectrometry versus tandem quadrupole mass spectrometry.

    PubMed

    Kaufmann, A; Butcher, P; Maden, K; Walker, S; Widmer, M

    2015-03-03

    An ultra-high performance liquid chromatography based method, coupled to high resolution mass spectrometry (UHPLC-HRMS), was developed to permit the detection and quantification of various nitrofuran and chloramphenicol residues in a number of animal based food products. This method is based on the hydrolysis of covalently bound metabolites and derivatization with 2-nitrobenzaldehyde. Clean-up is achieved by a liquid/liquid and a reversed phase/solid phase extraction. Not only are the four conventional nitrofurans (nitrofurantoin, furazolidone, nitrofurazone and furaltadone) detected, but also nifursol, nitrovin and nifuroxazide. Furthermore, an underivatizable nitrofuran (nifurpirinol) and another banned drug (chloramphenicol) can be quantified as well. The compounds are detected in the form of their precursor ions, [M+H](+) and [M-H](-), respectively. The mass resolving power of 70,000 FWHM, and the applied mass window ensure sufficient selectivity and sensitivity. Confirmation is obtained by monitoring the HRMS resolved product ions which were derived from the unit-mass resolved precursor ions. The multiplexing capability of the utilized Orbitrap instrument provides not only highly selective, but also sensitive confirmatory signals. This method has been validated according to the CD 2002/657/EC for the following matrices: muscle, liver, kidney, fish, honey, eggs and milk.

  7. Development of the Off-line Analysis Code for GODDESS

    NASA Astrophysics Data System (ADS)

    Garland, Heather; Cizewski, Jolie; Lepailleur, Alex; Walters, David; Pain, Steve; Smith, Karl

    2016-09-01

    Determining (n, γ) cross sections on unstable nuclei is important for understanding the r-process that is theorized to occur in supernovae and neutron-star mergers. However, (n, γ) reactions are difficult to measure directly because of the short lifetime of the involved neutron rich nuclei. A possible surrogate for the (n, γ) reaction is the (d,p γ) reaction; the measurement of these reactions in inverse kinematics is part of the scope of GODDESS - Gammasphere ORRUBA (Oak Ridge Rutgers University Barrel Array): Dual Detectors for Experimental Structure Studies. The development of an accurate and efficient off-line analysis code for GODDESS experiments is not only essential, but also provides a unique opportunity to create an analysis code designed specifically for transfer reaction experiments. The off-line analysis code has been developed to produce histograms from the binary data file to determine how to best sort events. Recent developments in the off-line analysis code will be presented as well as details on the energy and position calibrations for the ORRUBA detectors. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  8. Mass Spectrometry Imaging of Complex Microbial Communities

    PubMed Central

    2016-01-01

    Conspectus In the two decades since mass spectrometry imaging (MSI) was first applied to visualize the distribution of peptides across biological tissues and cells, the technique has become increasingly effective and reliable. MSI excels at providing complementary information to existing methods for molecular analysis—such as genomics, transcriptomics, and metabolomics—and stands apart from other chemical imaging modalities through its capability to generate information that is simultaneously multiplexed and chemically specific. Today a diverse family of MSI approaches are applied throughout the scientific community to study the distribution of proteins, peptides, and small-molecule metabolites across many biological models. The inherent strengths of MSI make the technique valuable for studying microbial systems. Many microbes reside in surface-attached multicellular and multispecies communities, such as biofilms and motile colonies, where they work together to harness surrounding nutrients, fend off hostile organisms, and shield one another from adverse environmental conditions. These processes, as well as many others essential for microbial survival, are mediated through the production and utilization of a diverse assortment of chemicals. Although bacterial cells are generally only a few microns in diameter, the ecologies they influence can encompass entire ecosystems, and the chemical changes that they bring about can occur over time scales ranging from milliseconds to decades. Because of their incredible complexity, our understanding of and influence over microbial systems requires detailed scientific evaluations that yield both chemical and spatial information. MSI is well-positioned to fulfill these requirements. With small adaptations to existing methods, the technique can be applied to study a wide variety of chemical interactions, including those that occur inside single-species microbial communities, between cohabitating microbes, and between microbes

  9. Calculating Measurement Uncertainties for Mass Spectrometry Data

    NASA Astrophysics Data System (ADS)

    Essex, R. M.; Goldberg, S. A.

    2006-12-01

    A complete and transparent characterization of measurement uncertainty is fundamentally important to the interpretation of analytical results. We have observed that the calculation and reporting of uncertainty estimates for isotopic measurement from a variety of analytical facilities are inconsistent, making it difficult to compare and evaluate data. Therefore, we recommend an approach to uncertainty estimation that has been adopted by both US national metrology facilities and is becoming widely accepted within the analytical community. This approach is outlined in the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The GUM approach to uncertainty estimation includes four major steps: 1) Specify the measurand; 2) Identify uncertainty sources; 3) Quantify components by determining the standard uncertainty (u) for each component; and 4) Calculate combined standard uncertainty (u_c) by using established propagation laws to combine the various components. To obtain a desired confidence level, the combined standard uncertainty is multiplied by a coverage factor (k) to yield an expanded uncertainty (U). To be consistent with the GUM principles, it is also necessary create an uncertainty budget, which is a listing of all the components comprising the uncertainty and their relative contribution to the combined standard uncertainty. In mass spectrometry, Step 1 is normally the determination of an isotopic ratio for a particular element. Step 2 requires the identification of the many potential sources of measurement variability and bias including: gain, baseline, cup efficiency, Schottky noise, counting statistics, CRM uncertainties, yield calibrations, linearity calibrations, run conditions, and filament geometry. Then an equation expressing the relationship of all of the components to the measurement value must be written. To complete Step 3, these potential sources of uncertainty must be characterized (Type A or Type B) and quantified. This information

  10. Interface for direct and continuous sample-matrix deposition onto a MALDI probe for polymer analysis by thermal field flow fractionation and off-line MALDI-MS.

    PubMed

    Basile, Franco; Kassalainen, Galina E; Ratanathanawongs Williams, S Kim

    2005-05-01

    A simple interface based on an oscillating capillary nebulizer (OCN) is described for direct deposition of eluate from a thermal field-flow fractionation (ThFFF) system onto a matrix-assisted laser desorption/ionization (MALDI) probe. In this study, the polymer-containing eluent from the ThFFF system was mixed on-line with MALDI matrix solution and deposited directly onto a moving MALDI probe. The result was a continuous sample track representative of the fractionation process. Subsequent off-line MALDI-mass spectrometry analysis was performed in automated and manual modes. Polystyrene samples of broad polydispersity were used to characterize the overall system performance. The OCN interface is easy to build and operate without the use of heaters or high voltages and is compatible with any MALDI probe format.

  11. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    SciTech Connect

    Debord, J. Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-06-09

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  12. NCBI Peptidome: a new repository for mass spectrometry proteomics data.

    PubMed

    Ji, Li; Barrett, Tanya; Ayanbule, Oluwabukunmi; Troup, Dennis B; Rudnev, Dmitry; Muertter, Rolf N; Tomashevsky, Maxim; Soboleva, Alexandra; Slotta, Douglas J

    2010-01-01

    Peptidome is a public repository that archives and freely distributes tandem mass spectrometry peptide and protein identification data generated by the scientific community. Data from all stages of a mass spectrometry experiment are captured, including original mass spectra files, experimental metadata and conclusion-level results. The submission process is facilitated through acceptance of data in commonly used open formats, and all submissions undergo syntactic validation and curation in an effort to uphold data integrity and quality. Peptidome is not restricted to specific organisms, instruments or experiment types; data from any tandem mass spectrometry experiment from any species are accepted. In addition to data storage, web-based interfaces are available to help users query, browse and explore individual peptides, proteins or entire Samples and Studies. Results are integrated and linked with other NCBI resources to ensure dissemination of the information beyond the mass spectroscopy proteomics community. Peptidome is freely accessible at http://www.ncbi.nlm.nih.gov/peptidome.

  13. Mass spectrometry imaging and profiling of single cells

    PubMed Central

    Lanni, Eric J.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2012-01-01

    Mass spectrometry imaging and profiling of individual cells and subcellular structures provide unique analytical capabilities for biological and biomedical research, including determination of the biochemical heterogeneity of cellular populations and intracellular localization of pharmaceuticals. Two mass spectrometry technologies—secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption ionization mass spectrometry (MALDI MS)—are most often used in micro-bioanalytical investigations. Recent advances in ion probe technologies have increased the dynamic range and sensitivity of analyte detection by SIMS, allowing two- and three-dimensional localization of analytes in a variety of cells. SIMS operating in the mass spectrometry imaging (MSI) mode can routinely reach spatial resolutions at the submicron level; therefore, it is frequently used in studies of the chemical composition of subcellular structures. MALDI MS offers a large mass range and high sensitivity of analyte detection. It has been successfully applied in a variety of single-cell and organelle profiling studies. Innovative instrumentation such as scanning microprobe MALDI and mass microscope spectrometers enable new subcellular MSI measurements. Other approaches for MS-based chemical imaging and profiling include those based on near-field laser ablation and inductively-coupled plasma MS analysis, which offer complementary capabilities for subcellular chemical imaging and profiling. PMID:22498881

  14. Noncovalent Shiga-like toxin assemblies: characterization by means of mass spectrometry and tandem mass spectrometry.

    PubMed

    Williams, Jonathan P; Green, Brian N; Smith, Daniel C; Jennings, Keith R; Moore, Katherine A H; Slade, Susan E; Roberts, Lynne M; Scrivens, James H

    2005-06-14

    Shiga-like toxin 1 (SLTx), produced by enterohemorrhagic strains of Escherichia coli (EHEC), belongs to a family of structurally and functionally related AB(5) protein toxins that are associated with human disease. EHEC infection often gives rise to hemolytic colitis, while toxin-induced kidney damage is one of the major causes of hemolytic uremic syndrome (HUS) and acute renal failure in children. As such, an understanding and analysis of the noncovalent interactions that maintain the quaternary structure of this toxin are fundamentally important since such interactions have significant biochemical and medical implications. This paper reports on the analysis of the noncovalent homopentameric complex of Shiga-like toxin B chain (SLTx-B(5)) using electrospray ionization (ESI) triple-quadrupole (QqQ) mass spectrometry (MS) and tandem mass spectrometry (MS/MS) and the analysis of the noncovalent hexameric holotoxin (SLTx-AB(5)) using ESI time-of-flight (TOF) MS. The triple-quadrupole analysis revealed highly charged monomer ions dissociate from the multiprotein complex to form dimer, trimer, and tetramer product ions, which were also seen to further dissociate. The ESI-TOFMS analysis of SLTx-AB(5) revealed the complex remained intact and was observed in the gas phase over a range of pHs. Theses findings demonstrate that the gas-phase structure observed for both the holotoxin and the isoloated B chains correlates well with the structures reported to exist in the solution phase for these proteins. Such analysis provides a rapid screening technique for assessing the noncovalent structure of this family of proteins and other structurally related toxins.

  15. DETERMINATION OF ELEMENTAL COMPOSITIONS BY HIGH RESOLUTION MASS SPECTROMETRY WITHOUT MASS CALIBRANTS

    EPA Science Inventory

    Widely applicable mass calibrants, including perfluorokerosene, are available for gas-phase introduction of analytes ionized by electron impact (EI) prior to analysis using high resolution mass spectrometry. Unfortunately, no all-purpose calibrants are available for recently dev...

  16. Increasing of MERARG experimental performances: on-line fission gas release measurement by mass spectrometry

    SciTech Connect

    Pontillon, Y.; Capdevila, H.; Clement, S.; Guigues, E.; Janulyte, A.; Zerega, Y.; Andre, J.

    2015-07-01

    The MERARG device - implemented at the LECASTAR Hot Laboratory, at the CEA Cadarache - allows characterizing nuclear fuels with respect to the behaviour of fission gases during thermal transients representative of normal or off normal operating nuclear power plant conditions. The fuel is heated in order to extract a part or the total gas inventory it contains. Fission Gas Release (FGR) is actually recorded by mean of both on-line gamma spectrometry station and micro gas chromatography. These two devices monitor the quantity and kinetics of fission gas release rate. They only address {sup 85}Kr radioactive isotope and the elemental quantification of Kr, Xe and He (with a relatively low detection limit in the latter case, typically 5-10 ppm). In order to better estimate the basic mechanisms that promote fission gas release from irradiated nuclear fuels, the CEA fuel study department decided to improve its experimental facility by modifying MERARG to extend the studies of gamma emitter fission gases to all gases (including Helium) with a complete isotopic distribution capability. To match these specifications, a Residual Gas Analyser (RGA) has been chosen as mass spectrometer. This paper presents a review of the main aspects of the qualification/calibration phase of the RGA type analyser. In particular, results recorded over three mass ranges 1-10 u, 80-90 u and 120-140 u in the two classical modes of MERARG, i.e. on-line and off-line measurements are discussed. Results obtained from a standard gas bottle show that the quantitative analysis at a few ppm levels can be achieved for all isotopes of Kr and Xe, as well as masses 2 and 4 u. (authors)

  17. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    ERIC Educational Resources Information Center

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  18. mzML—a Community Standard for Mass Spectrometry Data*

    PubMed Central

    Martens, Lennart; Chambers, Matthew; Sturm, Marc; Kessner, Darren; Levander, Fredrik; Shofstahl, Jim; Tang, Wilfred H.; Römpp, Andreas; Neumann, Steffen; Pizarro, Angel D.; Montecchi-Palazzi, Luisa; Tasman, Natalie; Coleman, Mike; Reisinger, Florian; Souda, Puneet; Hermjakob, Henning; Binz, Pierre-Alain; Deutsch, Eric W.

    2011-01-01

    Mass spectrometry is a fundamental tool for discovery and analysis in the life sciences. With the rapid advances in mass spectrometry technology and methods, it has become imperative to provide a standard output format for mass spectrometry data that will facilitate data sharing and analysis. Initially, the efforts to develop a standard format for mass spectrometry data resulted in multiple formats, each designed with a different underlying philosophy. To resolve the issues associated with having multiple formats, vendors, researchers, and software developers convened under the banner of the HUPO PSI to develop a single standard. The new data format incorporated many of the desirable technical attributes from the previous data formats, while adding a number of improvements, including features such as a controlled vocabulary with validation tools to ensure consistent usage of the format, improved support for selected reaction monitoring data, and immediately available implementations to facilitate rapid adoption by the community. The resulting standard data format, mzML, is a well tested open-source format for mass spectrometer output files that can be readily utilized by the community and easily adapted for incremental advances in mass spectrometry technology. PMID:20716697

  19. Phylogenetic classification and identification of bacteria by mass spectrometry.

    PubMed

    Freiwald, Anja; Sauer, Sascha

    2009-01-01

    Bacteria are a convenient source of intrinsic marker proteins, which can be detected efficiently by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The patterns of protein masses observed can be used for accurate classification and identification of bacteria. Key to the reliability of the method is a robust and standardized procedure for sample preparations, including bacterial culturing, chemical treatment for bacterial cell wall disruption and for protein extraction, and mass spectrometry analysis. The protocol is an excellent alternative to classical microbiological classification and identification procedures, requiring minimal sample preparation efforts and costs. Without cell culturing, the protocol takes in general <1 h.

  20. A Developmental History of Polymer Mass Spectrometry

    ERIC Educational Resources Information Center

    Vergne, Matthew J.; Hercules, David M.; Lattimer, Robert P.

    2007-01-01

    The history of the development of mass spectroscopic methods used to characterize polymers is discussed. The continued improvements in methods and instrumentation will offer new and better ways for the mass spectral characterization of polymers and mass spectroscopy (MS) should be recognized as a complementary polymer characterization method along…

  1. Macromolecule Mass Spectrometry: Citation Mining of User Documents

    DTIC Science & Technology

    2006-05-31

    collision - induced dissociation in quadrupole ion trap coupled tandem mass spectrometry. Ion mass spectra analysis of the resulting fragments determines ...Factor 2 ( DISSOCIATION , FRAGMENTS , CID, COLLISIONS , PRECURSOR, TANDEM, MS/MS, ENERGY , CLEAVAGES, IONS , SPECTRA, QUADRAPOLE, TRAP, PATTERNS, PROTONATION...focuses on the use of post- electrospray ionization collision - induced dissociation of macromolecules coupled

  2. Desorption electrospray ionization mass spectrometry of intact bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desorption electrospray ionization (DESI) mass spectrometry (MS) was used to differentiate 7 bacterial species based on their measured DESI-mass spectral profile. Both Gram positive and Gram negative bacteria were tested and included Escherichia coli, Staphyloccocus aureus, Enterococcus sp., Bordete...

  3. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    EPA Science Inventory

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  4. Identification of water-soluble polar organics in air and vehicular emitted particulate matter using ultrahigh resolution mass spectrometry and Capillary electrophoresis - mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Yassine, M.; Gebefugi, I.; Hertkorn, N.; Dabek-Zlotorzynska, E.

    2009-04-01

    atmospheric aerosols and vehicular emission. UltraTrol LN was employed as the pre-coated polymer to suppress the EOF (0.3 ×10-9 m2V-1s-1) and achieve a baseline separation of studied acids. Good repeatability for migration time (RSD <1%, N=10) was obtained without coating regeneration. The high pre-coating stability allowed coupling of CE to MS without ion suppression in MS. In scanning mode and using field-amplified sample injection with electrokinetic injection (-5 kV for 60 s), LODs (S/N =3) ranged from 2.5 to 6 µg/L for standard target analytes prepared in deionized water. In the presence of 100 mg/L of sulphate (added to simulate a sample matrix), LODs ranged from 8 to 90 µg/L. Several aromatic acids were identified in atmospheric and diesel-engine emitted particular matter. In off-line combination with the electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS), this method provided accurate molecular mass determination of unknowns containing various functionalised carboxylic and sulfonic acids, and allowed their formula to be proposed.

  5. Applications of mass spectrometry to structural analysis of marine oligosaccharides.

    PubMed

    Lang, Yinzhi; Zhao, Xia; Liu, Lili; Yu, Guangli

    2014-06-30

    Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out.

  6. Use of mass spectrometry for imaging metabolites in plants

    SciTech Connect

    Lee, Young-Jin; Perdian, David; Song, Zhihong; Yeung, Edward; Nikolau, Basil

    2012-03-27

    We discuss and illustrate recent advances that have been made to image the distribution of metabolites among cells and tissues of plants using different mass spectrometry technologies. These technologies include matrix-assisted laser desorption ionization, desorption electrospray ionization, and secondary ion mass spectrometry. These are relatively new technological applications of mass spectrometry and they are providing highly spatially resolved data concerning the cellular distribution of metabolites. We discuss the advantages and limitations of each of these mass spectrometric methods, and provide a description of the technical barriers that are currently limiting the technology to the level of single-cell resolution. However, we anticipate that advances in the next few years will increase the resolving power of the technology to provide unprecedented data on the distribution of metabolites at the subcellular level, which will increase our ability to decipher new knowledge concerning the spatial organization of metabolic processes in plants.

  7. Use of Mass spectrometry for imaging metabolites in plants

    SciTech Connect

    Lee, Young Jin; Perdian, David C.; Song, Zhihong; Yeung, Edward S.; Nikolau, Basil

    2012-03-27

    We discuss and illustrate recent advances that have been made to image the distribution of metabolites among cells and tissues of plants using different mass spectrometry technologies. These technologies include matrix-assisted laser desorption ionization, desorption electrospray ionization, and secondary ion mass spectrometry. These are relatively new technological applications of mass spectrometry and they are providing highly spatially resolved data concerning the cellular distribution of metabolites. We discuss the advantages and limitations of each of these mass spectrometric methods, and provide a description of the technical barriers that are currently limiting the technology to the level of single-cell resolution. However, we anticipate that advances in the next few years will increase the resolving power of the technology to provide unprecedented data on the distribution of metabolites at the subcellular level, which will increase our ability to decipher new knowledge concerning the spatial organization of metabolic processes in plants.

  8. Applications of Mass Spectrometry to Structural Analysis of Marine Oligosaccharides

    PubMed Central

    Lang, Yinzhi; Zhao, Xia; Liu, Lili; Yu, Guangli

    2014-01-01

    Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out. PMID:24983643

  9. Mass Spectrometry-Based Tissue Imaging of Small Molecules

    PubMed Central

    Ferguson, Carly N.; Fowler, Joseph W.M.; Waxer, Jonathan F.; Gatti, Richard A.; Loo, Joseph A.

    2014-01-01

    Mass spectrometry imaging (MSI) of tissue samples is a promising analytical tool that has quickly become associated with biomedical and pharmacokinetic studies. It eliminates several labor-intensive protocols associated with more classical imaging techniques, and provides accurate, histological data at a rapid pace. Because mass spectrometry is used as the readout, MSI can be applied to almost any molecule, especially those that are biologically relevant. Many examples of its utility in the study of peptides and proteins have been reported; here we discuss its value in the mass range of small molecules. We explore its success and potential in the analysis of lipids, medicinals, and metal-based compounds by featuring representative studies from mass spectrometry imaging laboratories around the globe. PMID:24952187

  10. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  11. Analysis of emerging contaminants in water and solid samples using high resolution mass spectrometry with a Q Exactive orbital ion trap and estrogenic activity with YES-assay.

    PubMed

    Comtois-Marotte, Simon; Chappuis, Thomas; Vo Duy, Sung; Gilbert, Nicolas; Lajeunesse, André; Taktek, Salma; Desrosiers, Mélanie; Veilleux, Éloïse; Sauvé, Sébastien

    2017-01-01

    Trace emerging contaminants (ECs) occur in both waste and surface waters that are rich in particulates that have been found to sorb several organic contaminants. An analytical method based on off-line solid-phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS) analysis was developed for the detection and quantification of 31 ECs from surface water, wastewater, suspended particulate matter (SPM) as well as sediments. Lyophilized sediments and air-dried SPM were subjected to ultrasonic extraction. Water samples and extracts were then concentrated and cleaned-up by off-line SPE. Quantification was realized using a Q Exactive mass spectrometer in both full scan (FS) and MS(2) modes. These two modes were optimized and compared to determine which one was the most suitable for each matrix studied. Yeast estrogen screen assay (YES-assay) adapted from the direct measurement of estrogenic activity without sample extraction was tested on filtered wastewater samples. An endocrine disrupting effect was detected in all effluent samples analyzed with estradiol equivalent concentrations ranging from 4.4 to 720 ng eq E2 L(-1) for the WWTP-1 and 6.5-42 ng eq E2 L(-1) for the WWTP-2. The analytical methods were also applied on six samples of surface water, the corresponding SPM, the sediments and thirty-nine effluent samples from two wastewater treatment plants (WWTPs) sampled over a period of five months (February to June 2014).

  12. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  13. Measurement of {sup 25}Mg(p, {gamma}){sup 26}Al{sup g} resonance strengths via accelerator mass spectrometry

    SciTech Connect

    Arazi, A.; Niello, J. O. Fernandez; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Rugel, G.; Richter, E.; Wallner, A.

    2006-08-15

    The strengths of resonances located at center-of-mass energies of E{sub c.m.}=189, 304, 374, and 418 keV for the {sup 25}Mg(p,{gamma}) reaction have been measured for the first time with an off-line method: Mg targets were firstly activated with protons at the resonance energies and the produced {sup 26}Al{sup g} nuclei were counted by means of highly sensitive accelerator mass spectrometry (AMS). Thus, the production of {sup 26}Al in its ground state is determined independently from the {gamma}-decay branching ratio. While the 304, 374, and 418 keV resonances show fair agreement with previous measurements, the 189 keV resonance yield a significantly less strength. In addition, an experimental upper limit for the E{sub c.m.}=92 keV resonance was determined.

  14. Pharmaceutical metabolite profiling using quadrupole/ion mobility spectrometry/time-of-flight mass spectrometry.

    PubMed

    Chan, Eric C Y; New, Lee Sun; Yap, Chun Wei; Goh, Lin Tang

    2009-02-01

    The use of hybrid quadrupole ion mobility spectrometry time-of-flight mass spectrometry (Q/IMS/TOFMS) in the metabolite profiling of leflunomide (LEF) and acetaminophen (APAP) is presented. The IMS drift times (T(d)) of the drugs and their metabolites were determined in the IMS/TOFMS experiments and correlated with their exact monoisotopic masses and other in silico generated structural properties, such as connolly molecular area (CMA), connolly solvent-excluded volume (CSEV), principal moments of inertia along the X, Y and Z Cartesian coordinates (MI-X, MI-Y and MI-Z), inverse mobility and collision cross-section (CCS). The correlation of T(d) with these parameters is presented and discussed. IMS/TOF tandem mass spectrometry experiments (MS(2) and MS(3)) were successfully performed on the N-acetyl-p-benzoquinoneimine glutathione (NAPQI-GSH) adduct derived from the in vitro microsomal metabolism of APAP. As comparison, similar experiments were also performed using hybrid triple quadrupole linear ion trap mass spectrometry (QTRAPMS) and quadrupole time-of-flight mass spectrometry (QTOFMS). The abilities to resolve the product ions of the metabolite within the drift tube and fragment the ion mobility resolved product ions in the transfer travelling wave-enabled stacked ring ion guide (TWIG) demonstrated the potential applicability of the Q/IMS/TOFMS technique in pharmaceutical metabolite profiling.

  15. Laser mass spectrometry at high vibrational excitation density

    NASA Astrophysics Data System (ADS)

    Haglund, R. F., Jr.; Baltz-Knorr, M.; Ermer, D. R.; Papantonakis, M. R.; Schriver, K. E.

    2003-06-01

    We describe a novel approach to infrared matrix-assisted laser desorption-ionization mass spectrometry using a tunable, picosecond pulse laser to selectively excite specific modes of a solid, thereby creating a high local density of vibrational quanta. The concept is based on recent results from our experiments employing a free-electron laser to explore 'matrix-less' mass spectrometry in which an infrared chromophore intrinsic to the sample, rather than an exogenous matrix, is excited by the laser. Examples from both environmental mass spectrometry and a proteomics-driven research project are presented, showing how the principle of selective vibrational excitation can be used to make possible novel and useful ion generation protocols. We conclude with an analysis of possible mechanisms for the phenomena of infrared desorption, ablation and ionization using very short laser pulses. Prospects for achieving similar results with more conventional laser sources are discussed.

  16. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated With Azithromycin

    PubMed Central

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-01-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors and natural products) are measured using phenotypic assays. However, advances in mass spectrometry based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. While previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reducing pathogenicity, we observed no clear decrease in specialized metabolite production. PMID:25801585

  17. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated with Azithromycin

    NASA Astrophysics Data System (ADS)

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-06-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors, and natural products) are measured using phenotypic assays. However, advances in mass spectrometry-based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. Although previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reduce pathogenicity, we observed no clear decrease in specialized metabolite production.

  18. Ion mobility–mass spectrometry for structural proteomics

    PubMed Central

    Zhong, Yueyang; Hyung, Suk-Joon; Ruotolo, Brandon T

    2012-01-01

    Ion mobility coupled to mass spectrometry has been an important tool in the fields of chemical physics and analytical chemistry for decades, but its potential for interrogating the structure of proteins and multiprotein complexes has only recently begun to be realized. Today, ion mobility– mass spectrometry is often applied to the structural elucidation of protein assemblies that have failed high-throughput crystallization or NMR spectroscopy screens. Here, we highlight the technology, approaches and data that have led to this dramatic shift in use, including emerging trends such as the integration of ion mobility–mass spectrometry data with more classical (e.g., ‘bottom-up’) proteomics approaches for the rapid structural characterization of protein networks. PMID:22292823

  19. Laser desorption mass spectrometry for biomolecule detection and its applications

    NASA Astrophysics Data System (ADS)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  20. Laser desorption mass spectrometry for DNA analysis and sequencing

    SciTech Connect

    Chen, C.H.; Taranenko, N.I.; Tang, K.; Allman, S.L.

    1995-03-01

    Laser desorption mass spectrometry has been considered as a potential new method for fast DNA sequencing. Our approach is to use matrix-assisted laser desorption to produce parent ions of DNA segments and a time-of-flight mass spectrometer to identify the sizes of DNA segments. Thus, the approach is similar to gel electrophoresis sequencing using Sanger`s enzymatic method. However, gel, radioactive tagging, and dye labeling are not required. In addition, the sequencing process can possibly be finished within a few hundred microseconds instead of hours and days. In order to use mass spectrometry for fast DNA sequencing, the following three criteria need to be satisfied. They are (1) detection of large DNA segments, (2) sensitivity reaching the femtomole region, and (3) mass resolution good enough to separate DNA segments of a single nucleotide difference. It has been very difficult to detect large DNA segments by mass spectrometry before due to the fragile chemical properties of DNA and low detection sensitivity of DNA ions. We discovered several new matrices to increase the production of DNA ions. By innovative design of a mass spectrometer, we can increase the ion energy up to 45 KeV to enhance the detection sensitivity. Recently, we succeeded in detecting a DNA segment with 500 nucleotides. The sensitivity was 100 femtomole. Thus, we have fulfilled two key criteria for using mass spectrometry for fast DNA sequencing. The major effort in the near future is to improve the resolution. Different approaches are being pursued. When high resolution of mass spectrometry can be achieved and automation of sample preparation is developed, the sequencing speed to reach 500 megabases per year can be feasible.

  1. Selective chemical oxidation and depolymerization of switchgrass [corrected] (Panicum virgatum L.) xylan with [corrected] oligosaccharide product analysis by mass spectrometry.

    PubMed

    Bowman, Michael J; Dien, Bruce S; O'Bryan, Patricia J; Sarath, Gautam; Cotta, Michael A

    2011-04-15

    Xylan is a barrier to enzymatic hydrolysis of plant cell walls. It is well accepted that the xylan layer needs to be removed to efficiently hydrolyze cellulose; consequently, pretreatment conditions are (in part) optimized for maximal xylan depolymerization or displacement. Xylan consists of a long chain of β-1,4-linked xylose units substituted with arabinose (typically α-1,3-linked in grasses) and glucuronic acid (α-1,2-linked). Xylan has been proposed to have a structural function in plants and therefore may play a role in determining biomass reactivity to pretreatment. It has been proposed that substitutions along xylan chains are not random and, based upon studies of pericarp xylan, are organized in domains that have specific structural functions. Analysis of intact xylan is problematic because of its chain length (> degree of polymerization (d.p.) 100) and heterogeneous side groups. Traditionally, enzymatic end-point products have been characterized due to the limited products generated. Analysis of resultant arabino-xylo-oligosaccharides by mass spectrometry is complicated by the isobaric pentose sugars that primarily compose xylan. In this report, the variation in pentose ring structures was exploited for selective oxidation of the arabinofuranose primary alcohols followed by acid depolymerization to provide oligosaccharides with modified arabinose branches intact. Switchgrass samples were analyzed by hydrophilic interaction chromatography (HILIC)-liquid chromatography (LC)-mass spectrometry/mass spectrometry (MSMS) and off-line nanospray MS to demonstrate the utility of this chemistry for determination of primary hydroxyl groups on oligosaccharide structures, with potential applications for determining the sequence of arabino-xylo-oligosaccharides present in plant cell wall material.

  2. Purifying protein complexes for mass spectrometry: applications to protein translation.

    PubMed

    Link, Andrew J; Fleischer, Tracey C; Weaver, Connie M; Gerbasi, Vincent R; Jennings, Jennifer L

    2005-03-01

    Proteins control and mediate most of the biological activities in the cell. In most cases, proteins either interact with regulatory proteins or function in large molecular assemblies to carryout biological processes. Understanding the functions of individual proteins requires the identification of these interacting proteins. With its speed and sensitivity, mass spectrometry has become the dominant method for identifying components of protein complexes. This article reviews and discusses various approaches to purify protein complexes and analyze the proteins using mass spectrometry. As examples, methods to isolate and analyze protein complexes responsible for the translation of messenger RNAs into polypeptides are described.

  3. Technical Challenges in Mass Spectrometry-Based Metabolomics

    PubMed Central

    Matsuda, Fumio

    2016-01-01

    Metabolomics is a strategy for analysis, and quantification of the complete collection of metabolites present in biological samples. Metabolomics is an emerging area of scientific research because there are many application areas including clinical, agricultural, and medical researches for the biomarker discovery and the metabolic system analysis by employing widely targeted analysis of a few hundred preselected metabolites from 10–100 biological samples. Further improvement in technologies of mass spectrometry in terms of experimental design for larger scale analysis, computational methods for tandem mass spectrometry-based elucidation of metabolites, and specific instrumentation for advanced bioanalysis will enable more comprehensive metabolome analysis for exploring the hidden secrets of metabolism. PMID:27900235

  4. Xenon purity analysis for EXO-200 via mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dobi, A.; Hall, C.; Slutsky, S.; Yen, Y.-R.; Aharmin, B.; Auger, M.; Barbeau, P. S.; Benitez-Medina, C.; Breidenbach, M.; Cleveland, B.; Conley, R.; Cook, J.; Cook, S.; Counts, I.; Craddock, W.; Daniels, T.; Davis, C. G.; Davis, J.; deVoe, R.; Dixit, M.; Dolinski, M. J.; Donato, K.; Fairbank, W.; Farine, J.; Fierlinger, P.; Franco, D.; Giroux, G.; Gornea, R.; Graham, K.; Gratta, G.; Green, C.; Hagemann, C.; Hall, K.; Hallman, D.; Hargrove, C.; Herrin, S.; Hughes, M.; Hodgson, J.; Juget, F.; Karelin, A.; Kaufman, L. J.; Kuchenkov, A.; Kumar, K.; Leonard, D. S.; Lutter, G.; Mackay, D.; MacLellan, R.; Marino, M.; Mong, B.; Montero Díez, M.; Morgan, P.; Müller, A. R.; Neilson, R.; Odian, A.; O'Sullivan, K.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Pushkin, K.; Rivas, A.; Rollin, E.; Rowson, P. C.; Sabourov, A.; Sinclair, D.; Skarpaas, K.; Stekhanov, V.; Strickland, V.; Swift, M.; Twelker, K.; Vuilleumier, J.-L.; Vuilleumier, J.-M.; Weber, M.; Wichoski, U.; Wodin, J.; Wright, J. D.; Yang, L.

    2012-05-01

    We describe purity measurements of the natural and enriched xenon stockpiles used by the EXO-200 double beta decay experiment based on a mass spectrometry technique. The sensitivity of the spectrometer is enhanced by several orders of magnitude by the presence of a liquid nitrogen cold trap, and many impurity species of interest can be detected at the level of one part-per-billion or better. We have used the technique to screen the EXO-200 xenon before, during, and after its use in our detector, and these measurements have proven useful. This is the first application of the cold trap mass spectrometry technique to an operating physics experiment.

  5. Major roles for minor bacterial lipids identified by mass spectrometry.

    PubMed

    Garrett, Teresa A

    2016-10-17

    Mass spectrometry of lipids, especially those isolated from bacteria, has ballooned over the past two decades, affirming in the process the complexity of the lipidome. With this has come the identification of new and interesting lipid structures. Here is an overview of several novel lipids, from both Gram-negative and Gram-positive bacteria with roles in health and disease, whose structural identification was facilitated using mass spectrometry. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.

  6. Issues and opportunities in accelerator mass spectrometry for stable isotopes.

    PubMed

    Matteson, Sam

    2008-01-01

    Accelerator mass spectrometry (AMS) has developed in the last 30 years many notable applications to the spectrometry of radioisotopes, particularly in radiocarbon dating. The instrumentation science of trace element AMS (TEAMS) that analyzes stable isotopes, also called Accelerator SIMS or MegaSIMS, while unique in many features, has also shared in many of these significant advances and has pushed TEAMS sensitivity to concentration levels surpassing many competing mass spectroscopic technologies. This review examines recent instrumentation developments, the capabilities of the new instrumentation and discernable trends for future development.

  7. Mass spectrometry and inhomogeneous ion optics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1973-01-01

    Work done in several areas to advance the state of the art of magnetic mass spectrometers is described. The calculations and data necessary for the design of inhomogeneous field mass spectrometers, and the calculation of ion trajectories through such fields are presented. The development and testing of solid state ion detection devices providing the capability of counting single ions is discussed. New techniques in the preparation and operation of thermal-ionization ion sources are described. Data obtained on the concentrations of copper in rainfall and uranium in air samples using the improved thermal ionization techniques are presented. The design of a closed system static mass spectrometer for isotopic analyses is discussed. A summary of instrumental aspects of a four-stage mass spectrometer comprising two electrostatic and two 90 deg. magnetic lenses with a 122-cm radius used to study the interaction of ions with solids is presented.

  8. Structure Determination of Natural Products by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Biemann, Klaus

    2015-07-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts.

  9. Structurally selective imaging mass spectrometry by imaging ion mobility-mass spectrometry.

    PubMed

    McLean, John A; Fenn, Larissa S; Enders, Jeffrey R

    2010-01-01

    This chapter describes the utility of structurally based separations combined with imaging mass spectrometry (MS) by ion mobility-MS (IM-MS) approaches. The unique capabilities of combining rapid (mus-ms) IM separations with imaging MS are detailed for an audience ranging from new to potential practitioners in IM-MS technology. Importantly, imaging IM-MS provides the ability to rapidly separate and elucidate various types of endogenous and exogenous biomolecules (e.g., nucleotides, carbohydrates, peptides, and lipids), including isobaric species. Drift tube and traveling wave IM-MS instrumentation are described and specific protocols are presented for calculating ion-neutral collision cross sections (i.e., apparent ion surface area or structure) from experimentally obtained IM-MS data. Special emphasis is placed on the use of imaging IM-MS for the analysis of samples in life sciences research (e.g., thin tissue sections), including selective imaging for peptide/protein and lipid distributions. Future directions for rapid and multiplexed imaging IM-MS/MS are detailed.

  10. In vivo microdialysis and reverse phase ion pair liquid chromatography/tandem mass spectrometry for the determination and identification of acetylcholine and related compounds in rat brain.

    PubMed

    Zhu, Y; Wong, P S; Cregor, M; Gitzen, J F; Coury, L A; Kissinger, P T

    2000-01-01

    A method using liquid chromatography/tandem mass spectrometry (LC/MS/MS) has been developed for the determination of basal acetylcholine (ACh) in microdialysate from the striatum of freely moving rats. A microdialysis probe was surgically implanted into the striatum of the rats and Ringer's solution was used as the perfusion medium at a flow rate of 2 microL per minute. The samples were then analyzed off-line by LC/MS/MS experiments. The separation of ACh and choline (Ch) was carried out using reverse phase ion pair liquid chromatography with heptafluorobutyric acid as a volatile ion pairing reagent. Analytes were detected by electrospray ionization tandem mass spectrometry in the positive ion mode. The detection limit for ACh was 1.4 fmol on column, which is at least three times lower than previously reported. Three quaternary ammonium compounds in the rat brain microdialysate were also identified by tandem mass spectrometry experiments in which the unknown mass spectra were compared with standard reference compounds. These compounds were identified as carnitine, acetylcarnitine and (3-carboxypropyl)trimethylammonium. This is the first known report of the compound (3-carboxypropyl)trimethylammonium being found in rat brain.

  11. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    PubMed Central

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience. PMID:23966069

  12. Analysis of proteins and proteomes by mass spectrometry.

    PubMed

    Mann, M; Hendrickson, R C; Pandey, A

    2001-01-01

    A decade after the discovery of electrospray and matrix-assisted laser desorption ionization (MALDI), methods that finally allowed gentle ionization of large biomolecules, mass spectrometry has become a powerful tool in protein analysis and the key technology in the emerging field of proteomics. The success of mass spectrometry is driven both by innovative instrumentation designs, especially those operating on the time-of-flight or ion-trapping principles, and by large-scale biochemical strategies, which use mass spectrometry to detect the isolated proteins. Any human protein can now be identified directly from genome databases on the basis of minimal data derived by mass spectrometry. As has already happened in genomics, increased automation of sample handling, analysis, and the interpretation of results will generate an avalanche of qualitative and quantitative proteomic data. Protein-protein interactions can be analyzed directly by precipitation of a tagged bait followed by mass spectrometric identification of its binding partners. By these and similar strategies, entire protein complexes, signaling pathways, and whole organelles are being characterized. Posttranslational modifications remain difficult to analyze but are starting to yield to generic strategies.

  13. Mass spectrometry methods for the analysis of biodegradable hybrid materials

    NASA Astrophysics Data System (ADS)

    Alalwiat, Ahlam

    This dissertation focuses on the characterization of hybrid materials and surfactant blends by using mass spectrometry (MS), tandem mass spectrometry (MS/MS), liquid chromatography (LC), and ion mobility (IM) spectrometry combined with measurement and simulation of molecular collision cross sections. Chapter II describes the principles and the history of mass spectrometry (MS) and liquid chromatography (LC). Chapter III introduces the materials and instrumentation used to complete this dissertation. In chapter IV, two hybrid materials containing poly(t-butyl acrylate) (PtBA) or poly(acrylic acid) (PAA) blocks attached to a hydrophobic peptide rich in valine and glycine (VG2), as well as the poly(acrylic acid) (PAA) and VG2 peptide precursor materials, are characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), electrospray ionization mass spectrometry (ESI-MS) and ion mobility mass spectrometry (IM-MS). Collision cross-sections and molecular modeling have been used to determine the final architecture of both hybrid materials. Chapter V investigates a different hybrid material, [BMP-2(HA)2 ], comprised of a dendron with two polyethylene glycol (PEG) branches terminated by a hydroxyapatite binding peptide (HA), and a focal point substituted with a bone morphogenic protein mimicking peptide (BMP-2). MALDI-MS, ESI-MS and IM-MS have been used to characterize the HA and BMP-2 peptides. Collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) have been employed in double stage (i.e. tandem) mass spectrometry (MS/MS) experiments to confirm the sequences of the two peptides HA and BMP-2. The MALDI-MS, ESI-MS and IM-MS methods were also applied to characterize the [BMP-2(HA)2] hybrid material. Collision cross-section measurements and molecular modeling indicated that [BMP-2(HA)2] can attain folded or extended conformation, depending on its degree of protonation (charge state). Chapter VI focuses on the analysis of

  14. Electrospray and tandem mass spectrometry in biochemistry.

    PubMed Central

    Griffiths, W J; Jonsson, A P; Liu, S; Rai, D K; Wang, Y

    2001-01-01

    Over the last 20 years, biological MS has changed out of all recognition. This is primarily due to the development in the 1980s of 'soft ionization' methods that permit the ionization and vaporization of large, polar, and thermally labile biomolecules. These developments in ionization mode have driven the design and manufacture of smaller and cheaper mass analysers, making the mass spectrometer a routine instrument in the biochemistry laboratory today. In the present review the revolutionary 'soft ionization' methods will be discussed with particular reference to electrospray. The mass analysis of ions will be described, and the concept of tandem MS introduced. Where appropriate, examples of the application of MS in biochemistry will be provided. Although the present review will concentrate on the MS of peptides/proteins and lipids, all classes of biomolecules can be analysed, and much excellent work has been done in the fields of carbohydrate and nucleic acid biochemistry. PMID:11311115

  15. A New Accelerator-Based Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  16. Mass spectrometry on the surface of Mercury

    NASA Astrophysics Data System (ADS)

    Whitby, J.; Rohner, U.; Benz, W.; Wurz, P.

    2003-04-01

    The proposed Mercury Surface Element of the BepiColombo mission will place a lander on Mercury equipped with a geochemistry instrumentation package. We will discuss the utility of elemental and isotopic analyses of individual mineral grains in the hermean regolith, and present relevant results from a prototype laser-ablation time-of-flight mass spectrometer.

  17. Off-line-locked laser diode species monitor system

    NASA Technical Reports Server (NTRS)

    Lee, Jamine (Inventor); Goldstein, Neil (Inventor); Richtsmeier, Steven (Inventor); Bien, Fritz (Inventor); Gersh, Michael (Inventor)

    1995-01-01

    An off-line-locked laser diode species monitor system includes: reference means for including at least one known species having a first absorption wavelength; a laser source for irradiating the reference means and at least one sample species having a second absorption wavelength differing from the first absorption wavelength by a predetermined amount; means for locking the wavelength of the laser source to the first wavelength of the at least one known species in the reference means; a controller for defeating the means for locking and for displacing the laser source wavelength from said first absorption wavelength by said predetermined amount to the second absorption wavelength; and a sample detector device for determining laser radiation absorption at the second wavelength transmitted through the sample to detect the presence of the at least one sample species.

  18. On enabling secure applications through off-line biometric identification

    SciTech Connect

    Davida, G.I.; Frankel, Y.; Matt, B.J.

    1998-04-01

    In developing secure applications and systems, the designers often must incorporate secure user identification in the design specification. In this paper, the authors study secure off line authenticated user identification schemes based on a biometric system that can measure a user`s biometric accurately (up to some Hamming distance). The schemes presented here enhance identification and authorization in secure applications by binding a biometric template with authorization information on a token such as a magnetic strip. Also developed here are schemes specifically designed to minimize the compromise of a user`s private biometrics data, encapsulated in the authorization information, without requiring secure hardware tokens. In this paper the authors furthermore study the feasibility of biometrics performing as an enabling technology for secure system and application design. The authors investigate a new technology which allows a user`s biometrics to facilitate cryptographic mechanisms.

  19. Absorption Mode FT-ICR Mass Spectrometry Imaging

    SciTech Connect

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco; O'Connor, Peter B.; Heeren, Ronald M.

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  20. High-accuracy mass spectrometry for fundamental studies.

    PubMed

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  1. Mass spectrometry-based proteomics: principles, perspectives, and challenges.

    PubMed

    Wiśniewski, Jacek R

    2008-10-01

    Mass spectrometry-based proteomics is a modern and rapidly developing methodology for qualitative and quantitative characterization of proteins and their posttranslational modification, subcellular localization, and interaction partners. It enables characterization of entire proteomes with unprecedented sensitivity and precision, providing platforms for identification of biomarkers and drug targets.

  2. High-Performance Liquid Chromatography-Mass Spectrometry.

    ERIC Educational Resources Information Center

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  3. Specialized Gas Chromatography--Mass Spectrometry Systems for Clinical Chemistry.

    ERIC Educational Resources Information Center

    Gochman, Nathan; And Others

    1979-01-01

    A discussion of the basic design and characteristics of gas chromatography-mass spectrometry systems used in clinical chemistry. A comparison of three specific systems: the Vitek Olfax IIA, Hewlett-Packard HP5992, and Du Pont DP-102 are included. (BB)

  4. Multiple parallel mass spectrometry for lipid and vitamin D analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liquid chromatography (LC) coupled to mass spectrometry (MS) has become the method of choice for analysis of complex lipid samples. Two types of ionization sources have emerged as the most commonly used to couple LC to MS: atmospheric pressure chemical ionization (APCI) and electrospray ionization ...

  5. Diagnosing Prion Diseases: Mass Spectrometry-Based Approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass spectrometry is an established means of quantitating the prions present in infected hamsters. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to stable isotope labeled internal standards were prepared. The limit of detection (LOD) and limi...

  6. May the Best Molecule Win: Competition ESI Mass Spectrometry

    PubMed Central

    Laughlin, Sarah; Wilson, W. David

    2015-01-01

    Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences. PMID:26501262

  7. On-Line Synthesis and Analysis by Mass Spectrometry

    ERIC Educational Resources Information Center

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2015-01-01

    In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…

  8. ENVIRONMENTAL MASS SPECTROMETRY: EMERGING CONTAMINANTS AND CURRENT ISSUES, 2006

    EPA Science Inventory

    This biennial review covers developments in Environmental Mass Spectrometry over the period of 2004-2005. A few significant references that appeared between January and February 2006 are also included. Analytical Chemistry's current policy is to limit reviews to include 100-200 s...

  9. DMS-prefiltered mass spectrometry for the detection of biomarkers

    NASA Astrophysics Data System (ADS)

    Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.

    2008-04-01

    Technologies based on Differential Mobility Spectrometry (DMS) are ideally matched to rapid, sensitive, and selective detection of chemicals like biomarkers. Biomarkers linked to exposure to radiation, exposure to CWA's, exposure to toxic materials (TICs and TIMs) and to specific diseases are being examined in a number of laboratories. Screening for these types of exposure can be improved in accuracy and greatly speeded up by using DMS-MS instead of slower techniques like LC-MS and GC-MS. We have performed an extensive series of tests with nanospray-DMS-mass spectroscopy and standalone nanospray-DMS obtaining extensive information on chemistry and detectivity. DMS-MS systems implemented with low-resolution, low-cost, portable mass-spectrometry systems are very promising. Lowresolution mass spectrometry alone would be inadequate for the task, but with DMS pre-filtration to suppress interferences, can be quite effective, even for quantitative measurement. Bio-fluids and digests are well suited to ionization by electrospray and detection by mass-spectrometry, but signals from critical markers are overwhelmed by chemical noise from unrelated species, making essential quantitative analysis impossible. Sionex and collaborators have presented data using DMS to suppress chemical noise, allowing detection of cancer biomarkers in 10,000-fold excess of normal products 1,2. In addition, a linear dynamic range of approximately 2,000 has been demonstrated with accurate quantitation 3. We will review the range of possible applications and present new data on DMS-MS biomarker detection.

  10. Liquid chromatography tandem mass spectrometry in the clinical laboratory.

    PubMed

    Adaway, Joanne E; Keevil, Brian G; Owen, Laura J

    2015-01-01

    Clinical laboratory medicine has seen the introduction and evolution of liquid chromatography tandem mass spectrometry in routine clinical laboratories over the last 10-15 years. There still exists a wide diversity of assays from very esoteric and highly specialist manual assays to more simplified kit-based assays. The technology is not static as manufacturers are continually making improvements. Mass spectrometry is now commonly used in several areas of diagnostics including therapeutic drug monitoring, toxicology, endocrinology, paediatrics and microbiology. Some of the most high throughput analyses or common analytes include vitamin D, immunosuppressant monitoring, androgen measurement and newborn screening. It also offers flexibility for the measurement of analytes in a variety of different matrices which would prove difficult with immunoassays. Unlike immunoassays or high-pressure liquid chromatography assays using ultraviolet or fluorescence detection, mass spectrometry offers better specificity and reduced interferences if attention is paid to potential isobaric compounds. Furthermore, multiplexing, which enables multiple analytes to be measured with the same volume of serum is advantageous, and the requirement for large sample volumes is decreasing as instrument sensitivity increases. There are many emerging applications in the literature. Using mass spectrometry to identify novel isoforms or modified peptides is possible as is quantification of proteins and peptides, with or without protein digests. Future developments by the manufacturers may also include mechanisms to improve the throughput of samples and strategies to decrease the level of skill required by the operators.

  11. Coming to a hospital near you: mass spectrometry imaging

    ScienceCinema

    Bowen, Ben

    2016-07-12

    Berkeley Lab's Ben Bowen discusses "Coming to a hospital near you: mass spectrometry imaging" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers.

  12. Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics

    SciTech Connect

    Xie, Fang; Liu, Tao; Qian, Weijun; Petyuk, Vladislav A.; Smith, Richard D.

    2011-07-22

    Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.

  13. Colloquium: 100 years of mass spectrometry: Perspectives and future trends

    NASA Astrophysics Data System (ADS)

    Maher, Simon; Jjunju, Fred P. M.; Taylor, Stephen

    2015-01-01

    Mass spectrometry (MS) is widely regarded as the most sensitive and specific general purpose analytical technique. More than a century has passed for MS since the ground-breaking work of Nobel laureate Sir Joseph John Thomson in 1913. This Colloquium aims to (1) give an historical overview of the major instrumentation achievements that have driven mass spectrometry forward in the past century, including those leading up to the initial work of Thomson, (2) provide the nonspecialist with an introduction to MS, and (3) highlight some key applications of MS and explore the current and future trends. Because of the vastness of the subject area and quality of the manifold research efforts that have been undertaken over the last 100 years, which have contributed to the foundations and subsequent advances in mass spectrometry, it should be understood that not all of the key contributions may have been included in this Colloquium. Mass spectrometry has embraced a multitude of scientific disciplines and to recognize all of the achievements is an impossible task, such has been the diverse impact of this invaluable technique. Scientific progress is usually made via the cumulative effort of a large number of researchers; the achievements reported herein are only a representation of that effort.

  14. Coming to a hospital near you: mass spectrometry imaging

    SciTech Connect

    Bowen, Ben

    2013-10-31

    Berkeley Lab's Ben Bowen discusses "Coming to a hospital near you: mass spectrometry imaging" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers.

  15. MICELLAR ELECTROKINETIC CHROMATOGRAPHY-MASS SPECTROMETRY (R823292)

    EPA Science Inventory

    The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The...

  16. Laser ablation sample transfer for mass spectrometry imaging.

    PubMed

    Park, Sung-Gun; Murray, Kermit K

    2015-01-01

    Infrared laser ablation sample transfer (IR-LAST) is a novel ambient sampling technique for mass spectrometry. In this technique, a pulsed mid-IR laser is used to ablate materials that are collected for mass spectrometry analysis; the material can be a solid sample or deposited on a sample target. After collection, the sample can be further separated or analyzed directly by mass spectrometry. For IR-LAST sample transfer tissue imaging using MALDI mass spectrometry, a tissue section is placed on a sample slide and material transferred to a target slide by scanning the tissue sample under a focused laser beam using transmission-mode (back side) IR laser ablation. After transfer, the target slide is analyzed using MALDI imaging. The spatial resolution is approximately 400 μm and limited by the spread of the laser desorption plume. IR-LAST for MALDI imaging provides several new capabilities including ambient sampling, area to spot concentration of ablated material, multiple ablation and analysis from a single section, and direct deposition on matrix-free nanostructured targets.

  17. Analysis of proteins using DIGE and MALDI mass spectrometry

    EPA Science Inventory

    In this work the sensitivity of the quantitative proteomics approach 2D-DIGE/MS (twoDimensional Difference Gel Electrophoresis / Mass Spectrometry) was tested by detecting decreasing amounts of a specific protein at the low picomole and sub-picomole range. Sensitivity of the 2D-D...

  18. Hadamard Transform Time-of-Flight Mass Spectrometry

    DTIC Science & Technology

    2010-01-26

    collisional activation is similar to the 11 more common collision - induced dissociation (CID), however in SID the...Hines, et al. (1993). "Low-mass ions produced from peptides by high- energy collision - induced dissociation in tandem mass spectrometry." Journal of the...biomolecules." Science 246(4926): 64-72. Galhena, A. S., S. Dagan, et al. (2008). "Surface- Induced Dissociation of Peptides and Protein Complexes in

  19. Accelerator mass spectrometry as a bioanalytical tool for nutritional research

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.

    1997-09-01

    Accelerator Mass Spectrometry is a mass spectrometric method of detecting long-lived radioisotopes without regard to their decay products or half-life. The technique is normally applied to geochronology, but recently has been developed for bioanalytical tracing. AMS detects isotope concentrations to parts per quadrillion, quantifying labeled biochemicals to attomole levels in milligram- sized samples. Its advantages over non-isotopeic and stable isotope labeling methods are reviewed and examples of analytical integrity, sensitivity, specificity, and applicability are provided.

  20. Laser Mass Spectrometry in Planetary Science

    SciTech Connect

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-06-16

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  1. Plasma source mass spectrometry in experimental nutrition.

    PubMed

    Barnes, R M

    1998-01-01

    The development and commercial availability of plasma ion source, specifically inductively coupled plasma, mass spectrometers (ICP-MS) have significantly extended the potential application of stable isotopes for nutritional modeling. The status of research and commercial ICP-MS instruments, and their applications and limitations for stable isotopic studies are reviewed. The consequences of mass spectroscopic resolution and measurement sensitivity obtainable with quadrupole, sector, time-of-flight, and trap instruments on stable isotope analysis are examined. Requirements for reliable isotope measurements with practical biological samples including tissues and fluids are considered. The possibility for stable isotope analysis in chemically separated compounds (speciation) also is explored. On-line compound separations by chromatography or electrophoresis, for example, have been combined instrumentally with ICP-MS. Som possibilities and requirements are described for stable isotope speciation analysis.

  2. Laser Mass Spectrometry in Planetary Science

    NASA Astrophysics Data System (ADS)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-06-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  3. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  4. Application of Laser Mass Spectrometry to Art and Archaeology

    NASA Technical Reports Server (NTRS)

    Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.

    2011-01-01

    REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.

  5. [New mass spectrometry techniques applied to the study of venoms].

    PubMed

    Auvin-Guette, C

    2002-08-01

    Mass spectrometry is a technique for the analysis and very sensitive identification of molecules. It allows one to determine the mass of the studied product, whether pure or in a mixture, and provides some information on its molecular structure. In the particular case of peptides, this method can, under certain conditions, also provide information on the amino acid sequence. There are two complementary methods in mass spectrometry for the study of the biological molecules: i) ionisation by laser desorption assisted by matrix (MALDI) coupled to a mass analyser of the time of flight type (TOF), which is very effective for the direct study of a mixture of products and ii) ionisation by electronebulisation (ESI) coupled to mass analysers of the quadripolar type and time of flight (Qq-TOF), which allows the interfacing between high phase liquid chromatography and mass spectrometry. These two complementary techniques were already used to draw up toxin charts of snake and spider venoms. The purpose is to be able to characterise species based on an actual peptide print of poisonous gland secretions.

  6. ICP-MS-based characterization of inorganic nanoparticles--sample preparation and off-line fractionation strategies.

    PubMed

    Fabricius, Anne-Lena; Duester, Lars; Meermann, Björn; Ternes, Thomas A

    2014-01-01

    Validated and easily applicable analytical tools are required to develop and implement regulatory frameworks and an appropriate risk assessment for engineered nanoparticles (ENPs). Concerning metal-based ENPs, two main aspects are the quantification of the absolute mass concentration and of the "dissolved" fraction in, e.g., (eco)toxicity and environmental studies. To provide information on preparative aspects and on potential uncertainties, preferably simple off-line methods were compared to determine (1) the total concentration of suspensions of five metal-based ENP materials (Ag, TiO2, CeO2, ZnO, and Au; two sizes), and (2) six methods to quantify the "dissolved" fraction of an Ag ENP suspension. Focusing on inductively coupled plasma-mass spectrometry, the total concentration of the ENP suspensions was determined by direct measurement, after acidification and after microwave-assisted digestion. Except for Au 10 nm, the total concentrations determined by direct measurements were clearly lower than those measured after digestion (between 61.1 % for Au 200 nm and 93.7 % for ZnO). In general, acidified suspensions delivered better recoveries from 89.3 % (ZnO) to 99.3 % (Ag). For the quantification of dissolved fractions two filtration methods (ultrafiltration and tangential flow filtration), centrifugation and ion selective electrode were mainly appropriate with certain limitations, while dialysis and cloud point extraction cannot be recommended. With respect to precision, time consumption, applicability, as well as to economic demands, ultrafiltration in combination with microwave digestion was identified as best practice.

  7. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    ERIC Educational Resources Information Center

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  8. MASS SPECTROMETRY IMAGING FOR DRUGS AND METABOLITES

    PubMed Central

    Greer, Tyler; Sturm, Robert; Li, Lingjun

    2011-01-01

    Mass spectrometric imaging (MSI) is a powerful analytical technique that provides two- and three-dimensional spatial maps of multiple compounds in a single experiment. This technique has been routinely applied to protein, peptide, and lipid molecules with much less research reporting small molecule distributions, especially pharmaceutical drugs. This review’s main focus is to provide readers with an up-to-date description of the substrates and compounds that have been analyzed for drug and metabolite composition using MSI technology. Additionally, ionization techniques, sample preparation, and instrumentation developments are discussed. PMID:21515430

  9. Fermentation exhaust gas analysis using mass spectrometry

    SciTech Connect

    Buckland, B.; Brix, Fastert, H.; Gbewonyo, K.; Hunt, G.; Jain, D.

    1985-11-01

    A Perkin Elmer MGA-1200 mass spectrometer has been coupled with a mini-computer and a sampling manifold to analyze up to 8 components in the exhaust gases of fermentors. Carbon dioxide, oxygen, and nitrogen are typically analyzed, but ethanol for yeast fermentations can also be tested by heating the line from the fermentor to the sampling manifold. Specifications, operation, and performance of the system are described. The system has been used for process control, the study of fermentation kinetics, and process development. 8 references, 7 figures, 1 table.

  10. Capillary electrophoresis-mass spectrometry of carbohydrates

    PubMed Central

    Zaia, Joseph

    2014-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This review summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications. PMID:23386333

  11. Capillary electrophoresis-mass spectrometry of carbohydrates.

    PubMed

    Zaia, Joseph

    2013-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust, and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This chapter summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins, and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications.

  12. Early discovery drug screening using mass spectrometry.

    PubMed

    Siegel, Marshall M

    2002-01-01

    Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometric methods useful for early discovery drug screening are reviewed. All methods described involve studies of non-covalent complexes between biopolymer receptors and small molecule ligands formed in the condensed phase. The complexes can be sprayed intact directly into the gas phase by ESI-MS using gentle experimental conditions. Gas phase screening applications are illustrated for drug ligand candidates non-covalently interacting with peptides, proteins, RNA, and DNA. In the condensed phase, the complexes can be also isolated, denatured and analyzed by ESI-MS to identify the small molecule ligands. Condensed phase drug screening examples are illustrated for the ESI-MS ancillary techniques of affinity chromatography, ultrafiltration, ultracentrifugation, gel permeation chromatography (GPC), reverse phase-high performance liquid chromatography (RP-HPLC) and capillary electrophoretic methods. Solid phase drug screening using MALDI-MS is illustrated for small molecule ligands bound to MALDI affinity probe tips and to beads. Since ESI and MALDI principally produce molecular ions, high throughput screening is achieved by analyzing mass indexed mixtures.

  13. Analysis of Milk Oligosaccharides by Mass Spectrometry.

    PubMed

    Wu, Lauren D; Ruhaak, L Renee; Lebrilla, Carlito B

    2017-01-01

    Human milk oligosaccharides (HMOs) are a highly abundant constituent in human milk, and its protective and prebiotic properties have attracted considerable attention. HMOs have been shown to directly and indirectly benefit the overall health of the infant due to a number of functions including serving as a beneficial food for gut bacteria, block to pathogens, and aiding in brain development. Researchers are currently exploring whether these structures may act as possible disease and nutrition biomarkers. Because of this, rapid-throughput methods are desired to investigate biological activity in large patient sets. We have optimized a rapid-throughput protocol to analyze human milk oligosaccharides using micro-volumes of human breast milk for nutritional biomarkers. This method may additionally be applied to other biological fluid substrates such as plasma, urine, and feces. The protocol involves lipid separation via centrifugation, protein precipitation using ethanol, alditol reduction with sodium borohydride, and a final solid-phase extraction purification step using graphitized carbon cartridges. Samples are analyzed using HPLC-Chip/TOF-MS and data filtered on Agilent MassHunter using an in-house library. Individual structural identification is matched against a previously developed HMO library using accurate mass and retention time. Using this method will allow in-depth characterization and profiling of HMOs in large patient sets, and will ease the process of discovering significant nutritional biomarkers in human milk.

  14. Environmental applications for the analysis of chlorinated dibenzo-p-dioxins and dibenzofurans using mass spectrometry/mass spectrometry

    SciTech Connect

    Reiner, E.J.; Schellenberg, D.H.; Taguchi, V.Y. )

    1991-01-01

    A mass spectrometry/mass spectrometry-multiple reaction monitoring (MS/MS-MRM) technique for the analysis of all tetra- through octachlorinated dibenzo-p-dioxins (Cl{sub x}DD, x = 4-8) and dibenzofurans (Cl{sub x}DF, x = 4-8) has been developed at the Ministry of the Environment (MOE) utilizing a triple quadrupole mass spectrometer. Optimization of instrumental parameters using the analyte of interest in a direct insertion probe (DIP) resulted in sensitivities approaching those obtainable by high-resolution mass spectrometric (HRMS) methods. All congeners of dioxins and furans were detected in the femtogram range. Results on selected samples indicated that for some matrices, fewer chemical interferences were observed by MS/MS than by HRMS. The technique used to optimize the instrument for chlorinated dibenzo-p-dioxins (CDDs) and chlorinated dibenzofurans (CDFs) analysis is adaptable to other analytes.

  15. On-line and off-line data analysis for the EUSO-TA experiment

    NASA Astrophysics Data System (ADS)

    Piotrowski, Lech Wiktor; Casolino, Marco; Conti, Livio; Ebisuzaki, Toshikazu; Fornaro, Claudio; Kawasaki, Yoshiya; Hachisu, Yusuke; Ohmori, Hitoshi; De Santis, Cristian; Shinozaki, Kenji; Takizawa, Yoshiyuki; Uehara, Yoshihiro

    2015-02-01

    We show the principles of the communication protocol, on-line calibration, off-line data format as well as basic visualisation and data analysis software implemented for the EUSO-TA on-ground experiment, being the first step towards implementation in a future space based mission. EUSO-TA is an on-ground detector for measuring UV (290-430 nm) light from extensive air showers induced by cosmic rays. It is a prototype experiment for the JEM-EUSO space-borne mission, built according to the same constraints of low mass, low power consumption and thus low computing power. Nevertheless, it needs to process a huge amount of data in short time, taking 2.5 μs exposures for 2304 channels. The low processing power and high time resolution require an efficient communication protocol and simple yet powerful algorithms for on-line analysis. The off-line data format is designed for storing a huge amount of data, at the same time allowing easy access, analysis and sharing. Its structure is scalable and adjustable to different experimental designs. It is independent of the data origin, whether it is hardware or a Monte-Carlo simulator. Use of object-oriented techniques and the ROOT framework allows rapid development of dedicated analysis software, such as a Python based quick-view program described herein. Basic capabilities of the software, such as display of the focal surface, light curves and calibration data are shown in this paper.

  16. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry.

    PubMed

    Maslen, Sarah; Sadowski, Pawel; Adam, Alex; Lilley, Kathryn; Stephens, Elaine

    2006-12-15

    The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.

  17. Complete Hexose Isomer Identification with Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nagy, Gabe; Pohl, Nicola L. B.

    2015-04-01

    The first analytical method is presented for the identification and absolute configuration determination of all 24 aldohexose and 2-ketohexose isomers, including the D and L enantiomers for allose, altrose, galactose, glucose, gulose, idose, mannose, talose, fructose, psicose, sorbose, and tagatose. Two unique fixed ligand kinetic method combinations were discovered to create significant enough energetic differences to achieve chiral discrimination among all 24 hexoses. Each of these 24 hexoses yields unique ratios of a specific pair of fragment ions that allows for simultaneous determination of identification and absolute configuration. This mass spectrometric-based methodology can be readily employed for accurate identification of any isolated monosaccharide from an unknown biological source. This work provides a key step towards the goal of complete de novo carbohydrate analysis.

  18. Advances in structure elucidation of small molecules using mass spectrometry

    PubMed Central

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  19. Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hsu, Chuan-Chih; Xue, Liang; Arrington, Justine V.; Wang, Pengcheng; Paez Paez, Juan Sebastian; Zhou, Yuan; Zhu, Jian-Kang; Tao, W. Andy

    2017-03-01

    Mass spectrometry has played a significant role in the identification of unknown phosphoproteins and sites of phosphorylation in biological samples. Analyses of protein phosphorylation, particularly large scale phosphoproteomic experiments, have recently been enhanced by efficient enrichment, fast and accurate instrumentation, and better software, but challenges remain because of the low stoichiometry of phosphorylation and poor phosphopeptide ionization efficiency and fragmentation due to neutral loss. Phosphoproteomics has become an important dimension in systems biology studies, and it is essential to have efficient analytical tools to cover a broad range of signaling events. To evaluate current mass spectrometric performance, we present here a novel method to estimate the efficiency of phosphopeptide identification by tandem mass spectrometry. Phosphopeptides were directly isolated from whole plant cell extracts, dephosphorylated, and then incubated with one of three purified kinases—casein kinase II, mitogen-activated protein kinase 6, and SNF-related protein kinase 2.6—along with 16O4- and 18O4-ATP separately for in vitro kinase reactions. Phosphopeptides were enriched and analyzed by LC-MS. The phosphopeptide identification rate was estimated by comparing phosphopeptides identified by tandem mass spectrometry with phosphopeptide pairs generated by stable isotope labeled kinase reactions. Overall, we found that current high speed and high accuracy mass spectrometers can only identify 20%-40% of total phosphopeptides primarily due to relatively poor fragmentation, additional modifications, and low abundance, highlighting the urgent need for continuous efforts to improve phosphopeptide identification efficiency.

  20. Identification of metabolites of hexazinone by mass spectrometry.

    PubMed

    Reiser, R W; Belasco, I J; Rhodes, R C

    1983-11-01

    The metabolites of hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione ] obtained in the rat and in plants were identified by mass spectrometry. Rat urine metabolites were identified from direct probe spectra obtained on metabolites separated by thin-layer chromatography. Sugarcane metabolites were identified by gas chromatography mass spectrometry of the trimethylsilyl derivatives. The major metabolic routes were found to be hydroxylation of the cyclohexyl group and demethylation. All identifications were confirmed by synthesis and direct comparison of chromatographic data and mass spectra. Hexazinone is metabolized quickly and extensively in the biological systems studied, and is relatively nonpersistent in the environment.

  1. Recent developments in Penning-trap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Block, M.

    2016-06-01

    Penning-trap mass spectrometry provides atomic masses with the highest precision. At accelerator-based on-line facilities it is applied to investigate exotic radionuclides in the context of tests of fundamental symmetries, nuclear structure studies, and nuclear astrophysics research. Recent progress in slowing down radioactive ion-beams in buffer-gas cells in combination with advanced ion-manipulation techniques has paved the way to reach nuclides ever-more far from stability. In this endeavor many efforts are underway to increase the sensitivity, the efficiency, and the precision of Penning-trap mass spectrometry. In this article some recent experimental developments are addressed with the focus on the phase-imaging ion-cyclotron-resonance technique and the Fourier transform ion-cyclotron-resonance technique.

  2. Determination of 135Cs by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Charles, C. R. J.; Zhao, X.-L.; Kieser, W. E.; Cornett, R. J.; Litherland, A. E.

    2015-10-01

    The ratio of anthropogenic 135Cs and 137Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying 135Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn2, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10-3 and 1.7 × 10-7 respectively. This quantification of 135Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  3. Electrochemistry-mass spectrometry in drug metabolism and protein research.

    PubMed

    Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer

    2008-01-01

    The combination of electrochemistry coupled on-line to mass spectrometry (EC-MS) forms a powerful analytical technique with unique applications in the fields of drug metabolism and proteomics. In this review the latest developments are surveyed from both instrumental and application perspectives. The limitations and solutions for coupling an electrochemical system to a mass spectrometer are discussed. The electrochemical mimicking of drug metabolism, specifically by Cytochrome P450, is high-lighted as an application with high biomedical relevance. The EC-MS analysis of proteins also has promising new applications for both proteomics research and biomarker discovery. EC-MS has furthermore advantages for improved analyte detection with mass spectrometry, both for small molecules and large biomolecules. Finally, potential future directions of development of the technique are briefly discussed.

  4. Trends in biochemical and biomedical applications of mass spectrometry

    NASA Astrophysics Data System (ADS)

    Gelpi, Emilio

    1992-09-01

    This review attempts an in-depth evaluation of progress and achievements made since the last 11th International Mass Spectrometry Conference in the application of mass spectrometric techniques to biochemistry and biomedicine. For this purpose, scientific contributions in this field at major international meetings have been monitored, together with an extensive appraisal of literature data covering the period from 1988 to 1991. A bibliometric evaluation of the MEDLINE database for this period provides a total of almost 4000 entries for mass spectrometry. This allows a detailed study of literature and geographical sources of the most frequent applications, of disciplines where mass spectrometry is most active and of types of sample and instrumentation most commonly used. In this regard major efforts according to number of publications (over 100 literature reports) are concentrated in countries like Canada, France, Germany, Italy, Japan, Sweden, UK and the USA. Also, most of the work using mass spectrometry in biochemistry and biomedicine is centred on studies on biotransformation, metabolism, pharmacology, pharmacokinetics and toxicology, which have been carried out on samples of blood, urine, plasma and tissue, by order of frequency of use. Human and animal studies appear to be evenly distributed in terms of the number of reports published in the literature in which the authors make use of experimental animals or describe work on human samples. Along these lines, special attention is given to the real usefulness of mass spectrometry (MS) technology in routine medical practice. Thus the review concentrates on evaluating the progress made in disease diagnosis and overall patient care. As regards prevailing techniques, GCMS continues to be the mainstay of the state of the art methods for multicomponent analysis, stable isotope tracer studies and metabolic profiling, while HPLC--MS and tandem MS are becoming increasingly important in biomedical research. However

  5. Microscale mass spectrometry systems, devices and related methods

    DOEpatents

    Ramsey, John Michael

    2016-06-21

    Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.

  6. An introduction to quadrupole-time-of-flight mass spectrometry.

    PubMed

    Chernushevich, I V; Loboda, A V; Thomson, B A

    2001-08-01

    A brief introduction is presented to the basic principles and application of a quadrupole-time-of-flight (TOF) tandem mass spectrometer. The main features of reflecting TOF instruments with orthogonal injection of ions are discussed. Their operation and performance are compared with those of triple quadrupoles with electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) TOF mass spectrometers. Examples and recommendations are provided for all major operational modes: mass spectrometry (MS) and tandem MS (MS/MS), precursor ion scans and studies of non-covalent complexes. Basic algorithms for liquid chromatography/MS/MS automation are discussed and illustrated by two applications.

  7. Rapid discrimination of bacteria by paper spray mass spectrometry.

    PubMed

    Hamid, Ahmed M; Jarmusch, Alan K; Pirro, Valentina; Pincus, David H; Clay, Bradford G; Gervasi, Gaspard; Cooks, R Graham

    2014-08-05

    Paper spray mass spectrometry ambient ionization is utilized for rapid discrimination of bacteria without sample preparation. Bacterial colonies were smeared onto filter paper precut to a sharp point, then wetted with solvent and held at a high potential. Charged droplets released by field emission were sucked into the mass spectrometer inlet and mass spectra were recorded. Sixteen different species representing eight different genera from Gram-positive and Gram-negative bacteria were investigated. Phospholipids were the predominant species observed in the mass spectra in both the negative and positive ion modes. Multivariate data analysis based on principal component analysis, followed by linear discriminant analysis, allowed bacterial discrimination. The lipid information in the negative ion mass spectra proved useful for species level differentiation of the investigated Gram-positive bacteria. Gram-negative bacteria were differentiated at the species level by using a numerical data fusion strategy of positive and negative ion mass spectra.

  8. Small system for tritium accelerator mass spectrometry

    DOEpatents

    Roberts, Mark L.; Davis, Jay C.

    1993-01-01

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  9. Small system for tritium accelerator mass spectrometry

    DOEpatents

    Roberts, M.L.; Davis, J.C.

    1993-02-23

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  10. "EMERGING" POLLUTANTS, MASS SPECTROMETRY, AND COMMUNICATING SCIENCE: PHARMACEUTICALS IN THE ENVIRONMENT

    EPA Science Inventory

    A foundation for Environmental Science - Mass Spectrometry: Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry - the mainstay of analytical chemistry - the workhorse that supplies much of the...

  11. Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging methods and protocols have become widely adapted to a variety of tissues and species. However, the mass spectrometry imaging literature contains minimal information on whole-body cryosection preparation for the zebrafish (Danio rerio), a model organism ...

  12. The role of ion mobility spectrometry-mass spectrometry in the analysis of protein reference standards.

    PubMed

    Pritchard, Caroline; O'Connor, Gavin; Ashcroft, Alison E

    2013-08-06

    To achieve comparability of measurement results of protein amount of substance content between clinical laboratories, suitable reference materials are required. The impact on measurement comparability of potential differences in the tertiary and quaternary structure of protein reference standards is as yet not well understood. With the use of human growth hormone as a model protein, the potential of ion mobility spectrometry-mass spectrometry as a tool to assess differences in the structure of protein reference materials and their interactions with antibodies has been investigated here.

  13. Electrospray Ionization Mass Spectrometry of hexanitrohexaazaisowurtzitane (CL-20)

    SciTech Connect

    Campbell, James A.; Szecsody, Jim E.; Devary, Brooks J.; Valenzuela, Blandina R.

    2007-09-03

    Hexanitrohexaazaisowurtzitane, (C6H6N12O12, MW 438) {CL-20}, is a high-energy propellent that has been recently developed and successfully tested (Nielsen et al. 1998). CL-20 releases more energy on ignition and is more stable to accidental detonation than currently used energetic materials. It is expected to replace many of the energetic materials currently being used by the Department of Defense (DoD). The EPA method 8330 (EPA 1997) for the analysis of explosives and metabolites in soils calls for the use of UV/Vis detection. High performance liquid chromatography has been used to quantify CL-20 and precursor concentration (Bazaki et al. 1998`) at relatively high concentrations. Fourier transform infrared (FTIR) spectroscopy has been used to identify different crystal forms of CL-20 (4 isomers; Kim et al. 1998). Campbell et al. (1997) utilized particle beam mass spectrometry for the analysis of enzymatic degradation of explosives. Introduction and recent improvements of ionization techniques such as electrospray (ES) have allowed the mass spectrometer to become more widely used in liquid chromatography. Schilling(1996) also examined explosive components and metabolites using electrospray (ES) and atmospheric pressure chemical ionization (APCI) liquid chromatography/mass spectrometry (LC/MS). Schilling’s results showed that compared to thermospray LC/MS, APCI and ES were more sensitive than thermospray by at least an order of magnitude. 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), 10 nitroso-RDX metabolites, and other munitions in ground water have been analyzed using solid phase extraction and isotope dilution liquid chromatography-APCI mass spectrometry (Cassada et al. 1999). The method detection limits indicate that nitramine and nitroaromatic compounds can be routinely determined in ground water samples using electrospray LC/MS with concentration techniques utilizing solid-phase extraction. Miller et al. (1996) studied nitrated explosives with mobile phase

  14. Characterization of Bacteria by Particle Beam Mass Spectrometry

    PubMed Central

    Sinha, Mahadeva P.; Platz, Robert M.; Friedlander, Sheldon K.; Vilker, Vincent L.

    1985-01-01

    A technique is described for detecting and characterizing bacteria on a single-particle basis by mass spectrometry. The method involves generation of a particle beam of single whole cells which are rapidly volatilized and ionized in vacuum in the ion source of a quadrupole mass spectrometer. The particle beam can be generated, with minimal sample handling, from a naturally occurring aerosol or from a solution of bacteria that can be dispersed as an aerosol. The mass spectrum is generated by successively measuring the average intensities of different mass peaks. The average intensity is obtained by measuring the ion intensity distribution at the particular mass (m/e) for ion pulses from more than 1,000 bacteria particles. Bacillus cereus, Bacillus subtilis, and Pseudomonas putida samples were analyzed to test the capability of the instrument for differentiating among species of bacteria. Significant ion-intensity information was produced over the m/e range of 50 to 300, an improvement over previous pyrolysis-mass spectrometry results. The complex mass spectra contained a few unique peaks which could be used for the differentiation of the bacteria. A statistical analysis of the variations in peak intensities among the three bacteria provided a quantitative measure of the reproducibility of the instrument and its ability to differentiate among bacteria. The technique could lead to a new rapid method for the analysis of microorganisms and could be used for the detection of airborne pathogens on a continuous, real-time basis. Images PMID:16346802

  15. Native Mass Spectrometry: What is in the Name?

    NASA Astrophysics Data System (ADS)

    Leney, Aneika C.; Heck, Albert J. R.

    2017-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is nowadays one of the cornerstones of biomolecular mass spectrometry and proteomics. Advances in sample preparation and mass analyzers have enabled researchers to extract much more information from biological samples than just the molecular weight. In particular, relevant for structural biology, noncovalent protein-protein and protein-ligand complexes can now also be analyzed by MS. For these types of analyses, assemblies need to be retained in their native quaternary state in the gas phase. This initial small niche of biomolecular mass spectrometry, nowadays often referred to as "native MS," has come to maturation over the last two decades, with dozens of laboratories using it to study mostly protein assemblies, but also DNA and RNA-protein assemblies, with the goal to define structure-function relationships. In this perspective, we describe the origins of and (re)define the term native MS, portraying in detail what we meant by "native MS," when the term was coined and also describing what it does (according to us) not entail. Additionally, we describe a few examples highlighting what native MS is, showing its successes to date while illustrating the wide scope this technology has in solving complex biological questions.

  16. Cortisol production rates measured by liquid chromatography/mass spectrometry

    SciTech Connect

    Esteban, N.V.; Yergey, A.L. )

    1990-04-01

    Cortisol production rates (FPRs) in physiologic and pathologic states in humans have been investigated over the past 30 years. However, there has been conflicting evidence concerning the validity of the currently accepted value of FPRs in humans (12 to 15 mg/m2/d) as determined by radiotracer methodology. The present study reviews previous methods proposed for the measurement of FPRs in humans and discusses the applications of the first method for the direct determination of 24-hour plasma FPRs during continuous administration of a stable isotope, using a thermospray high-pressure liquid chromatography-mass spectrometry technique. The technique is fast, sensitive, and, unlike gas chromatography-mass spectrometry methods, does not require derivatization, allowing on-line detection and quantification of plasma cortisol after a simple extraction procedure. The results of determination of plasma FPRs by stable tracer/mass spectrometry are directly in units of mass/time and, unlike radiotracer methods, are independent of any determination of volume of distribution or cortisol concentration. Our methodology offers distinct advantages over radiotracer techniques in simplicity and reliability since only single measurements of isotope ratios are required. The technique was validated in adrenalectomized patients. Circadian variations in daily FRPs were observed in normal volunteers, and, to date, results suggest a lower FRP in normal children and adults than previously believed. 88 references.

  17. DNA analysis by MALDI-TOF mass spectrometry.

    PubMed

    Gut, Ivo Glynne

    2004-05-01

    The last decade has seen an increased demand for high-throughput DNA analysis. This is mainly due to the human genome sequencing project that is now completed. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was pinpointed early on as a technology that could be of great use for sequence variation analysis in the post-genome sequencing era. Applications developed first on this platform were for SNP genotyping. Several strategies for allele-discrimination (hybridization, cleavage, ligation, and primer extension) were combined with MALDI-TOF mass spectrometric detection. Nowadays, in practice, only primer extension methods are applied for large-scale SNP genotyping studies with MALDI-TOF detection. Problems surrounding the integration of SNP genotyping by MALDI-TOF mass spectrometry at high throughput are largely mastered now. Mass spectrometry geared presentations at the HUGO Mutation Detection Meeting in Palm Cove, Australia almost exclusively focused on novel applications that go beyond standard SNP genotyping. These applications are more demanding in terms of chemistry and molecular biology. Molecular haplotyping, expression profiling, DNA methylation analysis, and mutation detection are now being demonstrated.

  18. Identification of carbohydrate anomers using ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K.

    2015-10-01

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  19. Advances in 193 nm excimer lasers for mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  20. New Types of Ionization Sources for Mass Spectrometry

    SciTech Connect

    2008-12-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle (Contractor) and MDS Sciex (Participant) and ESA, Inc. (Participant) is to research, develop and apply new types of ionization sources and sampling/inlet systems for analytical mass spectrometry making use of the Participants state-of-the-art atmospheric sampling mass spectrometry electrochemical cell technology instrumentation and ancillary equipment. The two overriding goals of this research project are: to understand the relationship among the various instrumental components and operational parameters of the various ion sources and inlet systems under study, the chemical nature of the gases, solvents, and analytes in use, and the nature and abundances of the ions ultimately observed in the mass spectrometer; and to develop new and better analytical and fundamental applications of these ion sources and inlet systems or alternative sources and inlets coupled with mass spectrometry on the basis of the fundamental understanding obtained in Goal 1. The end results of this work are expected to be: (1) an expanded utility for the ion sources and inlet systems under study (such as the analysis of new types of analytes) and the control or alteration of the ionic species observed in the gas-phase; (2) enhanced instrument performance as judged by operational figures-of-merit such as dynamic range, detection limits, susceptibility to matrix signal suppression and sensitivity; and (3) novel applications (such as surface sampling with electrospray) in both applied and fundamental studies. The research projects outlined herein build upon work initiated under the previous CRADA between the Contractor and MDS Sciex on ion sources and inlet systems for mass spectrometry. Specific ion source and inlet systems for exploration of the fundamental properties and practical implementation of these principles are given.

  1. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    ERIC Educational Resources Information Center

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  2. Writer adaptation in off-line Arabic handwriting recognition

    NASA Astrophysics Data System (ADS)

    Ball, Gregory R.; Srihari, Sargur N.

    2008-01-01

    Writer adaptation or specialization is the adjustment of handwriting recognition algorithms to a specific writer's style of handwriting. Such adjustment yields significantly improved recognition rates over counterpart general recognition algorithms. We present the first unconstrained off-line handwriting adaptation algorithm for Arabic presented in the literature. We discuss an iterative bootstrapping model which adapts a writer-independent model to a writer-dependent model using a small number of words achieving a large recognition rate increase in the process. Furthermore, we describe a confidence weighting method which generates better results by weighting words based on their length. We also discuss script features unique to Arabic, and how we incorporate them into our adaptation process. Even though Arabic has many more character classes than languages such as English, significant improvement was observed. The testing set consisting of about 100 pages of handwritten text had an initial average overall recognition rate of 67%. After the basic adaptation was finished, the overall recognition rate was 73.3%. As the improvement was most marked for the longer words, and the set of confidently recognized longer words contained many fewer false results, a second method was presented using them alone, resulting in a recognition rate of about 75%. Initially, these words had a 69.5% recognition rate, improving to about a 92% recognition rate after adaptation. A novel hybrid method is presented with a rate of about 77.2%.

  3. Off-line compatible electronic cash method and system

    DOEpatents

    Kravitz, David W.; Gemmell, Peter S.; Brickell, Ernest F.

    1998-01-01

    An off-line electronic cash system having an electronic coin, a bank B, a payee S, and a user U with an account at the bank B as well as a user password z.sub.u,i, has a method for performing an electronic cash transfer. An electronic coin is withdrawn from the bank B by the user U and an electronic record of the electronic coin is stored by the bank B. The coin is paid to the payee S by the user U. The payee S deposits the coin with the bank B. A determination is made that the coin is spent and the record of the coin is deleted by the bank B. A further deposit of the same coin after the record is deleted is determined. Additionally, a determination is made which user U originally withdrew the coin after deleting the record. To perform these operations a key pair is generated by the user, including public and secret signature keys. The public signature key along with a user password z.sub.u,i and a withdrawal amount are sent to the bank B by the user U. In response, the bank B sends a coin to the user U signed by the secret key of the bankindicating the value of the coin and the public key of the user U. The payee S transmits a challenge counter to the user U prior to receiving the coin.

  4. Off-line compatible electronic cash method and system

    DOEpatents

    Kravitz, D.W.; Gemmell, P.S.; Brickell, E.F.

    1998-11-03

    An off-line electronic cash system having an electronic coin, a bank B, a payee S, and a user U with an account at the bank B as well as a user password z{sub u,i}, has a method for performing an electronic cash transfer. An electronic coin is withdrawn from the bank B by the user U and an electronic record of the electronic coin is stored by the bank B. The coin is paid to the payee S by the user U. The payee S deposits the coin with the bank B. A determination is made that the coin is spent and the record of the coin is deleted by the bank B. A further deposit of the same coin after the record is deleted is determined. Additionally, a determination is made which user U originally withdrew the coin after deleting the record. To perform these operations a key pair is generated by the user, including public and secret signature keys. The public signature key along with a user password z{sub u,i} and a withdrawal amount are sent to the bank B by the user U. In response, the bank B sends a coin to the user U signed by the secret key of the bank indicating the value of the coin and the public key of the user U. The payee S transmits a challenge counter to the user U prior to receiving the coin. 16 figs.

  5. Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses

    PubMed Central

    Lim, Lucy; Yan, Fangzhi; Bach, Stephen; Pihakari, Katianna; Klein, David

    2016-01-01

    Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS) has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices. PMID:26784175

  6. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  7. Establishing drug resistance in microorganisms by mass spectrometry.

    PubMed

    Demirev, Plamen A; Hagan, Nathan S; Antoine, Miquel D; Lin, Jeffrey S; Feldman, Andrew B

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and (13)C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  8. Plasma-based ambient ionization mass spectrometry in bioanalytical sciences.

    PubMed

    Smoluch, Marek; Mielczarek, Przemyslaw; Silberring, Jerzy

    2016-01-01

    Plasma-based ambient ionization mass spectrometry techniques are gaining growing interest due to their specific features, such as the need for little or no sample preparation, its high analysis speed, and the ambient experimental conditions. Samples can be analyzed in gas, liquid, or solid forms. These techniques allow for a wide range of applications, like warfare agent detection, chemical reaction control, mass spectrometry imaging, polymer identification, and food safety monitoring, as well as applications in biomedical science, e.g., drug and pharmaceutical analysis, medical diagnostics, biochemical analysis, etc. Until now, the main drawback of plasma-based techniques is their quantitative aspect, but a lot of efforts have been done to improve this obstacle.

  9. Protein identification using nano liquid chromatography-tandem mass spectrometry.

    PubMed

    Negroni, Luc

    2007-01-01

    Tandem mass spectrometry is an efficient technique for the identification of peptides on the basis of their fragmentation pattern (MS/MS scan). It can generate individual spectra for each peptide, thereby creating a powerful tool for protein identification on the basis of peptide characterization. This important advance in automatic data acquisition has allowed an efficient association between liquid chromatography and tandem mass spectrometry, and the use of nanocolumns and nanoelectrospray ionization has dramatically increased the efficiency of this method. Now large sets of peptides can be identified at a femtomole level. At the end of the process, batch processing of the MS/MS spectra produces peptide lists that identify purified proteins or protein mixtures with high confidence.

  10. Challenges ahead for mass spectrometry and proteomics applications in epigenetics.

    PubMed

    Kessler, Benedikt M

    2010-02-01

    Inheritance of biological information to future generations depends on the replication of DNA and the Mendelian principle of distribution of genes. In addition, external and environmental factors can influence traits that can be propagated to offspring, but the molecular details of this are only beginning to be understood. The discoveries of DNA methylation and post-translational modifications on chromatin and histones provided entry points for regulating gene expression, an area now defined as epigenetics and epigenomics. Mass spectrometry turned out to be instrumental in uncovering molecular details involved in these processes. The central role of histone post-translational modifications in epigenetics related biological processes has revitalized mass spectrometry based investigations. In this special report, current approaches and future challenges that lay ahead due to the enormous complexity are discussed.

  11. Analytical validation of accelerator mass spectrometry for pharmaceutical development

    PubMed Central

    Keck, Bradly D; Ognibene, Ted; Vogel, John S

    2011-01-01

    The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of 14C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the 14C label), stable across samples storage conditions for at least 1 year, linear over four orders of magnitude with an analytical range from 0.1 Modern to at least 2000 Modern (instrument specific). Furthermore, accuracy was excellent (between 1 and 3%), while precision expressed as coefficient of variation was between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of 14C, respectively (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with 14C corresponds to 30 fg equivalents. Accelerator mass spectrometry provides a sensitive, accurate and precise method of measuring drug compounds in biological matrices. PMID:21083256

  12. Quantitative aspects of inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bulska, Ewa; Wagner, Barbara

    2016-10-01

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.

  13. Analysis of Protein O-GlcNAcylation by Mass Spectrometry.

    PubMed

    Ma, Junfeng; Hart, Gerald W

    2017-02-02

    O-linked β-D-N-acetyl glucosamine (O-GlcNAc) addition (O-GlcNAcylation), a post-translational modification of serine/threonine residues of proteins, is involved in diverse cellular metabolic and signaling pathways. Aberrant O-GlcNAcylation underlies the initiation and progression of multiple chronic diseases including diabetes, cancer, and neurodegenerative diseases. Numerous methods have been developed for the analysis of protein O-GlcNAcylation, but instead of discussing the classical biochemical techniques, this unit covers O-GlcNAc characterization by combining several enrichment methods and mass spectrometry detection techniques [including collision-induced dissociation (CID), higher energy collision dissociation (HCD), and electron transfer dissociation (ETD) mass spectrometry]. © 2017 by John Wiley & Sons, Inc.

  14. Current Status and Future Perspectives of Mass Spectrometry Imaging

    PubMed Central

    Nimesh, Surendra; Mohottalage, Susantha; Vincent, Renaud; Kumarathasan, Prem

    2013-01-01

    Mass spectrometry imaging is employed for mapping proteins, lipids and metabolites in biological tissues in a morphological context. Although initially developed as a tool for biomarker discovery by imaging the distribution of protein/peptide in tissue sections, the high sensitivity and molecular specificity of this technique have enabled its application to biomolecules, other than proteins, even in cells, latent finger prints and whole organisms. Relatively simple, with no requirement for labelling, homogenization, extraction or reconstitution, the technique has found a variety of applications in molecular biology, pathology, pharmacology and toxicology. By discriminating the spatial distribution of biomolecules in serial sections of tissues, biomarkers of lesions and the biological responses to stressors or diseases can be better understood in the context of structure and function. In this review, we have discussed the advances in the different aspects of mass spectrometry imaging processes, application towards different disciplines and relevance to the field of toxicology. PMID:23759983

  15. Sharing and community curation of mass spectrometry data with GNPS

    PubMed Central

    Nguyen, Don Duy; Watrous, Jeramie; Kapono, Clifford A; Luzzatto-Knaan, Tal; Porto, Carla; Bouslimani, Amina; Melnik, Alexey V; Meehan, Michael J; Liu, Wei-Ting; Crüsemann, Max; Boudreau, Paul D; Esquenazi, Eduardo; Sandoval-Calderón, Mario; Kersten, Roland D; Pace, Laura A; Quinn, Robert A; Duncan, Katherine R; Hsu, Cheng-Chih; Floros, Dimitrios J; Gavilan, Ronnie G; Kleigrewe, Karin; Northen, Trent; Dutton, Rachel J; Parrot, Delphine; Carlson, Erin E; Aigle, Bertrand; Michelsen, Charlotte F; Jelsbak, Lars; Sohlenkamp, Christian; Pevzner, Pavel; Edlund, Anna; McLean, Jeffrey; Piel, Jörn; Murphy, Brian T; Gerwick, Lena; Liaw, Chih-Chuang; Yang, Yu-Liang; Humpf, Hans-Ulrich; Maansson, Maria; Keyzers, Robert A; Sims, Amy C; Johnson, Andrew R.; Sidebottom, Ashley M; Sedio, Brian E; Klitgaard, Andreas; Larson, Charles B; P., Cristopher A Boya; Torres-Mendoza, Daniel; Gonzalez, David J; Silva, Denise B; Marques, Lucas M; Demarque, Daniel P; Pociute, Egle; O'Neill, Ellis C; Briand, Enora; Helfrich, Eric J. N.; Granatosky, Eve A; Glukhov, Evgenia; Ryffel, Florian; Houson, Hailey; Mohimani, Hosein; Kharbush, Jenan J; Zeng, Yi; Vorholt, Julia A; Kurita, Kenji L; Charusanti, Pep; McPhail, Kerry L; Nielsen, Kristian Fog; Vuong, Lisa; Elfeki, Maryam; Traxler, Matthew F; Engene, Niclas; Koyama, Nobuhiro; Vining, Oliver B; Baric, Ralph; Silva, Ricardo R; Mascuch, Samantha J; Tomasi, Sophie; Jenkins, Stefan; Macherla, Venkat; Hoffman, Thomas; Agarwal, Vinayak; Williams, Philip G; Dai, Jingqui; Neupane, Ram; Gurr, Joshua; Rodríguez, Andrés M. C.; Lamsa, Anne; Zhang, Chen; Dorrestein, Kathleen; Duggan, Brendan M; Almaliti, Jehad; Allard, Pierre-Marie; Phapale, Prasad; Nothias, Louis-Felix; Alexandrov, Theodore; Litaudon, Marc; Wolfender, Jean-Luc; Kyle, Jennifer E; Metz, Thomas O; Peryea, Tyler; Nguyen, Dac-Trung; VanLeer, Danielle; Shinn, Paul; Jadhav, Ajit; Müller, Rolf; Waters, Katrina M; Shi, Wenyuan; Liu, Xueting; Zhang, Lixin; Knight, Rob; Jensen, Paul R; Palsson, Bernhard O; Pogliano, Kit; Linington, Roger G; Gutiérrez, Marcelino; Lopes, Norberto P; Gerwick, William H; Moore, Bradley S; Dorrestein, Pieter C; Bandeira, Nuno

    2017-01-01

    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data. PMID:27504778

  16. Quantitative aspects of inductively coupled plasma mass spectrometry.

    PubMed

    Bulska, Ewa; Wagner, Barbara

    2016-10-28

    Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided.This article is part of the themed issue 'Quantitative mass spectrometry'.

  17. Analytical validation of accelerator mass spectrometry for pharmaceutical development.

    PubMed

    Keck, Bradly D; Ognibene, Ted; Vogel, John S

    2010-03-01

    The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of (14)C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the (14)C label), stable across samples storage conditions for at least 1 year, linear over four orders of magnitude with an analytical range from 0.1 Modern to at least 2000 Modern (instrument specific). Furthermore, accuracy was excellent (between 1 and 3%), while precision expressed as coefficient of variation was between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of (14)C, respectively (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with (14)C corresponds to 30 fg equivalents. Accelerator mass spectrometry provides a sensitive, accurate and precise method of measuring drug compounds in biological matrices.

  18. Characterization of a model Phillips catalyst by mass spectrometry.

    PubMed

    Di Croce, Pascal Gabriel; Aubriet, Frédéric; Chéty-Gimondo, Rachel; Muller, Jean-François; Grange, Paul

    2004-01-01

    A model Phillips catalyst for ethylene polymerization, prepared by spin coating a Cr(III)(Cr(acac)3) precursor on a silicon wafer, was submitted to an oxidative activation. Laser ablation Fourier transform mass spectrometry provided direct information on molecular species at the silicon wafer surface during activation. At 350 degrees C the chromium precursor was degraded, while chromium oxide species were formed. The chromium concentration decreased with temperature. The activated model catalyst was active for ethylene polymerization. Using complementary techniques (Fourier transform infrared spectroscopy, laser desorption/ionization mass spectrometry), the polymer was identified as crystalline polyethylene. After 1 h of polymerization at 160 degrees C, dome-like structures were observed by atomic force microscopy. Their morphologies were constituted of regions of parallel aligned lamellae of polymer.

  19. What accelerator mass spectrometry can do for solar physics

    NASA Astrophysics Data System (ADS)

    Newkirk, Gordon

    1984-11-01

    We review some of the empirical aspects of the solar magnetic activity and the convective dynamo models developed to account for the magnetic cycle. Alternative hypotheses which have recently emerged are sketched. Possible applications of accelerator mass spectrometry to solar physics and the important questions that proxy data on past solar activity might answer are evaluated. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  20. Dissociation techniques in mass spectrometry-based proteomics.

    PubMed

    Jones, Andrew W; Cooper, Helen J

    2011-09-07

    The field of proteomics, the large-scale analysis of proteins, has undergone a huge expansion over the past decade. Mass spectrometry-based proteomics relies on the dissociation of peptide and/or protein ions to provide information on primary sequence and sites of post-translational modifications. Fragmentation techniques include collision-induced dissociation, electron capture dissociation and electron transfer dissociation. Here, we describe each of these techniques and their use in proteomics. The principles, advantages, limitations, and applications are discussed.

  1. ESI and MALDI Mass Spectrometry of Large POSS Oligomers (Preprint)

    DTIC Science & Technology

    2010-03-10

    induced dissociation of peptides and protein complexes in a quadrupole/time-of-flight mass spectrometer. Anal. Chem., 80 (2008) 1425-1436. [43] A...spectrometry has been quite successful in studying large conventional polymers or biopolymers including DNA and peptides [26-32]. This methodology...with or without pulsing the nitrogen collision gas in the selected ion path. Electrospray (nanospray) ionization (ESI)-MS. Polymer samples were

  2. Accelerator mass spectrometry for quantitative in vivo tracing

    SciTech Connect

    Vogel, J S

    2005-04-19

    Accelerator mass spectrometry (AMS) counts individual rare, usually radio-, isotopes such as radiocarbon at high efficiency and specificity in milligram-sized samples. AMS traces very low chemical doses ({micro}g) and radiative doses (100 Bq) of isotope labeled compounds in animal models and directly in humans for pharmaceutical, nutritional, or toxicological research. Absorption, metabolism, distribution, binding, and elimination are all quantifiable with high precision after appropriate sample definition.

  3. Targeting Synaptic Pathology with a Novel Affinity Mass Spectrometry Approach*

    PubMed Central

    Brinkmalm, Ann; Brinkmalm, Gunnar; Honer, William G.; Moreno, Julie A.; Jakobsson, Joel; Mallucci, Giovanna R.; Zetterberg, Henrik; Blennow, Kaj; Öhrfelt, Annika

    2014-01-01

    We report a novel strategy for studying synaptic pathology by concurrently measuring levels of four SNARE complex proteins from individual brain tissue samples. This method combines affinity purification and mass spectrometry and can be applied directly for studies of SNARE complex proteins in multiple species or modified to target other key elements in neuronal function. We use the technique to demonstrate altered levels of presynaptic proteins in Alzheimer disease patients and prion-infected mice. PMID:24973420

  4. Charge Prediction of Lipid Fragments in Mass Spectrometry

    SciTech Connect

    Schrom, Brian T.; Kangas, Lars J.; Ginovska, Bojana; Metz, Thomas O.; Miller, John H.

    2011-12-18

    An artificial neural network is developed for predicting which fragment is charged and which fragment is neutral for lipid fragment pairs produced from a liquid chromatography tandem mass spectrometry simulation process. This charge predictor is integrated into software developed at PNNL for in silico spectra generation and identification of metabolites known as Met ISIS. To test the effect of including charge prediction in Met ISIS, 46 lipids are used which show a reduction in false positive identifications when the charge predictor is utilized.

  5. Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Laskin, Julia; Heath, Brandi S.; Roach, Patrick J.; Cazares, Lisa H.; Semmes, O. John

    2012-01-03

    We present the first results showing the ambient imaging of biological samples in their native environment using nanospray desorption ionization (nanoDESI) mass spectrometry. NanoDESI is an ambient pressure ionization technique that enables precise control of ionization of molecules from substrates. We demonstrate highly sensitive and robust analysis of tissue samples with high spatial resolution (<12 {mu}m) without sample preparation, which will be essential for applications in clinical diagnostics, drug discovery, molecular biology, and biochemistry.

  6. Computational and Statistical Analysis of Protein Mass Spectrometry Data

    PubMed Central

    Noble, William Stafford; MacCoss, Michael J.

    2012-01-01

    High-throughput proteomics experiments involving tandem mass spectrometry produce large volumes of complex data that require sophisticated computational analyses. As such, the field offers many challenges for computational biologists. In this article, we briefly introduce some of the core computational and statistical problems in the field and then describe a variety of outstanding problems that readers of PLoS Computational Biology might be able to help solve. PMID:22291580

  7. Application of MALDI Mass Spectrometry in Natural Products Analysis.

    PubMed

    Silva, Ricardo; Lopes, Norberto Peporine; Silva, Denise Brentan

    2016-05-01

    This article presents the utility of mass spectrometry with a MALDI ionization source in natural products analysis. The advantages and drawbacks of this technique for natural products analyses will be presented and discussed. In addition, the structural determination of secondary metabolites using MALDI-MS/MS will be explored, which can guide MALDI experimental methods and stimulate new research in this area. Finally, several important approaches for MALDI data processing will be discussed.

  8. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    DOEpatents

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  9. Macromolecule mass spectrometry: citation mining of user documents.

    PubMed

    Kostoff, Ronald N; Bedford, Clifford D; del Río, J Antonio; Cortes, Héctor D; Karypis, George

    2004-03-01

    Identifying research users, applications, and impact is important for research performers, managers, evaluators, and sponsors. Identification of the user audience and the research impact is complex and time consuming due to the many indirect pathways through which fundamental research can impact applications. This paper identified the literature pathways through which two highly-cited papers of 2002 Chemistry Nobel Laureates Fenn and Tanaka impacted research, technology development, and applications. Citation Mining, an integration of citation bibliometrics and text mining, was applied to the >1600 first generation Science Citation Index (SCI) citing papers to Fenn's 1989 Science paper on Electrospray Ionization for Mass Spectrometry, and to the >400 first generation SCI citing papers to Tanaka's 1988 Rapid Communications in Mass Spectrometry paper on Laser Ionization Time-of-Flight Mass Spectrometry. Bibliometrics was performed on the citing papers to profile the user characteristics. Text mining was performed on the citing papers to identify the technical areas impacted by the research, and the relationships among these technical areas.

  10. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry.

    PubMed

    Li, Anyin; Zi, Yunlong; Guo, Hengyu; Wang, Zhong Lin; Fernández, Facundo M

    2017-02-27

    Ion sources for molecular mass spectrometry are usually driven by direct current power supplies with no user control over the total charges generated. Here, we show that the output of triboelectric nanogenerators (TENGs) can quantitatively control the total ionization charges in mass spectrometry. The high output voltage of TENGs can generate single- or alternating-polarity ion pulses, and is ideal for inducing nanoelectrospray ionization (nanoESI) and plasma discharge ionization. For a given nanoESI emitter, accurately controlled ion pulses ranging from 1.0 to 5.5 nC were delivered with an onset charge of 1.0 nC. Spray pulses can be generated at a high frequency of 17 Hz (60 ms in period) and the pulse duration is adjustable on-demand between 60 ms and 5.5 s. Highly sensitive (∼0.6 zeptomole) mass spectrometry analysis using minimal sample (18 pl per pulse) was achieved with a 10 pg ml(-1) cocaine sample. We also show that native protein conformation is conserved in TENG-ESI, and that patterned ion deposition on conductive and insulating surfaces is possible.

  11. Mass spectrometry theory and application to adrenal diseases.

    PubMed

    Wooding, Kerry M; Auchus, Richard J

    2013-05-22

    The diagnosis and management of adrenal diseases hinge upon accurate determination of hormone concentrations in blood and other body fluids. The advent of immunoassays for various steroid hormones has enabled the remarkable progress in adrenal disease over the last several decades, with some limitation. Sequential immunoassay of single analytes is a tedious process, which requires aliquots for each assay. In many complex adrenal diseases, including adrenal cancer and congenital adrenal hyperplasia, the patterns or ratios of multiple steroids rather than the value of any one steroid is more relevant. Although gas chromatography/mass spectrometry of urinary steroid metabolites has been employed to profile steroid production, throughput is slow, and availability is sparse. Recent generations of liquid chromatography-tandem mass spectrometry instruments (LC-MS/MS) provide the throughput and sensitivity required to measure many steroids simultaneously using small samples for commercial and research uses. Even in the best hands, however, LC-MS/MS suffers from limitations and requires diligent attention to detail during method development and implementation. This article reviews the theory, instrumentation principles and terminology, and practical application of mass spectrometry to clinical adrenal disorders.

  12. Mass spectrometry of peptides and proteins from human blood.

    PubMed

    Zhu, Peihong; Bowden, Peter; Zhang, Du; Marshall, John G

    2011-01-01

    It is difficult to convey the accelerating rate and growing importance of mass spectrometry applications to human blood proteins and peptides. Mass spectrometry can rapidly detect and identify the ionizable peptides from the proteins in a simple mixture and reveal many of their post-translational modifications. However, blood is a complex mixture that may contain many proteins first expressed in cells and tissues. The complete analysis of blood proteins is a daunting task that will rely on a wide range of disciplines from physics, chemistry, biochemistry, genetics, electromagnetic instrumentation, mathematics and computation. Therefore the comprehensive discovery and analysis of blood proteins will rank among the great technical challenges and require the cumulative sum of many of mankind's scientific achievements together. A variety of methods have been used to fractionate, analyze and identify proteins from blood, each yielding a small piece of the whole and throwing the great size of the task into sharp relief. The approaches attempted to date clearly indicate that enumerating the proteins and peptides of blood can be accomplished. There is no doubt that the mass spectrometry of blood will be crucial to the discovery and analysis of proteins, enzyme activities, and post-translational processes that underlay the mechanisms of disease. At present both discovery and quantification of proteins from blood are commonly reaching sensitivities of ∼1 ng/mL.

  13. Multidimensional Mass Spectrometry of Synthetic Polymers and Advanced Materials.

    PubMed

    Wesdemiotis, Chrys

    2017-02-01

    Multidimensional mass spectrometry interfaces a suitable ionization technique and mass analysis (MS) with fragmentation by tandem mass spectrometry (MS(2) ) and an orthogonal online separation method. Separation choices include liquid chromatography (LC) and ion-mobility spectrometry (IMS), in which separation takes place pre-ionization in the solution state or post-ionization in the gas phase, respectively. The MS step provides elemental composition information, while MS(2) exploits differences in the bond stabilities of a polymer, yielding connectivity and sequence information. LC conditions can be tuned to separate by polarity, end-group functionality, or hydrodynamic volume, whereas IMS adds selectivity by macromolecular shape and architecture. This Minireview discusses how selected combinations of the MS, MS(2) , LC, and IMS dimensions can be applied, together with the appropriate ionization method, to determine the constituents, structures, end groups, sequences, and architectures of a wide variety of homo- and copolymeric materials, including multicomponent blends, supramolecular assemblies, novel hybrid materials, and large cross-linked or nonionizable polymers.

  14. Significant advancement of mass spectrometry imaging for food chemistry.

    PubMed

    Yoshimura, Yukihiro; Goto-Inoue, Naoko; Moriyama, Tatsuya; Zaima, Nobuhiro

    2016-11-01

    Food contains various compounds that have an impact on our daily lives. Many technologies have been established to analyze these molecules of interest in foods. However, the analysis of the spatial distribution of these compounds in foods using conventional technology, such as high-performance liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry is difficult. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is considered an ideal complementary approach. MALDI-MSI is a two-dimensional MALDI-MS technology that can detect compounds in a tissue section without extraction, purification, separation, or labeling. MALDI-MSI can be used to visualize the spatial distribution of chemical compounds or biomolecules in foods. Although the methodology of MALDI-MSI in food science is not yet fully established, the versatility of MALDI-MSI is expected to open a new frontier in food science. Herein, we describe the principles and applications of MALDI-MSI in food science and related fields.

  15. Visualization of lipid droplet composition by direct organelle mass spectrometry.

    PubMed

    Horn, Patrick J; Ledbetter, Nicole R; James, Christopher N; Hoffman, William D; Case, Charlene R; Verbeck, Guido F; Chapman, Kent D

    2011-02-04

    An expanding appreciation for the varied functions of neutral lipids in cellular organisms relies on a more detailed understanding of the mechanisms of lipid production and packaging into cytosolic lipid droplets (LDs). Conventional lipid profiling procedures involve the analysis of tissue extracts and consequently lack cellular or subcellular resolution. Here, we report an approach that combines the visualization of individual LDs, microphase extraction of lipid components from droplets, and the direct identification of lipid composition by nanospray mass spectrometry, even to the level of a single LD. The triacylglycerol (TAG) composition of LDs from several plant sources (mature cotton (Gossypium hirsutum) embryos, roots of cotton seedlings, and Arabidopsis thaliana seeds and leaves) were examined by direct organelle mass spectrometry and revealed the heterogeneity of LDs derived from different plant tissue sources. The analysis of individual LDs makes possible organellar resolution of molecular compositions and will facilitate new studies of LD biogenesis and functions, especially in combination with analysis of morphological and metabolic mutants. Furthermore, direct organelle mass spectrometry could be applied to the molecular analysis of other subcellular compartments and macromolecules.

  16. Top-down and middle-down approach by fraction collection enrichment using off-line capillary electrophoresis - mass spectrometry coupling: Application to monoclonal antibody Fc/2 charge variants.

    PubMed

    Biacchi, Michael; Said, Nassur; Beck, Alain; Leize-Wagner, Emmanuelle; François, Yannis-Nicolas

    2017-02-27

    The characterization of complex protein mixtures represents one of the biggest challenge in many research fields such as biological or biopharmaceutical sciences. Out of all categories, monoclonal antibodies (mAbs) and related products drawn the most interest due to their strong therapeutic potency and specificity. Because of their intrinsic complexity due to a large number of micro-heterogeneities, there is a crucial need for analytical methods to provide comprehensive in-depth characterization of these proteins. In this work, we developed a methodology using CE-UV/MALDI-MS to perform top-down or middle-down characterization after fraction collection enrichment applied to intact protein and mAbs samples. The performance of the method was evaluated with the rapid separation of three intact protein mixture. Good robustness of CZE separation and quality of MALDI-MS spectra and MALDI-ISD spectra of each protein confirms the usefulness of sample enrichment to obtain adequate quantity of deposed protein for top-down analysis and the proof of principle of the method. In a second step, the method was applied to the middle-down characterization of Fc/2 cetuximab variants. Identification of around 9% sequence coverage of Fc/2 cetuximab fragments allows to conclude on the feasibility of the strategy for middle-down characterization of Fc/2 cetuximab variants using CE-UV/MALDI-MS. Moreover, MALDI-ISD fragmentation of Fc/2 cetuximab variants confirm separation phenomenon based on the formation of Fc/2 dimers with and without C-terminal truncation.

  17. Characterization of individual particles in gaseous media by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.

    1990-01-01

    An introduction is given to a system for particle analysis by mass spectrometry (PAMS) which employs particle-beam techniques to measure mass spectra on a continuous real-time basis. The system is applied to particles of both organic and inorganic compounds, and the measurements give the chemical characteristics of particles in mixtures and indicate source apportionment. The PAMS system can be used for process control and studying heterogeneous/catalytic reactions in particles, and can be fitted to study the real-time attributes of PAMS.

  18. New frontiers-accelerator mass spectrometry (AMS): Recommendation for best practices and harmonization from Global Bioanalysis Consortium Harmonization Team.

    PubMed

    Young, Graeme C; Seymour, Mark; Dueker, Stephen R; Timmerman, Philip; Arjomand, Ali; Nozawa, Kohei

    2014-03-01

    The technique of accelerator mass spectrometry (AMS) is applicable to the analysis of a wide range of trace elemental isotopes. However, in the context of the pharmaceutical industry, it is invariably used to measure radiocarbon ((14)C). There are two broad modes of application: analysis of total (14)C sometimes termed "direct AMS" and analysis of specific (14)C-labelled analytes in a variety of matrices following some method of isolation. It is the latter application which is within the remit of the GBC team, and the team has made efforts to propose harmonized recommendations for the validation of AMS when used in a regulatory bioanalytical mode, i.e. the quantification of specific analyte(s) using liquid chromatography with off-line detection by AMS now known as "LC + AMS". The GBC team has reached a position where they have agreed to many aspects, but also differ on some aspects of what constitutes a bioanalytical assay validation in support of clinical studies using this technology. The detail of most of this will be covered under separate publication(s), but for the purposes of this paper, we have outlined the points of consensus. The purpose of this article is not to provide a roadmap for validation of LC + AMS assays, but to highlight agreements amongst the industry representative experts and the practitioners, as well as identifying specific areas essential for establishing assay quality but where additional discussion is required to reach agreement.

  19. Hyphenated and comprehensive liquid chromatography × gas chromatography-mass spectrometry for the identification of Mycobacterium tuberculosis.

    PubMed

    Mourão, Marta P B; Denekamp, Ilse; Kuijper, Sjoukje; Kolk, Arend H J; Janssen, Hans-Gerd

    2016-03-25

    Tuberculosis is one of the world's most emerging public health problems, particularly in developing countries. Chromatography based methods have been used to tackle this epidemic by focusing on biomarker detection. Unfortunately, interferences from lipids in the sputum matrix, particularly cholesterol, adversely affect the identification and detection of the marker compounds. The present contribution describes the serial combination of normal phase liquid chromatography (NPLC) with thermally assisted hydrolysis and methylation followed by gas chromatography-mass spectrometry (THM-GC-MS) to overcome the difficulties of biomarker evaluation. The in-series combination consists of an LC analysis where fractions are collected and then transferred to the THM-GC-MS system. This was either done with comprehensive coupling, transferring all the fractions, or with hyphenated interfacing, i.e. off-line multi heart-cutting, transferring only selected fractions. Owing to the high sensitivity and selectivity of LC as a sample pre-treatment method, and to the high specificity of the MS as a detector, this analytical approach, NPLC × THM-GC-MS, is extremely sensitive. The results obtained indicate that this analytical set-up is able to detect down to 1 × 10(3) mycobacteria/mL of Mycobacterium tuberculosis strain 124, spiked in blank sputum samples. It is a powerful analytical tool and also has great potential for full automation. If further studies demonstrate its usefulness when applied blind in real sputum specimens, this technique could compete with the current smear microscopy in the early diagnosis of tuberculosis.

  20. Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for acidic herbicides and metabolites analysis in fresh water.

    PubMed

    Fauvelle, Vincent; Mazzella, Nicolas; Morin, Soizic; Moreira, Sylvia; Delest, Brigitte; Budzinski, Hélène

    2015-03-01

    Theoretical papers and environmental applications of hydrophilic interaction liquid chromatography (HILIC) have been published for a wide range of analytes, but to our knowledge, no study focused on acidic herbicides (e.g., triketones, phenoxy acids, sulfonylurea, and acidic metabolites of chloroacetanilides). Matrix effects are the main obstacle to natural sample analysis by liquid chromatography coupled with tandem mass spectrometry (MS) via an electrospray ionization (ESI) interface. Therefore, we paid particular attention on limiting interference by (i) adapting the emerging HILIC technique, which is generally considered more sensitive than conventional reversed phase liquid chromatography and (ii) optimizing the solid phase extraction (SPE) step using a design of experiment. A rapid and reliable off line SPE-HILIC-ESI-MS/MS method was thus developed for the quantification of acidic herbicides in fresh water, with limits of quantifications (LOQs) ranging from 5 to 22 ng L(-1). Then, the analysis of freshwater samples highlighted the robustness of the method, and the importance of the chloroacetanilides metabolites among the studied analytes.

  1. High Resolution Double-Focusing Isotope Ratio Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Radke, J.; Deerberg, M.; Hilkert, A.; Schlüter, H.-J.; Schwieters, J.

    2012-04-01

    In recent years isotope ratio mass spectrometry has extended to the capability of quantifying very small isotope signatures related with low abundances and simultaneously detecting molecular masses such as isotopomers and isotopologues containing clumped isotopes. Some of those applications are limited by molecular interferences like different gas molecules with the same nominal mass, e.g. Ar/O2, adducts of the same molecule or of different molecules, and very small isotope abundances. The Thermo Scientific MAT 253 ULTRA is the next generation of high precision gas isotope ratio mass spectrometry, which combines a 10 KV gas ionization source (Thermo Scientific MAT 253) with a double focusing multi-collector mass analyzer (Thermo Scientific Neptune) and reduces those limitations by measuring isotope ratios on a larger dynamic range with high precision. Small ion beam requirements and high sensitivity are achieved by signal-to-noise improvements through enhanced ion beam amplification in faraday cups and ion counters. Interfering backgrounds, e.g. interfering isotopologues or isobaric ions of contaminants, are dramatically decreased by a dynamic range increase combined with high evacuation leading to undisturbed ion transmission through the double-focusing analyser. Furthermore, automated gain calibration for mathematical baseline corrections, switchable detector arrays, ion source control, analyser focusing and full data export is controlled under Isodat data control. New reference/sample strategies are under investigation besides incorporation of the continuous-flow technique and its versatile inlet devices. We are presenting first results and applications of the MAT 253 Ultra.

  2. Liquid chromatography/microspray mass spectrometry for bacterial investigations.

    PubMed

    Krishnamurthy, T; Davis, M T; Stahl, D C; Lee, T D

    1999-01-01

    Cellular proteins (biomarkers) specific to any individual microorganism, determined by the direct mass spectral analysis of the corresponding intact cellular suspension, can be applied for the rapid and specific identification of the organisms present in unknown samples. The components of the bacterial suspensions, after a rapid separation over a C18 reversed-phase microcapillary column, were directly subjected to on-line electrospray ionization followed by analysis using an ion trap tandem mass spectrometer. This approach is equally effective for gram-positive as well as gram-negative bacteria but has a distinct advantage over our earlier reported method involving matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). During electrospray ionitation mass spectrometry (ESI-MS), liquid samples can be directly analyzed and there is the potential for developing tandem mass spectral methods for more specific identification of the individual organisms present in crude bacterial mixtures. The total analysis time leading to unambiguous bacterial identification in samples was less than 10 minutes and the results were quite reproducible. Miniaturization of the instrumentation along with total automation of this simple process could have immense impact on field operations. Routine, rapid, cost-effective field monitoring of environmental samples, agricultural products, samples from food processing, industrial sites and health institutions for suspected bacterial contamination could be a reality in the near future. Potential utility in biological, medical, bioprocessing, pharmaceutical, and other industrial research is also enormous.

  3. Determination of accurate protein monoisotopic mass with the most abundant mass measurable using high-resolution mass spectrometry.

    PubMed

    Chen, Ya-Fen; Chang, C Allen; Lin, Yu-Hsuan; Tsay, Yeou-Guang

    2013-09-01

    While recent developments in mass spectrometry enable direct evaluation of monoisotopic masses (M(mi)) of smaller compounds, protein M(mi) is mostly determined based on its relationship to average mass (Mav). Here, we propose an alternative approach to determining protein M(mi) based on its correlation with the most abundant mass (M(ma)) measurable using high-resolution mass spectrometry. To test this supposition, we first empirically calculated M(mi) and M(ma) of 6158 Escherichia coli proteins, which helped serendipitously uncover a linear correlation between these two protein masses. With the relationship characterized, liquid chromatography-mass spectrometry was employed to measure M(ma) of protein samples in its ion cluster with the highest signal in the mass spectrum. Generally, our method produces a short series of likely M(mi) in 1-Da steps, and the probability of each likely M(mi) is assigned statistically. It is remarkable that the mass error of this M(mi) is as miniscule as a few parts per million, indicating that our method is capable of determining protein M(mi) with high accuracy. Benefitting from the outstanding performance of modern mass spectrometry, our approach is a significant improvement over others and should be of great utility in the rapid assessment of protein primary structures.

  4. Measurement of the 135Cs half-life with accelerator mass spectrometry and inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Cornett, R. J.; Charles, C. R. J.; Zhao, X. L.; Kieser, W. E.

    2016-01-01

    The isotope 135Cs is quoted as having a half-life of 2.3 Myr. However, there are three published values ranging from 1.8 to 3 Myr. This research reviews previous measurements and reports a new measurement of the half-life using newly developed accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS) techniques along with β and γ radiometric analysis. The half-life was determined to be (1.6 ±0.6 ) ×106 yr by AMS and (1.3 ±0.2 ) ×106 yr by ICPMS with 95% confidence. The two values agree with each other but differ from the accepted value by ˜40 % .

  5. Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer.

    PubMed

    Lin, Lin; Yu, Quan; Yan, Xiaomei; Hang, Wei; Zheng, Jiaxin; Xing, Jinchun; Huang, Benli

    2010-11-01

    Serum samples from kidney cancer patients and healthy controls were analyzed by both direct infusion mass spectrometry (DIMS) and liquid chromatography-mass spectrometry (LC-MS) with a high resolution ESI-Q-TOFMS. The classification and biomarker discovery capacities of the two methods were compared, and MS/MS experiments were carried out to identify potential biomarkers. DIMS had comparable classification and prediction capabilities to LC-MS but consumed only ~5% of the analysis time. With regard to biomarker discovery, twenty-three variables were found as potential biomarkers by DIMS, and 48 variables were obtained by LC-MS. DIMS is recommended to be a fast diagnostic method for kidney cancer, while LC-MS is necessary when comprehensive screening of biomarkers is required.

  6. Analysis of polar lipids in the serum from rats fed shiitake by liquid chromatography-mass spectrometry/mass spectrometry.

    PubMed

    Yu, Shanggong; Peng, Min; Ronis, Martin; Badger, Thomas; Fang, Nianbai

    2010-12-22

    Consumption of a shiitake mushroom diet has been reported to have effects on serum phospholipids. However, much less is known about the effect on serum polar lipids including lysophospholipids and free fatty acids. In the present study, the effects of a shiitake diet were evaluated on the basis of identification and quantification of individual polar lipid components in rat serum using liquid chromatography-mass spectrometry/mass spectrometry. By comparison with standards and published data, 50 lysophospholipids and 32 free fatty acids were identified, and the concentrations of 27 polar lipids in rat serum were determined. Shiitake diets decreased the levels of all individual polar lipid components in the serum of male rat. The total level of serum polar lipids in males fed 4% shiitake diets (1365.71 mol/L) was significantly lower than that of the control (2270.26 mol/L). However, shiitake diets did not significantly affect the levels of serum polar lipids in female rats.

  7. Fast characterization of cheeses by dynamic headspace-mass spectrometry.

    PubMed

    Pérès, Christophe; Denoyer, Christian; Tournayre, Pascal; Berdagué, Jean-Louis

    2002-03-15

    This study describes a rapid method to characterize cheeses by analysis of their volatile fraction using dynamic headspace-mass spectrometry. Major factors governing the extraction and concentration of the volatile components were first studied. These components were extracted from the headspace of the cheeses in a stream of helium and concentrated on a Tenax TA trap. They were then desorbed by heating and injected directly into the source of a mass spectrometer via a short deactivated silica transfer line. The mass spectra of the mixture of volatile components were considered as fingerprints of the analyzed substances. Forward stepwise factorial discriminant analysis afforded a limited number of characteristic mass fragments that allowed a good classification of the batches of cheeses studied.

  8. Emerging mass spectrometry techniques for the direct analysis of microbial colonies

    PubMed Central

    Fang, Jinshu; Dorrestein, Pieter C.

    2014-01-01

    One of the emerging areas in microbiology is detecting specialized metabolites produced by microbial colonies and communities with mass spectrometry. In this review/perspective, we illustrate the emerging mass spectrometry methodologies that enable the interrogation of specialized metabolites directly from microbial colonies. Mass spectrometry techniques such as imaging mass spectrometry and real-time mass spectrometry allow two and three dimensional visualization of the distribution of metabolites, often with minimal sample pretreatment. The speed in which molecules are captured using these methods requires the development of new molecular visualization tools such as molecular networking. Together, these tools are beginning to provide unprecedented insight into the chemical world that microbes experience. PMID:25064218

  9. Classification of natural resins by liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry using chemometric analysis.

    PubMed

    Rhourrhi-Frih, B; West, C; Pasquier, L; André, P; Chaimbault, P; Lafosse, M

    2012-09-21

    Twenty-six resins from six botanical sources belonging to the class Magnoliopsida were compared based on gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry data. The extracts were analysed by GC after silylation and by reversed phase LC combined with atmospheric pressure photoionisation (APPI) mass spectrometry. The chromatograms were re-organized in data matrices, where each sample was represented by a single column comprising 2755 observations (intensity, time, m/z) in GC-MS and 360 observations in LC-MS. A simple comparison of resin fingerprints was attempted by organizing data according to a three dimensional bubble chart (retention time against m/z where each point was a bubble which size represented the ion intensity) where it is possible to easily superimpose the fingerprints. Thus the common and different species can be easily observed enabling to classify the resins. Hierarchical cluster analysis based on characteristics of GC-MS and LC-MS profiles affords a complete description of the classes of the resins and shows that 26 resins are divided into five main clusters Commiphora mukul, Daniella oliveri, Gardenia gummifera, Canarium madagascariensis, Boswellia dalzielii and Boswellia serrata, respectively. In conclusion, the proposed method has been applied to three other resinous samples from the Burseraceae family to evaluate their alteration state.

  10. Resonance enhanced multiphoton ionization/secondary neutral mass spectrometry and cesium attachment secondary ion mass spectrometry of bronze : a comparison.

    SciTech Connect

    McCann, M. P.; Calaway, W. F.; Pellin, M. J.; Veryovkin, I. V.; Constantinides, I.; Adriaens, A.; Adams, F.; Materials Science Division; Sam Houston State Univ.; Univ. of Antwerp

    2002-05-01

    Archaeologists have considerable interests in ancient bronzes. They want to know how these alloys were produced and how they corroded with time. Modern bronzes, with compositions very close to that of some ancient bronzes, have been produced and two methods were examined to characterize one of these modern bronzes. Analysis of this modern bronze using resonance enhanced multiphoton ionization/secondary neutral mass spectrometry (REMPI/SNMS) is examined in detail and compared to cesium attachment secondary ion mass spectrometry (CsAMS) results. Both REMPI/SNMS and CsAMS were used to quantify the composition of Fe, Ni and Mn in a modern quaternary bronze designed to serve as a certified reference material for an ancient bronze. Both methods exhibit reduced matrix effects when compared to secondary ion mass spectrometry (SIMS) and thus quantification should be simplified. It was found that when relative sensitivity factors obtained from a standard bronze material are used to calibrate the instruments, the REMPI/SNMS measurements yield results that were more sensitive and more accurate.

  11. A device for automated direct sampling and quantitation from solid-phase sorbent extraction cards by electrospray tandem mass spectrometry.

    PubMed

    Wachs, Timothy; Henion, Jack

    2003-04-01

    A new solid-phase extraction (SPE) device in the 96-well format (SPE Card) has been employed for automated off-line sample preparation of low-volume urine samples. On-line automated analyte elution via SPE and direct quantitation by micro ion spray mass spectrometry is reported. This sample preparation device has the format of a microtiter plate and is molded in a plastic frame which houses 96 separate sandwiched 3M Empore sorbents (0.5-mm-thickness, 8-microm particles) covered on both sides by a microfiber support material. Ninety-six discrete SPE zones, each 7 mm in diameter, are imbedded into the sheet in the conventional 9-mm pitch (spacing) of a 96-well microtiter plate. In this study one-quarter of an SPE Card (24 individual zones) was used merely as a convenience. After automated off-line interference elution of applied human urine from 24 samples, a section of SPE Card is mounted vertically on a computer-controlled X, Y, Z positioner in front of a micro ion spray direct sampling tube equipped with a beveled tip. The beveled tip of this needle robotically penetrates each SPE elution zone (sorbent disk) or stationary phase in a serial fashion. The eluted analytes are sequentially transferred directly to a microelectrosprayer to obtain tandem mass spectrometric (MS/MS) analysis. This strategy precludes any HPLC separation and the associated method development. The quantitative determination of Ritalin (methylphenidate) from fortified human urine samples is demonstrated. A trideuterated internal standard of methylphenidate was used to obtain ion current response ratios between the parent drug and the internal standard. Human control urine samples fortified from 6.6 to 3300 ng/mL (normal therapeutic levels have been determined in other studies to be between 50 and 100 ng/mL urine) were analyzed and a linear calibration curve was obtained with a correlation coefficient of 0.9999, where the precision of the quality control (QC) samples ranged from 9.6% at the 24

  12. Quantitative mass spectrometry of unconventional human biological matrices

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  13. Surface Ionization and Soft Landing Techniques in Mass Spectrometry

    SciTech Connect

    Futrell, Jean H.; Laskin, Julia

    2010-04-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has extended mass spectrometric methods to large molecules and molecular complexes. This both greatly expands appli¬cations of mass spectrometry and makes the activation and dissociation of complex ions an integral part of large molecule mass spectrometry. A corollary of the much greater number of internal degrees of freedom and high density of states associated with molecular complexity is that internal energies much higher than the dissociation energies for competing fragmentation processes are required for observable fragmentation in time scales sampled by mass spectrometers. This article describes the kinetics of surface-induced dissociation (SID), a particularly efficient activation method for complex ions. Two very important characteristics of SID are very rapid, sub-picosecond activation and precise control of ion internal energy by varying ion collision energy. The nature of the surface plays an important role in SID, determining both efficiency and mechanism of ion activation. Surface composition and morphology strongly influence the relative importance of competing reactions of SID, ion capture (soft-landing), surface reaction and neutralization. The important features of SID and ion soft-landing are described briefly in this review and more fully in the recommended reading list.

  14. ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry

    PubMed Central

    Hoffmann, Jan; Sokolova, Lucie; Preiss, Laura; Hicks, David B.; Krulwich, Terry A.; Morgner, Nina; Wittig, Ilka; Schägger, Hermann; Meier, Thomas; Brutschy, Bernd

    2010-01-01

    Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F1Fo-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F1Fo-ATP synthases. Under selected buffer conditions the mass of the intact F1Fo-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases. PMID:20820587

  15. Linking high resolution mass spectrometry data with exposure ...

    EPA Pesticide Factsheets

    There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe results of a study that links HRMS data with exposure predictions from the U.S. EPA's ExpoCast™ program and in vitro bioassay data from the U.S. interagency Tox21 consortium. Vacuum dust samples were collected from 56 households across the U.S. as part of the American Healthy Homes Survey (AHHS). Sample extracts were analyzed using liquid chromatography time-of-flight mass spectrometry (LC–TOF/MS) with electrospray ionization. On average, approximately 2000 molecular features were identified per sample (based on accurate mass) in negative ion mode, and 3000 in positive ion mode. Exact mass, isotope distribution, and isotope spacing were used to match molecular features with a unique listing of chemical formulas extracted from EPA's Distributed Structure-Searchable Toxicity (DSSTox) database. A total of 978 DSSTox formulas were consistent with the dust LC–TOF/molecular feature data (match score ≥ 90); these formulas mapped to 3228 possible chemicals in the database. Correct assignment of a unique chemical to a given formula required additional validation steps. Each suspect chemical was prioritized for follow-up confirmation using abundance and detection frequency results, along wi

  16. Ultratrace Analysis of Uranium and Plutonium By Mass Spectrometry

    SciTech Connect

    Wacker, John F.; Wogman, Ned A.; Olsen, Khris B.; Petersen, Steven L.; Farmer, O T.; Kelley, James M.; Eiden, Greg C.; Maiti, Tapas C.

    2003-01-01

    At the Pacific Northwest National Laboratory (PNNL), we have developed highly sensitive methods to analyze uranium and plutonium in environmental samples. The development of an ultratrace analysis capability for measuring uranium and plutonium has arisen from a need to detect and characterize environmental samples for signatures associated with nuclear industry processes. Our most sensitive well-developed methodologies employ thermal ionization mass spectrometry (TIMS), however, recent advances in inductively coupled plasma mass spectrometry (ICP-MS) have shown considerable promise for use in detecting uranium and plutonium at ultratrace levels. The work at PNNL has included the development of both chemical separation and purification techniques, as well as the development of mass spectrometric instrumentation and techniques. At the heart of our methodology for TIMS analysis is a procedure that utilizes 100-microliter-volumes of analyte for chemical processing to purify, separate, and load actinide elements into resin beads for subsequent mass spectrometric analysis. The resin bead technique has been combined with a thorough knowledge of the physicochemistry of thermal ion emission to achieve femtogram detection limits for the TIMS analysis of plutonium in environmental samples.

  17. Use of MALDI Mass Spectrometry for Identification of Microbes

    NASA Astrophysics Data System (ADS)

    Wilkins, C. L.; Stump, M.; Jones, J.; Lay, J. O.; Fleming, R.

    2003-12-01

    Recently, it has been demonstrated that bacteria can be characterized using whole cells and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). However, identification of specific bacterial proteins usually requires analysis of cellular fractions or purified extracts. This presentation will discuss the first application of Fourier transform mass spectrometry (FTMS) to analysis of bacterial proteins directly from whole cells. In this research it is seen that accurate mass MALDI-FTMS can be used to characterize specific ribosomal proteins directly from Escherichia coli cells. Using the high-accuracy mass measurements and high resolution isotope profile data thus available it is possible to confirm posttranslational modifications proposed previously on the basis of low resolution mass measurements. In our initial work, ribosomal proteins from E. coli whole cells were observed with errors of less than 27 ppm. This was accomplished directly from whole cells without fractionation, concentration, or overt overexpression of characteristic cellular proteins. More recently, by use of carbon and nitrogen isotopically-depleted growth media additional E. coli proteins have been identified with even smaller mass measurement errors. MALDI FTMS also provided information regarding E. coli lipids in the low-mass region. Although ions with m/z values below 1000 were previously observed by FTMS of whole cells, the work to be presented was the first report of detection of ions in the 5000 to 10 000 m/z range by MALDI-FTMS using whole cells. The implications of these results for genus, species, and strain assignments of such organisms will be discussed.

  18. Invited review article: Recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry.

    PubMed

    Ireland, Trevor R

    2013-01-01

    Mass spectrometry is fundamental to measurements of isotope ratios for applications in isotope geochemistry, geochronology, and cosmochemistry. Magnetic-sector mass spectrometers are most common because these provide the best precision in isotope ratio measurements. Where the highest precision is desired, chemical separation followed by mass spectrometric analysis is carried out with gas (noble gas and stable isotope mass spectrometry), liquid (inductively coupled plasma mass spectrometry), or solid (thermal ionization mass spectrometry) samples. Developments in in situ analysis, including ion microprobes and laser ablation inductively coupled plasma mass spectrometry, have opened up issues concerning homogeneity according to domain size, and allow ever smaller amounts of material to be analyzed. While mass spectrometry is built solidly on developments in the 20th century, there are new technologies that will push the limits in terms of precision, accuracy, and sample efficiency. Developments of new instruments based on time-of-flight mass spectrometers could open up the ultimate levels of sensitivity per sample atom.

  19. Intact MicroRNA Analysis Using High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kullolli, Majlinda; Knouf, Emily; Arampatzidou, Maria; Tewari, Muneesh; Pitteri, Sharon J.

    2014-01-01

    MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that post-transcriptionally regulate gene expression, and play key roles in the regulation of a variety of cellular processes and in disease. New tools to analyze miRNAs will add understanding of the physiological origins and biological functions of this class of molecules. In this study, we investigate the utility of high resolution mass spectrometry for the analysis of miRNAs through proof-of-concept experiments. We demonstrate the ability of mass spectrometry to resolve and separate miRNAs and corresponding 3' variants in mixtures. The mass accuracy of the monoisotopic deprotonated peaks from various miRNAs is in the low ppm range. We compare fragmentation of miRNA by collision-induced dissociation (CID) and by higher-energy collisional dissociation (HCD) which yields similar sequence coverage from both methods but additional fragmentation by HCD versus CID. We measure the linear dynamic range, limit of detection, and limit of quantitation of miRNA loaded onto a C18 column. Lastly, we explore the use of data-dependent acquisition of MS/MS spectra of miRNA during online LC-MS and demonstrate that multiple charge states can be fragmented, yielding nearly full sequence coverage of miRNA on a chromatographic time scale. We conclude that high resolution mass spectrometry allows the separation and measurement of miRNAs in mixtures and a standard LC-MS setup can be adapted for online analysis of these molecules.

  20. Analysis of fluticasone propionate in induced sputum by mass spectrometry.

    PubMed

    Hagan, John B; Taylor, Robert L; Kita, Hirohito; Singh, Ravinder J

    2011-01-01

    Although evaluation of induced sputum has shown promise as a marker of eosinophilic airway inflammation in asthmatic subjects, most studies, to date, do not adequately address the potential effect that inhaled corticosteroids may have on sputum eosinophilia. This study was designed to prospectively evaluate analysis of fluticasone propionate (FP) in whole sputum by mass spectrometry as a tool to determine recent administration of inhaled FP. Induced sputum of nonsmoking asthmatic subjects was prospectively analyzed 16-24 hours after witnessed administration of orally inhaled FP. FP was extracted from whole sputum via an acetonitrile protein precipitation followed by methylene chloride liquid extraction of the supernatant (AB 4000; AB Sciex). A portion of the reconstituted sample was analyzed by liquid chromatography tandem mass spectrometry using a triple quad tandem mass spectrometer. Results were compared with those from nonsmoking asthmatic subjects not receiving inhaled FP. Twenty-two asthmatic subjects on FP and 9 asthmatic subjects without FP underwent sputum induction 16-24 hours following witnessed administration of FP. Sufficient sputum for analysis was obtained from 30 of 31 subjects. FP was detected in 22 of 22 asthmatic subjects receiving FP (range, 29-133,000 pg/mL) and was undetectable in 8 of 8 subjects not receiving FP. The sensitivity and specificity of tandem mass spectrometry's ability to detect FP in sputum was 100% and 100%, respectively. Analysis of FP in induced sputum is a reliable method to verify recent administration of inhaled FP. Induced asthmatic sputum from one induction may be used to concomitantly assess sputum eosinophilia as well as recent administration of FP.

  1. Intact MicroRNA Analysis Using High Resolution Mass Spectrometry

    PubMed Central

    Kullolli, Majlinda; Knouf, Emily; Arampatzidou, Maria; Tewari, Muneesh; Pitteri, Sharon J.

    2014-01-01

    MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that post-transcriptionally regulate gene expression, and play key roles in the regulation of a variety of cellular processes and in disease. New tools to analyze miRNAs will add understanding of the physiological origins and biological functions of this class of molecules. In this study we investigate the utility of high resolution mass spectrometry for the analysis of miRNAs through proof-of-concept experiments. We demonstrate the ability of mass spectrometry to resolve and separate miRNAs and corresponding 3′ variants in mixtures. The mass accuracy of the monoisotopic deprotonated peaks from various miRNAs is in the low ppm range. We compare fragmentation of miRNA by collision-induced dissociation (CID) and by higher-energy collisional dissociation (HCD) which yields similar sequence coverage from both methods but additional fragmentation by HCD versus CID. We measure the linear dynamic range, limit of detection, and limit of quantitation of miRNA loaded onto a C18 column. Lastly we explore the use of data dependent acquisition of MS/MS spectra of miRNA during online LC-MS and demonstrate that multiple charge states can be fragmented, yielding nearly full sequence coverage of miRNA on a chromatographic time scale. We conclude that high resolution mass spectrometry allows the separation and measurement of miRNAs in mixtures and a standard LC-MS setup can be adapted for online analysis of these molecules. PMID:24174127

  2. Constraining Anthropogenic and Biogenic Emissions Using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Spencer, Kathleen M.

    Numerous gas-phase anthropogenic and biogenic compounds are emitted into the atmosphere. These gases undergo oxidation to form other gas-phase species and particulate matter. Whether directly or indirectly, primary pollutants, secondary gas-phase products, and particulate matter all pose health and environmental risks. In this work, ambient measurements conducted using chemical ionization mass spectrometry are used as a tool for investigating regional air quality. Ambient measurements of peroxynitric acid (HO2NO2) were conducted in Mexico City. A method of inferring the rate of ozone production, PO3, is developed based on observations of HO2NO 2, NO, and NO2. Comparison of this observationally based PO3 to a highly constrained photochemical box model indicates that regulations aimed at reducing ozone levels in Mexico City by reducing NOx concentrations may be effective at higher NO x levels than predicted using accepted photochemistry. Measurements of SO2 and particulate sulfate were conducted over the Los Angeles basin in 2008 and are compared to measurements made in 2002. A large decrease in SO2 concentration and a change in spatial distribution are observed. Nevertheless, only a modest reduction in sulfate concentration is observed at ground sites within the basin. Possible explanations for these trends are investigated. Two techniques, single and triple quadrupole chemical ionization mass spectrometry, were used to quantify ambient concentrations of biogenic oxidation products, hydroxyacetone and glycolaldehyde. The use of these techniques demonstrates the advantage of triple quadrupole mass spectrometry for separation of mass analogues, provided the collision-induced daughter ions are sufficiently distinct. Enhancement ratios of hydroxyacetone and glycolaldehyde in Californian biomass burning plumes are presented as are concentrations of these compounds at a rural ground site downwind of Sacramento.

  3. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling.

    PubMed

    Shie, Ruei-Hao; Chan, Chang-Chuan

    2013-10-15

    The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography-mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models.

  4. Analyzing the posttranslational modification status of Notch using mass spectrometry.

    PubMed

    Kakuda, Shinako; Haltiwanger, Robert S

    2014-01-01

    Notch is modified by multiple types of posttranslational modifications, most of which are known to affect Notch function. The extracellular domain (ECD) is modified with N-glycosylation and at least three types of O-glycosylation (O-fucose, O-glucose, and O-GlcNAc), while the intracellular domain is hydroxylated, phosphorylated, and ubiquitinated. In order to analyze the structure and function of the O-glycans decorating the ECD, we have developed semiquantitative mass spectral methods for identifying modifications at individual sites on Notch that are generally applicable to most posttranslational modifications. Here we describe the expression and purification of Notch ECD fragments, digestion of the fragments with proteases to prepare for mass spectral analysis, and identification of peptides modified with O-glycans using mass spectrometry.

  5. Revealing Higher Order Protein Structure Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chait, Brian T.; Cadene, Martine; Olinares, Paul Dominic; Rout, Michael P.; Shi, Yi

    2016-06-01

    The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope.

  6. Mass spectrometry technology at the Jet Propulsion Laboratory (JPL)

    NASA Technical Reports Server (NTRS)

    Giffin, C. E.

    1985-01-01

    Recent developments in the field of mass spectrometry taking place at the Caltech Jet Propulsion Laboratory are highlighted. The pertinent research and development is aimed at producing an ultrahigh sensitivity mass spectrograph for both spaceflight and terrestrial applications. The unique aspect of the JPL developed technology is an integrating focal plane ion detector that obviates the need for spectral scanning since all ions over a wide mass range are monitored simultaneously. The ion detector utilizes electro-optical technology and is therefore referred to as an Electro-Optical Ion Detector (EOID). A technical description of the JPL MS/EOID, some of the current applications, and its potential benefits for internal contamination analysis are discussed.

  7. Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging

    DOE PAGES

    Burnum-Johnson, Kristin E.; Baker, Erin S.; Metz, Thomas O.

    2017-03-29

    A successful pregnancy is dependent upon discrete biological events, which include embryo implantation, decidualization, and placentation. Furthermore, problems associated with each of these events can cause infertility or conditions such as preeclampsia. A greater understanding of the molecular changes associated with these complex processes is necessary to aid in identifying treatments for each condition. Previous nuclear magnetic resonance spectroscopy and mass spectrometry studies have been used to identify metabolites and lipids associated with pregnancy-related complications. However, due to limitations associated with conventional implementations of both techniques, novel technology developments are needed to more fully understand the initiation and development ofmore » pregnancy related problems at the molecular level. Here, we describe current analytical techniques for metabolomic and lipidomic characterization of pregnancy complications and discuss the potential for new technologies such as ion mobility spectrometry-mass spectrometry and mass spectrometry imaging to contribute to a better understanding of the molecular changes that affect the placenta and pregnancy outcomes.« less

  8. Apparatus for studying premixed laminar flames using mass spectrometry and fiber-optic spectrometry

    NASA Astrophysics Data System (ADS)

    Olsson, Jim O.; Andersson, Lars L.; Lenner, Magnus; Simonson, Margaret

    1990-03-01

    An integrated flat-flame/ microprobe sampling quadrupole mass spectrometer system, complemented by optical spectrometry based on optical fibers, is presented. The short microprobe sampling line (total 25 cm) is directly connected to an open ion source closely flanked by two nude cryopumps (900 l/s) yielding a background pressure of 10-9 Torr and a sampling pressure of about 10-5 Torr. Due to this improved microprobe system, mass spectrometry can be used for analysis of stable species (including fuel, O2, H2O, CO2, CO, and Ar) with less disturbance of the sample than with a conventional microprobe with a back pressure of about 1 Torr. Optical spectrometry is used for the study of emission from important radical species (such as C2, CH, and OH). The system is proposed as a complement to more conventional flat-flame/MBMS systems in which the sampling cone can effect the experimental system. Details are provided concerning the configuration of the whole system ranging from gas delivery to data evaluation. Test data are presented for a 16% methanol/68% oxygen/16% argon flame studied at a pressure of 40 Torr, to elucidate the special features of this system.

  9. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  10. The role of mass spectrometry in atomic weight determinations.

    PubMed

    De Laeter, John R

    2009-01-01

    The 1914 Nobel Prize for Chemistry was awarded to Theodore Richards, whose work provided an insight into the history of the birth and evolution of matter as embedded in the atomic weights. However, the secret to unlocking the hieroglyphics contained in the atomic weights is revealed by a study of the relative abundances of the isotopes. A consistent set of internationally accepted atomic weights has been a goal of the scientific community for over a century. Atomic weights were originally determined by chemical stoichiometry--the so-called "Harvard Method," but this methodology has now been superseded by the "physical method," in which the isotopic composition and atomic masses of the isotopes comprising an element are used to calculate the atomic weight with far greater accuracy than before. The role of mass spectrometry in atomic weight determinations was initiated by the discovery of isotopes by Thomson, and established by the pioneering work of Aston, Dempster, and Nier using sophisticated mass spectrographs. The advent of the sector field mass spectrometer in 1947, revolutionized the application of mass spectrometry for both solids and gases to other fields of science including atomic weights. Subsequently, technological advances in mass spectrometry have enabled atomic masses to be determined with an accuracy better than one part in 10(7), whilst the absolute isotopic composition of many elements has been determined to produce accurate values of their atomic weights. Conversely, those same technological developments have revealed significant variations in the isotope abundances of many elements caused by a variety of physiochemical mechanisms in natural materials. Although these variations were initially seen as an impediment to the accuracy with which atomic weights could be determined, it was quickly realized that nature had provided a new tool to investigate physiochemical and biogeochemical mechanisms in nature, which could be exploited by precise and

  11. Capillary zone electrophoresis-mass spectrometry of peptides and proteins

    SciTech Connect

    Loo, J.A.; Udseth, H.R.; Smith, R.D.

    1989-05-01

    Capillary zone electrophoresis (CZE) is attracting extensive attention as a fast, high resolution analytical and micro-preparative separations technique for systems of biological interest. In zone electrophoresis, a column is filled with a single electrolyte having a specific conductivity. The mixture of substances to be separated is applied as a narrow band to the head of a buffer filled column in a band whose width is much less than the length of the column and at a concentration too low to affect the buffer conductivity. An electric field is then applied across the length of the column and the individual substances migrate and separate according to their net electrophoretic velocities. Zone electrophoresis carried out in small diameter (<100 ..mu..m) fused silica capillaries is a relatively new approach to the high resolution separation of aqueous samples. Very small volume samples (picoliter range) with separation efficiencies on the order of 10/sup 6/ theoretical plates for amino acids have been achieved. The method can be further enhanced by the dynamic combination of detection sensitivity and selectivity offered by mass spectrometry (MS). The on-line marriage of mass spectrometry to CZE is accomplished by an atmospheric pressure electrospray ionization source interface. Our research efforts have demonstrated that proteins with MW's greater than 100 kDa can be analyzed using a conventional quadrupole mass spectrometer with an upper m/z limit of only 1700. 6 refs.

  12. Accelerator Mass Spectrometry for Measurement of Long-Lived Radioisotopes

    NASA Astrophysics Data System (ADS)

    Elmore, David; Phillips, Fred M.

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes 10Be, 14C, 26Al, 36Cl, and 129I can now be measured in small natural samples having isotopic abundances in the range 10-12 to 10-15 and as few as 105 atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of half-lives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  13. Resonance ionization mass spectrometry for isotopic abundance measurements

    NASA Technical Reports Server (NTRS)

    Miller, C. M.

    1986-01-01

    Resonance ionization mass spectrometry (RIMS) is a relatively new laser-based technique for the determination of isotopic abundances. The resonance ionization process depends upon the stepwise absorption of photons from the laser, promoting atoms of the element of interest through progressively higher electronic states until an ion is formed. Sensitivity arises from the efficiency of the resonant absorption process when coupled with the power available from commercial laser sources. Selectivity derives naturally from the distinct electronic structure of different elements. This isobaric discrimination has provided the major impetus for development of the technique. Resonance ionization mass spectrometry was used for analysis of the isotopic abundances of the rare earth lutetium. Isobaric interferences from ytterbium severely effect the ability to measure small amounts of the neutron-deficient Lu isotopes by conventional mass spectrometric techniques. Resonance ionization for lutetium is performed using a continuous-wave laser operating at 452 nm, through a sequential two-photon process, with one photon exciting the intermediate resonance and the second photon causing ionization. Ion yields for microgram-sized quantities of lutetium lie between 10(6) and 10(7) ions per second, at overall ionization efficiencies approaching 10(-4). Discrimination factors against ytterbium greater than 10(6) have been measured. Resonance ionization for technetium is also being explored, again in response to an isobaric interference, molybdenum. Because of the relatively high ionization potential for Tc, three-photon, two-color RIMS processes are being developed.

  14. Capillary isoelectric focusing-electrospray mass spectrometry for protein analysis

    SciTech Connect

    Tang, Q.; Harrata, A.K.; Lee, C.S.

    1995-10-01

    On-line combination of capillary isoelectric focusing (CIEF) with electrospray mass spectrometry (ESMS) as a two-dimensional separation system is demonstrated. Mixtures of model proteins including cytochrome c (horse heart), myoglobin (horse heart), and carbonic anhydrase II (bovine erythrocyte) are focused and cathodically mobilized in a polyacrylamide-coated capillary. At the end of CIEF capillary, the mobilized protein zones are analyzed by mass spectrometry coupled on-line to an electrospray interface with a coaxial sheath flow configuration. The effects of carrier ampholyte concentration on the CIEF separation and the protein electrospray ionization mass spectra are presented and discussed. In this study, the focusing effect of CIEF permits analysis of very dilute protein samples. A typical concentration factor of 50-100 times is observed. The concentration detection limit of myoglobin for a full-scan CIEF-ESMS analysis is in the range of 10{sup -7} M, 2 orders of magnitude over that possible with normal capillary zone electrophoresis ESMS. 35 refs., 5 figs., 2 tabs.

  15. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization

    PubMed Central

    Liu, Xiao-Pan; Wang, Hao-Yang; Zhang, Jun-Ting; Wu, Meng-Xi; Qi, Wan-Shu; Zhu, Hui; Guo, Yin-Long

    2015-01-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray gases, but just using small size of n-butane flame (height approximately 1 cm, about 500 oC) to accomplish the rapid desorption and ionization for direct analysis of gaseous-, liquid- and solid-phase organic compounds, as well as real-world samples. This method has high sensitivity with a limit of detection of 1 picogram for propyphenazone, which allows consuming trace amount of samples. Compared to previous ionization methods, this ion source device is extremely simple, maintain-free, low-cost, user–friendly so that even an ordinary lighter (with n-butane as fuel) can achieve efficient ionization. A new orientation to mass spectrometry ion source exploitation might emerge from such a convenient, easy and inexpensive AFI ion source. PMID:26582511

  16. Botulinum Neurotoxin Detection and Differentiation by Mass Spectrometry

    PubMed Central

    Moura, Hercules; Boyer, Anne E.; Woolfitt, Adrian R.; Kalb, Suzanne R.; Pavlopoulos, Antonis; McWilliams, Lisa G.; Schmidt, Jurgen G.; Martinez, Rodolfo A.; Ashley, David L.

    2005-01-01

    Botulinum neurotoxins (BoNTs) are proteases that cleave specific cellular proteins essential for neurotransmitter release. Seven BoNT serotypes (A–G) exist; 4 usually cause human botulism (A, B, E, and F). We developed a rapid, mass spectrometry–based method (Endopep-MS) to detect and differentiate active BoNTs A, B, E, and F. This method uses the highly specific protease activity of the toxins with target peptides specific for each toxin serotype. The product peptides derived from the endopeptidase activities of BoNTs are detected by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. In buffer, this method can detect toxin equivalents of as little as 0.01 mouse lethal dose (MLD)50 and concentrations as low as 0.62 MLD50/mL. A high-performance liquid chromatography–tandem mass spectrometry method for quantifying active toxin, where the amount of toxin can be correlated to the amount of product peptides, is also described. PMID:16318699

  17. Characterization of botulinum progenitor toxins by mass spectrometry.

    PubMed

    Hines, Harry B; Lebeda, Frank; Hale, Martha; Brueggemann, Ernst E

    2005-08-01

    Botulinum toxin analysis has renewed importance. This study included the use of nanochromatography-nanoelectrospray-mass spectrometry/mass spectrometry to characterize the protein composition of botulinum progenitor toxins and to assign botulinum progenitor toxins to their proper serotype and strain by using currently available sequence information. Clostridium botulinum progenitor toxins from strains Hall, Okra, Stockholm, MDPH, Alaska, and Langeland and 89 representing serotypes A through G, respectively, were reduced, alkylated, digested with trypsin, and identified by matching the processed product ion spectra of the tryptic peptides to proteins in accessible databases. All proteins known to be present in progenitor toxins from each serotype were identified. Additional proteins, including flagellins, ORF-X1, and neurotoxin binding protein, not previously reported to be associated with progenitor toxins, were present also in samples from several serotypes. Protein identification was used to assign toxins to a serotype and strain. Serotype assignments were accurate, and strain assignments were best when either sufficient nucleotide or amino acid sequence data were available. Minor difficulties were encountered using neurotoxin-associated protein identification for assigning serotype and strain. This study found that combined nanoscale chromatographic and mass spectrometric techniques can characterize C. botulinum progenitor toxin protein composition and that serotype/strain assignments based upon these proteins can provide accurate serotype and, in most instances, strain assignments using currently available information. Assignment accuracy will continue to improve as more nucleotide/amino acid sequence information becomes available for different botulinum strains.

  18. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    PubMed

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  19. Analysis of metal-EDTA complexes by electrospray mass spectrometry

    SciTech Connect

    Baron, D.; Hering, J.G.

    1998-07-01

    Solutions of the strong complexing agent ethylenediaminetetraacetic acid (EDTA) and Cu, Pb, Cd, Al, and Fe(III) were examined by electrospray mass spectrometry (ES/MS). Uncomplexed EDTA and metal-EDTA complexes survive the electrospray process intact and can be detected simultaneously by mass spectrometry. Best sensitivity was achieved in the positive ion mode in which EDTA and EDTA-metal complexes (present in solution as anions) were detected as protonated species with a single positive charge. Except for the protonation, the aqueous metal-EDTA complexes are preserved and neither fragmentation of complexes nor formation of clusters with more than one metal or ligand were observed in the mass spectra. Detection limits are between approximately 1 to 2 {micro}M for uncomplexed EDTA and for the Cu-EDTA and Pb-EDTA complexes, with a linear range up to 10{sup {minus}4} M. Calibrations based on solutions with equimolar concentrations of EDTA and Cu or Pb can be used to quantify EDTA-metal complexes in solutions with excess EDTA or metal, and in solutions with more than one metal present. Isotopic signatures of metals in the metal-ligand complexes are preserved, allowing the identification of the metal in a metal-ligand complex. Isotopic signatures of metals can therefore aid in the identification of metal-ligand complexes in unknown samples.

  20. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-10-01

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments generated by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  1. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-12-31

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  2. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    NASA Astrophysics Data System (ADS)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-06-01

    Airborne nanoparticles can cause severe harm when inhaled. Therefore, small and cheap portable airborne nanoparticle monitors are highly demanded by authorities and the nanoparticle producing industry. We propose to use nanomechanical resonators to build the next generation cheap and portable airborne nanoparticle sensors. Recently, nanomechanical mass spectrometry was established. One of the biggest challenges of nanomechanical sensors is the low efficiency of diffusion-based sampling. We developed an inertial-based sampling method that enables the efficient sampling of airborne nanoparticles on a nanomechanical sensor operating directly in air. We measured a sampling rate of over 1000 particles per second, for 28 nm silica nanoparticles with a concentration of 380000 #/cm3, collected on a 500 nm wide nanomechanical string resonator. We show that it is possible to reach a saturated sampling regime in which 100% of all nanoparticles are captured that are owing in the projection of the nanostring. We further show that it is possible to detect single airborne nanoparticles by detecting 50 nm Au particles with a 250 nm wide string resonator. Our resonators are currently operating in the first bending mode. Mass spectrometry of airborne nanoparticles requires the simultaneous operation in the first and second mode, which can be implemented in the transduction scheme of the resonator. The presented results lay the cornerstone for the realization of a portable airborne nanoparticle mass spectrometer.

  3. Rapid Analysis of Isobaric Exogenous Metabolites by Differential Mobility Spectrometry Mass Spectrometry

    SciTech Connect

    Parson, Whitney B; Schneider, Bradley B; Kertesz, Vilmos; Corr, Jay; Covey, Thomas R.; Van Berkel, Gary J

    2011-01-01

    The direct separation of isobaric glucuronide metabolites from propranolol dosed tissue extracts by differential mobility spectrometry mass spectrometry (DMS-MS) with the use of a polar gas-phase chemical modifier was demonstrated. The DMS gas-phase separation was able to resolve the isobaric metabolites with separation times on the order of ms instead of mins to hrs typically required when using pre-ionization chromatographic separation methods. Direct separation of isobaric metabolites from the complex tissue extract was validated using standards as well as implementing an HPLC separation prior to the DMS-MS analysis to pre-separate the species of interest. The ability to separate isobaric exogenous metabolites directly from a complex tissue extract is expected to facilitate the drug development process by increasing analytical throughput without the requirement for pre-ionization cleanup or separation strategies.

  4. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    SciTech Connect

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Stephen J.; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin S.

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  5. Uncovering Biologically Significant Lipid Isomers with Liquid Chromatography, Ion Mobility Spectrometry and Mass Spectrometry

    PubMed Central

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Stephen J.; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin S.

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes. PMID:26734689

  6. Fast Screening of Polycyclic Aromatic Hydrocarbons using Trapped Ion Mobility Spectrometry - Mass Spectrometry

    PubMed Central

    Castellanos, A.; Benigni, P.; Hernandez, D. R.; DeBord, J. D.; Ridgeway, M. E.; Park, M. A.

    2014-01-01

    In the present paper, we showed the advantages of trapped ion mobility spectrometry coupled too mass spectrometry (TIMS-MS) combined with theoretical calculations for fast identification (millisecond timescale) of polycyclic aromatic hydrocarbons (PAH) compounds from complex mixtures. Accurate PAH collision cross sections (CCS, in nitrogen as a bath gas) are reported for the most commonly encountered PAH compounds and the ability to separate PAH geometric isomers is shown for three isobaric pairs with mobility resolution exceeding 150 (3–5 times higher than conventional IMS devices). Theoretical candidate structures (optimized at the DFT/B3LYP level) are proposed for the most commonly encountered PAH compounds showing good agreement with the experimental CCS values (<5%). The potential of TIMS-MS for the separation and identification of PAH compounds from complex mixtures without the need of lengthy pre-separation steps is illustrated for the case of a complex soil mixture. PMID:25558291

  7. Calibration using constrained smoothing with applications to mass spectrometry data.

    PubMed

    Feng, Xingdong; Sedransk, Nell; Xia, Jessie Q

    2014-06-01

    Linear regressions are commonly used to calibrate the signal measurements in proteomic analysis by mass spectrometry. However, with or without a monotone (e.g., log) transformation, data from such functional proteomic experiments are not necessarily linear or even monotone functions of protein (or peptide) concentration except over a very restricted range. A computationally efficient spline procedure improves upon linear regression. However, mass spectrometry data are not necessarily homoscedastic; more often the variation of measured concentrations increases disproportionately near the boundaries of the instruments measurement capability (dynamic range), that is, the upper and lower limits of quantitation. These calibration difficulties exist with other applications of mass spectrometry as well as with other broad-scale calibrations. Therefore the method proposed here uses a functional data approach to define the calibration curve and also the limits of quantitation under the two assumptions: (i) that the variance is a bounded, convex function of concentration; and (ii) that the calibration curve itself is monotone at least between the limits of quantitation, but not necessarily outside these limits. Within this paradigm, the limit of detection, where the signal is definitely present but not measurable with any accuracy, is also defined. An iterative approach draws on existing smoothing methods to account simultaneously for both restrictions and is shown to achieve the global optimal convergence rate under weak conditions. This approach can also be implemented when convexity is replaced by other (bounded) restrictions. Examples from Addona et al. (2009, Nature Biotechnology 27, 663-641) both motivate and illustrate the effectiveness of this functional data methodology when compared with the simpler linear regressions and spline techniques.

  8. Future Directions of Structural Mass Spectrometry using Hydroxyl Radical Footprinting

    SciTech Connect

    J Kiselar; M Chance

    2011-12-31

    Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein-protein and protein-DNA interactions. Using synchrotron radiolysis, exposure of proteins to a 'white' X-ray beam for milliseconds provides sufficient oxidative modification to surface amino acid side chains, which can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time-resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium-dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular subdomains have similar rates of conformational change. These findings demonstrate that time-resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review, we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that the selected reaction monitoring (SRM)-based method can be utilized for quantification of oxidized species, improving the signal-to-noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis

  9. Molecular scavengers as carriers of analytes for mass spectrometry identification.

    PubMed

    Smoluch, Marek; Ceglowski, Michal; Kurczewska, Joanna; Babij, Michal; Gotszalk, Teodor; Silberring, Jerzy; Schroeder, Grzegorz

    2014-11-18

    Storage and preconcentration of various molecules by molecular scavengers for thermal desorption and identification by mass spectrometry is presented. A dielectric barrier discharge ionization source combined with a heating element for the chemical characterization of amines and organic acids, initially trapped by molecular scavengers, is described. The developed technique can be applied for preconcentration of minute amounts of molecules in liquid and gaseous phases, as well as their transportation and thorough analysis. The method, operating at ambient pressure, can also be complementary to electron impact ionization, with no need for sample derivatization.

  10. Considerations for electron capture dissociation efficiency in FTICR mass spectrometry

    NASA Astrophysics Data System (ADS)

    Gorshkov, Michael V.; Masselon, Christophe D.; Nikolaev, Eugene N.; Udseth, Harold R.; Pasa-Tolic, Ljiljana; Smith, Richard D.

    2004-05-01

    An experimental approach for increasing the efficiency of Electron Capture Dissociation (ECD) with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is presented. The approach is based on manipulating the spatial distribution of an ion cloud inside an FTICR trap during electron irradiation, which is realized by using both on-resonance pre-excitation of the ions and sustained off-resonance irradiation (SORI). The achieved fragmentation efficiency is compared with the theoretical prediction. This method may be useful in biological applications of FTICR, such as identification of posttranslational modifications in proteins and de novo sequencing, where the ECD technique is most applicable.

  11. Toward Digital Staining using Imaging Mass Spectrometry and Random Forests

    PubMed Central

    Hanselmann, Michael; Köthe, Ullrich; Kirchner, Marc; Renard, Bernhard Y.; Amstalden, Erika R.; Glunde, Kristine; Heeren, Ron M. A.; Hamprecht, Fred A.

    2009-01-01

    We show on Imaging Mass Spectrometry (IMS) data that the Random Forest classifier can be used for automated tissue classification and that it results in predictions with high sensitivities and positive predictive values, even when inter-sample variability is present in the data. We further demonstrate how Markov Random Fields and vector-valued median filtering can be applied to reduce noise effects to further improve the classification results in a post-hoc smoothing step. Our study gives clear evidence that digital staining by means of IMS constitutes a promising complement to chemical staining techniques. PMID:19469555

  12. Web Resources for Mass Spectrometry-based Proteomics

    PubMed Central

    Chen, Tao; Zhao, Jie; Ma, Jie; Zhu, Yunping

    2015-01-01

    With the development of high-resolution and high-throughput mass spectrometry (MS) technology, a large quantum of proteomic data is continually being generated. Collecting and sharing these data are a challenge that requires immense and sustained human effort. In this report, we provide a classification of important web resources for MS-based proteomics and present rating of these web resources, based on whether raw data are stored, whether data submission is supported, and whether data analysis pipelines are provided. These web resources are important for biologists involved in proteomics research. PMID:25721607

  13. Applications of ambient mass spectrometry in high-throughput screening.

    PubMed

    Li, Li-Ping; Feng, Bao-Sheng; Yang, Jian-Wang; Chang, Cui-Lan; Bai, Yu; Liu, Hu-Wei

    2013-06-07

    The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

  14. Vaporization Studies of Olivine via Knudsen Effusion Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Costa, G. C. C.; Jacobson, N. S.

    2014-01-01

    Olivine is the major mineral in the Earth's upper mantle occurring predominantly in igneous rocks and has been identified in meteorites, asteroids, the Moon and Mars. Among many other important applications in planetary and materials sciences, the thermodynamic properties of vapor species from olivine are crucial as input parameters in computational modelling of the atmospheres of hot, rocky exoplanets (lava planets). There are several weight loss studies of olivine vaporization in the literature and one Knudsen Effusion Mass Spectrometry (KEMS) study. In this study, we examine a forsterite-rich olivine (93% forsterite and 7% fayalite, Fo93Fa7) with KEMS to further understand its vaporization and thermodynamic properties.

  15. Solid support resins and affinity purification mass spectrometry.

    PubMed

    Havis, Spencer; Moree, Wilna J; Mali, Sujina; Bark, Steven J

    2017-02-28

    Co-affinity purification-mass spectrometry (CoAP-MS) is a primary technology for elucidating the protein-protein interactions that form the basis of all biological processes. A critical component of CoAP-MS is the affinity purification (AP) of the bait protein, usually by immobilization of an antibody to a solid-phase resin. This Minireview discusses common resins, reagents, tagging methods, and their consideration for successful AP of tagged proteins. We discuss our experiences with different solid supports, their impact in AP experiments, and propose areas where chemistry can advance this important technology.

  16. File Formats Commonly Used in Mass Spectrometry Proteomics*

    PubMed Central

    Deutsch, Eric W.

    2012-01-01

    The application of mass spectrometry (MS) to the analysis of proteomes has enabled the high-throughput identification and abundance measurement of hundreds to thousands of proteins per experiment. However, the formidable informatics challenge associated with analyzing MS data has required a wide variety of data file formats to encode the complex data types associated with MS workflows. These formats encompass the encoding of input instruction for instruments, output products of the instruments, and several levels of information and results used by and produced by the informatics analysis tools. A brief overview of the most common file formats in use today is presented here, along with a discussion of related topics. PMID:22956731

  17. Drug confirmation by mass spectrometry: Identification criteria and complicating factors.

    PubMed

    Yuan, Chao; Chen, Derrick; Wang, Sihe

    2015-01-01

    Drug confirmation by mass spectrometry coupled with chromatography is essential to toxicology, doping control, pain management, and workplace drug testing. High confidence in this technology is due to its superior specificity and sensitivity. However, there are challenges associated with drug confirmation, and proper setup and validation of these assays are important in assuring high-quality results. In this article, assay parameters required for drug confirmation are summarized based on recent scientific publications, various established guidelines, and our own practical experience. Factors affecting the result quality and correct results interpretation are critically reviewed. Several emerging technologies and their potential applications are briefly explored.

  18. Small sample Accelerator Mass Spectrometry for biomedical applications

    NASA Astrophysics Data System (ADS)

    Salehpour, M.; Håkansson, K.; Possnert, G.

    2015-10-01

    The Accelerator Mass Spectrometry activities at Uppsala University include a group dedicated to the biomedical applications, involving natural level samples, as well as 14C-labeled substances requiring separate handling and preparation. For most applications sufficient sample amounts are available but many applications are limited to samples sizes in the μg-range. We have developed a preparation procedure for small samples biomedical applications, where a few μg C can be analyzed, albeit with compromised precision. The latest results for the small sample AMS method are shown and some of the biomedical activities at our laboratory are presented.

  19. Mass spectrometry cancer data classification using wavelets and genetic algorithm.

    PubMed

    Nguyen, Thanh; Nahavandi, Saeid; Creighton, Douglas; Khosravi, Abbas

    2015-12-21

    This paper introduces a hybrid feature extraction method applied to mass spectrometry (MS) data for cancer classification. Haar wavelets are employed to transform MS data into orthogonal wavelet coefficients. The most prominent discriminant wavelets are then selected by genetic algorithm (GA) to form feature sets. The combination of wavelets and GA yields highly distinct feature sets that serve as inputs to classification algorithms. Experimental results show the robustness and significant dominance of the wavelet-GA against competitive methods. The proposed method therefore can be applied to cancer classification models that are useful as real clinical decision support systems for medical practitioners.

  20. Rapid Identification of Vector-Borne Flaviviruses by Mass Spectrometry

    DTIC Science & Technology

    2010-01-01

    replicates of 10. All six mosquito-borne primer sets (VIR2215, VIR2217, VIR2211, VIR2216, VIR1026, VIR1028) had 100% sensitivity (10/10 reactions were...borne Flavivirus RT-PCR primer pairs. From a known West Nile virus (WNV) titer, the RNA was serially diluted ten-fold. Ten replicates were performed...mass spectrometry, Molecular and Cellular Probes (2010), doi:10.1016/j.mcp.2010.04.003 alphaviruses (assuming that 30 genome equivalents is approxi

  1. Epidemiological typing of Klebsiella pneumoniae by pyrolysis mass spectrometry.

    PubMed

    Jackson, R M; Heginbothom, M L; Magee, J T

    1997-01-01

    Thirteen isolates of ceftazidime-resistant Klebsiella pneumoniae from a suspected cross-infection outbreak involving patients on an intensive care unit and a haematology ward were examined in pyrolysis-mass spectrometry (Py-MS), along with eight concurrent non-outbreak-associated clinical isolates of klebsiellae as controls. Py-MS showed tight clustering of the suspected outbreak isolates, suggesting cross-infection with a single strain. Non-outbreak isolates were clearly distinct from one another and from the outbreak strain. The results confirm that Py-MS is a powerful tool for rapid strain comparison in investigations of cross-infection incidents.

  2. File formats commonly used in mass spectrometry proteomics.

    PubMed

    Deutsch, Eric W

    2012-12-01

    The application of mass spectrometry (MS) to the analysis of proteomes has enabled the high-throughput identification and abundance measurement of hundreds to thousands of proteins per experiment. However, the formidable informatics challenge associated with analyzing MS data has required a wide variety of data file formats to encode the complex data types associated with MS workflows. These formats encompass the encoding of input instruction for instruments, output products of the instruments, and several levels of information and results used by and produced by the informatics analysis tools. A brief overview of the most common file formats in use today is presented here, along with a discussion of related topics.

  3. Mass Spectrometry Characterization of the Thermal Decomposition/Digestion (TDD) at Cysteine in Peptides and Proteins in the Condensed Phase

    NASA Astrophysics Data System (ADS)

    Basile, Franco; Zhang, Shaofeng; Kandar, Sujit Kumar; Lu, Liang

    2011-11-01

    We report on the characterization by mass spectrometry (MS) of a rapid, reagentless and site-specific cleavage at the N-terminus of the amino acid cysteine (C) in peptides and proteins induced by the thermal decomposition at 220-250 °C for 10 s in solid samples. This thermally induced cleavage at C occurs under the same conditions and simultaneously to our previously reported thermally induced site-specific cleavage at the C-terminus of aspartic acid (D) (Zhang, S.; Basile, F. J. Proteome Res. 2007, 6, (5), 1700-1704). The C cleavage proceeds through cleavage of the nitrogen and α-carbon bond (N-terminus) of cysteine and produces modifications at the cleavage site with an amidation (-1 Da) of the N-terminal thermal decomposition product and a -32 Da mass change of the C-terminal thermal decomposition product, the latter yielding either an alanine or β-alanine residue at the N-terminus site. These modifications were confirmed by off-line thermal decomposition electrospray ionization (ESI)-MS, tandem MS (MS/MS) analyses and accurate mass measurements of standard peptides. Molecular oxygen was found to be required for the thermal decomposition and cleavage at C as it induced an initial cysteine thiol side chain oxidation to sulfinic acid. Similar to the thermally induced D cleavage, missed cleavages at C were also observed. The combined thermally induced digestion process at D and C, termed thermal decomposition/digestion (TDD), was observed on several model proteins tested under ambient conditions and the site-specificity of the method confirmed by MS/MS.

  4. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kolářová, Lenka; Prokeš, Lubomír; Kučera, Lukáš; Hampl, Aleš; Peňa-Méndez, Eladia; Vaňhara, Petr; Havel, Josef

    2017-03-01

    Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n +/Au n - and P n +/P n -) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge ( m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples.

  5. Characterization of polymer decomposition products by laser desorption mass spectrometry

    NASA Technical Reports Server (NTRS)

    Pallix, Joan B.; Lincoln, Kenneth A.; Miglionico, Charles J.; Roybal, Robert E.; Stein, Charles; Shively, Jon H.

    1993-01-01

    Laser desorption mass spectrometry has been used to characterize the ash-like substances formed on the surfaces of polymer matrix composites (PMC's) during exposure on LDEF. In an effort to minimize fragmentation, material was removed from the sample surfaces by laser desorption and desorbed neutrals were ionized by electron impact. Ions were detected in a time-of-flight mass analyzer which allows the entire mass spectrum to be collected for each laser shot. The method is ideal for these studies because only a small amount of ash is available for analysis. Three sets of samples were studied including C/polysulfone, C/polyimide and C/phenolic. Each set contains leading and trailing edge LDEF samples and their respective controls. In each case, the mass spectrum of the ash shows a number of high mass peaks which can be assigned to fragments of the associated polymer. These high mass peaks are not observed in the spectra of the control samples. In general, the results indicate that the ash is formed from decomposition of the polymer matrix.

  6. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kolářová, Lenka; Prokeš, Lubomír; Kučera, Lukáš; Hampl, Aleš; Peňa-Méndez, Eladia; Vaňhara, Petr; Havel, Josef

    2016-12-01

    Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n +/Au n - and P n +/P n -) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge (m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples.

  7. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry.

    PubMed

    Kolářová, Lenka; Prokeš, Lubomír; Kučera, Lukáš; Hampl, Aleš; Peňa-Méndez, Eladia; Vaňhara, Petr; Havel, Josef

    2017-03-01

    Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n(+)/Au n(-) and P n(+)/P n(-)) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge (m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples. Graphical Abstract ᅟ.

  8. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 1: Identifying Proteins Based on Molecular Mass

    ERIC Educational Resources Information Center

    Arnquist, Isaac J.; Beussman, Douglas J.

    2007-01-01

    Biological mass spectrometry is an important analytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. Currently, few hands-on opportunities exist for undergraduate students to learn about this technique. With the 2002 Nobel Prize being awarded, in part, for the development of biological mass…

  9. Accurate Mass Assignment of Native Protein Complexes Detected by Electrospray Mass Spectrometry

    PubMed Central

    Liepold, Lars O.; Oltrogge, Luke M.; Suci, Peter; Douglas, Trevor; Young, Mark J.

    2009-01-01

    Correct charge state assignment is crucial to assigning an accurate mass to supramolecular complexes analyzed by electrospray mass spectrometry. Conventional charge state assignment techniques fall short of reliably and unambiguously predicting the correct charge state for many supramolecular complexes. We provide an explanation of the shortcomings of the conventional techniques and have developed a robust charge state assignment method that is applicable to all spectra. PMID:19103497

  10. Distance-of-Flight Mass Spectrometry: What, Why, and How?

    NASA Astrophysics Data System (ADS)

    Dennis, Elise A.; Gundlach-Graham, Alexander W.; Ray, Steven J.; Enke, Christie G.; Hieftje, Gary M.

    2016-11-01

    Distance-of-flight mass spectrometry (DOFMS) separates ions of different mass-to-charge ( m/ z) by the distance they travel in a given time after acceleration. Like time-of-flight mass spectrometry (TOFMS), separation and mass assignment are based on ion velocity. However, DOFMS is not a variant of TOFMS; different methods of ion focusing and detection are used. In DOFMS, ions are driven orthogonally, at the detection time, onto an array of detectors parallel to the flight path. Through the independent detection of each m/ z, DOFMS can provide both wider dynamic range and increased throughput for m/ z of interest compared with conventional TOFMS. The iso-mass focusing and detection of ions is achieved by constant-momentum acceleration (CMA) and a linear-field ion mirror. Improved energy focus (including turn-around) is achieved in DOFMS, but the initial spatial dispersion of ions remains unchanged upon detection. Therefore, the point-source nature of surface ionization techniques could put them at an advantage for DOFMS. To date, three types of position-sensitive detectors have been used for DOFMS: a microchannel plate with a phosphorescent screen, a focal plane camera, and an IonCCD array; advances in detector technology will likely improve DOFMS figures-of-merit. In addition, the combination of CMA with TOF detection has provided improved resolution and duty factor over a narrow m/ z range (compared with conventional, single-pass TOFMS). The unique characteristics of DOFMS can enable the intact collection of large biomolecules, clusters, and organisms. DOFMS might also play a key role in achieving the long-sought goal of simultaneous MS/MS.

  11. Analysis of complex phthalic acid based polyesters by the combination of size exclusion chromatography and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Pretorius, Nadine O; Rode, Karsten; Simpson, Jaylin M; Pasch, Harald

    2014-01-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used in conjunction with size exclusion chromatography (SEC) to investigate a model polyester system based on phthalic anhydride-1,2-propylene glycol. The polyesters were synthesized with a 30% molar excess of glycol, with kinetic samples being removed during different intervals of the polyesterification reaction. SEC was used to track the course of the reaction by determining the molecular weight and molecular weight distributions before subsequent off-line coupling with MALDI-TOF MS as a selective detection method to determine the chemical composition, identify the functionality type distributions as well as assist in assigning structural conformations. Mass spectrometry analysis proved to be a highly effective tool to facilitate the identification of the narrowly dispersed fractions obtained from the chromatographic separations as well as serve as a core method to investigate the heterogeneous nature of the bulk kinetic samples. Through the hyphenation of these sophisticated polymer characterization techniques, information on the molecular heterogeneity of the model polyesters, showing a complex variety of possible distributions, was obtained.

  12. Combining light microscopy, dielectric spectroscopy, MALDI intact cell mass spectrometry, FTIR spectromicroscopy and multivariate data mining for morphological and physiological bioprocess characterization of filamentous organisms.

    PubMed

    Posch, Andreas E; Koch, Cosima; Helmel, Michaela; Marchetti-Deschmann, Martina; Macfelda, Karin; Lendl, Bernhard; Allmaier, Günter; Herwig, Christoph

    2013-02-01

    Along with productivity and physiology, morphological growth behavior is the key parameter in bioprocess design for filamentous fungi. Lacking tools for fast, reliable and efficient analysis however, fungal morphology is still commonly tackled by empirical trial-and-error techniques during strain selection and process development procedures. Bridging the gap, this work presents a comprehensive analytical approach for morphological analysis combining automated high-throughput microscopy, multi-frequency dielectric spectroscopy, MALDI intact cell mass spectrometry and FTIR spectromicroscopy. Industrial fed-batch production processes were investigated in fully instrumented, automated bioreactors using the model system Penicillium chrysogenum. Physiological process characterization was based on the determination of specific conversion rates as scale-independent parameters. Conventional light microscopic morphological analysis was based on holistic determination of time series for more than 30 morphological parameters and their frequency distributions over the respective parameter range by automated high-throughput light microscopy. Characteristic protein patterns enriched in specific morphological and physiological states were further obtained by MALDI intact cell mass spectrometry. Spatial resolution of molecular biomass composition was facilitated by FTIR spectromicroscopy. Real-time in situ monitoring of morphological process behavior was achieved by linking multi-frequency dielectric spectroscopy with above outlined off-line methods. Data integration of complementing orthogonal techniques for morphological and physiological analysis together with multivariate modeling of interdependencies between morphology, physiology and process parameters facilitated complete bioprocess characterization. The suggested approach will thus help understanding morphological and physiological behavior and, in turn, allow to control and optimize those complex processes.

  13. Single Cell Proteomics with Ultra-High Sensitivity Mass Spectrometry

    SciTech Connect

    Frank, M

    2005-02-16

    This project was a joint LDRD project between PAT, CMS and NAI with the objective to develop an instrument that analyzes the biochemical composition of single cells in real-time using bioaerosol mass spectrometry (BAMS) combined with advanced laser desorption and ionization techniques. Applications include both biological defense, fundamental cell biology and biomedical research. BAMS analyzes the biochemical composition of single, micrometer-sized particles (such as bacterial cells or spores) that can be directly sampled from air or a suspension. BAMS is based on an earlier development of aerosol time of flight mass spectrometry (ATOFMS) by members of our collaboration [1,2]. Briefly, in ATOFMS and BAMS aerosol particles are sucked directly from the atmosphere into vacuum through a series of small orifices. As the particles approach the ion source region of the mass spectrometer, they cross and scatter light from two CW laser beams separated by a known distance. The timing of the two bursts of scattered light created by each ''tracked'' particle reveals the speed, location and size of the particle. This information then enables the firing of a high-intensity laser such that the resulting laser pulse desorbs and ionizes molecules from the tracked particle just as it reaches the center of the ion source region. The full spectrum of ions is then measured using a time-of-flight mass spectrometer. The ability to rapidly analyze individual particles is clearly applicable to the rapid detection of aerosolized biological warfare agents so long as agent particles can be made to produce mass spectra that are distinct from the spectra of harmless background particles. The pattern of ions formed is determined by the properties of the laser pulse, the particle, and, in aerosol matrix-assisted laser desorption/ionization (MALDI), also the MALDI matrix used. As a result, it is critical that the properties of the laser pulses used for desorption and ionization be carefully chosen

  14. Gated Trapped Ion Mobility Spectrometry Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Ridgeway, Mark E; Wolff, Jeremy J; Silveira, Joshua A; Lin, Cheng; Costello, Catherine E; Park, Melvin A

    2016-09-01

    Analysis of molecules by ion mobility spectrometry coupled with mass spectrometry (IMS-MS) provides chemical information on the three dimensional structure and mass of the molecules. The coupling of ion mobility to trapping mass spectrometers has historically been challenging due to the large differences in analysis time between the two devices. In this paper we present a modification of the trapped ion mobility (TIMS) analysis scheme termed "Gated TIMS" that allows efficient coupling to a Fourier Transform Ion Cyclotron Resonance (FT-ICR) analyzer. Analyses of standard compounds and the influence of source conditions on the TIMS distributions produced by ion mobility spectra of labile ubiquitin protein ions are presented. Ion mobility resolving powers up to 100 are observed. Measured collisional cross sections of ubiquitin ions are in excellent qualitative and quantitative agreement to previous measurements. Gated TIMS FT-ICR produces results comparable to those acquired using TIMS/time-of-flight MS instrument platforms as well as numerous drift tube IMS-MS studies published in the literature.

  15. Characterization of a Distributed Plasma Ionization Source (DPIS) for Ion Mobility Spectrometry and Mass Spectrometry

    SciTech Connect

    Waltman, Melanie J.; Dwivedi, Prabha; Hill, Herbert; Blanchard, William C.; Ewing, Robert G.

    2008-10-15

    A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry and ion mobility spectrometry. The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions depending on the polarity of the applied potential. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3-, NO3-, NO2-, O3- and O2- of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and environmental pollutants were selected to evaluate the new ionization source. The source was operated continuously for several months and although deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions. The results indicated that the DPIS may have a longer operating life than a conventional corona discharge.

  16. Characterization of a distributed plasma ionization source (DPIS) for ion mobility spectrometry and mass spectrometry.

    PubMed

    Waltman, Melanie J; Dwivedi, Prabha; Hill, Herbert H; Blanchard, William C; Ewing, Robert G

    2008-10-19

    A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H(2)O)(n)H(+) with (H(2)O)(2)H(+) as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO(3)(-), NO(3)(-), NO(2)(-), O(3)(-) and O(2)(-) of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and amines were selected to evaluate the new ionization source. The source was operated continuously for 3 months and although surface deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions.

  17. Steroid profiling by gas chromatography-mass spectrometry and high performance liquid chromatography-mass spectrometry for adrenal diseases.

    PubMed

    McDonald, Jeffrey G; Matthew, Susan; Auchus, Richard J

    2011-12-01

    The ability to measure steroid hormone concentrations in blood and urine specimens is central to the diagnosis and proper treatment of adrenal diseases. The traditional approach has been to assay each steroid hormone, precursor, or metabolite using individual aliquots of serum, each with a separate immunoassay. For complex diseases, such as congenital adrenal hyperplasia and adrenocortical cancer, in which the assay of several steroids is essential for management, this approach is time consuming and costly, in addition to using large amounts of serum. Gas chromatography/mass spectrometry profiling of steroid metabolites in urine has been employed for many years but only in a small number of specialized laboratories and suffers from slow throughput. The advent of commercial high-performance liquid chromatography instruments coupled to tandem mass spectrometers offers the potential for medium- to high-throughput profiling of serum steroids using small quantities of sample. Here, we review the physical principles of mass spectrometry, the instrumentation used for these techniques, the terminology used in this field and applications to steroid analysis.

  18. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions. PMID:28042492

  19. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.

  20. Isolation and mass spectrometry of transcription factor complexes.

    PubMed

    Sebastiaan Winkler, G; Lacomis, Lynne; Philip, John; Erdjument-Bromage, Hediye; Svejstrup, Jesper Q; Tempst, Paul

    2002-03-01

    Protocols are described that enable the isolation of novel proteins associated with a known protein and the subsequent identification of these proteins by mass spectrometry. We review the basics of nanosample handling and of two complementary approaches to mass analysis, and provide protocols for the entire process. The protein isolation procedure is rapid and based on two high-affinity chromatography steps. The method does not require previous knowledge of complex composition or activity and permits subsequent biochemical characterization of the isolated factor. As an example, we provide the procedures used to isolate and analyze yeast Elongator, a histone acetyltransferase complex important for transcript elongation, which led to the identification of three novel subunits.

  1. Testing and Validation of Computational Methods for Mass Spectrometry.

    PubMed

    Gatto, Laurent; Hansen, Kasper D; Hoopmann, Michael R; Hermjakob, Henning; Kohlbacher, Oliver; Beyer, Andreas

    2016-03-04

    High-throughput methods based on mass spectrometry (proteomics, metabolomics, lipidomics, etc.) produce a wealth of data that cannot be analyzed without computational methods. The impact of the choice of method on the overall result of a biological study is often underappreciated, but different methods can result in very different biological findings. It is thus essential to evaluate and compare the correctness and relative performance of computational methods. The volume of the data as well as the complexity of the algorithms render unbiased comparisons challenging. This paper discusses some problems and challenges in testing and validation of computational methods. We discuss the different types of data (simulated and experimental validation data) as well as different metrics to compare methods. We also introduce a new public repository for mass spectrometric reference data sets ( http://compms.org/RefData ) that contains a collection of publicly available data sets for performance evaluation for a wide range of different methods.

  2. Field gas chromatography-mass spectrometry for fast analysis.

    PubMed

    Makas, Alexei L; Troshkov, Mikhail L

    2004-02-05

    The objective of this presentation is to demonstrate the original device and procedure for fast gas chromatography-mass spectrometry (GC-MS) analysis of gaseous and liquid samples and to discuss its features and capabilities. The concept was developed in order to expand the range of compounds suitable for GC separation and to reduce the time of analysis. Field GC-MS, consisting of original "concentrator-thermodesorber" (CTD) unit, multiple module GC system and compact magnetic mass spectrometer with powerful two-stage vacuum system and multicollector ion detector, is represented. The whole weight of the device is 90 kg. Power consumption is 250 W. The device and analytical procedures allow high speed screening of toxic substances in air and extracts within 100 s per sample. The examples of applications are described, including fast screening of tributyl phosphate (TBP) in air at low ppt level at the rate 1 sample/min.

  3. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    PubMed

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  4. Mass Spectrometry of Protein Complexes: From Origins to Applications

    NASA Astrophysics Data System (ADS)

    Mehmood, Shahid; Allison, Timothy M.; Robinson, Carol V.

    2015-04-01

    Now routine is the ability to investigate soluble and membrane protein complexes in the gas phase of a mass spectrometer while preserving folded structure and ligand-binding properties. Several recent transformative developments have occurred to arrive at this point. These include advances in mass spectrometry instrumentation, particularly with respect to resolution; the ability to study intact membrane protein complexes released from detergent micelles; and the use of protein unfolding in the gas phase to obtain stability parameters. Together, these discoveries are providing unprecedented information on the compositional heterogeneity of biomacromolecules, the unfolding trajectories of multidomain proteins, and the stability imparted by ligand binding to both soluble and membrane-embedded protein complexes. We review these recent breakthroughs, highlighting the challenges that had to be overcome and the physicochemical insight that can now be gained from studying proteins and their assemblies in the gas phase.

  5. High pressure (>1 atm) electrospray ionization mass spectrometry.

    PubMed

    Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2011-03-01

    High pressure electrospray ionization mass spectrometry has been performed by pressurizing a custom made ion source chamber with compressed air to a pressure higher than the atmospheric pressure. The ion source was coupled to a commercial time-of-flight mass spectrometer using a nozzle-skimmer arrangement. The onset voltage for the electrospray of aqueous solution was found to be independent on the operating pressure. The onset voltage for the corona discharge, however, increased with the rise of pressure following the Paschen's law. Thus, besides having more working gas for the desolvation process, gaseous breakdown could also be avoided by pressurizing the ESI ion source with air to an appropriate level. Stable electrospray ionization has been achieved for the sample solution with high surface tension such as pure water in both positive and negative ion modes. Fragmentation of labile compounds during the ionization process could also be reduced by optimizing the operating pressure of the ion source.

  6. Structural Characterization of Carbohydrates by Fourier Transform Tandem Mass Spectrometry

    PubMed Central

    Zhou, Wen; Håkansson, Kristina

    2012-01-01

    Fourier transform tandem mass spectrometry (MS/MS) provides high mass accuracy, high sensitivity, and analytical versatility and has therefore emerged as an indispensable tool for structural elucidation of biomolecules. Glycosylation is one of the most common posttranslational modifications, occurring in ~50% of proteins. However, due to the structural diversity of carbohydrates, arising from non-template driven biosynthesis, achievement of detailed structural insight is highly challenging. This review briefly discusses carbohydrate sample preparation and ionization methods, and highlights recent developments in alternative high-resolution MS/MS strategies, including infrared multiphoton dissociation (IRMPD), electron capture dissociation (ECD), and electron detachment dissociation (EDD), for carbohydrates with a focus on glycans and proteoglycans from mammalian glycoproteins. PMID:22389641

  7. Quantification of antidepressants using gas chromatography-mass spectrometry.

    PubMed

    Winecker, Ruth E

    2010-01-01

    Antidepressants are of great interest to clinical and forensic toxicologists as they are frequently used in suicidal gestures; they can be the source of drug interactions and some have narrow therapeutic indices making the potential for toxicity more likely. There are five categories of antidepressants based on function and/or structure. These are monoamine oxidase inhibitors (MAOI), cyclic antidepressants including tricyclic and tetracyclic compounds (TCA), selective serotonin reuptake inhibitors (SSRI), serotonin-norepinephrine reuptake inhibitors (SNRI), and atypical compounds. This method is designed to detect the presence of antidepressant drugs in blood/serum, urine, and tissue specimens using gas chromatography/mass spectrometry (GC/MS) following liquid-liquid extraction (LLE) and identified by relative retention times and mass spectra.

  8. Mass spectrometry. [in organic ion and biorganic chemistry and medicine

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Cox, R. E.; Derrick, P. J.

    1974-01-01

    Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.

  9. Analysis of protein composition using multidimensional chromatography and mass spectrometry.

    PubMed

    Link, Andrew J; Washburn, Michael P

    2014-11-03

    Multidimensional liquid chromatography of peptides produced by protease digestion of complex protein mixtures followed by tandem mass spectrometry can be coupled with automated database searching to identify large numbers of proteins in complex samples. These methods avoid the limitations of gel electrophoresis and in-gel digestions by directly identifying protein mixtures in solution. One method used extensively is named Multidimensional Protein Identification Technology (MudPIT), where reversed-phase chromatography and strong cation-exchange chromatography are coupled directly in a microcapillary column. This column is then placed in line between an HPLC and a mass spectrometer for complex mixture analysis. MudPIT remains a powerful approach for analyzing complex mixtures like whole proteomes and protein complexes. MudPIT is used for quantitative proteomic analysis of complex mixtures to generate novel biological insights.

  10. Sequencing of Oligourea Foldamers by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bathany, Katell; Owens, Neil W.; Guichard, Gilles; Schmitter, Jean-Marie

    2013-03-01

    This study is focused on sequence analysis of peptidomimetic helical oligoureas by means of tandem mass spectrometry, to build a basis for de novo sequencing for future high-throughput combinatorial library screening of oligourea foldamers. After the evaluation of MS/MS spectra obtained for model compounds with either MALDI or ESI sources, we found that the MALDI-TOF-TOF instrument gave more satisfactory results. MS/MS spectra of oligoureas generated by decay of singly charged precursor ions show major ion series corresponding to fragmentation across both CO-NH and N'H-CO urea bonds. Oligourea backbones fragment to produce a pattern of a, x, b, and y type fragment ions. De novo decoding of spectral information is facilitated by the occurrence of low mass reporter ions, representative of constitutive monomers, in an analogous manner to the use of immonium ions for peptide sequencing.

  11. Mass Spectrometry for Planetary Probes: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Niemann, Hasso B.; Harpold, Dan N.; Jamieson, Brian G.; Mahaffy, Paul R.

    2005-01-01

    Atmospheric entry probes present a unique opportunity for performing quantitative analysis of extra-terrestrial atmospheres in cases where remote sensing alone may not be sufficient and measurements with balloons or aircraft is not practical. An entry probe can provide a complete vertical profile of atmospheric parameters including chemical composition, which cannot be obtained with most other techniques. There are, however, unique challenges associated with building instruments for an entry probe, as compared to orbiters, landers, or rovers. Conditions during atmospheric entry are extreme, there are inherent time constraints due to the short duration of the experiment, and the instrument experiences rapid environmental changes in temperature and pressure as it descends. In addition, there are resource limitations, i.e. mass, power, size and bandwidth. Finally, the demands on the instrument design are determined in large part by conditions (pressure, temperature, composition) unique to the particular body under study, and as a result there is no one-size-fits-all instrument for an atmospheric probe. Many of these requirements can be more easily met by miniaturizing the probe instrument. Our experience building mass spectrometers for atmospheric entry probes leads us to believe that the time is right for a fundamental change in the way spaceflight mass spectrometers are built. The emergence over the past twenty years of Micro-electro- mechanical Systems (MEMS), utilizing lithographic semiconductor fabrication techniques to produce instrument systems in miniature, holds great promise for application to spaceflight mass spectrometry. A highly miniaturized, high performance and low-power mass spectrometer would be an enormous benefit to future entry probe missions, allowing, for example, parallel measurements (e.g., multiple simultaneous gas chromatographic analyses and direct atmospheric leaks.) Such an instrument would also enable mass spectrometry on board small

  12. Charge detection mass spectrometry: Instrumentation & applications to viruses

    NASA Astrophysics Data System (ADS)

    Pierson, Elizabeth E.

    For over three decades, electrospray ionization (ESI) has been used to ionize non-covalent complexes and subsequently transfer the intact ion into the gas phase for mass spectrometry (MS) analysis. ESI generates a distribution of multiple charged ions, resulting in an m/z spectrum comprised of a series of peaks, known as a charge state envelope. To obtain mass information, the number of charges for each peak must be deduced. For smaller biological analytes like peptides, the charge states are sufficiently resolved and this process is straightforward. For macromolecular complexes exceeding ~100 kDa, this process is complicated by the broadening and shifting of charge states due to incomplete desolvation, salt adduction, and inherent mass heterogeneity. As the analyte mass approaches the MDa regime, the m/z spectrum is often comprised of a broad distribution of unresolved charge states. In such cases, mass determination is precluded. Charge detection mass spectrometry (CDMS) is an emerging MS technique for determining the masses of heterogeneous, macromolecular complexes. In CDMS, the m/z and z of single ions are measured concurrently so that mass is easily calculated. With this approach, deconvolution of an m/z spectrum is unnecessary. This measurement is carried out by passing macroions through a conductive cylinder. The induced image charge on the cylindrical detector provides information about m/z and z: the m/z is related to its time-of-flight through the detector, and the z is related to the intensity of the image charge. We have applied CDMS to study the self-assembly of virus capsids. Late-stage intermediates in the assembly of hepatitis B virus, a devastating human pathogen, have been identified. This is the first time that such intermediates have been detected and represent a significant advancement towards understanding virus capsid assembly. CDMS has also been used to identify oversized, non-icosahedral polymorphs in the assembly of woodchuck hepatitis

  13. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    PubMed

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers.

  14. Electrospray Ionization Tandem Mass Spectrometry of Ammonium Cationized Polyethers

    NASA Astrophysics Data System (ADS)

    Nasioudis, Andreas; Heeren, Ron M. A.; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F.

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers.

  15. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    NASA Astrophysics Data System (ADS)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias; Helmus, Rick; Knepper, Thomas P.; de Voogt, Pim

    2016-02-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health.

  16. Mass Spectrometry of Atmospheric Pressure Surface Wave Discharges

    NASA Astrophysics Data System (ADS)

    Ridenti, M. A.; Souza-Corrêa, J. A.; Amorim, J.

    2016-05-01

    By applying mass spectrometry techniques, we carried out measurements of ionic mass spectrum and their energy distribution in order to investigate an atmospheric argon discharge by using a surfatron surface-wave device. The mass and energy distribution measurements were performed with fixed flow rate (2.5 SLM) of pure argon gas (99.999%) and different Ar-O2 gas mixture compositions (99-1, 98-2 and 97-3). The mass spectra and energy distributions were recorded for Ar+, O+, O+ 2, N+ and N2 +. The axial distribution profiles of ionic mass and their energy were obtained for different experimental conditions as a function of the plasma length. The results showed that the peak of the positive ion energy distributions shifted to higher energies and also that the distribution width increased as the distance between the sampling orifice and the launcher gap was increased. It was also found that under certain experimental conditions the ion flux of atomic species were higher than the ion flux of their diatomic counterpart. The motivation of this study was to obtain a better understanding of a surface wave discharge in atmospheric pressure that may play a key role on new second generation biofuel technologies.

  17. Increasing Protein Charge State When Using Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Flanigan, Paul M.; Perez, Johnny J.; Archer, Jieutonne J.; Levis, Robert J.

    2015-05-01

    Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol ( m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.

  18. 37th British Mass Spectrometry Society annual meeting.

    PubMed

    Wright, Patricia; Eckers, Christine

    2017-03-01

    The 37th British Mass Spectrometry Society (BMSS) annual meeting took place over a brilliantly sunny 3 days by the sea in the historic Eastbourne Winter Gardens on the south coast of England. It was held between 13 and 15 September 2016. Two-hundred attendees enjoyed a conference covering all aspects of MS with speakers drawn from across Europe and North America. The BMSS is particularly proud of the encouragement it offers students and early career scientists, both financially in the form of travel grants and also in terms of opportunities to present at an international level in a supportive atmosphere. Further encouragement to newcomers to the field is offered in the form of the Barber Prize for best oral presentation and the Bordoli Prize for the best poster. This year's winners were Patrick Knight (University of Leeds), the Bordoli Prize for the poster 'Characterising the Interaction of Ataxin-3 and the Poly-Glutamine Aggregation Inhibitor QBP1'; Lisa Deininger (Sheffield Hallam University), the Barber Prize for 'Out Damned Spot! Bottom Up Proteomics for the Analysis of Bloodied Fingermarks'. In addition, the Delegates Choice for best poster went to Hannah Britt (Durham University) for 'Monitoring Reactions of Small Molecules with Cell Membranes by Liquid Chromatography-Mass Spectrometry'. For services to the MS community, Professor Gareth Brenton (Swansea University) was awarded the BMSS Medal; Professor Alison Ashcroft (Leeds University) and Anna Upton (former BMSS administrator) were given lifetime membership of the BMSS.

  19. An efficient data format for mass spectrometry-based proteomics.

    PubMed

    Shah, Anuj R; Davidson, Jennifer; Monroe, Matthew E; Mayampurath, Anoop M; Danielson, William F; Shi, Yan; Robinson, Aaron C; Clowers, Brian H; Belov, Mikhail E; Anderson, Gordon A; Smith, Richard D

    2010-10-01

    The diverse range of mass spectrometry (MS) instrumentation along with corresponding proprietary and nonproprietary data formats has generated a proteomics community driven call for a standardized format to facilitate management, processing, storing, visualization, and exchange of both experimental and processed data. To date, significant efforts have been extended towards standardizing XML-based formats for mass spectrometry data representation, despite the recognized inefficiencies associated with storing large numeric datasets in XML. The proteomics community has periodically entertained alternate strategies for data exchange, e.g., using a common application programming interface or a database-derived format. However, these efforts have yet to gain significant attention, mostly because they have not demonstrated significant performance benefits over existing standards, but also due to issues such as extensibility to multidimensional separation systems, robustness of operation, and incomplete or mismatched vocabulary. Here, we describe a format based on standard database principles that offers multiple benefits over existing formats in terms of storage size, ease of processing, data retrieval times, and extensibility to accommodate multidimensional separation systems.

  20. An efficient data format for mass spectrometry based proteomics

    SciTech Connect

    Shah, Anuj R.; Davidson, Jennifer L.; Monroe, Matthew E.; Mayampurath, Anoop M.; Danielson, William F.; Shi, Yan; Robinson, Aaron C.; Clowers, Brian H.; Belov, Mikhail E.; Anderson, Gordon A.; Smith, Richard D.

    2010-10-01

    The diverse range of mass spectrometry (MS) instrumentation along with corresponding proprietary and non-proprietary data formats has generated a proteomics community driven call for a standardized format to facilitate management, processing, storing, visualization, and exchange of both experimental and processed data. To date, significant efforts have been extended towards standardizing XML-based formats for mass spectrometry data representation, despite the recognized inefficiencies associated with storing large numeric datasets in XML. The proteomics community has periodically entertained alternate strategies for data exchange, e.g., using a common application programming interface or a database-derived format. However these efforts have yet to garner significant attention, mostly because they haven’t illustrated significant performance benefits over existing standards, but also due to issues such as extensibility to multi-dimensional separation systems, robustness of operation, and incomplete or mismatched vocabulary. Here, we describe a format based on standard database principles that offers multiple benefits over existing formats in terms of storage size, ease of processing, data retrieval times and extensibility to accommodate multi-dimensional separation systems.

  1. High resolution MALDI imaging mass spectrometry of retinal tissue lipids.

    PubMed

    Anderson, David M G; Ablonczy, Zsolt; Koutalos, Yiannis; Spraggins, Jeffrey; Crouch, Rosalie K; Caprioli, Richard M; Schey, Kevin L

    2014-08-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism's surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4(-/-) knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers.

  2. NMR and mass spectrometry of phosphorus in wetlands

    USGS Publications Warehouse

    El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.

    2008-01-01

    There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.

  3. Mass spectrometry-based proteomics: existing capabilities and future directions

    SciTech Connect

    Angel, Thomas E.; Aryal, Uma K.; Hengel, Shawna M.; Baker, Erin Shammel; Kelly, Ryan T.; Robinson, Errol W.; Smith, Richard D.

    2012-05-21

    Mass spectrometry-based proteomics provides a means for identification, characterization, and quantification of biomolecules that are integral components of the processes essential for life. Characterization of proteins present in a biological system at the proteome and sub-proteomes (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects as well as potentially a range of translational applications. Emerging technologies such as ion mobility separations coupled with mass spectrometry and microchip-based - proteome measurements combined with continued enhancement of MS instrumentation and separation techniques, such as reversed phase liquid chromatography and potentially capillary electrophoresis, show great promise for both broad undirected as well as targeted measurements and will be critical for e.g., the proteome-wide characterization of post translational modifications and identification, or the verification, and validation of potential biomarkers of disease. MS-based proteomics is also increasingly demonstrating great potential for contributing to our understanding of the dynamics, reactions, and roles proteins and peptides play advancing our understanding of biology on a system wide level for a wide range of applications, from investigations of microbial communities, bioremediation, and human health and disease states alike.

  4. Unexpected Analyte Oxidation during Desorption Electrospray Ionization - Mass Spectrometry

    SciTech Connect

    Pasilis, Sofie P; Kertesz, Vilmos; Van Berkel, Gary J

    2008-01-01

    During the analysis of surface spotted analytes using desorption electrospray ionization mass spectrometry (DESI-MS), abundant ions are sometimes observed that appear to be the result of oxygen addition reactions. In this investigation, the effect of sample aging, the ambient lab environment, spray voltage, analyte surface concentration, and surface type on this oxidative modification of spotted analytes, exemplified by tamoxifen and reserpine, during analysis by desorption electrospray ionization mass spectrometry was studied. Simple exposure of the samples to air and to ambient lighting increased the extent of oxidation. Increased spray voltage lead also to increased analyte oxidation, possibly as a result of oxidative species formed electrochemically at the emitter electrode or in the gas - phase by discharge processes. These oxidative species are carried by the spray and impinge on and react with the sampled analyte during desorption/ionization. The relative abundance of oxidized species was more significant for analysis of deposited analyte having a relatively low surface concentration. Increasing spray solvent flow rate and addition of hydroquinone as a redox buffer to the spray solvent were found to decrease, but not entirely eliminate, analyte oxidation during analysis. The major parameters that both minimize and maximize analyte oxidation were identified and DESI-MS operational recommendations to avoid these unwanted reactions are suggested.

  5. LASER DESORPTION IONIZATION MASS SPECTROMETRY ON SILICON NANOWELL ARRAYS

    PubMed Central

    Gulbakan, Basri; Park, Dooho; Kang, Myungchan; Kececi, Kaan; Martin, Charles R.; Powell, David H.; Tan, Weihong

    2010-01-01

    This paper describes a new technique for fabrication of nanostructured porous silicon (pSi) for laser desorption ionization mass spectrometry. Porous silicon nanowell arrays were prepared by argon plasma etching through an alumina mask. Porous silicon prepared in this way proved to be an excellent substrate for desorption/ionization on silicon (DIOS) mass spectrometry (MS) using adenosine, Pro-Leu-Gly tripeptide and [Des-Arg9]-bradykinin as the model compounds. It also allows the analyses of complex biological samples such as a tryptic digest of bovine serum albumin, and a carnitine standard mixture. Nanowell array surfaces were also used for direct quantification of the illicit drug fentanyl in red blood cell extracts. This method also allows full control of the surface features. MS results suggested that the pore depth has significant effect on the ion signals. Significant improvement in the ionization was observed by increasing the pore depth from 10 nm to 50 nm. These substrates are useful for laser desorption ionization in both the atmospheric pressure and vacuum regimes. PMID:20731384

  6. Quantitation of DNA adducts by stable isotope dilution mass spectrometry

    PubMed Central

    Tretyakova, Natalia; Goggin, Melissa; Janis, Gregory

    2012-01-01

    Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations potentially contributing to the development of cancer. Due to their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples – including immunoassay, HPLC, and 32P-postlabeling – isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adducts concentrations in biological samples are between 0.01 – 10 adducts per 108 normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry – especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS – have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke. PMID:22827593

  7. Analysis of hazardous biological material by MALDI mass spectrometry

    SciTech Connect

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  8. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    SciTech Connect

    Ludvigson, Laura D.

    2004-01-01

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease prevention and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.

  9. Use of Tritium Accelerator Mass Spectrometry for Tree Ring Analysis

    PubMed Central

    LOVE, ADAM H.; HUNT, JAMES R.; ROBERTS, MARK L.; SOUTHON, JOHN R.; CHIARAPPA - ZUCCA, MARINA L.; DINGLEY, KAREN H.

    2010-01-01

    Public concerns over the health effects associated with low-level and long-term exposure to tritium released from industrial point sources have generated the demand for better methods to evaluate historical tritium exposure levels for these communities. The cellulose of trees accurately reflects the tritium concentration in the source water and may contain the only historical record of tritium exposure. The tritium activity in the annual rings of a tree was measured using accelerator mass spectrometry to reconstruct historical annual averages of tritium exposure. Milligram-sized samples of the annual tree rings from a Tamarix located at the Nevada Test Site are used for validation of this methodology. The salt cedar was chosen since it had a single source of tritiated water that was well-characterized as it varied over time. The decay-corrected tritium activity of the water in which the salt cedar grew closely agrees with the organically bound tritium activity in its annual rings. This demonstrates that the milligram-sized samples used in tritium accelerator mass spectrometry are suited for reconstructing anthropogenic tritium levels in the environment. PMID:12144257

  10. High Resolution MALDI Imaging Mass Spectrometry of Retinal Tissue Lipids

    PubMed Central

    Anderson, David M. G.; Ablonczy, Zsolt; Koutalos, Yiannis; Spraggins, Jeffrey; Crouch, Rosalie K.; Caprioli, Richard M.; Schey, Kevin L.

    2014-01-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism’s surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina including age related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4−/− knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers. PMID:24819461

  11. Data-Independent Microbial Metabolomics with Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rath, Christopher M.; Yang, Jane Y.; Alexandrov, Theodore; Dorrestein, Pieter C.

    2013-08-01

    Atmospheric ionization methods are ideally suited for prolonged MS/MS analysis. Data-independent MS/MS is a complementary technique for analysis of biological samples as compared to data-dependent analysis. Here, we pair data-independent MS/MS with the ambient ionization method nanospray desorption electrospray ionization (nanoDESI) for untargeted analysis of bacterial metabolites. Proof-of-principle data and analysis are illustrated by sampling Bacillus subtilis and Pseudomonas aeruginosa directly from Petri dishes. We found that this technique enables facile comparisons between strains via MS and MS/MS plots which can be translated to chemically informative molecular maps through MS/MS networking. The development of novel techniques to characterize microbial metabolites allows rapid and efficient analysis of metabolic exchange factors. This is motivated by our desire to develop novel techniques to explore the role of interspecies interactions in the environment, health, and disease. This is a contribution to honor Professor Catherine C. Fenselau in receiving the prestigious ASMS Award for a Distinguished Contribution in Mass Spectrometry for her pioneering work on microbial mass spectrometry.

  12. High Resolution MALDI Imaging Mass Spectrometry of Retinal Tissue Lipids

    NASA Astrophysics Data System (ADS)

    Anderson, David M. G.; Ablonczy, Zsolt; Koutalos, Yiannis; Spraggins, Jeffrey; Crouch, Rosalie K.; Caprioli, Richard M.; Schey, Kevin L.

    2014-08-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism's surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4 -/- knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers.

  13. Expanded newborn screening by mass spectrometry: New tests, future perspectives.

    PubMed

    Ombrone, Daniela; Giocaliere, Elisa; Forni, Giulia; Malvagia, Sabrina; la Marca, Giancarlo

    2016-01-01

    Tandem mass spectrometry (MS/MS) has become a leading technology used in clinical chemistry and has shown to be particularly sensitive and specific when used in newborn screening (NBS) tests. The success of tandem mass spectrometry is due to important advances in hardware, software and clinical applications during the last 25 years. MS/MS permits a very rapid measurement of many metabolites in different biological specimens by using filter paper spots or directly on biological fluids. Its use in NBS give us the chance to identify possible treatable metabolic disorders even when asymptomatic and the benefits gained by this type of screening is now recognized worldwide. Today the use of MS/MS for second-tier tests and confirmatory testing is promising especially in the early detection of new disorders such as some lysosomal storage disorders, ADA and PNP SCIDs, X-adrenoleucodistrophy (X-ALD), Wilson disease, guanidinoacetate methyltransferase deficiency (GAMT), and Duchenne muscular dystrophy. The new challenge for the future will be reducing the false positive rate by using second-tier tests, avoiding false negative results by using new specific biomarkers and introducing new treatable disorders in NBS programs.

  14. Laser desorption ionization mass spectrometry on silicon nanowell arrays.

    PubMed

    Gulbakan, Basri; Park, Dooho; Kang, Myungchan; Kececi, Kaan; Martin, Charles R; Powell, David H; Tan, Weihong

    2010-09-15

    This paper describes a new technique for fabrication of nanostructured porous silicon (pSi) for laser desorption ionization mass spectrometry. Porous silicon nanowell arrays were prepared by argon plasma etching through an alumina mask. Porous silicon prepared in this way proved to be an excellent substrate for desorption/ionization on silicon (DIOS) mass spectrometry (MS) using adenosine, Pro-Leu-Gly tripeptide, and [Des-Arg(9)]-bradykinin as the model compounds. It also allows the analyses of complex biological samples such as a tryptic digest of bovine serum albumin and a carnitine standard mixture. Nanowell array surfaces were also used for direct quantification of the illicit drug fentanyl in red blood cell extracts. This method also allows full control of the surface features. MS results suggested that the pore depth has a significant effect on the ion signals. Significant improvement in the ionization was observed by increasing the pore depth from 10 to 50 nm. These substrates are useful for laser desorption ionization in both the atmospheric pressure and vacuum regimes.

  15. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    PubMed

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2016-09-29

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg(-1); ICP-MS, 437ngg(-1)) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses.

  16. Elucidation of the mass fragmentation pathways of potato glycoalkaloids and aglycons using Orbitrap mass spectrometry.

    PubMed

    Cahill, Michael G; Caprioli, Giovanni; Vittori, Sauro; James, Kevin J

    2010-09-01

    The mass fragmentation of potato glycoalkaloids, α-solanine and α-chaconine, and the aglycons, demissidine and solasodine were studied using the Orbitrap Fourier transform (FT) mass spectrometer. Using the linear ion trap (LIT) mass spectrometry, multistage collisional-induced dissociation (CID) experiments (MS(n)) on the [M + H](+) precursor ions were performed to aid the elucidation of the mass fragmentation pathways. In addition, higher energy collisional-induced dissociation (HCD) mass spectra were generated for these toxins at a high resolution setting [100,000 FWHM (full width at half maximum)] using the Orbitrap. This hybrid mass spectrometry instrumentation was exploited to produce MS(3) spectra by selecting MS(2) product ions, generated using LIT MS, and fragmentation using HCD. The accurate mass data in the MS(3) spectra aided the confirmation of proposed product ion formulae. The precursor and product ions from glycoalkaloids lost up to four sugars from different regions during MS(n) experiments. Mass fragmentation of the six-ring aglycons were similar, generating major product ions that resulted from cleavages at the B-rings and E-rings.

  17. Antioxidant profiling of vine tea (Ampelopsis grossedentata): Off-line coupling heart-cutting HSCCC with HPLC-DAD-QTOF-MS/MS.

    PubMed

    Gao, Qingping; Ma, Ruyi; Chen, Lin; Shi, Shuyun; Cai, Ping; Zhang, Shuihan; Xiang, Haiyan

    2017-06-15

    Vine tea with strong antioxidant activity is commonly consumed as healthy tea/beverage. However, detailed information about its antioxidants is incomplete. Here, off-line hyphenation of heart-cutting high-speed countercurrent chromatography (HSCCC) with high performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry (HPLC-DAD-QTOF-MS/MS) were described for systematic profiling antioxidants in vine tea. At first, antioxidants were rapidly screened by 1,1-diphenyl-2-picryl-hydrazyl radical-high performance liquid chromatography (DPPH-HPLC). Subsequently, stepwise HSCCC using petroleum ether-ethyl acetate-methanol-water (4:9:4:9, v/v/v/v) and (4:9:5:8, v/v/v/v) as solvent systems was optimized to fractionate and enrich antioxidants from ethyl acetate fraction of vine tea. Finally, heart-cutting mode was used to collect five interesting HSCCC fractions for HPLC-DAD-QTOF-MS/MS analysis. Desirable orthogonality between HSCCC and HPLC led to identification of fifteen antioxidant flavonoids, while four minor flavonoids were first reported in vine tea. Results showed that the developed system is efficient to comprehensively explore antioxidants from complex natural herbs.

  18. Elucidation of the mass fragmentation pathways of tomatidine and β1-hydroxytomatine using orbitrap mass spectrometry.

    PubMed

    Caprioli, Giovanni; Cahill, Michael; Logrippo, Serena; James, Kevin

    2015-04-01

    Tomatoes, members of the Solanaceae plant family, produce biologically active secondary metabolites, including glycoalkaloids, which may have both adverse and beneficial biological effects. Using the linear ion trap (LIT) mass spectrometry, multi-stage collision induced dissociation (CID) experiments (MSn) were performed to elucidate characteristic fragmentation pathways of the glycoalkaloid, tomatidine and of β1-hydroxytomatine. High resolution with high accuracy mass analysis using an Orbitrap fourier transform MS with higher-energy collisional induced dissociation (HCD) was used to produce mass spectra data across a wide spectral range for confirmation of proposed ion structures and formulae.

  19. Analysis of calcitonin and its analogues by capillary zone electrophoresis and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry.

    PubMed

    Amini, Ahmad; Olofsson, Ing-Marie

    2004-06-01

    Capillary zone electrophoretic (CZE) separations and mass spectrometric analysis of salmon calcitonin and related analogues were performed to generate electrophoresis and mass fingerprints for quality control of the recombinant polypeptide pharmaceutical salmon calcitonin. The calcitonins and their corresponding tryptic digests were successfully separated by CZE at low pH in fused silica capillaries dynamically modified with poly-cationic polymers. The poly-cationic modified inner surface of the fused silica capillaries generated a strong anionic electroosmotic flow (EOF). Analytes of negative, neutral, and positive charge were all swept through the capillary toward the positive electrode. Compared to Polybrene-coated capillaries, capillaries coated with PEI showed a markedly slower but much more stable electroosmotic flow. The migration order of the analytes was predicted by comparing approximate values of the charge to (molecular mass)2/3 ratios. The predicted migration order was confirmed by off-line analysis of CZE fractions with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS).

  20. Non-Target Screening of Veterinary Drugs Using Tandem Mass Spectrometry on SmartMass

    NASA Astrophysics Data System (ADS)

    Xia, Bing; Liu, Xin; Gu, Yu-Cheng; Zhang, Zhao-Hui; Wang, Hai-Yan; Ding, Li-Sheng; Zhou, Yan

    2013-05-01

    Non-target screening of veterinary drugs using tandem mass spectrometric data was performed on the SmartMass platform. This newly developed software uses the characteristic fragmentation patterns (CFP) to identify chemicals, especially those containing particular substructures. A mixture of 17 sulfonamides was separated by ultra performance liquid chromatography (UPLC), and SmartMass was used to process the tandem mass spectrometry (MS/MS) data acquired on an Orbitrap mass spectrometer. The data were automatically extracted, and each sulfonamide was recognized and analyzed with a prebuilt analysis rule. By using this software, over 98 % of the false candidate structures were eliminated, and all the correct structures were found within the top 10 of the ranking lists. Furthermore, SmartMass could also be used to identify slightly modified contraband drugs and metabolites with simple prebuilt rules. [Figure not available: see fulltext.