DOE Office of Scientific and Technical Information (OSTI.GOV)
HU TA
2009-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
Conti, Giorgio; Gregoretti, Cesare; Spinazzola, Giorgia; Festa, Olimpia; Ferrone, Giuliano; Cipriani, Flora; Rossi, Marco; Piastra, Marco; Costa, Roberta
2015-04-01
In adults and children, patient-ventilator synchrony is strongly dependent on both the ventilator settings and interface used in applying positive pressure to the airway. The aim of this bench study was to determine whether different interfaces and ventilator settings may influence patient-ventilator interaction in pediatric models of normal and mixed obstructive and restrictive respiratory conditions. A test lung, connected to a pediatric mannequin using different interfaces (endotracheal tube [ETT], face mask, and helmet), was ventilated in pressure support ventilation mode testing 2 ventilator settings (pressurization time [Timepress]50%/cycling-off flow threshold [Trexp]25%, Timepress80%/Trexp60%), randomly applied. The test lung was set to simulate one pediatric patient with a healthy respiratory system and another with a mixed obstructive and restricted respiratory condition, at different breathing frequencies (f) (30, 40, and 50 breaths/min). We measured inspiratory trigger delay, pressurization time, expiratory trigger delay, and time of synchrony. At each breathing frequency, the helmet showed the longest inspiratory trigger delay compared with the ETT and face mask. At f30, the ETT had a reduced Tpress. The helmet had the shortest Tpress in the simulated child with a mixed obstructive and restricted respiratory condition, at f40 during Timepress50%/Trexp25% and at f50 during Timepress80%/Trexp60%. In the simulated child with a normal respiratory condition, the ETT presented the shortest Tpress value at f50 during Timepress80%/Trexp60%. Concerning the expiratory trigger delay, the helmet showed the best interaction at f30, but the worst at f40 and at f50. The helmet showed the shortest time of synchrony during all ventilator settings. The choice of the interface can influence patient-ventilator synchrony in a pediatric model breathing at increased f, thus making it more difficult to set the ventilator, particularly during noninvasive ventilation. The helmet demonstrated the worst interaction, suggesting that the face mask should be considered as the first choice for delivering noninvasive ventilation in a pediatric model. Copyright © 2015 by Daedalus Enterprises.
Traversari, A A L; Bottenheft, C; van Heumen, S P M; Goedhart, C A; Vos, M C
2017-02-01
Switching off air handling systems in operating theaters during periods of prolonged inactivity (eg, nights, weekends) can produce a substantial reduction of energy expenditure. However, little evidence is available regarding the effect of switching off the air handling system during periods of prolonged inactivity on the air quality in operating theaters during operational periods. The aim of this study is to determine the amount of time needed after restarting the ventilation system to return to a stable situation, with air quality at least equal to the situation before switching off the system. Measurements were performed in 3 operating theaters, all of them equipped with a unidirectional downflow (UDF) system. Measurements (particle counts of emitted particles with a particle size ≥0.5 µm) were taken during the start-up of the ventilation system to determine when prespecified degrees of protection were achieved. Temperature readings were taken to determine when a stable temperature difference between the periphery and the protected area was reached, signifying achievement of a stable condition. After starting up the system, the protected area achieved the required degrees of protection within 20 minutes (95% upper confidence limit). A stable temperature difference was achieved within 23 minutes (95% upper confidence limit). Both findings lie well within the period of 25 minutes normally required for preparations before the start of surgical procedures. Switching off the ventilation system during prolonged inactivity (during the night and weekend) has no negative effect on the air quality in UDF operating theaters during normal operational hours. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.A. Kumar
2000-06-21
The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less
Lindroth, M; Mortensson, W
1986-09-01
Chest X-ray, pulmonary mechanics, clinical lung disease and growth were studied in 48 low birthweight infants surviving after ventilator treatment in the neonatal period. Bronchopulmonary dysplasia (BPD) was present in 14 infants shortly after weaning off ventilator. At 4 to 6 years of age most patients had normal chest radiographs but 13 still showed signs of pulmonary fibrosis and hyperinflation. Most patients had low dynamic compliance and high pulmonary resistance shortly after ventilator treatment. All but 8, however, had normal findings at 1 to 1 1/2 years of age. Pneumonias and bronchitis were common during the first two years but thereafter declined in frequency. Weight and length development were retarded for BPD patients during the first two years and for non-BPD patients for the first year. Both groups had a complete catch-up.
Lu, Yehu; Wei, Fanru; Lai, Dandan; Shi, Wen; Wang, Faming; Gao, Chuansi; Song, Guowen
2015-08-01
Personal cooling systems (PCS) have been developed to mitigate the impact of severe heat stress for humans working in hot environments. It is still a great challenge to develop PCSs that are portable, inexpensive, and effective. We studied the performance of a new hybrid PCS incorporating both ventilation fans and phase change materials (PCMs). The cooling efficiency of the newly developed PCS was investigated on a sweating manikin in two hot conditions: hot humid (HH, 34°C, 75% RH) and hot dry (HD, 34°C, 28% RH). Four test scenarios were selected: fans off with no PCMs (i.e., Fan-off, the CONTROL), fans on with no PCMs (i.e., Fan-on), fans off with fully solidified PCMs (i.e., PCM+Fan-off), and fans on with fully solidified PCMs (i.e., PCM+Fan-on). It was found that the addition of PCMs provided a 54∼78min cooling in HH condition. In contrast, the PCMs only offered a 19-39min cooling in HD condition. In both conditions, the ventilation fans greatly enhanced the evaporative heat loss compared with Fan-off. The hybrid PCS (i.e., PCM+Fan-on) provided a continuous cooling effect during the three-hour test and the average cooling rate for the whole body was around 111 and 315W in HH and HD conditions, respectively. Overall, the new hybrid PCS may be an effective means of ameliorating symptoms of heat stress in both hot-humid and hot-dry environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhija, M.C.; Bronfman, H.J.; Lange, R.C.
1978-10-01
Ventilation was studied with /sup 133/Xe in 18 patients with central hypoventilation (Ondine's Curse) in whom diaphragmatic pacers were implanted. Three distinct patterns emerged: Type I, improvement in ventilation on the paced side (11 of 18 patients); Type II, improvement on both the paced and unpaced side (4 of 18); and Type III, no improvement (3 of 18). With the pacer off, many of these patients have patterns that mimic chronic obstructive pulmonary disease and that revert to normal with pacing. This retention, clearly reversible, cannot reflect permanent airways or airspace disease.
30 CFR 77.212 - Draw-off tunnel ventilation fans; installation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Draw-off tunnel ventilation fans; installation... UNDERGROUND COAL MINES Surface Installations § 77.212 Draw-off tunnel ventilation fans; installation. When fans are used to ventilate draw-off tunnels the fans shall be: (a) Installed on the surface; (b...
NASA Astrophysics Data System (ADS)
Moreno, T.; Pérez, N.; Reche, C.; Martins, V.; de Miguel, E.; Capdevila, M.; Centelles, S.; Minguillón, M. C.; Amato, F.; Alastuey, A.; Querol, X.; Gibbons, W.
2014-08-01
A high resolution air quality monitoring campaign (PM, CO2 and CO) was conducted on differently designed station platforms in the Barcelona subway system under: (a) normal forced tunnel ventilation, and (b) with daytime tunnel ventilation systems shut down. PM concentrations are highly variable (6-128 μgPM1 m-3, 16-314 μgPM3 m-3, and 33-332 μgPM10 m-3, 15-min averages) depending on ventilation conditions and station design. Narrow platforms served by single-track tunnels are heavily dependent on forced tunnel ventilation and cannot rely on the train piston effect alone to reduce platform PM concentrations. In contrast PM levels in stations with spacious double-track tunnels are not greatly affected when tunnel ventilation is switched off, offering the possibility of significant energy savings without damaging air quality. Sampling at different positions along the platform reveals considerable lateral variation, with the greatest accumulation of particulates occurring at one end of the platform. Passenger accesses can dilute PM concentrations by introducing cleaner outside air, although lateral down-platform accesses are less effective than those positioned at the train entry point. CO concentrations on the platform are very low (≤1 ppm) and probably controlled by ingress of traffic-contaminated street-level air. CO2 averages range from 371 to 569 ppm, changing during the build-up and exchange of passengers with each passing train.
Evaluation of ventilators used during transport of critically ill patients: a bench study.
Boussen, Salah; Gainnier, Marc; Michelet, Pierre
2013-11-01
To evaluate the most recent transport ventilators' operational performance regarding volume delivery in controlled mode, trigger function, and the quality of pressurization in pressure support mode. Eight recent transport ventilators were included in a bench study in order to evaluate their accuracy to deliver a set tidal volume under normal resistance and compliance conditions, ARDS conditions, and obstructive conditions. The performance of the triggering system was assessed by the measure of the decrease in pressure and the time delay required to open the inspiratory valve. The quality of pressurization was obtained by computing the integral of the pressure-time curve for the first 300 ms and 500 ms after the onset of inspiration. For the targeted tidal volumes of 300, 500, and 800 mL the errors ranged from -3% to 48%, -7% to 18%, and -5% to 25% in the normal conditions, -4% to 27%, -2% to 35%, and -3% to 35% in the ARDS conditions, and -4% to 53%, -6% to 30%, and -30% to 28% in the obstructive conditions. In pressure support mode the pressure drop range was 0.4-1.7 cm H2O, the trigger delay range was 68-198 ms, and the pressurization performance (percent of ideal pressurization, as measured by pressure-time product at 300 ms and 500 ms) ranges were -9% to 44% at 300 ms and 6%-66% at 500 ms (P < .01). There were important differences in the performance of the tested ventilators. The most recent turbine ventilators outperformed the pneumatic ventilators. The best performers among the turbine ventilators proved comparable to modern ICU ventilators.
Principi, T; Falzetti, G; Elisei, D; Donati, A; Pelaia, P
2009-04-01
The behavior of B-type natriuretic peptide (BNP) is assessed during mechanical ventilation (MV) and spontaneous breathing after extubation in critical patients. Thirty patients admitted in the Intensive Care Unit (ICU) were enrolled. BNP, fluid balance (FB), airway pressure (AP) and dobutamine infusion needing (DP) were registered in three stages: T0, admission to ICU; T1, before extubation; T2, 24 h after extubation. Patients with congestive heart failure (CHF) had BNP values higher than other patients. The value of BNP during MV was greater than normal in all patients. The cut-off to discriminate patients with heart failure during MV was 286 pgxmL(-1)(sensitivity: 86%; specificity: 90%). The increase of BNP during MV directly correlated with FB and inversely correlated with AP and DP. The plasmatic level of BNP remained higher than normal values 24 h after extubation. The underlying disease of an ICU patient seems to play a relevant role for BNP production and is probably linked to different aspects of therapeutic approach required by the patient. Our data suggest a cut-off value of BNP higher than the usual is necessary to discriminate mechanically-ventilated patients without CHF. This study should be repeated with an enlarged population.
Kim, Ki-Hyun; Szulejko, Jan E; Jo, Hyo-Jae; Lee, Min-Hee; Kim, Yong-Hyun; Kwon, Eilhann; Ma, Chang-Jin; Kumar, Pawan
2016-08-01
Volatile organic compounds (VOCs) in automobile cabins were measured quantitatively to describe their emission characteristics in relation to various idling scenarios using three used automobiles (compact, intermediate sedan, and large sedan) under three different idling conditions ([1] cold engine off and ventilation off, [2] exterior air ventilation with idling warm engine, and [3] internal air recirculation with idling warm engine). The ambient air outside the vehicle was also analyzed as a reference. A total of 24 VOCs (with six functional groups) were selected as target compounds. Accordingly, the concentration of 24 VOC quantified as key target compounds averaged 4.58 ± 3.62 ppb (range: 0.05 (isobutyl alcohol) ∼ 38.2 ppb (formaldehyde)). Moreover, if their concentrations are compared between different automobile operational modes: the 'idling engine' levels (5.24 ± 4.07) was 1.3-5 times higher than the 'engine off' levels (4.09 ± 3.23) across all 3 automobile classes. In summary, automobile in-cabin VOC emissions are highly contingent on changes in engine and ventilation modes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of Ventilation on Segmental Bioimpedance Spectroscopy Measures Using Generalizability Theory
ERIC Educational Resources Information Center
Turner, A. Allan; Lozano-Nieto, Albert; Bouffard, Marcel
2010-01-01
The purpose of this study was to examine the effect of three ventilation conditions (i.e., normal, regimented, and no-ventilation) on the reproducibility of bioimpedance scores in humans for the forearm and trunk segments. One hundred able-bodied North American men and women, from 18 to 71 years of age, volunteered as participants. The…
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Bangert, L. S.
1982-01-01
An investigation was conducted in the Langley 16 foot Transonic Tunnel and in the static test facility of that tunnel to determine the effects of divergent flap ventilation of an axisymmetric nozzle on nozzle internal (static) and wind on performance. Tests were conducted at 0 deg angle of attack at static conditions and at Mach numbers from 0.6 to 1.2. Ratios of jet total pressure to free stream static pressure were varied from 1.0 (jet off) to approximately 14.0 depending on Mach number. The results of this study indicate that divergent flap ventilation generally provided large performance benefits at overexpanded nozzle conditions and performance reductions at underexpanded nozzle conditions when compared to the baseline (unventilated) nozzles. Ventilation also reduced the peak static and wind on performance levels.
Proportional mechanical ventilation through PWM driven on/off solenoid valve.
Sardellitti, I; Cecchini, S; Silvestri, S; Caldwell, D G
2010-01-01
Proportional strategies for artificial ventilation are the most recent form of synchronized partial ventilatory assistance and intra-breath control techniques available in clinical practice. Currently, the majority of commercial ventilators allowing proportional ventilation uses proportional valves to generate the flow rate pattern. This paper proposes on-off solenoid valves for proportional ventilation given their small size, low cost and short switching time, useful for supplying high frequency ventilation. A new system based on a novel fast switching driver circuit combined with on/off solenoid valve is developed. The average short response time typical of onoff solenoid valves was further reduced through the driving circuit for the implementation of PWM control. Experimental trials were conducted for identifying the dynamic response of the PWM driven on/off valve and for verifying its effectiveness in generating variable-shaped ventilatory flow rate patterns. The system was able to smoothly follow the reference flow rate patterns also changing in time intervals as short as 20 ms, achieving a flow rate resolution up to 1 L/min and repeatability in the order of 0.5 L/min. Preliminary results showed the feasibility of developing a stand alone portable device able to generate both proportional and high frequency ventilation by only using on-off solenoid valves.
Needed Now: The 85% Quick Fix in Bio-Defense
2004-09-01
That was about ten, twelve, fifteen years ago. Recently, Russian scientists have proclaimed success in developing a Bacillus anthracis strain...commanders to direct personnel to avoid exposure, for example by moving in-doors and turning off heating, ventilation, and air conditioning ( HVAC ...likely be clear of contamination while the air inside buildings may be contaminated because of HVAC operations.20 Therefore, if the HVAC was shut off
46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...
46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...
46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...
46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...
46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A...
Lv, Jinze; Zhu, Lizhong
2013-03-01
Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p < 0.05), and the slopes (1.2-4.54) indicated that ventilating like the model supermarket increased the potential health risks from low molecular weight PAHs. During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.
NASA Astrophysics Data System (ADS)
Goel, Anju; Kumar, Prashant
2015-04-01
Quantification of disproportionate contribution made by signalised traffic intersections (TIs) to overall daily commuting exposure is important but barely known. We carried out mobile measurements in a car for size-resolved particle number concentrations (PNCs) in the 5-560 nm range under five different ventilation settings on a 6 km long busy round route with 10 TIs. These ventilation settings were windows fully open and both outdoor air intake from fan and heating off (Set1), windows closed, fan 25% on and heating 50% on (Set2), windows closed, fan 100% on and heating off (Set3), windows closed, fan off and heating 100% on (Set4), and windows closed, fan and heating off (Set5). Measurements were taken sequentially inside and outside the car cabin at 10 Hz sampling rate using a solenoid switching system in conjunction with a fast response differential mobility spectrometer (DMS50). The objectives were to: (i) identify traffic conditions under which TIs becomes hot-spots of PNCs, (ii) assess the effect of ventilation settings in free-flow and delay conditions (waiting time at a TI when traffic signal is red) on in-cabin PNCs with respect to on-road PNCs at TIs, (iii) deriving the relationship between the PNCs and change in driving speed during delay time at the TIs, and (iv) quantify the contribution of exposure at TIs with respect to overall commuting exposure. Congested TIs were found to become hot-spots when vehicle accelerate from idling conditions. In-cabin peak PNCs followed similar temporal trend as for on-road peak PNCs. Reduction in in-cabin PNC with respect to outside PNC was highest (70%) during free-flow traffic conditions when both fan drawing outdoor air into the cabin and heating was switched off. Such a reduction in in-cabin PNCs at TIs was highest (88%) with respect to outside PNC during delay conditions when fan was drawing outside air at 25% on and heating was 50% on settings. PNCs and change in driving speed showed an exponential-fit relationship during the delay events at TIs. Short-term exposure for ∼2% of total commuting time in car corresponded to ∼25% of total respiratory doses. This study highlights a need for more studies covering diverse traffic and geographical conditions in urban environments so that the disparate contribution of exposure at TIs can be quantified.
Reaerosolization of Fluidized Spores in Ventilation Systems▿
Krauter, Paula; Biermann, Arthur
2007-01-01
This project examined dry, fluidized spore reaerosolization in a heating, ventilating, and air conditioning duct system. Experiments using spores of Bacillus atrophaeus, a nonpathogenic surrogate for Bacillus anthracis, were conducted to delineate the extent of spore reaerosolization behavior under normal indoor airflow conditions. Short-term (five air-volume exchanges), long-term (up to 21,000 air-volume exchanges), and cycled (on-off) reaerosolization tests were conducted using two common duct materials. Spores were released into the test apparatus in turbulent airflow (Reynolds number, 26,000). After the initial pulse of spores (approximately 1010 to 1011 viable spores) was released, high-efficiency particulate air filters were added to the air intake. Airflow was again used to perturb the spores that had previously deposited onto the duct. Resuspension rates on both steel and plastic duct materials were between 10−3 and 10−5 per second, which decreased to 10 times less than initial rates within 30 min. Pulsed flow caused an initial spike in spore resuspension concentration that rapidly decreased. The resuspension rates were greater than those predicted by resuspension models for contamination in the environment, a result attributed to surface roughness differences. There was no difference between spore reaerosolization from metal and that from plastic duct surfaces over 5 hours of constant airflow. The spores that deposited onto the duct remained a persistent source of contamination over a period of several hours. PMID:17293522
Distribution of pulmonary ventilation and perfusion during short periods of weightlessness
NASA Technical Reports Server (NTRS)
Michels, D. B.; West, J. B.
1978-01-01
Airborne experiments were conducted on four trained normal male subjects (28-40 yr) to study pulmonary function during short periods (22-27 sec) of zero gravity obtained by flying a jet aircraft through appropriate parabolic trajectories. The cabin was always pressurized to a sea-level altitude. The discussion is limited to pulmonary ventilation and perfusion. The results clearly demonstrate that gravity is the major factor causing nonuniformity in the topographical distribution of pulmonary ventilation. More importantly, the results suggest that virtually all the topographical nonuniformity of ventilation, blood flow, and lung volume observed under 1-G conditions are eliminated during short periods of zero gravity.
A Passive Cavity Concept for Improving the Off-Design Performance of Fixed-Geometry Exhaust Nozzles
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Gunther, Christopher L.; Hunter, Craig A.
1996-01-01
An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to study a passive cavity concept for improving the off-design performance of fixed-geometry exhaust nozzles. Passive cavity ventilation (through a porous surface) was applied to divergent flap surfaces and tested at static conditions in a sub-scale, nonaxisymmetric, convergent-divergent nozzle. As part of a comprehensive investigation, force, moment and pressure measurements were taken and focusing schlieren flow visualization was obtained for a baseline configuration and D passive cavity configurations. All tests were conducted with no external flow and high-pressure air was used to simulate jet-exhaust flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable shock-induced boundary-layer separation at off-design conditions, which came about through the natural tendency of overexpanded exhaust flow to satisfy conservation requirements by detaching from the nozzle divergent flaps. Passive cavity ventilation added the ability to control off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. Separation alleviation offers potential for installed nozzle performance benefits by reducing drag at forward flight speeds, even though it may reduce off-design static thrust efficiency as much as 3.2 percent. Encouraging stable separation of the exhaust flow offers significant performance improvements at static, low NPR and low Mach number flight conditions by improving off-design static thrust efficiency as much as 2.8 percent. By designing a fixed-geometry nozzle with fully porous divergent flaps, where both cavity location and percent open porosity of the flaps could be varied, passive flow control would make it possible to improve off-design nozzle performance across a wide operating range. In addition, the ability to encourage separation on one flap while alleviating it on the other makes it possible to generate thrust vectoring in the nozzle through passive flow control.
This School Is for Kids and Community.
ERIC Educational Resources Information Center
American School Board Journal, 1982
1982-01-01
In Avon (Indiana), a community lacking public buildings, a middle school was built with community uses in mind. The swimming pool, gymnasium, and commons area can be blocked off for community use by using floor-to-ceiling gates. The school's heating, ventilating, and air conditioning systems are also energy-efficient. (Author/MLF)
Remetti, R; Gigante, G E
2010-01-01
The study presents the results of a campaign of measurements on the daily radon concentration using a Genitron Alpha Guard spectrometer. All the measurements have been intended to highlight the radon concentration variability during the 24 hours of the day and trying to find correlations with other ambient parameters such as temperature and pressure or local conditions such as the presence or not of a forced ventilation system. The main part of the measurements have been carried in the area of the Nuclear Measurement Laboratory of the Department of Basic and Applied Sciences for Engineering of "Sapienza" University of Rome. Results show a rapid rise of radon concentration in the night, when the artificial ventilation system was off and with door and windows closed. In the morning, after the opening of door and windows, the concentration falls down abruptly. With artificial ventilation system in function concentration never reaches significant values.
Using spacecraft trace contaminant control systems to cure sick building syndrome
NASA Technical Reports Server (NTRS)
Graf, John C.
1994-01-01
Many residential and commercial buildings with centralized, recirculating, heating ventilation and air conditioning systems suffer from 'Sick Building Syndrome.' Ventilation rates are reduced to save energy costs, synthetic building materials off-gas contaminants, and unsafe levels of volatile organic compounds (VOC's) accumulate. These unsafe levels of contaminants can cause irritation of eyes and throat, fatigue and dizziness to building occupants. Increased ventilation, the primary method of treating Sick Building Syndrome is expensive (due to increased energy costs) and recently, the effectiveness of increased ventilation has been questioned. On spacecraft venting is not allowed, so the primary methods of air quality control are; source control, active filtering, and destruction of VOC's. Four non-venting contaminant removal technologies; strict material selection to provide source control, ambient temperature catalytic oxidation, photocatalytic oxidation, and uptake by higher plants, may have potential application for indoor air quality control.
Herrmann, Evan S.; Cone, Edward J; Mitchell, John M.; Bigelow, George E.; LoDico, Charles; Flegel, Ron; Vandrey, Ryan
2015-01-01
Introduction Cannabis is the most widely used illicit drug. Many individuals are incidentally exposed to secondhand cannabis smoke, but little is known about the effects of this exposure. This report examines the physiological, subjective, and behavioral/cognitive effects of secondhand cannabis exposure, and the influence of room ventilation on these effects. Methods Non-cannabis-using individuals were exposed to secondhand cannabis smoke from six individuals smoking cannabis (11.3% THC) ad libitum in a specially constructed chamber for one hour. Chamber ventilation was experimentally manipulated so that participants were exposed under unventilated conditions or with ventilation at a rate of 11 air exchanges/hour. Physiological, subjective and behavioral/cognitive measures of cannabis exposure assessed after exposure sessions were compared to baseline measures. Results Exposure to secondhand cannabis smoke under unventilated conditions produced detectable cannabinoid levels in blood and urine, minor increases in heart rate, mild to moderate self-reported sedative drug effects, and impaired performance on the Digit Symbol Substitution Task (DSST). One urine specimen tested positive at using a 50 ng/mL cut-off and several specimens were positive at 20 ng/mL. Exposure under ventilated conditions resulted in much lower blood cannabinoid levels, and did not produce sedative drug effects, impairments in performance, or positive urine screen results. Conclusions Room ventilation has a pronounced effect on exposure to secondhand cannabis smoke. Under extreme, unventilated conditions, secondhand cannabis smoke exposure can produce detectable levels of THC in blood and urine, minor physiological and subjective drug effects, and minor impairment on a task requiring psychomotor ability and working memory. PMID:25957157
Herrmann, Evan S; Cone, Edward J; Mitchell, John M; Bigelow, George E; LoDico, Charles; Flegel, Ron; Vandrey, Ryan
2015-06-01
Cannabis is the most widely used illicit drug. Many individuals are incidentally exposed to secondhand cannabis smoke, but little is known about the effects of this exposure. This report examines the physiological, subjective, and behavioral/cognitive effects of secondhand cannabis exposure, and the influence of room ventilation on these effects. Non-cannabis-using individuals were exposed to secondhand cannabis smoke from six individuals smoking cannabis (11.3% THC) ad libitum in a specially constructed chamber for 1h. Chamber ventilation was experimentally manipulated so that participants were exposed under unventilated conditions or with ventilation at a rate of 11 air exchanges/h. Physiological, subjective and behavioral/cognitive measures of cannabis exposure assessed after exposure sessions were compared to baseline measures. Exposure to secondhand cannabis smoke under unventilated conditions produced detectable cannabinoid levels in blood and urine, minor increases in heart rate, mild to moderate self-reported sedative drug effects, and impaired performance on the digit symbol substitution task (DSST). One urine specimen tested positive at using a 50 ng/ml cut-off and several specimens were positive at 20 ng/ml. Exposure under ventilated conditions resulted in much lower blood cannabinoid levels, and did not produce sedative drug effects, impairments in performance, or positive urine screen results. Room ventilation has a pronounced effect on exposure to secondhand cannabis smoke. Under extreme, unventilated conditions, secondhand cannabis smoke exposure can produce detectable levels of THC in blood and urine, minor physiological and subjective drug effects, and minor impairment on a task requiring psychomotor ability and working memory. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Contrella, Benjamin; Tustison, Nicholas J.; Altes, Talissa A.; Avants, Brian B.; Mugler, John P., III; de Lange, Eduard E.
2012-03-01
Although 3He MRI permits compelling visualization of the pulmonary air spaces, quantitation of absolute ventilation is difficult due to confounds such as field inhomogeneity and relative intensity differences between image acquisition; the latter complicating longitudinal investigations of ventilation variation with respiratory alterations. To address these potential difficulties, we present a 4-D segmentation and normalization approach for intra-subject quantitative analysis of lung hyperpolarized 3He MRI. After normalization, which combines bias correction and relative intensity scaling between longitudinal data, partitioning of the lung volume time series is performed by iterating between modeling of the combined intensity histogram as a Gaussian mixture model and modulating the spatial heterogeneity tissue class assignments through Markov random field modeling. Evaluation of the algorithm was retrospectively applied to a cohort of 10 asthmatics between 19-25 years old in which spirometry and 3He MR ventilation images were acquired both before and after respiratory exacerbation by a bronchoconstricting agent (methacholine). Acquisition was repeated under the same conditions from 7 to 467 days (mean +/- standard deviation: 185 +/- 37.2) later. Several techniques were evaluated for matching intensities between the pre and post-methacholine images with the 95th percentile value histogram matching demonstrating superior correlations with spirometry measures. Subsequent analysis evaluated segmentation parameters for assessing ventilation change in this cohort. Current findings also support previous research that areas of poor ventilation in response to bronchoconstriction are relatively consistent over time.
46 CFR 92.20-50 - Heating and cooling.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) under normal operating conditions without curtailing ventilation. (c) Radiators and other heating... the occupants. Pipes leading to radiators or heating apparatus must be insulated where those pipes...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-29
... Treatment, Heating Ventilation and Air Conditioning Systems.'' This new standard provides comprehensive test... Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water-Cooled... NUCLEAR REGULATORY COMMISSION [NRC-2012-0152] Design, Inspection, and Testing Criteria for Air...
46 CFR 32.40-50 - Heating and cooling-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) under normal operating conditions without curtailing ventilation. (c) Radiators and other heating... the occupants. Pipes leading to radiators or heating apparatus must be insulated where those pipes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Less, Brennan; Walker, Iain; Tang, Yihuan
2014-06-01
Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, andmore » their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.« less
Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto
2014-01-01
Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, H; Yu, N; Stephans, K
2014-06-01
Purpose: To develop a normalization method to remove discrepancy in ventilation function due to different breathing patterns. Methods: Twenty five early stage non-small cell lung cancer patients were included in this study. For each patient, a ten phase 4D-CT and the voluntarily maximum inhale and exhale CTs were acquired clinically and retrospectively used for this study. For each patient, two ventilation maps were calculated from voxel-to-voxel CT density variations from two phases of the quiet breathing and two phases of the extreme breathing. For the quiet breathing, 0% (inhale) and 50% (exhale) phases from 4D-CT were used. An in-house toolmore » was developed to calculate and display the ventilation maps. To enable normalization, the whole lung of each patient was evenly divided into three parts in the longitude direction at a coronal image with a maximum lung cross section. The ratio of cumulated ventilation from the top one-third region to the middle one-third region of the lung was calculated for each breathing pattern. Pearson's correlation coefficient was calculated on the ratios of the two breathing patterns for the group. Results: For each patient, the ventilation map from the quiet breathing was different from that of the extreme breathing. When the cumulative ventilation was normalized to the middle one-third of the lung region for each patient, the normalized ventilation functions from the two breathing patterns were consistent. For this group of patients, the correlation coefficient of the normalized ventilations for the two breathing patterns was 0.76 (p < 0.01), indicating a strong correlation in the ventilation function measured from the two breathing patterns. Conclusion: For each patient, the ventilation map is dependent of the breathing pattern. Using a regional normalization method, the discrepancy in ventilation function induced by the different breathing patterns thus different tidal volumes can be removed.« less
Mechanical model for simulating the conditioning of air in the respiratory tract.
Bergonse Neto, Nelson; Von Bahten, Luiz Carlos; Moura, Luís Mauro; Coelho, Marlos de Souza; Stori Junior, Wilson de Souza; Bergonse, Gilberto da Fontoura Rey
2007-01-01
To create a mechanical model that could be regulated to simulate the conditioning of inspired and expired air with the same normal values of temperature, pressure, and relative humidity as those of the respiratory system of a healthy young man on mechanical ventilation. Using several types of materials, a mechanical device was built and regulated using normal values of vital capacity, tidal volume, maximal inspiratory pressure, positive end-expiratory pressure, and gas temperature in the system. The device was submitted to mechanical ventilation for a period of 29.8 min. The changes in the temperature of the air circulating in the system were recorded every two seconds. The statistical analysis of the data collected revealed that the device was approximately as efficient in the conditioning of air as is the respiratory system of a human being. By the study endpoint, we had developed a mechanical device capable of simulating the conditioning of air in the respiratory tract. The device mimics the conditions of temperature, pressure, and relative humidity seen in the respiratory system of healthy individuals.
Increased ventilation of Antarctic deep water during the warm mid-Pliocene.
Zhang, Zhongshi; Nisancioglu, Kerim H; Ninnemann, Ulysses S
2013-01-01
The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ(13)C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ(13)C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features.
Increased ventilation of Antarctic deep water during the warm mid-Pliocene
Zhang, Zhongshi; Nisancioglu, Kerim H.; Ninnemann, Ulysses S.
2013-01-01
The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ13C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ13C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features. PMID:23422667
46 CFR 169.315 - Ventilation (other than machinery spaces).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...
46 CFR 169.315 - Ventilation (other than machinery spaces).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...
46 CFR 169.315 - Ventilation (other than machinery spaces).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...
46 CFR 169.315 - Ventilation (other than machinery spaces).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...
Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto
2014-01-01
Objective: Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. Methods: This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Results: Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. Conclusions: The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM. PMID:25029653
Code of Federal Regulations, 2011 CFR
2011-07-01
... simultaneous use of the ramp by vehicles and pedestrians. (d) Ramp maintenance. Ramps shall be properly... ramp inclines safely. (j) Safe speeds. Power driven vehicles used in Ro-Ro operations shall be operated at speeds that are safe for prevailing conditions. (k) Ventilation. Internal combustion engine-driven...
Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?
NASA Astrophysics Data System (ADS)
Thomsen, S.; Kanzow, T.; Colas, F.; Echevin, V.; Krahmann, G.; Engel, A.
2016-08-01
The Peruvian upwelling system encompasses the most intense and shallowest oxygen minimum zone (OMZ) in the ocean. This system shows pronounced submesoscale activity like filaments and fronts. We carried out glider-based observations off Peru during austral summer 2013 to investigate whether submesoscale frontal processes ventilate the Peruvian OMZ. We present observational evidence for the subduction of highly oxygenated surface water in a submesoscale cold filament. The subduction event ventilates the oxycline but does not reach OMZ core waters. In a regional submesoscale-permitting model we study the pathways of newly upwelled water. About 50% of upwelled virtual floats are subducted below the mixed layer within 5 days emphasizing a hitherto unrecognized importance of subduction for the ventilation of the Peruvian oxycline.
Evaluation of Rankine cycle air conditioning system hardware by computer simulation
NASA Technical Reports Server (NTRS)
Healey, H. M.; Clark, D.
1978-01-01
A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.
Allen, Scott G; Brewer, Lara; Gillis, Erik S; Pace, Nathan L; Sakata, Derek J; Orr, Joseph A
2017-09-01
Research has shown that increased breathing frequency during cardiopulmonary resuscitation is inversely correlated with systolic blood pressure. Rescuers often hyperventilate during cardiopulmonary resuscitation (CPR). Current American Heart Association advanced cardiac life support recommends a ventilation rate of 8-10 breaths/min. We hypothesized that a small, turbine-driven ventilator would allow rescuers to adhere more closely to advanced cardiac life support (ACLS) guidelines. Twenty-four ACLS-certified health-care professionals were paired into groups of 2. Each team performed 4 randomized rounds of 2-min cycles of CPR on an intubated mannikin, with individuals altering between compressions and breaths. Two rounds of CPR were performed with a self-inflating bag, and 2 rounds were with the ventilator. The ventilator was set to deliver 8 breaths/min, pressure limit 22 cm H 2 O. Frequency, tidal volume (V T ), peak inspiratory pressure, and compression interruptions (hands-off time) were recorded. Data were analyzed with a linear mixed model and Welch 2-sample t test. The median (interquartile range [IQR]) frequency with the ventilator was 7.98 (7.98-7.99) breaths/min. Median (IQR) frequency with the self-inflating bag was 9.5 (8.2-10.7) breaths/min. Median (IQR) ventilator V T was 0.5 (0.5-0.5) L. Median (IQR) self-inflating bag V T was 0.6 (0.5-0.7) L. Median (IQR) ventilator peak inspiratory pressure was 22 (22-22) cm H 2 O. Median (IQR) self-inflating bag peak inspiratory pressure was 30 (27-35) cm H 2 O. Mean ± SD hands-off times for ventilator and self-inflating bag were 5.25 ± 2.11 and 6.41 ± 1.45 s, respectively. When compared with a ventilator, volunteers ventilated with a self-inflating bag within ACLS guidelines. However, volunteers ventilated with increased variation, at higher V T levels, and at higher peak pressures with the self-inflating bag. Hands-off time was also significantly lower with the ventilator. (ClinicalTrials.gov registration NCT02743299.). Copyright © 2017 by Daedalus Enterprises.
Ventilation rates in recently constructed U.S. school classrooms.
Batterman, S; Su, F-C; Wald, A; Watkins, F; Godwin, C; Thun, G
2017-09-01
Low ventilation rates (VRs) in schools have been associated with absenteeism, poorer academic performance, and teacher dissatisfaction. We measured VRs in 37 recently constructed or renovated and mechanically ventilated U.S. schools, including LEED and EnergyStar-certified buildings, using CO 2 and the steady-state, build-up, decay, and transient mass balance methods. The transient mass balance method better matched conditions (specifically, changes in occupancy) and minimized biases seen in the other methods. During the school day, air change rates (ACRs) averaged 2.0±1.3 hour -1 , and only 22% of classrooms met recommended minimum ventilation rates. HVAC systems were shut off at the school day close, and ACRs dropped to 0.21±0.19 hour -1 . VRs did not differ by building type, although cost-cutting and comfort measures resulted in low VRs and potentially impaired IAQ. VRs were lower in schools that used unit ventilators or radiant heating, in smaller schools and in larger classrooms. The steady-state, build-up, and decay methods had significant limitations and biases, showing the need to confirm that these methods are appropriate. Findings highlight the need to increase VRs and to ensure that energy saving and comfort measures do not compromise ventilation and IAQ. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2014 CFR
2014-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2013 CFR
2013-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2012 CFR
2012-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static
Code of Federal Regulations, 2011 CFR
2011-10-01
... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...
Richard, JC; Pouzot, C; Gros, A; Tourevieille, C; Lebars, D; Lavenne, F; Frerichs, I; Guérin, C
2009-01-01
Introduction Electrical impedance tomography (EIT), which can assess regional lung ventilation at the bedside, has never been compared with positron-emission tomography (PET), a gold-standard to quantify regional ventilation. This experiment systematically compared both techniques in injured and non-injured lungs. Methods The study was performed in six mechanically ventilated female piglets. In normal lungs, tidal volume (VT) was randomly changed to 6, 8, 10 and 15 ml/kg on zero end-expiratory pressure (ZEEP), then, at VT 10 ml/kg, positive end-expiratory pressure (PEEP) was randomly changed to 5, 10 and 15 cmH2O. Afterwards, acute lung injury (ALI) was subsequently created in three animals by injecting 3 ml/kg hydrochloric acid into the trachea. Then at PEEP 5 cmH2O, VT was randomly changed to 8 and 12 ml/kg and PEEP of 10 and 15 cmH2O applied at VT 10 ml/kg. EIT and PET examinations were performed simultaneously. EIT ventilation (VTEIT) and lung volume (VL) were measured in the anterior and posterior area of each lung. On the same regions of interest, ventilation (VPET) and aerated lung volume (VAatten) were determined with PET. Results On ZEEP, VTEIT and VPET significantly correlated for global (VTEIT = VPET - 2E-13, R2 = 0.95, P < 0.001) and regional (VTEIT = 0.81VPET+7.65, R2 = 0.63, P < 0.001) ventilation over both conditions. For ALI condition, corresponding R2 were 0.91 and 0.73 (P < 0.01). Bias was = 0 and limits of agreement were -37.42 and +37.42 ml/min for global ventilation over both conditions. These values were 0.04 and -29.01 and +29.08 ml/min, respectively, for regional ventilation. Significant correlations were also found between VL and VAatten for global (VL = VAatten+1E-12, R2 = 0.93, P < 0.0001) and regional (VL = 0.99VAatten+0.92, R2 = 0.65, P < 0.001) volume. For ALI condition, corresponding R2 were 0.94 (P < 0.001) and 0.54 (P < 0.05). Bias was = 0 and limits of agreement ranged -38.16 and +38.16 ml for global ventilation over both conditions. These values were -0.24 and -31.96 to +31.48 ml, respectively, for regional ventilation. Conclusions Regional lung ventilation and volume were accurately measured with EIT in healthy and injured lungs and validated by simultaneous PET imaging. PMID:19480694
International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.
2009-01-01
The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.
Koh, Y-G.; Son, J.; Kwon, S-K.; Kim, H-J.; Kang, K-T.
2017-01-01
Objectives Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017;6:557–565. DOI: 10.1302/2046-3758.69.BJR-2016-0250.R1. PMID:28947604
Ortiz, J.D.; O'Connell, S. B.; DelViscio, J.; Dean, W.; Carriquiry, J.D.; Marchitto, T.; Zheng, Yen; VanGeen, A.
2004-01-01
Studies of the Santa Barbara Basin off the coast of California have linked changes in its bottom-water oxygen content to millennial-scale climate changes as recorded by the oxygen isotope composition of Greenland ice. Through the use of detailed records from a sediment core collected off the Magdalena Margin of Baja California, Mexico, we demonstrate that this teleconnection predominantly arose from changes in marine productivity, rather than changes in ventilation of the North Pacific, as was originally proposed. One possible interpretation is that the modern balance of El Nin??o-La Nin??a conditions that favors a shallow nutricline and high productivity today and during warm climate intervals of the past 52 k.y. was altered toward more frequent, deep nutricline, low productivity, El Nin??o-like conditions during cool climate intervals. ?? 2004 Geological Society of America.
12 CFR 1072.103 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... means information technology and any equipment or interconnected system or subsystem of equipment that... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... of major bodily functions of the immune system, special sense organs and skin, normal cell growth...
12 CFR 1072.103 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... means information technology and any equipment or interconnected system or subsystem of equipment that... data or information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as... of major bodily functions of the immune system, special sense organs and skin, normal cell growth...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Kaifang; Reinhardt, Joseph M.; Christensen, Gary E.
2013-12-15
Purpose: Four-dimensional computed tomography (4DCT) can be used to make measurements of pulmonary function longitudinally. The sensitivity of such measurements to identify change depends on measurement uncertainty. Previously, intrasubject reproducibility of Jacobian-based measures of lung tissue expansion was studied in two repeat prior-RT 4DCT human acquisitions. Difference in respiratory effort such as breathing amplitude and frequency may affect longitudinal function assessment. In this study, the authors present normalization schemes that correct ventilation images for variations in respiratory effort and assess the reproducibility improvement after effort correction.Methods: Repeat 4DCT image data acquired within a short time interval from 24 patients priormore » to radiation therapy (RT) were used for this analysis. Using a tissue volume preserving deformable image registration algorithm, Jacobian ventilation maps in two scanning sessions were computed and compared on the same coordinate for reproducibility analysis. In addition to computing the ventilation maps from end expiration to end inspiration, the authors investigated the effort normalization strategies using other intermediated inspiration phases upon the principles of equivalent tidal volume (ETV) and equivalent lung volume (ELV). Scatter plots and mean square error of the repeat ventilation maps and the Jacobian ratio map were generated for four conditions: no effort correction, global normalization, ETV, and ELV. In addition, gamma pass rate was calculated from a modified gamma index evaluation between two ventilation maps, using acceptance criterions of 2 mm distance-to-agreement and 5% ventilation difference.Results: The pattern of regional pulmonary ventilation changes as lung volume changes. All effort correction strategies improved reproducibility when changes in respiratory effort were greater than 150 cc (p < 0.005 with regard to the gamma pass rate). Improvement of reproducibility was correlated with respiratory effort difference (R = 0.744 for ELV in the cohort with tidal volume difference greater than 100 cc). In general for all subjects, global normalization, ETV and ELV significantly improved reproducibility compared to no effort correction (p = 0.009, 0.002, 0.005 respectively). When tidal volume difference was small (less than 100 cc), none of the three effort correction strategies improved reproducibility significantly (p = 0.52, 0.46, 0.46 respectively). For the cohort (N = 13) with tidal volume difference greater than 100 cc, the average gamma pass rate improves from 57.3% before correction to 66.3% after global normalization, and 76.3% after ELV. ELV was found to be significantly better than global normalization (p = 0.04 for all subjects, and p = 0.003 for the cohort with tidal volume difference greater than 100 cc).Conclusions: All effort correction strategies improve the reproducibility of the authors' pulmonary ventilation measures, and the improvement of reproducibility is highly correlated with the changes in respiratory effort. ELV gives better results as effort difference increase, followed by ETV, then global. However, based on the spatial and temporal heterogeneity in the lung expansion rate, a single scaling factor (e.g., global normalization) appears to be less accurate to correct the ventilation map when changes in respiratory effort are large.« less
A dual closed-loop control system for mechanical ventilation.
Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael
2004-04-01
Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.
Modeling of lung cancer risk due to radon exhalation of granite stone in dwelling houses.
Abbasi, Akbar
2017-01-01
Due to increasing occurrences of lung cancer, radon exhalation rates, radon concentrations, and lung cancer risks in several types of commonly used granite stone, samples used for flooring in buildings, have been investigated. We measured the radon exhalation rates due to granite stones by means of an AlphaGUARD Model PQ2000 in a cube container with changeable floor by various granite stones. The lung cancer risk and percentage of lung cancer deaths (LCRn) due to those conditions were calculated using Darby's model. The radon exhalation rates ranged from 1.59 ± 0.41 to 9.43 ± 0.74 Bq/m 2/h. The radon concentrations in the standard room with poor and normal ventilation were calculated 20.10-71.09 Bq/m 3 and 16.12-47.01 Bq/m 3, respectively. The estimated numbers of lung cancer deaths attributable to indoor radon due to granite stones in 2013 were 145 (3.33%) and 103 (2.37%) for poor and normal ventilation systems, respectively. According to our estimations, the values of 3.33% and 2.37% of lung cancer deaths in 2013 are attributed to radon exhalation of granite stones with poor and normal ventilation systems, respectively.
Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke.
Ott, Wayne; Klepeis, Neil; Switzer, Paul
2008-05-01
The air change rates of motor vehicles are relevant to the sheltering effect from air pollutants entering from outside a vehicle and also to the interior concentrations from any sources inside its passenger compartment. We made more than 100 air change rate measurements on four motor vehicles under moving and stationary conditions; we also measured the carbon monoxide (CO) and fine particle (PM(2.5)) decay rates from 14 cigarettes smoked inside the vehicle. With the vehicle stationary and the fan off, the ventilation rate in air changes per hour (ACH) was less than 1 h(-1) with the windows closed and increased to 6.5 h(-1) with one window fully opened. The vehicle speed, window position, ventilation system, and air conditioner setting was found to affect the ACH. For closed windows and passive ventilation (fan off and no recirculation), the ACH was linearly related to the vehicle speed over the range from 15 to 72 mph (25 to 116 km h(-1)). With a vehicle moving, windows closed, and the ventilation system off (or the air conditioner set to AC Max), the ACH was less than 6.6 h(-1) for speeds ranging from 20 to 72 mph (32 to 116 km h(-1)). Opening a single window by 3'' (7.6 cm) increased the ACH by 8-16 times. For the 14 cigarettes smoked in vehicles, the deposition rate k and the air change rate a were correlated, following the equation k=1.3a (R(2)=82%; n=14). With recirculation on (or AC Max) and closed windows, the interior PM(2.5) concentration exceeded 2000 microg m(-3) momentarily for all cigarettes tested, regardless of speed. The concentration time series measured inside the vehicle followed the mathematical solutions of the indoor mass balance model, and the 24-h average personal exposure to PM(2.5) could exceed 35 microg m(-3) for just two cigarettes smoked inside the vehicle.
Sensitivity Analysis of the Off-Normal Conditions of the SPIDER Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veltri, P.; Agostinetti, P.; Antoni, V.
2011-09-26
In the context of the development of the 1 MV neutral beam injector for the ITER tokamak, the study on beam formation and acceleration has considerable importance. This effort includes the ion source and accelerator SPIDER (Source for Production of Ions of Deuterium Extracted from an Rf plasma) ion source, planned to be built in Padova, and designed to extract and accelerate a 355 A/m{sup 2} current of H{sup -}(or 285 A/m{sup 2} D{sup -}) up to 100 kV. Exhaustive simulations were already carried out during the accelerator optimization leading to the present design. However, as it is expected thatmore » the accelerator shall operate also in case of pre-programmed or undesired off-normal conditions, the investigation of a large set of off-normal scenarios is necessary. These analyses will also be useful for the evaluation of the real performances of the machine, and should help in interpreting experimental results, or in identifying dangerous operating conditions.The present contribution offers an overview of the results obtained during the investigation of these off-normal conditions, by means of different modeling tools and codes. The results, showed a good flexibility of the device in different operating conditions. Where the consequences of the abnormalities appeared to be problematic further analysis were addressed.« less
Space station ventilation study
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Allen, G. E.
1972-01-01
A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.
Magrin, L; Brscic, M; Lora, I; Rumor, C; Tondello, L; Cozzi, G; Gottardo, F
2017-06-01
This research aimed at assessing the effects of a ceiling fan ventilation system on health, feeding, social behaviour and growth response of finishing young bulls fattened indoors during a mild summer season. A total of 69 Charolais young bulls were housed in six pens without any mechanical ventilation system (Control) and in six pens equipped with ceiling fans. The experimental period lasted 98 days from June until mid-September 2014. Four experimental days were considered in order to assess the effect of the ventilation system under two different microclimatic conditions: 2 alert days at monthly interval with temperature humidity index (THI) between 75 and 78, and 2 normal days with THI⩽74. Health and behaviour of the bulls were evaluated through 8-h observation sessions starting after morning feed delivery. The study was carried out during a rather cool summer with a climate average THI of 68.9 and 4 days with average THI>75. Despite these mild climate conditions, ceiling fans lowered litter moisture and acted as a preventive measure for bulls' dirtiness (odd ratio=47.9; 95% CI 19.6 to 117.4). The risk of abnormal breathing was increased for Control bulls (odd ratio=40.7; 95% CI 5.4 to 304.2). When exposed to alert THI conditions, respiration rate and panting scores increased and rumination duration dropped in Control bulls compared with bulls provided with a ceiling fan. During observations under alert THI, bulls spent less time eating, more time being inactive and consumed more water compared with normal THI conditions. Bulls' daily dry matter intake measured during the observation sessions decreased on alert compared with normal THI days (P<0.001) due to a drop of intake during the daylight hours. Ceiling fan treatment had no effect on bulls' growth performance or water consumption but these results most likely depended on the mild climate conditions. Ceiling fans proved to mitigate some of the negative effects of heat stress on bulls' behaviour (rumination, lying down and drinking water) and respiration rate, however. The lack of a significant improvement of bulls' growth response should not discourage beef farmers from using ceiling fans in indoor systems, considering the likely increase in frequency and intensity of heat waves in the planet's temperate areas induced by global warming.
Modeling water vapor and heat transfer in the normal and the intubated airways.
Tawhai, Merryn H; Hunter, Peter J
2004-04-01
Intubation of the artificially ventilated patient with an endotracheal tube bypasses the usual conditioning regions of the nose and mouth. In this situation any deficit in heat or moisture in the air is compensated for by evaporation and thermal transfer from the pulmonary airway walls. To study the dynamics of heat and water transport in the intubated airway, a coupled system of nonlinear equations is solved in airway models with symmetric geometry and anatomically based geometry. Radial distribution of heat, water vapor, and velocity in the airway are described by power-law equations. Solution of the time-dependent system of equations yields dynamic airstream and mucosal temperatures and air humidity. Comparison of model results with two independent experimental studies in the normal and intubated airway shows a close correlation over a wide range of minute ventilation. Using the anatomically based model a range of spatially distributed temperature paths is demonstrated, which highlights the model's ability to predict thermal behavior in airway regions currently inaccessible to measurement. Accurate representation of conducting airway geometry is shown to be necessary for simulating mouth-breathing at rates between 15 and 100 l x min(-1), but symmetric geometry is adequate for the low minute ventilation and warm inspired air conditions that are generally supplied to the intubated patient.
10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.
Code of Federal Regulations, 2013 CFR
2013-01-01
... maintained in a subcritical condition under credible conditions. (d) Radiation shielding and confinement... confinement of radioactive material under normal, off-normal, and credible accident conditions. (m) To the...
10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.
Code of Federal Regulations, 2012 CFR
2012-01-01
... maintained in a subcritical condition under credible conditions. (d) Radiation shielding and confinement... confinement of radioactive material under normal, off-normal, and credible accident conditions. (m) To the...
10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.
Code of Federal Regulations, 2010 CFR
2010-01-01
... maintained in a subcritical condition under credible conditions. (d) Radiation shielding and confinement... of radioactive material under normal, off-normal, and credible accident conditions. (m) To the extent...
10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.
Code of Federal Regulations, 2011 CFR
2011-01-01
... maintained in a subcritical condition under credible conditions. (d) Radiation shielding and confinement... of radioactive material under normal, off-normal, and credible accident conditions. (m) To the extent...
10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.
Code of Federal Regulations, 2014 CFR
2014-01-01
... maintained in a subcritical condition under credible conditions. (d) Radiation shielding and confinement... confinement of radioactive material under normal, off-normal, and credible accident conditions. (m) To the...
Sustainability Actions in Higher Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
This brochure details common sustainability actions taken by universities to reduce their energy consumption. Some of the most common actions include energy efficiency (existing building commissioning; lighting; heating, ventilation, and air conditioning upgrades; plug loads) and renewable energy (RE) (on-site or off-site solar deployment, RE procurement). We focus on the costs and benefits of energy efficiency measures and RE through the brochure while highlighting resources where readers can find more information.
Prevalence and test characteristics of national health safety network ventilator-associated events.
Lilly, Craig M; Landry, Karen E; Sood, Rahul N; Dunnington, Cheryl H; Ellison, Richard T; Bagley, Peter H; Baker, Stephen P; Cody, Shawn; Irwin, Richard S
2014-09-01
The primary aim of the study was to measure the test characteristics of the National Health Safety Network ventilator-associated event/ventilator-associated condition constructs for detecting ventilator-associated pneumonia. Its secondary aims were to report the clinical features of patients with National Health Safety Network ventilator-associated event/ventilator-associated condition, measure costs of surveillance, and its susceptibility to manipulation. Prospective cohort study. Two inpatient campuses of an academic medical center. Eight thousand four hundred eight mechanically ventilated adults discharged from an ICU. None. The National Health Safety Network ventilator-associated event/ventilator-associated condition constructs detected less than a third of ventilator-associated pneumonia cases with a sensitivity of 0.325 and a positive predictive value of 0.07. Most National Health Safety Network ventilator-associated event/ventilator-associated condition cases (93%) did not have ventilator-associated pneumonia or other hospital-acquired complications; 71% met the definition for acute respiratory distress syndrome. Similarly, most patients with National Health Safety Network probable ventilator-associated pneumonia did not have ventilator-associated pneumonia because radiographic criteria were not met. National Health Safety Network ventilator-associated event/ventilator-associated condition rates were reduced 93% by an unsophisticated manipulation of ventilator management protocols. The National Health Safety Network ventilator-associated event/ventilator-associated condition constructs failed to detect many patients who had ventilator-associated pneumonia, detected many cases that did not have a hospital complication, and were susceptible to manipulation. National Health Safety Network ventilator-associated event/ventilator-associated condition surveillance did not perform as well as ventilator-associated pneumonia surveillance and had several undesirable characteristics.
Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.
Fot, Evgenia V; Izotova, Natalia N; Yudina, Angelika S; Smetkin, Aleksei A; Kuzkov, Vsevolod V; Kirov, Mikhail Y
2017-01-01
The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode. Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning ( n = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning ( n = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm. Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO 2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group ( p < 0.01). The average time until tracheal extubation did not differ in the automated weaning and the protocolized weaning groups: 193 (115-309) and 197 (158-253) min, respectively, but increased to 290 (210-411) min in the standard weaning group. The automated weaning system after off-pump coronary surgery might provide postoperative ventilation in a more protective way, reduces the workload on medical staff, and does not prolong the duration of weaning from ventilator. The use of automated or protocolized weaning can reduce the duration of postoperative mechanical ventilation in comparison with non-protocolized weaning based on the physician's decision.
New Species of Fire Discovered: Fingering Flamelets Form a Dynamic Population
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Miller, Fletcher J.; Wichman, Indrek S.
2005-01-01
Poets and artists have long used fire as a metaphor for life. At the NASA Glenn Research Center, recent experiments in a subcritical Rayleigh number flow channel demonstrated that this analogy holds up surprisingly well when tools developed to characterize a biological population are applied to a class of fire that occurs in near-extinction, weakly convective environments (such as microgravity) or in vertically confined spaces (such as our apparatus). Under these conditions, the flame breaks into numerous 'flamelets" that form a Turing-type reaction-diffusion fingering pattern as they spread across the fuel. It is standard practice on U.S. spacecraft for the astronaut crew to turn off the ventilation to help extinguish a fire, both to eliminate the fresh oxygen supply and to reduce the distribution of the smoke. When crew members think that the fire is fully extinguished, they reactivate the ventilation system to clear the smoke. However, some flamelets can survive, and our experiments have demonstrated that flamelets quickly grow into a large fire when ventilation increases.
An experimental study of an adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Celik, Zeki; Roberts, Leonard
1988-01-01
A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.
Prevention of abnormal pulmonary mechanics in the postmortem guinea pig lung.
Reynolds, A M; McEvoy, R D
1988-04-01
Severe postmortem bronchoconstriction has been shown previously in guinea pig lungs and linked to pulmonary blood loss during exsanguination (Lai et al., J. Appl. Physiol. 56: 308-314, 1984). To reexamine this phenomenon we measured postmortem airway function in anesthetized open-chest guinea pigs after sudden circulatory arrest. Animals were divided into 4 groups of 10 and ventilated for 15 min postmortem with different gases: 1) room air, 2) conditioned air, 3) dry 5% CO2-21% O2-74% N2, and 4) conditioned 5% CO2-21% O2-74% N2. In room air-ventilated lungs there was a 50% decrease in dynamic compliance (Cdyn) by 15 min and marked gas trapping compared with control lungs. Conditioning the room air did not attenuate these changes, but when 5% CO2 was added to the conditioned postmortem inspirate, gas trapping was eliminated and the fall in Cdyn was almost abolished. Ventilation with a dry 5% CO2 gas mixture at room temperature resulted in a 31% fall in Cdyn at 15 min but no gas trapping. We conclude that marked abnormalities of airway function occur postmortem in room air-ventilated guinea pig lungs in the absence of pulmonary blood loss. The changes are mainly due to airway hypocarbia, a known cause of bronchoconstriction, but a reduction in Cdyn can also occur if there is marked airway cooling and drying. Acute postmortem airway dysfunction can be prevented in the guinea pig by maintaining normal airway gas composition.
International Space Station Crew Quarters Ventilation and Acoustic Design Implementation
NASA Technical Reports Server (NTRS)
Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.
2010-01-01
The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.
Exclusion of particulate allergens by window air conditioners.
Solomon, W R; Burge, H A; Boise, J R
1980-04-01
Effects of window air-conditioner operation on intramural particle levels were assessed in the bedrooms of 20 homes and in 10 outpatient clinic examining rooms during late summer periods. At each site, pollen and spore collections in the mechanically cooled room and a normally ventilated counterpart were compared using volumetric impactors. Substantially lower particle recoveries (median = 16/m3) were found in air-conditioned rooms than in those with open windows alone (median = 253 particles/m3). Furthermore, substantial exclusion of small (e.g., Ganoderma spores) as well as large (ragweed pollens) aerosol components were found by window units. Control studies within normally ventilated rooms and outside their open windows showed a marked but variable inward flux of particles. Window units appear to substantially reduce indoor allergan levels by maintaining the isolation of enclosed spaces from particle-bearing outdoor air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassanein, A.; Konkashbaev, I.
1999-03-15
The structure of a collisionless scrape-off-layer (SOL) plasma in tokamak reactors is being studied to define the electron distribution function and the corresponding sheath potential between the divertor plate and the edge plasma. The collisionless model is shown to be valid during the thermal phase of a plasma disruption, as well as during the newly desired low-recycling normal phase of operation with low-density, high-temperature, edge plasma conditions. An analytical solution is developed by solving the Fokker-Planck equation for electron distribution and balance in the SOL. The solution is in good agreement with numerical studies using Monte-Carlo methods. The analytical solutionsmore » provide an insight to the role of different physical and geometrical processes in a collisionless SOL during disruptions and during the enhanced phase of normal operation over a wide range of parameters.« less
Yogev, A; Hall, A M; Jay, O; White, M D
2015-01-15
It was hypothesized that normoxic 30% nitrous oxide (N2O) would suppress and hyperthermia would increase exercise ventilation during short duration, high intensity exercise. Thirteen males (24.2±0.8y; mean±SE), of normal physique (BMI, 23.8±1.0kgm(-2)), performed 4 separate 30s Wingate tests on a cycle ergometer. Exercise ventilation and its components, as well as mean skin and esophageal temperature (TES), were assessed in 2 way experimental design with factors of Thermal State (Normothermia or Hyperthermia) and Gas Type (Air or 30% Normomoxic N2O). In the 2 hyperthermic tests TES was elevated to ∼38.5°C in a 40°C bath. The main results indicated a significant interaction (F=7.14, P=0.02) between Gas Type and Thermal state for the exercise-induced increase in ventilation (ΔV˙E). During both the normothermia and hyperthermia conditions with AIR breathing, the exercise ΔV˙E was ∼80Lmin(-1) and it was significantly decreased to 73.1±24.1Lmin(-1) in the normothermia condition with N2O breathing relative to that of 92.0±25.0Lmin(-1) in the hyperthermia condition with N2O breathing. In conclusion, normoxic N2O breathing suppressed high intensity exercise ventilation during normothermia relative to that during hyperthermia on account of decreases in the tidal volume and this led CO2 retention. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Yanfu; Jiang, Juncheng; Zhu, Dezhi
2009-07-15
In order to research the fire characteristic under natural ventilation conditions in tunnels with roof openings, full-scale experiment of tunnel fire is designed and conducted. All the experimental data presented in this paper can be further applied for validation of numerical simulation models and reduced-scale experimental results. The physical model of tunnel with roof openings and the mathematical model of tunnel fire are presented in this paper. The tunnel fire under the same conditions as experiment is simulated using CFD software. From the results, it can be seen that most smoke is discharged directly off the tunnel through roof openings, so roof openings are favorable for exhausting smoke. But along with the decrease of smoke temperatures, some smoke may backflow and mix with the smoke-free layer below, which leads to fall in visibility and is unfavorable for personnel evacuation. So it is necessary to research more efficient ways for improving the smoke removal efficiency, such as early fire detection systems, adequate warning signs and setting tunnel cap.
Chatha, D; Duffin, J
1997-06-01
The pattern of breathing following a 10-breath voluntary hyperventilation period during hyperoxic rebreathing was compared to that without hyperventilation in 6 subjects (3 male and 3 female). The aim was to measure the posthyperventilation short-term potentiation of ventilation without changes in respiratory chemoreflex drives induced by the voluntary hyperventilation. Hyperoxia was used to reduce the peripheral chemoreflex drive, and rebreathing to prevent the decrease in arterial carbon dioxide tension normally produced by hyperventilation. There were significant differences between the male and female responses. However, in all subjects, ventilation and heart rate were increased during hyperventilation but end-tidal partial pressures of carbon dioxide and oxygen were unchanged. Following hyperventilation, ventilation immediately returned to the values observed when hyperventilation was omitted. Hyperventilation did not induce a short-term potentiation of ventilation under these conditions; changes in chemoreflex stimuli brought about by cardiovascular changes induced by hyperventilation may play a role in the short-term potentiation observed under other circumstances.
Ahn, H J; Kim, J A; Yang, M; Shim, W S; Park, K J; Lee, J J
2012-09-01
Recent papers suggest protective ventilation (PV) as a primary ventilation strategy during one-lung ventilation (OLV) to reduce postoperative pulmonary morbidity. However, data regarding the advantage of the PV strategy in patients with normal preoperative pulmonary function are inconsistent, especially in the case of minimally invasive thoracic surgery. Therefore we compared conventional OLV (VT 10 ml/kg, FiO2 1.0, zero PEEP) to protective OLV (VT 6 ml/kg, FiO2 0.5, PEEP 5 cmH2O) in patients with normal preoperative pulmonary function tests undergoing video-assisted thoracic surgery. Oxygenation, respiratory mechanics, plasma interleukin-6 and malondialdehyde levels were measured at baseline, 15 and 60 minutes after OLV and 15 minutes after restoration of two-lung ventilation. PaO2 and PaO2/FiO2 were higher in conventional OLV than in protective OLV (P<0.001). Interleukin-6 and malondialdehyde increased over time in both groups (P<0.05); however, the magnitudes of increase were not different between the groups. Postoperatively there were no differences in the number of patients with PaO2/FiO2<300 mmHg or abnormalities on chest radiography. Protective ventilation did not provide advantages over conventional ventilation for video-assisted thoracic surgery in this group of patients with normal lung function.
NASA Astrophysics Data System (ADS)
Voelker, Antje H. L.; Salgueiro, Emilia; Rodrigues, Teresa; Jimenez-Espejo, Francisco J.; Bahr, André; Alberto, Ana; Loureiro, Isabel; Padilha, Maria; Rebotim, Andreia; Röhl, Ursula
2015-10-01
Centennial-to-millennial scale records from IODP Site U1387, drilled during IODP Expedition 339 into the Faro Drift at 558 m water depth, now allow evaluating the climatic history of the upper core of the Mediterranean Outflow (MOW) and of the surface waters in the northern Gulf of Cadiz during the early Pleistocene. This study focuses on the period from Marine Isotope Stages (MIS) 29 to 34, i.e. the interval surrounding extreme interglacial MIS 31. Conditions in the upper MOW reflect obliquity, precession and millennial-scale variations. The benthic δ18O signal follows obliquity with the exception of an additional, smaller δ18O peak that marks the MIS 32/31 transition. Insolation maxima (precession minima) led to poor ventilation and a sluggish upper MOW core, whereas insolation minima were associated with enhanced ventilation and often also increased bottom current velocity. Millennial-scale periods of colder sea-surface temperatures (SST) were associated with short-term maxima in flow velocity and better ventilation, reminiscent of conditions known from MIS 3. A prominent contourite layer, coinciding with insolation cycle 100, was formed during MIS 31 and represents one of the few contourites developing within an interglacial period. MIS 31 surface water conditions were characterized by an extended period (1065-1091 ka) of warm SST, but SST were not much warmer than during MIS 33. Interglacial to glacial transitions experienced 2 to 3 stadial/interstadial cycles, just like their mid-to-late Pleistocene counterparts. Glacial MIS 30 and 32 recorded periods of extremely cold (< 12 °C) SST that in their climatic impact were comparable with the Heinrich events of the mid and late Pleistocene. Glacial MIS 34, on the other hand, was a relative warm glacial period off southern Portugal. Overall, surface water and MOW conditions at Site U1387 show a strong congruence with Mediterranean climate, whereas millennial-scale variations are closely linked to North Atlantic circulation changes.
Nathan, Anna Marie; Loo, Hui Yan; de Bruyne, Jessie Anne; Eg, Kah Peng; Kee, Sze Ying; Thavagnanam, Surendran; Bouniu, Marilyn; Wong, Jiat Earn; Gan, Chin Seng; Lum, Lucy Chai See
2017-04-01
Home ventilation (HV) for children is growing rapidly worldwide. The aim was to describe (1) the sociodemographic characteristics of children on HV and (2) the indications for, means and outcome of initiating HV in children from a developing country. This retrospective study included patients sent home on noninvasive or invasive ventilation, over 13 years, by the pediatric respiratory unit in a single center. Children who declined treatment were excluded. Seventy children were initiated on HV: 85.7% on noninvasive ventilation, 14.3% on invasive ventilation. There was about a threefold increase from 2001-2008 (n = 18) to 2009-2014 (n = 52). Median (range) age of initiating HV was 11 (1-169) months and 73% of children were <2 years old. Common indications for HV were respiratory (57.2%), chest/spine anomalies (11.4%), and neuromuscular (10.0%). Fifty-two percent came off their devices with a median (interquartile range) usage duration of 12 (4.8, 21.6) months. Ten children (14.3%) died with one avoidable death. Children with neuromuscular disease were less likely to come off their ventilator (0.0%) compared to children with respiratory disease (62.1%). Forty-one percent of parents bought their equipment, whereas 58.6% borrowed their equipment from the medical social work department and other sources. HV in a resource-limited country is possible. Children with respiratory disease made up a significant proportion of those requiring HV and were more likely to be weaned off. The mortality rate was low. The social work department played an important role in facilitating early discharge. Pediatr Pulmonol. 2017;52:500-507. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
De Lazzari, Claudio; Genuini, Igino; Quatember, Bernhard; Fedele, Francesco
2014-02-01
Patients assisted with left ventricular assist device (LVAD) may require prolonged mechanical ventilatory assistance secondary to postoperative respiratory failure. The goal of this work is the study of the interdependent effects LVAD like pulsatile catheter (PUCA) pump and mechanical ventilatory support or thoracic artificial lung (TAL), by the hemodynamic point of view, using a numerical simulator of the human cardiovascular system. In the simulator, different circulatory sections are described using lumped parameter models. Lumped parameter models have been designed to describe the hydrodynamic behavior of both PUCA pump and thoracic artificial lung. Ventricular behavior atrial and septum functions were reproduced using variable elastance model. Starting from simulated pathological conditions we studied the effects produced on some hemodynamic variables by simultaneous PUCA pump, thoracic artificial lung or mechanical ventilation assistance. Thoracic artificial lung was applied in parallel or in hybrid mode. The effects of mechanical ventilation have been simulated by changing mean intrathoracic pressure value from -4 mmHg to +5 mmHg. The hemodynamic variables observed during the simulations, in different assisted conditions, were: left and right ventricular end systolic (diastolic) volume, systolic/diastolic aortic pressure, mean pulmonary arterial pressure, left and right mean atrial pressure, mean systemic venous pressure and the total blood flow. Results show that the application of PUCA (without mechanical ventilatory assistance) increases the total blood flow, reduces the left ventricular end systolic volume and increases the diastolic aortic pressure. Parallel TAL assistance increases the right ventricular end diastolic (systolic) volume reduction both when PUCA is switched "ON" and both when PUCA is switched "OFF". By switching "OFF" the PUCA pump, it seems that parallel thoracic artificial lung assistance produces a greater cardiac output (respect to hybrid TAL assistance). Results concerning PUCA and TAL interaction produced by simulations cannot be compared with "in vivo" results since they are not presented in literature. But results concerning the effects produced by LVAD and mechanical ventilation have a trend consistent with those presented in literature. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?
Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J
2015-01-01
The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use. PMID:26312102
Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?
Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J
2015-01-01
The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use.
Nasal continuous positive airway pressure treatment: current realities and future.
Berthon-Jones, M; Lawrence, S; Sullivan, C E; Grunstein, R
1996-11-01
Nasal continuous positive airway pressure (CPAP) is a highly effective treatment for obstructive sleep apnea syndrome. The apnea/hypopnea index (AHI) is reduced 10-fold, but the patient dropout rate is up to 30%, and usage is typically < 5 hours per night. Titration, designed to make the best trade-off between effectiveness and side effects, is expensive. Autotitrating devices make this trade-off on a minute-by-minute basis, potentially reducing mean pressure delivery, reducing side effects, and increasing compliance. The aim of this study was to test the effectiveness of the AutoSet self-adjusting nasal CPAP system (ResMed, Sydney, Australia) in eliminating obstructive events and normalizing the arousal index. Forty-five subjects (41 males and 4 females with AHI) values of > 20/hour were recruited, with written informed consent. Subjects slept for a diagnostic night, followed by a treatment night, in the laboratory, using the AutoSet system with full polysomnographic monitoring of respiratory and sleep variables. Arousals were scored using ASDA criteria. Hypopneas were scored when there was a 50% reduction in ventilation for > 10 seconds, associated with a 4% drop in oxygen saturation. For comparison, the ASDA arousal index in 16 normal subjects (without nasal CPAP) is provided. Results are given as mean +/- standard error of the mean. AHI was reduced from 55 +/- 3 to 1.5 +/- 0.35 events/hour (p < 0.0001). The arousal index was reduced from 65 +/- 3 to 18 +/- 2 events/hour (p < 0.0001), identical to the value in the 16 healthy normal subjects. There was a 158% +/- 21% increase in slow-wave sleep (p = 0.01) and a 186% +/- 27% increase in rapid eye movement sleep (p = 0.013). The AutoSet self-adjusting nasal CPAP system adequately treats obstructive sleep apnea syndrome on the first night under laboratory conditions.
Hartung, Julia C; Dold, Simone K; Thio, Marta; tePas, Arjan; Schmalisch, Gerd; Roehr, Charles Christoph
2014-06-01
Resuscitation guidelines give no preference over use of self-inflating bags (SIBs) or T-piece resuscitators (TPR) for manual neonatal ventilation. We speculated that devices would differ significantly regarding time required to adjust to changed ventilation settings. This was a laboratory study. Time to adjust from baseline peak inflation pressure (PIP) (20 cmH2O) to target PIP (25 and 40 cmH2O), ability to adhere to predefined ventilation settings (PIP, PEEP, and inflation rate [IR]), and the variability within and between operators were assessed for a SIB without manometer, SIB with manometer (SIBM), and two TPRs. Adjustment time was significantly longer with TPRs, compared with SIB and SIBM. The SIBM and TPRs were < 5% (median) off target PIP, and the SIB was 14% off target PIP. Significant variability between operators (interquartile range [IQR]: 71%) was seen with SIBs. PIP adjustment takes longer with TPRs, compared with SIB/SIBM. TPRs and SIBM allow satisfactory adherence to ventilation parameters. SIBs should only be used with manometer attached. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Simulation of late inspiratory rise in airway pressure during pressure support ventilation.
Yu, Chun-Hsiang; Su, Po-Lan; Lin, Wei-Chieh; Lin, Sheng-Hsiang; Chen, Chang-Wen
2015-02-01
Late inspiratory rise in airway pressure (LIRAP, Paw/ΔT) caused by inspiratory muscle relaxation or expiratory muscle contraction is frequently seen during pressure support ventilation (PSV), although the modulating factors are unknown. We investigated the effects of respiratory mechanics (normal, obstructive, restrictive, or mixed), inspiratory effort (-2, -8, or -15 cm H2O), flow cycle criteria (5-40% peak inspiratory flow), and duration of inspiratory muscle relaxation (0.18-0.3 s) on LIRAP during PSV using a lung simulator and 4 types of ventilators. LIRAP occurred with all lung models when inspiratory effort was medium to high and duration of inspiratory muscle relaxation was short. The normal lung model was associated with the fastest LIRAP, whereas the obstructive lung model was associated with the slowest. Unless lung mechanics were normal or mixed, LIRAP was unlikely to occur when inspiratory effort was low. Different ventilators were also associated with differences in LIRAP speed. Except for within the restrictive lung model, changes in flow cycle level did not abolish LIRAP if inspiratory effort was medium to high. Increased duration of inspiratory relaxation also led to the elimination of LIRAP. Simulation of expiratory muscle contraction revealed that LIRAP occurred only when expiratory muscle contraction occurred sometime after the beginning of inspiration. Our simulation study reveals that both respiratory resistance and compliance may affect LIRAP. Except for under restrictive lung conditions, LIRAP is unlikely to be abolished by simply lowering flow cycle criteria when inspiratory effort is strong and relaxation time is rapid. LIRAP may be caused by expiratory muscle contraction when it occurs during inspiration. Copyright © 2015 by Daedalus Enterprises.
Age-independent anti-Müllerian hormone (AMH) standard deviation scores to estimate ovarian function.
Helden, Josef van; Weiskirchen, Ralf
2017-06-01
To determine single year age-specific anti-Müllerian hormone (AMH) standard deviation scores (SDS) for women associated to normal ovarian function and different ovarian disorders resulting in sub- or infertility. Determination of particular year median and mean AMH values with standard deviations (SD), calculation of age-independent cut off SDS for the discrimination between normal ovarian function and ovarian disorders. Single-year-specific median, mean, and SD values have been evaluated for the Beckman Access AMH immunoassay. While the decrease of both median and mean AMH values is strongly correlated with increasing age, calculated SDS values have been shown to be age independent with the differentiation between normal ovarian function measured as occurred ovulation with sufficient luteal activity compared with hyperandrogenemic cycle disorders or anovulation associated with high AMH values and reduced ovarian activity or insufficiency associated with low AMH, respectively. These results will be helpful for the treatment of patients and the ventilation of the different reproductive options. Copyright © 2017 Elsevier B.V. All rights reserved.
Effectiveness of purging on preventing gas emission buildup in wood pellet storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdanpanah, Fahimeh; Sokhansanj, Shahab; Lim, Choon Jim
Storage of wood pellets has resulted in deadly accidents in connection with off-gassing and self-heating. A forced ventilation system should be in place to sweep the off-gases and control the thermal conditions. In this study, multiple purging tests were conducted in a pilot scale silo to evaluate the effectiveness of a purging system and quantify the time and volume of the gas needed to sweep the off-gases. To identify the degree of mixing, residence time distribution of the tracer gas was also studied experimentally. Large deviations from plug flow suggested strong gas mixing for all superficial velocities. As the velocitymore » increased, the system dispersion number became smaller, which indicated less degree of mixing with increased volume of the purging gas. Finally, one-dimensional modelling and numerical simulation of the off-gas concentration profile gave the best agreement with the measured gas concentration at the bottom and middle of the silo.« less
Effectiveness of purging on preventing gas emission buildup in wood pellet storage
Yazdanpanah, Fahimeh; Sokhansanj, Shahab; Lim, Choon Jim; ...
2015-04-24
Storage of wood pellets has resulted in deadly accidents in connection with off-gassing and self-heating. A forced ventilation system should be in place to sweep the off-gases and control the thermal conditions. In this study, multiple purging tests were conducted in a pilot scale silo to evaluate the effectiveness of a purging system and quantify the time and volume of the gas needed to sweep the off-gases. To identify the degree of mixing, residence time distribution of the tracer gas was also studied experimentally. Large deviations from plug flow suggested strong gas mixing for all superficial velocities. As the velocitymore » increased, the system dispersion number became smaller, which indicated less degree of mixing with increased volume of the purging gas. Finally, one-dimensional modelling and numerical simulation of the off-gas concentration profile gave the best agreement with the measured gas concentration at the bottom and middle of the silo.« less
NASA Technical Reports Server (NTRS)
1979-01-01
Results of studies leading to the preliminary design of a hybrid passenger vehicle which is projected to have the maximum potential for reducing petroleum consumption in the near term are presented. Heat engine/electric hybrid vehicle tradeoffs, assessment of battery power source, and weight and cost analysis of key components are among the topics covered. Performance of auxiliary equipment, such as power steering, power brakes, air conditioning, lighting and electrical accessories, heating and ventilation is discussed along with the selection of preferred passenger compartment heating procedure for the hybrid vehicle. Waste heat from the engine, thermal energy storage, and an auxiliary burner are among the approaches considered.
Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; McCormick, John; Paul, Heather L.; Jennings, Mallory A.
2012-01-01
Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. The blower includes a custom-designed motor that has significantly improved its efficiency. We have measured the blower s head/flow performance and power consumption under conditions that simulate both the normal and buddy mode operating points. We have operated the blower for TBD hours and demonstrated safe operation in an oxygen test loop at prototypical pressures. We also demonstrated operation with simulated lunar dust.
Pevernagie, Dirk; Mariman, An; Vandenbussche, Nele; Tobback, Els; Overeem, Sebastiaan; Delesie, Liesbeth; Janssen, Hennie; Vogelaers, Dirk
2012-12-01
Central sleep apnoea (CSA) is a disorder characterised by repetitive episodes of decreased ventilation due to complete or partial reduction in the central neural outflow to the respiratory muscles. Hyperventilation plays a prime role in the pathogenesis of CSA. Chronic heart failure and dwelling at high altitude are classical conditions in which CSA is induced by hyperventilation. Hyperventilation syndrome (HVS) is a prevalent behavioural condition in which minute ventilation exceeds metabolic demands, resulting in haemodynamic and chemical changes that produce characteristic dysphoric symptoms. HVS is frequently caused by anxiety disorders and panic attacks. Until now, medical literature has focussed primarily on daytime symptoms of behavioural hyperventilation. It is currently unknown how this condition may affect sleep. Three cases are reported in which behavioural hyperventilation was associated with occurrence of significant central sleep apnoea, which was not present during normal tidal breathing in steady sleep. Therefore, behavioural hyperventilation should be added to the list of known clinical conditions associated with CSA. Copyright © 2012 Elsevier B.V. All rights reserved.
Fire safety experiments on MIR Orbital Station
NASA Technical Reports Server (NTRS)
Egorov, S. D.; Belayev, A. YU.; Klimin, L. P.; Voiteshonok, V. S.; Ivanov, A. V.; Semenov, A. V.; Zaitsev, E. N.; Balashov, E. V.; Andreeva, T. V.
1995-01-01
The process of heterogeneous combustion of most materials under zero-g without forced motion of air is practically impossible. However, ventilation is required to support astronauts' life and cool equipment. The presence of ventilation flows in station compartments at accidental ignition can cause a fire. An additional, but exceedingly important parameter of the fire risk of solid materials under zero-g is the minimum air gas velocity at which the extinction of materials occurs. Therefore, the conception of fire safety can be based on temporarily lowering the intensity of ventilation and even turning it off. The information on the limiting conditions of combustion under natural conditions is needed from both scientific and practical points of view. It will enable us to judge the reliability of results of ground-based investigations and develop a conception of fire safety of inhabited sealed compartments of space stations to by provided be means of nontraditional and highly-effective methods without both employing large quantities of fire-extinguishing compounds and hard restrictions on use of polymers. In this connection, an experimental installation was created to study the process of heterogeneous combustion of solid non-metals and to determine the conditions of its extinction under microgravity. This installation was delivered to the orbital station 'Mir' and the cosmonauts Viktorenko and Kondakova performed initial experiments on it in late 1994. The experimental installation consists of a combustion chamber with an electrical systems for ignition of samples, a device for cleaning air from combustion products, an air suction unit, air pipes and a control panel. The whole experiment is controlled by telemetry and recorded with two video cameras located at two different places. Besides the picture, parameters are recorded to determine the velocity of the air flow incoming to the samples, the time points of switching on/off the devices, etc. The combustion chamber temperature is also controlled. The main objectives of experiments of this series were as follows: (1) verification of the reliability of the installation in orbital flight; (2) verification of the experimental procedure; and (3) investigation of combustion of two types of materials under microgravity at various velocities of the incoming air flow.
NASA Astrophysics Data System (ADS)
Harun, D.; Zulfadhli; Akhyar, H.
2018-05-01
The turbine ventilator is a wind turbine with a vertical axis that has a combined function of the wind turbine and a suction fan. In this study, the turbine ventilator modified by adding a wind cup on the top (cap) turbine ventilator. The purpose of this experiment is to investigated the effect of the addition of wind cup on the turbine ventilator. Turbine ventilator used is type v30 and wind cup with diameter 77 mm. The experiment was conducted using a triangular pentagon model space chamber which was cut off to place the ventilator turbine ventilation cup with a volume of 0.983 m3 (equivalent to 1 mm3). The results of this study indicate that at an average wind speed of 1.8 m/s, the rotation of the turbine produced without a wind cup is 60.6 rpm while with the addition of a wind cup in the turbine ventilator is 69 rpm. The average increase of rotation turbine after added win cup is 8.4 rpm and the efficiency improvement of turbine ventilator is 1.7 %.
46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...
46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...
46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...
46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...
46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...
The impact of particle filtration on indoor air quality in a classroom near a highway.
van der Zee, S C; Strak, M; Dijkema, M B A; Brunekreef, B; Janssen, N A H
2017-03-01
A pilot study was performed to investigate whether the application of a new mechanical ventilation system with a fine F8 (MERV14) filter could improve indoor air quality in a high school near the Amsterdam ring road. PM10, PM2.5, and black carbon (BC) concentrations were measured continuously inside an occupied intervention classroom and outside the school during three sampling periods in the winter of 2013/2014. Initially, 3 weeks of baseline measurements were performed, with the existing ventilation system and normal ventilation habits. Next, an intervention study was performed. A new ventilation system was installed in the classroom, and measurements were performed during 8 school weeks, in alternating 2-week periods with and without the filter in the ventilation system under otherwise identical ventilation conditions. Indoor/outdoor ratios measured during the weeks with filter were compared with those measured without filter to evaluate the ability of the F8 filter to improve indoor air quality. During teaching hours, the filter reduced BC exposure by, on average, 36%. For PM10 and PM2.5, a reduction of 34% and 30% was found, respectively. This implies that application of a fine filter can reduce the exposure of schoolchildren to traffic exhaust at hot spot locations by about one-third. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kirkpatrick, Andrew W.; Nicolaou, Savvas; Rowan, Kevin; Liu, David; Cunningham, Johan; Sargsyan, Ashot E.; Hamilton, Douglas; Dulchavsky, Scott A.
2005-05-01
The recent interest in the use of ultrasound (US) to detect pneumothoraces after acute trauma in North America was initially driven by an operational space medicine concern. Astronauts aboard the International Space Station (ISS) are at risk for pneumothoraces, and US is the only potential medical imaging available. Pneumothoraces are common following trauma, and are a preventable cause of death, as most are treatable with relatively simple interventions. While pneumothoraces are optimally diagnosed clinically, they are more often inapparent even on supine chest radiographs (CXR) with recent series reporting a greater than 50% rate of occult pneumothoraces. In the course of basic scientific investigations in a conventional and parabolic flight laboratory, investigators familiarized themselves with the sonographic features of both pneumothoraces and normal pulmonary ventilation. By examining the visceral-parietal pleural interface (VPPI) with US, investigators became confident in diagnosing pneumothoraces. This knowledge was subsequently translated into practice at an American and a Canadian trauma center. The sonographic examination was found to be more accurate and sensitive than CXR (US 96% and 100% versus US 74% and 36%) in specific circumstances. Initial studies have also suggested that detecting the US features of pleural pulmonary ventilation in the left lung field may offer the ability to exclude serious endotracheal tube malpositions such as right mainstem and esophageal intubations. Applied thoracic US is an example of a clinically useful space medicine spin-off that is improving health care on earth.
HVAC (heating, ventilation, air conditioning) literature in Japan: A critical review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hane, G.J.
1988-02-01
Japanese businessmen in the heating, ventilation, air conditioning, and refrigeration (HVACandR) industry consider the monitoring of technical and market developments in the United States to be a normal part of their business. In contrast, efforts by US businessmen to monitor Japanese HVAC and R developments are poorly developed. To begin to redress this imbalance, this report establishes the groundwork for a more effective system for use in monitoring Japanese HVAC and R literature. Discussions of a review of the principal HVAC and R publications in Japan and descriptions of the type of information contained in each of those publications aremore » included in this report. Since the Japanese HVAC and R literature is abundant, this report also provides practical suggestions on how a researcher or research manager can limit the monitoring effort to the publications and type of information that would most likely be of greatest value.« less
Calibrated energy simulations of potential energy savings in actual retail buildings
NASA Astrophysics Data System (ADS)
Alhafi, Zuhaira
Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant densities were approximately 20% to 30% of that called by ASHRAE 62.1. Formaldehyde was the most important contaminant of concern in retail stores investigated. Both stores exceeded the most conservative health guideline for formaldehyde (OEHHA TWA REL = 7.3 ppb). This study found that source removal and reducing the emission rate, as demonstrated in retail stores sampled in this study, is a viable strategy to meet the health guideline. Total volatile compound were present in retail stores at low concentrations well below health guidelines suggested by Molhave (1700microg /m 2) and Bridges (1000 microg /m2). Based on these results and through mass--balance modeling, different ventilation rate reduction scenarios were proposed, and for these scenarios the differences in energy consumption were estimated. Findings of all phases of this desertion have contributed to understanding (a) the trade-off between energy savings and ventilation rates that do not compromise indoor air quality, and (b) the trade-off between energy savings and resets of indoor air temperature that do not compromise thermal comfort. Two models for retail stores were built and calibrated and validated against actual utility bills. Energy simulation results indicated that by lowering the ventilation rates from measured and minimum references would reduce natural gas energy use by estimated values of 6% to 19%. Also, this study found that the electrical cooling energy consumption was not significantly sensitive to different ventilation rates. However, increasing indoor air temperature by 3°C in summer had a significant effect on the energy savings. In winter, both energy savings strategies, ventilation reduction and decrease in set points, had a significant effect on natural gas consumption. Specially, when the indoor air temperature 21°C was decreased to 19.4°C with the same amount of ventilation rate of Molhaves guideline for both cases. Interestingly, the temperature of 23.8°C (75°F), which is the lowest value of ASHRAE 55 thermal comfort for sedentary people (cashiers) and the highest value for thermal comfort adjustments due to activity level (customers and workers) that are calculated by using empirical equation, was the optimum temperature for sedentary and active people in Retail store buildings.
Football Equipment Removal Improves Chest Compression and Ventilation Efficacy.
Mihalik, Jason P; Lynall, Robert C; Fraser, Melissa A; Decoster, Laura C; De Maio, Valerie J; Patel, Amar P; Swartz, Erik E
2016-01-01
Airway access recommendations in potential catastrophic spine injury scenarios advocate for facemask removal, while keeping the helmet and shoulder pads in place for ensuing emergency transport. The anecdotal evidence to support these recommendations assumes that maintaining the helmet and shoulder pads assists inline cervical stabilization and that facial access guarantees adequate airway access. Our objective was to determine the effect of football equipment interference on performing chest compressions and delivering adequate ventilations on patient simulators. We hypothesized that conditions with more football equipment would decrease chest compression and ventilation efficacy. Thirty-two certified athletic trainers were block randomized to participate in six different compression conditions and six different ventilation conditions using human patient simulators. Data for chest compression (mean compression depth, compression rate, percentage of correctly released compressions, and percentage of adequate compressions) and ventilation (total ventilations, mean ventilation volume, and percentage of ventilations delivering adequate volume) conditions were analyzed across all conditions. The fully equipped athlete resulted in the lowest mean compression depth (F5,154 = 22.82; P < 0.001; Effect Size = 0.98) and delivery of adequate compressions (F5,154 = 15.06; P < 0.001; Effect Size = 1.09) compared to all other conditions. Bag-valve mask conditions resulted in delivery of significantly higher mean ventilation volumes compared to all 1- or 2-person pocketmask conditions (F5,150 = 40.05; P < 0.001; Effect Size = 1.47). Two-responder ventilation scenarios resulted in delivery of a greater number of total ventilations (F5,153 = 3.99; P = 0.002; Effect Size = 0.26) and percentage of adequate ventilations (F5,150 = 5.44; P < 0.001; Effect Size = 0.89) compared to one-responder scenarios. Non-chinstrap conditions permitted greater ventilation volumes (F3,28 = 35.17; P < 0.001; Effect Size = 1.78) and a greater percentage of adequate volume (F3,28 = 4.85; P = 0.008; Effect Size = 1.12) compared to conditions with the chinstrap buckled or with the chinstrap in place but not buckled. Chest compression and ventilation delivery are compromised in equipment-intense conditions when compared to conditions whereby equipment was mostly or entirely removed. Emergency medical personnel should remove the helmet and shoulder pads from all football athletes who require cardiopulmonary resuscitation, while maintaining appropriate cervical spine stabilization when injury is suspected. Further research is needed to confirm our findings supporting full equipment removal for chest compression and ventilation delivery.
Emptying patterns of the lung studied by multiple-breath N2 washout
NASA Technical Reports Server (NTRS)
Lewis, S. M.
1978-01-01
Changes in the nitrogen concentration seen during the single-breath nitrogen washout reflect changes in relative flow (ventilation) from units with differing ventilation/volume ratios. The multiple-breath washout provides sufficient data on ventilation for units with varying ventilation/volume ratios to be plotted as a function of the volume expired. Flow from the dead space may also be determined. In young normals the emptying patterns are narrow and unimodal throughout the alveolar plateau with little or no flow from the dead space at the end of the breath. Older normals show more flow from the dead space, particularly toward the end of the breath, and some show a high ventilation/volume ratio mode early in the breath. Patients with obstructive lung disease have a high flow from the dead space which is present throughout the breath. A well ventilated mode at the end of the breath is seen in some obstructed subjects. Patients with cystic fibrosis showed a poorly ventilated mode appearing at the end of the breath as well as a very high dead space.
Lung Volume Reduction Surgery for Respiratory Failure in Infants With Bronchopulmonary Dysplasia.
Sohn, Bongyeon; Park, Samina; Park, In Kyu; Kim, Young Tae; Park, June Dong; Park, Sung-Hye; Kang, Chang Hyun
2018-04-01
Lung volume reduction surgery (LVRS) can be performed in patients with severe emphysematous disease. However, LVRS in pediatric patients has not yet been reported. Here, we report our experience with 2 cases of pediatric LVRS. The first patient was a preterm infant girl with severe bronchopulmonary dysplasia, pulmonary hypertension, and hypothyroidism. The emphysematous portion of the right lung was removed via sternotomy and right hemiclamshell incision. The patient was discharged on full-time home ventilator support for 3 months after the surgery. Since then, her respiratory function has improved continuously. She no longer needs oxygen supplementation or ventilator care. Her T-cannula was removed recently. The second patient was also a preterm infant girl with bronchopulmonary dysplasia. She was born with pulmonary hypertension and multiple congenital anomalies, including an atrial septal defect. Despite receiving the best supportive care, she could not be taken off the mechanical ventilator because of severe hypercapnia. We performed LVRS on the right lung via thoracotomy. She was successfully weaned off the mechanical ventilator 1 month after the surgery. She was discharged without severe complications at 3 months after the operation. At present, she is growing well with the help of intermittent home ventilator support. She can now tolerate an oral diet. Our experience shows that LVRS can be considered as a treatment option for pediatric patients with severe emphysematous lung. It is especially helpful for discontinuing prolonged mechanical ventilator care for patients with respiratory failure. Copyright © 2018 by the American Academy of Pediatrics.
A General Approach to the Evaluation of Ventilation-Perfusion Ratios in Normal and Abnormal Lungs
ERIC Educational Resources Information Center
Wagner, Peter D.
1977-01-01
Outlines methods for manipulating multiple gas data so as to gain the greatest amount of insight into the properties of ventilation-perfusion distributions. Refers to data corresponding to normal and abnormal lungs. Uses a two-dimensional framework with the respiratory gases of oxygen and carbon dioxide. (CS)
Use of visual CO2 feedback as a retrofit solution for improving classroom air quality.
Wargocki, P; Da Silva, N A F
2015-02-01
Carbon dioxide (CO2 ) sensors that provide a visual indication were installed in classrooms during normal school operation. During 2-week periods, teachers and students were instructed to open the windows in response to the visual CO2 feedback in 1 week and open them, as they would normally do, without visual feedback, in the other week. In the heating season, two pairs of classrooms were monitored, one pair naturally and the other pair mechanically ventilated. In the cooling season, two pairs of naturally ventilated classrooms were monitored, one pair with split cooling in operation and the other pair with no cooling. Classrooms were matched by grade. Providing visual CO2 feedback reduced CO2 levels, as more windows were opened in this condition. This increased energy use for heating and reduced the cooling requirement in summertime. Split cooling reduced the frequency of window opening only when no visual CO2 feedback was present. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ji, Qiang; Xia, Li Min; Shi, Yun Qing; Ma, Run Hua; Shen, Jin Qiang; Ding, Wen Jun; Wang, Chun Sheng
2017-10-10
Few studies focused on evaluating the impacts of preoperative severe left ventricular dysfunction on clinical outcomes of patients undergoing off-pump coronary artery bypass grafting surgery (OPCAB). This single center retrospective study aimed to evaluate the impacts of severe left ventricular dysfunction on in-hospital and mid-term clinical outcomes of Chinese patients undergoing first, scheduled, and isolated OPCAB surgery. From January 2010 to December 2014, 2032 eligible patients were included in this study and were divided into 3 groups: a severe group (patients with preoperative left ventricular ejection fraction (LVEF) of ≤35%, n = 128), an impaired group (patients with preoperative LVEF of 36-50%, n = 680), and a normal group (patients with preoperative LVEF of >50%, n = 1224). In-hospital and follow-up clinical outcomes were investigated and compared. Patients in the severe group compared to the other 2 groups had higher in-hospital mortality and higher incidences of low cardiac output and prolonged ventilation. Kaplan-Meier curves showed a similar cumulative follow-up survival between the severe group and the impaired group (χ 2 = 1.980, Log-rank p = 0.159) and between the severe group and the normal group (χ 2 = 2.701, Log-rank p = 0.102). Multivariate Cox regression indicated that grouping was not a significant variable related to mid-term all-cause mortality. No significant difference was found in the rate of repeat revascularization between the severe group (2.4%) and the other 2 groups. Patients with preoperative LVEF of ≤35% compared to preoperative LVEF of >35% increased the risk of in-hospital death and incidences of postoperative low cardiac output and prolonged ventilation, but shared similar mid-term all-cause mortality and repeat revascularization after OPCAB surgery.
Marshall, Helen; Horsley, Alex; Taylor, Chris J; Smith, Laurie; Hughes, David; Horn, Felix C; Swift, Andrew J; Parra-Robles, Juan; Hughes, Paul J; Norquay, Graham; Stewart, Neil J; Collier, Guilhem J; Teare, Dawn; Cunningham, Steve; Aldag, Ina; Wild, Jim M
2017-08-01
Hyperpolarised 3 He ventilation-MRI, anatomical lung MRI, lung clearance index (LCI), low-dose CT and spirometry were performed on 19 children (6-16 years) with clinically stable mild cystic fibrosis (CF) (FEV 1 >-1.96), and 10 controls. All controls had normal spirometry, MRI and LCI. Ventilation-MRI was the most sensitive method of detecting abnormalities, present in 89% of patients with CF, compared with CT abnormalities in 68%, LCI 47% and conventional MRI 22%. Ventilation defects were present in the absence of CT abnormalities and in patients with normal physiology, including LCI. Ventilation-MRI is thus feasible in young children, highly sensitive and provides additional information about lung structure-function relationships. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Kiszel, J; Seri, I; Machay, T
1985-01-01
The technique of high-frequency oscillatory ventilation (HFOV) was successfully used in a preterm infant with severe hyaline membrane disease and in a term neonate presenting with intrauterine pneumonia and associated severe pneumomediastinum. None of the infants could adequately be ventilated by conventional ventilation; both of them deteriorated owing to severe hypoxaemia and hypercapnia. In the preterm infant with HMD a rapid and progressive improvement of oxygenation had been observed immediately after the beginning of HFOV, and he was successfully weaned off the ventilator after 71 hours on HFOV. His recovery was uncomplicated and definitive. In the term neonate presenting with IUP and associated severe PM, an improvement in oxygenation was detected, whereas the retention of paCO2 remained unaltered. On leaving the MAP unchanged but doubling the flow rate, paCO2 and arterial pH also normalised. No sign of PM was seen on the X-ray picture 17.5 hours after the start of HFOV. This patient was weaned off the ventilator after 29 hours on HFOV and his recovery was also uncomplicated. It is believed that recovery of the PM was secondary to the low MAP and to the higher arterial pO2 levels, and that HFOV may also have a direct role in the treatment of preexisting air leaks and perhaps also in their prevention. In our patients HFOV resulted in a definitive recovery, while no improvement had occurred on using conventional ventilation. To determine the exact mechanism of action, the clear cut fields of indications and the possible side effects of HFOV, further investigations are needed.
Evaluation of ventilators for mouthpiece ventilation in neuromuscular disease.
Khirani, Sonia; Ramirez, Adriana; Delord, Vincent; Leroux, Karl; Lofaso, Frédéric; Hautot, Solène; Toussaint, Michel; Orlikowski, David; Louis, Bruno; Fauroux, Brigitte
2014-09-01
Daytime mouthpiece ventilation is a useful adjunct to nocturnal noninvasive ventilation (NIV) in patients with neuromuscular disease. The aims of the study were to analyze the practice of mouthpiece ventilation and to evaluate the performance of ventilators for mouthpiece ventilation. Practice of mouthpiece ventilation was assessed by a questionnaire, and the performance of 6 home ventilators with mouthpiece ventilation was assessed in a bench test using 24 different conditions per ventilator: 3 mouthpieces, a child and an adult patient profile, and 4 ventilatory modes. Questionnaires were obtained from 30 subjects (mean age 33 ± 11 y) using NIV for 12 ± 7 y. Fifteen subjects used NIV for > 20 h/day, and 11 were totally ventilator-dependent. The subject-reported benefits of mouthpiece ventilation were a reduction in dyspnea (73%) and fatigue (93%) and an improvement in speech (43%) and eating (27%). The bench study showed that none of the ventilators, even those with mouthpiece ventilation software, were able to deliver mouthpiece ventilation without alarms and/or autotriggering in each condition. Alarms and/or ineffective triggering or autotriggering were observed in 135 of the 198 conditions. The occurrence of alarms was more common with a large mouthpiece without a filter compared to a small mouthpiece with a filter (P < .001), but it was not related to the patient profile, the ventilatory mode, or the type of ventilator. Subjects are satisfied with mouthpiece ventilation. Alarms are common with home ventilators, although less common in those with mouthpiece ventilation software. Improvements in home ventilators are needed to facilitate the expansion of mouthpiece ventilation. Copyright © 2014 by Daedalus Enterprises.
NASA Technical Reports Server (NTRS)
Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.
1997-01-01
BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P < 0.01). Gravitational flow gradients were absent in the prone position but present in the supine (P < 0.001 compared with zero). Pulmonary perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P < 0.05). CONCLUSIONS: The influence of pentobarbital anesthesia and mechanical ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.
NASA Astrophysics Data System (ADS)
Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka
2004-04-01
We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rugh, John P; Kekelia, Bidzina; Kreutzer, Cory J
The U.S. uses 7.6 billion gallons of fuel per year for vehicle air conditioning (A/C), equivalent to 5.7 percent of the total national light-duty vehicle (LDV) fuel use. This equates to 30 gallons/year per vehicle, or 23.5 grams (g) of carbon dioxide (CO2) per mile, for an average U.S. vehicle. A/C is a significant contribution to national fuel use; therefore, technologies that reduce A/C loads may reduce operational costs, A/C fuel use, and CO2 emissions. Since A/C is not operated during standard EPA fuel economy testing protocols, EPA provides off-cycle credits to encourage OEMs to implement advanced A/C technologies thatmore » reduce fuel use in the real world. NREL researchers assessed thermal/solar off-cycle credits available in the U.S. Environmental Protection Agency's (EPA's) Final Rule for Model Year 2017 and Later Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy. Credits include glazings, solar reflective paint, and passive and active cabin ventilation. Implementing solar control glass reduced CO2 emissions by 2.0 g/mi, and solar reflective paint resulted in a reduction of 0.8 g/mi. Active and passive ventilation strategies only reduced emissions by 0.1 and 0.2 g/mi, respectively. The national-level analysis process is powerful and general; it can be used to determine the impact of a wide range of new vehicle thermal technologies on fuel use, EV range, and CO2 emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Douglas; Schubert, Leah; Diot, Quentin
Purpose: A new form of functional imaging has been proposed in the form of 4-dimensional computed tomography (4DCT) ventilation. Because 4DCTs are acquired as part of routine care for lung cancer patients, calculating ventilation maps from 4DCTs provides spatial lung function information without added dosimetric or monetary cost to the patient. Before 4DCT-ventilation is implemented it needs to be clinically validated. Pulmonary function tests (PFTs) provide a clinically established way of evaluating lung function. The purpose of our work was to perform a clinical validation by comparing 4DCT-ventilation metrics with PFT data. Methods and Materials: Ninety-eight lung cancer patients withmore » pretreatment 4DCT and PFT data were included in the study. Pulmonary function test metrics used to diagnose obstructive lung disease were recorded: forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity. Four-dimensional CT data sets and spatial registration were used to compute 4DCT-ventilation images using a density change–based and a Jacobian-based model. The ventilation maps were reduced to single metrics intended to reflect the degree of ventilation obstruction. Specifically, we computed the coefficient of variation (SD/mean), ventilation V20 (volume of lung ≤20% ventilation), and correlated the ventilation metrics with PFT data. Regression analysis was used to determine whether 4DCT ventilation data could predict for normal versus abnormal lung function using PFT thresholds. Results: Correlation coefficients comparing 4DCT-ventilation with PFT data ranged from 0.63 to 0.72, with the best agreement between FEV1 and coefficient of variation. Four-dimensional CT ventilation metrics were able to significantly delineate between clinically normal versus abnormal PFT results. Conclusions: Validation of 4DCT ventilation with clinically relevant metrics is essential. We demonstrate good global agreement between PFTs and 4DCT-ventilation, indicating that 4DCT-ventilation provides a reliable assessment of lung function. Four-dimensional CT ventilation enables exciting opportunities to assess lung function and create functional avoidance radiation therapy plans. The present work provides supporting evidence for the integration of 4DCT-ventilation into clinical trials.« less
Ventilation-perfusion distribution in normal subjects.
Beck, Kenneth C; Johnson, Bruce D; Olson, Thomas P; Wilson, Theodore A
2012-09-01
Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.
Perfluorocarbon-associated gas exchange in normal and acid-injured large sheep.
Hernan, L J; Fuhrman, B P; Kaiser, R E; Penfil, S; Foley, C; Papo, M C; Leach, C L
1996-03-01
We hypothesized that a) perfluorocarbon-associated gas exchange could be accomplished in normal large sheep; b) the determinants of gas exchange would be similar during perfluorocarbon-associated gas exchange and conventional gas ventilation; c)in large animals with lung injury, perfluorocarbon-associated gas exchange could be used to enhance gas exchange without adverse effects on hemodynamics; and d) the large animal with lung injury could be supported with an FIO2 of <1.0 during perfluorocarbon-associated gas exchange. Prospective, observational animal study and prospective randomized, controlled animal study. An animal laboratory in a university setting. Thirty adult ewes. Five normal ewes (61.0 +/- 4.0 kg) underwent perfluorocarbon-associated gas exchange to ascertain the effects of tidal volume, end-inspiratory pressure, and positive end-expiratory pressure (PEEP) on oxygenation. Respiratory rate, tidal volume, and minute ventilation were studied to determine their effects on CO2 clearance. Sheep, weighing 58.9 +/- 8.3 kg, had lung injury induced by instilling 2 mL/kg of 0.05 Normal hydrochloric acid into the trachea. Five minutes after injury, PEEP was increased to 10 cm H2O. Ten minutes after injury, sheep with Pao2 values of <100 torr (<13.3 kPa) were randomized to continue gas ventilation (control, n=9) or to institute perfluorocarbon-associated gas exchange (n=9) by instilling 1.6 L of unoxygenated perflubron into the trachea and resuming gas ventilation. Blood gas and hemodynamic measurements were obtained throughout the 4-hr study. Both tidal volume and end-inspiratory pressure influenced oxygenation in normal sheep during perfluorocarbon-associated gas exchange. Minute ventilation determined CO2 clearance during perfluorocarbon-associated gas exchange in normal sheep. After acid aspiration lung injury, perfluorocarbon-associated gas exchange increased PaO2 and reduced intrapulmonary shunt fraction. Hypoxia and intrapulmonary shunting were unabated after injury in control animals. Hemodynamics were not influenced by the institution of perfluorocarbon-associated gas exchange. Tidal volume and end-inspiratory pressure directly influence oxygenation during perfluorocarbon-associated gas exchange in large animals. Minute ventilation influences clearance of CO2. In adult sheep with acid aspiration lung injury, perfluorocarbon-associated gas exchange at an FIO2 of <1.0 supports oxygenation and improves intrapulmonary shunting, without adverse hemodynamic effects, when compared with conventional gas ventilation.
Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?
NASA Astrophysics Data System (ADS)
Thomsen, S.; Kanzow, T.; Colas, F.; Echevin, V.; Krahmann, G.; Engel, A.
2016-02-01
The Peruvian upwelling region shows pronounced near-surface submesoscale variability including filaments and sharp density fronts. Submesoscale frontal processes can drive large vertical velocities and enhance vertical tracer fluxes in the upper ocean. The associated high temporal and spatial variability poses a large challenge to observational approaches targeting these processes. In this study the role of submesoscale processes for the ventilation of the near-coastal oxygen minimum zone off Peru is investigated. We use satellite based sea surface temperature measurements and multiple high-resolution glider observations of temperature, salinity, oxygen and chlorophyll fluorescence carried out in January and February 2013 off Peru near 14°S during active upwelling. Additionally, high-resolution regional ocean circulation model outputs (ROMS) outputs are analysed. At the beginning of our observational survey a previously upwelled, productive and highly oxygenated water body is found in the mixed layer. Subsequently, a cold filament forms and the waters are moved offshore. After the decay of the filament and the relaxation of the upwelling front, the oxygen enriched surface water is found in the previously less oxygenated thermocline suggesting the occurrence of frontal subduction. A numerical model simulation is used to analyse the evolution of Lagrangian numerical floats in several upwelling filaments, whose vertical structure and hydrographic properties agree well with the observations. The floats trajectories support our interpretation that the subduction of previously upwelled water occurs in filaments off Peru. We find that 40 - 60 % of the floats seeded in the newly upwelled water is subducted within a time period of 5 days. This hightlights the importance of this process in ventilating the oxycline off Peru.
Reliability of Displayed Tidal Volume in Healthy and Surfactant-Depleted Piglets.
Mendiondo Luedloff, A Cecilia; Thurman, Tracy L; Holt, Shirley J; Bai, Shasha; Heulitt, Mark J; Courtney, Sherry E
2016-12-01
Volutrauma has been established as the key factor in ventilator-induced lung injury and can only be avoided if tidal volume (V T ) is accurately displayed and delivered. The purpose of this study was to investigate the accuracy of displayed exhaled V T in a ventilator commonly used in small infants with or without a proximal flow sensor and using 3 methods to achieve a target V T in both a healthy and lung-injured neonatal pig model. This was a prospective animal study utilizing 8 male pigs, approximately 2.0 kg (range 1.8-2.2 kg). Intubated, sedated, neonatal pigs were studied with both healthy and injured lungs using the Servo-i ventilator. In pressure-regulated volume control, both with and without a proximal flow sensor, we used 3 methods to set V T : (1) circuit compliance compensation (CCC) on, set V T 6-8 mL/kg; (2) CCC off, calculated V T using the manufacturer's circuit compliance factor; and (3) CCC off, set V T 10-12 mL/kg to approximate a target V T of 6-8 mL/kg. Ventilator-displayed exhaled V T measurements were compared with exhaled V T measured at the airway opening by a calibrated pneumotachograph. Bland-Altman plots were constructed to show the level of agreement between the two. CCC improved accuracy and precision of displayed exhaled V T when the sensor was not used, more markedly in the lung-injured model. Without CCC, the sensor improved accuracy and precision of displayed exhaled V T , again more markedly in the lung-injured model. When the Servo-i ventilator is used in neonates, CCC or the in-line sensor should be employed due to the large positive bias and imprecision seen with CCC off and no sensor in-line. Copyright © 2016 by Daedalus Enterprises.
Wan, Gwo-Hwa; Wu, Chieh-Liang; Chen, Yi-Fang; Huang, Sheng-Hsiu; Wang, Yu-Ling; Chen, Chun-Wan
2014-01-01
Humans produce exhaled breath particles (EBPs) during various breath activities, such as normal breathing, coughing, talking, and sneezing. Airborne transmission risk exists when EBPs have attached pathogens. Until recently, few investigations had evaluated the size and concentration distributions of EBPs from mechanically ventilated patients with different ventilation mode settings. This study thus broke new ground by not only evaluating the size concentration distributions of EBPs in mechanically ventilated patients, but also investigating the relationship between EBP level and positive expiratory end airway pressure (PEEP), tidal volume, and pneumonia. This investigation recruited mechanically ventilated patients, with and without pneumonia, aged 20 years old and above, from the respiratory intensive care unit of a medical center. Concentration distributions of EBPs from mechanically ventilated patients were analyzed with an optical particle analyzer. This study finds that EBP concentrations from mechanically ventilated patients during normal breathing were in the range 0.47-2,554.04 particles/breath (0.001-4.644 particles/mL). EBP concentrations did not differ significantly between the volume control and pressure control modes of the ventilation settings in the mechanically ventilated patients. The patient EBPs were sized below 5 µm, and 80% of them ranged from 0.3 to 1.0 µm. The EBPs concentrations in patients with high PEEP (> 5 cmH₂O) clearly exceeded those in patients with low PEEP (≤ 5 cmH₂O). Additionally, a significant negative association existed between pneumonia duration and EBPs concentration. However, tidal volume was not related to EBPs concentration.
A multiscale MDCT image-based breathing lung model with time-varying regional ventilation
Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long
2012-01-01
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749
Ventilatory Dysfunction in Parkinson’s Disease
Baille, Guillaume; De Jesus, Anna Maria; Perez, Thierry; Devos, David; Dujardin, Kathy; Charley, Christelle Monaca; Defebvre, Luc; Moreau, Caroline
2016-01-01
In contrast to some other neurodegenerative diseases, little is known about ventilatory dysfunction in Parkinson’s disease (PD). To assess the spectrum of ventilation disorders in PD, we searched for and reviewed studies of dyspnea, lung volumes, respiratory muscle function, sleep breathing disorders and the response to hypoxemia in PD. Among the studies, we identified some limitations: (i) small study populations (mainly composed of patients with advanced PD), (ii) the absence of long-term follow-up and (iii) the absence of functional evaluations under “off-drug” conditions. Although there are many reports of abnormal spirometry data in PD (mainly related to impairment of the inspiratory muscles), little is known about hypoventilation in PD. We conclude that ventilatory dysfunction in PD has been poorly studied and little is known about its frequency and clinical relevance. Hence, there is a need to characterize the different phenotypes of ventilation disorders in PD, study their relationships with disease progression and assess their prognostic value. PMID:27314755
NASA Astrophysics Data System (ADS)
Verma, K.; Bharti, S. K.; Singh, A. D.
2018-03-01
The Arabian Sea is characterized today by a well-developed and perennial oxygen minimum zone (OMZ) at mid-water depths. The Indian margin where the OMZ impinges provides sediment records ideal to study past changes in the OMZ intensity and its vertical extent in response to the changes of monsoon-driven primary productivity and intermediate water ventilation. Benthic foraminifera, depending upon their adaptation capabilities to variation in sea floor environment and microhabitat preferences, develop various functional morphologies that can be potentially used in paleoenvironmental reconstruction. In this study, we analysed benthic foraminiferal morphogroups in assemblage records of the last 30 ka in a sediment core collected from the lower OMZ of the Indian margin (off Goa). In total, nine morphogroups within two broadly classified epifaunal and infaunal microhabitat categories are identified. The abundance of morphogroups varies significantly during the late Glacial, Deglacial and Holocene. It appears that monsoon wind driven organic matter flux, and water column ventilation governing the OMZ intensity and sea-bottom oxygen condition, have profound influence on structuring the benthic foraminiferal morphogroups. We found a few morphogroups showing major changes in their abundances during the periods corresponding to the northern hemisphere climatic events. Benthic foraminifera with planoconvex tests are abundant during the cold Heinrich events, when the sea bottom was oxygenated due to a better ventilated, weak OMZ; whereas, those having tapered/cylindrical tests dominate during the last glacial maximum and the Holocene between 5 and 8 ka BP, when the OMZ was intensified and poorly ventilated, leading to oxygen-depleted benthic environment. Characteristically, increased abundance of taxa with milioline tests during the Heinrich 1 further suggests enhanced ventilation attributed probably to the influence of oxygen-rich Antarctic Intermediate Water (AAIW).
Applicability of tungsten/EUROFER blanket module for the DEMO first wall
NASA Astrophysics Data System (ADS)
Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.
2013-07-01
In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.
NASA Astrophysics Data System (ADS)
Ishii, Hajime; Ueno, Hiroaki; Ueda, Tetsuzo; Endoh, Tetsuo
2018-06-01
In this paper, the current–voltage (I–V) characteristics of a 600-V-class normally off GaN gate injection transistor (GIT) from 25 to 200 °C are analyzed, and it is revealed that the drain current of the GIT increases during high-temperature operation. It is found that the maximum drain current (I dmax) of the GIT is 86% higher than that of a conventional 600-V-class normally off GaN metal insulator semiconductor hetero-FET (MIS-HFET) at 150 °C, whereas the GIT obtains 56% I dmax even at 200 °C. Moreover, the mechanism of the drain current increase of the GIT is clarified by examining the relationship between the temperature dependence of the I–V characteristics of the GIT and the gate hole injection effect determined from the shift of the second transconductance (g m) peak of the g m–V g characteristic. From the above, the GIT is a promising device with enough drivability for future power switching applications even under high-temperature conditions.
Bramley, Anna M; Reed, Carrie; Finelli, Lyn; Self, Wesley H; Ampofo, Krow; Arnold, Sandra R; Williams, Derek J; Grijalva, Carlos G; Anderson, Evan J; Stockmann, Chris; Trabue, Christopher; Fakhran, Sherene; Balk, Robert; McCullers, Jonathan A; Pavia, Andrew T; Edwards, Kathryn M; Wunderink, Richard G; Jain, Seema
2017-06-15
The effect of body mass index (BMI) on community-acquired pneumonia (CAP) severity is unclear. We investigated the relationship between BMI and CAP outcomes (hospital length of stay [LOS], intensive care unit [ICU] admission, and invasive mechanical ventilation) in hospitalized CAP patients from the Centers for Disease Control and Prevention Etiology of Pneumonia in the Community (EPIC) study, adjusting for age, demographics, underlying conditions, and smoking status (adults only). Compared with normal-weight children, odds of ICU admission were higher in children who were overweight (adjusted odds ratio [aOR], 1.7; 95% confidence interval [CI], 1.1-2.8) or obese (aOR, 2.1; 95% CI, 1.4-3.2), and odds of mechanical ventilation were higher in children with obesity (aOR, 2.7; 95% CI, 1.3-5.6). When stratified by asthma (presence/absence), these findings remained significant only in children with asthma. Compared with normal-weight adults, odds of LOS >3 days were higher in adults who were underweight (aOR, 1.6; 95% CI, 1.1-2.4), and odds of mechanical ventilation were lowest in adults who were overweight (aOR, 0.5; 95% CI, .3-.9). Children who were overweight or obese, particularly those with asthma, had higher odds of ICU admission or mechanical ventilation. In contrast, adults who were underweight had longer LOS. These results underscore the complex relationship between BMI and CAP outcomes. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Hartmann, E K; Duenges, B; Boehme, S; Szczyrba, M; Liu, T; Klein, K U; Baumgardner, J E; Markstaller, K; David, M
2014-09-01
During cardiopulmonary resuscitation (CPR) the ventilation/perfusion distribution (VA /Q) within the lung is difficult to assess. This experimental study examines the capability of multiple inert gas elimination (MIGET) to determine VA /Q under CPR conditions in a pig model. Twenty-one anaesthetised pigs were randomised to three fractions of inspired oxygen (1.0, 0.7 or 0.21). VA/ Q by micropore membrane inlet mass spectrometry-derived MIGET was determined at baseline and during CPR following induction of ventricular fibrillation. Haemodynamics, blood gases, ventilation distribution by electrical impedance tomography and return of spontaneous circulation were assessed. Intergroup differences were analysed by non-parametric testing. MIGET measurements were feasible in all animals with an excellent correlation of measured and predicted arterial oxygen partial pressure (R(2) = 0.96, n = 21 for baseline; R(2) = 0.82, n = 21 for CPR). CPR induces a significant shift from normal VA /Q ratios to the high VA /Q range. Electrical impedance tomography indicates a dorsal to ventral shift of the ventilation distribution. Diverging pulmonary shunt fractions induced by the three inspired oxygen levels considerably increased during CPR and were traceable by MIGET, while 100% oxygen most negatively influenced the VA /Q. Return of spontaneous circulation were achieved in 52% of the animals. VA /Q assessment by MIGET is feasible during CPR and provides a novel tool for experimental purposes. Changes in VA /Q caused by different oxygen fractions are traceable during CPR. Beyond pulmonary perfusion deficits, these data imply an influence of the inspired oxygen level on VA /Q. Higher oxygen levels significantly increase shunt fractions and impair the normal VA /Q ratio. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Altered respiratory response to substance P in capsaicin-treated rats.
Towle, A C; Mueller, R A; Breese, G R; Lauder, J
1985-01-01
The present investigation sought to examine the importance of substance P in the altered respiratory activity after neonatal capsaicin administration. Halothane-anesthetized adult rats given capsaicin neonatally exhibit a decreased basal minute ventilation with PaCO2 equal to and PaO2 greater than vehicle injected controls. In addition, the minute ventilation-PaCO2 curve was displaced to the right. Acute bilateral cervical vagotomy severely blunted the minute ventilation response to PaCO2 and abolished the differences in ventilation between capsaicin treated and control rats. Neonatal capsaicin significantly reduced pons-medulla substance P content but not TRH, serotonin or 5-hydroxyindole acetic acid. Immunohistochemical studies revealed that substance P fibers of the trigeminal spinal nucleus were the most severely affected in the brain stem and that substance P fibers in the lung were totally absent. The intracerebroventricular administration of substance P increased minute ventilation similarly in both control and capsaicin treated rats, largely as a result of increases in tidal volume. The minute ventilation-PaCO2 curve was similar in both groups after substance P administration. Simultaneous administration of the peptidase inhibitor captopril with substance P increased the respiratory response to substance P in normal rats. Administration of captopril to capsaicin treated rats restored the ventilation-PaCO2 curve to the position observed in normal rats. The hypotensive response to intracerebroventricular captopril alone in control rats was less profound in rats given neonatal capsaicin. These results are consistent with the thesis that respiratory depression after capsaicin treatment is at least in part due to the loss of substance P primary afferent nerve terminals in the brain stem, suggesting that substance P fibers in the brain stem may participate in the normal modulation of respiratory activity.
Respiratory gas conditioning in infants with an artificial airway.
Schulze, Andreas
2002-10-01
There is a strong physiological rationale for delivering the inspiratory gas at or close to core body temperature and saturated with water vapour to infants with an artificial airway undergoing long-term mechanical ventilatory assistance. Cascade humidifiers with heated wire ventilatory circuitry may achieve this goal safely. Whenever saturated air leaves the humidifier chamber at 37 degrees C and condensate accumulates in the circuit, the gas loses humidity and acquires the potential to dry airway secretions near the tip of the endotracheal tube. Heat and moisture exchangers and hygroscopic condenser humidifiers with or without bacterial filters have become available for neonates. They can provide sufficient moisture output for short-term ventilation without excessive additional dead space or flow-resistive load for term infants. Their safety and efficacy for very low birthweight infants and for long-term mechanical ventilation has not been established conclusively. A broader application of these inexpensive and simple devices is likely to occur with further design improvements. When heated humidifiers are appropriately applied, water or normal saline aerosol application offers no additional significant advantage in terms of inspiratory gas conditioning and may impose a water overload on the airway or even systemically. Although airway irrigation by periodic bolus instillation of normal saline solution prior to suctioning procedures is widely practised in neonatology, virtually no data exist on its safety and efficacy when used with appropriately humidified inspired gas. There is no evidence that conditioning of inspired gas to core body temperature and full water vapour saturation may promote nosocomial respiratory infections.
Valls-i-Soler, Adolfo; Encinas, Esther; Lukas, John C.; Vozmediano, Valvanera; Suárez, Elena
2014-01-01
Background Fentanyl is widely used off-label in NICU. Our aim was to investigate its cerebral, cardiovascular and pulmonary effects as well as pharmacokinetics in an experimental model for neonates. Methods Fentanyl (5 µg/kg bolus immediately followed by a 90 minute infusion of 3 µg/kg/h) was administered to six mechanically ventilated newborn piglets. Cardiovascular, ventilation, pulmonary and oxygenation indexes as well as brain activity were monitored from T = 0 up to the end of experiments (T = 225–300 min). Also plasma samples for quantification of fentanyl were drawn. Results A “reliable degree of sedation” was observed up to T = 210–240 min, consistent with the selected dosing regimen and the observed fentanyl plasma levels. Unlike cardiovascular parameters, which were unmodified except for an increasing trend in heart rate, some of the ventilation and oxygenation indexes as well as brain activity were significantly altered. The pulmonary and brain effects of fentanyl were mostly recovered from T = 210 min to the end of experiment. Conclusion The newborn piglet was shown to be a suitable experimental model for studying fentanyl disposition as well as respiratory and cardiovascular effects in human neonates. Therefore, it could be extremely useful for further investigating the drug behaviour under pathophysiological conditions. PMID:24595018
Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F
2007-01-01
Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we found that ventilating the normal lung with high peak pressure (45 cmH(2)0) and low positive end-expiratory pressure (PEEP of 3 cmH(2)O) did not initially result in altered alveolar mechanics, but alveolar instability developed over time. Anesthetized rats underwent tracheostomy, were placed on pressure control ventilation, and underwent sternotomy. Rats were then assigned to one of three ventilation strategies: control group (n = 3, P control = 14 cmH(2)O, PEEP = 3 cmH(2)O), high pressure/low PEEP group (n = 6, P control = 45 cmH(2)O, PEEP = 3 cmH(2)O), and high pressure/high PEEP group (n = 5, P control = 45 cmH(2)O, PEEP = 10 cmH(2)O). In vivo microscopic footage of subpleural alveolar stability (that is, recruitment/derecruitment) was taken at baseline and than every 15 minutes for 90 minutes following ventilator adjustments. Alveolar recruitment/derecruitment was determined by measuring the area of individual alveoli at peak inspiration (I) and end expiration (E) by computer image analysis. Alveolar recruitment/derecruitment was quantified by the percentage change in alveolar area during tidal ventilation (%I - E Delta). Alveoli were stable in the control group for the entire experiment (low %I - E Delta). Alveoli in the high pressure/low PEEP group were initially stable (low %I - E Delta), but with time alveolar recruitment/derecruitment developed. The development of alveolar instability in the high pressure/low PEEP group was associated with histologic lung injury. A large change in lung volume with each breath will, in time, lead to unstable alveoli and pulmonary damage. Reducing the change in lung volume by increasing the PEEP, even with high inflation pressure, prevents alveolar instability and reduces injury. We speculate that ventilation with large changes in lung volume over time results in surfactant deactivation, which leads to alveolar instability.
Hong, Caron M; Xu, Da-Zhong; Lu, Qi; Cheng, Yunhui; Pisarenko, Vadim; Doucet, Danielle; Brown, Margaret; Aisner, Seena; Zhang, Chunxiang; Deitch, Edwin A; Delphin, Ellise
2010-06-01
Protective mechanical ventilation with low tidal volume (Vt) and low plateau pressure reduces mortality and decreases the length of mechanical ventilation in patients with acute respiratory distress syndrome. Mechanical ventilation that will protect normal lungs during major surgical procedures of long duration may improve postoperative outcomes. We performed an animal study comparing 3 ventilation strategies used in the operating room in normal lungs. We compared the effects on pulmonary mechanics, inflammatory mediators, and lung tissue injury. Female pigs were randomized into 3 groups. Group H-Vt/3 (n = 6) was ventilated with a Vt of 15 mL/kg predicted body weight (PBW)/positive end-expiratory pressure (PEEP) of 3 cm H(2)O, group L-Vt/3 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 3 cm H(2)O, and group L-Vt/10 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 10 cm H(2)O, for 8 hours. Hemodynamics, airway mechanics, arterial blood gases, and inflammatory markers were monitored. Bronchoalveolar lavage (BAL) was analyzed for inflammatory markers and protein concentration. The right lower lobe was assayed for mRNA of specific cytokines. The right lower lobe and right upper lobe were evaluated histologically. In contrast to groups H-Vt/3 and L-Vt/3, group L-Vt/10 exhibited a 6-fold increase in inflammatory mediators in BAL (P < 0.001). Cytokines in BAL were similar in groups H-Vt/3 and L-Vt/3. Group H-Vt/3 had a significantly lower lung injury score than groups L-Vt/3 and L-Vt/10. Comparing intraoperative strategies, ventilation with high PEEP resulted in increased production of inflammatory markers. Low PEEP resulted in lower levels of inflammatory markers. High Vt/low PEEP resulted in less histologic lung injury.
Dussault, C; Gontier, E; Verret, C; Soret, M; Boussuges, A; Hedenstierna, G; Montmerle-Borgdorff, S
2016-07-01
Aeroatelectasis has developed in aircrew flying routine peacetime flights on the latest generation high-performance aircraft, when undergoing excessive oxygen supply. To single out the effects of hyperoxia and hypergravity on lung tissue compression, and on ventilation and perfusion, eight subjects were studied before and after 1 h 15 min exposure to +1 to +3.5 Gz in a human centrifuge. They performed the protocol three times, breathing air, 44.5% O2, or 100% O2 and underwent functional and topographical imaging of the whole lung by ultrasound and single-photon emission computed tomography combined with computed tomography (SPECT/CT). Ultrasound lung comets (ULC) and atelectasis both increased after exposure. The number of ULC was <1 pre protocol (i.e., normal lung) and larger post 100% O2 (22 ± 3, mean ± SD) than in all other conditions (P < 0.001). Post 44.5% O2 differed from air (P < 0.05). Seven subjects showed low- to medium-grade atelectasis post 100% O2 There was an effect on grade of gas mixture and hypergravity, with interaction (P < 0.001, respectively); 100% O2, 44.5% O2, and air differed from each other (P < 0.05). SPECT ventilation and perfusion were always normal. Ultrasound concurred with CT in showing normal lung in the upper third and ULC/atelectasis in posterior and inferior areas, not for other localizations. In conclusion, hyperoxia and hypergravity are independent risk factors of reversible atelectasis formation. Ultrasound is a useful screening tool. Together with electrical impedance tomography measurements (reported separately), these findings show that zones with decreased ventilation prone to transient airway closure are present above atelectatic areas. Copyright © 2016 the American Physiological Society.
Brain Cell Swelling During Hypocapnia Increases with Hyperglycemia or Ketosis
Glaser, Nicole; Bundros, Angeliki; Anderson, Steve; Tancredi, Daniel; Lo, Weei; Orgain, Myra; O'Donnell, Martha
2014-01-01
Severe hypocapnia increases the risk of DKA-related cerebral injury in children, but the reason for this association is unclear. To determine whether the effects of hypocapnia on the brain are altered during hyperglycemia or ketosis, we induced hypocapnia (pCO2 20 ± 3 mmHg) via mechanical ventilation in three groups of juvenile rats: 25 controls, 22 hyperglycemic rats (serum glucose 451± 78 mg/dL) and 15 ketotic rats (beta-hydroxy butyrate 3.0 ± 1.0 mmol/L). We used magnetic resonance imaging to measure cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) values in these groups and in 17 ventilated rats with normal pCO2 (40±3 mmHg). In a subset (n=35), after 2 hrs of hypocapnia, pCO2 levels were normalized (40±3 mmHg) and ADC and CBF measurements repeated. Declines in CBF with hypocapnia occurred in all groups. Normalization of pCO2 after hypocapnia resulted in striatal hyperemia. These effects were not substantially altered by hyperglycemia or ketosis, however, declines in ADC during hypocapnia were greater during both hyperglycemia and ketosis. We conclude that brain cell swelling associated with hypocapnia is increased by both hyperglycemia and ketosis, suggesting that these metabolic conditions may make the brain more vulnerable to injury during hypocapnia. PMID:24443981
Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues
The influence of mechanical ventilation on physiological parameters in ball pythons (Python regius).
Jakobsen, Sashia L; Williams, Catherine J A; Wang, Tobias; Bertelsen, Mads F
2017-05-01
Mechanical ventilation is widely recommended for reptiles during anesthesia, and while it is well-known that their low ectothermic metabolism requires much lower ventilation than in mammals, very little is known about the influence of ventilation protocol on the recovery from anesthesia. Here, 15 ball pythons (Python regius) were induced and maintained with isoflurane for 60min at one of three ventilation protocols (30, 125, or 250mlmin -1 kg -1 body mass) while an arterial catheter was inserted, and ventilation was then continued on 100% oxygen at the specified rate until voluntary extubation. Mean arterial blood pressure and heart rate (HR) were measured, and arterial blood samples collected at 60, 80, 180min and 12 and 24h after intubation. In all three groups, there was evidence of a metabolic acidosis, and snakes maintained at 30mlmin -1 kg -1 experienced an additional respiratory acidosis, while the two other ventilation protocols resulted in normal or low arterial PCO 2 . In general, normal acid-base status was restored within 12h in all three protocols. HR increased by 143±64% during anesthesia with high mechanical ventilation (250mlmin -1 kg -1 ) in comparison with recovered values. Recovery times after mechanical ventilation at 30, 125, or 250mlmin -1 kg -1 were 289±70, 126±16, and 68±7min, respectively. Mild overventilation may result in a faster recovery, and the associated lowering of arterial PCO 2 normalised arterial pH in the face of metabolic acidosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Evaluating the Effectiveness of Cooling Vest in a Hot and Humid Environment.
Yi, Wen; Zhao, Yijie; Chan, Albert P C
2017-05-01
This study aims to evaluate the effectiveness of a newly designed hybrid cooling vest for construction workers in alleviating heat stress. Two types of cooling vests, namely, a commonly worn Vest A and a newly designed Vest B, were tested in a climatic chamber environment (34.0°C temperature, 60% relative humidity, and 0.4 m s-1 air velocity) using a sweating thermal manikin. Four test scenarios were included: fan off with no phase change materials (PCMs) (Fan-off), fan on with no PCMs (Fan-on), fan off with completely solidified PCMs (PCM + Fan-off), and fan on with completely solidified PCMs (PCM + Fan-on). Test results showed that Vests A and B provided a continuous cooling effect during the 3-h test. The average cooling power for the torso region of Vest B was 67 W, which was higher than that of Vest A (56 W). The addition of PCMs offered a cooling effect of approximately 60 min. Ventilation fans considerably improved the evaporative heat loss compared with the Fan-off condition. The newly designed hybrid cooling vest (Vest B) may be an effective means to reduce heat strain and enhance work performance in a hot and humid environment. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Influence of respiratory muscle work on VO(2) and leg blood flow during submaximal exercise.
Wetter, T J; Harms, C A; Nelson, W B; Pegelow, D F; Dempsey, J A
1999-08-01
The work of breathing (W(b)) normally incurred during maximal exercise not only requires substantial cardiac output and O(2) consumption (VO(2)) but also causes vasoconstriction in locomotor muscles and compromises leg blood flow (Q(leg)). We wondered whether the W(b) normally incurred during submaximal exercise would also reduce Q(leg). Therefore, we investigated the effects of changing the W(b) on Q(leg) via thermodilution in 10 healthy trained male cyclists [maximal VO(2) (VO(2 max)) = 59 +/- 9 ml. kg(-1). min(-1)] during repeated bouts of cycle exercise at work rates corresponding to 50 and 75% of VO(2 max). Inspiratory muscle work was 1) reduced 40 +/- 6% via a proportional-assist ventilator, 2) not manipulated (control), or 3) increased 61 +/- 8% by addition of inspiratory resistive loads. Increasing the W(b) during submaximal exercise caused VO(2) to increase; decreasing the W(b) was associated with lower VO(2) (DeltaVO(2) = 0.12 and 0.21 l/min at 50 and 75% of VO(2 max), respectively, for approximately 100% change in W(b)). There were no significant changes in leg vascular resistance (LVR), norepinephrine spillover, arterial pressure, or Q(leg) when W(b) was reduced or increased. Why are LVR, norepinephrine spillover, and Q(leg) influenced by the W(b) at maximal but not submaximal exercise? We postulate that at submaximal work rates and ventilation rates the normal W(b) required makes insufficient demands for VO(2) and cardiac output to require any cardiovascular adjustment and is too small to activate sympathetic vasoconstrictor efferent output. Furthermore, even a 50-70% increase in W(b) during submaximal exercise, as might be encountered in conditions where ventilation rates and/or inspiratory flow resistive forces are higher than normal, also does not elicit changes in LVR or Q(leg).
Ferrando, Carlos; Suárez-Sipmann, Fernando; Gutierrez, Andrea; Tusman, Gerardo; Carbonell, Jose; García, Marisa; Piqueras, Laura; Compañ, Desamparados; Flores, Susanie; Soro, Marina; Llombart, Alicia; Belda, Francisco Javier
2015-01-13
The stress index (SI), a parameter derived from the shape of the pressure-time curve, can identify injurious mechanical ventilation. We tested the hypothesis that adjusting tidal volume (VT) to a non-injurious SI in an open lung condition avoids hypoventilation while preventing overdistension in an experimental model of combined lung injury and low chest-wall compliance (Ccw). Lung injury was induced by repeated lung lavages using warm saline solution, and Ccw was reduced by controlled intra-abdominal air-insufflation in 22 anesthetized, paralyzed and mechanically ventilated pigs. After injury animals were recruited and submitted to a positive end-expiratory pressure (PEEP) titration trial to find the PEEP level resulting in maximum compliance. During a subsequent four hours of mechanical ventilation, VT was adjusted to keep a plateau pressure (Pplat) of 30 cmH2O (Pplat-group, n = 11) or to a SI between 0.95 and 1.05 (SI-group, n = 11). Respiratory rate was adjusted to maintain a 'normal' PaCO2 (35 to 65 mmHg). SI, lung mechanics, arterial-blood gases haemodynamics pro-inflammatory cytokines and histopathology were analyzed. In addition Computed Tomography (CT) data were acquired at end expiration and end inspiration in six animals. PaCO2 was significantly higher in the Pplat-group (82 versus 53 mmHg, P = 0.01), with a resulting lower pH (7.19 versus 7.34, P = 0.01). We observed significant differences in VT (7.3 versus 5.4 mlKg(-1), P = 0.002) and Pplat values (30 versus 35 cmH2O, P = 0.001) between the Pplat-group and SI-group respectively. SI (1.03 versus 0.99, P = 0.42) and end-inspiratory transpulmonary pressure (PTP) (17 versus 18 cmH2O, P = 0.42) were similar in the Pplat- and SI-groups respectively, without differences in overinflated lung areas at end- inspiration in both groups. Cytokines and histopathology showed no differences. Setting tidal volume to a non-injurious stress index in an open lung condition improves alveolar ventilation and prevents overdistension without increasing lung injury. This is in comparison with limited Pplat protective ventilation in a model of lung injury with low chest-wall compliance.
Elliott, Ann R.; Prisk, G. Kim; Darquenne, Chantal
2017-01-01
Multiple breath washout (MBW) and oxygen-enhanced MRI techniques use acute exposure to 100% oxygen to measure ventilation heterogeneity. Implicit is the assumption that breathing 100% oxygen does not induce changes in ventilation heterogeneity; however, this is untested. We hypothesized that ventilation heterogeneity decreases with increasing inspired oxygen concentration in healthy subjects. We performed MBW in 8 healthy subjects (4 women, 4 men; age = 43 ± 15 yr) with normal pulmonary function (FEV1 = 98 ± 6% predicted) using 10% argon as a tracer gas and oxygen concentrations of 12.5%, 21%, or 90%. MBW was performed in accordance with ERS-ATS guidelines. Subjects initially inspired air followed by a wash-in of test gas. Tests were performed in balanced order in triplicate. Gas concentrations were measured at the mouth, and argon signals rescaled to mimic a N2 washout, and analyzed to determine the distribution of specific ventilation (SV). Heterogeneity was characterized by the width of a log-Gaussian fit of the SV distribution and from Sacin and Scond indexes derived from the phase III slope. There were no significant differences in the ventilation heterogeneity due to altered inspired oxygen: histogram width (hypoxia 0.57 ± 0.11, normoxia 0.60 ± 0.08, hyperoxia 0.59 ± 0.09, P = 0.51), Scond (hypoxia 0.014 ± 0.011, normoxia 0.012 ± 0.015, hyperoxia 0.010 ± 0.011, P = 0.34), or Sacin (hypoxia 0.11 ± 0.04, normoxia 0.10 ± 0.03, hyperoxia 0.12 ± 0.03, P = 0.23). Functional residual capacity was increased in hypoxia (P = 0.04) and dead space increased in hyperoxia (P = 0.0001) compared with the other conditions. The acute use of 100% oxygen in MBW or MRI is unlikely to affect ventilation heterogeneity. NEW & NOTEWORTHY Hyperoxia is used to measure the distribution of ventilation in imaging and MBW but may alter the underlying ventilation distribution. We used MBW to evaluate the effect of inspired oxygen concentration on the ventilation distribution using 10% argon as a tracer. Short-duration exposure to hypoxia (12.5% oxygen) and hyperoxia (90% oxygen) during MBW had no significant effect on ventilation heterogeneity, suggesting that hyperoxia can be used to assess the ventilation distribution. PMID:28280107
Hopkins, Susan R; Elliott, Ann R; Prisk, G Kim; Darquenne, Chantal
2017-06-01
Multiple breath washout (MBW) and oxygen-enhanced MRI techniques use acute exposure to 100% oxygen to measure ventilation heterogeneity. Implicit is the assumption that breathing 100% oxygen does not induce changes in ventilation heterogeneity; however, this is untested. We hypothesized that ventilation heterogeneity decreases with increasing inspired oxygen concentration in healthy subjects. We performed MBW in 8 healthy subjects (4 women, 4 men; age = 43 ± 15 yr) with normal pulmonary function (FEV 1 = 98 ± 6% predicted) using 10% argon as a tracer gas and oxygen concentrations of 12.5%, 21%, or 90%. MBW was performed in accordance with ERS-ATS guidelines. Subjects initially inspired air followed by a wash-in of test gas. Tests were performed in balanced order in triplicate. Gas concentrations were measured at the mouth, and argon signals rescaled to mimic a N 2 washout, and analyzed to determine the distribution of specific ventilation (SV). Heterogeneity was characterized by the width of a log-Gaussian fit of the SV distribution and from S acin and S cond indexes derived from the phase III slope. There were no significant differences in the ventilation heterogeneity due to altered inspired oxygen: histogram width (hypoxia 0.57 ± 0.11, normoxia 0.60 ± 0.08, hyperoxia 0.59 ± 0.09, P = 0.51), S cond (hypoxia 0.014 ± 0.011, normoxia 0.012 ± 0.015, hyperoxia 0.010 ± 0.011, P = 0.34), or S acin (hypoxia 0.11 ± 0.04, normoxia 0.10 ± 0.03, hyperoxia 0.12 ± 0.03, P = 0.23). Functional residual capacity was increased in hypoxia ( P = 0.04) and dead space increased in hyperoxia ( P = 0.0001) compared with the other conditions. The acute use of 100% oxygen in MBW or MRI is unlikely to affect ventilation heterogeneity. NEW & NOTEWORTHY Hyperoxia is used to measure the distribution of ventilation in imaging and MBW but may alter the underlying ventilation distribution. We used MBW to evaluate the effect of inspired oxygen concentration on the ventilation distribution using 10% argon as a tracer. Short-duration exposure to hypoxia (12.5% oxygen) and hyperoxia (90% oxygen) during MBW had no significant effect on ventilation heterogeneity, suggesting that hyperoxia can be used to assess the ventilation distribution. Copyright © 2017 the American Physiological Society.
Lu, Chih-Cherng; Lin, Tso-Chou; Hsu, Che-Hao; Yu, Mu-Hsien; Chen, Ta-Liang; Chen, Ruei-Ming; Ku, Chih-Hung; Ho, Shung-Tai
2012-09-01
Under a constant inspired concentration, the uptake of a volatile anesthetic into the arterial blood should mainly be governed by alveolar ventilation, according to the assumption that the patient's cardiac output remains stable during anesthesia. We investigated whether ventilation volume affects the rate of desflurane uptake by examining arterial blood concentrations. Thirty female patients were randomly allocated into the following three groups: hyperventilation, normal ventilation and hypoventilation. Hemodynamic variables were measured using a Finometer, inspiratory and end-tidal concentrations of desflurane were measured by infrared analysis, and the desflurane concentration in the arterial blood (Ades) was analyzed by gas chromatography. During the first 10 minutes after the administration of desflurane, the Ades was highest in the hyperventilation group, and this value was significantly different from those obtained for the normal and hypoventilation groups. In addition, hyperventilation significantly increased the slope of Ades-over-time during the first 5 minutes compared with patients experiencing normal ventilation and hypoventilation, but there were no differences in these slopes during the periods from 5-10, 10-20 and 20-40 minutes after the administration of desflurane. This finding indicates that there were no differences in desflurane uptake between the three groups after the first 5 minutes within desflurane administration. Hyperventilation accelerated the rate of the rise in Ades following desflurane administration, which was time-dependent with respect to different alveolar ventilations levels.
Lu, Chih-Cherng; Lin, Tso-Chou; Hsu, Che-Hao; Yu, Mu-Hsien; Chen, Ta-Liang; Chen, Ruei-Ming; Ku, Chih-Hung; Ho, Shung-Tai
2012-01-01
OBJECTIVES: Under a constant inspired concentration, the uptake of a volatile anesthetic into the arterial blood should mainly be governed by alveolar ventilation, according to the assumption that the patient's cardiac output remains stable during anesthesia. We investigated whether ventilation volume affects the rate of desflurane uptake by examining arterial blood concentrations. METHOD: Thirty female patients were randomly allocated into the following three groups: hyperventilation, normal ventilation and hypoventilation. Hemodynamic variables were measured using a Finometer, inspiratory and end-tidal concentrations of desflurane were measured by infrared analysis, and the desflurane concentration in the arterial blood (Ades) was analyzed by gas chromatography. RESULTS: During the first 10 minutes after the administration of desflurane, the Ades was highest in the hyperventilation group, and this value was significantly different from those obtained for the normal and hypoventilation groups. In addition, hyperventilation significantly increased the slope of Ades-over-time during the first 5 minutes compared with patients experiencing normal ventilation and hypoventilation, but there were no differences in these slopes during the periods from 5-10, 10-20 and 20-40 minutes after the administration of desflurane. This finding indicates that there were no differences in desflurane uptake between the three groups after the first 5 minutes within desflurane administration. CONCLUSIONS: Hyperventilation accelerated the rate of the rise in Ades following desflurane administration, which was time-dependent with respect to different alveolar ventilations levels. PMID:23018299
[A comparison of leak compensation in six acute care ventilators during non-invasive ventilation].
Hu, X S; Wang, Y; Wang, Z T; Yan, P; Zhang, X G; Zhao, S F; Xie, F; Gu, H J; Xie, L X
2017-02-12
Objective: To compare the ability of leak compensation in 6 medical ventilators during non-invasive ventilation. Methods: Six medical ventilators were selected, including 3 non-invasive ventilators (V60, Flexo and Stellar150), and 3 invasive ventilators(Avea, Servo I and BellaVist). Using a lung simulator, the ability of leak compensation was evaluated during triggering and cycling in 2 respiratory mechanics conditions (high airway resistance condition and high elastance resistance condition), and each condition was performed under 2 PEEP levels (4, and 8 cmH(2)O, 1 mmHg=0.098 kPa) at 4 air leak level conditions (L0: 2-3 L/min, L1: 8-10 L/min, L2: 22-27 L/min, L3: 35-40 L/min). Results: In the high elastance resistance condition (L2, L3)with different leak levels, the number of auto-triggering and miss-triggering of the non-invasive ventilator Flexo was significantly less than those of the others (L2: 1, 1; L3: 1.67, 1.33, P <0.01), and had better synchronization (L2: 2.33, 2.33; L3: 3.33, 3.33, P <0.01). In the high airway resistance condition with PEEP 4 cmH(2)O, V60 had less number of auto-triggering than other ventilators ( P <0.01), while in the high airway resistance condition with PEEP 8 cmH(2)O, Stellar150 had less number of miss-triggering than other ventilators (1, 0.67, 0, P <0.01). Flexo had a shorter trigger delay time than other ventilators in both high airway resistance and high elastance resistance conditions with L0 and L1 leak levels and PEEP levels [ARDS, PEEP=4: (109.8±1.8) ms, (112.0±0.6) ms; ARDS, PEEP=8: (103.1±0.7) ms, (109.7±0.7) ms; COPD, PEEP=4: (207.3±1.1) ms, (220.8±1.1) ms; COPD, PEEP=8: (195.6±6.7) ms, (200.0±1.2) ms , P <0.01]. Stellar150 had the shortest trigger delay time in high airway resistance condition with PEEP 4 cmH(2)O and high leak level L3[(262.8±0.8) ms , P <0.01]. V60 had a good performance on trigger delay time in high elastance resistance condition with PEEP 4 and 8 cmH(2)O, and also was most stable in increasing leak levels. Conclusion: In high airway resistance and high elastance resistance conditions with different PEEP levels and leak levels, V60, Stellar150, Flexo and BellaVista ventilators could be synchronized, among which V60, Stellar150 and Flexo presented a good performance features in specific conditions.
Cardiopulmonary function and oxygen delivery during total liquid ventilation.
Tsagogiorgas, Charalambos; Alb, Markus; Herrmann, Peter; Quintel, Michael; Meinhardt, Juergen P
2011-10-01
Total liquid ventilation (TLV) with perfluorocarbons has shown to improve cardiopulmonary function in the injured and immature lung; however there remains controversy over the normal lung. Hemodynamic effects of TLV in the normal lung currently remain undetermined. This study compared changes in cardiopulmonary and circulatory function caused by either liquid or gas tidal volume ventilation. In a prospective, controlled study, 12 non-injured anesthetized, adult New Zealand rabbits were primarily conventionally gas-ventilated (CGV). After instrumentation for continuous recording of arterial (AP), central venous (CVP), left artrial (LAP), pulmonary arterial pressures (PAP), and cardiac output (CO) animals were randomized into (1) CGV group and (2) TLV group. In the TLV group partial liquid ventilation was initiated with instillation of perfluoroctylbromide (12 ml/kg). After 15 min, TLV was established for 3 hr applying a volume-controlled, pressure-limited, time-cycled ventilation mode using a double-piston configured TLV. Controls (CGV) remained gas-ventilated throughout the experiment. During TLV, heart rate, CO, PAP, MAP, CVP, and LAP as well as derived hemodynamic variables, arterial and mixed venous blood gases, oxygen delivery, PVR, and SVR did not differ significantly compared to CGV. Liquid tidal volumes suitable for long-term TLV in non-injured rabbits do not significantly impair CO, blood pressure, and oxygen dynamics when compared to CGV. Copyright © 2011 Wiley-Liss, Inc.
Continuous distributions of specific ventilation recovered from inert gas washout
NASA Technical Reports Server (NTRS)
Lewis, S. M.; Evans, J. W.; Jalowayski, A. A.
1978-01-01
A new technique is described for recovering continuous distributions of ventilation as a function of tidal ventilation/volume ratio from the nitrogen washout. The analysis yields a continuous distribution of ventilation as a function of tidal ventilation/volume ratio represented as fractional ventilations of 50 compartments plus dead space. The procedure was verified by recovering known distributions from data to which noise had been added. Using an apparatus to control the subject's tidal volume and FRC, mixed expired N2 data gave the following results: (a) the distributions of young, normal subjects were narrow and unimodal; (b) those of subjects over age 40 were broader with more poorly ventilated units; (c) patients with pulmonary disease of all descriptions showed enlarged dead space; (d) patients with cystic fibrosis showed multimodal distributions with the bulk of the ventilation going to overventilated units; and (e) patients with obstructive lung disease fell into several classes, three of which are illustrated.
The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.
Rabach, Lesley; Siegel, Mark D; Puchalski, Jonathan T; Towle, Dana; Follert, Michelle; Johnson, Kelsey M; Rademaker, Alfred W; Leder, Steven B
2015-06-01
Preventing pulmonary complications during mechanical ventilation via tracheotomy is a high priority. To investigate if the Blom tracheotomy tube with suction-above-the-cuff inner cannula reduced the quantity of normal flora and pathogens in supra- versus subglottic spaces. We enrolled 20 consecutive medical ICU adults requiring tracheostomy for mechanical ventilation in this proof-of-concept, prospective, single-center study. All participants received a Blom tracheotomy tube with suction-above-the-cuff inner cannula to decontaminate microorganisms from the supra- and subglottic spaces. Supra- and subglottic sputum samples were obtained for microbiologic analysis while an endotracheal tube was in place before tracheotomy and once per week for up to 4 weeks of mechanical ventilation after tracheotomy. Demographics, duration of endotracheal tube intubation, and duration of mechanical ventilation post-tracheotomy were recorded. There was a significant reduction for supraglottic (2.86 ± 1.11 [mean ± SD]) versus subglottic suction samples (2.48 ± 1.07) (paired t test, P = 0.048; Wilcoxon test, P = 0.045) when all data pairs for normal flora and pathogens were combined across times. There was a significant reduction of normal flora pooled across times in 19 data pairs for supraglottic (3.00 ± 1.05) versus subglottic suction samples (2.00 ± 0.94) (paired t test, P = 0.0004; Wilcoxon test, P = 0.0007). There was no significant reduction of pathogens pooled across times in 25 data pairs for supraglottic (2.76 ± 1.16) versus subglottic suction samples (2.84 ± 1.03) (paired t test, P = 0.75; Wilcoxon test, P = 0.83). Proof-of-concept was confirmed. The Blom tracheotomy tube with disposable suction-above-the-cuff inner cannula decontaminated microorganisms from the subglottic space when normal flora and pathogens were combined. Future research should investigate if decreased quantity of normal flora and pathogens in the subglottic space reduces the incidence of ventilator-associated pulmonary complications in critically ill patients requiring ongoing mechanical ventilation via tracheotomy.
Tiruvoipati, Ravindranath; Pilcher, David; Buscher, Hergen; Botha, John; Bailey, Michael
2017-07-01
Lung-protective ventilation is used to prevent further lung injury in patients on invasive mechanical ventilation. However, lung-protective ventilation can cause hypercapnia and hypercapnic acidosis. There are no large clinical studies evaluating the effects of hypercapnia and hypercapnic acidosis in patients requiring mechanical ventilation. Multicenter, binational, retrospective study aimed to assess the impact of compensated hypercapnia and hypercapnic acidosis in patients receiving mechanical ventilation. Data were extracted from the Australian and New Zealand Intensive Care Society Centre for Outcome and Resource Evaluation Adult Patient Database over a 14-year period where 171 ICUs contributed deidentified data. Patients were classified into three groups based on a combination of pH and carbon dioxide levels (normocapnia and normal pH, compensated hypercapnia [normal pH with elevated carbon dioxide], and hypercapnic acidosis) during the first 24 hours of ICU stay. Logistic regression analysis was used to identify the independent association of hypercapnia and hypercapnic acidosis with hospital mortality. Nil. A total of 252,812 patients (normocapnia and normal pH, 110,104; compensated hypercapnia, 20,463; and hypercapnic acidosis, 122,245) were included in analysis. Patients with compensated hypercapnia and hypercapnic acidosis had higher Acute Physiology and Chronic Health Evaluation III scores (49.2 vs 53.2 vs 68.6; p < 0.01). The mortality was higher in hypercapnic acidosis patients when compared with other groups, with the lowest mortality in patients with normocapnia and normal pH. After adjusting for severity of illness, the adjusted odds ratio for hospital mortality was higher in hypercapnic acidosis patients (odds ratio, 1.74; 95% CI, 1.62-1.88) and compensated hypercapnia (odds ratio, 1.18; 95% CI, 1.10-1.26) when compared with patients with normocapnia and normal pH (p < 0.001). In patients with hypercapnic acidosis, the mortality increased with increasing PCO2 until 65 mm Hg after which the mortality plateaued. Hypercapnic acidosis during the first 24 hours of intensive care admission is more strongly associated with increased hospital mortality than compensated hypercapnia or normocapnia.
Yehya, Nadir; Topjian, Alexis A; Thomas, Neal J; Friess, Stuart H
2014-05-01
Children with an immunocompromised condition and requiring invasive mechanical ventilation have high risk of death. Such patients are commonly transitioned to rescue modes of nonconventional ventilation, including airway pressure release ventilation and high-frequency oscillatory ventilation, for acute respiratory distress syndrome refractory to conventional ventilation. Our aim was to describe our experience with airway pressure release ventilation and high-frequency oscillatory ventilation in children with an immunocompromised condition and acute respiratory distress syndrome refractory to conventional ventilation and to identify factors associated with survival. Retrospective cohort study. Tertiary care, university-affiliated PICU. Sixty pediatric patients with an immunocompromised condition and acute respiratory distress syndrome refractory to conventional ventilation transitioned to either airway pressure release ventilation or high-frequency oscillatory ventilation. None. Demographic data, ventilator settings, arterial blood gases, oxygenation index, and PaO(2)/FIO(2) were recorded before transition to either mode of nonconventional ventilation and at predetermined intervals after transition for up to 5 days. Mortality in the entire cohort was 63% and did not differ between patients transitioned to airway pressure release ventilation and high-frequency oscillatory ventilation. For both airway pressure release ventilation and high-frequency oscillatory ventilation, improvements in oxygenation index and PaO(2)/FIO(2) at 24 hours expressed as a fraction of pretransition values (oxygenation index(24)/oxygenation index(pre) and PaO(2)/FIO(224)/PaO(2)/FIO(2pre)) reliably discriminated nonsurvivors from survivors, with receiver operating characteristic areas under the curves between 0.89 and 0.95 (p for all curves < 0.001). Sensitivity-specificity analysis suggested that less than 15% reduction in oxygenation index (90% sensitive, 75% specific) or less than 90% increase in PaO(2)/FIO(2) (80% sensitive, 94% specific) 24 hours after transition to airway pressure release ventilation were the optimal cutoffs to identify nonsurvivors. The comparable values 24 hours after transition to high-frequency oscillatory ventilation were less than 5% reduction in oxygenation index (100% sensitive, 83% specific) or less than 80% increase in PaO(2)/FIO(2) (91% sensitive, 89% specific) to identify nonsurvivors. In this single-center retrospective study of pediatric patients with an immunocompromised condition and acute respiratory distress syndrome failing conventional ventilation transitioned to either airway pressure release ventilation or high-frequency oscillatory ventilation, improved oxygenation at 24 hours expressed as PaO(2)/FIO(224)/PaO(2)/FIO(2pre) or oxygenation index(24)/oxygenation indexpre reliably discriminates nonsurvivors from survivors. These findings should be prospectively verified.
Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J
2009-01-01
To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37 degrees C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.
Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung.
Wu, You; Nguyen, Tam L; Perlman, Carrie E
2017-04-01
Edematous lungs contain regions with heterogeneous alveolar flooding. Liquid is trapped in flooded alveoli by a pressure barrier-higher liquid pressure at the border than in the center of flooded alveoli-that is proportional to surface tension, T Stress is concentrated between aerated and flooded alveoli, to a degree proportional to T Mechanical ventilation, by cyclically increasing T , injuriously exacerbates stress concentrations. Overcoming the pressure barrier to redistribute liquid more homogeneously between alveoli should reduce stress concentration prevalence and ventilation injury. In isolated rat lungs, we test whether accelerated deflation can overcome the pressure barrier and catapult liquid out of flooded alveoli. We generate a local edema model with normal T by microinfusing liquid into surface alveoli. We generate a global edema model with high T by establishing hydrostatic edema, which does not alter T , and then gently ventilating the edematous lungs, which increases T at 15 cmH 2 O transpulmonary pressure by 52%. Thus ventilation of globally edematous lungs increases T , which should increase stress concentrations and, with positive feedback, cause escalating ventilation injury. In the local model, when the pressure barrier is moderate, accelerated deflation causes liquid to escape from flooded alveoli and redistribute more equitably. Flooding heterogeneity tends to decrease. In the global model, accelerated deflation causes liquid escape, but-because of elevated T -the liquid jumps to nearby, aerated alveoli. Flooding heterogeneity is unaltered. In pulmonary edema with normal T , early ventilation with accelerated deflation might reduce the positive feedback mechanism through which ventilation injury increases over time. NEW & NOTEWORTHY We introduce, in the isolated rat lung, a new model of pulmonary edema with elevated surface tension. We first generate hydrostatic edema and then ventilate gently to increase surface tension. We investigate the mechanical mechanisms through which 1 ) ventilation injures edematous lungs and 2 ) ventilation with accelerated deflation might lessen ventilation injury. Copyright © 2017 the American Physiological Society.
Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung
Wu, You; Nguyen, Tam L.
2017-01-01
Edematous lungs contain regions with heterogeneous alveolar flooding. Liquid is trapped in flooded alveoli by a pressure barrier—higher liquid pressure at the border than in the center of flooded alveoli—that is proportional to surface tension, T. Stress is concentrated between aerated and flooded alveoli, to a degree proportional to T. Mechanical ventilation, by cyclically increasing T, injuriously exacerbates stress concentrations. Overcoming the pressure barrier to redistribute liquid more homogeneously between alveoli should reduce stress concentration prevalence and ventilation injury. In isolated rat lungs, we test whether accelerated deflation can overcome the pressure barrier and catapult liquid out of flooded alveoli. We generate a local edema model with normal T by microinfusing liquid into surface alveoli. We generate a global edema model with high T by establishing hydrostatic edema, which does not alter T, and then gently ventilating the edematous lungs, which increases T at 15 cmH2O transpulmonary pressure by 52%. Thus ventilation of globally edematous lungs increases T, which should increase stress concentrations and, with positive feedback, cause escalating ventilation injury. In the local model, when the pressure barrier is moderate, accelerated deflation causes liquid to escape from flooded alveoli and redistribute more equitably. Flooding heterogeneity tends to decrease. In the global model, accelerated deflation causes liquid escape, but—because of elevated T—the liquid jumps to nearby, aerated alveoli. Flooding heterogeneity is unaltered. In pulmonary edema with normal T, early ventilation with accelerated deflation might reduce the positive feedback mechanism through which ventilation injury increases over time. NEW & NOTEWORTHY We introduce, in the isolated rat lung, a new model of pulmonary edema with elevated surface tension. We first generate hydrostatic edema and then ventilate gently to increase surface tension. We investigate the mechanical mechanisms through which 1) ventilation injures edematous lungs and 2) ventilation with accelerated deflation might lessen ventilation injury. PMID:27979983
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhang, Guoqiang
2008-05-01
A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3°C and 27.7°C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0˜31.6°C) was wider than that in air-conditioned buildings (25.1˜30.3°C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9°C and 27.3°C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4°C cooler than neutral temperatures. This result suggests that people of hot climates may use words like “slightly cool” to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants’ comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26°C or even higher in air-conditioned buildings was confirmed as making people comfortable, which supports the regulation in China that in public and office buildings the set-point temperature of air-conditioning system should not be lower than 26°C.
The effect of varying alveolar carbon dioxide levels on free recall.
Marangoni, A H; Hurford, D P
1990-05-01
A recent study suggested that students who have increased minute ventilation receive poorer grades. The present study was interested in determining the role alveolar carbon dioxide (CO2) levels play with cognitive abilities. A free recall task was used to examine list learning under two conditions of alveolar CO2 level: normal and decreased. The results suggested that decreased alveolar CO2 level affect the participant's ability to rehearse and recall information. It was concluded that conditions that reduce alveolar CO2 levels, such as hyperventilation resulting from stress, nervousness, or inappropriate breathing habits, can lead to poorer learning. If these conditions produce a habitual breathing pattern, the academic performance of the individual may suffer.
Ventilation-perfusion relationships in the lung during head-out water immersion
NASA Technical Reports Server (NTRS)
Derion, Toniann; Guy, Harold J. B.; Tsukimoto, Koichi; Schaffartzik, Walter; Prediletto, Renato; Poole, David C.; Knight, Douglas R.; Wagner, Peter D.
1992-01-01
Mechanisms of altered pulmonary gas exchange during water immersion were studied in 12 normal males: 6 young (aged 20-29) and 6 older (aged 40-45). It is concluded that, in young subjects with closing volume (CV) less than expiratory reserve volume (ERV), gas exchange was enhanced during immersion, because normal ventilation-perfusion relations were preserved, and by mass balance, the ventilation/O2 uptake changes elevated arterial P(O2). In older males with CV greater than ERV and 52 percent of tidal volume below CV, immersion-induced airways closure during tidal breathing was associated with minimally increased shunt that did not significantly impair gas exchange. It is suggested that airways closure of this degree is of little importance to gas exchange.
Jain, Sumeet V; Kollisch-Singule, Michaela; Satalin, Joshua; Searles, Quinn; Dombert, Luke; Abdel-Razek, Osama; Yepuri, Natesh; Leonard, Antony; Gruessner, Angelika; Andrews, Penny; Fazal, Fabeha; Meng, Qinghe; Wang, Guirong; Gatto, Louis A; Habashi, Nader M; Nieman, Gary F
2017-12-01
Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH 2 O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + H DS , n = 6) and (2) over-distension + low dynamic strain (OD + L DS , n = 6). OD was caused by setting the inspiratory pressure at 40 cmH 2 O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. In normal tissue (N T ), OD + L DS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + H DS . In acutely injured tissue (ALI T ), OD + L DS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + H DS . Both N T and ALI T are resistant to VILI caused by OD alone, but when combined with a H DS , significant tissue injury develops.
Hitchcock, Penny J; Mair, Michael; Inglesby, Thomas V; Gross, Jonathan; Henderson, D A; O'Toole, Tara; Ahern-Seronde, Joa; Bahnfleth, William P; Brennan, Terry; Burroughs, H E Barney; Davidson, Cliff; Delp, William; Ensor, David S; Gomory, Ralph; Olsiewski, Paula; Samet, Jonathan M; Smith, William M; Streifel, Andrew J; White, Ronald H; Woods, James E
2006-01-01
The prospect of biological attacks is a growing strategic threat. Covert aerosol attacks inside a building are of particular concern. In the summer of 2005, the Center for Biosecurity of the University of Pittsburgh Medical Center convened a Working Group to determine what steps could be taken to reduce the risk of exposure of building occupants after an aerosol release of a biological weapon. The Working Group was composed of subject matter experts in air filtration, building ventilation and pressurization, air conditioning and air distribution, biosecurity, building design and operation, building decontamination and restoration, economics, medicine, public health, and public policy. The group focused on functions of the heating, ventilation, and air conditioning systems in commercial or public buildings that could reduce the risk of exposure to deleterious aerosols following biological attacks. The Working Group's recommendations for building owners are based on the use of currently available, off-the-shelf technologies. These recommendations are modest in expense and could be implemented immediately. It is also the Working Group's judgment that the commitment and stewardship of a lead government agency is essential to secure the necessary financial and human resources and to plan and build a comprehensive, effective program to reduce exposure to aerosolized infectious agents in buildings.
A regulator for pressure-controlled total-liquid ventilation.
Robert, Raymond; Micheau, Philippe; Avoine, Olivier; Beaudry, Benoit; Beaulieu, Alexandre; Walti, Hervé
2010-09-01
Total-liquid ventilation (TLV) is an innovative experimental method of mechanical-assisted ventilation in which lungs are totally filled and then ventilated with a tidal volume of perfluorochemical liquid by using a dedicated liquid ventilator. Such a novel medical device must resemble other conventional ventilators: it must be able to conduct controlled-pressure ventilation. The objective was to design a robust controller to perform pressure-regulated expiratory flow and to implement it on our latest liquid-ventilator prototype (Inolivent-4). Numerical simulations, in vitro experiments, and in vivo experiments in five healthy term newborn lambs have demonstrated that it was efficient to generate expiratory flows while avoiding collapses. Moreover, the in vivo results have demonstrated that our liquid ventilator can maintain adequate gas exchange, normal acid-base equilibrium, and achieve greater minute ventilation, better oxygenation and CO2 extraction, while nearing flow limits. Hence, it is our suggestion to perform pressure-controlled ventilation during expiration with minute ventilation equal or superior to 140 mL x min(-1) x kg(-1) in order to ensure PaCO2 below 55 mmHg. From a clinician's point of view, pressure-controlled ventilation greatly simplifies the use of the liquid ventilator, which will certainly facilitate its introduction in intensive care units for clinical applications.
Zuraimi, M S; Tham, K W; Chew, F T; Ooi, P L
2007-08-01
This paper reports the effects of ventilation strategies on indoor air quality (IAQ) and respiratory health of children within 104 child care centers (CCCs) in a hot and humid climate. The CCCs were categorized by ventilation strategies: natural (NV), air-conditioned and mechanically ventilated (ACMV), air-conditioned using split units (AC), and hybrid (NV and AC operated intermittently). The concentration levels of IAQ parameters in NV CCCs are characterized by the influence of the outdoors and good dilution of indoor pollutants. The lower ventilation rates in air-conditioned CCCs result in higher concentrations of occupant-related pollutants but lower outdoor pollutant ingress. This study also revealed lower prevalence for most asthma and allergy, and respiratory symptoms in children attending NV CCCs. In multivariate analyses controlled for the effects of confounders, the risk of current rhinitis among children is significantly higher if they attend mechanically ventilated CCCs compared to NV CCCs. Air-conditioned CCCs were also associated with higher adjusted prevalence ratio of severe phlegm and cough symptoms and lower respiratory illness. Finally, children attending CCCs with hybrid ventilation are at high risk for almost all the respiratory symptoms studied. This large field study indicates that different ventilation strategies employed by child care centers can cause significant variations in the indoor air quality and prevalence of asthma, allergies and respiratory symptoms of attending children. The higher prevalence rates of allergic and respiratory symptoms among young children, whose immune system is still under-developed, in child care centers, whether fully or partially air-conditioned, suggest that ventilation and plausible growth and propagation mechanisms of allergens and infectious agents be further investigated.
Krajewski, Wojciech; Kucharska, Malgorzata; Wesolowski, Wiktor; Stetkiewicz, Jan; Wronska-Nofer, Teresa
2007-03-01
The aim of this study was to assess the level of occupational exposure to nitrous oxide (N(2)O) in operating rooms (ORs), as related to different ventilation and scavenging systems used to remove waste anaesthetic gases from the work environment. The monitoring of N(2)O in the air covered 35 ORs in 10 hospitals equipped with different systems for ventilation and anaesthetic scavenging. The examined systems included: natural ventilation with supplementary fresh air provided by a pressure ventilation system (up to 6 air changes/h); pressure and exhaust ventilation systems equipped with ventilation units supplying fresh air to and discharging contaminated air outside the working area (more than 10 air changes/h); complete air-conditioning system with laminar air flow (more than 15 air changes/h). The measurements were carried out during surgical procedures (general anaesthesia induced intravenously and maintained with inhaled N(2)O and sevofluran delivered through cuffed endotracheal tubes) with connected or disconnected air scavenging. Air was collected from the breathing zone of operating personnel continuously through the whole time of anaesthesia to Tedlar((R)) bags, and N(2)O concentrations in air samples were analyzed by adsorption gas chromatography/mass spectrometry. N(2)O levels in excess of the occupational exposure limit (OEL) value of 180mg/m(3) were registered in all ORs equipped with ventilation systems alone. The OEL value was exceeded several times in rooms with natural ventilation plus supplementary pressure ventilations and twice or less in those with pressure/exhaust ventilation systems or air conditioning. N(2)O levels below or within the OEL value were observed in rooms where the system of air conditioning or pressure/exhaust ventilation was combined with scavenging systems. Systems combining natural/pressure ventilation with scavenging were inadequate to maintain N(2)O concentration below the OEL value. Air conditioning and an efficient pressure/exhaust ventilation (above 12 air exchanges/h) together with efficient active scavenging systems are sufficient to sustain N(2)O exposure in ORs at levels below or within the OEL value of 180mg/m(3).
Julien, Cécile A; Joseph, Vincent; Bairam, Aida
2011-08-15
In human neonates, caffeine therapy for apnoea of prematurity, especially when associated with hypoxemia, is maintained for several weeks after birth. In the present study, we used newborn rats and whole-body plethysmography to test whether chronic exposure to neonatal caffeine treatment (NCT), alone or combined with neonatal intermittent hypoxia (n-IH) alters: (1) baseline ventilation and response to hypoxia (12% O(2), 20 min); and (2) response to acute i.p. injection of caffeine citrate (20 mg/kg) or domperidone, a peripheral dopamine D2 receptor antagonist (1 mg/kg). Four groups of rats were studied as follows: raised under normal conditions with daily gavage with water (NWT) or NCT, or exposed to n-IH (n-IH+NWT and n-IH+NCT) from postnatal days 3 to 12. In n-IH+NCT rats, baseline ventilation was higher than in the other groups. Caffeine or domperidone enhanced baseline ventilation only in NWT and n-IH+NWT rats, but neither caffeine nor domperidone affected the hypoxic ventilatory response in these groups. In n-IH+NWT rats, the response during the early phase of hypoxia (<10 min) was higher than in other groups. During the late response phase to hypoxia (20 min), ventilation was lower in n-IH+NWT and n-IH+NCT rats compared to NWT or NCT, and were not affected by caffeine or domperidone injection. NCT or caffeine injection decreased baseline apnoea frequency in all groups. These data suggest that chronic exposure to NCT alters both carotid body dopaminergic and adenosinergic systems and central regulation of breathing under baseline conditions and in response to hypoxia. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Harastaseanu, E.; Cristescu, G.; Mercea, F.
1974-01-01
The fans with which the conditioning and ventilation plants of weaving and spinning mills are equipped and the conditioning devices used in certain confection and knit wear departments of the textile industry generate loud noise. Solutions are presented for reducing the noise generated by the fans of ventilation and conditioning plants and transmitted to inhabited regions down to the admissible level, as well as the results obtained by experimental application of some noise reduction solutions in the conditioning plants of a spinning mill.
NASA Astrophysics Data System (ADS)
Krivonogov, Nikolay G.; Efimova, Nataliya Y.; Zavadovsky, Konstantin W.; Lishmanov, Yuri B.
2016-08-01
Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on a side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivonogov, Nikolay G., E-mail: kng@cardio-tomsk.ru; Efimova, Nataliya Y., E-mail: efimova@cardio-tomsk.ru; Zavadovsky, Konstantin W.
Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on amore » side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.« less
Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.
Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M
2017-09-29
Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.
Code of Federal Regulations, 2013 CFR
2013-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Code of Federal Regulations, 2010 CFR
2010-01-01
... to high temperatures from exhaust system parts, must be fireproof. Each exhaust system component must... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Code of Federal Regulations, 2011 CFR
2011-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Mechanical ventilation and sepsis impair protein metabolism in the diaphragm of neonatal pigs
USDA-ARS?s Scientific Manuscript database
Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...
Effect of hypoxic breathing on cutaneous temperature recovery in man
NASA Astrophysics Data System (ADS)
Fahim, Mohammad
1992-03-01
Effect of hypoxia (12% O2) on skin temperature recovery was studied on healthy young men. Forty male volunteers free of any respiratory disorder were randomly selected to participate in the study. Skin temperature, peripheral blood flow, heart rate and end expiratory PO2 and PCO2 were measured. During hyoxic ventilation the peripheral blood flow was reduced and a corresponding drop in skin temperature occurred. This was partly due to hyperventilation associated with hypoxic ventilation. The recovery of skin temperature after cooling the hand for 2 min in cold water (10 12° C) took 5.5±0.1 min during normal air breathing; during hypoxic ventilation even after 9.1±0.3 min when the skin temperature recovery curve plateaued, the skin temperature remained about 2° C below control. The results of the present investigation indicate that hypoxia interferes with the normal functioning of the thermoregulatory mechanism in man. Hyperventilation associated with hypoxic ventilation is also partly responsible for incomplete recovery of skin temperature.
Characterization of Ventilatory Modes in Dragonfly Nymph
NASA Astrophysics Data System (ADS)
Roh, Chris; Saxton-Fox, Theresa; Gharib, Morteza
2013-11-01
A dragonfly nymph's highly modified hindgut has multiple ventilatory modes: hyperventilation (i.e. jet propulsion), gulping ventilation (extended expiratory phase) and normal ventilation. Each mode involves dynamic manipulation of the exit diameter and pressure. To study the different fluid dynamics associated with the three modes, Anisopteran larvae of the family Aeshnidae were tethered onto a rod for flow visualization. The result showed distinct flow structures. The hyperventilation showed a highly turbulent and powerful jet that occurred at high frequency. The gulping ventilation produced a single vortex at a moderate frequency. The normal ventilation showed two distinct vortices, a low-Reynolds number vortex, followed by a high-Reynolds number vortex. Furthermore, a correlation of the formation of the vortices with the movement of the sternum showed that the dragonfly is actively controlling the timing and the speed of the vortices to have them at equal distance from the jet exit at the onset of inspiration. This behavior prevents inspiration of the oxygen deficient expirated water, resulting in the maximization of the oxygen intake. Supported by NSF GRFP.
CFD Simulations to Improve Ventilation in Low-Income Housing
NASA Astrophysics Data System (ADS)
Ho, Rosemond; Gorle, Catherine
2017-11-01
Quality of housing plays an important role in public health. In Dhaka, Bangladesh, the leading causes of death include tuberculosis, lower respiratory infections, and chronic obstructive pulmonary disease, so improving home ventilation could potentially mitigate these negative health effects. The goal of this project is to use computational fluid dynamics (CFD) to predict the relative effectiveness of different ventilation strategies for Dhaka homes. A Reynolds-averaged Navier-Stokes CFD model of a standard Dhaka home with apertures of different sizes and locations was developed to predict air exchange rates. Our initial focus is on simulating ventilation driven by buoyancy-alone conditions, which is often considered the limiting case in natural ventilation design. We explore the relationship between ventilation rate and aperture area to determine the most promising configurations for optimal ventilation solutions. Future research will include the modeling of wind-driven conditions, and extensive uncertainty quantification studies to investigate the effect of variability in the layout of homes and neighborhoods, and in local wind and temperature conditions. The ultimate objective is to formulate robust design recommendations that can reduce risks of respiratory illness in low-income housing.
Antibiotic therapy in ventilator-associated tracheobronchitis: a literature review.
Alves, Abel Eduardo; Pereira, José Manuel
2018-03-01
The concept of ventilator-associated tracheobronchitis is controversial; its definition is not unanimously accepted and often overlaps with ventilator-associated pneumonia. Ventilator-associated tracheobronchitis has an incidence similar to that of ventilator-associated pneumonia, with a high prevalence of isolated multiresistant agents, resulting in an increase in the time of mechanical ventilation and hospitalization but without an impact on mortality. The performance of quantitative cultures may allow better diagnostic definition of tracheobronchitis associated with mechanical ventilation, possibly avoiding the overdiagnosis of this condition. One of the major difficulties in differentiating between ventilator-associated tracheobronchitis and ventilator-associated pneumonia is the exclusion of a pulmonary infiltrate by chest radiography; thoracic computed tomography, thoracic ultrasonography, or invasive specimen collection may also be required. The institution of systemic antibiotic therapy does not improve the clinical impact of ventilator-associated tracheobronchitis, particularly in reducing time of mechanical ventilation, hospitalization or mortality, despite the possible reduced progression to ventilator-associated pneumonia. However, there are doubts regarding the methodology used. Thus, considering the high prevalence of tracheobronchitis associated with mechanical ventilation, routine treatment of this condition would result in high antibiotic usage without clear benefits. However, we suggest the institution of antibiotic therapy in patients with tracheobronchitis associated with mechanical ventilation and septic shock and/or worsening of oxygenation, and other auxiliary diagnostic tests should be simultaneously performed to exclude ventilator-associated pneumonia. This review provides a better understanding of the differentiation between tracheobronchitis associated with mechanical ventilation and pneumonia associated with mechanical ventilation, which can significantly decrease the use of antibiotics in critically ventilated patients.
Designing a dormitory with emphasis on renewable energy
NASA Astrophysics Data System (ADS)
Daneshvar Tarigh, F.; Daneshvar Tarigh, A.; Habib, F.
2018-05-01
The majority of universities provides on- and off-campus residential quarters for students during their studies which enables them to keep connected to other students and focus on their studies usually with a small amount of money. The manner of designing a dormitory has a direct impact on the performance of the students and therefore requires a lot of attention. This includes but not limited to a mostly independent and private quiet room maintaining good indoor air quality through adequate ventilation and air conditioning. Undoubtedly, the most important aspect of such a place is saving energy in a way that does not influence the quality of student's life. The type of usage of such buildings causes different presence time and different ideas about the lights and temperature's set point. In this paper, we will discuss aspects of designing a dormitory as well as optimization of occupants comfort and energy efficiency using renewable energies such as solar energy to produce electricity, wind energy for natural ventilation and above all using architectural techniques to lower the energy consumption.
What You Should Know about Cerebral Aneurysms
... produce cerebrospinal fluid), difficulty breathing that requires a mechanical ventilator, and infection. Heart and lung problems may ... stay within the aneurysm and act as a mechanical barrier to blood flow, thus sealing it off. ...
Sedation during mechanical ventilation: a trial of benzodiazepine and opiate in combination.
Richman, Paul S; Baram, Daniel; Varela, Marie; Glass, Peter S
2006-05-01
To compare the efficacy of continuous intravenous sedation with midazolam alone vs. midazolam plus fentanyl ("co-sedation") during mechanical ventilation. A randomized, prospective, controlled trial. A ten-bed medical intensive care unit at a university hospital. Thirty patients with respiratory failure who were expected to require >48 hrs of mechanical ventilation and who were receiving a sedative regimen that did not include opiate pain control. An intravenous infusion of either midazolam alone or co-sedation was administered by a nurse-implemented protocol to achieve a target Ramsay Sedation Score set by the patient's physician. Study duration was 3 days, with a brief daily "wake-up." We recorded the number of hours/day that patients were "off-target" with their Ramsay Sedation Scores, the number of dose titrations per day, the incidence of patient-ventilator asynchrony, and the time required to achieve adequate sedation as measures of sedative efficacy. We also recorded sedative cost in U.S. dollars and adverse events including hypotension, hypoventilation, ileus, and coma. Compared with the midazolam-only group, the co-sedation group had fewer hours per day with an "off-target" Ramsay Score (4.2 +/- 2.4 and 9.1 +/- 4.9, respectively, p < .002). Fewer episodes per day of patient-ventilator asynchrony were noted in the co-sedation group compared with midazolam-only (0.4 +/- 0.1 and 1.0 +/- 0.2, respectively, p < .05). Co-sedation also showed nonsignificant trends toward a shorter time to achieve sedation, a need for fewer dose titrations per day, and a lower total sedative drug cost. There was a trend toward more episodes of ileus with co-sedation compared with midazolam-only (2 vs. 0). In mechanically ventilated patients, co-sedation with midazolam and fentanyl by constant infusion provides more reliable sedation and is easier to titrate than midazolam alone, without significant difference in the rate of adverse events.
Oliveira-Costa, Clarice Daniele Alves de; Friedman, Gilberto; Vieira, Sílvia Regina Rios; Fialkow, Léa
2012-07-01
To determine the utility of pulse pressure variation (ΔRESP PP) in predicting fluid responsiveness in patients ventilated with low tidal volumes (V T) and to investigate whether a lower ΔRESP PP cut-off value should be used when patients are ventilated with low tidal volumes. This cross-sectional observational study included 37 critically ill patients with acute circulatory failure who required fluid challenge. The patients were sedated and mechanically ventilated with a V T of 6-7 ml/kg ideal body weight, which was monitored with a pulmonary artery catheter and an arterial line. The mechanical ventilation and hemodynamic parameters, including ΔRESP PP, were measured before and after fluid challenge with 1,000 ml crystalloids or 500 ml colloids. Fluid responsiveness was defined as an increase in the cardiac index of at least 15%. ClinicalTrial.gov: NCT01569308. A total of 17 patients were classified as responders. Analysis of the area under the ROC curve (AUC) showed that the optimal cut-off point for ΔRESP PP to predict fluid responsiveness was 10% (AUC = 0.74). Adjustment of the ΔRESP PP to account for driving pressure did not improve the accuracy (AUC = 0.76). A ΔRESP PP ≥ 10% was a better predictor of fluid responsiveness than central venous pressure (AUC = 0.57) or pulmonary wedge pressure (AUC = 051). Of the 37 patients, 25 were in septic shock. The AUC for ΔRESP PP ≥ 10% to predict responsiveness in patients with septic shock was 0.484 (sensitivity, 78%; specificity, 93%). The parameter D RESP PP has limited value in predicting fluid responsiveness in patients who are ventilated with low tidal volumes, but a ΔRESP PP>10% is a significant improvement over static parameters. A ΔRESP PP ≥ 10% may be particularly useful for identifying responders in patients with septic shock.
Survival analysis for respiratory failure in patients with food-borne botulism.
Witoonpanich, Rawiphan; Vichayanrat, Ekawat; Tantisiriwit, Kanit; Wongtanate, Manas; Sucharitchan, Niwatchai; Oranrigsupak, Petchdee; Chuesuwan, Aphinya; Nakarawat, Weeraworn; Tima, Ariya; Suwatcharangkoon, Sureerat; Ingsathit, Atiporn; Rattanasiri, Sasivimol; Wananukul, Winai
2010-03-01
Botulism is a rare presynaptic neuromuscular junction disorder caused by potent toxins produced by the anaerobic, spore-forming, Gram-positive bacterium Clostridium botulinum. Food-borne botulism is caused by the ingestion of foods contaminated with botulinum toxin. In March 2006, there was a large outbreak of food-borne botulism associated with the ingestion of home-canned bamboo shoots in Thailand. The survival analyses for respiratory failure in these patients were studied and are reported here. A prospective observational cohort study was conducted on this outbreak. The primary outcome of interest was the time to respiratory failure. The secondary outcome was the time to weaning off ventilator. The prognostic factors associated with respiratory failure and weaning off ventilator are presented. A total of 91 in-patients with baseline clinical characteristics were included. Most cases first presented with gastrointestinal symptoms followed by neurological symptoms, the most striking of which being difficulty in swallowing. Common clinical features included ptosis, ophthalmoplegia, proximal muscle weakness, pupillary abnormality, and respiratory failure. Forty-two patients developed respiratory failure requiring mechanical ventilation and the median duration on ventilator was 14 days. The median length of hospital stay for all patients was 13.5 days. Difficulty in breathing, moderate to severe ptosis, and dilated and fixed pupils were associated with respiratory failure. Among patients who were on ventilators, a short incubation period and pupillary abnormality were associated with a longer period of mechanical ventilation. All patients had antitoxin injection and there was no mortality in this outbreak. The history of difficult breathing and the findings of moderate to severe ptosis and pupillary abnormality were associated with severe illness and respiratory failure. A long incubation time was associated with a better prognosis. Although botulism is a potentially fatal disease, there was no mortality in this outbreak. All patients had antitoxin injection and good intensive care that resulted in good clinical outcomes.
1991-05-01
Building Component Maintenance and Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems by Edgar S. Neely Robert D. Neathammer...Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems RDTE dated 1980EIMB 1984 - 1989 6. AUTHOR(S) Edgar S. Neely, Robert D...Laboratory (USACERL). The Principal Investigators were Dr. Edgar Neely and Mr. Robert Neathammer (USACERL-FS). The primary contractor for much of the
Hung, Shih-Chiang; Kung, Chia-Te; Hung, Chih-Wei; Liu, Ber-Ming; Liu, Jien-Wei; Chew, Ghee; Chuang, Hung-Yi; Lee, Wen-Huei; Lee, Tzu-Chi
2014-08-23
The adverse effects of delayed admission to the intensive care unit (ICU) have been recognized in previous studies. However, the definitions of delayed admission varies across studies. This study proposed a model to define "delayed admission", and explored the effect of ICU-waiting time on patients' outcome. This retrospective cohort study included non-traumatic adult patients on mechanical ventilation in the emergency department (ED), from July 2009 to June 2010. The primary outcomes measures were 21-ventilator-day mortality and prolonged hospital stays (over 30 days). Models of Cox regression and logistic regression were used for multivariate analysis. The non-delayed ICU-waiting was defined as a period in which the time effect on mortality was not statistically significant in a Cox regression model. To identify a suitable cut-off point between "delayed" and "non-delayed", subsets from the overall data were made based on ICU-waiting time and the hazard ratio of ICU-waiting hour in each subset was iteratively calculated. The cut-off time was then used to evaluate the impact of delayed ICU admission on mortality and prolonged length of hospital stay. The final analysis included 1,242 patients. The time effect on mortality emerged after 4 hours, thus we deduced ICU-waiting time in ED > 4 hours as delayed. By logistic regression analysis, delayed ICU admission affected the outcomes of 21 ventilator-days mortality and prolonged hospital stay, with odds ratio of 1.41 (95% confidence interval, 1.05 to 1.89) and 1.56 (95% confidence interval, 1.07 to 2.27) respectively. For patients on mechanical ventilation at the ED, delayed ICU admission is associated with higher probability of mortality and additional resource expenditure. A benchmark waiting time of no more than 4 hours for ICU admission is recommended.
Adrish, Muhammad; Nannaka, Varalaxmi Bhavani; Cano, Edison J; Bajantri, Bharat; Diaz-Fuentes, Gilda
2017-01-01
B-type natriuretic peptide (BNP) and the N-terminal fragment of pro-BNP (NT-pro-BNP) are established biomarkers of heart failure. Increased levels of natriuretic peptide (NP) have been associated with poor outcomes in acute exacerbation of COPD (AECOPD); however, most studies did not address the conditions that can also increase NT-pro-BNP levels. We aimed to determine if NT-pro-BNP levels correlate with outcomes of AECOPD in patients without heart failure and other conditions that can affect NT-pro-BNP levels. We conducted a retrospective study in patients hospitalized for AECOPD with available NT-pro-BNP levels and normal left ventricular ejection fraction. We compared patients with normal and elevated NT-pro-BNP levels and analyzed the clinical and outcome data. A total of 167 of 1,420 (11.7%) patients met the study criteria. A total of 77% of male patients and 53% of female patients had elevated NT-pro-BNP levels ( P =0.0031). NT-pro-BNP levels were not associated with COPD severity and comorbid illnesses. Log-transformed NT-pro-BNP levels were positively associated with echocardiographically estimated right ventricular systolic pressure ( r =0.3658; 95% confidence interval [CI]: 0.2060-0.5067; P <0.0001). Patients with elevated NT-pro-BNP levels were more likely to require intensive care (63% vs 43%; P =0.0207) and had a longer hospital length of stay ( P =0.0052). There were no differences in the need for noninvasive positive pressure ventilation ( P =0.1245) or mechanical ventilation ( P =0.9824) or in regard to in-hospital mortality ( P =0.5273). Patients with AECOPD and elevated NT-pro-BNP levels had increased hospital length of stay and need for intensive care. Based on our study, serum NT-pro-BNP levels cannot be used as a biomarker for increased mortality or requirement for invasive or noninvasive ventilation in this group of patients.
46 CFR 108.114 - Appliances for watertight and weathertight integrity.
Code of Federal Regulations, 2014 CFR
2014-10-01
... watertight doors, hatches, scuttles, bolted manhole covers, or other watertight closures for openings in... and hatches, closures for air pipes, ventilators, ventilation intakes and outlets, and closures for... meet the following: (1) Each door, hatch, and scuttle must— (i) Be remotely controlled from a normally...
46 CFR 108.114 - Appliances for watertight and weathertight integrity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... watertight doors, hatches, scuttles, bolted manhole covers, or other watertight closures for openings in... and hatches, closures for air pipes, ventilators, ventilation intakes and outlets, and closures for... meet the following: (1) Each door, hatch, and scuttle must— (i) Be remotely controlled from a normally...
46 CFR 108.114 - Appliances for watertight and weathertight integrity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... watertight doors, hatches, scuttles, bolted manhole covers, or other watertight closures for openings in... and hatches, closures for air pipes, ventilators, ventilation intakes and outlets, and closures for... meet the following: (1) Each door, hatch, and scuttle must— (i) Be remotely controlled from a normally...
46 CFR 108.114 - Appliances for watertight and weathertight integrity.
Code of Federal Regulations, 2011 CFR
2011-10-01
... watertight doors, hatches, scuttles, bolted manhole covers, or other watertight closures for openings in... and hatches, closures for air pipes, ventilators, ventilation intakes and outlets, and closures for... meet the following: (1) Each door, hatch, and scuttle must— (i) Be remotely controlled from a normally...
46 CFR 108.114 - Appliances for watertight and weathertight integrity.
Code of Federal Regulations, 2010 CFR
2010-10-01
... watertight doors, hatches, scuttles, bolted manhole covers, or other watertight closures for openings in... and hatches, closures for air pipes, ventilators, ventilation intakes and outlets, and closures for... meet the following: (1) Each door, hatch, and scuttle must— (i) Be remotely controlled from a normally...
Simple, Inexpensive Model Spirometer for Understanding Ventilation Volumes
ERIC Educational Resources Information Center
Giuliodori, Mauricio J.; DiCarlo, Stephen E.
2004-01-01
Spirometers are useful for enhancing students' understanding of normal lung volumes, capacities, and flow rates. Spirometers are also excellent for understanding how lung diseases alter ventilation volumes. However, spirometers are expensive, complex, and not appropriate for programs with limited space and budgets. Therefore, we developed a…
Effects of movement and work load in patients with congenital central hypoventilation syndrome.
Hager, Alfred; Koch, Walter; Stenzel, Heike; Hess, John; Schöber, Johannes
2007-04-01
Patients with congenital central hypoventilation syndrome lack ventilatory chemosensitivity and depend at least in part on the ergoreceptor function during exercise. In these patients a substantial increase of ventilation has been reported for passive movement during sleep as well as active movement on a treadmill. The aim of the study was to investigate ventilatory response to an increasing work load with constant movement. Eighteen patients and 17 healthy volunteers performed a cardiopulmonary exercise test on a bicycle pedaling at a constant rate of about 60 revolutions per minute throughout the entire test. The patients were able to exercise adequately and showed normal peak oxygen uptake. There was a steep rise in minute ventilation in both groups at the start of exercise, yet there was only a minor increase in both groups during the increase of workload up to the anaerobic threshold. After the anaerobic threshold, there was again an increase in ventilation in both groups, but the increase was less prominent in the patient group. Ventilation in patients with congenital central hypoventilation syndrome is increased during exercise caused both by movement (mechanoreceptors) and by anaerobic workload. This facilitates a normal ventilatory drive up to the anaerobic threshold and a normal exercise capacity in these patients.
Mechanical Ventilation: State of the Art.
Pham, Tài; Brochard, Laurent J; Slutsky, Arthur S
2017-09-01
Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Short-term airing by natural ventilation - implication on IAQ and thermal comfort.
Heiselberg, P; Perino, M
2010-04-01
The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective and can provide both acceptable IAQ and thermal comfort conditions in buildings. Practical Implications This study gives the necessary background and in-depth knowledge of the performance of window airing by single-sided natural ventilation necessary for the development of control strategies for window airing (length of opening period and opening frequency) for optimum IAQ and thermal comfort in naturally ventilated buildings.
Multifaceted bench comparative evaluation of latest intensive care unit ventilators.
Garnier, M; Quesnel, C; Fulgencio, J-P; Degrain, M; Carteaux, G; Bonnet, F; Similowski, T; Demoule, A
2015-07-01
Independent bench studies using specific ventilation scenarios allow testing of the performance of ventilators in conditions similar to clinical settings. The aims of this study were to determine the accuracy of the latest generation ventilators to deliver chosen parameters in various typical conditions and to provide clinicians with a comprehensive report on their performance. Thirteen modern intensive care unit ventilators were evaluated on the ASL5000 test lung with and without leakage for: (i) accuracy to deliver exact tidal volume (VT) and PEEP in assist-control ventilation (ACV); (ii) performance of trigger and pressurization in pressure support ventilation (PSV); and (iii) quality of non-invasive ventilation algorithms. In ACV, only six ventilators delivered an accurate VT and nine an accurate PEEP. Eleven devices failed to compensate VT and four the PEEP in leakage conditions. Inspiratory delays differed significantly among ventilators in invasive PSV (range 75-149 ms, P=0.03) and non-invasive PSV (range 78-165 ms, P<0.001). The percentage of the ideal curve (concomitantly evaluating the pressurization speed and the levels of pressure reached) also differed significantly (range 57-86% for invasive PSV, P=0.04; and 60-90% for non-invasive PSV, P<0.001). Non-invasive ventilation algorithms efficiently prevented the decrease in pressurization capacities and PEEP levels induced by leaks in, respectively, 10 and 12 out of the 13 ventilators. We observed real heterogeneity of performance amongst the latest generation of intensive care unit ventilators. Although non-invasive ventilation algorithms appear to maintain adequate pressurization efficiently in the case of leakage, basic functions, such as delivered VT in ACV and pressurization in PSV, are often less reliable than the values displayed by the device suggest. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ventilator-associated pneumonia: the importance of oral care in intubated adults.
Stonecypher, Karen
2010-01-01
Ventilator-associated pneumonia (VAP) occurs within 24 hours of intubation and mechanical ventilation. Health care costs related to increased patient mortality, extended length of stay, and patient well-being make treatment of VAP a priority in all health care settings. The Institute for Healthcare Improvements has developed the Ventilator Bundle as a group of interventions linked to ventilator care with demonstrated outcome improvements; removal of subglottic secretions is one of these recommendations. Dental plaque and bacterial colonization of pathogens is directly related to microaspiration of bacteria into the lungs. A moist environment in the mouth maintains normal oropharyngeal bacteria, preventing overgrowth of pathogenic bacteria. Frequent oral care to include twice-a-day brushing of the teeth found a 69% reduction in respiratory tract infections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, J. C.
1984-01-31
A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directlymore » into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.« less
Adamson, James C.
1984-01-01
A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.
Alexander, Joshua M.; Kopun, Judy G.; Stelmachowicz, Patricia G.
2014-01-01
Summary: Listeners with normal hearing and mild to moderate loss identified fricatives and affricates that were recorded through hearing aids with frequency transposition (FT) or nonlinear frequency compression (NFC). FT significantly degraded performance for both groups. When frequencies up to ~9 kHz were lowered with NFC and with a novel frequency compression algorithm, spectral envelope decimation, performance significantly improved relative to conventional amplification (NFC-off) and was equivalent to wideband speech. Significant differences between most conditions could be largely attributed to an increase or decrease in confusions for /s/ and /z/. Objectives: Stelmachowicz and colleagues have demonstrated that the limited bandwidth associated with conventional hearing aid amplification prevents useful high-frequency speech information from being transmitted. The purpose of this study was to examine the efficacy of two popular frequency-lowering algorithms and one novel algorithm (spectral envelope decimation) in adults with mild-to-moderate sensorineural hearing loss and in normal-hearing controls. Design: Participants listened monaurally through headphones to recordings of nine fricatives and affricates spoken by three women in a vowel-consonant (VC) context. Stimuli were mixed with speech-shaped noise at 10 dB SNR and recorded through a Widex Inteo IN-9 and a Phonak Naída UP V behind-the-ear (BTE) hearing aid. Frequency transposition (FT) is used in the Inteo and nonlinear frequency compression (NFC) used in the Naída. Both devices were programmed to lower frequencies above 4 kHz, but neither device could lower frequencies above 6-7 kHz. Each device was tested under four conditions: frequency lowering deactivated (FT-off and NFC-off), frequency lowering activated (FT and NFC), wideband (WB), and a fourth condition unique to each hearing aid. The WB condition was constructed by mixing recordings from the first condition with high-pass filtered versions of the source stimuli. For the Inteo, the fourth condition consisted of recordings made with the same settings as the first, but with the noise reduction feature activated (FT-off). For the Naída, the fourth condition was the same as the first condition except that source stimuli were pre-processed by a novel frequency compression algorithm, spectral envelope decimation (SED), designed in MATLAB that allowed for a more complete lowering of the 4-10 kHz input band. A follow up experiment with NFC used Phonak’s Naída SP V BTE, which could also lower a greater range of input frequencies. Results: For normal-hearing (NH) and hearing-impaired (HI) listeners, performance with FT was significantly worse compared to the other conditions. Consistent with previous findings, performance for the HI listeners in the WB condition was significantly better than in the FT-off condition. In addition, performance in the SED and WB conditions were both significantly better than the NFC-off condition and the NFC condition with 6 kHz input bandwidth. There were no significant differences between SED and WB, indicating that improvements in fricative identification obtained by increasing bandwidth can also be obtained using this form of frequency compression. Significant differences between most conditions could be largely attributed to an increase or decrease in confusions for the phonemes /s/ and /z/. In the follow up experiment, performance in the NFC condition with 10 kHz input bandwidth was significantly better than NFC-off, replicating the results obtained with SED. Furthermore, listeners who performed poorly with NFC-off tended to show the most improvement with NFC. Conclusions: Improvements in the identification of stimuli chosen to be sensitive to the effects of frequency lowering have been demonstrated using two forms of frequency compression (NFC and SED) in individuals with mild to moderate high-frequency SNHL. However, negative results caution against using FT for this population. Results also indicate that the advantage of an extended bandwidth as reported here and elsewhere applies to the input bandwidth for frequency compression (NFC/SED) when the start frequency is ≥ 4 kHz. PMID:24699702
Particulate matter dynamics in naturally ventilated freestall dairy barns
NASA Astrophysics Data System (ADS)
Joo, H. S.; Ndegwa, P. M.; Heber, A. J.; Ni, J.-Q.; Bogan, B. W.; Ramirez-Dorronsoro, J. C.; Cortus, E. L.
2013-04-01
Particulate matter (PM) concentrations and ventilation rates, in two naturally ventilated freestall dairy barns, were continuously monitored for two years. The first barn (B1) housed 400 fresh lactating cows, while the second barn (B2) housed 835 non-fresh lactating cows and 15 bulls. The relationships between PM concentrations and accepted governing parameters (environmental conditions and cattle activity) were examined. In comparison with other seasons, PM concentrations were lowest in winter. Total suspended particulate (TSP) concentrations in spring and autumn were relatively higher than those in summer. Overall: the concentrations in the barns and ambient air, for all the PM categories (PM2.5, PM10, and TSP), exhibited non-normal positively skewed distributions, which tended to overestimate mean or average concentrations. Only concentrations of PM2.5 and PM10 increased with ambient air temperature (R2 = 0.60-0.82), whereas only concentrations of TSP increased with cattle activity. The mean respective emission rates of PM2.5, PM10, and TSP for the two barns ranged between 1.6-4.0, 11.9-15.0, and 48.7-52.5 g d-1 cow-1, indicating similar emissions from the two barns.
Health effects from indoor air pollution: case studies.
White, L E; Clarkson, J R; Chang, S N
1987-01-01
In recent years there has been a growing awareness of the health effects associated with the presence of contaminants in indoor air. Numerous agents can accumulate in public buildings, homes and automobiles as a result of ongoing activities that normally occur in these closed spaces. Ventilation is a major factor in the control of indoor air pollutants since proper movement of air can prevent or minimize the build up of compounds in buildings. The recent emphasis on energy conservation has lead to measures which economize on energy for heating and air conditioning, but which also trap pollutants within a building. Three cases of indoor air pollution were investigated. A typical investigation of indoor air pollutant problems includes the following: interviews with building occupants; history of the building with regard to maintenance, pesticide treatment, etc.; a survey of the building and ventilation; and when warranted, sampling and analysis of air. Each case presented is unique in that atypical situations caused agents to accumulate in a building or section of a building. The indoor air problems in these cases were solved by identifying and removing the source of the offending agent and/or improving the ventilation in the building.
Unexpected death of a ventilator-dependent amyotrophic lateral sclerosis patient.
di Paolo, M; Evangelisti, L; Ambrosino, N
2013-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal, progressive, neurodegenerative disease and most patients affected die of respiratory compromise and/or pneumonia within 2-3 years of diagnosis. As ALS progresses, ventilator assistance is required. In the end stages of the disease, patients suffer from respiratory failure and may become ventilator-dependent. Deaths due to malfunction of mechanical ventilators are reported but there are very few forensic autopsy records. We report the case of a 69-year-old ALS female ventilator-dependent, trachostomised patient who was found dead by her husband, with the ventilator in "stand-by" mode. A forensic autopsy was performed. Samples of internal organs were taken for histological and toxicological examination. The ventilator internal memory was also analysed and tested in order to find possible malfunction. Gross examination did not reveal any sign of trauma but showed brain and lung congestion. Pulmonary histological examination revealed thickening of peribronchial interstitial space, alveolar over-distension, break of inter-alveolar walls and diffuse alveolar haemorrhages. Focal microhemorrhages were also detected in other organs. Analysis of the ventilator internal memory showed that during the night of death, there had been several voltage drops. Specific tests revealed malfunction of the internal battery which was unable to provide the necessary voltage, as a consequence the ventilator switched off, stopping ventilation. Battery malfunction reduced the volume of the ventilator alarm, which was not heard by the caregiver. Histological pattern, with acute pulmonary emphysema and focal polivisceral haemorrhages, is strongly suggestive of a death due to "acute" asphyxia. The authors also discuss the need for strict supervision and follow up of these ventilatory dependent patients and their devices. Copyright © 2012 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.
46 CFR 194.15-5 - Ventilation.
Code of Federal Regulations, 2011 CFR
2011-10-01
....15-5 Ventilation. (a) Operations, reactions or experiments which produce toxic, noxious or corrosive...) Ventilation of air conditioning systems serving the chemical laboratory shall be designed so that air cannot...
Code of Federal Regulations, 2012 CFR
2012-01-01
... gases and vapors in normal operations and in the event of reasonably probable failures or malfunctioning..., 2011, § 23.831 was amended by adding paragraphs (c) and (d), effective Jan. 31, 2012. For the convenience of the user, the added text is set forth as follows: § 23.831 Ventilation. (c) For jet pressurized...
USDA-ARS?s Scientific Manuscript database
Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...
Hentschel, Roland; Semar, Nicole; Guttmann, Josef
2012-09-01
To study appropriateness of respiratory system compliance calculation using an inflation hold and compare it with ventilator readouts of pressure and tidal volume as well as with measurement of compliance of the respiratory system with the single-breath-single-occlusion technique gained with a standard lung function measurement. Prospective clinical trial. Level III neonatal unit of a university hospital. Sixty-seven newborns, born prematurely or at term, ventilated for a variety of pathologic conditions. A standardized sigh maneuver with a predefined peak inspiratory pressure of 30 cm H2O, termed inspiratory capacity at inflation hold, was applied. Using tidal volume, exhaled from inspiratory pause down to ambient pressure, as displayed by the ventilator, and predefined peak inspiratory pressure, compliance at inspiratory capacity at inflation hold conditions could be calculated as well as ratio of tidal volume and ventilator pressure using tidal volume and differential pressure at baseline ventilator settings: peak inspiratory pressure minus positive end-expiratory pressure. For the whole cohort, the equation for the regression between tidal volume at inspiratory capacity at inflation hold and compliance of the respiratory system was: compliance of the respiratory system = 0.052 * tidal volume at inspiratory capacity at inflation hold - 0.113, and compliance at inspiratory capacity at inflation hold conditions was closely related to the standard lung function measurement method of compliance of the respiratory system (R = 0.958). In contrast, ratio of tidal volume and ventilator pressure per kilogram calculated from the ventilator readouts and displayed against compliance of the respiratory system per kilogram yielded a broad scatter throughout the whole range of compliance; both were only weakly correlated (R = 0.309) and also the regression line was significantly different from the line of identity (p < .05). Peak inspiratory pressure at study entry did not affect the correlation between compliance at inspiratory capacity at inflation hold conditions and compliance of the respiratory system. After a standard sigh maneuver, inspiratory capacity at inflation hold and the derived quantity compliance at inspiratory capacity at inflation hold conditions can be regarded as a valid, accurate, and reliable surrogate measure for standard compliance of the respiratory system in contrast to ratio of tidal volume and ventilator pressure calculated from the ventilator readouts during ongoing mechanical ventilation at respective ventilator settings.
Wang, Jinrong; Cui, Zhaobo; Liu, Shuhong; Gao, Xiuling; Gao, Pan; Shi, Yi; Guo, Shufen; Li, Peipei
2017-03-01
Noninvasive positive-pressure ventilation (NPPV) might be superior to conventional mechanical ventilation (CMV) in patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPDs). Inefficient clearance of respiratory secretions provokes NPPV failure in patients with hypercapnic encephalopathy (HE). This study compared CMV and NPPV combined with a noninvasive strategy for clearing secretions in HE and AECOPD patients.The present study is a prospective cohort study of AECOPD and HE patients enrolled between October 2013 and August 2015 in a critical care unit of a major university teaching hospital in China.A total of 74 patients received NPPV and 90 patients received CMV. Inclusion criteria included the following: physician-diagnosed AECOPD, spontaneous airway clearance of excessive secretions, arterial blood gas analysis requiring intensive care, moderate-to-severe dyspnea, and a Kelly-Matthay scale score of 3 to 5. Exclusion criteria included the following: preexisting psychiatric/neurological disorders unrelated to HE, upper gastrointestinal bleeding, upper airway obstruction, acute coronary syndromes, preadmission tracheostomy or endotracheal intubation, and urgent endotracheal intubation for cardiovascular, psychomotor agitation, or severe hemodynamic conditions.Intensive care unit participants were managed by NPPV. Participants received standard treatment consisting of controlled oxygen therapy during NPPV-free periods; antibiotics, intravenous doxofylline, corticosteroids (e.g., salbutamol and ambroxol), and subcutaneous low-molecular-weight heparin; and therapy for comorbidities if necessary. Nasogastric tubes were inserted only in participants who developed gastric distension. No pharmacological sedation was administered.The primary and secondary outcome measures included comparative complication rates, durations of ventilation and hospitalization, number of invasive devices/patient, and in-hospital and 1-year mortality rates.Arterial blood gases and sensorium levels improved significantly within 2 hours in the NPPV group with lower hospital mortality, fewer complications and invasive devices/patient, and superior weaning off mechanical ventilation. Mechanical ventilation duration, hospital stay, or 1-year mortality was similar between groups.NPPV combined with a noninvasive strategy to clear secretions during the first 2 hours may offer advantages over CMV in treating AECOPD patients complicated by HE.
Fischer, Henrik; Neuhold, Stephanie; Hochbrugger, Eva; Steinlechner, Barbara; Koinig, Herbert; Milosevic, Ljubisa; Havel, Christof; Frantal, Sophie; Greif, Robert
2011-04-01
Cardiopulmonary resuscitation (CPR) during flight is challenging and has to be sustained for long periods. In this setting a mechanical-resuscitation-device (MRD) might improve performance. In this study we compared the quality of resuscitation of trained flight attendants practicing either standard basic life support (BLS) or using a MRD in a cabin-simulator. Prospective, open, randomized and crossover simulation study. Study participants, competent in standard BLS were trained to use the MRD to deliver both chest compressions and ventilation. 39 teams of two rescuers resuscitated a manikin for 12 min in random order, standard BLS or mechanically assisted resuscitation. Primary outcome was "absolute hands-off time" (sum of all periods during which no hand was placed on the chest minus ventilation time). Various parameters describing the quality of chest compression and ventilation were analysed as secondary outcome parameters. Use of the MRD led to significantly less "absolute hands-off time" (164±33 s vs. 205±42 s, p<0.001). The quality of chest compression was comparable among groups, except for a higher compression rate in the standard BLS group (123±14 min(-1) vs. 95±11 min(-1), p<0.001). Tidal volume was higher in the standard BLS group (0.48±0.14 l vs. 0.34±0.13 l, p<0.001), but we registered fewer gastric inflations in the MRD group (0.4±0.3% vs. 16.6±16.9%, p<0.001). Using the MRD resulted in significantly less "absolute hands-off time", but less effective ventilation. The translation of higher chest compression rate into better outcome, as shown in other studies previously, has to be investigated in another human outcome study. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
30 CFR 75.350 - Belt air course ventilation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.350 Belt air course ventilation... manager may approve lower velocities in the ventilation plan based on specific mine conditions. Air... or alarm signal. This training must be conducted prior to working underground in a mine that uses...
Külpmann, Rüdiger; Christiansen, Bärbel; Kramer, Axel; Lüderitz, Peter; Pitten, Frank-Albert; Wille, Frank; Zastrow, Klaus-Dieter; Lemm, Friederike; Sommer, Regina; Halabi, Milo
2016-01-01
Since the publication of the first "Hospital Hygiene Guideline for the implementation and operation of air conditioning systems (HVAC systems) in hospitals" (http://www.krankenhaushygiene.de/informationen/fachinformationen/leitlinien/12) in 2002, it was necessary due to the increase in knowledge, new regulations, improved air-conditioning systems and advanced test methods to revise the guideline. Based on the description of the basic features of ventilation concepts, its hygienic test and the usage-based requirements for ventilation, the DGKH section "Ventilation and air conditioning technology" attempts to provide answers for the major air quality issues in the planning, design and the hygienically safe operation of HVAC systems in rooms of health care.
Ventilation requirements in buildings—I. Control of occupancy odor and tobacco smoke odor
NASA Astrophysics Data System (ADS)
Cain, William S.; Leaderer, Brian P.; Isseroff, Ruth; Berglund, Larry G.; Huey, Raymond J.; Lipsitt, Eric D.; Perlman, Dan
Psychophysical measurements of odor, supplemented with certain physical measurements, were taken to examine ventilation requirements during smoking and nonsmoking occupancy in an environmental chamber. The facility provided the means to compare impressions of visitors (persons who inhaled air from the chamber only briefly) with impressions of occupants. For nonsmoking occupancy, 47 combinations of temperature, humidity, ventilation rate and occupancy density were examined. Odor level depended entirely on ventilation rate per person irrespective of the number of persons in the chamber. The ventilation necessary to satisfy 75 % of visitors equalled only about 4 ℓ s -1 per person. Occupants, however, were satisfied with far less. In an array of 38 conditions of smoking occupancy, the ventilation deemed necessary to satisfy 75 % of visitors under customary conditions of occupancy equalled 17.5 ℓ s -1 per person. For both smoking and nonsmoking conditions, a combination of high temperature (25.5°C) and humidity (r.h. > 70 %) exacerbated the odor problem. During smoking, carbon monoxide rarely reached dangerous levels, but suspended particulate matter often reached levels considered unacceptable outdoors. The results highlight the energy penalty incurred in ventilation for smoking occupancy.
Krypton-81m ventilation scanning: acute respiratory disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavender, J.P.; Irving, H.; Armstrong, J.D. II
1981-02-01
From experience with 700 patients undergoing ventilation and perfusion lung scanning with krypton-81m/technetium-99m technique, 34 patients suffering from nonembolic acute respiratory disease were selected for review. In 16 patients with pneumonia, all had defects of ventilation corresponding to, or larger than, the radiologic consolidation. In 13 patients there was some preservation of perfusion in the consolidated region. In two of the three patients with matched defects, the pneumonia was of long standing. In seven patients with collapse or atelectasis and in 11 patients with acute reversible bronchial obstruction and normal volume lungs, a similar pattern or ventillation and perfusion wasmore » observed.« less
Right ventricular pressure elevated in one-kidney, one clip Goldblatt hypertensive rats.
Ketabchi, Farzaneh; Bajoovand, Shirin; Adlband, Mojtaba; Naseh, Maryam; Nekooeian, Ali A; Mashghoolozekr, Elaheh
2017-01-01
Both renal and respiratory diseases are common with high mortality rate around the world. This study was the first to compare effects of two kidneys, one clip (2K1C) and one-kidney, one clip (1K1C) Goldblatt hypertension on right ventricular pressure during normal condition and mechanical ventilation with hypoxia gas. Male Sprague-Dawley rats were subjected to control, 2K1C, or 1K1C groups. Twenty-eight days after the first surgery, animals were anesthetized, and femoral artery and vein, and right ventricle cannulated. Systemic arterial pressure and right ventricular systolic pressures (RVSP) were recorded during ventilation the animals with normoxic or hypoxic gas. RVSP in the 1K1C group was significantly more than the control and 2K1C groups during baseline conditions and ventilation the animals with hypoxic gas. Administration of antioxidant Trolox increased RVSP in the 1K1C and control groups compared with their baselines. Furthermore, there was no alteration in RVSP during hypoxia in the presence of Trolox. This study indicated that RVSP only increased after 28 days induction of 1K1C but not 2K1C model. In addition, it seems that the response to hypoxic gas and antioxidants in 1K1C is more than 2K1C. These data also suggest that effects of 1K1C may partially be related to reactive oxygen species (ROS) pathways.
Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J
2009-01-01
OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers’ humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers. PMID:19578664
30 CFR 57.8531 - Construction and maintenance of ventilation doors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Construction and maintenance of ventilation... NONMETAL MINES Ventilation Underground Only § 57.8531 Construction and maintenance of ventilation doors... constructed of wood; (c) Maintained in good condition; (d) Self-closing, if manually operated; and (e...
Marjanovic, Nicolas; Le Floch, Soizig; Jaffrelot, Morgan; L'Her, Erwan
2014-05-01
In the absence of endotracheal intubation, the manual bag-valve-mask (BVM) is the most frequently used ventilation technique during resuscitation. The efficiency of other devices has been poorly studied. The bench-test study described here was designed to evaluate the effectiveness of an automatic, manually triggered system, and to compare it with manual BVM ventilation. A respiratory system bench model was assembled using a lung simulator connected to a manikin to simulate a patient with unprotected airways. Fifty health-care providers from different professional groups (emergency physicians, residents, advanced paramedics, nurses, and paramedics; n = 10 per group) evaluated manual BVM ventilation, and compared it with an automatic manually triggered device (EasyCPR). Three pathological situations were simulated (restrictive, obstructive, normal). Standard ventilation parameters were recorded; the ergonomics of the system were assessed by the health-care professionals using a standard numerical scale once the recordings were completed. The tidal volume fell within the standard range (400-600 mL) for 25.6% of breaths (0.6-45 breaths) using manual BVM ventilation, and for 28.6% of breaths (0.3-80 breaths) using the automatic manually triggered device (EasyCPR) (P < .0002). Peak inspiratory airway pressure was lower using the automatic manually triggered device (EasyCPR) (10.6 ± 5 vs 15.9 ± 10 cm H2O, P < .001). The ventilation rate fell consistently within the guidelines, in the case of the automatic manually triggered device (EasyCPR) only (10.3 ± 2 vs 17.6 ± 6, P < .001). Significant pulmonary overdistention was observed when using the manual BVM device during the normal and obstructive sequences. The nurses and paramedics considered the ergonomics of the automatic manually triggered device (EasyCPR) to be better than those of the manual device. The use of an automatic manually triggered device may improve ventilation efficiency and decrease the risk of pulmonary overdistention, while decreasing the ventilation rate.
Wientjes, C J; Grossman, P; Gaillard, A W
1998-09-01
Assessment of multiple respiratory measures may provide insight into how behavioral demands affect the breathing pattern. This is illustrated by data from a study among 44 subjects, in which tidal volume, respiration rate, minute ventilation and indices of central drive and timing mechanisms were assessed via inductive plethysmography, in addition to end-tidal PCO2. After a baseline, three conditions of a memory comparison task were presented. The first two conditions differed only with regard to the presence or absence of feedback of performance (NFB and FB). In the third 'all-or-nothing' (AON) condition, subjects only received a monetary bonus, if their performance exceeded that of the previous two conditions. Minute ventilation increased from baseline to all task conditions, and from NFB and FB to AON. Respiration rate increased in all task conditions, but there were no differences between task conditions. Tidal volume decreased during NFB, but was equal to baseline during FB and AON. Of the respiratory control indices, inspiratory flow rate covaried much more closely with minute ventilation than duty cycle. The task performance induced a minor degree of hyperventilation. The discussion focusses on how behavioral demands affect respiratory control processes to produce alterations in breathing pattern and ventilation.
Merkelbach, D; Brandt, L; Mertzlufft, F
1993-10-01
The Christiansen-Douglas-Haldane effect describes the reduced CO2 binding capacity of oxygenated compared to deoxygenated haemoglobin. Under the condition of a "closed system", for example hyperoxic apnoea after adequate preoxygenation (continuous O2 uptake with lack of CO2 delivery), specific effects on the arterial and mixed venous blood gas status, due to the Haldane effect, are seen: within 30 s after onset of apnoea, "paradoxical pCO2" (paCO2 exceeds pvCO2) and "pH reversal" (pHa falls under pHv) can be observed. It was the aim of this study to demonstrate how fast arterial and mixed venous pCO2 and pH normalize when a change from apnoea ("closed system") to controlled ventilation ("open system") takes place. METHODS. 12 patients (ASA II-IV, NYHA II-III) scheduled for coronary artery bypass grafting were studied. Premedication consisted of flunitrazepam 2.0 mg p.o. given the evening before operation and another 2.0 mg p.o. given 90-120 min before induction of anaesthesia. Routine preparation for induction consisted of venous and arterial cannulas, pulmonary artery catheter and continuous pulse oximetry. Following standardized preoxygenation, induction of anaesthesia was performed with fentanyl, pancuronium and etomidate. After cessation of spontaneous respiration, controlled ventilation was continued with 100% O2 until intubation. Intubation and insertion of stomach tube and oesophageal temperature probe were undertaken after exactly 2 min. After reconnection to the semi-closed circle breathing system, controlled ventilation was continued with 100% O2. Eighteen arterial (a) and 18 mixed-venous (v) blood samples were drawn simultaneously in a sequential manner immediately before and during the last 20 s of apnoea, as well as within 4 min after onset of controlled ventilation (Table 1). The pO2 (mmHg), pCO2 (mmHg) and pH were determined using a Stat Profile 5 blood gas analyser. RESULTS. During apnoea and within the first 35 s of controlled ventilation the paO2 showed a total decrease of 131.5 mmHg that was followed by an almost linear increase of 29.7 mmHg/min (Fig. 1a). In the course of apnoea and controlled ventilation the pvO2 remained relatively stable, with values ranging from 42 to 43 mmHg (Fig. 1b). During apnoea the paCO2 showed an increase of 12.5 mmHg that was followed by a biphasic decrease (first 13.8 mmHg/min and then 0.75 mmHg/min) beginning 15 s after the onset of controlled ventilation (Fig. 2a). With an increase of 4.2 mmHg, the pvCO2 showed about a third of the increase of the paCO2 during apnoea, reaching a maximum 45 s after the onset of controlled ventilation and then being followed by a linear decrease of 0.86 mmHg/min (Fig.2b). Comparing the course of paCO2 and pvCO2 during apnoea as well as during the period of controlled ventilation, pHa and pHv changed in a reciprocal manner (Fig. 3a/b). The so-called normalization of pCO2 (paCO2 falls under pvCO2) and pH (pHa exceeds pHv) began 18.2 s and 23.2 s respectively after the onset of controlled ventilation (Fig. 4a, b). CONCLUSION. Considering the expected decrease of paO2 during hyperoxic apnoea, insufficient pulmonary N2 elimination prior to the onset of apnoea, as well as direct N2 delivery into the alveoli, due to the so-called a ventilatory mass flow, will limit unrestricted pulmonary O2 uptake. The continuing decrease of the paCO2 after the onset of controlled ventilation can be regarded as indirect proof of a ventilatory mass flow. The course of pCO2 and pH after the onset of controlled ventilation shows that normalization in arterial and mixed-venous blood gas status takes place in about 18.2 s after the cessation of apnoea.
Ventilation mapping of chest using Focused Impedance Method (FIM)
NASA Astrophysics Data System (ADS)
Kadir, M. Abdul; Ferdous, Humayra; Baig, Tanvir Noor; Siddique-e-Rabbani, K.
2010-04-01
Focused Impedance Method (FIM) provides an opportunity for localized impedance measurement down to reasonable depths within the body using surface electrodes, and has a potential application in localized lung ventilation study. This however needs assessment of normal values for healthy individuals. In this study, localized ventilation maps in terms of electrical impedance in a matrix formation around the thorax, both from the front and the back, were obtained from two normal male subjects using a modified configuration of FIM. For this the focused impedance values at full inspiration and full expiration were measured and the percentage difference with respect to the latter was used. Some of the measured values would have artefacts due to movements of the heart and the diaphragm in the relevant anatomical positions which needs to be considered with due care in any interpretation.
Reyes, Catalina; Milsom, William K
2010-01-01
Endogenous circadian and circannual rhythms may exist in the metabolism, ventilation, and breathing pattern of turtles that could further prolong dive times during daily and seasonal periods of reduced activity. To test this hypothesis, turtles were held under seasonal or constant environmental conditions over a 1-yr period, and in each season, V(O)(2) and respiratory variables were measured in all animals under both the prevailing seasonal conditions and the constant conditions for 24 h. Endogenous circadian and circannual rhythms in metabolism and ventilation occurred independent of ambient temperature, photoperiod, and activity, although long-term entrainment to daily and seasonal changes in temperature and photoperiod were required for them to be expressed. Metabolism and ventilation were always higher during the photophase, and the day-night difference was greater at any given temperature when the photoperiod was provided. When corrected for temperature, turtles had elevated metabolic and ventilation rates in the fall and spring (corresponding to the reproductive seasons) and suppressed metabolism and ventilation during winter. The strength of the circadian rhythm varied seasonally, with proportionately larger day-night differences in colder seasons. Daily and seasonal cycles in ventilation largely followed metabolism, although daily and seasonal changes did occur in the breathing pattern independent of levels of total ventilation. These endogenous circadian and circannual changes in metabolism, ventilation, and breathing pattern prolonged dive times at night and in winter and may serve to reduce the costs of breathing and transport and risk of predation.
Effects of ventilation behaviour on indoor heat load based on test reference years.
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Effects of ventilation behaviour on indoor heat load based on test reference years
NASA Astrophysics Data System (ADS)
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
NASA Astrophysics Data System (ADS)
Recheis, Wolfgang A.; Kleinsasser, Axel; Schuster, Antonius H.; Loeckinger, Alexander; Frede, Thomas; Springer, Peter; Hoermann, Christoph; zur Nedden, Dieter
2000-04-01
The purpose was to evaluate differences in dynamic changes of the lung aeration (air-tissue ratio) between augmented modes of ventilation (AMV) and controlled mechanical ventilation (CMV) in normal subjects. 4 volunteers, ventilated with the different respirator protocols via face mask, were scanned using the EBCT in the 50 ms mode. A software analyzed the respirator's digitized pressure and volume signals of two subsequent ventilation phases. Using these values it was possible to calculate the onset of inspiration or expiration of the next respiratory phase. The calculated starting point was then used to trigger the EBCT. The dynamic changes of air- tissue ratios were evaluated in three separate regions: a ventral, an intermediate and a dorsal area. AMV results in increase of air-tissue ratio in the dorsal lung area due to the active contraction of the diaphragm, whereas CMV results in a more pronounced increase in air-tissue ratio of the ventral lung area. This study gives further insight into the dynamic changes of the lung's biomechanics by comparing augmented ventilation and controlled mechanical ventilation in the healthy proband.
Glyphosate ingestion causing multiple organ failure: a near-fatal case report.
Picetti, Edoardo; Generali, Michela; Mensi, Francesca; Neri, Giampaolo; Damia, Roberta; Lippi, Giuseppe; Cervellin, Gianfranco
2018-01-16
A 55 years old man self-presented to our Emergency Department (ED) reporting an attempted suicide by cutting the left forearm veins and ingesting approximately 200 mL of an herbicide (Myrtos®, containing 36% of glyphosate as isopropylamine salt). Laboratory tests showed metabolic acidosis. Hydration with normal saline and alkalinization with sodium bicarbonate was started according to suggestion of the poison control center, since an antidote was unavailable. Cardiorespiratory condition gradually worsened, so that non-invasive positive pressure ventilation (NIPPV) was applied and infusion of fluids was established. Nevertheless, the patient deteriorated and he needed to be transferred to the Intensive Care Unit (ICU), where he underwent orotracheal intubation and invasive mechanical ventilation. Noradrenaline and adrenaline were infused and fluid resuscitation with crystalloids was incremented. An esophagogastroduodenoscopy (EGD) showed diffuse mucosal erosions of upper digestive tract. No signs of visceral perforation were found during ICU stay. In the following days, the clinical conditions improved and a new EGD showed marked improvement of erosive lesions. After 12 days of ICU stay, the patient was extubated and then transferred to the Psychiatric Unit, in good clinical conditions. Gliphosate ingestion is associated with rapid development of multiple organ failure (MOF). Since an effective antidote is unavailable, major attention should be placed to aggressive life-support care and careful monitoring of complications.
Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D
2016-01-01
Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. Copyright © 2016 Elsevier Ltd. All rights reserved.
2007-05-01
RESULTS .............................................................................92 TABLE 17: RATINGS OF THE THERMAL COMFORT ON A 7 POINT SCALE...98. In addition to the body mapping of thermal discomfort, participants also rated thermal comfort acceptability for hot spots, ventilation and...overall comfort. Additionally each participant completed a thermal comfort Humansystems® Counter IED Page 91 questionnaire that examined ventilation
Lu, Chih-Cherng; Lin, Tso-Chou; Hsu, Che-Hao; Yu, Mu-Hsien; Ku, Chih-Hung; Chen, Ta-Liang; Chen, Ruei-Ming; Ho, Shung-Tai
2013-02-01
We investigated whether ventilation volumes affected arterial blood sevoflurane concentration (A (sev)) and its uptake into the body during general anesthesia. Thirty female patients undergoing elective gynecologic surgery were randomly allocated into three groups: hyperventilation, normal ventilation, and hypoventilation. Inspiratory (CI(sev)) and end-tidal ((sev)) sevoflurane concentrations were routinely measured by infrared analysis, and A (sev) were analyzed by gas chromatography for 40 min after intubation. Cardiac index and total peripheral vascular resistance were measured with a Finometer. During the first 10 min after sevoflurane administration, A (sev) in the hyperventilation group was the highest and differed significantly from those in the normal ventilation group, followed by those in the hypoventilation group. In addition, hyperventilation significantly increased the slope of A (sev) over time in the first 5 min, but there were no differences in slopes in the 5-10, 10-20, and 20-40 min periods, which indicates no difference in sevoflurane bodily uptake among the three groups after 5 min. Hyperventilation accelerated the rate of A (sev) increase immediately after sevoflurane administration, which was time dependent with respect to different alveolar ventilation levels.
Nandra, Kulvir S; Harari, Martin; Price, Thea P; Greaney, Patrick J; Weinstein, Michael S
2017-08-01
Our objective in this study was to extend diaphragmatic pacing therapy to include paraplegic patients with high cervical spinal cord injuries between C3 and C5. Diaphragmatic pacing has been used in patients experiencing ventilator-dependent respiratory failure due to spinal cord injury as a means to reduce or eliminate the need for mechanical ventilation. However, this technique relies on intact phrenic nerve function. Recently, phrenic nerve reconstruction with intercostal nerve grafting has expanded the indications for diaphragmatic pacing. Our study aimed to evaluate early outcomes and efficacy of intercostal nerve transfer in diaphragmatic pacing. Four ventilator-dependent patients with high cervical spinal cord injuries were selected for this study. Each patient demonstrated absence of phrenic nerve function via external neck stimulation and laparoscopic diaphragm mapping. Each patient underwent intercostal to phrenic nerve grafting with implantation of a phrenic nerve pacer. The patients were followed, and ventilator dependence was reassessed at 1 year postoperatively. Our primary outcome was measured by the amount of time our patients tolerated off the ventilator per day. We found that all 4 patients have tolerated paced breathing independent of mechanical ventilation, with 1 patient achieving 24 hours of tracheostomy collar. From this study, intercostal to phrenic nerve transfer seems to be a promising approach in reducing or eliminating ventilator support in patients with C3 to C5 high spinal cord injury.
Purging of working atmospheres inside freight containers.
Braconnier, Robert; Keller, François-Xavier
2015-06-01
This article focuses on prevention of possible exposure to chemical agents, when opening, entering, and stripping freight containers. The container purging process is investigated using tracer gas measurements and numerical airflow simulations. Three different container ventilation conditions are studied, namely natural, mixed mode, and forced ventilation. The tests conducted allow purging time variations to be quantified in relation to various factors such as container size, degree of filling, or type of load. Natural ventilation performance characteristics prove to be highly variable, depending on environmental conditions. Use of a mechanically supplied or extracted airflow under mixed mode and forced ventilation conditions enables purging to be significantly accelerated. Under mixed mode ventilation, extracting air from the end of the container furthest from the door ensures quicker purging than supplying fresh air to this area. Under forced ventilation, purging rate is proportional to the applied ventilation flow. Moreover, purging rate depends mainly on the location at which air is introduced: the most favourable position being above the container loading level. Many of the results obtained during this study can be generalized to other cases of purging air in a confined space by general ventilation, e.g. the significance of air inlet positioning or the advantage of generating high air velocities to maximize stirring within the volume. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Belmaati, Esther Okeke; Iversen, Martin; Kofoed, Klaus F; Nielsen, Michael B; Mortensen, Jann
2012-06-01
Scintigraphy has been used as a tool to detect dysfunction of the lung before and after transplantation. The aims of this study were to evaluate the development of the ventilation-perfusion relationships in single lung transplant recipients in the first year, at 3 months after transplantation, and to investigate whether scintigraphic findings at 3 months were predictive for the outcome at 12 months in relation to primary graft dysfunction (PGD) and lung function. A retrospective study was carried out on all patients who prospectively and consecutively were referred for a routine lung scintigraphy procedure 3 months after single lung transplantation (SLTX). A total of 41 patients were included in the study: 20 women and 21 men with the age span of patients at transplantation being 38-66 years (mean ± SD: 54.2 ± 6.0). Patient records also included lung function tests and chest X-ray images. We found no significant correlation between lung function distribution at 3 months and PGD at 72 h. There was also no significant correlation between PGD scores at 72 h and lung function at 6 and 12 months. The same applied to scintigraphic scores for heterogeneity at 3 months compared with lung function at 6 and 12 months. Fifty-five percent of all patients had decreased ventilation function measured in the period from 6 to 12 months. Forty-nine percent of the patients had normal perfusion evaluations, and 51% had abnormal perfusion evaluations at 3 months. For ventilation evaluations, 72% were normal and 28% were abnormal. There was a significant difference in the normal versus abnormal perfusion and ventilation scintigraphic images evaluated from the same patients. Ventilation was distributed more homogenously in the transplanted lung than perfusion in the same lung. The relative distribution of perfusion and ventilation to the transplanted lung of patients with and without a primary diagnosis of fibrosis did not differ significantly from each other. We conclude that PGD defined at 72 h does not lead to recognizable changes in ventilation-perfusion scintigrapy at 3 months, and scintigraphic findings do not correlate with development in lung function in the first 12 months.
Randomised comparison of two neonatal resuscitation bags in manikin ventilation.
Thallinger, Monica; Ersdal, Hege Langli; Ombay, Crescent; Eilevstjønn, Joar; Størdal, Ketil
2016-07-01
To compare ventilation properties and user preference of a new upright neonatal resuscitator developed for easier cleaning, reduced complexity, and possibly improved ventilation properties, with the standard Laerdal neonatal resuscitator. Eighty-seven Tanzanian and Norwegian nursing and medical students without prior knowledge of newborn resuscitation were briefly trained in bag-mask ventilation. The two resuscitators were used in random order on a manikin connected to a test lung with normal or low lung compliance. Data were collected with the Laerdal Newborn Resuscitation Monitor. The students graded mask seal and ease of air entry on a four-point scale ranging from 1 ('difficult') to 4 ('easy') and stated which device they preferred. (Equipment from Laerdal Global Health and Laerdal Medical). For upright versus standard resuscitator and normal lung compliance, mean expiratory lung volume was 15.5 mL vs 13.9 mL (p=0.001), mean mask leakage 48% vs 58% (p<0.001), and mean airway pressure 20 cm H2O vs 19 cm H2O (p=0.003), respectively. For low lung compliance, mean expiratory lung volume was 8.6 mL vs 8.1 mL (p=0.045), mean mask leakage 53% vs 62% (p<0.001), and mean airway pressure 21 cm H2O vs 20 cm H2O (p=0.004) for upright versus standard. The upright resuscitator was preferred by 82% and 68% of students during ventilation with normal and low lung compliance, respectively (p=0.001). Expiratory volumes were higher, mask leakage lower, and mean airway pressure slightly higher with upright versus standard resuscitator when ventilating a manikin. The majority of students preferred the upright resuscitator. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Thille, Arnaud W.; Lyazidi, Aissam; Richard, Jean-Christophe M.; Galia, Fabrice; Brochard, Laurent
2009-01-01
Objective To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators regarding trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements and expiratory resistance. Design and Setting Bench study at a research laboratory in a university hospital. Material Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Results Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O, Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering-delay from 42 ms to 88 ms for all conditions averaged (P<.001). Under difficult conditions, the triggering delay was longer than 100 ms and the pressurization was poor with five ventilators at PSV5 and three at PSV10, suggesting an inability to unload patient’s effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a 2000 bench comparison. Conclusion Technical performances of trigger function, pressurization capacity and expiratory resistance vary considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately. PMID:19352622
Effects of types of ventilation system on indoor particle concentrations in residential buildings.
Park, J S; Jee, N-Y; Jeong, J-W
2014-12-01
The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Thille, Arnaud W; Lyazidi, Aissam; Richard, Jean-Christophe M; Galia, Fabrice; Brochard, Laurent
2009-08-01
To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators in terms of trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements, and expiratory resistance. Bench study at a research laboratory in a university hospital. Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O). Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering delays from 42 to 88 ms for all conditions averaged (P < 0.001). Under difficult conditions, the triggering delay was longer than 100 ms and the pressurization was poor for five ventilators at PSV5 and three at PSV10, suggesting an inability to unload patient's effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a bench comparison in 2000. Technical performance of trigger function, pressurization capacity, and expiratory resistance differs considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately.
ACHP | News | ACHP Issues Program Comment for GSA on Select Repairs and
to windows, lighting, roofing, and heating, ventilating, and air-conditioning (HVAC) systems within Upgrades Windows Lighting Roofing Heating, Ventilation, and Air Conditioning (HVAC) Systems Updated March
Humidifier Development and Applicability to the Next Generation Portable Life Support System
NASA Technical Reports Server (NTRS)
Conger, Bruce C.; Barnes, Bruce G.; Sompayrac, Robert G.; Paul, Heather L.
2011-01-01
A development effort at the NASA Johnson Space Center investigated technologies to determine whether a humidifier would be required in the Portable Life Support System (PLSS) envisioned for future exploration missions. The humidifier has been included in the baseline PLSS schematic since performance testing of the Rapid Cycle Amine (RCA) indicates that the RCA over-dries the ventilation gas stream. Performance tests of a developmental humidifier unit and commercial off-the-shelf (COTS) units were conducted in December 2009. Following these tests, NASA revisited the need for a humidifier via system analysis. Results of this investigation indicate that it is feasible to meet humidity requirements without the humidifier if other changes are made to the PLSS ventilation loop and the Liquid Cooling and Ventilation Garment (LCVG).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-09-01
In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air tomore » apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.« less
Seresht, L. Mousavi; Golparvar, Mohammad; Yaraghi, Ahmad
2014-01-01
Background: Appropriate determination of tidal volume (VT) is important for preventing ventilation induced lung injury. We compared hemodynamic and respiratory parameters in two conditions of receiving VTs calculated by using body weight (BW), which was estimated by measured height (HBW) or demi-span based body weight (DBW). Materials and Methods: This controlled-trial was conducted in St. Alzahra Hospital in 2009 on American Society of Anesthesiologists (ASA) I and II, 18-65-years-old patients. Standing height and weight were measured and then height was calculated using demi-span method. BW and VT were calculated with acute respiratory distress syndrome-net formula. Patients were randomized and then crossed to receive ventilation with both calculated VTs for 20 min. Hemodynamic and respiratory parameters were analyzed with SPSS version 20.0 using univariate and multivariate analyses. Results: Forty nine patients were studied. Demi-span based body weight and thus VT (DTV) were lower than Height based body weight and VT (HTV) (P = 0.028), in male patients (P = 0.005). Difference was observed in peak airway pressure (PAP) and airway resistance (AR) changes with higher PAP and AR at 20 min after receiving HTV compared with DTV. Conclusions: Estimated VT based on measured height is higher than that based on demi-span and this difference exists only in females, and this higher VT results higher airway pressures during mechanical ventilation. PMID:24627845
Seresht, L Mousavi; Golparvar, Mohammad; Yaraghi, Ahmad
2014-01-01
Appropriate determination of tidal volume (VT) is important for preventing ventilation induced lung injury. We compared hemodynamic and respiratory parameters in two conditions of receiving VTs calculated by using body weight (BW), which was estimated by measured height (HBW) or demi-span based body weight (DBW). This controlled-trial was conducted in St. Alzahra Hospital in 2009 on American Society of Anesthesiologists (ASA) I and II, 18-65-years-old patients. Standing height and weight were measured and then height was calculated using demi-span method. BW and VT were calculated with acute respiratory distress syndrome-net formula. Patients were randomized and then crossed to receive ventilation with both calculated VTs for 20 min. Hemodynamic and respiratory parameters were analyzed with SPSS version 20.0 using univariate and multivariate analyses. Forty nine patients were studied. Demi-span based body weight and thus VT (DTV) were lower than Height based body weight and VT (HTV) (P = 0.028), in male patients (P = 0.005). Difference was observed in peak airway pressure (PAP) and airway resistance (AR) changes with higher PAP and AR at 20 min after receiving HTV compared with DTV. Estimated VT based on measured height is higher than that based on demi-span and this difference exists only in females, and this higher VT results higher airway pressures during mechanical ventilation.
Functional validation and comparison framework for EIT lung imaging.
Grychtol, Bartłomiej; Elke, Gunnar; Meybohm, Patrick; Weiler, Norbert; Frerichs, Inéz; Adler, Andy
2014-01-01
Electrical impedance tomography (EIT) is an emerging clinical tool for monitoring ventilation distribution in mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8 pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired oxygen). In this way, large and discrete shifts in global and regional lung air content were elicited. We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the original and still most frequently used algorithm), GREIT (a more recent consensus algorithm for lung imaging), truncated singular value decomposition (TSVD), several variants of the one-step Gauss-Newton approach and two iterative algorithms. We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise modeling, reconstructing for electrode movement, total variation (TV) reconstruction, robust error norms, smoothing priors, and using difference vs. normalized difference data. Our results indicate that, while variation in appearance of images reconstructed from the same data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT.
Dunn, Kevin H.; Tsai, Candace Su-Jung; Woskie, Susan R.; Bennett, James S.; Garcia, Alberto; Ellenbecker, Michael J.
2015-01-01
The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 feet/minute) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust air flows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in background concentrations to allow for increased sensitivity. PMID:25175285
Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J
2014-01-01
The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in background concentrations to allow for increased sensitivity.
Design and Development of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Hill, Roger W.; Phillips, Scott D.; Paul, Heather L.
2011-01-01
Ventilation subsystems in future space suits require a dedicated ventilation fan. The unique requirements for the ventilation fan - including stringent safety requirements and the ability to increase output to operate in buddy mode - combine to make a regenerative blower an attractive choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. We have developed analysis methods for the blower s complex, internal flows and identified impeller geometries that enable significant improvements in blower efficiency. We verified these predictions by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. We have developed a compact motor/controller to drive the blower efficiently at low rotating speed (4500 rpm). Finally, we have assembled a low-pressure oxygen test loop to demonstrate the blower s reliability under prototypical conditions.
Kim, Christopher; Gao, Yu-Tang; Xiang, Yong-Bing; Barone-Adesi, Francesco; Zhang, Yawei; Hosgood, H Dean; Ma, Shuangge; Shu, Xiao-ou; Ji, Bu-Tian; Chow, Wong-Ho; Seow, Wei Jie; Bassig, Bryan; Cai, Qiuyin; Zheng, Wei; Rothman, Nathaniel; Lan, Qing
2015-02-01
Indoor air pollution (IAP) caused by cooking has been associated with lung cancer risk in retrospective case-control studies in developing and rural countries. We report the association of cooking conditions, fuel use, oil use, and risk of lung cancer in a developed urban population in a prospective cohort of women in Shanghai. A total of 71,320 never smoking women were followed from 1996 through 2009 and 429 incident lung cancer cases were identified. Questionnaires collected information on household living and cooking practices for the three most recent residences and utilization of cooking fuel and oil, and ventilation conditions. Cox proportional hazards regression estimated the association for kitchen ventilation conditions, cooking fuels, and use of cooking oils for the risk of lung cancer by hazard ratios (HR) with 95% confidence intervals (95% CI). Ever poor kitchen ventilation was associated with a 49% increase in lung cancer risk (HR: 1.49; 95% CI: 1.15-1.95) compared to never poor ventilation. Ever use of coal was not significantly associated. However, ever coal use with poor ventilation (HR: 1.69; 95% CI: 1.22-2.35) and 20 or more years of using coal with poor ventilation (HR: 2.03; 95% CI: 1.35-3.05) was significantly associated compared to no exposure to coal or poor ventilation. Cooking oil use was not significantly associated. These results demonstrate that IAP from poor ventilation of coal combustion increases the risk of lung cancer and is an important public health issue in cities across China where people may have lived in homes with inadequate kitchen ventilation. © 2014 UICC.
Ménard, Lucie; Polak, Marek; Denny, Margaret; Burton, Ellen; Lane, Harlan; Matthies, Melanie L; Marrone, Nicole; Perkell, Joseph S; Tiede, Mark; Vick, Jennell
2007-06-01
This study investigates the effects of speaking condition and auditory feedback on vowel production by postlingually deafened adults. Thirteen cochlear implant users produced repetitions of nine American English vowels prior to implantation, and at one month and one year after implantation. There were three speaking conditions (clear, normal, and fast), and two feedback conditions after implantation (implant processor turned on and off). Ten normal-hearing controls were also recorded once. Vowel contrasts in the formant space (expressed in mels) were larger in the clear than in the fast condition, both for controls and for implant users at all three time samples. Implant users also produced differences in duration between clear and fast conditions that were in the range of those obtained from the controls. In agreement with prior work, the implant users had contrast values lower than did the controls. The implant users' contrasts were larger with hearing on than off and improved from one month to one year postimplant. Because the controls and implant users responded similarly to a change in speaking condition, it is inferred that auditory feedback, although demonstrably important for maintaining normative values of vowel contrasts, is not needed to maintain the distinctiveness of those contrasts in different speaking conditions.
VWPS: A Ventilator Weaning Prediction System with Artificial Intelligence
NASA Astrophysics Data System (ADS)
Chen, Austin H.; Chen, Guan-Ting
How to wean patients efficiently off mechanical ventilation continues to be a challenge for medical professionals. In this paper we have described a novel approach to the study of a ventilator weaning prediction system (VWPS). Firstly, we have developed and written three Artificial Neural Network (ANN) algorithms to predict a weaning successful rate based on the clinical data. Secondly, we have implemented two user-friendly weaning success rate prediction systems; the VWPS system and the BWAP system. Both systems could be used to help doctors objectively and effectively predict whether weaning is appropriate for patients based on the patients' clinical data. Our system utilizes the powerful processing abilities of MatLab. Thirdly, we have calculated the performance through measures such as sensitivity and accuracy for these three algorithms. The results show a very high sensitivity (around 80%) and accuracy (around 70%). To our knowledge, this is the first design approach of its kind to be used in the study of ventilator weaning success rate prediction.
Bechard, Lori J; Duggan, Christopher; Touger-Decker, Riva; Parrott, J Scott; Rothpletz-Puglia, Pamela; Byham-Gray, Laura; Heyland, Daren; Mehta, Nilesh M
2016-08-01
To determine the influence of admission anthropometry on clinical outcomes in mechanically ventilated children in the PICU. Data from two multicenter cohort studies were compiled to examine the unique contribution of nutritional status, defined by body mass index z score, to 60-day mortality, hospital-acquired infections, length of hospital stay, and ventilator-free days, using multivariate analysis. Ninety PICUs from 16 countries with eight or more beds. Children aged 1 month to 18 years, admitted to each participating PICU and requiring mechanical ventilation for more than 48 hours. Data from 1,622 eligible patients, 54.8% men and mean (SD) age 4.5 years (5.1), were analyzed. Subjects were classified as underweight (17.9%), normal weight (54.2%), overweight (14.5%), and obese (13.4%) based on body mass index z score at admission. After adjusting for severity of illness and site, the odds of 60-day mortality were higher in underweight (odds ratio, 1.53; p < 0.001) children. The odds of hospital-acquired infections were higher in underweight (odds ratio, 1.88; p = 0.008) and obese (odds ratio, 1.64; p < 0.001) children. Hazard ratios for hospital discharge were lower among underweight (hazard ratio, 0.71; p < 0.001) and obese (hazard ratio, 0.82; p = 0.04) children. Underweight was associated with 1.3 (p = 0.001) and 1.6 (p < 0.001) fewer ventilator-free days than normal weight and overweight, respectively. Malnutrition is prevalent in mechanically ventilated children on admission to PICUs worldwide. Classification as underweight or obese was associated with higher risk of hospital-acquired infections and lower likelihood of hospital discharge. Underweight children had a higher risk of mortality and fewer ventilator-free days.
9 CFR 3.65 - Terminal facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., or air conditioning and may be ventilated or air circulated by means of fans, blowers, or an air conditioning system so as to minimize drafts, odors, and moisture condensation. Auxiliary ventilation, such as exhaust fans and vents or fans or blowers or air conditioning shall be used for any animal holding area...
Heating, Ventilation, and Air Conditioning Series. Duty Task List.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This task list is intended for use in planning and/or evaluating a competency-based course in heating, ventilation, and air conditioning. The guide outlines the tasks entailed in eight different duties typically required of employees in the following occupations: residential installer, domestic refrigeration technician, air conditioning and…
Pogodin, M A; Granstrem, M P; Dimitrienko, A I
2007-04-01
We did Read CO2 rebreathing tests in 8 adult males. Both at natural breathing, and at self-controlled mechanical ventilation, volunteers increased ventilation proportionally to growth end-tidal PCO2. Inside individual distinctions of responses to CO2 during controlled mechanical ventilation are result of the voluntary motor control.
Gerasimov, V N; Golov, E A; Khramov, M V; Diatlov, I A
2008-01-01
The study was devoted to selection and assessment of disinfecting preparations for prevention of contamination by Legionella. Using system of criteria for quality assessment of disinfectants, seven newdomestic ones belonging to quaternary ammonium compounds class or to oxygen-containing preparations and designed for disinfecting of air-conditioning and ventilation systems were selected. Antibacterial and disinfecting activities of working solutions of disinfectants were tested in laboratory on the test-surfaces and test-objects of premises' air-conditioning and ventilation systems contaminated with Legionella. High antimicrobial and disinfecting activity of new preparations "Dezactiv-M", "ExtraDez", "Emital-Garant", "Aquasept Plus", "Samarovka", "Freesept", and "Ecobreeze Oxy" during their exposure on objects and materials contaminated with Legionella was shown. Main sanitary and preventive measures for defending of air-conditioning and ventilation systems from contamination by Legionella species were presented.
Effect of heated-air blanket on the dispersion of squames in an operating room.
He, X; Karra, S; Pakseresht, P; Apte, S V; Elghobashi, S
2018-05-01
High-fidelity, predictive fluid flow simulations of the interactions between the rising thermal plumes from forced air warming blower and the ultra-clean ventilation air in an operating room (OR) are conducted to explore whether this complex flow can impact the dispersion of squames to the surgical site. A large-eddy simulation, accurately capturing the spatiotemporal evolution of the flow in 3 dimensions together with the trajectories of squames, is performed for a realistic OR consisting of an operating table (OT), side tables, surgical lamps, medical staff, and a patient. Two cases are studied with blower-off and blower-on together with Lagrangian trajectories of 3 million squames initially placed on the floor surrounding the OT. The large-eddy simulation results show that with the blower-off, squames are quickly transported by the ventilation air away from the table and towards the exit grilles. In contrast, with the hot air blower turned on, the ventilation airflow above and below the OT is disrupted significantly. The rising thermal plumes from the hot air blower drag the squames above the OT and the side tables and then they are advected downwards toward the surgical site by the ventilation air from the ceiling. Temporal history of the number of squames reaching 4 imaginary boxes surrounding the side tables, the OT, and the patient's knee shows that several particles reach these boxes for the blower-on case. © 2018 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.
30 CFR 57.22206 - Main ventilation failure (I-A, II-A, III, and V-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22206..., tests for methane shall be conducted in affected active workings until normal air flow has resumed. (b... less than 1.0 percent methane. Persons other than examiners shall not reenter a Subcategory II-A mine...
Normal Physiological Values for Conscious Pigs Used in Biomedical Research
1989-05-01
6. Cardiovascular and Pulmonary Functions........... 18 TABLE 7. Bioenergetics..................................... 19 TABLE 8. Renal Function...procedure developed in our laboratory. Plasma concentrations of aldosterone, cortisol, total T3, total T4, free T4, insulin and glucagon were...pulmonary vascular resistance , alveolar ventilation, alveolar ventilation/perfusion ratio, arterial 02 transport, tissue 02 extraction ratio, pulmonary
A Generalized Formulation of Demand Response under Market Environments
NASA Astrophysics Data System (ADS)
Nguyen, Minh Y.; Nguyen, Duc M.
2015-06-01
This paper presents a generalized formulation of Demand Response (DR) under deregulated electricity markets. The problem is scheduling and controls the consumption of electrical loads according to the market price to minimize the energy cost over a day. Taking into account the modeling of customers' comfort (i.e., preference), the formulation can be applied to various types of loads including what was traditionally classified as critical loads (e.g., air conditioning, lights). The proposed DR scheme is based on Dynamic Programming (DP) framework and solved by DP backward algorithm in which the stochastic optimization is used to treat the uncertainty, if any occurred in the problem. The proposed formulation is examined with the DR problem of different loads, including Heat Ventilation and Air Conditioning (HVAC), Electric Vehicles (EVs) and a newly DR on the water supply systems of commercial buildings. The result of simulation shows significant saving can be achieved in comparison with their traditional (On/Off) scheme.
Off-axis impact of unidirectional composites with cracks: Dynamic stress intensification
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1979-01-01
The dynamic response of unidirectional composites under off axis (angle loading) impact is analyzed by assuming that the composite contains an initial flaw in the matrix material. The analytical method utilizes Fourier transform for the space variable and Laplace transform for the time variable. The off axis impact is separated into two parts, one being symmetric and the other skew-symmetric with reference to the crack plane. Transient boundary conditions of normal and shear tractions are applied to a crack embedded in the matrix of the unidirectional composite. The two boundary conditions are solved independently and the results superimposed. Mathematically, these conditions reduce the problem to a system of dual integral equations which are solved in the Laplace transform plane for the transformation of the dynamic stress intensity factor. The time inversion is carried out numerically for various combinations of the material properties of the composite and the results are displayed graphically.
The necessity of HVAC system for the registered architectural cultural heritage building
NASA Astrophysics Data System (ADS)
Popovici, Cătălin George; Hudişteanu, Sebastian Valeriu; Cherecheş, Nelu-Cristian
2018-02-01
This study is intended to highlight the role of the ventilation and air conditioning system for a theatre. It was chosen as a case study the "Vasile Alecsandri" National Theatre of Jassy. The paper also sought to make a comparison in three distinct scenarios for HVAC Main Hall system - ventilation and air conditioning system of the Main Hall doesn't work; only the ventilation system of the Main Hall works and ventilation and air conditioning system of the Main Hall works. For analysing the comfort parameters, the ANSYS-Fluent software was used to build a 2D model of the building and simulation of HVAC system functionality during winter season, in all three scenarios. For the studied scenarios, the external conditions of Jassy and the indoor conditions of the theatre, when the entire spectacle hall is occupied were considered. The main aspects evaluated for each case were the air temperature, air velocity and relative humidity. The results are presented comparatively as plots and spectra of the interest parameters.
NASA Astrophysics Data System (ADS)
Huang, Tao; Xiang, Yutong; Wang, Yonghong
2017-05-01
In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.
VENTILATION RESEARCH: A REVIEW OF RECENT INDOOR AIR QUALITY LITERATURE
The report gives results of a literature review, conducted to survey and summarize recent and ongoing engineering research into building ventilation, air exchange rate, pollutant distribution and dispersion, and other effects of heating, ventilation, and air-conditioning (HVAC) s...
Russell, W C; Greer, J R
2000-11-01
To assess the subjective feeling of comfort of healthy volunteers breathing on various modes of ventilation used in intensive care. A randomized, prospective, double-blinded, crossover trial using volunteers. An intensive care unit (ICU) in a teaching hospital. We compared, by using healthy volunteers, the subjective feeling of comfort of three modes of ventilation used during the weaning phase of critical illness. We used healthy volunteers to avoid other distracting influences of intensive care that may confound the primary feeling of comfort. The modes we compared were synchronized intermittent mandatory ventilation, assisted spontaneous breathing, and biphasic positive airway pressure. The imposed ventilation was comparable with 50% of the volunteers' normal respiratory effort. The volunteers breathed via a mouthpiece through a ventilator circuit, and the modes of ventilation were introduced in a randomized manner. We measured visual analog scores for comfort for the three modes of ventilation and collected a ranking order and open-ended comments. We demonstrated that at the level of support we imposed, assisted spontaneous breathing was the most comfortable mode of ventilation and that synchronized intermittent mandatory ventilation was the most uncomfortable. These results were strongly supported by both the ranking scale and comments of the volunteers. Assisted spontaneous breathing was the most comfortable mode of ventilation because the pattern was primarily determined by the volunteer. Synchronized intermittent mandatory ventilation was the most uncomfortable because the ventilatory pattern was imposed on the volunteers, leading to ventilator-volunteer dyssynchrony. We also conclude there is wide individual variation in the subjective feeling of comfort. Whereas the mode of ventilation in ICUs is based primarily on the physiologic needs of the patient, the feeling of comfort may be considered when choosing an appropriate mode of ventilation during the weaning phase of critical illness.
Omnidirectional ventilated acoustic barrier
NASA Astrophysics Data System (ADS)
Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun
2017-11-01
As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.
Off-pump grafting does not reduce postoperative pulmonary dysfunction.
Izzat, Mohammad Bashar; Almohammad, Farouk; Raslan, Ahmad Fahed
2017-02-01
Objectives Pulmonary dysfunction is a recognized postoperative complication that may be linked to use of cardiopulmonary bypass. The off-pump technique of coronary artery bypass aims to avoid some of the complications that may be related to cardiopulmonary bypass. In this study, we compared the influence of on-pump or off-pump coronary artery bypass on pulmonary gas exchange following routine surgery. Methods Fifty patients (mean age 60.4 ± 8.4 years) with no preexisting lung disease and good left ventricular function undergoing primary coronary artery bypass grafting were prospectively randomized to undergo surgery with or without cardiopulmonary bypass. Alveolar/arterial oxygen pressure gradients were calculated prior to induction of anesthesia while the patients were breathing room air, and repeated postoperatively during mechanical ventilation and after extubation while inspiring 3 specific fractions of oxygen. Results Baseline preoperative arterial blood gases and alveolar/arterial oxygen pressure gradients were similar in both groups. At both postoperative stages, the partial pressure of arterial oxygen and alveolar/arterial oxygen pressure gradients increased with increasing fraction of inspired oxygen, but there were no statistically significant differences between patients who underwent surgery with or without cardiopulmonary bypass, either during ventilation or after extubation. Conclusions Off-pump surgery is not associated with superior pulmonary gas exchange in the early postoperative period following routine coronary artery bypass grafting in patients with good left ventricular function and no preexisting lung disease.
In-vehicle carbon dioxide concentration in commuting cars in Bangkok, Thailand.
Luangprasert, Maytat; Vasithamrong, Chainarin; Pongratananukul, Suphasit; Chantranuwathana, Sunhapos; Pumrin, Suree; De Silva, I P D
2017-05-01
It is known that in-vehicle carbon dioxide (CO 2 ) concentration tends to increase due to occupant exhalation when the HVAC (heating, ventilation, and air conditioning) air is in recirculation mode. Field experiments were conducted to measure CO 2 concentration during typical commute in Bangkok, Thailand. The measured concentrations agreed with the concentration predicted using first-order mass balance equation, in both recirculating and outside air modes. The long-term transient decay of the concentration when the vehicle was parked and the HVAC system was turned off was also studied. This decay was found to follow Fickian diffusion process. The paper also provides useful operational details of the automotive HVAC system and fresh air ventilation exchange between cabin interior and exterior. Drivers in tropical Asian countries typically use HVAC recirculation mode in their automobiles. This behavior leads to excessive buildup of cabin CO 2 concentration levels. The paper describes the CO 2 buildup in a typical commute in Bangkok, Thailand. Auto manufacturers can potentially take measures to alleviate such high concentration levels. The paper also discusses the diffusion of CO 2 through the vehicle envelope, an area that has never been investigated before.
A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.
Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé
2006-01-01
Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.
Association between substandard classroom ventilation rates and students' academic achievement.
Haverinen-Shaughnessy, U; Moschandreas, D J; Shaughnessy, R J
2011-04-01
This study focuses on the relationship between classroom ventilation rates and academic achievement. One hundred elementary schools of two school districts in the southwest United States were included in the study. Ventilation rates were estimated from fifth-grade classrooms (one per school) using CO(2) concentrations measured during occupied school days. In addition, standardized test scores and background data related to students in the classrooms studied were obtained from the districts. Of 100 classrooms, 87 had ventilation rates below recommended guidelines based on ASHRAE Standard 62 as of 2004. There is a linear association between classroom ventilation rates and students' academic achievement within the range of 0.9-7.1 l/s per person. For every unit (1 l/s per person) increase in the ventilation rate within that range, the proportion of students passing standardized test (i.e., scoring satisfactory or above) is expected to increase by 2.9% (95%CI 0.9-4.8%) for math and 2.7% (0.5-4.9%) for reading. The linear relationship observed may level off or change direction with higher ventilation rates, but given the limited number of observations, we were unable to test this hypothesis. A larger sample size is needed for estimating the effect of classroom ventilation rates higher than 7.1 l/s per person on academic achievement. The results of this study suggest that increasing the ventilation rates toward recommended guideline ventilation rates in classrooms should translate into improved academic achievement of students. More studies are needed to fully understand the relationships between ventilation rate, other indoor environmental quality parameters, and their effects on students' health and achievement. Achieving the recommended guidelines and pursuing better understanding of the underlying relationships would ultimately support both sustainable and productive school environments for students and personnel. © 2010 John Wiley & Sons A/S.
Effect of ventilation rate on air cleanliness and energy consumption in operation rooms at rest.
Lee, Shih-Tseng; Liang, Ching-Chieh; Chien, Tsung-Yi; Wu, Feng-Jen; Fan, Kuang-Chung; Wan, Gwo-Hwa
2018-02-27
The interrelationships between ventilation rate, indoor air quality, and energy consumption in operation rooms at rest are yet to be understood. We investigate the effect of ventilation rate on indoor air quality indices and energy consumption in ORs at rest. The study investigates the air temperature, relative humidity, concentrations of carbon dioxide, particulate matter (PM), and airborne bacteria at different ventilation rates in operation rooms at rest of a medical center. The energy consumption and cost analysis of the heating, ventilating, and air conditioning (HVAC) system in the operation rooms at rest were also evaluated for all ventilation rates. No air-conditioned operation rooms had very highest PM and airborne bacterial concentrations in the operation areas. The bacterial concentration in the operation areas with 6-30 air changes per hour (ACH) was below the suggested level set by the United Kingdom (UK) for an empty operation room. A 70% of reduction in annual energy cost by reducing the ventilation rate from 30 to 6 ACH was found in the operation rooms at rest. Maintenance of operation rooms at ventilation rate of 6 ACH could save considerable amounts of energy and achieve the goal of air cleanliness.
Attic construction with sheathing-applied insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, W.B.
1995-12-31
Two years of study at a building research laboratory have been applied to cathedralized residential attic construction. Cathedralized attics are rafter-framed or truss-framed attics with flat ceilings in which the insulation is placed against the underside of the roof sheathing rather than on top of the ceiling drywall. The potential benefits of sheathing-applied insulation are considerable and are due to the fact that the attic space becomes part of the conditioned volume. Concern is often expressed that moisture damage may occur in the sheathing. The intent of the current study was to address those concerns. This study allowed an assessmentmore » of the performance of cathedralized ceilings, given the following construction variables: (1) ventilation vs. no ventilation, (2) continuous air chute construction vs. stuffed insulation construction, and (3) opens joints in exposed kraft facing vs. taped joints. The results were compared to a concurrent study of the performance of cathedral ceilings with sloped ceiling drywall. The results show that having an air chute that ensures an air gap between the sheathing and the top of the insulation is the critical factor. Ventilation and the taping of joints were minor determinants of the moisture performance of the sheathing. These results are consistent with the results of normal cathedral ceiling construction performance.« less
Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
MISKA, C.R.
1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.
Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
VAN KATWIJK, C.
1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fall closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.
Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
VAN KATWIJK, C.
1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.
Vibration analysis of the tympanic membrane with a ventilation tube and a perforation by holography
NASA Astrophysics Data System (ADS)
Maeta, Manabu; Kawakami, Shinichiro; Ogawara, Toshiaki; Masuda, Yu
1991-08-01
For severe otitis media with effusion, insertion of a ventilation tube is performed for the purpose of ventilation of the middle ear cavity and normalization of the eustachian tubular function and middle ear mucosa. The ventilation tube is left in place for as long as several months or even a few years. However, the influence of the indwelling tube on vibration of the tympanic membrane is unknown. Therefore, the authors observed the influence by means of time-averaged holography using human tympanic membranes. The following results were obtained. After insertion of a ventilation tube, vibration pattern of the tympanic membrane was not obviously changed, but the vibration amplitude of the tympanic membrane was decreased, especially at 500 Hz. Generally speaking, the change caused by insertion of a ventilation tube was very small. Also, the vibration pattern of perforated tympanic membrane was not changed, but the vibration amplitude of perforated tympanic membrane was decreased at the low frequency area.
Matsunami, Sayuri; Komasawa, Nobuyasu; Konishi, Yuki; Minami, Toshiaki
2017-11-01
We performed two prospective randomized crossover trials to evaluate the effect of head elevation or lateral head rotation to facemask ventilation volume. In the first trial, facemask ventilation was performed with a 12-cm high pillow (HP) and 4-cm low pillow (LP) in 20 female patients who were scheduled to undergo general anesthesia. In the second trial, facemask ventilation was performed with and without lateral head rotation in another 20 female patients. Ventilation volume was measured in a pressure-controlled ventilation (PCV) manner at 10, 15, and 20 cmH 2 O inspiratory pressures. In the first trial evaluating head elevation effect, facemask ventilation volume was significantly higher with a HP than with a LP at 15 and 20 cmH 2 O inspiratory pressure (15 cmH 2 O: HP median 540 [ IQR 480-605] mL, LP 460 [400-520] mL, P=0.006, 20 cmH 2 O: HP 705 [650-800] mL, LP 560 [520-677] mL, P<0.001). In the second trial, lateral head rotation did not significantly increase facemask ventilation volume at all inspiratory pressure. Head elevation increased facemask ventilation volume in normal airway patients, while lateral head rotation did not. Copyright © 2017 Elsevier Inc. All rights reserved.
Lombardi, Raúl; Nin, Nicolás; Peñuelas, Oscar; Ferreiro, Alejandro; Rios, Fernando; Marin, Maria Carmen; Raymondos, Konstantinos; Lorente, Jose A; Koh, Younsuck; Hurtado, Javier; Gonzalez, Marco; Abroug, Fekri; Jibaja, Manuel; Arabi, Yaseen; Moreno, Rui; Matamis, Dimitros; Anzueto, Antonio; Esteban, Andres
2017-10-01
Acute kidney injury (AKI) is a frequent complication in patients under mechanical ventilation (MV). We aimed to assess the risk factors for AKI with particular emphasis on those potentially preventable. Retrospective analysis of a large, multinational database of MV patients with >24 h of MV and normal renal function at admission. AKI was defined according to creatinine-based KDIGO criteria. Risk factors were analyzed according to the time point at which AKI occurred: early (≤48 h after ICU admission, AKIE) and late (day 3 to day 7 of ICU stay, AKIL). A conditional logistic regression model was used to identify variables independently associated with AKI. Three thousand two hundred six patients were included. Seven hundred patients had AKI (22%), the majority of them AKIE (547/704). The risk factor profile was highly dependent upon the timing of AKI onset. In AKIE risk factors were older age; SAPS II score; postoperative and cardiac arrest as the reasons for MV; worse cardiovascular SOFA, pH, serum creatinine, and platelet count; higher level of peak pressure and Vt/kg; and fluid overload at admission. In contrast, AKIL was linked mostly to events that occurred after admission (lower platelet count and pH; ICU-acquired sepsis; and fluid overload). None ventilation-associated parameters were identify as risk factors for AKIL. In the first 48 h, risk factors are associated with the primary disease and the patient's condition at admission. Subsequently, emergent events like sepsis and organ dysfunction appear to be predictive factors making prevention a challenge.
Karasawa, Naoki; Taniguchi, Yasuhiro; Hidaka, Tomonori; Katayose, Keiko; Kameda, Takuro; Side, Kotaro; Shimoda, Haruko; Nagata, Kenji; Kubuki, Yoko; Matsunaga, Takuya; Shimoda, Kazuya
2010-04-01
A 67-year-old woman was admitted to the hospital for lethargy, fever, hemolytic anemia, thrombocytopenia, and consciousness disturbance. Direct Coombs test was positive, and anti-cardiolipin beta2-glycoprotein I antibody was detected. She was diagnosed with antiphospholipid syndrome complicated with autoimmune hemolytic anemia (AIHA). She demonstrated variable consciousness disturbance, inability to distinguish right from left, dysgraphia and dyscalculia. Multiple cerebral infarctions, especially dominant cerebral hemisphere infarctions, were observed on magnetic resonance imaging. A ventilation-perfusion scan demonstrated the presence of a ventilation-perfusion mismatch in both lung fields, and multiple veinous embolisms in the right femoral, bilateral the great saphenous and popliteal veins. Therefore, pulmonary embolism and thrombophlebitis were diagnosed. Based on these findings, it was necessary to distinguish this diagnosis from thrombotic thrombocytopenic purpura (TTP). As ADAMTS-13 activity was within the normal range, TTP was denied. Thereafter, the patient was treated with 1 mg/kg of prednisolone for AIHA, 3 mg of warfarin, and 3500 units of low-molecular-weight heparin for thrombosis, and her condition improved.
Thermoregulation and ventilation of termite mounds.
Korb, Judith
2003-05-01
Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO(2) concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.
Thermoregulation and ventilation of termite mounds
NASA Astrophysics Data System (ADS)
Korb, Judith
2003-05-01
Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.
Kim, Christopher; Gao, Yu-Tang; Xiang, Yong-Bing; Barone-Adesi, Francesco; Zhang, Yawei; Hosgood, H. Dean; Ma, Shuangge; Shu, Xiao-ou; Ji, Bu-Tian; Chow, Wong-Ho; Seow, Wei Jie; Bassig, Bryan; Cai, Qiuyin; Zheng, Wei; Rothman, Nathaniel; Lan, Qing
2014-01-01
Indoor air pollution (IAP) caused by cooking has been associated with lung cancer risk in retrospective case-control studies in developing and rural countries. We report the association of cooking conditions, fuel use, oil use and risk of lung cancer in a developed urban population in a prospective cohort of women in Shanghai. A total of 71,320 never smoking women were followed from 1996 through 2009 and 429 incident lung cancer cases were identified. Questionnaires collected information on household living and cooking practices for the women’s three most recent residences and utilization of cooking fuel and oil, and ventilation conditions. Cox proportional hazards regression estimated the association for kitchen ventilation conditions, cooking fuels, and use of cooking oils for the risk of lung cancer by hazard ratios (HR) with 95% confidence intervals (95% CI). Ever poor kitchen ventilation was associated with a 49% increase in lung cancer risk (HR: 1.49; 95% CI: 1.15–1.95) compared to never poor ventilation. Ever use of coal was not significantly associated. However, ever coal use with poor ventilation (HR: 1.69; 95% CI: 1.22–2.35) and twenty or more years of using coal (HR: 2.03; 95% CI: 1.35–3.05) was significantly associated compared to no exposure to coal or poor ventilation. Cooking oil use was not significantly associated. These results demonstrate that IAP from poor ventilation of coal combustion increases the risk of lung cancer and is an important public health issue in cities across China where people may have lived in homes with inadequate kitchen ventilation. PMID:24917360
Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings.
MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph
2015-11-18
Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption-Economic and environmental costs. We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies.
Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings
MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph
2015-01-01
Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. Conclusions: The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies. PMID:26593933
NASA Astrophysics Data System (ADS)
Murga, Alicia; Sano, Yusuke; Kawamoto, Yoichi; Ito, Kazuhide
2017-10-01
Mechanical and passive ventilation strategies directly impact indoor air quality. Passive ventilation has recently become widespread owing to its ability to reduce energy demand in buildings, such as the case of natural or cross ventilation. To understand the effect of natural ventilation on indoor environmental quality, outdoor-indoor flow paths need to be analyzed as functions of urban atmospheric conditions, topology of the built environment, and indoor conditions. Wind-driven natural ventilation (e.g., cross ventilation) can be calculated through the wind pressure coefficient distributions of outdoor wall surfaces and openings of a building, allowing the study of indoor air parameters and airborne contaminant concentrations. Variations in outside parameters will directly impact indoor air quality and residents' health. Numerical modeling can contribute to comprehend these various parameters because it allows full control of boundary conditions and sampling points. In this study, numerical weather prediction modeling was used to calculate wind profiles/distributions at the atmospheric scale, and computational fluid dynamics was used to model detailed urban and indoor flows, which were then integrated into a dynamic downscaling analysis to predict specific urban wind parameters from the atmospheric to built-environment scale. Wind velocity and contaminant concentration distributions inside a factory building were analyzed to assess the quality of the human working environment by using a computer simulated person. The impact of cross ventilation flows and its variations on local average contaminant concentration around a factory worker, and inhaled contaminant dose, were then discussed.
Hozumi, Satoshi; Inagaki, Terumi
2010-01-01
Polybia spinifex Richards (Hymenoptera: Vespidae) constructs mud nests characterized by a long slit-like entrance. The ventilation and thermal characteristics of the P. spinifex nest were investigated to determine whether the nest microclimate is automatically maintained due to the size of the entrance. In order to examine this hypothesis, a numerical simulation was employed to predict the effects of the entrance length. The calculations were performed with 3D-virtual models that simulated the P. spinifex nest conditions, and the reliability of the simulations was experimentally examined by using gypsum-model nests and a P. spinifex nest. The ventilation effect was determined by blowing air through the nest at 1-3 m/s (airflow conditions); the airspeed was found to be higher in models with a longer entrance. The ventilation rate was also higher in models with longer entrances, suggesting that the P. spinifex nest is automatically ventilated by natural winds. Next, the thermal effect was calculated under condition of direct sunlight. Under a calm condition (airflow, 0 m/s), thermal convection and a small temperature drop were observed in the case of models with a long entrance, whereas the ventilation and thermoregulation effects seemed small. Under airflow conditions, the temperature at the mid combs steeply dropped due to the convective airflow through the entrance at 1-2 m/s, and at 3 m/s, most of the heat was eliminated due to high thermal conductivity of the mud envelope, rather than convection.
Ainslie, B; Jackson, P L
2009-06-01
A means of determining air emission source regions adversely influencing the city of Prince George, British Columbia, Canada from potential burning of isolated piles of mountain pine beetle-killed lodge pole pine is presented. The analysis uses the CALPUFF atmospheric dispersion model to identify safe burning regions based on atmospheric stability and wind direction. Model results show that the location and extent of influence regions is sensitive to wind speed, wind direction, atmospheric stability and a threshold used to quantify excessive concentrations. A concentration threshold based on the Canada Wide PM(2.5) Standard is used to delineate the influence regions while Environment Canada's (EC) daily ventilation index (VI) is used to quantify local atmospheric stability. Results from the analysis, to be used by air quality meteorologists in assessing daily requests for burning permits, are presented as a series of maps delineating acceptable burning locations for sources placed at various distances from the city center and under different ventilation conditions. The results show that no burning should be allowed within 10 km of the city center; under poor ventilation conditions, no burning should be allowed within 20 km of the city center; under good ventilation conditions, burning can be allowed within 10-15 km of the city center; under good to fair ventilation conditions, burning can be allowed beyond 15 km of the city center; and if the wind direction can be reliably forecast, burning can be allowed between 5 and 10 km downwind of the city center under good ventilation conditions.
Mozhaev, G A; Tikhonovskiĭ, I Iu
1992-01-01
The use of physical methods, namely low frequency magnetic field in critically ill patients under respiratory therapy made it possible to prevent and in case of their development to effectively treat pyoinflammatory bronchopulmonary complications that accompany prolonged controlled lung ventilation. The results obtained were due to the elimination of an unfavourable effect of controlled lung ventilation on natural resistance and immune response of the respiratory tract because of normalization of physicochemical properties of the tracheobronchial tree secretion, enhanced functional capacities of phagocytes, repaired bonds between cellular and humoral local immunity in the lungs.
46 CFR 193.15-35 - Enclosure openings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing... carbon dioxide extinguishing system, provisions shall be made for easily and effectively closing off the...
46 CFR 193.15-35 - Enclosure openings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing... carbon dioxide extinguishing system, provisions shall be made for easily and effectively closing off the...
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
Effects of suspension of air-conditioning on airtight-type racks.
Kanzaki, M; Fujieda, M; Furukawa, T
2001-10-01
Although isolation racks are superior to open-type racks in terms of securing breeding conditions for laboratory animals, the contingency-proofing capability of the former has yet to be determined. Therefore, from the view of risk management, we studied the environmental change in isolation racks by forcibly suspending ventilation and air-conditioning and confirming the maximal time length for complete recovery to the original condition after restarting their operations. The isolation racks were placed in a room that was equipped with an independent air-conditioning system. When the inside condition of the racks reached 22-24 degrees C and 59-64% of relative humidity, the air-conditioning and ventilation were forcibly suspended and the subsequent temperature, relative humidity, ammonium and CO2 concentrations in the racks were measured over time. We found that after suspending the air-conditioning and ventilation, it took 40-60 min for temperature, and about 10 min for relative humidity to exceed the maximum values (temperature and relative humidity) referred to in the Showa 58 Nenban Guideline Jikken Doubutsu Shisetsu no Kenchiku oyobi Setsubi (Guidelines of buildings and facilities for experimental animals in Japan; Year 1983 edition). After 17 hr 25 min of the suspension of air-conditioning and ventilation, two rats were found dead. Then, the air-conditioning and ventilation were restarted. It took about 2 hr for temperature, and 50 min for relative humidity to regain the guideline values. The ammonium concentration stayed within the guideline value with a maximum concentration of 2 ppm in the experimental period, whereas the CO2 concentration was found to exceed 9% at the time of animal death.
Buildings operations and ETS exposure.
Spengler, J D
1999-01-01
Mechanical systems are used in buildings to provide conditioned air, dissipate thermal loads, dilute contaminants, and maintain pressure differences. The characteristics of these systems and their operations h implications for the exposures of workers to environmental tobacco smoke (ETS) and for the control of these exposures. This review describes the general features of building ventilation systems and the efficacy of ventilation for controlling contaminant concentrations. Ventilation can reduce the concentration of ETS through dilution, but central heating, ventilating, and air conditioning (HVAC) can also move air throughout a building that has been contaminated by ETS. An understanding of HVAC systems is needed to develop models for exposures of workers to ETS. Images Figure 1 Figure 2 Figure 3 PMID:10375293
Developing a new, national approach to surveillance for ventilator-associated events*.
Magill, Shelley S; Klompas, Michael; Balk, Robert; Burns, Suzanne M; Deutschman, Clifford S; Diekema, Daniel; Fridkin, Scott; Greene, Linda; Guh, Alice; Gutterman, David; Hammer, Beth; Henderson, David; Hess, Dean; Hill, Nicholas S; Horan, Teresa; Kollef, Marin; Levy, Mitchell; Septimus, Edward; VanAntwerpen, Carole; Wright, Don; Lipsett, Pamela
2013-11-01
To develop and implement an objective, reliable approach to surveillance for ventilator-associated events in adult patients. The Centers for Disease Control and Prevention (CDC) convened a Ventilator-Associated Pneumonia (VAP) Surveillance Definition Working Group in September 2011. Working Group members included representatives of stakeholder societies and organizations and federal partners. The Working Group finalized a three-tier, adult surveillance definition algorithm for ventilator-associated events. The algorithm uses objective, readily available data elements and can identify a broad range of conditions and complications occurring in mechanically ventilated adult patients, including but not limited to VAP. The first tier definition, ventilator-associated condition (VAC), identifies patients with a period of sustained respiratory deterioration following a sustained period of stability or improvement on the ventilator, defined by changes in the daily minimum fraction of inspired oxygen or positive end-expiratory pressure. The second tier definition, infection-related ventilator-associated complication (IVAC), requires that patients with VAC also have an abnormal temperature or white blood cell count, and be started on a new antimicrobial agent. The third tier definitions, possible and probable VAP, require that patients with IVAC also have laboratory and/or microbiological evidence of respiratory infection. Ventilator-associated events surveillance was implemented in January 2013 in the CDC's National Healthcare Safety Network. Modifications to improve surveillance may be made as additional data become available and users gain experience with the new definitions.
Luján, Manel; Sogo, Ana; Pomares, Xavier; Monsó, Eduard; Sales, Bernat; Blanch, Lluís
2013-05-01
New home ventilators are able to provide clinicians data of interest through built-in software. Monitoring of tidal volume (VT) is a key point in the assessment of the efficacy of home mechanical ventilation. To assess the reliability of the VT provided by 5 ventilators in a bench test. Five commercial ventilators from 4 different manufacturers were tested in pressure support mode with the help of a breathing simulator under different conditions of mechanical respiratory pattern, inflation pressure, and intentional leakage. Values provided by the built-in software of each ventilator were compared breath to breath with the VT monitored through an external pneumotachograph. Ten breaths for each condition were compared for every tested situation. All tested ventilators underestimated VT (ranges of -21.7 mL to -83.5 mL, which corresponded to -3.6% to -14.7% of the externally measured VT). A direct relationship between leak and underestimation was found in 4 ventilators, with higher underestimations of the VT when the leakage increased, ranging between -2.27% and -5.42% for each 10 L/min increase in the leakage. A ventilator that included an algorithm that computes the pressure loss through the tube as a function of the flow exiting the ventilator had the minimal effect of leaks on the estimation of VT (0.3%). In 3 ventilators the underestimation was also influenced by mechanical pattern (lower underestimation with restrictive, and higher with obstructive). The inclusion of algorithms that calculate the pressure loss as a function of the flow exiting the ventilator in commercial models may increase the reliability of VT estimation.
Functional Validation and Comparison Framework for EIT Lung Imaging
Meybohm, Patrick; Weiler, Norbert; Frerichs, Inéz; Adler, Andy
2014-01-01
Introduction Electrical impedance tomography (EIT) is an emerging clinical tool for monitoring ventilation distribution in mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8 pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired oxygen). In this way, large and discrete shifts in global and regional lung air content were elicited. Methods We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the original and still most frequently used algorithm), GREIT (a more recent consensus algorithm for lung imaging), truncated singular value decomposition (TSVD), several variants of the one-step Gauss-Newton approach and two iterative algorithms. We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise modeling, reconstructing for electrode movement, total variation (TV) reconstruction, robust error norms, smoothing priors, and using difference vs. normalized difference data. Results and Conclusions Our results indicate that, while variation in appearance of images reconstructed from the same data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT. PMID:25110887
DESIGN AND HAZARDS SUMMARY REPORT, BOILING REACTOR EXPERIMENT V (BORAX V)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-05-01
Design data for BORAX V are presented along with results of hazards evaluation studies. Considcration of the hazards associated with the operation of BORAX V was based on the following conditions: For normal steady-state power and experimental operation, the reactor and plant are adequately shielded and ventilated to allow personnel to be safely stationed in the turbine building and on the main floor of the reactor building. The control building is located one- half mile distant from the reactor building. For special, hazardous experiments, personnel are withdrawn from the reactor area. (M.C.G.)
Chakravarthy, Murali; Narayan, Sandeep; Govindarajan, Raghav; Jawali, Vivek; Rajeev, Subramanyam
2010-06-01
Partial pressure of carbon dioxide and oxygen were transcutaneously measured in adults after off-pump coronary artery bypass (OPCAB) surgery. The clinical use of such measurements and interchangeability with arterial blood gas measurements for weaning patients from postoperative mechanical ventilation were assessed. This was a prospective observational study. Tertiary referral heart hospital. Postoperative OPCAB surgical patients. Transcutaneous oxygen and carbon dioxide measurements. In this prospective observational study, 32 consecutive adult patients in a tertiary care medical center underwent OPCAB surgery. Noninvasive measurement of respiratory gases was performed during the postoperative period and compared with arterial blood gases. The investigator was blinded to the reports of arterial blood gas studies and weaned patients using a "weaning protocol" based on transcutaneous gas measurement. The number of patients successfully weaned based on transcutaneous measurements and the number of times the weaning process was held up were noted. A total of 212 samples (pairs of arterial and transcutaneous values of oxygen and carbon dioxide) were obtained from 32 patients. Bland-Altman plots and mountain plots were used to analyze the interchangeability of the data. Twenty-five (79%) of the patients were weaned from the ventilator based on transcutaneous gas measurements alone. Transcutaneous carbon dioxide measurements were found to be interchangeable with arterial carbon dioxide during 96% of measurements, versus 79% for oxygen measurements. More than three fourths of the patients were weaned from mechanical ventilation and extubated based on transcutaneous gas values alone after OPCAB surgery. The noninvasive transcutaneous carbon dioxide measurement can be used as a surrogate for arterial carbon dioxide measurement to manage postoperative OPCAB patients. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shibahara, Akihiko; Ohkushi, Ken'ichi; Kennett, James P.; Ikehara, Ken
2007-09-01
A strong oxygen minimum zone (OMZ) currently exists at upper intermediate water depths on the northern Japanese margin, NW Pacific. The OMZ results largely from a combination of high surface water productivity and poor ventilation of upper intermediate waters. We investigated late Quaternary history (last 34 kyr) of ocean floor oxygenation and the OMZ using quantitative changes in benthic foraminiferal assemblages in three sediment cores taken from the continental slope off Shimokita Peninsula and Tokachi, northern Japan, at water depths between 975 and 1363 m. These cores are well located within the present-day OMZ, a region of high surface water productivity, and in close proximity to the source region of North Pacific Intermediate Water. Late Quaternary benthic foraminiferal assemblages experienced major changes in response to changes in dissolved oxygen concentration in ocean floor sediments. Foraminiferal assemblages are interpreted to represent three main groups representing oxic, suboxic, and dysoxic conditions. Assemblage changes in all three cores and hence in bottom water oxygenation coincided with late Quaternary climatic episodes, similar to that known for the southern California margin. These episodes, in turn, are correlated with orbital and millennial climate episodes in the Greenland ice core including the last glacial episode, Bølling-Ållerød (B/A), Younger Dryas, Preboreal (earliest Holocene), early Holocene, and late Holocene. The lowest oxygen conditions, marked by dysoxic taxa and laminated sediments in one core, occurred during the B/A and the Preboreal intervals. Suboxic taxa dominated mainly during the last glacial, the Younger Dryas, and most of the Holocene. Dysoxic conditions during the B/A and Preboreal intervals in this region were possibly caused by high surface water productivity at times of reduced intermediate ventilation in the northwestern Pacific. Remarkable similarities are evident in the late Quaternary sequence of benthic foraminiferal assemblage change between the two very distant continental margins of northern Japan and southern California. The oscillations in OMZ strength, reflected by these faunal changes, were widespread and apparently synchronous over wide areas of the North Pacific, reflecting broad changes in intermediate water ventilation and surface ocean productivity closely linked with late Quaternary climate change on millennial and orbital timescales.
Reilly, Stephen M; McElroy, Eric J; White, Thomas D; Biknevicius, Audrone R; Bennett, Michael B
2010-04-01
Mammals have four hypaxial muscle layers that wrap around the abdomen between the pelvis, ribcage, and spine. However, the marsupials have epipubic bones extending anteriorly into the ventral hypaxial layers with two additional muscles extending to the ventral midline and femur. Comparisons of South American marsupials to basal eutherians have shown that all of the abdominal hypaxials are active bilaterally in resting ventilation. However, during locomotion marsupials employ an asymmetrical pattern of activity as the hypaxial muscles form a crosscouplet linkage that uses the epipubic bone as a lever to provide long-axis support of the body between diagonal limb couplets during each step. In basal eutherians, this system shifts off the femur and epipubic bones (which are lost) resulting in a shoulder to pelvis linkage associated with shifts in both the positions and activity patterns of the pectineus and rectus abdominis muscles during locomotion. In this study, we present data on hypaxial function in two species (Pseudocheirus peregrinus and Trichosurus vulpecula) representing the two major radiations of possums in Australia: the Pseudocheiridae (within the Petauroidea) and the Phalangeridae. Patterns of gait, motor activity, and morphology in these two Australian species were compared with previous work to examine the generality of 1) the crosscouplet lever system as the basal condition for the Marsupialia and 2) several traits hypothesized to be common to all mammals (hypaxial tonus during resting ventilation, ventilation to step synchrony during locomotion, and bilateral transversus abdominis activity during locomotor expiration). Our results validate the presence of the crosscouplet pattern and basic epipubic bone lever system in Australian possums and confirm the generality of basal mammalian patterns. However, several novelties discovered in Trichosurus, reveal that it exhibits an evolutionary transition to intermediate eutherian-like morphological and motor patterns paralleling many other unique features of this species. (c) 2009 Wiley-Liss, Inc.
Heating, Ventilation, Air-conditioning, and Refrigeration. Ohio's Competency Analysis Profile.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Vocational Instructional Materials Lab.
Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for heating, ventilation, air conditioning, and refrigeration occupations. The list contains units (with and without…
Bio-Defense Now: 56 Suggestions for Immediate Improvements
2005-05-01
Air Education and Training Command HVAC Heating, Ventilation and Air Conditioning ICAM Improved Chemical Agent Monitor ICD-9-CM Internal...conditioning ( HVAC ) system capabilities, making a big difference in removal of many BW agents. High Efficiency Particulate Air (HEPA) filters are also...agents. This program has developed biological sensor-activated heating, ventilation, and air conditioning ( HVAC ) control sys- tems, high efficiency
Dixon, Barry; Schultz, Marcus J; Smith, Roger; Fink, James B; Santamaria, John D; Campbell, Duncan J
2010-01-01
Prolonged mechanical ventilation has the potential to aggravate or initiate pulmonary inflammation and cause lung damage through fibrin deposition. Heparin may reduce pulmonary inflammation and fibrin deposition. We therefore assessed whether nebulized heparin improved lung function in patients expected to require prolonged mechanical ventilation. Fifty patients expected to require mechanical ventilation for more than 48 hours were enrolled in a double-blind randomized placebo-controlled trial of nebulized heparin (25,000 U) or placebo (normal saline) 4 or 6 hourly, depending on patient height. The study drug was continued while the patient remained ventilated to a maximum of 14 days from randomization. Nebulized heparin was not associated with a significant improvement in the primary end-point, the average daily partial pressure of oxygen to inspired fraction of oxygen ratio while mechanically ventilated, but was associated with improvement in the secondary end-point, ventilator-free days amongst survivors at day 28 (22.6 ± 4.0 versus 18.0 ± 7.1, treatment difference 4.6 days, 95% CI 0.9 to 8.3, P = 0.02). Heparin administration was not associated with any increase in adverse events. Nebulized heparin was associated with fewer days of mechanical ventilation in critically ill patients expected to require prolonged mechanical ventilation. Further trials are required to confirm these findings. The Australian Clinical Trials Registry (ACTR-12608000121369).
Feng, Yong; Wang, Jianyue; Zhang, Yang; Wang, Shiduan
2016-01-01
Background To investigate the protective effects of additional ipsilateral ventilation of low tidal volume and high frequency on lung functions in the patients receiving lobectomy. Material/Methods Sixty patients receiving lung lobectomy were randomized into the conventional one-lung ventilation (CV) group (n=30) and the ipsilateral low tidal volume high frequency ventilation (LV) group (n=30). In the CV group, patients received only contralateral OLV. In the LV group, patients received contralateral ventilation and additional ipsilateral ventilation of low tidal volume of 1–2 ml/kg and high frequency of 40 times/min. Normal lung tissues were biopsied for the analysis of lung injury. Lung injury was scored by evaluating interstitial edema, alveolar edema, neutrophil infiltration, and alveolar congestion. Results At 30 min and 60 min after the initiation of one-lung ventilation and after surgery, patients in the LV group showed significantly higher ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen than those in the CV group (P<0.001). Lung injury was significantly less severe (2.7±0.7) in the LV group than in the CV group (3.1±0.7) (P=0.006). Conclusions Additional ipsilateral ventilation of low tidal volume and high frequency can decrease the risk of hypoxemia and alleviate lung injury in patients receiving lobectomy. PMID:27166086
Jiamjarasrangsi, W; Bualert, S; Chongthaleong, A; Chaindamporn, A; Udomsantisuk, N; Euasamarnjit, W
2009-04-01
Forty-two community and general hospitals in central Thailand. To examine the adequacy of indoor ventilation for nosocomial tuberculosis (TB) prevention in public hospitals in central Thailand. A cross-sectional survey was conducted among 323 patient care and ancillary areas in the target hospitals. Data on indoor ventilation rate were collected by the tracer gas method and reported as air changes per hour (ACH). The adequacy of the measured ventilation rates were then determined by comparison with the international recommended standard values. Indoor ventilation rates were inadequate in almost half of the studied areas (144/323, 44.6%). The inadequacy was particularly serious in the emergency rooms (ERs) and radiological areas, where 73.8% (31/42 each) of the rooms had ACH below the recommended standards. Detailed analysis showed that most of the rooms with natural ventilation had air exchange rates that exceeded the recommended standards, while the opposite was the case for rooms with air-conditioning, particularly the window or wall-mount type. Indoor ventilation in high-risk nosocomial TB areas in public hospitals in Thailand was inadequate due to the installation of air-conditioning systems in modern buildings.
Particulate matter in animal rooms housing mice in microisolation caging.
Langham, Gregory L; Hoyt, Robert F; Johnson, Thomas E
2006-11-01
Reactions to allergens created by laboratory animals are among the most frequently encountered occupational illnesses associated with research animals. Personnel are exposed to these allergens through airborne particulate matter. Although the use of microisolation caging systems can reduce particulate matter concentrations in rooms housing mice, the operating parameters of ventilated caging systems vary extensively. We compared room air in mouse rooms containing 5 different types of caging: 1) individually ventilated caging under positive pressure with filtered intake air and exhaust air returned to the room (VCR+), 2) individually ventilated caging under negative pressure with exhaust air returned to the room (VCR-), 3) individually ventilated caging under positive pressure with exhaust air returned to the heating, ventilation, and air-conditioning (HVAC) system, 4) individually ventilated caging under negative pressure with exhaust air returned to the HVAC system, and 5) static microisolation cages. We found that rooms under VCR conditions had fewer large particles than did those under other conditions, but the numbers of 0.3 microm particles did not differ significantly among systems. Static, positive or negative pressure applied to caging units as well as route of air exhaust were found to have little influence on the total number of particles in the atmosphere. Therefore, considering the heat load, odor, and overall particulate concentration in the room, placing individually ventilated caging under negative pressure with exhaust air returned to the HVAC system appears to be the optimal overall choice when using microisolation housing for rodents.
Kneyber, Martin C J; de Luca, Daniele; Calderini, Edoardo; Jarreau, Pierre-Henri; Javouhey, Etienne; Lopez-Herce, Jesus; Hammer, Jürg; Macrae, Duncan; Markhorst, Dick G; Medina, Alberto; Pons-Odena, Marti; Racca, Fabrizio; Wolf, Gerhard; Biban, Paolo; Brierley, Joe; Rimensberger, Peter C
2017-12-01
Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children. The European Society for Paediatric and Neonatal Intensive Care initiated a consensus conference of international European experts in paediatric mechanical ventilation to provide recommendations using the Research and Development/University of California, Los Angeles, appropriateness method. An electronic literature search in PubMed and EMBASE was performed using a combination of medical subject heading terms and text words related to mechanical ventilation and disease-specific terms. The Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) consisted of a panel of 15 experts who developed and voted on 152 recommendations related to the following topics: (1) general recommendations, (2) monitoring, (3) targets of oxygenation and ventilation, (4) supportive measures, (5) weaning and extubation readiness, (6) normal lungs, (7) obstructive diseases, (8) restrictive diseases, (9) mixed diseases, (10) chronically ventilated patients, (11) cardiac patients and (12) lung hypoplasia syndromes. There were 142 (93.4%) recommendations with "strong agreement". The final iteration of the recommendations had none with equipoise or disagreement. These recommendations should help to harmonise the approach to paediatric mechanical ventilation and can be proposed as a standard-of-care applicable in daily clinical practice and clinical research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Chantell Lynne-Marie
Traditional nuclear materials accounting does not work well for safeguards when applied to pyroprocessing. Alternate methods such as Signature Based Safeguards (SBS) are being investigated. The goal of SBS is real-time/near-real-time detection of anomalous events in the pyroprocessing facility as they could indicate loss of special nuclear material. In high-throughput reprocessing facilities, metric tons of separated material are processed that must be accounted for. Even with very low uncertainties of accountancy measurements (<0.1%) the uncertainty of the material balances is still greater than the desired level. Novel contributions of this work are as follows: (1) significant enhancement of SBS developmentmore » for the salt cleanup process by creating a new gas sparging process model, selecting sensors to monitor normal operation, identifying safeguards-significant off-normal scenarios, and simulating those off-normal events and generating sensor output; (2) further enhancement of SBS development for the electrorefiner by simulating off-normal events caused by changes in salt concentration and identifying which conditions lead to Pu and Cm not tracking throughout the rest of the system; and (3) new contribution in applying statistical techniques to analyze the signatures gained from these two models to help draw real-time conclusions on anomalous events.« less
Full-Scale Tests of NACA Cowlings
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore; Brevoort, M J; Stickle, George W
1937-01-01
A comprehensive investigation has been carried on with full-scale models in the NACA 20-foot wind tunnel, the general purpose of which is to furnish information in regard to the physical functioning of the composite propeller-nacelle unit under all conditions of take-off, taxiing, and normal flight. This report deals exclusively with the cowling characteristics under condition of normal flight and includes the results of tests of numerous combinations of more than a dozen nose cowlings, about a dozen skirts, two propellers, two sizes of nacelle, as well as various types of spinners and other devices.
Bechard, Lori J.; Duggan, Christopher; Touger-Decker, Riva; Parrott, J. Scott; Rothpletz-Puglia, Pamela; Byham-Gray, Laura; Heyland, Daren; Mehta, Nilesh M.
2016-01-01
Objective To determine the influence of admission anthropometry on clinical outcomes in mechanically ventilated children in the pediatric intensive care unit (PICU). Design Data from 2 multicenter cohort studies were compiled to examine the unique contribution of nutritional status, defined by BMI Z-score, to 60-day mortality, hospital-acquired infections, length of hospital stay, and ventilator free days (VFD), using multivariate analysis. Setting 90 PICUs from 16 countries with 8 beds. Patients Children aged 1 month to 18 years, admitted to each participating PICU and requiring mechanical ventilation for more that 48 hours Measurements and Main Results Data from 1622 eligible patients, 54.8% male and mean (SD) age 4.5 (5.1) years, were analysed. Subjects were classified as underweight (17.9%), normal weight (54.2%), overweight (14.5%), and obese (13.4%) based on BMI Z-score at admission. After adjusting for severity of illness and site, the odds of 60-day mortality were higher in underweight (OR 1.53, P<0.001) children. The odds of hospital-acquired infections were higher in underweight (OR 1.88, P=0.008) and obese (OR 1.64, P<0.001) children. Hazard ratios for hospital discharge were lower among underweight (HR 0.71, P<0.001) and obese (HR 0.82, P=0.04) children. Underweight was associated with 1.3 (P=0.001) and 1.6 (P<0.001) fewer VFD, compared to normal weight and overweight, respectively. Conclusions Malnutrition is prevalent in mechanically ventilated children on admission to PICUs worldwide. Classification as underweight or obese was associated with higher risk of hospital-acquired infections and lower likelihood of hospital discharge. Underweight children had a higher risk of mortality and fewer ventilator-free days. PMID:26985636
Nazi, Sepideh; Aliabadi, Faranak
2015-01-01
Background: To determine whether using mechanical ventilation in neonatal intensive care unit (NICU) influences motor development of low birth weight (LBW) infants and to compare their motor development with normal birth weight (NBW) infants at the age of 8 to 12 months using Peabody Developmental Motor Scale 2 (PDMS-2). Methods: This cross sectional study was conducted on 70 LBW infants in two groups, mechanical ventilation (MV) group, n=35 and without mechanical ventilation (WMV) group, n=35 and 40 healthy NBW infants matched with LBW group for age. Motor quotients were determined using PDMS-2 and compared in all groups using ANOVA statistical method and SPSS version 17. Results: Comparison of the mean developmental motor quotient (DMQ) of both MV and WMV groups showed significant differences with NBW group (p< 0.05). Also, significant difference was found between the gross DMQ of MV group and WMV group (p< 0.05). Moreover, in MV group, both gross and fine motor quotients were considered as below average (16.12%). In WMV group, the gross motor quotient was considered as average (49.51%) and the fine motor quotient was considered as below average (16.12%). Conclusion: It seems that LBW infants have poor fine motor outcomes. The gross motor outcomes, on the other hand, will be significantly more influenced by using mechanical ventilation. In addition, more differences seem to be related to lower birth weight. Very Low Birth Weight (VLBW) infants are more prone to developmental difficulties than LBW infants with the history of using mechanical ventilation especially in fine motor development. PMID:26913264
Effects of cell phone radiofrequency signal exposure on brain glucose metabolism.
Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher
2011-02-23
The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ((18)F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ("on" condition) and once with both cell phones deactivated ("off" condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm(3)) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism (μmol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 μmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance.
On- vs. off-pump coronary artery bypass grafting: A systematic review and meta-analysis.
Dieberg, Gudrun; Smart, Neil A; King, Nicola
2016-11-15
To reduce complications during coronary artery bypass grafting (CABG) off-pump CABG was introduced; however, results have been mixed. The aim of this work was to conduct a systematic review and meta-analysis of off-pump vs. on-pump CABG. To identify potential studies systematic searches were carried out using various databases. The search strategy included the key concepts of "cardiopulmonary bypass" AND "coronary artery bypass grafting" AND "off pump". This was followed by a meta-analysis investigating post-operative atrial fibrillation, myocardial infarction, ≤30day mortality, stroke, ventilation time, intensive care unit (ICU) stay and hospital stay. Fifty four studies (59 intervention groups), totalling 16,261 participants were analysed. Off pump CABG led to a significantly lower incidence of post-operative atrial fibrillation odds ratio (OR) 0.87 (95% confidence interval [CI] 0.78 to 0.97, p=0.01), but no differences in either myocardial infarction OR 0.98 (95% CI 0.82 to 1.15, p=0.77) or ≤30day mortality OR 0.85 (95% CI 0.68 to 1.06, p=0.16). There was a strong trend towards a reduced incidence of stroke OR 0.77 (95% CI 0.59 to 1.00, p=0.05); however this did not quite reach significance. Ventilation time mean difference (MD) -3.78h (95% CI -4.75 to -2.82, p<0.00001); ICU stay MD -0.34days (95% CI -0.50 to -0.17, p<0.0001); and hospital stay MD -0.9days (95% CI -1.25 to -0.56, p<0.00001) were all significantly shorter in the off-pump group. Off-pump CABG has some benefits over on-pump CABG, particularly in relation to post-operative atrial fibrillation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... safety standards related to ventilation, methane, roof control, combustible materials, rock dust, other... standards related to ventilation, methane, roof control, combustible materials, rock dust, other safeguards... and unsafe conditions, such as methane accumulations, water accumulations, and adverse roof conditions...
Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Hyun Ju; Lee, Chang Hyun; Park, Chang Min; Yoo, Chul-Gyu; Kim, Jong Hyo
2010-09-01
To evaluate the potential of xenon ventilation computed tomography (CT) in the quantitative and visual analysis of chronic obstructive pulmonary disease (COPD). This study was approved by the institutional review board. After informed consent was obtained, 32 patients with COPD underwent CT performed before the administration of xenon, two-phase xenon ventilation CT with wash-in (WI) and wash-out (WO) periods, and pulmonary function testing (PFT). For quantitative analysis, results of PFT were compared with attenuation parameters from prexenon images and xenon parameters from xenon-enhanced images in the following three areas at each phase: whole lung, lung with normal attenuation, and low-attenuating lung (LAL). For visual analysis, ventilation patterns were categorized according to the pattern of xenon attenuation in the area of structural abnormalities compared with that in the normal-looking background on a per-lobe basis: pattern A consisted of isoattenuation or high attenuation in the WI period and isoattenuation in the WO period; pattern B, isoattenuation or high attenuation in the WI period and high attenuation in the WO period; pattern C, low attenuation in both the WI and WO periods; and pattern D, low attenuation in the WI period and isoattenuation or high attenuation in the WO period. Among various attenuation and xenon parameters, xenon parameters of the LAL in the WO period showed the best inverse correlation with results of PFT (P < .0001). At visual analysis, while emphysema (which affected 99 lobes) commonly showed pattern A or B, airway diseases such as obstructive bronchiolitis (n = 5) and bronchiectasis (n = 2) and areas with a mucus plug (n = 1) or centrilobular nodules (n = 5) showed pattern D or C. WI and WO xenon ventilation CT is feasible for the simultaneous regional evaluation of structural and ventilation abnormalities both quantitatively and qualitatively in patients with COPD. (c) RSNA, 2010.
Microbial profiling of dental plaque from mechanically ventilated patients
Twigg, Joshua A.; Lewis, Michael A. O.; Wise, Matt P.; Marchesi, Julian R.; Smith, Ann; Wilson, Melanie J.; Williams, David W.
2016-01-01
Micro-organisms isolated from the oral cavity may translocate to the lower airways during mechanical ventilation (MV) leading to ventilator-associated pneumonia (VAP). Changes within the dental plaque microbiome during MV have been documented previously, primarily using culture-based techniques. The aim of this study was to use community profiling by high throughput sequencing to comprehensively analyse suggested microbial changes within dental plaque during MV. Bacterial 16S rDNA gene sequences were obtained from 38 samples of dental plaque sampled from 13 mechanically ventilated patients and sequenced using the Illumina platform. Sequences were processed using Mothur, applying a 97 % gene similarity cut-off for bacterial species level identifications. A significant ‘microbial shift’ occurred in the microbial community of dental plaque during MV for nine out of 13 patients. Following extubation, or removal of the endotracheal tube that facilitates ventilation, sampling revealed a decrease in the relative abundance of potential respiratory pathogens and a compositional change towards a more predominantly (in terms of abundance) oral microbiota including Prevotella spp., and streptococci. The results highlight the need to better understand microbial shifts in the oral microbiome in the development of strategies to reduce VAP, and may have implications for the development of other forms of pneumonia such as community-acquired infection. PMID:26690690
Microbial profiling of dental plaque from mechanically ventilated patients.
Sands, Kirsty M; Twigg, Joshua A; Lewis, Michael A O; Wise, Matt P; Marchesi, Julian R; Smith, Ann; Wilson, Melanie J; Williams, David W
2016-02-01
Micro-organisms isolated from the oral cavity may translocate to the lower airways during mechanical ventilation (MV) leading to ventilator-associated pneumonia (VAP). Changes within the dental plaque microbiome during MV have been documented previously, primarily using culture-based techniques. The aim of this study was to use community profiling by high throughput sequencing to comprehensively analyse suggested microbial changes within dental plaque during MV. Bacterial 16S rDNA gene sequences were obtained from 38 samples of dental plaque sampled from 13 mechanically ventilated patients and sequenced using the Illumina platform. Sequences were processed using Mothur, applying a 97% gene similarity cut-off for bacterial species level identifications. A significant 'microbial shift' occurred in the microbial community of dental plaque during MV for nine out of 13 patients. Following extubation, or removal of the endotracheal tube that facilitates ventilation, sampling revealed a decrease in the relative abundance of potential respiratory pathogens and a compositional change towards a more predominantly (in terms of abundance) oral microbiota including Prevotella spp., and streptococci. The results highlight the need to better understand microbial shifts in the oral microbiome in the development of strategies to reduce VAP, and may have implications for the development of other forms of pneumonia such as community-acquired infection.
Iosifidis, Elias; Chochliourou, Elpis; Violaki, Asimenia; Chorafa, Elisavet; Psachna, Stavroula; Roumpou, Afroditi; Sdougka, Maria; Roilides, Emmanuel
2016-10-01
OBJECTIVE To evaluate the new adult Centers for Disease Control and Prevention (CDC) ventilator-associated event (VAE) module in critically ill children and compare with the traditionally used CDC definition for ventilator-associated pneumonia (VAP). DESIGN Retrospective observational study of mechanically ventilated children in a pediatric intensive care unit in Greece January 1-December 31, 2011. METHODS Assessment of new adult CDC VAE module including 3 definition tiers: ventilator-associated condition (VAC), infection-related VAC, and possible/probable ventilator-associated pneumonia (VAE-VAP); comparison with traditional CDC criteria for clinically defined pneumonia in mechanically ventilated children (PNEU-VAP). We recorded Pediatric Risk of Mortality score at admission (PRISM III), number of ventilator-days, and outcome. RESULTS Among 119 patients with mechanical ventilation (median [range] number of ventilator-days, 7 [1-183]), 19 patients experienced VAC. Criteria for VAE-VAP were fulfilled in 12 of 19 patients with VAC (63%). Children with either VAC or VAE-VAP were on ventilation more days than patients without these conditions (16.5 vs 5 d, P=.0006 and 18 vs 5 d, P<.001, respectively), whereas PRISM-III score was similar between them. Mortality was significant higher in patients with new VAE-VAP definition (50%), but not in patients with VAC (31.6%), than the patients without new VAE-VAP (14%, P=.007) or VAC (15%, P=.1), respectively. No significant association was found between PNEU-VAP and death. Incidences of PNEU-VAP and VAE-VAP were similar, but the agreement was poor. CONCLUSIONS VAE-VAP and PNEU-VAP found similar prevalence in critically ill children but with poor agreement. However, excess of death was significantly associated only with VAE-VAP. Infect Control Hosp Epidemiol 2016:1-5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cain, W.S.; Isseroff, R.; Leaderer, B.P.
1981-04-01
Experiments on occupancy odor addressed the question of why required ventilation rate per occupant increased progressively with increases in the number of persons in a space. In order to investigate ventilation requirements under approximately ideal conditions, we constructed an aluminum-lined environmental chamber with excellent control over environmental conditions and a ventilation system that provided rapid and uniform mixing of air. Psychophysical experiments on occupancy odor explored 47 different combinations of occupancy density, temperature and humidity, and ventilation rate. The experiments collected judgements both from visitors, who smelled air from the chamber only once every few minutes, and from occupants, whomore » remained in the chamber for an hour at a time. The judgements of visitors revealed that occupancy odor increased only gradually over time and rarely reached very high or objectionable levels. Judgements of occupants also revealed rather minor dissatisfaction. Only during combinations of high temperature and humidity did objectionability become more than a minor issue to either group. Experiments on cigarette smoking explored rates of 4, 8, and 16 cigarettes per hour under various environmental conditions and with ventilation rates as high as 68 cfm (34 L.s/sup -1/) per occupant. As soon as occupants lit cigarettes in the chamber, the odor level increased dramatically. At ventilation rates far greater than necessary to control occupancy odor, the odor from cigarette smoking remained quite intense. In general, the odor proved impossible to control adequately even with a ventilation rate of 68 cfm (34 L.s/sup -1/) per occupant (4 occupants) and even when only one occupant smoked at a time. As in the case of occupancy odor, a combination of high temperature and humidity exacerbated the odor problem.« less
Characteristics of rain penetration through a gravity ventilator used for natural ventilation.
Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon
2008-01-01
Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.
Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming
2009-09-01
To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.
The reflection of airborne UV laser pulses from the ocean
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Krabill, W. B.; Swift, R. N.
1984-01-01
It is experimentally shown here for the first time that the normalized laser backscatter cross-section of the sea surface is a function of elevation or height position on teh ocean wave. All data were taken off-nadir, resulting in incidence angles of about 6.5 deg measured relative to the normal to mean sea level (MSL). In the limited data sets analyzed to date, the normalized backscatter cross-section was found to be higher in wave crest regions and lower in wave troughs for a swell-dominated sea over which the wind speed was 5 m/s. The reverse was found to be the case for a sea that was driven by a 14 m/s wind. These isolated results show that the MSL, as measured by an off-nadir and/or multibeam type satellite laser altimeter, will be found above, at, or below the true MSL, depending on the local sea conditions existing in the footprint of the altimeter. Airborne nadir-pointed laser altimeter data for a wide variety of sea conditions are needed before a final determination can be made of the effect of sea state on the backscatter cross-section as measured by a down-looking satellite laser system.
Jaworski, Jacek; Redlarski, Grzegorz
2014-08-01
This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy and cost associated with ventilating office buildings in a tropical climate.
Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W
2015-01-01
Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.
Yaslioglu, Erkan; Simsek, Ercan; Kilic, Ilker
2007-04-15
In the study, 10 different dairy cattle barns with natural ventilation system were investigated in terms of structural aspects. VENTGRAPH software package was used to estimate minimum ventilation requirements for three different outdoor design temperatures (-3, 0 and 1.7 degrees C). Variation in indoor temperatures was also determined according to the above-mentioned conditions. In the investigated dairy cattle barns, on condition that minimum ventilation requirement to be achieved for -3, 0 and 1.7 degrees C outdoor design temperature and 70, 80% Indoor Relative Humidity (IRH), estimated indoor temperature were ranged from 2.2 to 12.2 degrees C for 70% IRH, 4.3 to 15.0 degrees C for 80% IRH. Barn type, outdoor design temperature and indoor relative humidity significantly (p < 0.01) affect the indoor temperature. The highest ventilation requirement was calculated for straw yard (13879 m3 h(-1)) while the lowest was estimated for tie-stall (6169.20 m3 h(-1)). Estimated minimum ventilation requirements per animal were significantly (p < 0.01) different according to the barn types. Effect of outdoor esign temperatures on minimum ventilation requirements and minimum ventilation requirements per animal was found to be significant (p < 0.05, p < 0.01). Estimated indoor temperatures were in thermoneutral zone (-2 to 20 degrees C). Therefore, one can be said that use of naturally ventilated cold dairy barns in the region will not lead to problems associated with animal comfort in winter.
Fail Save Shut Off Valve for Filtering Systems Employing Candle Filters
VanOsdol, John
2006-01-03
The invention relates to an apparatus that acts as a fail save shut off valve. More specifically, the invention relates to a fail save shut off valve that allows fluid flow during normal operational conditions, but prevents the flow of fluids in the event of system failure upstream that causes over-pressurization. The present invention is particularly well suited for use in conjunction with hot gas filtering systems, which utilize ceramic candle filters. Used in such a hot gas system the present invention stops the flow of hot gas and prevents any particulate laden gas from entering the clean side of the system.
Fail save shut off valve for filtering systems employing candle filters
VanOsdol, John [Fairmont, WV
2006-01-03
The invention relates to an apparatus that acts as a fail save shut off valve. More specifically, the invention relates to a fail save shut off valve that allows fluid flow during normal operational conditions, but prevents the flow of fluids in the event of system failure upstream that causes over-pressurization. The present invention is particularly well suited for use in conjunction with hot gas filtering systems, which utilize ceramic candle filters. Used in such a hot gas system the present invention stops the flow of hot gas and prevents any particulate laden gas from entering the clean side of the system.
Fire behavior and risk analysis in spacecraft
NASA Technical Reports Server (NTRS)
Friedman, Robert; Sacksteder, Kurt R.
1988-01-01
Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.
46 CFR 26.03-2 - Emergency instructions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... is needed (if radiotelephone equipped). (b) Man overboard. □ Ring buoy thrown overboard as close to... continued until after radiotelephone consultation with the Coast Guard, if at all possible. (c) Fire at Sea. □ Air supply to the fire cut off by closing hatches, ports, doors, and ventilators, etc. □ Portable...
46 CFR 26.03-2 - Emergency instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... is needed (if radiotelephone equipped). (b) Man overboard. □ Ring buoy thrown overboard as close to... continued until after radiotelephone consultation with the Coast Guard, if at all possible. (c) Fire at Sea. □ Air supply to the fire cut off by closing hatches, ports, doors, and ventilators, etc. □ Portable...
46 CFR 26.03-2 - Emergency instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... is needed (if radiotelephone equipped). (b) Man overboard. □ Ring buoy thrown overboard as close to... continued until after radiotelephone consultation with the Coast Guard, if at all possible. (c) Fire at Sea. □ Air supply to the fire cut off by closing hatches, ports, doors, and ventilators, etc. □ Portable...
46 CFR 26.03-2 - Emergency instructions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... is needed (if radiotelephone equipped). (b) Man overboard. □ Ring buoy thrown overboard as close to... continued until after radiotelephone consultation with the Coast Guard, if at all possible. (c) Fire at Sea. □ Air supply to the fire cut off by closing hatches, ports, doors, and ventilators, etc. □ Portable...
Regional vegetation die-off in response to global-change-type drought
Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, Craig D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M. Lisa; Belnap, J.; Anderson, J.J.; Myers, O.B.; Meyer, Clifton W.
2005-01-01
Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions.
Regional vegetation die-off in response to global-change-type drought
Breshears, David D.; Cobb, Neil S.; Rich, Paul M.; Price, Kevin P.; Allen, Craig D.; Balice, Randy G.; Romme, William H.; Kastens, Jude H.; Floyd, M. Lisa; Belnap, Jayne; Anderson, Jesse J.; Myers, Orrin B.; Meyer, Clifton W.
2005-01-01
Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions. PMID:16217022
Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099
Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F
2016-05-04
The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by the atmosphere with the multitude of factors affecting the growth of algae and corresponding water clarity.
6. VIEW LOOKING SOUTHEAST AT VENTILATION EQUIPMENT IN SOUTH VENTILATION ...
6. VIEW LOOKING SOUTHEAST AT VENTILATION EQUIPMENT IN SOUTH VENTILATION HOUSE. THIS AIR CONDITIONING SYSTEM WAS INSTALLED BY PARKS-CRAMER COMPANY OF FITCHBURG, MASSACHUSETTS WHEN THE MILL WAS CONSTRUCTED IN 1923-24. ONE AIR WASHER AND FAN ROOM EXTERIOR IS VISIBLE ON THE RIGHT. THE DUCTS FROM BOTH FAN ROOMS (CURVED METAL STRUCTURES AT CENTER AND LEFT OF PHOTO) ARE CONNECTED TO A COMMON AIR SHAFT. - Stark Mill, 117 Corinth Road, Hogansville, Troup County, GA
Modeling Hybrid Nuclear Systems With Chilled-Water Storage
Misenheimer, Corey T.; Terry, Stephen D.
2016-06-27
Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less
Modeling Hybrid Nuclear Systems With Chilled-Water Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misenheimer, Corey T.; Terry, Stephen D.
Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less
Jones, R P; Conway, D H
2005-08-01
Electromagnetic interference produced by wireless communication can affect medical devices and hospital policies exist to address this risk. During the transfer of ventilated patients, these policies may be compromised by essential communication between base and receiving hospitals. Local wireless networks (e.g. Bluetooth) may reduce the 'spaghetti syndrome' of wires and cables seen on intensive care units, but also generate electromagnetic interference. The aim of this study was to investigate these effects on displayed and actual ventilator performance. Five ventilators were tested: Drager Oxylog 2000, BREAS LTV-1000, Respironics BiPAP VISION, Puritan Bennett 7200 and 840. Electromagnetic interference was generated by three devices: Simoco 8020 radio handset, Nokia 7210 and Nokia 6230 mobile phone, Nokia 6230 communicating via Bluetooth with a Palm Tungsten T Personal Digital Assistant. We followed the American National Standard Recommended Practice for On-Site, Ad Hoc Testing (ANSI C63) for electromagnetic interference. We used a ventilator tester, to simulate healthy adult lungs and measure ventilator performance. The communication device under test was moved in towards each ventilator from a distance of 1 m in six axes. Alarms or error codes on the ventilator were recorded, as was ventilator performance. All ventilators tested, except for the Respironics VISION, showed a display error when subjected to electromagnetic interference from the Nokia phones and Simoco radio. Ventilator performance was only affected by the radio which caused the Puritan Bennett 840 to stop functioning completely. The transfer ventilators' performance were not affected by radio or mobile phone, although the mobile phone did trigger a low-power alarm. Effects on intensive care ventilators included display reset, with the ventilator restoring normal display function within 2 s, and low-power/low-pressure alarms. Bluetooth transmission had no effect on the function of all the ventilators tested. In a clinical setting, high-power-output devices such as a two-way radio may cause significant interference in ventilator function. Medium-power-output devices such as mobile phones may cause minor alarm triggers. Low-power-output devices such as Bluetooth appear to cause no interference with ventilator function.
Summary of human responses to ventilation.
Seppänen, O A; Fisk, W J
2004-01-01
It is known that ventilation is necessary to remove indoor-generated pollutants from indoor air or dilute their concentration to acceptable levels. But as the limit values of all pollutants are not known the exact determination of required ventilation rates based on pollutant concentrations is seldom possible. The selection of ventilation rates has to be based also on epidemiological research, laboratory and field experiments and experience. The existing literature indicates that ventilation has a significant impact on several important human outcomes including: (1) communicable respiratory illnesses; (2) sick building syndrome symptoms; (3) task performance and productivity, and (4) perceived air quality (PAQ) among occupants or sensory panels (5) respiratory allergies and asthma. In many studies, prevalence of sick building syndrome symptoms has also been associated with characteristics of HVAC-systems. Often the prevalence of SBS symptoms is higher in air-conditioned buildings than in naturally ventilated buildings. The evidence suggests that better hygiene, commissioning, operation and maintenance of air handling systems may be particularly important for reducing the negative effects of HVAC systems. Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated. Ventilation may bring indoors harmful substances or deteriorate indoor environment. Ventilation interacts also with the building envelope and may deteriorate the structures of the building. Ventilation changes the pressure differences across the structures of building and may cause or prevent infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. The paper summarises the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus is on office-type working environment and residential buildings. The review shows that ventilation has various positive impacts on health and productivity of building occupants. Ventilation reduces the prevalence of airborne infectious diseases and thus the number of sick leave days. In office environment a ventilation rate up to 20-25 L/s per person seem to decrease the prevalence of SBS-symptoms. Air conditioning systems may increase the prevalence of SBS-symptoms relative to natural ventilation if not clean. In residential buildings the air change rate in cold climates should not be below app. 0.5 ach. Ventilation systems may cause pressure differences over the building envelope and bring harmful pollutants indoors.
Vasconcelos, Renata S; Sales, Raquel P; Melo, Luíz H de P; Marinho, Liégina S; Bastos, Vasco Pd; Nogueira, Andréa da Nc; Ferreira, Juliana C; Holanda, Marcelo A
2017-05-01
Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (V T ). Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. V T was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics profiles, and it was associated with a lower V T . Copyright © 2017 by Daedalus Enterprises.
Mobile communication devices causing interference in invasive and noninvasive ventilators.
Dang, Bao P; Nel, Pierre R; Gjevre, John A
2007-06-01
The aim of this study was to assess if common mobile communication systems would cause significant interference on mechanical ventilation devices and at what distances would such interference occur. We tested all the invasive and noninvasive ventilatory devices used within our region. This consisted of 2 adult mechanical ventilators, 1 portable ventilator, 2 pediatric ventilators, and 2 noninvasive positive pressure ventilatory devices. We operated the mobile devices from the 2 cellular communication systems (digital) and 1 2-way radio system used in our province at varying distances from the ventilators and looked at any interference they created. We tested the 2-way radio system, which had a fixed operation power output of 3.0 watts, the Global Systems for Mobile Communication cellular system, which had a maximum power output of 2.0 watts and the Time Division Multiple Access cellular system, which had a maximum power output of 0.2 watts on our ventilators. The ventilators were ventilating a plastic lung at fixed settings. The mobile communication devices were tested at varying distances starting at zero meter from the ventilator and in all operation modes. The 2-way radio caused the most interference on some of the ventilators, but the maximum distance of interference was 1.0 m. The Global Systems for Mobile Communication system caused significant interference only at 0 m and minor interference at 0.5 m on only 1 ventilator. The Time Division Multiple Access system caused no interference at all. Significant interference consisted of a dramatic rise and fluctuation of the respiratory rate, pressure, and positive end-expiratory pressure of the ventilators with no normalization when the mobile device was removed. From our experiment on our ventilators with the communication systems used in our province, we conclude that mobile communication devices such as cellular phones and 2-way radios are safe and cause no interference unless operated at very close distances of less than 1 meter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slosman, D.; Susskind, H.; Bossuyt, A.
1986-03-01
Ventilation imaging can be improved by gating scintigraphic data with the respiratory cycle using temporal Fourier analysis (TFA) to quantify the temporal behavior of the ventilation. Sixteen consecutive images, representing equal-time increments of an average respiratory cycle, were produced by TFA in the posterior view on a pixel-by-pixel basis. An Efficiency Index (EFF), defined as the ratio of the summation of all the differences between maximum and minimum counts for each pixel to that for the entire lung during the respiratory cycle, was derived to describe the pattern of ventilation. The gated ventilation studies were carried out with Xe-127 inmore » 12 subjects: normal lung function (4), small airway disease (2), COPD (5), and restrictive disease (1). EFF for the first three harmonics correlated linearly with FEV1 (r = 0.701, p< 0.01). This approach is suggested as a very sensitive method to quantify the extent and regional distribution of airway obstruction.« less
Technology evaluation of heating, ventilation, and air conditioning for MIUS application
NASA Technical Reports Server (NTRS)
Gill, W. L.; Keough, M. B.; Rippey, J. O.
1974-01-01
Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.
Heating, Ventilating, and Air Conditioning. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…
ERIC Educational Resources Information Center
Messer, John D.
This course of study on air conditioning, heating, and ventilating is part of a construction, supervision, and inspection series, which provides instructional materials for community or junior college technical courses in the inspection program. Material covered pertains to: piping and piping systems; air movers; boilers; heat exchangers; cooling…
State Skill Standards: Heating, Ventilation, Air Conditioning, and Refrigeration
ERIC Educational Resources Information Center
Ball, Larry; Soukup, Dennis
2006-01-01
The Department of Education has undertaken an ambitious effort to develop statewide career and technical education skill standards. The standards in this document are for Heating, Ventilation, Air Conditioning and Refrigeration (HVAC&R) programs and are designed to clearly state what the student should know and be able to do upon completion of…
Heating, Ventilation, Air Conditioning. Resource Manual for Custodial Training Course #3.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee. School Plant Management Section.
Intended as a manual to provide school custodians with some understanding of basic functions of heating, ventilating, and air conditioning equipment for safe, efficient operation. Contains general rules and specifications for providing custodians with a more complete awareness of their equipment and the field of "Climate Control" within the…
Effect of residential air-to-air heat and moisture exchangers on indoor humidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barringer, C.G.; McGugan, C.A.
1989-01-01
A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration,more » exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.« less
Weaning from mechanical ventilation: why are we still looking for alternative methods?
Frutos-Vivar, F; Esteban, A
2013-12-01
Most patients who require mechanical ventilation for longer than 24 hours, and who improve the condition leading to the indication of ventilatory support, can be weaned after passing a first spontaneous breathing test. The challenge is to improve the weaning of patients who fail that first test. We have methods that can be referred to as traditional, such as the T-tube, pressure support or synchronized intermittent mandatory ventilation (SIMV). In recent years, however, new applications of usual techniques as noninvasive ventilation, new ventilation methods such as automatic tube compensation (ATC), mandatory minute ventilation (MMV), adaptive support ventilation or automatic weaning systems based on pressure support have been described. Their possible role in weaning from mechanical ventilation among patients with difficult or prolonged weaning remains to be established. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.
NASA Technical Reports Server (NTRS)
Gracey, William; Jewel, Joseph W., Jr.; Carpenter, Gene T.
1960-01-01
The overall errors of the service altimeter installations of a variety of civil transport, military, and general-aviation airplanes have been experimentally determined during normal landing-approach and take-off operations. The average height above the runway at which the data were obtained was about 280 feet for the landings and about 440 feet for the take-offs. An analysis of the data obtained from 196 airplanes during 415 landing approaches and from 70 airplanes during 152 take-offs showed that: 1. The overall error of the altimeter installations in the landing- approach condition had a probable value (50 percent probability) of +/- 36 feet and a maximum probable value (99.7 percent probability) of +/- 159 feet with a bias of +10 feet. 2. The overall error in the take-off condition had a probable value of +/- 47 feet and a maximum probable value of +/- 207 feet with a bias of -33 feet. 3. The overall errors of the military airplanes were generally larger than those of the civil transports in both the landing-approach and take-off conditions. In the landing-approach condition the probable error and the maximum probable error of the military airplanes were +/- 43 and +/- 189 feet, respectively, with a bias of +15 feet, whereas those for the civil transports were +/- 22 and +/- 96 feet, respectively, with a bias of +1 foot. 4. The bias values of the error distributions (+10 feet for the landings and -33 feet for the take-offs) appear to represent a measure of the hysteresis characteristics (after effect and recovery) and friction of the instrument and the pressure lag of the tubing-instrument system.
NASA Astrophysics Data System (ADS)
Recheis, Wolfgang A.; Kleinsasser, Axel; Hatschenberger, Robert; Knapp, Rudolf; zur Nedden, Dieter; Hoermann, Christoph
1999-05-01
The purpose of this project is to evaluate the dynamic changes during expiration at different levels of positive end- expiratory pressure (PEEP) in the ventilated patient. We wanted to discriminate between normal lung function and acute respiratory distress syndrome (ARDS). After approval by the local Ethic Committee we studied two ventilated patients: (1) with normal lung function; (2) ARDS). We used the 50 ms scan mode of the EBCT. The beam was positioned 1 cm above the diaphragm. The table position remained unchanged. An electronic trigger was developed, that utilizes the respirators synchronizing signal to start the EBCT at the onset of expiration. During controlled mechanical expiration at two levels of PEEP (0 and 15 cm H2O), pulmonary aeration was rated as: well-aerated (-900HU/-500HU), poorly- aerated (-500HU/-100HU) and non-aerated (-100HU/+100HU). Pathological and normal lung function showed different dynamic changes (FIG.4-12). The different PEEP levels resulted in a significant change of pulmonary aeration in the same patient. Although we studied only a very limited number of patients, respirator triggered EBCT may be accurate in discriminating pathological changes due to the abnormal lung function in the mechanically ventilated patient.
Effect of Heliox on Respiratory Outcomes during Rigid Bronchoscopy in Term Lambs.
Sowder, Justin C; Dahl, Mar Janna; Zuspan, Kaitlin R; Albertine, Kurt H; Null, Donald M; Barneck, Mitchell D; Grimmer, J Fredrik
2018-03-01
Objective To (1) compare physiologic changes during rigid bronchoscopy during spontaneous and mechanical ventilation and (2) evaluate the efficacy of a helium-oxygen (heliox) gas mixture as compared with room air during rigid bronchoscopy. Study Design Crossover animal study evaluating physiologic parameters during rigid bronchoscopy. Outcomes were compared with predicted computational fluid analysis. Setting Simulated ventilation via computational fluid dynamics analysis and term lambs undergoing rigid bronchoscopy. Methods Respiratory and physiologic outcomes were analyzed in a lamb model simulating bronchoscopy during foreign body aspiration to compare heliox with room air. The main outcome measures were blood oxygen saturation, heart rate, blood pressure, partial pressure of oxygen, and partial pressure of carbon dioxide. Computational fluid dynamics analysis was performed with SOLIDWORKS within a rigid pediatric bronchoscope during simulated ventilation comparing heliox with room air. Results For room air, lambs desaturated within 3 minutes during mechanical ventilation versus normal oxygen saturation during spontaneous ventilation ( P = .01). No improvement in respiratory outcomes was seen between heliox and room air during mechanical ventilation. Computational fluid dynamics analysis demonstrates increased turbulence within size 3.5 bronchoscopes when comparing heliox and room air. Meaningful comparisons could not be made due to the intolerance of the lambs to heliox in vivo. Conclusion During mechanical ventilation on room air, lambs desaturate more quickly during rigid bronchoscopy on settings that should be adequate. Heliox does not improve ventilation during rigid bronchoscopy.
Sands, Kirsty M; Wilson, Melanie J; Lewis, Michael A O; Wise, Matt P; Palmer, Nicki; Hayes, Anthony J; Barnes, Rosemary A; Williams, David W
2017-02-01
In mechanically ventilated patients, the endotracheal tube is an essential interface between the patient and ventilator, but inadvertently, it also facilitates the development of ventilator-associated pneumonia (VAP) by subverting pulmonary host defenses. A number of investigations suggest that bacteria colonizing the oral cavity may be important in the etiology of VAP. The present study evaluated microbial changes that occurred in dental plaque and lower airways of 107 critically ill mechanically ventilated patients. Dental plaque and lower airways fluid was collected during the course of mechanical ventilation, with additional samples of dental plaque obtained during the entirety of patients' hospital stay. A "microbial shift" occurred in dental plaque, with colonization by potential VAP pathogens, namely, Staphylococcus aureus and Pseudomonas aeruginosa in 35 patients. Post-extubation analyses revealed that 70% and 55% of patients whose dental plaque included S aureus and P aeruginosa, respectively, reverted back to having a predominantly normal oral microbiota. Respiratory pathogens were also isolated from the lower airways and within the endotracheal tube biofilms. To the best of our knowledge, this is the largest study to date exploring oral microbial changes during both mechanical ventilation and after recovery from critical illness. Based on these findings, it was apparent that during mechanical ventilation, dental plaque represents a source of potential VAP pathogens. Copyright © 2016 Elsevier Inc. All rights reserved.
Lung, S-C C; Kao, M-C; Hu, S-C
2003-06-01
Burning incense to worship Gods and ancestors is a traditional practice prevalent in Asian societies. This work investigated indoor PM10 concentrations resulting from incense burning in household environments under two conditions: closed and ventilated. The exposure concentrations of particle-bound polycyclic aromatic hydrocarbons (PAHs) were estimated. The factors of potential exposure were also evaluated. Under both conditions, samples were taken at three locations: 0.3, 3.5 and 7 m away from the altar during three periods: incense burning, the first 3 h, and the 4-6 h after cessation of combustion. PAH concentrations of incense smoke were assessed in the laboratory. Personal environment monitors were used as sampling instruments. The results showed a significant contribution of incense burning to indoor PM10 and particulate PAH concentrations. PM10 concentrations near the altar during incense burning were 723 and 178 microg/m3, more than nine and 1.6 times background levels, under closed and ventilated conditions, respectively. Exposure concentrations of particle-bound PAHs were 0.088-0.45 microg/m3 during incense burning. On average, PM10 and associated PAH concentrations were about 371 and 0.23 microg/m3 lower, respectively, in ventilated environments compared with closed conditions. Concentrations were elevated for at least 6 h under closed conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
"9One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent development, CARB was interested in investigating a hybrid ventilation method that includes the exhaust air from the crawlspace as a portion of an ASHRAE 62.2 compliant whole-house ventilation strategy. This hybrid ventilation method was evaluated through a series of long-term monitoring tests thatmore » observed temperature, humidity, and pressure conditions through the home and crawlspace. Additionally, CARB worked with NREL to perform multi-point tracer gas testing on six separate ventilation strategies - varying portions of 62.2 required flow supplied by the crawlspace fan and an upstairs bathroom fan. The intent of the tracer gas testing was to identify effective Reciprocal Age of Air (RAoA), which is equivalent to the air change rate in well-mixed zones, for each strategy while characterizing localized infiltration rates in several areas of the home.« less
... in the hospital's intensive care unit (ICU). A mechanical ventilator will help you breathe for a few ... condition improves, you'll no longer need the mechanical ventilator, and you'll be moved out of ...
Wu, Yaoxing; Chang, Victor W-C
2012-05-18
The study attempts to utilize thermal desorption (TD) coupled with gas chromatography-mass spectrometry (GC-MS) for determination of indoor airborne volatile polyfluorinated alkyl substances (PFASs), including four fluorinated alcohols (FTOHs), two fluorooctane sulfonamides (FOSAs), and two fluorooctane sulfonamidoethanols (FOSEs). Standard stainless steel tubes of Tenax/Carbograph 1 TD were employed for low-volume sampling and exhibited minimal breakthrough of target analytes in sample collection. The method recoveries were in the range of 88-119% for FTOHs, 86-138% for FOSAs, exhibiting significant improvement compared with other existing air sampling methods. However, the widely reported high method recoveries of FOSEs were also observed (139-210%), which was probably due to the structural differences between FOSEs and internal standards. Method detection limit, repeatability, linearity, and accuracy were reported as well. The approach has been successfully applied to routine quantification of targeted PFASs in indoor environment of Singapore. The significantly shorter sampling time enabled the observation of variations of concentrations of targeted PFASs within different periods of a day, with higher concentration levels at night while ventilation systems were shut off. This indicated the existence of indoor sources and the importance of building ventilation and air conditioning system. Copyright © 2012 Elsevier B.V. All rights reserved.
Lobeck, K M; Endres, M I; Shane, E M; Godden, S M; Fetrow, J
2011-11-01
The objective of this cohort study was to investigate animal welfare in 2 newer dairy housing options in the upper Midwest, cross-ventilated freestall barns (CV) and compost-bedded-pack barns (CB), compared with conventional, naturally ventilated freestall barns (NV). The study was conducted on 18 commercial dairy farms, 6 of each housing type, in Minnesota and eastern South Dakota. The primary breed in all farms was Holstein; 1 CV and 1 NV herd had approximately 30% Jersey-Holstein crossbreds. All freestall herds used sand for bedding. Farms were visited 4 times (once in each season) between January and November 2008, and approximately 93% of all animals in each pen were visually scored on each visit. Outcome-based measurements of welfare (locomotion, hock lesions, body condition score, hygiene, respiration rates, mortality, and mastitis prevalence) were collected on each farm. Lameness prevalence (proportion of cows with locomotion score ≥3 on a 1 to 5 scale, where 1=normal and 5=severely lame) in CB barns (4.4%) was lower than that in NV (15.9%) and CV (13.1%) barns. Lameness prevalence was similar between CV and NV barns. Hock lesion prevalence (proportion of cows with a lesion score ≥2 on a 1 to 3 scale, where 1=normal, 2=hair loss, and 3=swelling) was lower in CB barns (3.8%) than in CV (31.2%) and NV barns (23.9%). Hygiene scores (1 to 5 scale, where 1=clean and 5=very dirty) were higher for CB (3.18) than CV (2.83) and NV (2.77) barns, with no differences between CV and NV barns. Body condition scores, respiration rates, mastitis prevalence, culling, and mortality rates did not differ among housing systems. The CV and NV barns were evaluated using the cow comfort index (proportion of cows lying down in a stall divided by all animals touching a stall) and the stall usage index (proportion of cows lying divided by all animals in the pen not eating). The CV barns tended to have greater cow comfort index (85.9%) than the NV barns (81.4%) and had greater stall usage index (76.8% and 71.5%, respectively). Dairy cattle housed in CB barns had reduced lameness and hock lesions compared with those housed in freestall barns and had no adverse associations with body condition, respiration rates, mastitis prevalence, culling, or mortality. When comparing the 2 freestall housing options, CV barns had improved cow comfort indices compared with NV barns. Although cows in CB barns had better feet and leg health, as indicated by the reduced lameness and hock lesion prevalence, acquiring bedding and managing the bedded pack could limit their use. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Tsuji, Bun; Honda, Yasushi; Ikebe, Yusuke; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi
2015-04-15
Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2 ) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2 , CBF, sweating, and skin blood flow. Twelve male subjects performed two exercise trials at 50% of peak oxygen uptake in the heat (37°C, 50% relative humidity) for up to 60 min. Throughout the exercise, subjects breathed normally (normal-breathing trial) or they tried to control their minute ventilation (respiratory frequency was timed with a metronome, and target tidal volumes were displayed on a monitor) to the level reached after 5 min of exercise (controlled-breathing trial). Plotting ventilatory and cerebrovascular responses against esophageal temperature (Tes) showed that minute ventilation increased linearly with rising Tes during normal breathing, whereas controlled breathing attenuated the increased ventilation (increase in minute ventilation from the onset of controlled breathing: 7.4 vs. 1.6 l/min at +1.1°C Tes; P < 0.001). Normal breathing led to decreases in estimated PaCO2 and middle cerebral artery blood flow velocity (MCAV) with rising Tes, but controlled breathing attenuated those reductions (estimated PaCO2 -3.4 vs. -0.8 mmHg; MCAV -10.4 vs. -3.9 cm/s at +1.1°C Tes; P = 0.002 and 0.011, respectively). Controlled breathing had no significant effect on chest sweating or forearm vascular conductance (P = 0.67 and 0.91, respectively). Our results indicate that humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise, and this suppression mitigates changes in PaCO2 and CBF. Copyright © 2015 the American Physiological Society.
Tsuji, Bun; Honda, Yasushi; Ikebe, Yusuke; Fujii, Naoto; Kondo, Narihiko
2015-01-01
Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2, CBF, sweating, and skin blood flow. Twelve male subjects performed two exercise trials at 50% of peak oxygen uptake in the heat (37°C, 50% relative humidity) for up to 60 min. Throughout the exercise, subjects breathed normally (normal-breathing trial) or they tried to control their minute ventilation (respiratory frequency was timed with a metronome, and target tidal volumes were displayed on a monitor) to the level reached after 5 min of exercise (controlled-breathing trial). Plotting ventilatory and cerebrovascular responses against esophageal temperature (Tes) showed that minute ventilation increased linearly with rising Tes during normal breathing, whereas controlled breathing attenuated the increased ventilation (increase in minute ventilation from the onset of controlled breathing: 7.4 vs. 1.6 l/min at +1.1°C Tes; P < 0.001). Normal breathing led to decreases in estimated PaCO2 and middle cerebral artery blood flow velocity (MCAV) with rising Tes, but controlled breathing attenuated those reductions (estimated PaCO2 −3.4 vs. −0.8 mmHg; MCAV −10.4 vs. −3.9 cm/s at +1.1°C Tes; P = 0.002 and 0.011, respectively). Controlled breathing had no significant effect on chest sweating or forearm vascular conductance (P = 0.67 and 0.91, respectively). Our results indicate that humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise, and this suppression mitigates changes in PaCO2 and CBF. PMID:25632021
Contal, Olivier; Vignaux, Laurence; Combescure, Christophe; Pepin, Jean-Louis; Jolliet, Philippe; Janssens, Jean-Paul
2012-02-01
Current bilevel positive-pressure ventilators for home noninvasive ventilation (NIV) provide physicians with software that records items important for patient monitoring, such as compliance, tidal volume (Vt), and leaks. However, to our knowledge, the validity of this information has not yet been independently assessed. Testing was done for seven home ventilators on a bench model adapted to simulate NIV and generate unintentional leaks (ie, other than of the mask exhalation valve). Five levels of leaks were simulated using a computer-driven solenoid valve (0-60 L/min) at different levels of inspiratory pressure (15 and 25 cm H(2)O) and at a fixed expiratory pressure (5 cm H(2)O), for a total of 10 conditions. Bench data were compared with results retrieved from ventilator software for leaks and Vt. For assessing leaks, three of the devices tested were highly reliable, with a small bias (0.3-0.9 L/min), narrow limits of agreement (LA), and high correlations (R(2), 0.993-0.997) when comparing ventilator software and bench results; conversely, for four ventilators, bias ranged from -6.0 L/min to -25.9 L/min, exceeding -10 L/min for two devices, with wide LA and lower correlations (R(2), 0.70-0.98). Bias for leaks increased markedly with the importance of leaks in three devices. Vt was underestimated by all devices, and bias (range, 66-236 mL) increased with higher insufflation pressures. Only two devices had a bias < 100 mL, with all testing conditions considered. Physicians monitoring patients who use home ventilation must be aware of differences in the estimation of leaks and Vt by ventilator software. Also, leaks are reported in different ways according to the device used.
Arctic sea ice, Eurasia snow, and extreme winter haze in China.
Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho
2017-03-01
The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.
Arctic sea ice, Eurasia snow, and extreme winter haze in China
Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho
2017-01-01
The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction. PMID:28345056
Code of Federal Regulations, 2010 CFR
2010-10-01
... of the units' machinery, electrical, and ventilation systems. (See Notes 1 and 2). (b) For the purpose of this subpart “semi-enclosed location” means a location where natural conditions of ventilation...
Development of a Fan for Future Space Suit Applications
NASA Technical Reports Server (NTRS)
Paul. Heather L.; Converse, David; Dionne, Steven; Moser, Jeff
2010-01-01
NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed.
5. VIEW OF VENTILATION HOUSES AND ROOF MONITOR FROM SOUTHEAST ...
5. VIEW OF VENTILATION HOUSES AND ROOF MONITOR FROM SOUTHEAST CORNER OF ROOF. ROOF MONITOR WINDOWS HAVE BEEN INFILLED WITH BRICK. THE VENTILATION HOUSES ARE PART OF THE ORIGINAL CENTRAL AIR CONDITIONING SYSTEM AND CONTAINED AIR WASHERS, FANS AND OTHER HUMIDFYING EQUIPMENT FROM PARKS-CRAMER COMPANY OF FITCHBURG, MASSACHUSETTS. LOCATING THIS EQUIPMENT ON THE ROOF MADE IT UNNECESSARY TO CONSTRUCT A FULL BASEMENT, AND THEREFORE LOWERED CONSTRUCTION COSTS. THIS ARRANGEMENT ALSO PUT THE AIR CONDITIONING EQUIPMENT CLOSEST TO THE TOP FLOOR SPINNING ROOM, WHICH HAD THE GREATEST COOLING REQUIREMENTS. - Stark Mill, 117 Corinth Road, Hogansville, Troup County, GA
Mask Ventilation during Induction of General Anesthesia: Influences of Obstructive Sleep Apnea.
Sato, Shin; Hasegawa, Makoto; Okuyama, Megumi; Okazaki, Junko; Kitamura, Yuji; Sato, Yumi; Ishikawa, Teruhiko; Sato, Yasunori; Isono, Shiroh
2017-01-01
Depending on upper airway patency during anesthesia induction, tidal volume achieved by mask ventilation may vary. In 80 adult patients undergoing general anesthesia, the authors tested a hypothesis that tidal volume during mask ventilation is smaller in patients with sleep-disordered breathing priorly defined as apnea hypopnea index greater than 5 per hour. One-hand mask ventilation with a constant ventilator setting (pressure-controlled ventilation) was started 20 s after injection of rocuronium and maintained for 1 min during anesthesia induction. Mask ventilation efficiency was assessed by the breath number needed to initially exceed 5 ml/kg ideal body weight of expiratory tidal volume (primary outcome) and tidal volumes (secondary outcomes) during initial 15 breaths (UMIN000012494). Tidal volume progressively increased by more than 70% in 1 min and did not differ between sleep-disordered breathing (n = 42) and non-sleep-disordered breathing (n = 38) patients. In post hoc subgroup analyses, the primary outcome breath number (mean [95% CI], 5.7 [4.1 to 7.3] vs. 1.7 [0.2 to 3.2] breath; P = 0.001) and mean tidal volume (6.5 [4.6 to 8.3] vs. 9.6 [7.7 to 11.4] ml/kg ideal body weight; P = 0.032) were significantly smaller in 20 sleep-disordered breathing patients with higher apnea hypopnea index (median [25th to 75th percentile]: 21.7 [17.6 to 31] per hour) than in 20 non-sleep disordered breathing subjects with lower apnea hypopnea index (1.0 [0.3 to 1.5] per hour). Obesity and occurrence of expiratory flow limitation during one-hand mask ventilation independently explained the reduction of efficiency of mask ventilation, while the use of two hands effectively normalized inefficient mask ventilation during one-hand mask ventilation. One-hand mask ventilation is difficult in patients with obesity and severe sleep-disordered breathing particularly when expiratory flow limitation occurs during mask ventilation.
Using Hyperpolarized 129Xe MRI to Quantify the Pulmonary Ventilation Distribution
He, Mu; Driehuys, Bastiaan; Que, Loretta G.; Huang, Yuh-Chin T.
2017-01-01
Background Ventilation heterogeneity is impossible to detect with spirometry. Alternatively, pulmonary ventilation can be imaged 3-dimensionally using inhaled 129Xe MRI. To date such images have been quantified primarily based on ventilation defects. Here, we introduce a robust means to transform 129Xe MRI scans such that the underlying ventilation distribution and its heterogeneity can be quantified. Methods Quantitative 129Xe ventilation MRI was conducted in 12 younger (24.7±5.2 yrs), and 10 older (62.2±7.2 yrs) healthy individuals, as well as 9 younger (25.9±6.4 yrs) and 10 older (63.2±6.1 yrs) asthmatics. The younger healthy population was used to establish a reference ventilation distribution and thresholds for 6 intensity bins. These were used to display and quantify regions of ventilation defect (VDR), low ventilation (LVR) and high ventilation (HVR). Results The ventilation distribution in young subjects was roughly Gaussian with a mean and SD of 0.52±0.18, resulting in VDR=2.1±1.3%, LVR=15.6±5.4% and HVR=17.4±3.1%. Older healthy volunteers exhibited a significantly right-skewed distribution (0.46±0.20, p=0.034), resulting in significantly increased VDR (7.0±4.8%, p=0.008) and LVR (24.5±11.5%, p=0.025). In the asthmatics, VDR and LVR increased in the older population, and HVR was significantly reduced (13.5±4.6% vs 18.9±4.5%, p=0.009). Quantitative 129Xe MRI also revealed different ventilation distribution patterns in response to albuterol in two asthmatics with normal FEV1. Conclusions Quantitative 129Xe MRI provides a robust and objective means to display and quantify the pulmonary ventilation distribution, even in subjects who have airway function impairment not appreciated by spirometry. PMID:27617823
Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate
Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.
2015-01-01
Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504
Shendell, D G; Winer, A M; Weker, R; Colome, S D
2004-06-01
The prevalence of prefabricated, portable classrooms (portables) for United States public schools has increased; in California, approximately one of three students learn inside portables. Limited research has been conducted on indoor air and environmental quality in American schools, and almost none in portables. Available reports and conference proceedings suggest problems from insufficient ventilation due to poor design, operation, and/or maintenance of heating, ventilation and air conditioning (HVAC) systems; most portables have one mechanical, wall-mounted HVAC system. A pilot assessment was conducted in Los Angeles County, including measurements of integrated ventilation rates based on a perfluorocarbon tracer gas technique and continuous monitoring of temperature (T) and relative humidity (RH). Measured ventilation rates were low [mean school day integrated average 0.8 per hour (range: 0.1-2.9 per hour)]. Compared with relevant standards, results suggested adequate ventilation and associated conditioning of indoor air for occupant comfort were not always provided to these classrooms. Future school studies should include integrated and continuous measurements of T, RH, and ventilation with appropriate tracer gas methods, and other airflow measures. Adequate ventilation has the potential to mitigate concentrations of chemical pollutants, particles, carbon dioxide, and odors in portable and traditional classrooms, which should lead to a reduction in reported health outcomes, e.g., symptoms of 'sick building syndrome', allergies, asthma. Investigations of school indoor air and environmental quality should include continuous temperature and relative humidity data with inexpensive instrumentation as indicators of thermal comfort, and techniques to measure ventilation rates.
Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs
Tawhai, Merryn H; Hoffman, Eric A
2013-01-01
Improved understanding of structure and function relationships in the human lungs in individuals and sub-populations is fundamentally important to the future of pulmonary medicine. Image-based measures of the lungs can provide sensitive indicators of localized features, however to provide a better prediction of lung response to disease, treatment and environment, it is desirable to integrate quantifiable regional features from imaging with associated value-added high-level modeling. With this objective in mind, recent advances in computational fluid dynamics (CFD) of the bronchial airways - from a single bifurcation symmetric model to a multiscale image-based subject-specific lung model - will be reviewed. The interaction of CFD models with local parenchymal tissue expansion - assessed by image registration - allows new understanding of the interplay between environment, hot spots where inhaled aerosols could accumulate, and inflammation. To bridge ventilation function with image-derived central airway structure in CFD, an airway geometrical modeling method that spans from the model ‘entrance’ to the terminal bronchioles will be introduced. Finally, the effects of turbulent flows and CFD turbulence models on aerosol transport and deposition will be discussed. CFD simulation of airflow and particle transport in the human lung has been pursued by a number of research groups, whose interest has been in studying flow physics and airways resistance, improving drug delivery, or investigating which populations are most susceptible to inhaled pollutants. The three most important factors that need to be considered in airway CFD studies are lung structure, regional lung function, and flow characteristics. Their correct treatment is important because the transport of therapeutic or pollutant particles is dependent on the characteristics of the flow by which they are transported; and the airflow in the lungs is dependent on the geometry of the airways and how ventilation is distributed to the peripheral tissue. The human airway structure spans more than 20 generations, beginning with the extra-thoracic airways (oral or nasal cavity, and through the pharynx and larynx to the trachea), then the conducting airways, the respiratory airways, and to the alveoli. The airways in individuals and sub-populations (by gender, age, ethnicity, and normal vs. diseased states) may exhibit different dimensions, branching patterns and angles, and thickness and rigidity. At the local level, one would like to capture detailed flow characteristics, e.g. local velocity profiles, shear stress, and pressure, for prediction of particle transport in an airway (lung structure) model that is specific to the geometry of an individual, to understand how inter-subject variation in airway geometry (normal or pathological) influences the transport and deposition of particles. In a systems biology – or multiscale modeling – approach, these local flow characteristics can be further integrated with epithelial cell models for the study of mechanotransduction. At the global (organ) level, one would like to match regional ventilation (lung function) that is specific to the individual, thus ensuring that the flow that transports inhaled particles is appropriately distributed throughout the lung model. Computational models that do not account for realistic distribution of ventilation are not capable of predicting realistic particle distribution or targeted drug deposition. Furthermore, the flow in the human lung can be transitional or turbulent in the upper and proximal airways, and becomes laminar in the distal airways. The flows in the laminar, transitional and turbulent regimes have different temporal and spatial scales. Therefore, modeling airway structure and predicting gas flow and particle transport at both local and global levels require image-guided multiscale modeling strategies. In this article, we will review the aforementioned three key aspects of CFD studies of the human lungs: airway structure (conducting airways), lung function (regional ventilation and boundary conditions), and flow characteristics (modeling of turbulent flow and its effect on particle transport). For modeling airway structure, we will focus on the conducting airways, and review both symmetric vs. asymmetric airway models, idealized vs. CT-based airway models, and multiscale subject-specific airway models. Imposition of physiological subject-specific boundary conditions (BCs) in CFD is essential to match regional ventilation in individuals, which is also critical in studying preferential deposition of inhaled aerosols in sub-populations, e.g. normals vs. asthmatics that may exhibit different ventilation patterns. Subject-specific regional ventilation defines flow distributions and characteristics in airway segments and bifurcations, which subsequently determines the transport and deposition of aerosols in the entire lungs. Turbulence models are needed to capture the transient and turbulent nature of the gas flow in the human lungs. Thus, the advantages and disadvantages of different turbulence models as well as their effects on particle transport will be discussed. The ultimate goal of the development is to identify sensitive structural and functional variables in sub-populations of normal and diseased lungs for potential clinical applications. PMID:23843310
Ventilation by high-frequency chest wall compression in dogs with normal lungs.
Zidulka, A; Gross, D; Minami, H; Vartian, V; Chang, H K
1983-06-01
In 6 anesthetized and paralyzed supine dogs, ventilation by high-frequency chest wall compression (HFCWC) was accomplished by a piston pump rapidly oscillating the pressure in a modified double blood pressure cuff wrapped around the lower thorax. Testing applied frequencies at 3, 5, 8, and 11 Hz, applied peak cuff pressures ranged from 30 to 230 cmH2O. This produced swings of esophageal pressure as high as 18 cmH2O and peak oscillatory air flow ranging from 0.7 to 1.6 L/s. Oscillatory tidal volume declined with increasing frequency and ranged from a mean of 61 to 45 ml. After 30 min of applied HFCWC, arterial blood gas determinations revealed a mean PaCO2 of 29.3 mmHg at 5 Hz, 35 mmHg at 3 Hz, 36 mmHg at 8 Hz, and 51 mmHg at 11 Hz. Mean PaO2 improved from ventilator control values at 3 Hz, remained unchanged at 5 and 8 Hz, and declined at 11 Hz. In 2 dogs breathing spontaneously, HFCWC applied at 5 and 11 Hz resulted in a reduction in spontaneous minute ventilation, mainly by a reduction in spontaneous tidal volume, whereas arterial blood gas values changed slightly. One dog ceased to breath spontaneously within 5 min of application of HFCWC as the PaCO2 fell below control values. We conclude that in dogs with normal lungs, HFCWC may assist spontaneous ventilation. In paralyzed dogs, HFCWC may be of sufficient magnitude to cause hyperventilation.
Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel
NASA Astrophysics Data System (ADS)
Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei
2018-03-01
In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.
Coggins, Christopher R E; Merski, Jerome A; Oldham, Michael J
2013-01-01
Recent technological advances allow ventilation holes in (or adjacent to) cigarette filters to be produced using lasers instead of using the mechanical procedures of earlier techniques. Analytical chemistry can be used to compare the composition of mainstream smoke from experimental cigarettes having filters with mechanically produced ventilation holes to that of cigarettes with ventilation holes that were produced using laser technology. Established procedures were used to analyze the smoke composition of 38 constituents of mainstream smoke generated using standard conditions. There were no differences between the smoke composition of cigarettes with filter ventilation holes that were produced mechanically or through use of laser technology. The two methods for producing ventilation holes in cigarette filters are equivalent in terms of resulting mainstream smoke chemistry, at two quite different filter ventilation percentages.
Pretest Predictions for Ventilation Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Sun; H. Yang; H.N. Kalia
The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that canmore » be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only.« less
Technology for noninvasive mechanical ventilation: looking into the black box
Navajas, Daniel; Montserrat, Josep M.
2016-01-01
Current devices for providing noninvasive respiratory support contain sensors and built-in intelligence for automatically modifying ventilation according to the patient's needs. These devices, including automatic continuous positive airway pressure devices and noninvasive ventilators, are technologically complex and offer a considerable number of different modes of ventilation and setting options, the details of which are sometimes difficult to capture by the user. Therefore, better predicting and interpreting the actual performance of these ventilation devices in clinical application requires understanding their functioning principles and assessing their performance under well controlled bench test conditions with simulated patients. This concise review presents an updated perspective of the theoretical basis of intelligent continuous positive airway pressure and noninvasive ventilation devices, and of the tools available for assessing how these devices respond under specific ventilation phenotypes in patients requiring breathing support. PMID:27730162
Yadak, Mohammad; Ansari, Khalid Aziz; Qutub, Hatem; Al-Otaibi, Hajed; Al-Omar, Omar; Al-Onizi, Nawal; Farooqi, Faraz Ahmed
2017-09-30
Mechanical ventilation (MV) causes high level of stress in hospitalized patients. Weaning is the gradual process of decreasing ventilator support that in turn lead to termination of MV and increased respiratory effort, which may exacerbate symptoms and prolong MV. This study aimed to investigate the effect of listening to Holy Quran recitation (HQR) as a non-pharmacological intervention in patients during weaning from mechanical ventilation. This is a randomized controlled trial in which 55 patients admitted in the intensive care unit (ICU) and on mechanical ventilation were recruited. Patients were divided into experimental (case) and control group. In the experimental group, patients received 30 min of HQR, whereas in the control group, patients had 30 min of rest in bed before the start of the weaning. The physiological and/or clinical parameters of weaning were recorded. These parameters include rapid shallow breathing index, respiratory rate, heart rate, oxygen saturation, exhaled carbon dioxide, and blood pressure. The baseline demographic data for groups were presented in tables. The mean age was 54 ± 0.5 years for the experimental and 56.4 ± 18.5 years for the control groups. The physiological and clinical parameters were compared between case and control and found no significant difference. The preliminary findings of this pilot study suggest that there is no negative effect of HQR on weaning patients from mechanical ventilation in the ICU. The results also outline and explorthe possible utility of HQR further in ICU patients as an intervention in weaning patients off from ventilator in the ICU. Although there remains much to be done, our work generates important findings in the field of critical care management.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…
Code of Federal Regulations, 2010 CFR
2010-01-01
... off-grade or reserve pool raisins, free from any or all regulations, for uses in non-normal outlets... of for distillation, livestock feed, or by export in natural condition to Mexico. (c) The committee... by the committee. The volume which may be acquired by all handlers shall not exceed 500 natural...
Code of Federal Regulations, 2011 CFR
2011-01-01
... off-grade or reserve pool raisins, free from any or all regulations, for uses in non-normal outlets... of for distillation, livestock feed, or by export in natural condition to Mexico. (c) The committee... by the committee. The volume which may be acquired by all handlers shall not exceed 500 natural...
Mathai, Ss; Datta, Karuna; Adhikari, Km
2012-01-01
Nasal modes of respiratory support cause variable amounts of gastric dilatation which may increase gastro-oesophageal reflux (GER) in preterms. To compare the incidence of GER in nasally ventilated, preterm babies with controls (babies not on ventilation). A prospective, observational comparative study. Twenty-three preterm babies of gestational age 28-36 weeks and weight ranging between 1,000 g and < 2,500 g on either nasal continuous positive airway pressure (nCPAP) or nasal intermittent positive pressure venti-lation (nIPPV) were assessed for GER. They were compared with controls not on ventilation some of who were test babies when off ventilation (subgroup A) and some were unrelated babies not on ventilator but matched for gestational age and weight with test babies (subgroup B). All babies were subjected to continuous, oesophageal pH monitoring with dual sensor (upper and lower oesophageal) catheters. Reflux index (RI) was calculated as the percentage of study time the lower oesophageal pH was < 4. Primary outcome was the RI in the test and controls groups. Secondary outcome was the temporal relation of the reflux with symptoms if any. Numerical data were shown as mean with standard deviation and statistical comparisons were done using the χ(2)-test, Fischer test, and t-test wherever applicable. The RI was higher in ventilated babies as compared to the control group, particularly in the subgroup A, where test babies formed their own controls. Grade IV reflux (7 cases) was seen only in the ventilated babies. There was no difference in the incidence of GER in babies on nCPAP as compared with nIPPV. Grade IV reflux could not be reliably predicted by RI alone. No definite temporal relation between episodes of reflux and symptoms could be determined in this study. There is an increase in GER in preterms on nasal modes of ventilation. A combination of upper (pharyngeal) and lower oesophageal sensors are preferred to a single lower oesophageal sensor when assessing GER by oesophageal pHmetry in neonates.
Desert Shield Leader’s Safety Guide
1990-12-01
banana oil) vapor is toxic and flammable. Checking the seal of the protective mask should be done in a well-ventilated area away from heat and flames...protective clothing to keep fuel off the skin. (Skin is highly susceptible to drying, cracking, and peeling if it comes in contact with fuel in desert
The College and the Energy Crisis.
ERIC Educational Resources Information Center
Douglass, Donald D.
Ways in which colleges can conserve energy are discussed. Reduction in the use of heat and light can be accomplished by taking several steps, such as reducing the amount of fresh air introduced into heating systems, turning off ventilating fans at night, cutting temperatures back during vacation periods and breaks, lowering the temperature of the…
Comparison of freezing control strategies for residential air-to-air heat recovery ventilators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, E.G.; Bradley, L.C.; Chant, R.E.
1989-01-01
A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.
Sá, Rui Carlos; Henderson, A Cortney; Simonson, Tatum; Arai, Tatsuya J; Wagner, Harrieth; Theilmann, Rebecca J; Wagner, Peter D; Prisk, G Kim; Hopkins, Susan R
2017-07-01
We have developed a novel functional proton magnetic resonance imaging (MRI) technique to measure regional ventilation-perfusion (V̇ A /Q̇) ratio in the lung. We conducted a comparison study of this technique in healthy subjects ( n = 7, age = 42 ± 16 yr, Forced expiratory volume in 1 s = 94% predicted), by comparing data measured using MRI to that obtained from the multiple inert gas elimination technique (MIGET). Regional ventilation measured in a sagittal lung slice using Specific Ventilation Imaging was combined with proton density measured using a fast gradient-echo sequence to calculate regional alveolar ventilation, registered with perfusion images acquired using arterial spin labeling, and divided on a voxel-by-voxel basis to obtain regional V̇ A /Q̇ ratio. LogSDV̇ and LogSDQ̇, measures of heterogeneity derived from the standard deviation (log scale) of the ventilation and perfusion vs. V̇ A /Q̇ ratio histograms respectively, were calculated. On a separate day, subjects underwent study with MIGET and LogSDV̇ and LogSDQ̇ were calculated from MIGET data using the 50-compartment model. MIGET LogSDV̇ and LogSDQ̇ were normal in all subjects. LogSDQ̇ was highly correlated between MRI and MIGET (R = 0.89, P = 0.007); the intercept was not significantly different from zero (-0.062, P = 0.65) and the slope did not significantly differ from identity (1.29, P = 0.34). MIGET and MRI measures of LogSDV̇ were well correlated (R = 0.83, P = 0.02); the intercept differed from zero (0.20, P = 0.04) and the slope deviated from the line of identity (0.52, P = 0.01). We conclude that in normal subjects, there is a reasonable agreement between MIGET measures of heterogeneity and those from proton MRI measured in a single slice of lung. NEW & NOTEWORTHY We report a comparison of a new proton MRI technique to measure regional V̇ A /Q̇ ratio against the multiple inert gas elimination technique (MIGET). The study reports good relationships between measures of heterogeneity derived from MIGET and those derived from MRI. Although currently limited to a single slice acquisition, these data suggest that single sagittal slice measures of V̇ A /Q̇ ratio provide an adequate means to assess heterogeneity in the normal lung. Copyright © 2017 the American Physiological Society.
Knott, J.M.
1980-01-01
An assessment of present erosion and sedimentation conditions in the Ca?ada de los Alamos basin was made to aid in estimating the impact of off-road-vehicle use on the sediment yield of the basin. Impacts of off-road vehicles were evaluated by reconnaissance techniques and by comparing the study area with other offroad-vehicle sites in California. Major-storm sediment yields for the basin were estimated using empirical equations developed for the Transverse Ranges and measurements of gully erosion in a representative off-road-vehicle basin. Normal major-storm yields of 73,200 cubic yards would have to be increased to about 98,000 cubic yards to account for the existing level of accelerated erosion caused by off-road vehicles. Long-term sediment yield of the Ca?ada de los Alamos basin upstream from its confluence with Gorman Creek, under present conditions of off-road-vehicle use, is approximately 420 cubic yards per square mile per year--a rate that is considerably lower than a previous estimate of 1,270 cubic yards per square mile per year for the total catchment area above Pyramid Lake.
Neonatal incubators: a toxic sound environment for the preterm infant?*.
Marik, Paul E; Fuller, Christopher; Levitov, Alexander; Moll, Elizabeth
2012-11-01
High sound pressure levels may be harmful to the maturing newborn. Current guidelines suggest that the sound pressure levels within a neonatal intensive care unit should not exceed 45 dB(A). It is likely that environmental noise as well as the noise generated by the incubator fan and respiratory equipment may contribute to the total sound pressure levels. Knowledge of the contribution of each component and source is important to develop effective strategies to reduce noise within the incubator. The objectives of this study were to determine the sound levels, sound spectra, and major sources of sound within a modern neonatal incubator (Giraffe Omnibed; GE Healthcare, Helsinki, Finland) using a sound simulation study to replicate the conditions of a preterm infant undergoing high-frequency jet ventilation (Life Pulse, Bunnell, UT). Using advanced sound data acquisition and signal processing equipment, we measured and analyzed the sound level at a dummy infant's ear and at the head level outside the enclosure. The sound data time histories were digitally acquired and processed using a digital Fast Fourier Transform algorithm to provide spectra of the sound and cumulative sound pressure levels (dBA). The simulation was done with the incubator cooling fan and ventilator switched on or off. In addition, tests were carried out with the enclosure sides closed and hood down and then with the enclosure sides open and the hood up to determine the importance of interior incubator reverberance on the interior sound levels With all the equipment off and the hood down, the sound pressure levels were 53 dB(A) inside the incubator. The sound pressure levels increased to 68 dB(A) with all equipment switched on (approximately 10 times louder than recommended). The sound intensity was 6.0 × 10(-8) watts/m(2); this sound level is roughly comparable with that generated by a kitchen exhaust fan on high. Turning the ventilator off reduced the overall sound pressure levels to 64 dB(A) and the sound pressure levels in the low-frequency band of 0 to 100 Hz were reduced by 10 dB(A). The incubator fan generated tones at 200, 400, and 600 Hz that raised the sound level by approximately 2 dB(A)-3 dB(A). Opening the enclosure (with all equipment turned on) reduced the sound levels above 50 Hz by reducing the revereberance within the enclosure. The sound levels, especially at low frequencies, within a modern incubator may reach levels that are likely to be harmful to the developing newborn. Much of the noise is at low frequencies and thus difficult to reduce by conventional means. Therefore, advanced forms of noise control are needed to address this issue.
Helicopter-based in-water resuscitation with chest compressions: a pilot study.
Winkler, Bernd E; Hartig, Frank; DuCanto, James; Koch, Andreas; Georgieff, Michael; Lungwitz, Yannick P; Muth, Claus-Martin
2015-07-01
Drowning is a relevant worldwide cause of severe disability and death. The delay of ventilations and chest compressions is a crucial problem in drowning victims. Hence, a novel helicopter-based ALS rescue concept with in-water ventilation and chest compressions was evaluated. Cardio pulmonary resuscitation (CPR) and vascular access were performed in a self-inflating Heliboat platform in an indoor wave pool using the Fastrach intubating laryngeal mask, the Oxylator resuscitator, Lund University Cardiopulmonary Assist System (LUCAS) chest compression device and EZ-IO intraosseous power drill. The time requirement and physical exertion on a Visual Analogue Scale (VAS) were compared between a procedure without waves and with moderate swell. Measurement of the elapsed time of the various stages of the procedure did not reveal significant differences between calm water and swell: Ventilation was initiated after 02:48 versus 03:02 and chest compression after 04:20 versus 04:18 min; the intraosseous cannulisation was completed after 05:59 versus 06:30 min after a simulated jump off the helicopter. The attachment of the LUCAS to the mannequin and the intraosseous cannulisation was rated significantly more demanding on the VAS during swell conditions. CPR appears to be possible when performed in a rescue platform with special equipment. The novel helicopter-based strategy appears to enable the rescuers to initiate CPR in an appropriate length of time and with an acceptable amount of physical exertion for the divers. The time for the helicopter to reach the patient will have to be very short to minimise neurological damage in the drowning victim. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Vogel, Matt R.; Watts, Carly
2011-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
Zihlif, Mamoon; Khanchandani, Geeta; Ahmed, Huma P; Soubani, Ayman O
2005-02-01
Using a retrospective review of medical records, we sought the findings of surgical lung biopsy (SLB) in patients with hematological malignancy or hematopoietic stem cell transplantation (HSCT) and unexplained pulmonary infiltrates and to determine the impact of this procedure on management and outcome of these patients. Sixty-two patients who underwent SLB were evaluated; 31 patients had underlying hematological malignancy and 31 patients were HSCT recipients; 58% of whom underwent allogeneic HSCT. Thirty-three patients (53%) had focal infiltrates on chest CT scan while 29 (47%) had diffuse infiltrates. Thirteen patients were mechanically ventilated prior to SLB, and 27 (43%) were neutropenic. There were 66 diagnoses in the 62 patients, 44 (67%) were specific and 22 (33%) were nonspecific. The most common specific diagnoses were infection (29%), malignancy (27%), and inflammatory conditions (11%). Aspergillosis was the most common diagnosis of all biopsies (21%). SLB led to a change in therapy in 40% of patients and was associated with complications in 7 patients (11%). Specific diagnosis was more likely to lead to a change in therapy (48% vs. 27%, P = 0.06) and was associated with a lower mortality when compared to a nonspecific finding (30% vs. 59%, P = 0.02). Nonspecific diagnosis, on the other hand, was seen more in patients on mechanical ventilation prior to SLB compared to those off mechanical ventilation (69% vs. 27%, P = 0.02). SLB provides a specific diagnosis in the majority of patients with hematologic malignancy or HSCT recipients and unexplained pulmonary infiltrates. Specific diagnosis is more likely to lead to a change in therapy and is associated with a better outcome. Copyright 2005 Wiley-Liss, Inc.
Aspiration and the risk of ventilator-associated pneumonia.
Parker, Chris M; Heyland, Daren K
2004-12-01
Ventilator-associated pneumonia (VAP) is a major concern in the intensive care unit. It is estimated that the risk of developing VAP may be as high as 1% per ventilated day, and the attributable mortality approaches 50% in some series. A growing body of evidence implicates the role of microaspiration of contaminated oropharyngeal and perhaps gastroesophageal secretions into the airways as an integral step in the pathogenesis of VAP. In patients who have been intubated and mechanically ventilated for >72 hours, the majority of VAP is caused by enteric gram-negative organisms, presumably of gastrointestinal origin. As a result, strategies designed to minimize the risk of these contaminated secretions into the normally sterile airways are of paramount importance in terms of VAP prevention. This review highlights the important etiological role of the gut in the development of VAP and also discusses the evidence behind interventions that may modulate the risk of both aspiration and subsequent VAP.
Rialp Cervera, G; del Castillo Blanco, A; Pérez Aizcorreta, O; Parra Morais, L
2014-03-01
Noninvasive ventilation (NIV) with conventional therapy improves the outcome of patients with acute respiratory failure due to hypercapnic decompensation of chronic obstructive pulmonary disease (COPD) or acute cardiogenic pulmonary edema (ACPE). This review summarizes the main effects of NIV in these pathologies. In COPD, NIV improves gas exchange and symptoms, reducing the need for endotracheal intubation, hospital mortality and hospital stay compared with conventional oxygen therapy. NIV may also avoid reintubation and may decrease the length of invasive mechanical ventilation. In ACPE, NIV accelerates the remission of symptoms and the normalization of blood gas parameters, reduces the need for endotracheal intubation, and is associated with a trend towards lesser mortality, without increasing the incidence of myocardial infarction. The ventilation modality used in ACPE does not affect the patient prognosis. Copyright © 2012 Elsevier España, S.L. y SEMICYUC. All rights reserved.
A ventilation cooling shirt worn during office work in a hot climate: cool or not?
Zhao, Mengmeng; Kuklane, Kalev; Lundgren, Karin; Gao, Chuansi; Wang, Faming
2015-01-01
The aim of the study was to identify whether a ventilation cooling shirt was effective in reducing heat strain in a hot climate. Eight female volunteers were exposed to heat (38 °C, 45% relative humidity) for 2 h with simulated office work. In the first hour they were in normal summer clothes (total thermal insulation 0.8 clo); in the second hour a ventilation cooling shirt was worn on top. After the shirt was introduced for 1 h, the skin temperatures at the scapula and the chest were significantly reduced (p < 0.05). The mean skin and core temperatures were not reduced. The subjects felt cooler and more comfortable by wearing the shirt, but the cooling effect was most conspicuous only during the initial 10 min. The cooling efficiency of the ventilation shirt was not very effective under the low physical activity in this hot climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ALTIC, NICK A
In March 2011, the USNS Bridge was deployed off northeastern Honshu, Japan with the carrier USS Ronald Reagan to assist with relief efforts after the 2011 Tōhoku earthquake and tsunami. During that time, the Bridge was exposed to air-borne radioactive materials leaking from the damaged Fukushima I Nuclear Power Plant. The proximity of the Bridge to the air-borne impacted area resulted in the contamination of the ship’s air-handling systems and the associated components, as well as potential contamination of other ship surfaces due to either direct intake/deposition or inadvertent spread from crew/operational activities. Preliminary surveys in the weeks after themore » event confirmed low-level contamination within the heating, ventilation, and air conditioning (HVAC) ductwork and systems, and engine and other auxiliary air intake systems. Some partial decontamination was performed at that time. In response to the airborne contamination event, Military Sealift Fleet Support Command (MSFSC) contracted Oak Ridge Associated Universities (ORAU), under provisions of the Oak Ridge Institute for Science and Education (ORISE) contract, to assess the radiological condition of the Bridge. Phase I identified contamination within the CPS filters, ventilation systems, miscellaneous equipment, and other suspect locations that could not accessed at that time (ORAU 2011b). Because the Bridge was underway during the characterization, all the potentially impacted systems/spaces could not be investigated. As a result, MSFSC contracted with ORAU to perform Phase II of the characterization, specifically to survey systems/spaces previously inaccessible. During Phase II of the characterization, the ship was in port to perform routine maintenance operations, allowing access to the previously inaccessible systems/spaces.« less
Tinkler, Stacy H.; Mathews, Lindsey A.; Firshman, Anna M.; Quandt, Jane E.
2015-01-01
A 5-hour-old, premature alpaca cria was presented with failure to nurse, weakness, hypoglycemia, hypercapnia, and respiratory distress. The cria was treated with 3 doses of fresh, crude equine surfactant, positive pressure ventilation, and supplemental intranasal oxygen. Recovery to discharge was uneventful, and the cria regained apparently normal respiratory function. Three years after hospital discharge, the alpaca was a healthy adult. PMID:25829556
Iatrogenic pneumothorax related to mechanical ventilation
Hsu, Chien-Wei; Sun, Shu-Fen
2014-01-01
Pneumothorax is a potentially lethal complication associated with mechanical ventilation. Most of the patients with pneumothorax from mechanical ventilation have underlying lung diseases; pneumothorax is rare in intubated patients with normal lungs. Tension pneumothorax is more common in ventilated patients with prompt recognition and treatment of pneumothorax being important to minimize morbidity and mortality. Underlying lung diseases are associated with ventilator-related pneumothorax with pneumothoraces occurring most commonly during the early phase of mechanical ventilation. The diagnosis of pneumothorax in critical illness is established from the patients’ history, physical examination and radiological investigation, although the appearances of a pneumothorax on a supine radiograph may be different from the classic appearance on an erect radiograph. For this reason, ultrasonography is beneficial for excluding the diagnosis of pneumothorax. Respiration-dependent movement of the visceral pleura and lung surface with respect to the parietal pleura and chest wall can be easily visualized with transthoracic sonography given that the presence of air in the pleural space prevents sonographic visualization of visceral pleura movements. Mechanically ventilated patients with a pneumothorax require tube thoracostomy placement because of the high risk of tension pneumothorax. Small-bore catheters are now preferred in the majority of ventilated patients. Furthermore, if there are clinical signs of a tension pneumothorax, emergency needle decompression followed by tube thoracostomy is widely advocated. Patients with pneumothorax related to mechanical ventilation who have tension pneumothorax, a higher acute physiology and chronic health evaluation II score or PaO2/FiO2 < 200 mmHg were found to have higher mortality. PMID:24834397
NASA Astrophysics Data System (ADS)
Davies, Hugh Trevor Frimston
Radionuclide ventilation perfusion lung scans now play an important part in the investigation of paediatric lung disease, providing a safe, noninvasive assessment of regional lung function in children with suspected pulmonary disease. In paediatric practice the most suitable radionuclides are Krypton 81m (Kr81m) and Technetium 99m (Tc99m), which are jointly used in the Kr81m ventilation/Tc99m macroaggregate perfusion lung scan (V/Q lung scan). The Kr81m ventilation scan involves a low radiation dose, requires little or no subject cooperation and because of the very short half life of Kr81m (13 seconds) the steady state image acquired during continuous inhalation of the radionuclide is considered to reflect regional distribution of ventilation. It is now the most important noninvasive method available for the investigation of the regional abnormalities of ventilation characteristic of many congenital and acquired paediatric respiratory diseases, such as diaphragmatic hernia, pulmonary sequestration, bronchopulmonary dysplasia, foreign body inhalation and bronchiectasis. It improves diagnostic accuracy, aids clinical decision making and is used to monitor the progress of disease and response to therapy. Theoretical analysis of the steady state Kr81m ventilation image suggests that it may only reflect regional ventilation when specific ventilation (ventilation per unit volume of lung) is within or below the normal adult range (1-3 L/L/min). At higher values such as those seen in neonates and infants (8-15 L/L/min) Kr81m activity may reflect regional lung volume rather than ventilation, a conclusion supported by the studies of Ciofetta et al. There is some controversy on this issue as animal studies have demonstrated that the Kr81m image reflects ventilation over a much wider range of specific ventilation (up to 13 L/L/min). A clinical study of sick infants and very young children is in agreement with this animal work and suggests that the steady state Kr81m image still reflects regional ventilation in this age group. The doubt cast on the interpretation of the Kr81m steady state image could limit the value of V/Q lung scans in following regional lung function through childhood, a period when specific ventilation is falling rapidly as the child grows. Therefore the first aim of this study was to examine the application of this theoretical model to children and determine whether the changing specific ventilation seen through childhood significantly alters the interpretation of the steady state Kr81m image. This is a necessary first step before conducting longitudinal studies of regional ventilation and perfusion in children. The effect of posture on regional ventilation and perfusion in the adult human lung has been extensively studied. Radiotracer studies have consistently shown that both ventilation and perfusion are preferentially distributed to dependent lung regions during tidal breathing regardless of posture. There is little published information concerning the pattern in children yet there are many differences in lung and chest wall mechanics of children and adults which, along with clinical observation, have led to the hypothesis that the pattern of regional ventilation observed in adults may not be seen in children. Recent reports of regional ventilation in infants and very young children have provided support for this theory. The paper of Heaf et al demonstrated that these differences may in certain circumstances be clinically important. It is not clear however at what age children adopt the "adult pattern of ventilation". In addition to the problems referred to above, attenuation of Kr81m activity as it passes through the chest wall and the changing geometry of the chest during tidal breathing have made quantitative analysis of the image difficult although fractional ventilation and perfusion to each lung can be calculated from the steady state image. In clinical practise, therefore, ventilation and perfusion are usually assessed by inspection of the steady state image. The aims of the present study were therefore: 1. To critically assess Kr81m ventilation and Tc99m MAA perfusion images in children. 2. To derive fractional ventilation and perfusion to each lung in children with normal chest radiography and homogeneous distribution of the radionuclides. 3. To conduct further studies into the effects of gravity on regional lung function. 4. To apply the technique in clinical practise. 5. To attempt to improve quantitation of the Kr81m ventilation image.
The ventilation problem in schools: literature review
Fisk, W. J.
2017-07-06
Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less
The ventilation problem in schools: literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, W. J.
Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less
ERIC Educational Resources Information Center
Associated General Contractors of America, Washington, DC.
This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…
2012-02-01
for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... the installation of a heating, ventilation, and air conditioning (HVAC) system at the City of La Ca... EE0000905, for the installation of a heating, ventilation, and air conditioning (HVAC) system at the at the... efforts and MEP's scouting process, it was determined that if the described HVAC system was manufactured...
NASA Astrophysics Data System (ADS)
Chitaru, George; Berville, Charles; Dogeanu, Angel
2018-02-01
This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.
Effects of the 1982-1983 El Niño on the marine phytoplankton off northern Chile
NASA Astrophysics Data System (ADS)
Avaria, Sergio; MuñOz, Pablo
1987-12-01
The evolution of phytoplankton was studied between December 1980 and August 1985. A total of 1269 net and water samples were obtained in 11 cruises as part of the Estudio Regional del Fenómeno El Niño-Chile Program covering the area extending from Arica (18°30'S) to Chañaral (26°20'S) from the coast to 200 n. mi (370 km) westward. In the period which preceded the 1982-1983 El Niño event, the coastal phytoplankton consisted predominantly of blooming diatom species which support a large phytoplanktonic biomass. The cell density up to 20 n. mi (37 km) off the coast was over 100 cells mL-1, with a maximum density nucleus near the coast, where values over 1000 cells mL-1 were found. With the anomalous conditions produced by El Niño in December 1982, changes were detected in the phytoplankton biomass and composition. There was a marked decrease in the biomass, the diatom dominance was restricted to a narrow coast band of 2 to 3 n. mi (3.7-5.5 km), and warm water species of diatoms and dinoflagellates reached the coast. These conditions reached their maximum intensity in May 1983. Phytoplankton started to return to normal conditions in December 1983 with a predominance of large diatoms, which support a biomass somewhat larger than that during El Niño. Small diatoms returned as the dominant species in large blooms in 1985. The cell numbers reached values similar to those during pre-Niño conditions, with a normal neritic and oceanic phytoplankton distribution. Red tides caused by the ciliate Mesodinium rubrum were common during normal conditions before and after El Niño.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betts, Daniel; Ally, Moonis Raza; Mudiraj, Shyam
Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.
Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues
Sommerstein, Rami; Rüegg, Christian; Kohler, Philipp; Bloemberg, Guido; Kuster, Stefan P; Sax, Hugo
2016-06-01
Heater-cooler units (HCUs) were recently identified as a source of Mycobacterium chimaera causing surgical site infections. We investigated transmission of this bacterium from HCUs to the surgical field by using a thermic anemometer and particle counter, videotape of an operating room equipped with an ultraclean laminar airflow ventilation system, and bacterial culture sedimentation plates in a nonventilated room. Smoke from the HCU reached the surgical field in 23 s by merging with ultraclean air. The HCU produced on average 5.2, 139, and 14.8 particles/min in the surgical field at positions Off, On/oriented toward, and On/oriented away, respectively. Culture plates were positive for M. chimaera <5 m from the HCU in the test room. These experiments confirm airborne transmission of M. chimaera aerosols from a contaminated HCU to an open surgical field despite ultraclean air ventilation. Efforts to mitigate infectious risks during surgery should consider contamination from water sources and airflow-generating devices.
Sommerstein, Rami; Rüegg, Christian; Kohler, Philipp; Bloemberg, Guido; Kuster, Stefan P.
2016-01-01
Heater–cooler units (HCUs) were recently identified as a source of Mycobacterium chimaera causing surgical site infections. We investigated transmission of this bacterium from HCUs to the surgical field by using a thermic anemometer and particle counter, videotape of an operating room equipped with an ultraclean laminar airflow ventilation system, and bacterial culture sedimentation plates in a nonventilated room. Smoke from the HCU reached the surgical field in 23 s by merging with ultraclean air. The HCU produced on average 5.2, 139, and 14.8 particles/min in the surgical field at positions Off, On/oriented toward, and On/oriented away, respectively. Culture plates were positive for M. chimaera <5 m from the HCU in the test room. These experiments confirm airborne transmission of M. chimaera aerosols from a contaminated HCU to an open surgical field despite ultraclean air ventilation. Efforts to mitigate infectious risks during surgery should consider contamination from water sources and airflow-generating devices. PMID:27070958
Moustafa, Islam O F; ElHansy, Muhammad H E; Al Hallag, Moataz; Fink, James B; Dailey, Patricia; Rabea, Hoda; Abdelrahim, Mohamed E A
2017-08-01
Inhaled-medication delivered during mechanical-ventilation is affected by type of aerosol-generator and humidity-condition. Despite many in-vitro studies related to aerosol-delivery to mechanically-ventilated patients, little has been reported on clinical effects of these variables. The aim of this study was to determine effect of humidification and type of aerosol-generator on clinical status of mechanically ventilated asthmatics. 72 (36 females) asthmatic subjects receiving invasive mechanical ventilation were enrolled and assigned randomly to 6 treatment groups of 12 (6 females) subjects each received, as possible, all inhaled medication using their assigned aerosol generator and humidity condition during delivery. Aerosol-generators were placed immediately after humidifier within inspiratory limb of mechanical ventilation circuit. First group used vibrating-mesh-nebulizer (Aerogen Solo; VMN) with humidification; Second used VMN without humidification; Third used metered-dose-inhaler with AeroChamber Vent (MDI-AV) with humidification; Forth used MDI-AV without humidification; Fifth used Oxycare jet-nebulizer (JN) with humidification; Sixth used JN without humidification. Measured parameters included clinical-parameters reflected patient response (CP) and endpoint parameters e.g. length-of-stay in the intensive-care-unit (ICU-days) and mechanical-ventilation days (MV-days). There was no significant difference between studied subjects in the 6 groups in baseline of CP. VMN resulted in trend to shorter ICU-days (∼1.42days) compared to MDI-AV (p = 0.39) and relatively but not significantly shorter ICU-days (∼0.75days) compared JN. Aerosol-delivery with or without humidification did not have any significant effect on any of parameters studied with very light insignificant tendency of delivery at humid condition to decrease MV-days and ICU-days. No significant effect was found of changing humidity during aerosol-delivery to ventilated-patient. VMN to deliver aerosol in ventilated patient resulted in trend to decreased ICU-days compared to JN and MDI-AV. Aerosol-delivery with or without humidification did not have any significant effect on any of parameters studied. However, we recommend increasing the number of patients studied to corroborate this finding. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Air quality control systems: heating, ventilating, and air conditioning (HVAC)].
Bellucci Sessa, R; Riccio, G
2004-01-01
After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Less, Brennan; Walker, Iain; Ticci, Sara
Past field research and simulation studies have shown that high performance homes experience elevated indoor humidity levels for substantial portions of the year in humid climates. This is largely the result of lower sensible cooling loads, which reduces the moisture removed by the cooling system. These elevated humidity levels lead to concerns about occupant comfort, health and building durability. Use of mechanical ventilation at rates specified in ASHRAE Standard 62.2-2013 are often cited as an additional contributor to humidity problems in these homes. Past research has explored solutions, including supplemental dehumidification, cooling system operational enhancements and ventilation system design (e.g.,more » ERV, supply, exhaust, etc.). This project’s goal is to develop and demonstrate (through simulations) smart ventilation strategies that can contribute to humidity control in high performance homes. These strategies must maintain IAQ via equivalence with ASHRAE Standard 62.2-2013. To be acceptable they must not result in excessive energy use. Smart controls will be compared with dehumidifier energy and moisture performance. This work explores the development and performance of smart algorithms for control of mechanical ventilation systems, with the objective of reducing high humidity in modern high performance residences. Simulations of DOE Zero-Energy Ready homes were performed using the REGCAP simulation tool. Control strategies were developed and tested using the Residential Integrated Ventilation (RIVEC) controller, which tracks pollutant exposure in real-time and controls ventilation to provide an equivalent exposure on an annual basis to homes meeting ASHRAE 62.2-2013. RIVEC is used to increase or decrease the real-time ventilation rate to reduce moisture transport into the home or increase moisture removal. This approach was implemented for no-, one- and two-sensor strategies, paired with a variety of control approaches in six humid climates (Miami, Orlando, Houston, Charleston, Memphis and Baltimore). The control options were compared to a baseline system that supplies outdoor air to a central forced air cooling (and heating) system (CFIS) that is often used in hot humid climates. Simulations were performed with CFIS ventilation systems operating on a 33% duty-cycle, consistent with 62.2-2013. The CFIS outside airflow rates were set to 0%, 50% and 100% of 62.2-2013 requirements to explore effects of ventilation rate on indoor high humidity. These simulations were performed with and without a dehumidifier in the model. Ten control algorithms were developed and tested. Analysis of outdoor humidity patterns facilitated smart control development. It was found that outdoor humidity varies most strongly seasonally—by month of the year—and that all locations follow the similar pattern of much higher humidity during summer. Daily and hourly variations in outdoor humidity were found to be progressively smaller than the monthly seasonal variation. Patterns in hourly humidity are driven by diurnal daily patterns, so they were predictable but small, and were unlikely to provide much control benefit. Variation in outdoor humidity between days was larger, but unpredictable, except by much more complex climate models. We determined that no-sensor strategies might be able to take advantage of seasonal patterns in humidity, but that real-time smart controls were required to capture variation between days. Sensor-based approaches are also required to respond dynamically to indoor conditions and variations not considered in our analysis. All smart controls face trade-offs between sensor accuracy, cost, complexity and robustness.« less
Below, Harald; Ryll, Sylvia; Empen, Klaus; Dornquast, Tina; Felix, Stefan; Rosenau, Heike; Kramer, Sebastian; Kramer, Axel
2010-09-21
In a cardiac procedure room, ventilated by a ventilation and air-conditioning system with turbulent mixed airflow, a protection zone in the operating area could be defined through visualization of airflows. Within this protection zone, no turbulence was detectable in the room air.Under the given conditions, disinfection of all surfaces including all furniture and equipment after the last operation and subsequent draping of furniture and all equipment that could not be removed from the room with sterile surgical drapes improved the indoor room air quality from cleanroom class C to cleanroom class B. This also allows procedures with elevated requirements to be performed in room class 1b.
Cabrera-Benitez, Nuria E; Laffey, John G; Parotto, Matteo; Spieth, Peter M; Villar, Jesús; Zhang, Haibo; Slutsky, Arthur S
2014-07-01
One of the most challenging problems in critical care medicine is the management of patients with the acute respiratory distress syndrome. Increasing evidence from experimental and clinical studies suggests that mechanical ventilation, which is necessary for life support in patients with acute respiratory distress syndrome, can cause lung fibrosis, which may significantly contribute to morbidity and mortality. The role of mechanical stress as an inciting factor for lung fibrosis versus its role in lung homeostasis and the restoration of normal pulmonary parenchymal architecture is poorly understood. In this review, the authors explore recent advances in the field of pulmonary fibrosis in the context of acute respiratory distress syndrome, concentrating on its relevance to the practice of mechanical ventilation, as commonly applied by anesthetists and intensivists. The authors focus the discussion on the thesis that mechanical ventilation-or more specifically, that ventilator-induced lung injury-may be a major contributor to lung fibrosis. The authors critically appraise possible mechanisms underlying the mechanical stress-induced lung fibrosis and highlight potential therapeutic strategies to mitigate this fibrosis.
Malcolm, Philippe; Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H
2015-02-22
Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from push-off work, and the effects of push-off timing on biomechanics were not measured. Most lower-limb amputations are unilateral, which could also affect optimal timing. The goal of this study was to vary the timing of positive prosthesis push-off work in isolation and measure the effects on energetics, mechanics and muscle activity. We tested 10 able-bodied participants walking on a treadmill at 1.25 m · s(-1). Participants wore a tethered ankle-foot prosthesis emulator on one leg using a rigid boot adapter. We programmed the prosthesis to apply torque bursts that began between 46% and 56% of stride in different conditions. We iteratively adjusted torque magnitude to maintain constant net positive push-off work. When push-off began at or after leading leg contact, metabolic rate was about 10% lower than in a condition with Spring-like prosthesis behavior. When push-off began before leading leg contact, metabolic rate was not different from the Spring-like condition. Early push-off led to increased prosthesis-side vastus medialis and biceps femoris activity during push-off and increased variability in step length and prosthesis loading during push-off. Prosthesis push-off timing had no influence on intact-side leg center-of-mass collision work. Prosthesis push-off timing, isolated from push-off work, strongly affected metabolic rate, with optimal timing at or after intact-side heel contact. Increased thigh muscle activation and increased human variability appear to have caused the lack of reduction in metabolic rate when push-off was provided too early. Optimal timing with respect to opposite heel contact was not different from normal walking, but the trends in metabolic rate and center-of-mass mechanics were not consistent with simple model predictions. Optimal push-off timing should also be characterized for individuals with amputation, since meaningful benefits might be realized with improved timing.
Idiopathic pulmonary fibrosis. A rare cause of scintigraphic ventilation-perfusion mismatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pochis, W.T.; Krasnow, A.Z.; Collier, B.D.
1990-05-01
A case of idiopathic pulmonary fibrosis with multiple areas of mismatch on ventilation-perfusion lung imaging in the absence of pulmonary embolism is presented. Idiopathic pulmonary fibrosis is one of the few nonembolic diseases producing a pulmonary ventilation-perfusion mismatch. In this condition, chest radiographs may not detect the full extent of disease, and xenon-133 ventilation imaging may be relatively insensitive to morbid changes in small airways. Thus, when examining patients with idiopathic pulmonary fibrosis, one should be aware that abnormal perfusion imaging patterns without matching ventilation abnormalities are not always due to embolism. In this setting, contrast pulmonary angiography is oftenmore » needed for accurate differential diagnosis.« less
Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Wang, G.; Volkow, N.D.
The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice,more » once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance.« less
Bascompta, Marc; Castañón, Ana María; Sanmiquel, Lluís; Oliva, Josep
2016-11-01
Gases such as CO, CO2 or NOx are constantly generated by the equipment in any underground mine and the ventilation layout can play an important role in keeping low concentrations in the working faces. Hence, a method able to control the workplace environment is crucial. This paper proposes a geographical information system (GIS) for such goal. The system created provides the necessary tools to manage and analyse an underground environment, connecting pollutants and temperatures with the ventilation characteristics over time. Data concerning the ventilation system, in a case study, has been taken every month since 2009 and integrated into the management system, which has quantified the gasses concentration throughout the mine due to the characteristics and evolution of the ventilation layout. Three different zones concerning CO, CO2, NOx and effective temperature have been found as well as some variations among workplaces within the same zone that suggest local airflow recirculations. The system proposed could be a useful tool to improve the workplace conditions and efficiency levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ramesh, A; Denzil, S B; Linda, R; Josephine, P K; Nagapoornima, M; Suman Rao, P N; Swarna Rekha, A
2013-03-01
To evaluate the efficacy of operant conditioning in sustaining reduced noise levels in the neonatal intensive care unit (NICU). Quasi-experimental study on quality of care. Level III NICU of a teaching hospital in south India. 26 staff employed in the NICU. (7 Doctors, 13 Nursing staff and 6 Nursing assistants). Operant conditioning of staff activity for 6 months. This method involves positive and negative reinforcement to condition the staff to modify noise generating activities. Comparing noise levels in decibel: A weighted [dB (A)] before conditioning with levels at 18 and 24 months after conditioning. Decibel: A weighted accounts for noise that is audible to human ears. Operant conditioning for 6 months sustains the reduced noise levels to within 62 dB in ventilator room 95% CI: 60.4 - 62.2 and isolation room (95% CI: 55.8 - 61.5). In the preterm room, noise can be maintained within 52 dB (95% CI: 50.8 - 52.6). This effect is statistically significant in all the rooms at 18 months (P = 0.001). At 24 months post conditioning there is a significant rebound of noise levels by 8.6, 6.7 and 9.9 dB in the ventilator, isolation and preterm room, respectively (P =0.001). Operant conditioning for 6 months was effective in sustaining reduced noise levels. At 18 months post conditioning, the noise levels were maintained within 62 dB (A), 60 dB (A) and 52 dB (A) in the ventilator, isolation and pre-term room, respectively. Conditioning needs to be repeated at 12 months in the ventilator room and at 18 months in the other rooms.
Injection sclerotherapy for haemorrhoids causing adult respiratory distress syndrome.
Rashid, Muhammad Misbah; Murtaza, Badar; Gondal, Zafar Iqbal; Mehmood, Arshad; Shah, Shahzad Saleem; Abbasi, Muhammad Hanif; Tamimy, Muhammad Sarmad; Kazmi, Syed Tahawwar Mujtaba
2006-05-01
A young lady with first-degree haemorrhoids was administered injection sclerotherapy with 5% phenol in almond oil. Soon after the injection, she developed syncope and later signs and symptoms of acute respiratory distress syndrome (ARDS). She was kept on ventilatory support for 4 days, made a smooth recovery and was successfully weaned off from the ventilator.
Assessment of Natural Ventilation System for a Typical Residential House in Poland
NASA Astrophysics Data System (ADS)
Antczak-Jarząbska, Romana; Krzaczek, Marek
2016-09-01
The paper presents the research results of field measurements campaign of natural ventilation performance and effectiveness in a residential building. The building is located in the microclimate whose parameters differ significantly in relation to a representative weather station. The measurement system recorded climate parameters and the physical variables characterizing the air flow in the rooms within 14 days of the winter season. The measurement results showed that in spite of proper design and construction of the ventilation system, unfavorable microclimatic conditions that differed from the predicted ones caused significant reduction in the efficiency of the ventilation system. Also, during some time periods, external climate conditions caused an opposite air flow direction in the vent inlets and outlets, leading to a significant deterioration of air quality and thermal comfort measured by CO2 concentration and PMV index in a residential area.
ERIC Educational Resources Information Center
Sandage, Mary J.; Rahn, Keith A.; Smith, Audrey G.
2017-01-01
Purpose: The purpose of this study was to examine the influence of the heating, ventilation, and air-conditioning method on voice function following a voicing task using ecologically valid offices, one with radiant HVAC and one with forced air. Method: A total of 12 consented participants (6 women, 6 men) narrated a video in each of 4…
ERIC Educational Resources Information Center
Wheeler, Arthur E.
To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…
Longitudinal dispersion in model of central airways during high-frequency ventilation.
van der Kooij, A M; Luijendijk, S C
1991-04-01
We have measured the longitudinal dispersion of boluses of helium, acetylene and sulphur hexafluoride in a plastic model of the human airways--generations zero through six--during high frequency ventilation (HFV). HFV was maintained by a piston pump. Frequency f and tidal volume VT ranged from 2.5 to 25 Hz and from 5 to 20 ml, respectively. Boluses were injected near the entrance of the zeroth generation (trachea), and the dispersion curves were measured by mass spectrometry at the end of the sixth airway generation. The shapes of the bolus dispersion curves could be well described with Gaussian distribution functions. With the exception of the HFV-conditions with VT = 5 ml, the effective dispersion coefficient DDISP appeared to be independent of the molecular diffusion coefficient. This independency was also found by other investigators in studies with dogs and human subjects. The measured results for DDISP for different f and VT could be satisfactorily described with the empirical equation DDISP = 0.0617 f0.8VT1.38 [cm2S-1]. Application of this equation to f and VT values normally applied in man resulted in DDISP values which should be considered to be too small for maintaining eucapnic ventilation in vivo. On the basis of this result we believe that during HFV in intubated subjects gas transport by longitudinal dispersion will be limited to the instrumental dead space--the endotracheal tube inclusive--and a few generations of large bronchi.
Karthikeyan, Balasubramanian; Kadhiravan, Tamilarasu; Deepanjali, Surendran; Swaminathan, Rathinam Palamalai
2015-01-01
Mechanical ventilation is a resource intensive organ support treatment, and historical studies from low-resource settings had reported a high mortality. We aimed to study the outcomes in patients receiving mechanical ventilation in a contemporary low-resource setting. We prospectively studied the characteristics and outcomes (disease-related, mechanical ventilation-related, and process of care-related) in 237 adults mechanically ventilated for a medical illness at a teaching hospital in southern India during February 2011 to August 2012. Vital status of patients discharged from hospital was ascertained on Day 90 or later. Mean age of the patients was 40 ± 17 years; 140 (51%) were men. Poisoning and envenomation accounted for 98 (41%) of 237 admissions. In total, 87 (37%) patients died in-hospital; 16 (7%) died after discharge; 115 (49%) were alive at 90-day assessment; and 19 (8%) were lost to follow-up. Weaning was attempted in 171 (72%) patients; most patients (78 of 99 [79%]) failing the first attempt could be weaned off. Prolonged mechanical ventilation was required in 20 (8%) patients. Adherence to head-end elevation and deep vein thrombosis prophylaxis were 164 (69%) and 147 (62%) respectively. Risk of nosocomial infections particularly ventilator-associated pneumonia was high (57.2 per 1,000 ventilator-days). Higher APACHE II score quartiles (adjusted HR [95% CI] quartile 2, 2.65 [1.19-5.89]; quartile 3, 2.98 [1.24-7.15]; quartile 4, 5.78 [2.45-13.60]), and new-onset organ failure (2.98 [1.94-4.56]) were independently associated with the risk of death. Patients with poisoning had higher risk of reintubation (43% vs. 20%; P = 0.001) and ventilator-associated pneumonia (75% vs. 53%; P = 0.001). But, their mortality was significantly lower compared to the rest (24% vs. 44%; P = 0.002). The case-mix considerably differs from other settings. Mortality in this low-resource setting is similar to high-resource settings. But, further improvements in care processes and prevention of nosocomial infections are required.
Classification of the height and flexibility of the medial longitudinal arch of the foot.
Nilsson, Mette Kjærgaard; Friis, Rikke; Michaelsen, Maria Skjoldahl; Jakobsen, Patrick Abildgaard; Nielsen, Rasmus Oestergaard
2012-02-17
The risk of developing injuries during standing work may vary between persons with different foot types. High arched and low arched feet, as well as rigid and flexible feet, are considered to have different injury profiles, while those with normal arches may sustain fewer injuries. However, the cut-off values for maximum values (subtalar position during weight-bearing) and range of motion (ROM) values (difference between subtalar neutral and subtalar resting position in a weight-bearing condition) for the medial longitudinal arch (MLA) are largely unknown. The purpose of this study was to identify cut-off values for maximum values and ROM of the MLA of the foot during static tests and to identify factors influencing foot posture. The participants consisted of 254 volunteers from Central and Northern Denmark (198 m/56 f; age 39.0 ± 11.7 years; BMI 27.3 ± 4.7 kg/m2). Navicular height (NH), longitudinal arch angle (LAA) and Feiss line (FL) were measured for either the left or the right foot in a subtalar neutral position and subtalar resting position. Maximum values and ROM were calculated for each test. The 95% and 68% prediction intervals were used as cut-off limits. Multiple regression analysis was used to detect influencing factors on foot posture. The 68% cut-off values for maximum MLA values and MLA ROM for NH were 3.6 to 5.5 cm and 0.6 to 1.8 cm, respectively, without taking into account the influence of other variables. Normal maximum LAA values were between 131 and 152° and normal LAA ROM was between -1 and 13°. Normal maximum FL values were between -2.6 and -1.2 cm and normal FL ROM was between -0.1 and 0.9 cm. Results from the multivariate linear regression revealed an association between foot size with FL, LAA, and navicular drop. The cut-off values presented in this study can be used to categorize people performing standing work into groups of different foot arch types. The results of this study are important for investigating a possible link between arch height and arch movement and the development of injuries.
NASA Astrophysics Data System (ADS)
Tustison, Nicholas J.; Contrella, Benjamin; Altes, Talissa A.; Avants, Brian B.; de Lange, Eduard E.; Mugler, John P.
2013-03-01
The utitlity of pulmonary functional imaging techniques, such as hyperpolarized 3He MRI, has encouraged their inclusion in research studies for longitudinal assessment of disease progression and the study of treatment effects. We present methodology for performing voxelwise statistical analysis of ventilation maps derived from hyper polarized 3He MRI which incorporates multivariate template construction using simultaneous acquisition of IH and 3He images. Additional processing steps include intensity normalization, bias correction, 4-D longitudinal segmentation, and generation of expected ventilation maps prior to voxelwise regression analysis. Analysis is demonstrated on a cohort of eight individuals with diagnosed cystic fibrosis (CF) undergoing treatment imaged five times every two weeks with a prescribed treatment schedule.
Pectus excavatum in children: pulmonary scintigraphy before and after corrective surgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blickman, J.G.; Rosen, P.R.; Welch, K.J.
1985-09-01
Regional distribution of pulmonary function was evaluated preoperatively and postoperatively with xenon-133 perfusion and ventilation scintigraphy in 17 patients with pectus excavatum. Ventilatory preoperative studies were abnormal in 12 of 17 patients, resolving in seven of 12 postoperatively. Perfusion scans were abnormal in ten of 17 patients preoperatively; six of ten showed improvement postoperatively. Ventilation-perfusion ratios were abnormal in ten of 17 patients, normalizing postoperatively in six of ten. Symmetry of ventilation-perfusion ratio images improved in six out of nine in the latter group. The distribution of regional lung function in pectus excavatum can be evaluated preoperatively to support indicationsmore » for surgery. Postoperative improvement can be documented by physiological changes produced by the surgical correction.« less
Energy Use Consequences of Ventilating a Net-Zero Energy House
Ng, Lisa C.; Payne, W. Vance
2016-01-01
A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery. PMID:26903776
Energy Use Consequences of Ventilating a Net-Zero Energy House.
Ng, Lisa C; Payne, W Vance
2016-03-05
A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery.
Natural ventilation of buildings: opposing wind and buoyancy
NASA Astrophysics Data System (ADS)
Linden, Paul; Hunt, Gary
1998-11-01
The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.
Night ventilation control strategies in office buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhaojun; Yi, Lingli; Gao, Fusheng
2009-10-15
In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factorsmore » influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy. (author)« less
Function of the Dräger Oxylog ventilator at high altitude.
Thomas, G; Brimacombe, J
1994-06-01
We have assessed the performance of the Dräger Oxylog ventilator at high altitude using a decompression chamber and a lung simulator set to mimic the normal and non-compliant lung. In the normal lung, tidal volume increased by 28% at 2040 metres and by 106% at 9120 metres. A lesser change, but in the opposite direction, occurred in respiratory rate. The net effect was a linear increase in minute volume with altitude. At 2040 and 9144 metres minute volume increased by 13% and by 45%, and rate decreased by 10% and 30% respectively. In the abnormal lung stimulation, similar, but slightly less marked, changes occurred in all variables. These changes are of sufficient magnitude to require frequent observation of tidal volume and respiratory rate during aircraft ascent and descent.
Bustamante, Eliseo; Guijarro, Enrique; García-Diego, Fernando-Juan; Balasch, Sebastián; Hospitaler, Antonio; Torres, Antonio G.
2012-01-01
The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R2 = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation (V&V) system of Computational Fluid Dynamics (CFD) simulations in poultry farms. PMID:22778611
Epidemiology of Noninvasive Ventilation in Pediatric Cardiac ICUs.
Romans, Ryan A; Schwartz, Steven M; Costello, John M; Chanani, Nikhil K; Prodhan, Parthak; Gazit, Avihu Z; Smith, Andrew H; Cooper, David S; Alten, Jeffrey; Mistry, Kshitij P; Zhang, Wenying; Donohue, Janet E; Gaies, Michael
2017-10-01
To describe the epidemiology of noninvasive ventilation therapy for patients admitted to pediatric cardiac ICUs and to assess practice variation across hospitals. Retrospective cohort study using prospectively collected clinical registry data. Pediatric Cardiac Critical Care Consortium clinical registry. Patients admitted to cardiac ICUs at PC4 hospitals. None. We analyzed all cardiac ICU encounters that included any respiratory support from October 2013 to December 2015. Noninvasive ventilation therapy included high flow nasal cannula and positive airway pressure support. We compared patient and, when relevant, perioperative characteristics of those receiving noninvasive ventilation to all others. Subgroup analysis was performed on neonates and infants undergoing major cardiovascular surgery. To examine duration of respiratory support, we created a casemix-adjustment model and calculated adjusted mean durations of total respiratory support (mechanical ventilation + noninvasive ventilation), mechanical ventilation, and noninvasive ventilation. We compared adjusted duration of support across hospitals. The cohort included 8,940 encounters from 15 hospitals: 3,950 (44%) received noninvasive ventilation and 72% were neonates and infants. Medical encounters were more likely to include noninvasive ventilation than surgical. In surgical neonates and infants, 2,032 (55%) received postoperative noninvasive ventilation. Neonates, extracardiac anomalies, single ventricle, procedure complexity, preoperative respiratory support, mechanical ventilation duration, and postoperative disease severity were associated with noninvasive ventilation therapy (p < 0.001 for all). Across hospitals, noninvasive ventilation use ranged from 32% to 65%, and adjusted mean noninvasive ventilation duration ranged from 1 to 4 days (3-d observed mean). Duration of total adjusted respiratory support was more strongly correlated with duration of mechanical ventilation compared with noninvasive ventilation (Pearson r = 0.93 vs 0.71, respectively). Noninvasive ventilation use is common in cardiac ICUs, especially in patients admitted for medical conditions, infants, and those undergoing high complexity surgery. We observed wide variation in noninvasive ventilation use across hospitals, though the primary driver of total respiratory support time seems to be duration of mechanical ventilation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, H; Xia, P; Yu, N
Purpose: To study ventilation weighting effect on radiation doses to both side lungs for patients with advanced stage lung cancer. Methods: Fourteen patients with advanced stage lung cancer were included in this retrospective study. Proprietary software was developed to calculate the lung ventilation map based on 4DCT images acquired for radiation therapy. Two phases of inhale (0%) and exhale (50%) were used for the lung ventilation calculations. For each patient, the CT images were resampled to the same dose calculation resolution of 3mmx3mmx3mm. The ventilation distribution was then normalized by the mean value of the ventilation. The ventilation weighted dosemore » was calculated by applying linearly weighted ventilation to the dose of each pixel. The lung contours were automatically delineated from patient CT image with lung window, excluding the tumor and high density tissues. For contralateral and ipsilateral lungs, the mean lung doses from the original plan and ventilation weighted mean lung doses were compared using two tail t-Test. Results: The average of mean dose was 6.1 ±3.8Gy for the contralateral lungs, and 26.2 ± 14.0Gy for the ipsilateral lungs. The average of ventilation weighted dose was 6.3± 3.8Gy for the contralateral lungs and 24.6 ± 13.1Gy for the ipsilateral lungs. The statistics analysis shows the significance of the mean dose increase (p<0.015) for the contralateral lungs and decrease (p<0.005) for the ipsilateral lungs. Conclusion: Ventilation weighted doses were greater than the un-weighted doses for contralateral lungs and smaller for ipsilateral lungs. This Result may be helpful to understand the radiation dosimetric effect on the lung function and provide planning guidance for patients with advance stage lung cancer.« less
City ventilation of Hong Kong at no-wind conditions
NASA Astrophysics Data System (ADS)
Yang, Lina; Li, Yuguo
We hypothesize that city ventilation due to both thermally-driven mountain slope flows and building surface flows is important in removing ambient airborne pollutants in the high-rise dense city Hong Kong at no-wind conditions. Both spatial and temporal urban surface temperature profiles are an important boundary condition for studying city ventilation by thermal buoyancy. Field measurements were carried out to investigate the diurnal thermal behavior of urban surfaces (mountain slopes, and building exterior walls and roofs) in Hong Kong by using the infrared thermography. The maximum urban surface temperature was measured in the early noon hours (14:00-15:00 h) and the minimum temperature was observed just before sunrise (5:00 h). The vertical surface temperature of the building exterior wall was found to increase with height at daytime and the opposite occurred at nighttime. The solar radiation and the physical properties of the various urban surfaces were found to be important factors affecting the surface thermal behaviors. The temperature difference between the measured maximum and minimum surface temperatures of the four selected exterior walls can be at the highest of 16.7 °C in the early afternoon hours (15:00 h). Based on the measured surface temperatures, the ventilation rate due to thermal buoyancy-induced wall surface flows of buildings and mountain slope winds were estimated through an integral analysis of the natural convection flow over a flat surface. At no-wind conditions, the total air change rate by the building wall flows (2-4 ACH) was found to be 2-4 times greater than that by the slope flows due to mountain surface (1 ACH) due to larger building exterior surface areas and temperature differences with surrounding air. The results provide useful insights into the ventilation of a high-rise dense city at no-wind conditions.
AIR CLEANING FOR ACCEPTABLE INDOOR AIR QUALITY
The paper discusses air cleaning for acceptable indoor air quality. ir cleaning has performed an important role in heating, ventilation, and air-conditioning systems for many years. raditionally, general ventilation air-filtration equipment has been used to protect cooling coils ...
This letter is to brings attention several concerns that the Agency has regarding the use of sanitizer and/or disinfectant products, and other types of antimicrobial products, to treat the surfaces of heating, ventilation
Sultan, Zuraimi M
2007-05-01
Although many studies have reported calculations of outdoor particulate matter (PM) associated externalities using ambient data, there is little information on the role buildings, their ventilation and filtration play. This study provides the framework to evaluate the health risk and cost reduction of building, ventilation and filtration strategies from outdoor PM pollution on a nationwide level and applied it to a case study in Singapore. Combining Indoor Air Quality (IAQ) and time weighted exposure models, with established concentration-response functions and monetary valuation methods, mortality and morbidity effects of outdoor PM on the population of Singapore under different building, ventilation and filtration strategies were estimated. Different interventions were made to compare the effects from the current building conditions. The findings demonstrate that building protection effect reduced approximately half the attributable health cases amounting to US$17.7 billion due to PM pollution when compared to levels computed using outdoor data alone. For residential buildings, nationwide adoption of natural ventilation from current state is associated with 28% higher cases of mortality and 13 to 38% higher cases for different morbidities, amounting to US$6.7 billion. The incurred cost is negligible compared to energy costs of air-conditioning. However, nationwide adoption of closed residence and air-conditioning are associated with outcomes including fewer mortality (10 and 6% respectively), fewer morbidities (8 and 4% respectively) and economic savings of US$1.5 and 0.9 billion respectively. The related savings were about a factor of 9 the energy cost for air-conditioning. Nationwide adoption of mechanical ventilation and filtration from current natural ventilation in schools is associated with fewer asthma hospital admissions and exacerbations; although the economic impact is not substantial. Enhanced workplace filtration reduces the mortality and morbidity cases by 14 and 13% respectively amounting to savings of up to US$2.4 billion. The huge costs savings are comparable to the average worker salary and insignificant to energy, installation and rental cost. Despite uncertainty about accurate benefits, this study shows that health and economic gain via different building, ventilation and filtration designs in minimizing ingress of outdoor PM applied to a nationwide scale can be very large. Importantly, the results suggest that PM associated externalities and legislative efforts should not only focus on ambient PM reduction policies but also include building-informed decisions.
The Association of Fever with Total Mechanical Ventilation Time in Critically Ill Patients.
Park, Dong Won; Egi, Moritoki; Nishimura, Masaji; Chang, Youjin; Suh, Gee Young; Lim, Chae Man; Kim, Jae Yeol; Tada, Keiichi; Matsuo, Koichi; Takeda, Shinhiro; Tsuruta, Ryosuke; Yokoyama, Takeshi; Kim, Seon Ok; Koh, Younsuck
2016-12-01
This research aims to investigate the impact of fever on total mechanical ventilation time (TVT) in critically ill patients. Subgroup analysis was conducted using a previous prospective, multicenter observational study. We included mechanically ventilated patients for more than 24 hours from 10 Korean and 15 Japanese intensive care units (ICU), and recorded maximal body temperature under the support of mechanical ventilation (MAX(MV)). To assess the independent association of MAX(MV) with TVT, we used propensity-matched analysis in a total of 769 survived patients with medical or surgical admission, separately. Together with multiple linear regression analysis to evaluate the association between the severity of fever and TVT, the effect of MAX(MV) on ventilator-free days was also observed by quantile regression analysis in all subjects including non-survivors. After propensity score matching, a MAX(MV) ≥ 37.5°C was significantly associated with longer mean TVT by 5.4 days in medical admission, and by 1.2 days in surgical admission, compared to those with MAX(MV) of 36.5°C to 37.4°C. In multivariate linear regression analysis, patients with three categories of fever (MAX(MV) of 37.5°C to 38.4°C, 38.5°C to 39.4°C, and ≥ 39.5°C) sustained a significantly longer duration of TVT than those with normal range of MAX(MV) in both categories of ICU admission. A significant association between MAX(MV) and mechanical ventilator-free days was also observed in all enrolled subjects. Fever may be a detrimental factor to prolong TVT in mechanically ventilated patients. These findings suggest that fever in mechanically ventilated patients might be associated with worse mechanical ventilation outcome.
Comparative Performance of Two Ventilation Strategies in a Hot-Humid Climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widder, Sarah; Martin, Eric; Chasar, Dave
2017-02-01
In fiscal year 2013, Pacific Northwest National Laboratory (PNNL), Florida Solar Energy Center (FSEC), and Florida Home Energy and Resources Organization (Florida HERO) began a collaborative effort to evaluate the impact of ventilation rate on interior comfort conditions, space-conditioning energy use, and indoor air contaminant concentrations. Relevant parameters were measured in 10 homes in Gainesville, Florida, along with corresponding outdoor conditions, to characterize the impact of differing ventilation rates. This report provides information about the data collection method and results from more than 1 year of data collection during a period from summer 2013 through summer 2014. Indoor air qualitymore » was sampled in three discrete periods with the first occurring in August/September 2013, the second occurring in March/April 2014, and the third occurring in August 2014.« less
Comparative Performance of Two Ventilation Strategies in a Hot-Humid Climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widder, Sarah; Martin, Eric; Chasar, Dave
In fiscal year 2013, Pacific Northwest National Laboratory (PNNL), Florida Solar Energy Center (FSEC), and Florida Home Energy and Resources Organization (Florida HERO) began a collaborative effort to evaluate the impact of ventilation rate on interior comfort conditions, space-conditioning energy use, and indoor air contaminant concentrations. Relevant parameters were measured in 10 homes in Gainesville, Florida, along with corresponding outdoor conditions, to characterize the impact of differing ventilation rates. This report provides information about the data collection method and results from more than 1 year of data collection during a period from summer 2013 through summer 2014. Indoor air qualitymore » was sampled in three discrete periods with the first occurring in August/September 2013, the second occurring in March/April 2014, and the third occurring in August 2014.« less
Summer Thermal Performance of Ventilated Roofs with Tiled Coverings
NASA Astrophysics Data System (ADS)
Bortoloni, M.; Bottarelli, M.; Piva, S.
2017-01-01
The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.
Below, Harald; Ryll, Sylvia; Empen, Klaus; Dornquast, Tina; Felix, Stefan; Rosenau, Heike; Kramer, Sebastian; Kramer, Axel
2010-01-01
In a cardiac procedure room, ventilated by a ventilation and air-conditioning system with turbulent mixed airflow, a protection zone in the operating area could be defined through visualization of airflows. Within this protection zone, no turbulence was detectable in the room air. Under the given conditions, disinfection of all surfaces including all furniture and equipment after the last operation and subsequent draping of furniture and all equipment that could not be removed from the room with sterile surgical drapes improved the indoor room air quality from cleanroom class C to cleanroom class B. This also allows procedures with elevated requirements to be performed in room class 1b. PMID:20941336
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heitbrink, W.A.; Cooper, T.C.; Edmonds, M.A.
1992-03-01
A study was made to evaluate and document the effectiveness of a metal inert gas (MIG) welder with built in ventilation to control potentially hazardous conditions at Church Brother's Collision Repair (SIC-7531), Greenwood, Indiana. Air contaminant exposures were measured during a 1 hour repair job while using a ventilated MIG welder and while using a conventional MIG welder. The ventilation system of the MIG did reduce worker exposure to welding fumes. However, the sampling was done on a single repair job, thus limiting the conclusions which can be drawn from the study. Some welding fumes were not captured by themore » ventilated welder, suggesting that the MIG with ventilation provided incomplete control of the generated fumes. In some cases the metal on the other side of the welding area became sufficiently hot to generate its own fumes. The car body itself appears to block the capture of these fumes by the ventilated MIG welder. When welding inside the car without the ventilated welder, the fumes generated were more concentrated than those generated by welding outside of the car under similar conditions. There is a decreased dilution of the fumes inside the car due to a lack of air movement. The authors conclude that while the control technique appeared to lessen exposure to welding fumes, additional investigation is needed to verify the data.« less
Airway Strain during Mechanical Ventilation in an Intact Animal Model
Sinclair, Scott E.; Molthen, Robert C.; Haworth, Steve T.; Dawson, Christopher A.; Waters, Christopher M.
2007-01-01
Rationale: Mechanical ventilation with large tidal volumes causes ventilator-induced lung injury in animal models. Little direct evidence exists regarding the deformation of airways in vivo during mechanical ventilation, or in the presence of positive end-expiratory pressure (PEEP). Objectives: To measure airway strain and to estimate airway wall tension during mechanical ventilation in an intact animal model. Methods: Sprague-Dawley rats were anesthetized and mechanically ventilated with tidal volumes of 6, 12, and 25 cm3/kg with and without 10–cm H2O PEEP. Real-time tantalum bronchograms were obtained for each condition, using microfocal X-ray imaging. Images were used to calculate circumferential and longitudinal airway strains, and on the basis of a simplified mathematical model we estimated airway wall tensions. Measurements and Main Results: Circumferential and longitudinal airway strains increased with increasing tidal volume. Levels of mechanical strain were heterogeneous throughout the bronchial tree. Circumferential strains were higher in smaller airways (less than 800 μm). Airway size did not influence longitudinal strain. When PEEP was applied, wall tensions increased more rapidly than did strain levels, suggesting that a “strain limit” had been reached. Airway collapse was not observed under any experimental condition. Conclusions: Mechanical ventilation results in significant airway mechanical strain that is heterogeneously distributed in the uninjured lung. The magnitude of circumferential but not axial strain varies with airway diameter. Airways exhibit a “strain limit” above which an abrupt dramatic rise in wall tension is observed. PMID:17626911
Truszewski, Zenon; Krajewski, Paweł; Fudalej, Marcin; Smereka, Jacek; Frass, Michael; Robak, Oliver; Nguyen, Bianka; Ruetzler, Kurt; Szarpak, Lukasz
2016-01-01
Abstract Background: Airway management is a crucial skill essential to paramedics and personnel working in Emergency Medical Services and Emergency Departments: Lack of practice, a difficult airway, or a trauma situation may limit the ability of paramedics to perform direct laryngoscopy during cardiopulmonary resuscitation. Videoscope devices are alternatives for airway management in these situations. The ETView VivaSight SL (ETView; ETView Ltd., Misgav, Israel) is a new, single-lumen airway tube with an integrated high-resolution imaging camera. To assess if the ETView VivaSight SL can be a superior alternative to a standard endotracheal tube for intubation in an adult cadaver model, both during and without simulated CPR. Methods: ETView VivaSight SL tube was investigated via an interventional, randomized, crossover, cadaver study. A total of 52 paramedics participated in the intubation of human cadavers in three different scenarios: a normal airway at rest without concomitant chest compression (CC) (scenario A), a normal airway with uninterrupted CC (scenario B) and manual in-line stabilization (scenario C). Time and rate of success for intubation, the glottic view scale, and ease-of-use of ETView vs. sETT intubation were assessed for each emergency scenario. Results: The median time to intubation using ETView vs. sETT was compared for each of the aforementioned scenarios. For scenario A, time to first ventilation was achieved fastest for ETView, 19.5 [IQR, 16.5–22] sec, when compared to that of sETT at 21.5 [IQR, 20–25] sec (p = .013). In scenario B, the time for intubation using ETView was 21 [IQR, 18.5–24.5] sec (p < .001) and sETT was 27 [IQR, 24.5–31.5] sec. Time to first ventilation for scenario C was 23.5 [IQR, 19–25.5] sec for the ETView and 42.5 [IQR, 35–49.5] sec for sETT. Conclusions: In normal airways and situations with continuous chest compressions, the success rate for intubation of cadavers and the time to ventilation were improved with the ETView. The time to glottis view, tube insertion, and cuff block were all found to be shorter with the ETView. Trial Registration: clinicaltrials.gov Identifier: NCT02733536. PMID:27858851
Truszewski, Zenon; Krajewski, Paweł; Fudalej, Marcin; Smereka, Jacek; Frass, Michael; Robak, Oliver; Nguyen, Bianka; Ruetzler, Kurt; Szarpak, Lukasz
2016-11-01
Airway management is a crucial skill essential to paramedics and personnel working in Emergency Medical Services and Emergency Departments: Lack of practice, a difficult airway, or a trauma situation may limit the ability of paramedics to perform direct laryngoscopy during cardiopulmonary resuscitation. Videoscope devices are alternatives for airway management in these situations. The ETView VivaSight SL (ETView; ETView Ltd., Misgav, Israel) is a new, single-lumen airway tube with an integrated high-resolution imaging camera. To assess if the ETView VivaSight SL can be a superior alternative to a standard endotracheal tube for intubation in an adult cadaver model, both during and without simulated CPR. ETView VivaSight SL tube was investigated via an interventional, randomized, crossover, cadaver study. A total of 52 paramedics participated in the intubation of human cadavers in three different scenarios: a normal airway at rest without concomitant chest compression (CC) (scenario A), a normal airway with uninterrupted CC (scenario B) and manual in-line stabilization (scenario C). Time and rate of success for intubation, the glottic view scale, and ease-of-use of ETView vs. sETT intubation were assessed for each emergency scenario. The median time to intubation using ETView vs. sETT was compared for each of the aforementioned scenarios. For scenario A, time to first ventilation was achieved fastest for ETView, 19.5 [IQR, 16.5-22] sec, when compared to that of sETT at 21.5 [IQR, 20-25] sec (p = .013). In scenario B, the time for intubation using ETView was 21 [IQR, 18.5-24.5] sec (p < .001) and sETT was 27 [IQR, 24.5-31.5] sec. Time to first ventilation for scenario C was 23.5 [IQR, 19-25.5] sec for the ETView and 42.5 [IQR, 35-49.5] sec for sETT. In normal airways and situations with continuous chest compressions, the success rate for intubation of cadavers and the time to ventilation were improved with the ETView. The time to glottis view, tube insertion, and cuff block were all found to be shorter with the ETView. clinicaltrials.gov Identifier: NCT02733536.
NASA Astrophysics Data System (ADS)
Wasilewski, Stanisław
2012-12-01
A stoppage of the main ventilation fan constitutes a disturbance of ventilation conditions of a deepmine and its effects can cause serious hazards by generating transient states of air and gas flow. Main ventilation fans are the basic deep-mine facilities; therefore, under mining regulations it is only allowed to stop them with the consent and under the conditions specified by the mine maintenance manager. The stoppage of the main ventilation fan may be accompanied by transient air parameters, including the air pressure and flow patterns. There is even the likelihood of reversing the direction of air flow, which, in case of methane mines, can pose a major hazard, particularly in sections of the mine with fire fields or large goaf areas. At the same time, stoppages of deep-mine main ventilation fans create interesting research conditions, which if conducted under the supervision of the monitoring systems, can provide much information about the transient processes of pressure, air and gas flow in underground workings. This article is a discussion of air parameter observations in mine workings made as part of such experiments. It also presents the procedure of the experiments, conducted in three mines. They involved the observation of transient processes of mine air parameters, and most interestingly, the recording of pressure and air and gas flow in the workings of the mine ventilation networks by mine monitoring systems and using specialist recording instruments. In mining practice, both in Poland and elsewhere, software tools and computer modelling methods are used to try and reproduce the conditions prior to and during disasters based on the existing network model and monitoring system data. The use of these tools to simulate the alternatives of combating and liquidation of the gas-fire hazard after its occurrence is an important issue. Measurement data collected during the experiments provides interesting research material for the verification and validation of the software tools used for the simulation of processes occurring in deep-mine ventilation systems.
Testing and Selection of Fire-Resistant Materials for Spacecraft Use
NASA Technical Reports Server (NTRS)
Friedman, Robert; Jackson, Brian; Olson, Sandra
2000-01-01
Spacecraft fire-safety strategy emphasizes prevention, mostly through the selection of onboard items classified accord- ing to their fire resistance. The principal NASA acceptance tests described in this paper assess the flammability of materials and components under "worst-case" normal-gravity conditions of upward flame spread in controlled-oxygen atmospheres. Tests conducted on the ground, however, cannot duplicate the unique fire characteristics in the nonbuoyant low-gravity environment of orbiting spacecraft. Research shows that flammability an fire-spread rates in low gravity are sensitive to forced convection (ventilation flows) and atmospheric-oxygen concentration. These research results are helping to define new material-screening test methods that will better evaluate material performance in spacecraft.
Hernia of the tympanic membrane.
Ikeda, Ryoukichi; Miyazaki, Hiromitsu; Kawase, Tetsuaki; Katori, Yukio; Kobayashi, Toshimitsu
2017-02-01
Although tympanic bulging is commonly encountered, tympanic herniation occupying the external auditory canal is extremely rare. A 66-year-old man was presented to our hospital with left aural fullness, bilateral hearing loss and otorrhea. Preoperative findings suggested tympanic membrane (TM) hernia located in the left external auditory canal. We performed total resection of the soft mass by a transcanal approach using endoscopy. Ventilation tubes were inserted into bilateral ears. Histopathological findings confirmed diagnosis of TM hernia. Passive opening pressure of this patient was higher than normal condition of the Eustachian tube, where active opening was not observed. Hernia of the TM most likely resulted from long-term excessive Valsalva maneuver. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lee, Sang Min; Seo, Joon Beom; Hwang, Hye Jeon; Kim, Namkug; Oh, Sang Young; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon
2017-07-01
To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs.
Energy saving effect of desiccant ventilation system using Wakkanai siliceous shale
NASA Astrophysics Data System (ADS)
Nabeshima, Yuki; Togawa, Jun-ya; Nagano, Katsunori; Kazuyo, Tsuzuki
2017-10-01
The nuclear power station accident resulting from the Great East Japan Earthquake disaster has resulted in a constrained electricity supply. However, in this Asian region there is high temperature and high humidity and consequently dehumidification process requires a huge amount of energy. This is the reason for the increasing energy consumption in the residential and commercial sectors. Accordingly, a high efficiency air-conditioning system is needed to be developed. The desiccant ventilation system is effective to reduce energy consumption for the dehumidification process. This system is capable of dehumidifying without dew condensing unlike a conventional air-conditioning system. Then we focused on Wakkanai Siliceous Shale (WSS) as a desiccant material to develop a new desiccant ventilation system. This is low priced, high performance, new type of thing. The aim of this study is to develop a desiccant ventilation unit using the WSS rotor which can be regenerated with low-temperature by numerical calculation. The results of performance prediction of the desiccant unit, indicate that it is possible to regenerate the WSS rotor at low-temperature of between 35 - 45 °C. In addition, we produced an actual measurement for the desiccant unit and air-conditioning unit. This air-conditioning system was capable to reduce roughly 40 % of input energy consumption.
NASA Astrophysics Data System (ADS)
Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo
2017-11-01
European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.
Influence of ventilation structure on air flow distribution of large turbo-generator
NASA Astrophysics Data System (ADS)
Zhang, Liying; Ding, Shuye; Zhao, Zhijun; Yang, Jingmo
2018-04-01
For the 350 MW air - cooled turbo—generator, the rotor body is ventilated by sub -slots and 94 radial ventilation ducts and the end adopts arc segment and the straight section to acquire the wind. The stator is ventilated with five inlets and eight outlet air branches. In order to analyze the cooling effect of different ventilation schemes, a global physical model including the stator, rotor, casing and fan is established, and the assumptions and boundary conditions of the solution domain are given. the finite volume method is used to solve the problem, and the air flow distribution characteristics of each part of the motor under different ventilation schemes are obtained. The results show that the baffle at the end of the rotor can eliminate the eddy current at the end of the rotor, and make the flow distribution of cooling air more uniform and reasonable. The conclusions can provide reference for the design of motor ventilation structure.
ERIC Educational Resources Information Center
Garibay, Pat
2007-01-01
Educators and administrators are looking for new ways to boost student performance and eliminate barriers to learning. When working to improve the classroom environment, facility managers typically target the physical structure, temperature controls, humidity levels and ventilation. Many heating, ventilating and air conditioning (HVAC) consultants…
Risk factors for work-related symptoms in northern California office workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendell, M.J.
1991-10-01
In most episodes of health complaints reported in office buildings in the last-twenty years, causal factors have not been identified. In order to assess risk factors for work-related symptoms in office workers, a reanalysis was performed of previous studies, and an epidemiologic study was conducted. The reanalysis of data, showed remarkable agreement among studies. Air-conditioned buildings were consistently associated with higher prevalence of headache, lethargy, and eye, nose, or throat problems. Humidification was not a necessary factor for this higher prevalence. Mechanical ventilation without air-conditioning was not associated with higher symptom prevalence. A study was conducted among 880 office workers,more » within 12 office buildings selected without regard to worker complaints, in northern California. A number of factors were found associated with prevalence of work-related symptoms, after adjustment in a logistic regression model for personal, psychosocial, job, workspace, and building factors. Two different ventilation types were associated with increases Ln symptom prevalence, relative to workers in naturally ventilated buildings: mechanical supply and exhaust ventilation, without air conditioning and with operable windows; and air-conditioning with sealed windows. No study buildings were humidified. In both these ventilation types, the highest odds ratios (ORs) found were for skin symptoms (ORs-5.0, 5.6) and for tight chest or difficulty breathing (ORs-3.6, 4.3). Use of carbonless copies or photocopiers, sharing a workspace, carpets, new carpets, new walls, and distance from a window were associated with symptom increases. Cloth partitions and new paint were associated with symptom decreases.« less
NW Pacific mid-depth ventilation changes during the Holocene
NASA Astrophysics Data System (ADS)
Rella, S.; Uchida, M.
2010-12-01
During the last 50 years the oxygen content of North Pacific Intermediate Water primarily originating in the Okhotsk Sea has declined suggesting decreased mid-depth water circulation, likely leading to changes in biological productivity in the NW Pacific realm and a decrease in CO2 drawdown. It is therefore of high interest to elucidate the climate-oceanic interconnections of the present interglacial period (Holocene) in the NW Pacific, in order to predict possible future climate and surface productivity changes associated with a decrease in mid-depth ventilation in this ecologically sensitive region. However, such efforts have been hampered so far by the lack of appropriate sediment cores with fast sedimentation rates during the Holocene. Core CK05-04 that was recovered in 2005 from off Shimokita peninsula, Japan, at ~1000 m depth shows sedimentation rates of ~80 cm/kyr during the Holocene and therefore presents an ideal opportunity to reconstruct for the first time the Holocene ventilation history of the NW Pacific Ocean. We employ Accelerator Mass Spectroscopy (NIES-TERRA, Tsukuba) radiocarbon analysis of co-existing benthic and planktonic foraminifera to conclude on the ventilation age of the mid-depth water using benthic-planktonic radiocarbon age differences. At the conference we would like to present the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosawa, T; Moriya, S; Sato, M
2015-06-15
Purpose: To evaluate the functional planning using CT-pulmonary ventilation imaging for conformal SBRT. Methods: The CT-pulmonary ventilation image was generated using the Jacobian metric in the in-house program with the NiftyReg software package. Using the ventilation image, the normal lung was split into three lung regions for functionality (high, moderate and low). The anatomical plan (AP) and functional plan (FP) were made for ten lung SBRT patients. For the AP, the beam angles were optimized with the dose-volume constraints for the normal lung sparing and the PTV coverage. For the FP, the gantry angles were also optimized with the additionalmore » constraint for high functional lung. The MLC aperture shapes were adjusted to the PTV with the additional 5 mm margin. The dosimetric parameters for PTV, the functional volumes, spinal cord and so on were compared in both plans. Results: Compared to the AP, the FP showed better dose sparing for high- and moderate-functional lungs with similar PTV coverage while not taking care of the low functional lung (High:−12.9±9.26% Moderate: −2.0±7.09%, Low: +4.1±12.2%). For the other normal organs, the FP and AP showed similar dose sparing in the eight patients. However, the FP showed that the maximum doses for spinal cord were increased with the significant increment of 16.4Gy and 21.0Gy in other two patients, respectively. Because the beam direction optimizer chose the unexpected directions passing through the spinal cord. Conclusion: Even the functional conformal SBRT can selectively reduce high- and moderatefunctional lung while keeping the PTV coverage. However, it would be careful that the optimizer would choose unexpected beam angles and the dose sparing for the other normal organs can be worse. Therefore, the planner needs to control the dose-volume constraints and also limit the beam angles in order to achieve the expected dose sparing and coverage.« less
Freitas, F G R; Bafi, A T; Nascente, A P M; Assunção, M; Mazza, B; Azevedo, L C P; Machado, F R
2013-03-01
The applicability of pulse pressure variation (ΔPP) to predict fluid responsiveness using lung-protective ventilation strategies is uncertain in clinical practice. We designed this study to evaluate the accuracy of this parameter in predicting the fluid responsiveness of septic patients ventilated with low tidal volumes (TV) (6 ml kg(-1)). Forty patients after the resuscitation phase of severe sepsis and septic shock who were mechanically ventilated with 6 ml kg(-1) were included. The ΔPP was obtained automatically at baseline and after a standardized fluid challenge (7 ml kg(-1)). Patients whose cardiac output increased by more than 15% were considered fluid responders. The predictive values of ΔPP and static variables [right atrial pressure (RAP) and pulmonary artery occlusion pressure (PAOP)] were evaluated through a receiver operating characteristic (ROC) curve analysis. Thirty-four patients had characteristics consistent with acute lung injury or acute respiratory distress syndrome and were ventilated with high levels of PEEP [median (inter-quartile range) 10.0 (10.0-13.5)]. Nineteen patients were considered fluid responders. The RAP and PAOP significantly increased, and ΔPP significantly decreased after volume expansion. The ΔPP performance [ROC curve area: 0.91 (0.82-1.0)] was better than that of the RAP [ROC curve area: 0.73 (0.59-0.90)] and pulmonary artery occlusion pressure [ROC curve area: 0.58 (0.40-0.76)]. The ROC curve analysis revealed that the best cut-off for ΔPP was 6.5%, with a sensitivity of 0.89, specificity of 0.90, positive predictive value of 0.89, and negative predictive value of 0.90. Automatized ΔPP accurately predicted fluid responsiveness in septic patients ventilated with low TV.
Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation.
Schranz, C; Becher, T; Schädler, D; Weiler, N; Möller, K
2014-03-01
Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (pI), inspiration and expiration time (tI, tE) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal pI and adequate tE can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's 'optimized' settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end-expiratory pressure.
[Guide for the use of jet-ventilation during ENT and oral surgery].
Bourgain, J-L; Chollet, M; Fischler, M; Gueret, G; Mayne, A
2010-10-01
The aim of this synthesis was to give recommendations on the use of jet-ventilation during ENT surgical and endoscopy procedures. Literature was collected from PUBMED and analysed by the members of French association of anaesthesiologists in ENT surgery, all skilled in this field. Presentation of these recommendations was given during the general assembly held in Reims, the 15th May 2009. Jet-ventilation is especially indicated during upper airway endoscopy and laryngeal invasive endoscopic surgery. Furthermore, transtracheal jet ventilation is included on most of difficult oxygenation and difficult intubation algorithm. The main risk of jet-ventilation is pulmonary barotrauma when expiration of injected gas is impeded by an upper airway obstruction. Failure and complications of tracheal puncture are rare when performed by experimented operators. Clinical use of jet ventilation requires a dedicated device. Practice of jet ventilation without intubation may be dangerous when applied without control of driving pressure and end expiratory tracheal pressure. Every anaesthetist should be familiar with transtracheal ventilation since they may face a "cannot ventilate cannot intubate" situation. Upper airway endoscopy and laryngeal surgery are the ideal field for training jet ventilation, even more so as this technique offers perfect operative conditions. To apply this project, jet ventilation should be used more frequently in routine practice. To maintain skill, regular use of these techniques is required. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Wallon, G; Bonnet, A; Guérin, C
2013-06-01
Tidal volume (V(T)) must be accurately delivered by anaesthesia ventilators in the volume-controlled ventilation mode in order for lung protective ventilation to be effective. However, the impact of fresh gas flow (FGF) and lung mechanics on delivery of V(T) by the newest anaesthesia ventilators has not been reported. We measured delivered V(T) (V(TI)) from four anaesthesia ventilators (Aisys™, Flow-i™, Primus™, and Zeus™) on a pneumatic test lung set with three combinations of lung compliance (C, ml cm H2O(-1)) and resistance (R, cm H2O litre(-1) s(-2)): C60R5, C30R5, C60R20. For each CR, three FGF rates (0.5, 3, 10 litre min(-1)) were investigated at three set V(T)s (300, 500, 800 ml) and two values of PEEP (0 and 10 cm H2O). The volume error = [(V(TI) - V(Tset))/V(Tset)] ×100 was computed in body temperature and pressure-saturated conditions and compared using analysis of variance. For each CR and each set V(T), the absolute value of the volume error significantly declined from Aisys™ to Flow-i™, Zeus™, and Primus™. For C60R5, these values were 12.5% for Aisys™, 5% for Flow-i™ and Zeus™, and 0% for Primus™. With an increase in FGF, absolute values of the volume error increased only for Aisys™ and Zeus™. However, in C30R5, the volume error was minimal at mid-FGF for Aisys™. The results were similar at PEEP 10 cm H2O. Under experimental conditions, the volume error differed significantly between the four new anaesthesia ventilators tested and was influenced by FGF, although this effect may not be clinically relevant.
Baboi, Loredana; Subtil, Fabien
2016-01-01
Background Turbine-powered ventilators are not only designed for long-term ventilation at home but also for hospital use. It is important to verify their capabilities in delivering fraction of oxygen in air (FIO2) and tidal volume (VT). Methods We assessed the FIO2 accuracy and the VT delivery in four home care ventilators (HCV) on the bench. The four HCV were Astral 150, Elisée 150, Monnal T50 and Trilogy 200 HCV, which were connected to a lung model (ASL 5000). For assessing FIO2 accuracy, lung model was set to mimic an obstructive lung and HCV were set in volume controlled mode (VC). They supplied with air, 3 or 15 L/min oxygen and FIO2 was measured by using a ventilator tester (Citrex H4TM). For the VT accuracy, the lung model was set in a way to mimic three adult configurations (normal, obstructive, or restrictive respiratory disorder) and one pediatric configuration. Each HCV was set in VC. Two VT (300 and 500 mL) in adult lung configuration and one 50 mL VT in pediatric lung configuration, at two positive end expiratory pressures 5 and 10 cmH2O, were tested. VT accuracy was measured as volume error (the relative difference between set and measured VT). Statistical analysis was performed by suing one-factor ANOVA with a Bonferroni correction for multiple tests. Results For Astral 150, Elisée 150, Monnal T50 and Trilogy 200, FIO2 averaged 99.2%, 93.7%, 86.3%, and 62.1%, respectively, at 15 L/min oxygen supplementation rate (P<0.001). Volume error was 0.5%±0%, −38%±0%, −9%±0%, −29%±0% and −36%±0% for pediatric lung condition (P<0.001). In adult lung configurations, Monnal T50 systematically over delivered VT and Trilogy 150 was sensitive to lung configuration when VT was set to 300 mL at either positive end-expiratory pressure (PEEP). Conclusions HCV are different in terms of FIO2 efficiency and VT delivery. PMID:28149559
Yoshidome, Aya; Shinomiya, Ayako; Iwagaki, Tamao; Sano, Haruhiko; Aoyama, Kazuyoshi; Takenaka, Yukari; Takenaka, Ichiro
2015-08-01
A previously healthy 54-year-old woman underwent a resection of the acoustic tumor. Following induction of general anesthesia and tracheal intubation, volume-controlled ventilation was started and the patient was placed in the left park bench position. The heat and moisture exchange filter (HMEF) was placed within the ventilatory circuit and positioned below the patient's head to avoid unintentional extubation. Six hours after the start of surgery, peak inspiratory pressure gradually rose, and 2 hours later ventilation of the patient's lung became increasingly difficult. When the HMEF was replaced, normal breathing was promptly restored. We reproduced this scenario with a similar HMEF under the same ventilator settings by adding 0-8 g of normal saline into the HMEF housing, and measured the inspiratory pressure and tidal volume across the HMEF. When instilling 4 g of saline, an increase in inspiratory pressure occurred. This case shows a potential risk of unexpectedly early occurrence of obstruction of the HMEF due to accumulation of condensed water within the device when the HMEF was positioned below the patient's head. We recommend selection of the appropriate HMEF and suitable mounting to avoid this problem.
Physical activity into the meal glucose-insulin model of type 1 diabetes: in silico studies.
Man, Chiara Dalla; Breton, Marc D; Cobelli, Claudio
2009-01-01
A simulation model of a glucose-insulin system accounting for physical activity is needed to reliably simulate normal life conditions, thus accelerating the development of an artificial pancreas. In fact, exercise causes a transient increase of insulin action and may lead to hypoglycemia. However, physical activity is difficult to model. In the past, it was described indirectly as a rise in insulin. Recently, a new parsimonious model of exercise effect on glucose homeostasis has been proposed that links the change in insulin action and glucose effectiveness to heart rate (HR). The aim of this study was to plug this exercise model into our recently proposed large-scale simulation model of glucose metabolism in type 1 diabetes to better describe normal life conditions. The exercise model describes changes in glucose-insulin dynamics in two phases: a rapid on-and-off change in insulin-independent glucose clearance and a rapid-on/slow-off change in insulin sensitivity. Three candidate models of glucose effectiveness and insulin sensitivity as a function of HR have been considered, both during exercise and recovery after exercise. By incorporating these three models into the type 1 diabetes model, we simulated different levels (from mild to moderate) and duration of exercise (15 and 30 minutes), both in steady-state (e.g., during euglycemic-hyperinsulinemic clamp) and in nonsteady state (e.g., after a meal) conditions. One candidate exercise model was selected as the most reliable. A type 1 diabetes model also describing physical activity is proposed. The model represents a step forward to accurately describe glucose homeostasis in normal life conditions; however, further studies are needed to validate it against data. © Diabetes Technology Society
Clinical review: Humidifiers during non-invasive ventilation - key topics and practical implications
2012-01-01
Inadequate gas conditioning during non-invasive ventilation (NIV) can impair the anatomy and function of nasal mucosa. The resulting symptoms may have a negative effect on patients' adherence to ventilatory treatment, especially for chronic use. Several parameters, mostly technical aspects of NIV, contribute to inefficient gas conditioning. Factors affecting airway humidity during NIV include inspiratory flow, inspiratory oxygen fraction, leaks, type of ventilator, interface used to deliver NIV, temperature and pressure of inhaled gas, and type of humidifier. The correct application of a humidification system may avoid the effects of NIV-induced drying of the airway. This brief review analyses the consequences of airway dryness in patients receiving NIV and the technical tools necessary to guarantee adequate gas conditioning during ventilatory treatment. Open questions remain about the timing of gas conditioning for acute or chronic settings, the choice and type of humidification device, the interaction between the humidifier and the underlying disease, and the effects of individual humidification systems on delivered humidity. PMID:22316078
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scofield, C.M.; Des Champs, N.H.
This article examines a design concept for classroom air conditioning systems that guarantees minimum ventilation rates are met. The topics of the article include new ventilation requirements, design concept, outside air induction diffuser, low-velocity ducts and plenums, the relationship of humidity to school absenteeism rates, retrofit applications, and saving energy.
46 CFR 194.15-5 - Ventilation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194... be equipped with acceptable flame screens. (b) Chemical laboratories shall be equipped with power...) Ventilation of air conditioning systems serving the chemical laboratory shall be designed so that air cannot...
46 CFR 194.15-5 - Ventilation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194... be equipped with acceptable flame screens. (b) Chemical laboratories shall be equipped with power...) Ventilation of air conditioning systems serving the chemical laboratory shall be designed so that air cannot...
Under EPA's Environmental Technology Verification Program, Research Triangle Institute (RTI) will operate the Air Pollution Control Technology Center to verify the filtration efficiency and bioaerosol inactivation efficiency of heating, ventilation and air conditioning air cleane...
Turgeon, Christine; Prémont, Amélie; Trudeau-Fisette, Paméla; Ménard, Lucie
2015-05-01
Studies have reported strong links between speech production and perception. We aimed to evaluate the role of long- and short-term auditory feedback alteration on speech production. Eleven adults with normal hearing (controls) and 17 cochlear implant (CI) users (7 pre-lingually deaf and 10 post-lingually deaf adults) were recruited. Short-term auditory feedback deprivation was induced by turning off the CI or by providing masking noise. Acoustic and articulatory measures were obtained during the production of /u/, with and without a tube inserted between the lips (perturbation), and with and without auditory feedback. F1 values were significantly different between the implant OFF and ON conditions for the pre-lingually deaf participants. In the absence of auditory feedback, the pre-lingually deaf participants moved the tongue more forward. Thus, a lack of normal auditory experience of speech may affect the internal representation of a vowel.
Army gas-cooled reactor systems program. Preliminary design report off-normal scram system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bushnell, W.H.; Malmstrom, S.A.
1965-06-01
The maximum allowable ML-1 fuel element cladding (hot spot) temperature is established by ANTS 201 at 1750/sup 0/F. The existing ML-1 design makes no provision for automatic scram when this limit is reached. Operating experience has indicated a requirement for such an automatic system during plant startup and a revised hot spot envelope (generated during conceptual design of the scram system) established the desirability of extending this protection to operation at full power conditions. It was also determined that the scram system should include circuitry to initiate an automatic scram if reactor ..delta..T exceeded 450/sup 0/F (the limit established inmore » ANTS 201) and if reactor power exceeded 6 kw(t) without coolant flow in the main loop. The preliminary design of the scram system (designated off-normal scram system) which will provide the required protection is described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyack, B.E.; Steiner, J.L.; Harmony, S.C.
The PIUS Advanced Reactor is a 640-MW(e) pressurized-water reactor developed by Asea Brown Boveri. A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity normally is controlled by the boron concentration in the coolant and the temperature of the moderator coolant. Analyses of five initiating events have been completed on the basis of calculations performed with the system neutronic and thermal-hydraulic analysis code TRAC-PF1/MOD2. The initiating events analyzed are (1) reactor scram, (2) loss of off-site power (3) main steam-line break, (4) small-break loss of coolant, and (5) large-break loss of coolant. Inmore » addition to the baseline calculation for each sequence, sensitivity studies were performed to explore the response of the PIUS reactor to severe off-normal conditions having a very low probability of occurrence. The sensitivity studies provide insights into the robustness of the design.« less
Scalar Casimir densities and forces for parallel plates in cosmic string spacetime
NASA Astrophysics Data System (ADS)
Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.
2018-04-01
We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.
Ladha, Karim; Vidal Melo, Marcos F; McLean, Duncan J; Wanderer, Jonathan P; Grabitz, Stephanie D; Kurth, Tobias; Eikermann, Matthias
2015-07-14
To evaluate the effects of intraoperative protective ventilation on major postoperative respiratory complications and to define safe intraoperative mechanical ventilator settings that do not translate into an increased risk of postoperative respiratory complications. Hospital based registry study. Academic tertiary care hospital and two affiliated community hospitals in Massachusetts, United States. 69,265 consecutively enrolled patients over the age of 18 who underwent a non-cardiac surgical procedure between January 2007 and August 2014 and required general anesthesia with endotracheal intubation. Protective ventilation, defined as a median positive end expiratory pressure (PEEP) of 5 cmH2O or more, a median tidal volume of less than 10 mL/kg of predicted body weight, and a median plateau pressure of less than 30 cmH2O. Composite outcome of major respiratory complications, including pulmonary edema, respiratory failure, pneumonia, and re-intubation. Of the 69,265 enrolled patients 34,800 (50.2%) received protective ventilation and 34,465 (49.8%) received non-protective ventilation intraoperatively. Protective ventilation was associated with a decreased risk of postoperative respiratory complications in multivariable regression (adjusted odds ratio 0.90, 95% confidence interval 0.82 to 0.98, P=0.013). The results were similar in the propensity score matched cohort (odds ratio 0.89, 95% confidence interval 0.83 to 0.97, P=0.004). A PEEP of 5 cmH2O and median plateau pressures of 16 cmH2O or less were associated with the lowest risk of postoperative respiratory complications. Intraoperative protective ventilation was associated with a decreased risk of postoperative respiratory complications. A PEEP of 5 cmH2O and a plateau pressure of 16 cmH2O or less were identified as protective mechanical ventilator settings. These findings suggest that protective thresholds differ for intraoperative ventilation in patients with normal lungs compared with those used for patients with acute lung injury. © Ladha et al 2015.
Management of mechanical ventilation during laparoscopic surgery.
Valenza, Franco; Chevallard, Giorgio; Fossali, Tommaso; Salice, Valentina; Pizzocri, Marta; Gattinoni, Luciano
2010-06-01
Laparoscopy is widely used in the surgical treatment of a number of diseases. Its advantages are generally believed to lie on its minimal invasiveness, better cosmetic outcome and shorter length of hospital stay based on surgical expertise and state-of-the-art equipment. Thousands of laparoscopic surgical procedures performed safely prove that mechanical ventilation during anaesthesia for laparoscopy is well tolerated by a vast majority of patients. However, the effects of pneumoperitoneum are particularly relevant to patients with underlying lung disease as well as to the increasing number of patients with higher-than-normal body mass index. Moreover, many surgical procedures are significantly longer in duration when performed with laparoscopic techniques. Taken together, these factors impose special care for the management of mechanical ventilation during laparoscopic surgery. The purpose of the review is to summarise the consequences of pneumoperitoneum on the standard monitoring of mechanical ventilation during anaesthesia and to discuss the rationale of using a protective ventilation strategy during laparoscopic surgery. The consequences of chest wall derangement occurring during pneumoperitoneum on airway pressure and central venous pressure, together with the role of end-tidal-CO2 monitoring are emphasised. Ventilatory and non-ventilatory strategies to protect the lung are discussed.
Environmental assessment of the CIESOL solar building after two years operation.
Batlles, Francisco J; Rosiek, Sabina; Muñoz, Ivan; Fernández-Alba, Amadeo R
2010-05-01
Life cycle assessment is applied to assess the environmental benefits and trade-offs of a solar-assisted heating, ventilating, and air-conditioning (HVAC) system installed in the CIESOL building in Almeria (southeastern Spain). The environmental performance of this system is compared to that of a conventional HVAC system using a heat pump. The study evaluates these systems from cradle to grave, and the impact assessment includes, in addition to the CML2001 method, an impact category dealing with impacts on freshwater resources. The results show that the solar-assisted HVAC involves lower impacts in many impact categories, achieving, as an example, a reduction of 80% in greenhouse-gas emissions. On the other hand, key weak points of this system are the production of capital goods, but specially water use for cooling, due to its high impact on freshwater resources. Minimization of water requirements should be a priority for further development of this promising technology.
Remote manual operator for space station intermodule ventilation valve
NASA Technical Reports Server (NTRS)
Guyaux, James R.
1996-01-01
The Remote Manual Operator (RMO) is a mechanism used for manual operation of the Space Station Intermodule Ventilation (IMV) valve and for visual indication of valve position. The IMV is a butterfly-type valve, located in the ventilation or air circulation ducts of the Space Station, and is used to interconnect or isolate the various compartments. The IMV valve is normally operated by an electric motor-driven actuator under computer or astronaut control, but it can also be operated manually with the RMO. The IMV valve RMO consists of a handle with a deployment linkage, a gear-driven flexible shaft, and a linkage to disengage the electric motor actuator during manual operation. It also provides visual indication of valve position. The IMV valve RMO is currently being prepared for qualification testing.
1986-10-01
opeational test and evaluation (OT&R). The OT&B Is comprised of Initial operational test and evaluation ( IOT &R) and follow-on test and evaluation (FOT&R). OT&I...BP HYL FVAC beating, ventilation and air conditioning am. ICBM Intercntinental ballistic missile an. IOT &R Initial operational test and *valuation so...and maintenance vehicles (stop- B pod, engine idle-exterior), facility equipment utility rooms, heating, ventilation and air conditioning ( HVAC
Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, E.; Herrmann, L.; Deru, M.
2014-09-01
Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorptionmore » to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.« less
Nowak, Andreas; Langebach, Robin; Klemm, Eckart; Heller, Winfried
2012-04-01
We describe an innovative computer-based method for the analysis of gas flow using a modified airway management technique to perform percutaneous dilatational tracheotomy (PDT) with a rigid tracheotomy endoscope (TED). A test lung was connected via an artificial trachea with the tracheotomy endoscope and ventilated using superimposed high-frequency jet ventilation. Red packed cells were instilled during the puncture phase of a simulated percutaneous tracheotomy in a trachea model and migration of the red packed cells during breathing was continuously measured. Simultaneously, the calculation of the gas-flow within the endoscope was numerically simulated. In the experimental study, no backflow of blood occurred during the use of superimposed high-frequency jet ventilation (SHFJV) from the trachea into the endoscope nor did any transportation of blood into the lower respiratory tract occur. In parallel, the numerical simulations of the openings of TED show almost positive volume flows. Under the conditions investigated there is no risk of blood aspiration during PDT using the TED and simultaneous ventilation with SHFJV. In addition, no risk of impairment of endoscopic visibility exists through a backflow of blood into the TED. The method of numerical simulation offers excellent insight into the fluid flow even under highly transient conditions like jet ventilation.
Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study.
Dugernier, Jonathan; Reychler, Gregory; Wittebole, Xavier; Roeseler, Jean; Depoortere, Virginie; Sottiaux, Thierry; Michotte, Jean-Bernard; Vanbever, Rita; Dugernier, Thierry; Goffette, Pierre; Docquier, Marie-Agnes; Raftopoulos, Christian; Hantson, Philippe; Jamar, François; Laterre, Pierre-François
2016-12-01
Volume-controlled ventilation has been suggested to optimize lung deposition during nebulization although promoting spontaneous ventilation is targeted to avoid ventilator-induced diaphragmatic dysfunction. Comparing topographic aerosol lung deposition during volume-controlled ventilation and spontaneous ventilation in pressure support has never been performed. The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, with two modes: pressure support ventilation and volume-controlled ventilation. Seventeen postoperative neurosurgery patients without pulmonary disease were randomly ventilated in pressure support or volume-controlled ventilation. Diethylenetriaminepentaacetic acid labeled with technetium-99m (2 mCi/3 mL) was administrated using a vibrating-mesh nebulizer (Aerogen Solo(®), provided by Aerogen Ltd, Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed using planar scintigraphy. Lung deposition was 10.5 ± 3.0 and 15.1 ± 5.0 % of the nominal dose during pressure support and volume-controlled ventilation, respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during pressure support ventilation (27.4 ± 6.6 vs. 20.7 ± 6.0 %, p < 0.05). A similar penetration index was observed for the right (p = 0.210) and the left lung (p = 0.211) with both ventilation modes. A high intersubject variability of lung deposition was observed with both modes regarding lung doses, aerosol penetration and distribution between the right and the left lung. In the specific conditions of the study, volume-controlled ventilation was associated with higher lung deposition of nebulized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies. Clinical trial registration NCT01879488.
Oppenheim-Eden, A; Cohen, Y; Weissman, C; Pizov, R
2001-08-01
To assess in vitro the performance of five mechanical ventilators-Siemens 300 and 900C (Siemens-Elma; Solna, Sweden), Puritan Bennett 7200 (Nellcor Puritan Bennett; Pleasanton, CA), Evita 4 (Dragerwerk; Lubeck, Germany), and Bear 1000 (Bear Medical Systems; Riverside CA)-and a bedside sidestream spirometer (Datex CS3 Respiratory Module; Datex-Ohmeda; Helsinki, Finland) during ventilation with helium-oxygen mixtures. In vitro study. ICUs of two university-affiliated hospitals. Each ventilator was connected to 100% helium through compressed air inlets and then tested at three to six different tidal volume (VT) settings using various helium-oxygen concentrations (fraction of inspired oxygen [FIO(2)] of 0.2 to 1.0). FIO(2) and VT were measured with the Datex CS3 spirometer, and VT was validated with a water-displacement spirometer. The Puritan Bennett 7200 ventilator did not function with helium. With the other four ventilators, delivered FIO(2) was lower than the set FIO(2). For the Siemens 300 and 900C ventilators, this difference could be explained by the lack of 21% oxygen when helium was connected to the air supply port, while for the other two ventilators, a nonlinear relation was found. The VT of the Siemens 300 ventilator was independent of helium concentration, while for the other three ventilators, delivered VT was greater than the set VT and was dependent on helium concentration. During ventilation with 80% helium and 20% oxygen, VT increased to 125% of set VT for the Siemens 900C ventilator, and more than doubled for the Evita 4 and Bear 1000 ventilators. Under the same conditions, the Datex CS3 spirometer underestimated the delivered VT by about 33%. At present, no mechanical ventilator is calibrated for use with helium. This investigation offers correction factors for four ventilators for ventilation with helium.
Impact of measurable physical phenomena on contact thermal comfort
NASA Astrophysics Data System (ADS)
Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján
Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.
Reiss, Lucy Kathleen; Kowallik, Anke; Uhlig, Stefan
2011-01-01
Introduction Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM) in healthy mice. Methods Mice were ventilated at low tidal volume VT = 8 mL/kg or high tidal volume VT = 16 mL/kg and a positive end-expiratory pressure (PEEP) of 2 or 6 cmH2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP), electrocardiogram (ECG), heart frequency (HF), oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL) and blood serum as well as histopathology of the lung were examined. Results MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. Conclusions Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by preventing atelectasis and reduce the development of pulmonary inflammation. PMID:21935418
Bischoff, W E; Kindermann, A; Sander, U; Sander, J
1995-10-01
In eleven centrally ventilated operating theatres the concentration of particles and airborne germs in wound vicinity was measured on three workdays. Five theatres were equipped with air supply ceilings with supporting flow outlets (supporting flow ceilings), five with laminar air flow ceilings and one with an air supply ceiling, a body exhaust system and a partition wall between the anesthetic and operating areas. Under routine conditions the air supply of the laminar air flow ceiling with its lower turbulence shielded the operating field from the largely staff-related air contamination in the rest of the theatre better than in the case of the supporting flow ceilings. Particles and airborne germs were removed from the endangered wound area faster. A spatial separation between the anesthetic and the operating areas as well as a body exhaust system lead to a considerable reduction of the contamination. Two theatres were conspicuous by reason of their considerably raised values due to defective control engineering and the wrongly positioning of the operating table. From the point of view of ventilation technique the laminar air flow ceilings with lower turbulence are superior to air supply ceilings with supporting flow outlets in the working day of an operating theatre. In order to minimize the influence of the staff, which up till now has been neglected in testing specifications, constructional possibilities such as the size of ceiling, the partitioning off of operating and anaesthetic areas and the positioning of the operating table in relation to the incoming air should be coordinated rationally. Taking measurements regularly during operations can provide the impulse for considerable improvements in both operational and planning phases.
Winter ventilation rates at primary schools: comparison between Portugal and Finland.
Canha, N; Almeida, S M; Freitas, M C; Täubel, M; Hänninen, O
2013-01-01
This study focused on examination of ventilation rates in classrooms with two different types of ventilation systems: natural and mechanical. Carbon dioxide (CO2) measurements were conducted in primary schools of Portugal characterized by natural ventilation and compared to Finland where mechanical ventilation is the norm. The winter period was selected since this season exerts a great influence in naturally ventilated classrooms, where opening of windows and doors occurs due to outdoor atmospheric conditions. The ventilation rates were calculated by monitoring CO2 concentrations generated by the occupants (used as a tracer gas) and application of the buildup phase method. A comparison between both countries' results was conducted with respect to ventilation rates and how these levels corresponded to national regulatory standards. Finnish primary schools (n = 2) registered a mean ventilation rate of 13.3 L/s per person, which is higher than the recommended ventilation standards. However, the Finnish classroom that presented the lowest ventilation rate (7.2 L/s per person) displayed short-term CO2 levels above 1200 ppm, which is the threshold limit value (TLV) recommended by national guidelines. The Portuguese classrooms (n = 2) showed low ventilation rates with mean values of 2.4 L/s per person, which is markedly lower than the minimum recommended value of 7 L/s per person as defined by ASHRAE and 20% less than the REHVA minimum of 3 L/s per person. Carbon dioxide levels of 1000 ppm, close to the TLV of 1200 ppm, were also reached in both Portuguese classrooms studied. The situation in Portugal indicates a potentially serious indoor air quality problem and strengthens the need for intervention to improve ventilation rates in naturally ventilated classrooms.
Beta activity in the premotor cortex is increased during stabilized as compared to normal walking
Bruijn, Sjoerd M.; Van Dieën, Jaap H.; Daffertshofer, Andreas
2015-01-01
Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability. PMID:26578937
Assessment of auditory impression of the coolness and warmness of automotive HVAC noise.
Nakagawa, Seiji; Hotehama, Takuya; Kamiya, Masaru
2017-07-01
Noise induced by a heating, ventilation and air conditioning (HVAC) system in a vehicle is an important factor that affects the comfort of the interior of a car cabin. Much effort has been devoted to reduce noise levels, however, there is a need for a new sound design that addresses the noise problem from a different point of view. In this study, focusing on the auditory impression of automotive HVAC noise concerning coolness and warmness, psychoacoustical listening tests were performed using a paired comparison technique under various conditions of room temperature. Five stimuli were synthesized by stretching the spectral envelopes of recorded automotive HVAC noise to assess the effect of the spectral centroid, and were presented to normal-hearing subjects. Results show that the spectral centroid significantly affects the auditory impression concerning coolness and warmness; a higher spectral centroid induces a cooler auditory impression regardless of the room temperature.
Howie, Sarah; Tarn, Anne; Soper, Charles
2010-01-01
Many of the common causes of a high anion gap metabolic acidosis, like salicylate toxicity or diabetic ketoacidosis, are well recognized and promptly treated. Pyroglutamic acidosis (or 5-oxoproline acidosis) is a less common cause and is likely substantially underdiagnosed for two reasons: firstly, urine or serum measurements of pyroglutamic acid are performed only in specialist laboratories, and secondly, because awareness of the condition is still low, despite widespread reports in the medical and biochemical literature. The condition is often precipitated by the chronic use of paracetamol. Paracetamol is increasingly being widely prescribed as an alternative to NSAIDs often in maximal doses, given its innocuous reputation, and we anticipate more similar presentations. We present a case of a young pregnant woman who developed a severe metabolic acidosis secondary to raised pyroglutamate. Her treatment necessitated an emergency Caesarean section, ventilation and haemodiafiltration, despite normal renal function. We provide a reminder of other risk factors associated with the diagnosis. PMID:25949471
Collignan, Bernard; Powaga, Emilie
2017-11-23
For a given radon potential in the ground and a given building, the parameters affecting the indoor radon activity concentration (IRnAC) are indoor depressurization of a building and its air change rate. These parameters depend mainly on the building characteristics, such as airtightness, and on the nature and performances of the ventilation system. This study involves a numerical sensitivity assessment of the indoor environmental conditions on the IRnAC in buildings. A numerical ventilation model has been adapted to take into account the effects of variations in the indoor environmental conditions (depressurization and air change rate) on the radon entry rate and on the IRnAC. In the context of the development of a policy to reduce energy consumption in a building, the results obtained showed that IRnAC could be strongly affected by variations in the air permeability of the building associated with the ventilation regime. Copyright © 2017 Elsevier Ltd. All rights reserved.