Sample records for offers unique properties

  1. Ultrasonic material property determinations

    NASA Technical Reports Server (NTRS)

    Serabian, S.

    1986-01-01

    The use and potential offered by ultrasonic velocity and attenuation measurements to determine and/or monitor material properties is explored. The basis for such unique measurements along with examples of materials from a variety of industries are presented.

  2. High-frequency applications of high-temperature superconductor thin films

    NASA Astrophysics Data System (ADS)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  3. The Use and Method of Action of Intravenous Lidocaine and Its Metabolite in Headache Disorders.

    PubMed

    Berk, Thomas; Silberstein, Stephen D

    2018-03-14

    Lidocaine, an amide anesthetic, has been used in the treatment of a wide variety of pain disorders for over 75 years. In addition to pain control, lidocaine is an anti-arrhythmic agent and has anti-inflammatory properties. Lidocaine's unique properties, including nonlinear pharmacokinetics, have limited its modern-day use. The purpose of this review is to offer a better understanding of the properties of this unique treatment, which we hope will allow more practitioners to offer this to their patients. An analysis of the history, pharmacokinetics, and relevant uses of lidocaine in headache medicine based on a synthesis of the medical literature and clinical experience. Lidocaine is an amide anesthetic that inhibits voltage gated sodium channels, and lidocaine metabolism occurs exclusively in the liver. One lidocaine metabolite has its own unique properties and may be an active form of the drug. Open label and retrospective studies have investigated the use of lidocaine in many headache disorders, primarily via injection or infusion. Further research into the active metabolite of lidocaine may allow for its use as a novel nonopiate treatment of chronic pain. © 2018 American Headache Society.

  4. Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds—A Mini-Review

    PubMed Central

    Karoyo, Abdalla H.; Wilson, Lee D.

    2015-01-01

    Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD)-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs) are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs) that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties. PMID:28347047

  5. Global Survey of Precipitation Properties Observed during Tropical Cyclogenesis and Their Differences Compared to Nondeveloping Disturbances

    NASA Astrophysics Data System (ADS)

    Zawislak, J.

    2017-12-01

    This study contributes to a global survey of the precipitation properties of developing and nondeveloping tropical disturbances, with a focus on distinguishing properties of those disturbances that develop into tropical cyclones (TCs) from those that do not develop. Precipitation properties are quantified using a unique accumulation of overpasses of pre-genesis TCs and nondeveloping disturbances from multiple satellite-borne passive microwave imagers. The overpasses are a subset of a broader Tropical Cyclone - Passive Microwave (TC-PMW) dataset that encompasses all stages of the TC life cycle. The TC-PMW consists of 14 years (2003-2016) of overpasses of pre-genesis and nondeveloping disturbances globally (the North Atlantic, East Pacific, Central Pacific, West Pacific, northern Indian Ocean, and Southern Hemisphere oceanic basins). Nondeveloping disturbances are defined as those disturbances that do not exceed an "invest" classification by the operational centers (NHC, CPHC, and JTWC). Overall, this study will offer a detailed analysis of the precipitation properties (i.e., areal coverage of rainfall and deep convection, depth, or intensity, of convection, proximity of precipitation to the center) multiple days before genesis. These analyses offer an opportunity to determine whether the properties of precipitation at, and just prior to, genesis are unique compared to previous days of the pre-genesis stage. By evaluating these properties over the robust sample provided by the TC-PMW dataset, results may lend support to the hypothesis that genesis is more closely tied to the fractional coverage of precipitation near the center rather than to any uniquely "intense" convection. The study will also investigate whether there are significant differences among the basins in the properties of precipitation involved in tropical cyclogenesis.

  6. Recent advances in applied nanoscience for food safety

    USDA-ARS?s Scientific Manuscript database

    Ongoing developments in nanotechnology offer potential to transform agriculture in several areas, including food safety, quality, packaging, product traceability, food processing, and bioactive delivery. These nanoscience-based applications utilize the unique properties of materials with a dimension...

  7. Application of Chemistry in Materials Research at NASA GRC

    NASA Technical Reports Server (NTRS)

    Kavandi, Janet L.

    2016-01-01

    Overview of NASA GRC Materials Development. New materials enabled by new chemistries offering unique properties and chemical processing techniques. Durability of materials in harsh environments requires understanding and modeling of chemical interaction of materials with the environment.

  8. Nanocrystalline cellulose from coir fiber: preparation, properties, and applications

    USDA-ARS?s Scientific Manuscript database

    Nanocrystalline cellulose derived from various botanical sources offers unique and potentially useful characteristics. In principle, any cellulosic material can be considered as a potential source of a nanocrystalline material, including crops, crop residues, and agroindustrial wastes. Because of t...

  9. Plasticity and Kinky Chemistry of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Dzegilenko, Fedor

    2000-01-01

    Since their discovery in 1991, carbon nanotubes have been the subject of intense research interest based on early predictions of their unique mechanical, electronic, and chemical properties. Materials with the predicted unique properties of carbon nanotubes are of great interest for use in future generations of aerospace vehicles. For their structural properties, carbon nanotubes could be used as reinforcing fibers in ultralight multifunctional composites. For their electronic properties, carbon nanotubes offer the potential of very high-speed, low-power computing elements, high-density data storage, and unique sensors. In a continuing effort to model and predict the properties of carbon nanotubes, Ames accomplished three significant results during FY99. First, accurate values of the nanomechanics and plasticity of carbon nanotubes based on quantum molecular dynamics simulations were computed. Second, the concept of mechanical deformation catalyzed-kinky-chemistry as a means to control local chemistry of nanotubes was discovered. Third, the ease of nano-indentation of silicon surfaces with carbon nanotubes was established. The elastic response and plastic failure mechanisms of single-wall nanotubes were investigated by means of quantum molecular dynamics simulations.

  10. Physical approaches to biomaterial design

    PubMed Central

    Mitragotri, Samir; Lahann, Joerg

    2009-01-01

    The development of biomaterials for drug delivery, tissue engineering and medical diagnostics has traditionally been based on new chemistries. However, there is growing recognition that the physical as well as the chemical properties of materials can regulate biological responses. Here, we review this transition with regard to selected physical properties including size, shape, mechanical properties, surface texture and compartmentalization. In each case, we present examples demonstrating the significance of these properties in biology. We also discuss synthesis methods and biological applications for designer biomaterials, which offer unique physical properties. PMID:19096389

  11. NBS (National Bureau of Standards): Materials measurements. [space processing experiments

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1983-01-01

    Work directed toward the measurement of materials properties important to the design and interpretation of space processing experiments and determinations of how the space environment may offer a unique opportunity for performing improved measurements and producing materials with improved properties is reported. Surface tensions and their variations with temperature and impurities; convection during undirectional solidification; and measurement of the high temperature thermophysical properties of tungsten group liquids and solids are discussed and results are summarized.

  12. Quantum dot behavior in transition metal dichalcogenides nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Zhang, Zhuo-Zhi; Li, Hai-Ou; Song, Xiang-Xiang; Deng, Guang-Wei; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2017-08-01

    Recently, transition metal dichalcogenides (TMDCs) semiconductors have been utilized for investigating quantum phenomena because of their unique band structures and novel electronic properties. In a quantum dot (QD), electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. Beyond the definition of graphene QDs by opening an energy gap in nanoconstrictions, with the presence of a bandgap, gate-defined QDs can be achieved on TMDCs semiconductors. In this paper, we review the confinement and transport of QDs in TMDCs nanostructures. The fabrication techniques for demonstrating two-dimensional (2D) materials nanostructures such as field-effect transistors and QDs, mainly based on e-beam lithography and transfer assembly techniques are discussed. Subsequently, we focus on electron transport through TMDCs nanostructures and QDs. With steady improvement in nanoscale materials characterization and using graphene as a springboard, 2D materials offer a platform that allows creation of heterostructure QDs integrated with a variety of crystals, each of which has entirely unique physical properties.

  13. Carbon Nanotubes by CVD and Applications

    NASA Technical Reports Server (NTRS)

    Cassell, Alan; Delzeit, Lance; Nguyen, Cattien; Stevens, Ramsey; Han, Jie; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Carbon nanotube (CNT) exhibits extraordinary mechanical and unique electronic properties and offers significant potential for structural, sensor, and nanoelectronics applications. An overview of CNT, growth methods, properties and applications is provided. Single-wall, and multi-wall CNTs have been grown by chemical vapor deposition. Catalyst development and optimization has been accomplished using combinatorial optimization methods. CNT has also been grown from the tips of silicon cantilevers for use in atomic force microscopy.

  14. PDB@: an offline toolkit for exploration and analysis of PDB files.

    PubMed

    Mani, Udayakumar; Ravisankar, Sadhana; Ramakrishnan, Sai Mukund

    2013-12-01

    Protein Data Bank (PDB) is a freely accessible archive of the 3-D structural data of biological molecules. Structure based studies offers a unique vantage point in inferring the properties of a protein molecule from structural data. This is too big a task to be done manually. Moreover, there is no single tool, software or server that comprehensively analyses all structure-based properties. The objective of the present work is to develop an offline computational toolkit, PDB@ containing in-built algorithms that help categorizing the structural properties of a protein molecule. The user has the facility to view and edit the PDB file to his need. Some features of the present work are unique in itself and others are an improvement over existing tools. Also, the representation of protein properties in both graphical and textual formats helps in predicting all the necessary details of a protein molecule on a single platform.

  15. Engineering Biomaterial Properties for Central Nervous System Applications

    NASA Astrophysics Data System (ADS)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  16. Innovative Coatings Potentially Lower Facility Maintenance Costs

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Through extensive testing at Stennis Space Center, Nanocepts Inc. of Lexington, Kentucky, received key validation of the effectiveness of its photocatalytic coatings. Now a NASA Dual Use Technology partner, the company s commercial coatings offer unique environmental and medical benefits, and their self-cleaning properties help limit grime buildup on buildings.

  17. Explosive Welding in the 1990's

    NASA Technical Reports Server (NTRS)

    Lalwaney, N. S.; Linse, V. D.

    1985-01-01

    Explosive bonding is a unique joining process with the serious potential to produce composite materials capable of fulfilling many of the high performance materials capable of fulfilling many of the high performance materials needs of the 1990's. The process has the technological versatility to provide a true high quality metallurgical compatible and incompatible systems. Metals routinely explosively bonded include a wide variety of combinations of reactive and refractory metals, low and high density metals and their alloys, corrosion resistant and high strength alloys, and common steels. The major advantage of the process is its ability to custom design and engineer composites with physical and/or mechanical properties that meet a specific or unusual performance requirement. Explosive bonding offers the designer unique opportunities in materials selection with unique combinations of properties and high integrity bonds that cannot be achieved by any other metal joining process. The process and some applications are discussed.

  18. Effects of surface properties on droplet formation inside a microfluidic device

    NASA Astrophysics Data System (ADS)

    Steinhaus, Ben; Shen, Amy

    2004-11-01

    Micro-fluidic devices offer a unique method of creating and controlling droplets on small length scales. A microfluidic device is used to study the effects of surface properties on droplet formation of a 2-phase flow system. Four phase diagrams are generated to compare the dynamics of the 2 immiscible fluid system (silicone oil and water) inside microchannels with different surface properties. Results show that the channel surface plays an important role in determining the flow patterns and the droplet formation of the 2-phase fluid system.

  19. Polymer/Silicate Nanocomposites Developed for Improved Thermal Stability and Barrier Properties

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.

    2001-01-01

    The nanoscale reinforcement of polymers is becoming an attractive means of improving the properties and stability of polymers. Polymer-silicate nanocomposites are a relatively new class of materials with phase dimensions typically on the order of a few nanometers. Because of their nanometer-size features, nanocomposites possess unique properties typically not shared by more conventional composites. Polymer-layered silicate nanocomposites can attain a certain degree of stiffness, strength, and barrier properties with far less ceramic content than comparable glass- or mineral-reinforced polymers. Reinforcement of existing and new polyimides by this method offers an opportunity to greatly improve existing polymer properties without altering current synthetic or processing procedures.

  20. Space - A unique environment for process modeling R&D

    NASA Technical Reports Server (NTRS)

    Overfelt, Tony

    1991-01-01

    Process modeling, the application of advanced computational techniques to simulate real processes as they occur in regular use, e.g., welding, casting and semiconductor crystal growth, is discussed. Using the low-gravity environment of space will accelerate the technical validation of the procedures and enable extremely accurate determinations of the many necessary thermophysical properties. Attention is given to NASA's centers for the commercial development of space; joint ventures of universities, industries, and goverment agencies to study the unique attributes of space that offer potential for applied R&D and eventual commercial exploitation.

  1. Some fundamental properties and reactions of ice surfaces at low temperatures.

    PubMed

    Park, Seong-Chan; Moon, Eui-Seong; Kang, Heon

    2010-10-14

    Ice surfaces offer a unique chemical environment in which reactions occur quite differently from those in liquid water or gas phases. In this article, we examine the basic properties of ice surfaces below the surface premelting temperature and discuss some of the recent investigations carried out on reactions at the ice surfaces. The static and dynamic properties of an ice surface as a reaction medium, such as its structure, molecule diffusion and proton transfer dynamics, and the surface preference of hydronium and hydroxide ions, are discussed in relation to the reactivity of the surface.

  2. Recent advances in the fabrication and structure-specific applications of graphene-based inorganic hybrid membranes.

    PubMed

    Zhao, Xinne; Zhang, Panpan; Chen, Yuting; Su, Zhiqiang; Wei, Gang

    2015-03-12

    The preparation and applications of graphene (G)-based materials are attracting increasing interests due to their unique electronic, optical, magnetic, thermal, and mechanical properties. Compared to G-based hybrid and composite materials, G-based inorganic hybrid membrane (GIHM) offers enormous advantages ascribed to their facile synthesis, planar two-dimensional multilayer structure, high specific surface area, and mechanical stability, as well as their unique optical and mechanical properties. In this review, we report the recent advances in the technical fabrication and structure-specific applications of GIHMs with desirable thickness and compositions. In addition, the advantages and disadvantages of the methods utilized for creating GIHMs are discussed in detail. Finally, the potential applications and key challenges of GIHMs for future technical applications are mentioned.

  3. XMM-Newton Proposal 03024201

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    2004-10-01

    POX 52 is a Narrow-Line Seyfert 1 galaxy with extreme and unusual properties. Its black hole mass, estimated from the optical spectrum of the AGN, is only ~10^5 solar masses; its host galaxy is a dwarf elliptical with a velocity dispersion of only 36+/-5 km/s; and it is radiating at L/L_Edd ~ 1. POX 52 offers a unique opportunity to study black hole accretion at high accretion rates in a mass range that has barely been explored previously. We request 100 ksec of EPIC-pn observations of this unique AGN in order to characterize its X-ray spectrum and absorption, to search for Fe K line emission, to study its variability properties, and to search for quasi-periodic oscillations with the aim of better constraining the black hole mass.

  4. New Directions in Phthalocyanine Pigments

    NASA Technical Reports Server (NTRS)

    Vandemark, Michael R.

    1992-01-01

    The objectives were the following: (1) investigation of the synthesis of new phthalocyanines; (2) characterization of the new phthalocyanines synthesized; (3) investigate the properties of the newly synthesized phthalocyanines with emphasis on UV protection of plastics and coatings; and (4) utilize quantum mechanics to evaluate the structural relationships with possible properties and synthetic approaches. The proposed research targeted the synthesis of phthalocyanines containing an aromatic bridge between two phthalocyanine rings. The goal was to synthesize pigments which would protect plastics when exposed to the photodegradation effects of the sun in space. The stability and extended conjugation of the phthalocyanines offer a unique opportunity for energy absorption and numerous radiative and non-radiative energy loss mechanisms. Although the original targeted phthalocyanines were changed early in the project, several new and unique phthalocyanine compounds were prepared. The basic goals of this work were met and some unique and unexpected outcomes of the work were the result of the integral use of quantum mechanics and molecular modeling with the synthetic effort.

  5. The gas production rate of periodic comet d'Arrest

    NASA Technical Reports Server (NTRS)

    Festou, Michel C.; Feldman, Paul D.; Ahearn, Michael F.

    1992-01-01

    Comet P/d'Arrest is a potential target for a rendezvous mission to a short period comet. Its light curve is rather peculiar, the comet being active only after perihelion passage. One apparition out of two is easy to observe from the ground. The 1995 apparition of the comet will offer a unique opportunity to characterize the outgassing properties of its nucleus.

  6. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Tai

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  7. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction.

    PubMed

    Friedman, C D; Costantino, P D; Takagi, S; Chow, L C

    1998-01-01

    BoneSource-hydroxyapatite cement is a new self-setting calcium phosphate cement biomaterial. Its unique and innovative physical chemistry coupled with enhanced biocompatibility make it useful for craniofacial skeletal reconstruction. The general properties and clinical use guidelines are reviewed. The biomaterial and surgical applications offer insight into improved outcomes and potential new uses for hydroxyapatite cement systems.

  8. Microstructural Design for Stress Wave Energy Management

    DTIC Science & Technology

    2013-04-01

    Polyurea based foam 7 4) Controlling transmission and reflection of pressure and shear waves in a multilayered anisotropic structure 10 5... Polyurea based foam consists of several factors including high energy absorption, light weight, higher elastic modulus to density ratio (compared with... Polyurea ), and collapsible voids under extreme loading. Pure Polyurea offers unique properties such as increased shear stiffness under large pressure

  9. Toward a Brief Multidimensional Assessment of Emotional Intelligence: Psychometric Properties of the Emotional Quotient Inventory-Short Form

    ERIC Educational Resources Information Center

    Parker, James D. A.; Keefer, Kateryna V.; Wood, Laura M.

    2011-01-01

    Although several brief instruments are available for the emotional intelligence (EI) construct, their conceptual coverage tends to be quite limited. One notable exception is the short form of the Emotional Quotient Inventory (EQ-i:S), which measures multiple EI dimensions in addition to a global EI index. Despite the unique advantage offered by…

  10. Gamma rays from hidden millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.

  11. Nanostructured materials for advanced energy conversion and storage devices

    NASA Astrophysics Data System (ADS)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  12. Nanocellulose-stabilized Pickering emulsions and their applications

    PubMed Central

    Fujisawa, Shuji; Togawa, Eiji; Kuroda, Katsushi

    2017-01-01

    Abstract Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g. chemical stability, biodegradability, biocompatibility, and renewability). In this review, the preparation and properties of nanocellulose-stabilized Pickering emulsions are summarized. We also provide future perspectives on their applications, such as drug delivery, food, and composite materials. PMID:29383046

  13. Nanocellulose-stabilized Pickering emulsions and their applications

    NASA Astrophysics Data System (ADS)

    Fujisawa, Shuji; Togawa, Eiji; Kuroda, Katsushi

    2017-12-01

    Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g. chemical stability, biodegradability, biocompatibility, and renewability). In this review, the preparation and properties of nanocellulose-stabilized Pickering emulsions are summarized. We also provide future perspectives on their applications, such as drug delivery, food, and composite materials.

  14. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics.

    PubMed

    Eda, Goki; Chhowalla, Manish

    2010-06-11

    Chemically derived graphene oxide (GO) possesses a unique set of properties arising from oxygen functional groups that are introduced during chemical exfoliation of graphite. Large-area thin-film deposition of GO, enabled by its solubility in a variety of solvents, offers a route towards GO-based thin-film electronics and optoelectronics. The electrical and optical properties of GO are strongly dependent on its chemical and atomic structure and are tunable over a wide range via chemical engineering. In this Review, the fundamental structure and properties of GO-based thin films are discussed in relation to their potential applications in electronics and optoelectronics.

  15. Novel materials for electrochemical power sources—introduction of PUREBLACK ® Carbons

    NASA Astrophysics Data System (ADS)

    Barsukov, Igor V.; Gallego, Maritza A.; Doninger, Joseph E.

    Graphitization heat treatment of a precursor carbon black was seen to effectively produce a wide variety of forms of partially graphitized nano-sized carbonaceous materials with a set of unique properties, some of which are reported in this paper in comparison with those properties of the precursor carbon material. These novel materials were given the name of PUREBLACK ® Carbons. Among some of the unique properties are: higher conductivity than that of acetylene type carbon blacks due to PUREBLACK ® Carbon's particles having more graphitic structure; very low to zero volatile content (external oxygen, sulfur, etc., groups, which are often believed to be the cause of initiation of self-discharge reactions in batteries); very low equilibrium moisture pickup (20 ppm level), which makes it particularly attractive in lithium metal or lithium-ion based electrochemical systems; high purity. Electrochemical testing of the newly proposed PUREBLACK ® Carbons in several battery systems offers significant promise that it presents a viable solution to the needs of industry.

  16. Anomalous elastic properties across the γ to α volume collapse in cerium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipp, Magnus J.; Jenei, Zs.; Cynn, H.

    2017-10-31

    The behavior of the f-electrons in the lanthanides and actinides governs important macroscopic properties but their pressure and temperature dependence is not fully explored. Cerium with nominally just one 4f electron offers a case study with its iso-structural volume collapse from the γ-phase to the α-phase ending in a critical point (pC, VC, TC), unique among the elements, whose mechanism remains controversial. Here, we present longitudinal (cL) and transverse sound speeds (cT) versus pressure from higher than room temperature to TC for the first time. While cL experiences a non-linear dip at the volume collapse, cT shows a step-like change.more » This produces very peculiar macroscopic properties: the minimum in the bulk modulus becomes more pronounced, the step-like increase of the shear modulus diminishes and the Poisson’s ratio becomes negative—meaning that cerium becomes auxetic. At the critical point itself cerium lacks any compressive strength but offers resistance to shear.« less

  17. Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance.

    PubMed

    Kokate, Mangesh; Garadkar, Kalyanrao; Gole, Anand

    2016-12-01

    We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of our product and process stems from the novel synthesis strategy, the choice and combination of the three moieties, increased surface area offered by silica, and cost effectiveness, thereby making our product and process commercially viable and sustainable for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Low-Temperature Properties of Silver

    PubMed Central

    Smith, David R.; Fickett, F. R.

    1995-01-01

    Pure silver is used extensively in the preparation of high-temperature superconductor wires, tapes, films, and other configurations in which the silver not only shields the superconducting material from the surrounding materials, but also provides a degree of flexibility and strain relief, as well as stabilization and low-resistance electrical contact. Silver is relatively expensive, but at this stage of superconductor development, its unique combination of properties seems to offer the only reasonable means of achieving usable lengths of conductor. In this role, the low-temperature physical (electrical, thermal, magnetic, optical) and mechanical properties of the silver all become important. Here we present a collection of properties data extracted from the cryogenic literature and, to the extent possible, selected for reliability. PMID:29151733

  19. The mechanical behavior of GLARE laminates for aircraft structures

    NASA Astrophysics Data System (ADS)

    Wu, Guocai; Yang, J.-M.

    2005-01-01

    GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

  20. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents.

    PubMed

    Debele, Tilahun Ayane; Mekuria, Shewaye Lakew; Tsai, Hsieh-Chih

    2016-11-01

    Polysaccharide-based nanoparticles have fascinated attention as a vesicle of different pharmaceutical agents due to their unique multi-functional groups in addition to their physicochemical properties, including biocompatibility and biodegradability. The existence of multi-functional groups on the polysaccharide backbone permits facile chemical or biochemical modification to synthesize polysaccharide based nanoparticles with miscellaneous structures. Polysaccharide-based nanogels have high water content, large surface area for multivalent bioconjugation, tunable size, and interior network for the incorporation of different pharmaceutical agents. These unique properties offer great potential for the utilization of polysaccharide-based nanogels in the drug delivery systems. Hence, this review describes chemistry of certain common polysaccharides, several methodologies used to synthesize polysaccharide nanoparticles and primarily focused on the polysaccharide (or polysaccharide derivative) based nanogels as the carrier of pharmaceutical agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Liu, Z. K.; Sun, Y.

    Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe 2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leadsmore » to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe 2 was discovered to be superconducting recently) and their topological order.« less

  2. Signature of Type-II Weyl Semimetal Phase in MoTe2

    NASA Astrophysics Data System (ADS)

    Jiang, Juan; Liu, Zhongkai; Yang, Haifeng; Yang, Lexian; Chen, Cheng; Peng, Han; Hwang, Chan-Cuk; Mo, Sung-Kwan; Chen, Yulin; ShanghaiTech University Collaboration; Oxford University Collaboration; Lawrence Berkeley National Lab Collaboration; Pohang University of Science; Technology Collaboration

    Topological Weyl semimetal (TWS) is a new state of quantum matter, which has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. Here, by using angle-resolved photoemission spectroscopy, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS, which do not respect Lorentz symmetry compared with type-I TWS. Furthermore, we unravel the unique surface Fermi arcs, in good agreement with our ab-initio calculations, which have non-trivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity and their topological order.

  3. Signature of type-II Weyl semimetal phase in MoTe2

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Liu, Z. K.; Sun, Y.; Yang, H. F.; Rajamathi, C. R.; Qi, Y. P.; Yang, L. X.; Chen, C.; Peng, H.; Hwang, C.-C.; Sun, S. Z.; Mo, S.-K.; Vobornik, I.; Fujii, J.; Parkin, S. S. P.; Felser, C.; Yan, B. H.; Chen, Y. L.

    2017-01-01

    Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe2 was discovered to be superconducting recently) and their topological order.

  4. The time dependent magnetization of fine-grained iron in lunar breccias

    NASA Technical Reports Server (NTRS)

    Gose, W. A.; Carnes, J. G.

    1973-01-01

    Lunar breccias of low metamorphic grade offer a unique opportunity to investigate the magnetic properties of dispersed fine-grained iron. These rocks exhibit a pronounced time-dependent magnetization whose acquisition and decay are well explained by Neel's single-domain theory. The effect is due to iron grains in the range from 120 to 150 A in diameter, which covers the transition from superparamagnetic to stable single-domain behavior.

  5. On the Materials Science of Nature's Arms Race.

    PubMed

    Liu, Zengqian; Zhang, Zhefeng; Ritchie, Robert O

    2018-06-05

    Biological material systems have evolved unique combinations of mechanical properties to fulfill their specific function through a series of ingenious designs. Seeking lessons from Nature by replicating the underlying principles of such biological materials offers new promise for creating unique combinations of properties in man-made systems. One case in point is Nature's means of attack and defense. During the long-term evolutionary "arms race," naturally evolved weapons have achieved exceptional mechanical efficiency with a synergy of effective offense and persistence-two characteristics that often tend to be mutually exclusive in many synthetic systems-which may present a notable source of new materials science knowledge and inspiration. This review categorizes Nature's weapons into ten distinct groups, and discusses the unique structural and mechanical designs of each group by taking representative systems as examples. The approach described is to extract the common principles underlying such designs that could be translated into man-made materials. Further, recent advances in replicating the design principles of natural weapons at differing lengthscales in artificial materials, devices and tools to tackle practical problems are revisited, and the challenges associated with biological and bioinspired materials research in terms of both processing and properties are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Spongy Gels by a Top-Down Approach from Polymer Fibrous Sponges.

    PubMed

    Jiang, Shaohua; Duan, Gaigai; Kuhn, Ute; Mörl, Michaela; Altstädt, Volker; Yarin, Alexander L; Greiner, Andreas

    2017-03-13

    Ultralight cellular sponges offer a unique set of properties. We show here that solvent uptake by these sponges results in new gel-like materials, which we term spongy gels. The appearance of the spongy gels is very similar to classic organogels. Usually, organogels are formed by a bottom-up process. In contrast, the spongy gels are formed by a top-down approach that offers numerous advantages for the design of their properties, reproducibility, and stability. The sponges themselves represent the scaffold of a gel that could be filled with a solvent, and thereby form a mechanically stable gel-like material. The spongy gels are independent of a time-consuming or otherwise demanding in situ scaffold formation. As solvent evaporation from gels is a concern for various applications, we also studied solvent evaporation of wetting and non-wetting liquids dispersed in the sponge. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Self-rolling and light-trapping in flexible quantum well–embedded nanomembranes for wide-angle infrared photodetectors

    PubMed Central

    Wang, Han; Zhen, Honglou; Li, Shilong; Jing, Youliang; Huang, Gaoshan; Mei, Yongfeng; Lu, Wei

    2016-01-01

    Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)–embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes. PMID:27536723

  8. Near-net-shape manufacturing: Spray-formed metal matrix composites and tooling

    NASA Technical Reports Server (NTRS)

    Mchugh, Kevin M.

    1994-01-01

    Spray forming is a materials processing technology in which a bulk liquid metal is converted to a spray of fine droplets and deposited onto a substrate or pattern to form a near-net-shape solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g. refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. The Idaho National Engineering Laboratory is developing a unique spray-forming method, the Controlled Aspiration Process (CAP), to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Results from two spray-accompanying technical and economic benefits. These programs involved spray forming aluminum strip reinforced with SiC particulate, and the production of tooling, such as injection molds and dies, using low-melting-point metals.

  9. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle

    PubMed Central

    Dekempeneer, Yana; Keyaerts, Marleen; Krasniqi, Ahmet; Puttemans, Janik; Muyldermans, Serge; Lahoutte, Tony; D’huyvetter, Matthias; Devoogdt, Nick

    2016-01-01

    ABSTRACT Introduction: The combination of a targeted biomolecule that specifically defines the target and a radionuclide that delivers a cytotoxic payload offers a specific way to destroy cancer cells. Targeted radionuclide therapy (TRNT) aims to deliver cytotoxic radiation to cancer cells and causes minimal toxicity to surrounding healthy tissues. Recent advances using α-particle radiation emphasizes their potential to generate radiation in a highly localized and toxic manner because of their high level of ionization and short range in tissue. Areas covered: We review the importance of targeted alpha therapy (TAT) and focus on nanobodies as potential beneficial vehicles. In recent years, nanobodies have been evaluated intensively as unique antigen-specific vehicles for molecular imaging and TRNT. Expert opinion: We expect that the efficient targeting capacity and fast clearance of nanobodies offer a high potential for TAT. More particularly, we argue that the nanobodies’ pharmacokinetic properties match perfectly with the interesting decay properties of the short-lived α-particle emitting radionuclides Astatine-211 and Bismuth-213 and offer an interesting treatment option particularly for micrometastatic cancer and residual disease. PMID:27145158

  10. Experimental Overview of Direct Photon Results in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Novitzky, Norbert

    2016-07-01

    Direct photons are color blind probes and thus they provide unique opportunities to study the colored medium created in heavy ion collisions. There are many different sources of direct photons each probing different physics processes as the system evolves. In basic 2 → 2 processes the prompt photons from primary hard scatterings offer the most precise measurements of the outgoing parton energy in the opposite direction. In heavy ion collisions the created medium emits photons as thermal radiation, whose rate and anisotropies provide a unique prospective on the properties and evolution of the system. Recent results on direct photons from the LHC and RHIC experiments are briefly summarized in this paper.

  11. Electrochemically induced actuation of liquid metal marbles

    NASA Astrophysics Data System (ADS)

    Tang, Shi-Yang; Sivan, Vijay; Khoshmanesh, Khashayar; O'Mullane, Anthony P.; Tang, Xinke; Gol, Berrak; Eshtiaghi, Nicky; Lieder, Felix; Petersen, Phred; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2013-06-01

    Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads.Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00185g

  12. Evaluation of Degradation Properties of Polyglycolide and Its Potential as Delivery Vehicle for Anticancer Agents

    NASA Astrophysics Data System (ADS)

    Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.

    2010-03-01

    Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.

  13. Predicting protein crystallization propensity from protein sequence

    PubMed Central

    2011-01-01

    The high-throughput structure determination pipelines developed by structural genomics programs offer a unique opportunity for data mining. One important question is how protein properties derived from a primary sequence correlate with the protein’s propensity to yield X-ray quality crystals (crystallizability) and 3D X-ray structures. A set of protein properties were computed for over 1,300 proteins that expressed well but were insoluble, and for ~720 unique proteins that resulted in X-ray structures. The correlation of the protein’s iso-electric point and grand average hydropathy (GRAVY) with crystallizability was analyzed for full length and domain constructs of protein targets. In a second step, several additional properties that can be calculated from the protein sequence were added and evaluated. Using statistical analyses we have identified a set of the attributes correlating with a protein’s propensity to crystallize and implemented a Support Vector Machine (SVM) classifier based on these. We have created applications to analyze and provide optimal boundary information for query sequences and to visualize the data. These tools are available via the web site http://bioinformatics.anl.gov/cgi-bin/tools/pdpredictor. PMID:20177794

  14. Synthesis and Characterization of Superhydrophobic, Self-cleaning NIR-reflective Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sriramulu, Deepa; Reed, Ella Louise; Annamalai, Meenakshi; Venkatesan, Thirumalai Venky; Valiyaveettil, Suresh

    2016-11-01

    Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant functionalised nanoparticles showed monomeric or excimeric peaks based on the amounts of perylene molecules present on the surface of silica nanoparticles. Contact angle measurements on thin films prepared from nanoparticles showed that unfunctionalised nanoparticles were superhydrophilic with a contact angle (CA) of 0°, whereas perylene functionalised silica particles were hydrophobic (CA > 130°) and nanoparticles functionalised with PDI and trimethoxy(octadecyl)silane (TMODS) in an equimolar ratio were superhydrophobic with static CA > 150° and sliding angle (SA) < 10°. In addition, the near infrared (NIR) reflectance properties of PDI incorporated silica nanoparticles can be used to protect various heat sensitive substrates. The concept developed in this paper offers a unique combination of super hydrophobicity, interesting optical properties and NIR reflectance in nanosilica, which could be used for interesting applications such as surface coatings with self-cleaning and NIR reflection properties.

  15. Fe-Mn(Al, Si) TWIP steel - strengthening characteristics and weldability

    NASA Astrophysics Data System (ADS)

    Podany, P.; Koukolikova, M.; Kubina, T.; Prochazka, R.; Franc, A.

    2017-02-01

    Twinning Induced Plasticity steel, or TWIP steel, has had increased interest in recent years from various industry sectors. This is due to it being lightweight, strong, and ductile; which are all properties that are useful in the automotive and aerospace industries. These steels potentially can offer lighter weight vehicles and parts with increased strength and other mechanical properties. This combination could offer greater fuel efficiency and performance while at the same time improving the safety features of the vehicle. This steel is characterised by being a high alloy steel, specifically having a high manganese content. It also has a fully austenitic microstructure at room temperature, which is a unique characteristic. But, for TWIP steel to be useful in various industrial sectors, it must have good weldability. This paper deals with the description of the strengthening due to the cold rolling on experimental heats of manganese steel with TRIP/TWIP effect. Impacts on microstructure, yield strength and tensile strength are described. Also, the weldability of experimental TWIP steel by studying the properties of weld joints after laser welding is described.

  16. The second evolution of ionic liquids: from solvents and separations to advanced materials--energetic examples from the ionic liquid cookbook.

    PubMed

    Smiglak, Marcin; Metlen, Andreas; Rogers, Robin D

    2007-11-01

    In this Account of the small portion of the recent research in ionic liquids (ILs) by the Rogers Group, we fast forward through the first evolution of IL research, where ILs were studied for their unique set of physical properties and the resulting potential for tunable "green solvents", to the second evolution of ILs, where the tunability of the cation and anion independently offers almost unlimited access to targeted combinations of physical and chemical properties. This approach is demonstrated here with the field of energetic ionic liquids (EILs), which utilizes this design flexibility to find safe synthetic routes to ILs with high energy content and targeted physical properties.

  17. Nanotechnology: Opportunities and Challenges

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya

    2003-01-01

    Nanotechnology seeks to exploit novel physical, chemical, biological, mechanical, electrical, and other properties, which arise primarily due to the nanoscale nature of certain materials. A key example is carbon nanotubes (CNTs) which exhibit unique electrical and extraordinary mechanical properties and offer remarkable potential for revolutionary applications in electronics devices, computing, and data storage technology, sensors, composites, nanoelectromechanical systems (NEMS), and as tip in scanning probe microscopy (SPM) for imaging and nanolithography. Thus the CNT synthesis, characterization, and applications touch upon all disciplines of science and engineering. This presentation will provide an overview and progress report on this and other major research candidates in Nanotechnology and address opportunities and challenges ahead.

  18. Phospholipids at the Interface: Current Trends and Challenges

    PubMed Central

    Pichot, Roman; Watson, Richard L.; Norton, Ian T.

    2013-01-01

    Phospholipids are one of the major structural elements of biological membranes. Due to their amphiphilic character, they can adopt various molecular assemblies when dispersed in water, such as bilayer vesicles or micelles, which give them unique interfacial properties and render them very attractive in terms of foam or emulsion stabilization. This article aims at reviewing the properties of phospholipids at the air/water and oil/water interfaces, as well as the recent advances in using these natural components as stabilizers, alone or in combination with other compounds such as proteins. A discussion regarding the challenges and opportunities offered by phospholipids-stabilized structure concludes the review. PMID:23736688

  19. Synthesis, Structure, and Properties of Refractory Hard-Metal Borides

    NASA Astrophysics Data System (ADS)

    Lech, Andrew Thomas

    As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".

  20. Polymer optical fiber sensors in human life safety

    NASA Astrophysics Data System (ADS)

    Marques, C. A. F.; Webb, D. J.; Andre, P.

    2017-07-01

    The current state of research into polymer optical fiber (POF) sensors linked to safety in human life is summarized in this paper. This topic is directly related with new solutions for civil aircraft, structural health monitoring, healthcare and biomedicine fields. In the last years, the properties of polymers have been explored to identify situations offering potential advantages over conventional silica fiber sensing technology, replacing, in some cases, problematic electronic technology used in these mentioned fields, where there are some issues to overcome. POFs could preferably replace their silica counterparts, with improved performance and biocompatibility. Finally, new developments are reported which use the unique properties of POF.

  1. Tribological and structural properties of titanium nitride and titanium aluminum nitride coatings deposited with modulated pulsed power magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ward, Logan

    The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate material can have a significant effect on adhesion and the mechanical response between the coating and substrate. Depending on deposition parameters and the selected material MPPMS and DOMS are promising alternatives to DCMS, PMS, and CAD.

  2. Development of an Integrated, Lightweight Combat Boot. Phase 1

    DTIC Science & Technology

    1988-05-01

    However, we have since madb other tests on finished boots, which show a less favorable 11 comparison. It requires 200 pounds pressure for a nail to go...polybenzimiaazole, is an Crimp per inch 11 0 organic fiber with a unique combination of high- per mm 04 performance properties; % 28.0 Finish % 06 C3...offering desirable a moisture regain of 15%). is 50% more ab- garment comfort and textile processibility PBI sorbent than coton . Gillette Research

  3. Qubit-Based Memcapacitors and Meminductors

    NASA Astrophysics Data System (ADS)

    Shevchenko, Sergey N.; Pershin, Yuriy V.; Nori, Franco

    2016-07-01

    It is shown that superconducting charge and flux quantum bits (qubits) can be classified as memory capacitive and inductive systems, respectively. We demonstrate that such memcapacitive and meminductive devices offer remarkable and rich response functionalities. In particular, when subjected to periodic input, qubit-based memcapacitors and meminductors exhibit unusual hysteresis curves. Our work not only extends the set of known memcapacitive and meminductive systems to qubit-based devices, but also highlights their unique properties potentially useful for future technological applications.

  4. Impact of ultrasonic assisted triangular lattice like arranged dispersion of nanoparticles on physical and mechanical properties of epoxy-TiO2 nanocomposites.

    PubMed

    Goyat, M S; Ghosh, P K

    2018-04-01

    Emerging ex-situ technique, ultrasonic dual mixing (UDM) offers unique and hitherto unapproachable opportunities to alter the physical and mechanical properties of polymer nanocomposites. In this study, triangular lattice-like arranged dispersion of TiO 2 nanoparticles (average size ∼ 48 nm) in the epoxy polymer has been attained via concurrent use of a probe ultra-sonicator and 4 blades pitched impeller which collectively named as UDM technique. The UDM processing of neat epoxy reveals the generation of triangular lattice-like arranged nanocavities with nanoscale inter-cavity spacing. The UDM processing of epoxy-TiO 2 nanocomposites reveals two unique features such as partial and complete entrapping of the nanoparticles by the nanocavities leading the arranged dispersion of particles in the epoxy matrix. Pristine TiO 2 nanoparticles were dispersed in the epoxy polymer at loading fractions of up to 20% by weight. The results display that the arranged dispersion of nanoparticles is very effective at enhancing the glass transition temperature (T g ) and tensile properties of the epoxy at loading fractions of 10 wt%. We quantify a direct relationship among three important parameters such as nanoparticle content, cluster size, and inter-particle spacing. Our results offer a novel understanding of these parameters on the T g and tensile properties of the epoxy nanocomposites. The tensile fracture surfaces revealed several toughening mechanisms such as particle pull-out, plastic void growth, crack deflection, crack bridging and plastic deformation. We show that a strong nanoparticle-matrix interface led to the enhanced mechanical properties due to leading toughening mechanisms such as crack deflection, plastic deformation and particle pull-out. We showed that the UDM has an inordinate prospective to alter the dispersion state of nanoparticles in viscous polymer matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. When biomolecules meet graphene: from molecular level interactions to material design and applications.

    PubMed

    Li, Dapeng; Zhang, Wensi; Yu, Xiaoqing; Wang, Zhenping; Su, Zhiqiang; Wei, Gang

    2016-12-01

    Graphene-based materials have attracted increasing attention due to their atomically-thick two-dimensional structures, high conductivity, excellent mechanical properties, and large specific surface areas. The combination of biomolecules with graphene-based materials offers a promising method to fabricate novel graphene-biomolecule hybrid nanomaterials with unique functions in biology, medicine, nanotechnology, and materials science. In this review, we focus on a summarization of the recent studies in functionalizing graphene-based materials using different biomolecules, such as DNA, peptides, proteins, enzymes, carbohydrates, and viruses. The different interactions between graphene and biomolecules at the molecular level are demonstrated and discussed in detail. In addition, the potential applications of the created graphene-biomolecule nanohybrids in drug delivery, cancer treatment, tissue engineering, biosensors, bioimaging, energy materials, and other nanotechnological applications are presented. This review will be helpful to know the modification of graphene with biomolecules, understand the interactions between graphene and biomolecules at the molecular level, and design functional graphene-based nanomaterials with unique properties for various applications.

  6. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons

    NASA Astrophysics Data System (ADS)

    Efros, Alexander L.; Delehanty, James B.; Huston, Alan L.; Medintz, Igor L.; Barbic, Mladen; Harris, Timothy D.

    2018-04-01

    Success in the projects aimed at providing an advanced understanding of the brain is directly predicated on making critical advances in nanotechnology. This Perspective addresses the unique interface of neuroscience and nanomaterials by considering the foundational problem of sensing neuron membrane voltage and offers a potential solution that may be facilitated by a prototypical nanomaterial. Despite substantial improvements, the visualization of instantaneous voltage changes within individual neurons, whether in cell culture or in vivo, at both the single-cell and network level at high speed remains complex and problematic. The unique properties of semiconductor quantum dots (QDs) have made them powerful fluorophores for bioimaging. What is not widely appreciated, however, is that QD photoluminescence is exquisitely sensitive to proximal electric fields. This property should be suitable for sensing voltage changes that occur in the active neuronal membrane. Here, we examine the potential role of QDs in addressing the important challenge of real-time optical voltage imaging.

  7. Biosynthesis of Inorganic Nanoparticles: A Fresh Look at the Control of Shape, Size and Composition

    PubMed Central

    Dahoumane, Si Amar; Jeffryes, Clayton; Mechouet, Mourad; Agathos, Spiros N.

    2017-01-01

    Several methodologies have been devised for the design of nanomaterials. The “Holy Grail” for materials scientists is the cost-effective, eco-friendly synthesis of nanomaterials with controlled sizes, shapes and compositions, as these features confer to the as-produced nanocrystals unique properties making them appropriate candidates for valuable bio-applications. The present review summarizes published data regarding the production of nanomaterials with special features via sustainable methodologies based on the utilization of natural bioresources. The richness of the latter, the diversity of the routes adopted and the tuned experimental parameters have led to the fabrication of nanomaterials belonging to different chemical families with appropriate compositions and displaying interesting sizes and shapes. It is expected that these outstanding findings will encourage researchers and attract newcomers to continue and extend the exploration of possibilities offered by nature and the design of innovative and safer methodologies towards the synthesis of unique nanomaterials, possessing desired features and exhibiting valuable properties that can be exploited in a profusion of fields. PMID:28952493

  8. Signature of type-II Weyl semimetal phase in MoTe 2

    DOE PAGES

    Jiang, J.; Liu, Z. K.; Sun, Y.; ...

    2017-01-13

    Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe 2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leadsmore » to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe 2 was discovered to be superconducting recently) and their topological order.« less

  9. Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces

    PubMed Central

    Hashemi, Mohammed Reza M.; Yang, Shang-Hua; Wang, Tongyu; Sepúlveda, Nelson; Jarrahi, Mona

    2016-01-01

    Engineered metamaterials offer unique functionalities for manipulating the spectral and spatial properties of electromagnetic waves in unconventional ways. Here, we report a novel approach for making reconfigurable metasurfaces capable of deflecting electromagnetic waves in an electronically controllable fashion. This is accomplished by tilting the phase front of waves through a two-dimensional array of resonant metasurface unit-cells with electronically-controlled phase-change materials embedded inside. Such metasurfaces can be placed at the output facet of any electromagnetic radiation source to deflect electromagnetic waves at a desired frequency, ranging from millimeter-wave to far-infrared frequencies. Our design does not use any mechanical elements, external light sources, or reflectarrays, creating, for the first time, a highly robust and fully-integrated beam-steering device solution. We demonstrate a proof-of-concept beam-steering metasurface optimized for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Dynamic control of electromagnetic wave propagation direction through this unique platform could be transformative for various imaging, sensing, and communication applications, among others. PMID:27739471

  10. Rejecting the equilibrium-point hypothesis.

    PubMed

    Gottlieb, G L

    1998-01-01

    The lambda version of the equilibrium-point (EP) hypothesis as developed by Feldman and colleagues has been widely used and cited with insufficient critical understanding. This article offers a small antidote to that lack. First, the hypothesis implicitly, unrealistically assumes identical transformations of lambda into muscle tension for antagonist muscles. Without that assumption, its definitions of command variables R, C, and lambda are incompatible and an EP is not defined exclusively by R nor is it unaffected by C. Second, the model assumes unrealistic and unphysiological parameters for the damping properties of the muscles and reflexes. Finally, the theory lacks rules for two of its three command variables. A theory of movement should offer insight into why we make movements the way we do and why we activate muscles in particular patterns. The EP hypothesis offers no unique ideas that are helpful in addressing either of these questions.

  11. Multiple valence superatoms.

    PubMed

    Reveles, J U; Khanna, S N; Roach, P J; Castleman, A W

    2006-12-05

    We recently demonstrated that, in gas phase clusters containing aluminum and iodine atoms, an Al(13) cluster behaves like a halogen atom, whereas an Al(14) cluster exhibits properties analogous to an alkaline earth atom. These observations, together with our findings that Al(13)(-) is inert like a rare gas atom, have reinforced the idea that chosen clusters can exhibit chemical behaviors reminiscent of atoms in the periodic table, offering the exciting prospect of a new dimension of the periodic table formed by cluster elements, called superatoms. As the behavior of clusters can be controlled by size and composition, the superatoms offer the potential to create unique compounds with tailored properties. In this article, we provide evidence of an additional class of superatoms, namely Al(7)(-), that exhibit multiple valences, like some of the elements in the periodic table, and hence have the potential to form stable compounds when combined with other atoms. These findings support the contention that there should be no limitation in finding clusters, which mimic virtually all members of the periodic table.

  12. Vacancy-driven magnetocaloric effect in Prussian blue analogues

    NASA Astrophysics Data System (ADS)

    Evangelisti, Marco; Manuel, Espérança; Affronte, Marco; Okubo, Masashi; Train, Cyrille; Verdaguer, Michel

    2007-09-01

    We experimentally show that the magnetocaloric properties of molecule-based Prussian blue analogues can be adjusted by controlling during the synthesis the amount of intrinsic vacancies. For CsxNi4II[CrIII(CN)6], we find indeed that the ferromagnetic phase transition induces significantly large magnetic entropy changes, whose maxima shift from ˜68 to ˜95 K by varying the number of [CrIII(CN)6] vacancies, offering a unique tunability of the magnetocaloric effect in this complex.

  13. Prospects of Nanotechnology in Clinical Immunodiagnostics

    PubMed Central

    Ansari, Anees A.; Alhoshan, Mansour; Alsalhi, Mohamad S.; Aldwayyan, Abdullah S.

    2010-01-01

    Nanostructured materials are promising compounds that offer new opportunities as sensing platforms for the detection of biomolecules. Having micrometer-scale length and nanometer-scale diameters, nanomaterials can be manipulated with current nanofabrication methods, as well as self-assembly techniques, to fabricate nanoscale bio-sensing devices. Nanostructured materials possess extraordinary physical, mechanical, electrical, thermal and multifunctional properties. Such unique properties advocate their use as biomimetic membranes to immobilize and modify biomolecules on the surface of nanoparticles. Alignment, uniform dispersion, selective growth and diameter control are general parameters which play critical roles in the successful integration of nanostructures for the fabrication of bioelectronic sensing devices. In this review, we focus on different types and aspects of nanomaterials, including their synthesis, properties, conjugation with biomolecules and their application in the construction of immunosensing devices. Some key results from each cited article are summarized by relating the concept and mechanism behind each sensor, experimental conditions and the behavior of the sensor under different conditions, etc. The variety of nanomaterial-based bioelectronic devices exhibiting novel functions proves the unique properties of nanomaterials in such sensing devices, which will surely continue to expand in the future. Such nanomaterial based devices are expected to have a major impact in clinical immunodiagnostics, environmental monitoring, security surveillance and for ensuring food safety. PMID:22163566

  14. Physics of cosmological cascades and observable properties

    NASA Astrophysics Data System (ADS)

    Fitoussi, T.; Belmont, R.; Malzac, J.; Marcowith, A.; Cohen-Tanugi, J.; Jean, P.

    2017-04-01

    TeV photons from extragalactic sources are absorbed in the intergalactic medium and initiate electromagnetic cascades. These cascades offer a unique tool to probe the properties of the universe at cosmological scales. We present a new Monte Carlo code dedicated to the physics of such cascades. This code has been tested against both published results and analytical approximations, and is made publicly available. Using this numerical tool, we investigate the main cascade properties (spectrum, halo extension and time delays), and study in detail their dependence on the physical parameters (extragalactic magnetic field, extragalactic background light, source redshift, source spectrum and beaming emission). The limitations of analytical solutions are emphasized. In particular, analytical approximations account only for the first generation of photons and higher branches of the cascade tree are neglected.

  15. Chemical Reactions in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wai, Chien M.; Hunt, Fred; Ji, Min; Chen, Xiaoyuan

    1998-12-01

    Utilizing supercritical fluids as environmentally benign solvents for chemical synthesis is one of the new approaches in the "greening" of chemistry. Carbon dioxide is the most widely used gas for supercritical fluid studies because of its moderate critical constants, nontoxic nature, and availability in pure form. One unique property of supercritical carbon dioxide (sc-CO2) is its high solubility for fluorinated compounds. Thus sc-CO2 can be used to replace Freons that are conventionally used as solvents for synthesis of perfluoro-polymers. Another property of sc-CO2 is its miscibility with gases such as H2. Heterogeneous reactions involving these gases may become homogeneous reactions in sc-CO2. Reactions in sc-CO2 may offer several advantages including controlling phase behavior and products, increasing speed of reactions, and obtaining specific reaction channels. This paper describes the following nine types of chemical reactions reported in the literature utilizing sc-CO2 as a solvent to illustrate the unique properties of the supercritical fluid reaction systems: (i) hydrogenation and hydroformylation, (ii) synthesis of organometallic compounds, (iii) metal chelation and extraction, (iv) preparation of inorganic nanoparticles, (v) stereo-selectivity of lipase-catalyzed reactions, (vi) asymmetric catalytic hydrogenation, (vii) polymerization, (viii) Diels-Alder reaction, and (ix) free radical reactions.

  16. Ceramic composites: A review of toughening mechanisms and demonstration of micropillar compression for interface property extraction

    DOE PAGES

    Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen; ...

    2018-01-24

    We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less

  17. Ceramic composites: A review of toughening mechanisms and demonstration of micropillar compression for interface property extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen

    We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less

  18. Dimensional analysis yields the general second-order differential equation underlying many natural phenomena: the mathematical properties of a phenomenon's data plot then specify a unique differential equation for it.

    PubMed

    Kepner, Gordon R

    2014-08-27

    This study uses dimensional analysis to derive the general second-order differential equation that underlies numerous physical and natural phenomena described by common mathematical functions. It eschews assumptions about empirical constants and mechanisms. It relies only on the data plot's mathematical properties to provide the conditions and constraints needed to specify a second-order differential equation that is free of empirical constants for each phenomenon. A practical example of each function is analyzed using the general form of the underlying differential equation and the observable unique mathematical properties of each data plot, including boundary conditions. This yields a differential equation that describes the relationship among the physical variables governing the phenomenon's behavior. Complex phenomena such as the Standard Normal Distribution, the Logistic Growth Function, and Hill Ligand binding, which are characterized by data plots of distinctly different sigmoidal character, are readily analyzed by this approach. It provides an alternative, simple, unifying basis for analyzing each of these varied phenomena from a common perspective that ties them together and offers new insights into the appropriate empirical constants for describing each phenomenon.

  19. Formation of nanoporous Si upon self-organized growth of Al and Si nanostructures.

    PubMed

    Thøgersen, Annett; Jensen, Ingvild J T; Stange, Marit; Kjeldstad, Torunn; Martinez-Martinez, Diego; Løvvik, Ole Martin; Ulyashin, Alexander G; Diplas, Spyros

    2018-08-03

    Nanostructured materials offer unique electronic and optical properties compared to their bulk counterparts. The challenging part of the synthesis is to create a balance between the control of design, size limitations, up-scalability and contamination. In this work we show that self-organized Al nanowires in amorphous Si can be produced at room temperature by magnetron co-sputtering using two individual targets. Nanoporous Si, containing nanotunnels with dimensions within the quantum confinement regime, were then made by selective etching of Al. The material properties, film growth, and composition of the films were investigated for different compositions. In addition, the reflectance of the etched film has been measured.

  20. Size matters: gold nanoparticles in targeted cancer drug delivery

    PubMed Central

    Dreaden, Erik C; Austin, Lauren A; Mackey, Megan A; El-Sayed, Mostafa A

    2013-01-01

    Cancer is the current leading cause of death worldwide, responsible for approximately one quarter of all deaths in the USA and UK. Nanotechnologies provide tremendous opportunities for multimodal, site-specific drug delivery to these disease sites and Au nanoparticles further offer a particularly unique set of physical, chemical and photonic properties with which to do so. This review will highlight some recent advances, by our laboratory and others, in the use of Au nanoparticles for systemic drug delivery to these malignancies and will also provide insights into their rational design, synthesis, physiological properties and clinical/preclinical applications, as well as strategies and challenges toward the clinical implementation of these constructs moving forward. PMID:22834077

  1. Graphene Chemical Sensor for Heliophysics Applications

    NASA Technical Reports Server (NTRS)

    Sultana, Mahmooda; Herrero, Fred; Khazanov, George

    2013-01-01

    Graphene is a single layer of carbon atoms that offer a unique set of advantages as a chemical sensor due to a number of its inherent properties. Graphene has been explored as a gas sensor for a variety of gases, and molecular sensitivity has been demonstrated by measuring the change in electrical properties due to the adsorption of target species. In this paper, we discuss the development of an array of chemical sensors based on graphene and its relevance to plasma physics due to its sensitivity to radical species such as oxonium, hydron and the corresponding neutrals. We briefly discuss the great impact such sensors will have on a number of heliophysics applications such as ground-based manifestations of space weather.

  2. Graphene electrochemistry: an overview of potential applications.

    PubMed

    Brownson, Dale A C; Banks, Craig E

    2010-11-01

    Graphene, a 2D nanomaterial that possesses spectacular physical, chemical and thermal properties, has caused immense excitement amongst scientists since its freestanding form was isolated in 2004. With research into graphene rife, it promises enhancements and vast applicability within many industrial aspects. Furthermore, graphene possesses a vast array of unique and highly desirable electrochemical properties, and it is this application that offers the most enthralling and spectacular journey. We present a review of the current literature concerning the electrochemical applications and advancements of graphene, starting with its use as a sensor substrate through to applications in energy production and storage, depicting the truly remarkable journey of a material that has just come of age.

  3. CheckDen, a program to compute quantum molecular properties on spatial grids.

    PubMed

    Pacios, Luis F; Fernandez, Alberto

    2009-09-01

    CheckDen, a program to compute quantum molecular properties on a variety of spatial grids is presented. The program reads as unique input wavefunction files written by standard quantum packages and calculates the electron density rho(r), promolecule and density difference function, gradient of rho(r), Laplacian of rho(r), information entropy, electrostatic potential, kinetic energy densities G(r) and K(r), electron localization function (ELF), and localized orbital locator (LOL) function. These properties can be calculated on a wide range of one-, two-, and three-dimensional grids that can be processed by widely used graphics programs to render high-resolution images. CheckDen offers also other options as extracting separate atom contributions to the property computed, converting grid output data into CUBE and OpenDX volumetric data formats, and perform arithmetic combinations with grid files in all the recognized formats.

  4. Airy beam self-focusing in a photorefractive medium

    PubMed Central

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2016-01-01

    The unique bending and shape-preserving properties of optical Airy beams offer a large range of applications in for example beam routing, optical waveguiding, particle manipulation and plasmonics. In these applications and others, the Airy beam may experience nonlinear light-matter interactions which in turn modify the Airy beam properties and propagation. A well-known example is light self-focusing that leads to the formation of spatial soliton. Here, we unveil experimentally the self-focusing properties of a 1D-Airy beam in a photorefractive crystal under focusing conditions. The transient evolution involves both self-bending and acceleration of the initially launched Airy beam due to the onset of an off-shooting soliton and the resulting nonlocal refractive index perturbation. Both the transient and stationary self-focusing properties can be tuned by varying the bias electric field, the injected Airy beam power and the background illumination. PMID:27731356

  5. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications.

    PubMed

    Battigelli, Alessia; Ménard-Moyon, Cécilia; Da Ros, Tatiana; Prato, Maurizio; Bianco, Alberto

    2013-12-01

    The scope of nanotechnology is gaining importance in biology and medicine. Carbon nanotubes (CNTs) have emerged as a promising tool due to their unique properties, high specific surface area, and capacity to cross biological barriers. These properties offer a variety of opportunities for applications in nanomedicine, such as diagnosis, disease treatment, imaging, and tissue engineering. Nevertheless, pristine CNTs are insoluble in water and in most organic solvents; thereby functionalization of their surface is necessary to increase biocompatibility. Derivatization of CNTs also gives the possibility to conjugate different biological and bioactive molecules including drugs, proteins, and targeting ligands. This review focuses on the chemical modifications of CNTs that have been developed to impart specific properties for biological and medical purposes. Biomolecules can be covalently grafted or non-covalently adsorbed on the nanotube surface. In addition, the inner core of CNTs can be exploited to encapsulate drugs, nanoparticles, or radioactive elements. © 2013.

  6. Tissue-like Neural Probes for Understanding and Modulating the Brain.

    PubMed

    Hong, Guosong; Viveros, Robert D; Zwang, Theodore J; Yang, Xiao; Lieber, Charles M

    2018-03-19

    Electrophysiology tools have contributed substantially to understanding brain function, yet the capabilities of conventional electrophysiology probes have remained limited in key ways because of large structural and mechanical mismatches with respect to neural tissue. In this Perspective, we discuss how the general goal of probe design in biochemistry, that the probe or label have a minimal impact on the properties and function of the system being studied, can be realized by minimizing structural, mechanical, and topological differences between neural probes and brain tissue, thus leading to a new paradigm of tissue-like mesh electronics. The unique properties and capabilities of the tissue-like mesh electronics as well as future opportunities are summarized. First, we discuss the design of an ultraflexible and open mesh structure of electronics that is tissue-like and can be delivered in the brain via minimally invasive syringe injection like molecular and macromolecular pharmaceuticals. Second, we describe the unprecedented tissue healing without chronic immune response that leads to seamless three-dimensional integration with a natural distribution of neurons and other key cells through these tissue-like probes. These unique characteristics lead to unmatched stable long-term, multiplexed mapping and modulation of neural circuits at the single-neuron level on a year time scale. Last, we offer insights on several exciting future directions for the tissue-like electronics paradigm that capitalize on their unique properties to explore biochemical interactions and signaling in a "natural" brain environment.

  7. Studies on Enhancement of Anti-microbial Activity of Pristine MWCNTs Against Pathogens.

    PubMed

    Lohan, Shikha; Raza, Kaisar; Singla, Saloni; Chhibber, Sanjay; Wadhwa, Sheetu; Katare, O P; Kumar, Pramod; Singh, Bhupinder

    2016-10-01

    Carbon nanotubes (CNTs), owing to their inherently unique properties in the domain of biomedical sciences including drug delivery, offer an exciting platform to the researchers. Of late, their applications have also been successfully established. Recently, single-walled CNTs (SWCNTs) have been explored for antibacterial efficacy, but naïve multi-walled CNTs (MWCNTs) still remained unearthed. The present studies endeavor the investigation of the potential of various non-ionic surfactants in solubility enhancement of MWCNTs and their subsequent antibacterial efficacy against Escherichia coli and Staphylococcus aureus. Polysorbates offer more solubility to MWCNTs vis-à-vis the phospholipids. However, the antibacterial effect was found to be less influenced by solubility but significantly determined by the type of surfactant. Transmission electron photomicrographs confirmed significant adhesion of MWCNTs to the bacterial walls only in the presence of unsaturated phospholipids and this was expressed in the form of lowest minimum inhibitory concentration (MIC) values of MWCNTs dispersed with the same. The findings are unique as MWCNTs were found to be active against both Gram-negative and Gram-positive bacteria to a similar extent, though somewhat milder than SWCNTs. However, when dispersed with unsaturated phospholipids, the former offer almost comparable antibacterial effects to that of the latter. The study opens a new research domain to further explore the antibacterial effects of non-functionalized and relatively safer MWCNTs, accentuating the importance of biocomponents like unsaturated phospholipids in this purview.

  8. Pharmacokinetic and Pharmacodynamic Considerations in the Treatment of Chronic Lymphocytic Leukemia: Ibrutinib, Idelalisib, and Venetoclax.

    PubMed

    Waldron, Madeline; Winter, Allison; Hill, Brian T

    2017-11-01

    Management of chronic lymphocytic leukemia has changed markedly over the last several years with the emergence of several novel oral agents targeting B-cell receptor and Bcl-2 signaling pathways. For patients requiring treatment, ibrutinib, idelalisib, and venetoclax offer unique clinical benefits with a different set of therapeutic considerations compared with traditional parenteral therapy. Despite the conveniences afforded by oral therapy, these agents also carry unique logistical obstacles. Drug interactions with agents that are metabolized via the cytochrome P450 3A4 pathway are possible with all three agents. Unique treatment-related adverse events including bleeding and atrial fibrillation with ibrutinib, hepatotoxicity with idelalisib, and tumor lysis syndrome with venetoclax can be severe and dose limiting. Furthermore, dose adjustments for organ dysfunction may also be warranted. Here, we review the available literature on the pharmacokinetic and pharmacodynamic properties of these novel agents to guide the reader in the appropriate use of ibrutinib, idelalisib, and venetoclax.

  9. On the Properties and Design of Organic Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Erickson, Nicholas C.

    Organic light-emitting devices (OLEDs) are attractive for use in next-generation display and lighting technologies. In display applications, OLEDs offer a wide emission color gamut, compatibility with flexible substrates, and high power efficiencies. In lighting applications, OLEDs offer attractive features such as broadband emission, high-performance, and potential compatibility with low-cost manufacturing methods. Despite recent demonstrations of near unity internal quantum efficiencies (photons out per electron in), OLED adoption lags conventional technologies, particularly in large-area displays and general lighting applications. This thesis seeks to understand the optical and electronic properties of OLED materials and device architectures which lead to not only high peak efficiency, but also reduced device complexity, high efficiency under high excitation, and optimal white-light emission. This is accomplished through the careful manipulation of organic thin film compositions fabricated via vacuum thermal evaporation, and the introduction of a novel device architecture, the graded-emissive layer (G-EML). This device architecture offers a unique platform to study the electronic properties of varying compositions of organic semiconductors and the resulting device performance. This thesis also introduces an experimental technique to measure the spatial overlap of electrons and holes within an OLED's emissive layer. This overlap is an important parameter which is affected by the choice of materials and device design, and greatly impacts the operation of the OLED at high excitation densities. Using the G-EML device architecture, OLEDs with improved efficiency characteristics are demonstrated, achieving simultaneously high brightness and high efficiency.

  10. Advanced Analgesic Drug Delivery and Nanobiotechnology.

    PubMed

    Stoicea, Nicoleta; Fiorda-Diaz, Juan; Joseph, Nicholas; Shabsigh, Muhammad; Arias-Morales, Carlos; Gonzalez-Zacarias, Alicia A; Mavarez-Martinez, Ana; Marjoribanks, Stephen; Bergese, Sergio D

    2017-07-01

    Transdermal administration of analgesic medications offers several benefits over alternative routes of administration, including a decreased systemic drug load with fewer side effects, and avoidance of drug degradation by the gastrointestinal tract. Transdermal administration also offers a convenient mode of drug administration over an extended period of time, particularly desirable in pain medicine. A transdermal administration route may also offer increased safety for drugs with a narrow therapeutic window. The primary barrier to transdermal drug absorption is the skin itself. Transdermal nanotechnology offers a novel method of achieving enhanced dermal penetration with an extended delivery profile for analgesic drugs, due to their small size and relatively large surface area. Several materials have been used to enhance drug duration and transdermal penetration. The application of nanotechnology in transdermal delivery of analgesics has raised new questions regarding safety and ethical issues. The small molecular size of nanoparticles enables drug delivery to previously inaccessible body sites. To ensure safety, the interaction of nanoparticles with the human body requires further investigation on an individual drug basis, since different formulations have unique properties and side effects.

  11. MOF-5-Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption.

    PubMed

    Gamage, Nipuni-Dhanesha H; McDonald, Kyle A; Matzger, Adam J

    2016-09-19

    An unprecedented mode of reactivity of Zn4 O-based metal-organic frameworks (MOFs) offers a straightforward and powerful approach to polymer-hybridized porous solids. The concept is illustrated with the production of MOF-5-polystyrene wherein polystyrene is grafted and uniformly distributed throughout MOF-5 crystals after heating in pure styrene for 4-24 h. The surface area and polystyrene content of the material can be fine-tuned by controlling the duration of heating styrene in the presence of MOF-5. Polystyrene grafting significantly alters the physical and chemical properties of pristine MOF-5, which is evident from the unique guest adsorption properties (solvatochromic dye uptake and improved CO2 capacity) as well as the dramatically improved hydrolytic stability of composite. Based on the fact that MOF-5 is the best studied member of the structure class, and has been produced at scale by industry, these findings can be directly leveraged for a range of current applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gaseotransmitters: New Frontiers for Translational Science

    PubMed Central

    Szabo, Csaba

    2011-01-01

    Research into the biology of the endogenous gaseous mediators nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) has significantly expanded over the last decade. A number of drugs (already in clinical use) and drug candidates (in preclinical or clinical trials) exert their effects via donation of these mediators and/or via modulation of their intracellular second messenger pathways. Due to their important biological roles, gaseotransmitters offer many therapeutic opportunities. However, their unique chemical and pharmacological properties can also represent unusual challenges for translational science. PMID:21106939

  13. Sacred bounds on rational resolution of violent political conflict

    PubMed Central

    Ginges, Jeremy; Atran, Scott; Medin, Douglas; Shikaki, Khalil

    2007-01-01

    We report a series of experiments carried out with Palestinian and Israeli participants showing that violent opposition to compromise over issues considered sacred is (i) increased by offering material incentives to compromise but (ii) decreased when the adversary makes symbolic compromises over their own sacred values. These results demonstrate some of the unique properties of reasoning and decision-making over sacred values. We show that the use of material incentives to promote the peaceful resolution of political and cultural conflicts may backfire when adversaries treat contested issues as sacred values. PMID:17460042

  14. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow

    PubMed Central

    Rödiger, Matthias; Ziebolz, Dirk; Schmidt, Anne-Kathrin

    2015-01-01

    This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS) ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa), excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow. PMID:26509088

  15. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction

    PubMed Central

    Hoshyar, Nazanin; Gray, Samantha; Han, Hongbin; Bao, Gang

    2016-01-01

    Nanoparticle-based technologies offer exciting new approaches to disease diagnostics and therapeutics. To take advantage of unique properties of nanoscale materials and structures, the size, shape and/or surface chemistry of nanoparticles need to be optimized, allowing their functionalities to be tailored for different biomedical applications. Here we review the effects of nanoparticle size on cellular interaction and in vivo pharmacokinetics, including cellular uptake, biodistribution and circulation half-life of nanoparticles. Important features of nanoparticle probes for molecular imaging and modeling of nanoparticle size effects are also discussed. PMID:27003448

  16. Clinical application of bio ceramics

    NASA Astrophysics Data System (ADS)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  17. Clinical application of bio ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  18. Detecting Structural Failures Via Acoustic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Joshi, Sanjay S.

    1995-01-01

    Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.

  19. Peptide nanostructures in biomedical technology.

    PubMed

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  20. A multi-channel clogging-resistant lab-on-a-chip cell counter and analyzer

    NASA Astrophysics Data System (ADS)

    Dai, Jie; Chiu, Yu-Jui; Lian, Ian; Wu, Tsung-Feng; Yang, Kecheng; Lo, Yu-Hwa

    2016-02-01

    Early signs of diseases can be revealed from cell detection in biofluids, such as detection of white blood cells (WBCs) in the peritoneal fluid for peritonitis. A lab-on-a-chip microfluidic device offers an attractive platform for such applications because of its small size, low cost, and ease of use provided the device can meet the performance requirements which many existing LoC devices fail to satisfy. We report an integrated microfluidic device capable of accurately counting low concentration of white blood cells in peritoneal fluid at 150 μl min-1 to offer an accurate (<3% error) and fast (~10 min/run) WBC count. Utilizing the self-regulating hydrodynamic properties and a unique architecture in the design, the device can achieve higher flow rate (500-1000 μl min-1), continuous running for over 5 h without clogging, as well as excellent signal quality for unambiguous WBC count and WBC classification for certain diseases. These properties make the device a promising candidate for point-of-care applications.

  1. Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery

    PubMed Central

    Gao, Weiwei; Zhang, Yue; Zhang, Qiangzhe; Zhang, Liangfang

    2016-01-01

    Nanoparticles have offered a unique set of properties for drug delivery including high drug loading capacity, combinatorial delivery, controlled and sustained drug release, prolonged stability and lifetime, and targeted delivery. To further enhance therapeutic index, especially for localized application, nanoparticles have been increasingly combined with hydrogels to form a hybrid biomaterial system for controlled drug delivery. Herein, we review recent progresses in engineering such nanoparticle-hydrogel hybrid system (namely ‘NP-gel’) with a particular focus on its application for localized drug delivery. Specifically, we highlight four research areas where NP-gel has shown great promises, including (1) passively controlled drug release, (2) stimuli-responsive drug delivery, (3) site-specific drug delivery, and (4) detoxification. Overall, integrating therapeutic nanoparticles with hydrogel technologies creates a unique and robust hybrid biomaterial system that enables effective localized drug delivery. PMID:26951462

  2. Determination of the hydrological properties of a small-scale catchment area in Northern Greece from ASTER and SRTM DEMs and accuracy assessment with a local DTM

    NASA Astrophysics Data System (ADS)

    Tzanou, E. A.; Vergos, G. S.

    2012-04-01

    The combined use of Geographic Information Systems and recent high-resolution Digital Elevation Models (DEMs) from Remote Sensing imagery offers a unique opportunity to study the hydrological properties of basin and catchment dynamics and derive the hydrological features of specific regions of various spatial scales. Until recently, the availability of global DEMs was restricted to low-resolution and accuracy models, e.g., ETOPO5, ETOPO2 and GTOPO30, compared to local Digital Terrain Models (DTMs) derived from photogrammetric methods and offered usually in the form of topographic maps of various scales. The advent of the SRTM and ASTER missions, offer some new tools and opportunities in order to use their data within a GIS to study the hydrological properties of basins and consequently validate their performance both amongst each other, as well as in terms of the results derived from a local DTM. The present work focuses on the use of the recent SRTM v2 90 m and ASTER v2 30 m DEMs along with the national 500 m DTM generated by the Hellenic Military Geographic Service (HMGS), within a GIS in order to assess their performance in determining the hydrological properties of basins. To this respect, the ArcHydro extension tool of ArcGIS v9.3 and HEC-GeoRAS v4.3 have been exploited to determine the hydrographic data of the basins under study which are located in Northern Greece. The hydrological characteristics refer to stream geometry, curve number, flooding areas, etc. as well as the topographic characteristics of the basin itself, such as aspect, hillshade, slope e.t.c..

  3. A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs.

    PubMed

    Wray, Lindsay S; Rnjak-Kovacina, Jelena; Mandal, Biman B; Schmidt, Daniel F; Gil, Eun Seok; Kaplan, David L

    2012-12-01

    In the field of tissue engineering and regenerative medicine there is significant unmet need for critically-sized, fully degradable biomaterial scaffold systems with tunable properties for optimizing tissue formation in vitro and tissue regeneration in vivo. To address this need, we have developed a silk-based scaffold platform that has tunable material properties, including localized and bioactive functionalization, degradation rate, and mechanical properties and that provides arrays of linear hollow channels for delivery of oxygen and nutrients throughout the scaffold bulk. The scaffolds can be assembled with dimensions that range from millimeters to centimeters, addressing the need for a critically-sized platform for tissue formation. We demonstrate that the hollow channel arrays support localized and confluent endothelialization. This new platform offers a unique and versatile tool for engineering 'tailored' scaffolds for a range of tissue engineering and regenerative medicine needs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Future property damage from flooding: sensitivities to economy and climate change

    DOE PAGES

    Liu, Jing; Hertel, Thomas; Diffenbaugh, Noah; ...

    2015-08-09

    Using a unique dataset for Indiana counties during the period 1995-2012, we estimate the effects of flood hazard, asset exposure, and social vulnerability on property damage. This relationship then is combined with the expected level of future flood risks to project property damage from flooding in 2030 under various scenarios. We compare these scenario projections to identify which risk management strategy offers the greatest potential to mitigate flooding loss. Results show that by 2030, county level flooding hazard measured by extreme flow volume and frequency will increase by an average of 16.2% and 7.4%, respectively. The total increase in propertymore » damages projected under different model specifications range from 13.3% to 20.8%. Across models future damages consistently exhibit the highest sensitivity to future increases in asset exposure, reinforcing the importance of non-structural measures in managing floodplain development.« less

  5. Porous silicon platform for optical detection of functionalized magnetic particles biosensing.

    PubMed

    Ko, Pil Ju; Ishikawa, Ryousuke; Sohn, Honglae; Sandhu, Adarsh

    2013-04-01

    The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon (PSi) for optical biosensing using functionalized magnetic particles. Combining magnetically labeled biomolecules with PSi offers a rapid and one-step immunoassay and real-time detection by magnetic manipulation of superparamagnetic beads (SPBs) functionalized with target molecules onto corresponding probe molecules immobilized inside nano-pores of PSi. We first give an introduction to electrochemical and chemical etching procedures used to fabricate a wide range of PSi structures. Next, we describe the basic properties of PSi and underlying optical scattering mechanisms that govern their unique optical properties. Finally, we give examples of our experiments that demonstrate the potential of combining PSi and magnetic beads for real-time point of care diagnostics.

  6. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  7. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-09

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.

  8. Fundamental Properties of One-Dimensional Zinc Oxide Nanomaterials and Implementations in Various Detection Modes of Enhanced Biosensing

    PubMed Central

    Hahm, Jong-in

    2016-01-01

    Recent bioapplications of one-dimensional (1D) zinc oxide (ZnO) nanomaterials, despite the short development period, have shown promising signs as new sensors and assay platforms offering exquisite biomolecular sensitivity and selectivity. The incorporation of 1D ZnO nanomaterials has proven beneficial to various modes of biodetection owing to their inherent properties. The more widely explored electrochemical and electrical approaches tend to capitalize on the reduced physical dimensionality, yielding a high surface-to-volume ratio, as well as on the electrical properties of ZnO. The newer development of the use of 1D ZnO nanomaterials in fluorescence-based biodetection exploits the innate optical property of their high anisotropy. This review considers stimulating research advances made to identify and understand fundamental properties of 1D ZnO nanomaterials, and examines various biosensing modes utilizing them, while focusing on the unique optical properties of individual and ensembles of 1D ZnO nanomaterials specifically pertaining to their bio-optical applications in simple and complex fluorescence assays. PMID:27215822

  9. High bulk modulus of ionic liquid and effects on performance of hydraulic system.

    PubMed

    Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko

    2014-01-01

    Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.

  10. Biodegradable composite scaffolds: a strategy to modulate stem cell behaviour.

    PubMed

    Armentano, Ilaria; Fortunati, Elena; Mattioli, Samantha; Rescignano, Nicolatta; Kenny, José M

    2013-04-01

    The application of new biomaterial technologies offers the potential to direct the stem cell fate, targeting the delivery of cells and reducing immune rejection, thereby supporting the development of regenerative medicine. Cells respond to their surrounding structure and with nanostructures exhibit unique proliferative and differentiation properties. This review presents the relevance, the promising perspectives and challenges of current biodegradable composite scaffolds in terms of material properties, processing technology and surface modification, focusing on significant recent patents in these fields. It has been reported how biodegradable porous composite scaffolds can be engineered with initial properties that reproduce the anisotropy, viscoelasticity, tension-compression non-linearity of different tissues by introducing specific nanostructures. Moreover the modulation of electrical, morphological, surface and topographic scaffold properties enables specific stem cell response. Recent advances in nanotechnology have allowed to engineer novel biomaterials with these complexity levels. Understanding the specific biological response triggered by various aspects of the fibrous environment is important in guiding the design and engineering of novel substrates that mimic the native cell matrix interactions in vivo.

  11. The use of surface enhanced absorption, scattering and catalytic properties of gold nanoparticles in some bio- and biomedical applications

    NASA Astrophysics Data System (ADS)

    Huang, Xiaohua; El-Sayed, Ivan H.; El-Sayed, Mostafa A.

    2005-08-01

    Gold nanoparticles with unique optical properties offer useful applications in biotechnology. In this article two applications that we have developed are summarized, in one they are used in cancer cell diagnostics and in the other they are found to have catalytic property for the NADH oxidation reaction which is important in ATP formations. By conjugation with anti-EGFR antibodies which specifically target EGFR that are usually overexpressed on most cancer cells, gold nanoparticles are used as a molecular contrast agent for cancer cell diagnostics using their both strong surface plasmon absorption and efficient Mie scattering properties. Au nanoparticles are also good catalysts for many reactions due to their high surface to volume ratio. Au nanoparticles are found to be the catalyst for the NADH oxidation reaction. This was studied by monitoring the effect of the nanoparticles on NADH fluorescence intensity and lifetime as well as the change of the surface plasmon absorption band during the reaction.

  12. Bandgap Engineering of InP QDs Through Shell Thickness and Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Allison M.; Mangum, Benjamin D.; Piryatinski, Andrei

    2012-06-21

    Fields as diverse as biological imaging and telecommunications utilize the unique photophysical and electronic properties of nanocrystal quantum dots (NQDs). The development of new NQD compositions promises material properties optimized for specific applications, while addressing material toxicity. Indium phosphide (InP) offers a 'green' alternative to the traditional cadmium-based NQDs, but suffers from extreme susceptibility to oxidation. Coating InP cores with more stable shell materials significantly improves nanocrystal resistance to oxidation and photostability. We have investigated several new InP-based core-shell compositions, correlating our results with theoretical predictions of their optical and electronic properties. Specifically, we can tailor the InP core-shell QDsmore » to a type-I, quasi-type-II, or type-II bandgap structure with emission wavelengths ranging from 500-1300 nm depending on the shell material used (ZnS, ZnSe, CdS, or CdSe) and the thickness of the shell. Single molecule microscopy assessments of photobleaching and blinking are used to correlate NQD properties with shell thickness.« less

  13. Boron-doped few-walled carbon nanotubes: novel synthesis and properties

    NASA Astrophysics Data System (ADS)

    Preston, Colin; Song, Da; Taillon, Josh; Cumings, John; Hu, Liangbing

    2016-11-01

    Few-walled carbon nanotubes offer a unique marriage of graphitic quality and robustness to ink-processing; however, doping procedures that may alter the band structure of these few-walled nanotubes are still lacking. This report introduces a novel solution-injected chemical vapor deposition growth process to fabricate the first boron-doped few-walled carbon nanotubes (B-FWNTs) reported in literature, which may have extensive applications in battery devices. A comprehensive characterization of the as-grown B-FWNTs confirms successful boron substitution in the graphitic lattice, and reveals varying growth parameters impact the structural properties of B-FWNT yield. An investigation into the optimal growth purification parameters and ink-making procedures was also conducted. This study introduces the first process technique to successfully grow intrinsically p-doped FWNTs, and provides the first investigation into the impact factors of the growth parameters, purification steps, and ink-making processes on the structural properties of the B-FWNTs and the electrical properties of the resulting spray-coated thin-film electrodes.

  14. Size-dependent chemical transformation, structural phase-change, and optical properties of nanowires

    PubMed Central

    Piccione, Brian; Agarwal, Rahul; Jung, Yeonwoong; Agarwal, Ritesh

    2013-01-01

    Nanowires offer a unique approach for the bottom up assembly of electronic and photonic devices with the potential of integrating photonics with existing technologies. The anisotropic geometry and mesoscopic length scales of nanowires also make them very interesting systems to study a variety of size-dependent phenomenon where finite size effects become important. We will discuss the intriguing size-dependent properties of nanowire systems with diameters in the 5 – 300 nm range, where finite size and interfacial phenomena become more important than quantum mechanical effects. The ability to synthesize and manipulate nanostructures by chemical methods allows tremendous versatility in creating new systems with well controlled geometries, dimensions and functionality, which can then be used for understanding novel processes in finite-sized systems and devices. PMID:23997656

  15. Precision Astrophysics Experiments with the Kepler Satellite

    NASA Astrophysics Data System (ADS)

    Jackiewicz, Jason

    2012-10-01

    Long photometric observations from space of tens of thousands of stars, such as those provided by Kepler, offer unique opportunities to carry out ensemble astrophysics as well as detailed studies of individual objects. One of the primary tools at our disposal for understanding pulsating stars is asteroseismology, which uses observed stellar oscillation frequencies to determine interior properties. This can provide very strict constraints on theories of stellar evolution, structure, and the population characteristics of stars in the Milky Way galaxy. This talk will focus on several of the exciting insights Kepler has enabled through asteroseismology of stars across the H-R diagram.

  16. Biomimetic microstructures for photonic and fluidic synergies

    NASA Astrophysics Data System (ADS)

    Vasileiou, Maria; Mpatzaka, Theodora; Alexandropoulos, Dimitris; Vainos, Nikolaos A.

    2017-08-01

    Nature-inspired micro- and nano-structures offer a unique platform for the development of novel synergetic systems combining photonic and microfluidic functionalities. In this context, we examine the paradigm of butterfly Vanessa cardui and develop artificial diffractive microstructures inspired by its natural designs. Softlithographic and nanoimprint protocols are developed to replicate surfaces of natural specimens. Further to their optical behavior, interphases tailored by such microstructures exhibit enhanced hydrophobic properties, as compared to their planar counterparts made of the same materials. Such synergies exploited by new design approaches pave the way to prospective optofluidic, lab-on-chip and sensing applications.

  17. Visualizing Pure Quantum Turbulence in Superfluid 3He: Andreev Reflection and its Spectral Properties.

    PubMed

    Baggaley, A W; Tsepelin, V; Barenghi, C F; Fisher, S N; Pickett, G R; Sergeev, Y A; Suramlishvili, N

    2015-07-03

    Superfluid 3He-B in the zero-temperature limit offers a unique means of studying quantum turbulence by the Andreev reflection of quasiparticle excitations by the vortex flow fields. We validate the experimental visualization of turbulence in 3He-B by showing the relation between the vortex-line density and the Andreev reflectance of the vortex tangle in the first simulations of the Andreev reflectance by a realistic 3D vortex tangle, and comparing the results with the first experimental measurements able to probe quantum turbulence on length scales smaller than the intervortex separation.

  18. Fractal design concepts for stretchable electronics.

    PubMed

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  19. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell.

    PubMed

    Kagan, Herbert M; Li, Wande

    2003-03-01

    Lysyl oxidase (LO) plays a critical role in the formation and repair of the extracellular matrix (ECM) by oxidizing lysine residues in elastin and collagen, thereby initiating the formation of covalent crosslinkages which stabilize these fibrous proteins. Its catalytic activity depends upon both its copper cofactor and a unique carbonyl cofactor and has been shown to extend to a variety of basic globular proteins, including histone H1. Although the three-dimensional structure of LO has yet to be determined, the present treatise offers hypotheses based upon its primary sequence, which may underlie the prominent electrostatic component of its unusual substrate specificity as well as the catalysis-suppressing function of the propeptide domain of prolysyl oxidase. Recent studies have demonstrated that LO appears to function within the cell in a manner, which strongly modifies cellular activity. Newly discovered LO-like proteins also likely play unique roles in biology. Copyright 2002 Wiley-Liss, Inc.

  20. Fractal design concepts for stretchable electronics

    NASA Astrophysics Data System (ADS)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  1. Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas.

    PubMed

    Bao, Bo; Riordon, Jason; Mostowfi, Farshid; Sinton, David

    2017-08-08

    Microfluidic systems that leverage unique micro-scale phenomena have been developed to provide rapid, accurate and robust analysis, predominantly for biomedical applications. These attributes, in addition to the ability to access high temperatures and pressures, have motivated recent expanded applications in phase measurements relevant to industrial CO 2 , oil and gas applications. We here present a comprehensive review of this exciting new field, separating microfluidic and nanofluidic approaches. Microfluidics is practical, and provides similar phase properties analysis to established bulk methods with advantages in speed, control and sample size. Nanofluidic phase behaviour can deviate from bulk measurements, which is of particular relevance to emerging unconventional oil and gas production from nanoporous shale. In short, microfluidics offers a practical, compelling replacement of current bulk phase measurement systems, whereas nanofluidics is not practical, but uniquely provides insight into phase change phenomena at nanoscales. Challenges, trends and opportunities for phase measurements at both scales are highlighted.

  2. Spatial confinement governs orientational order in patchy particles

    NASA Astrophysics Data System (ADS)

    Iwashita, Yasutaka; Kimura, Yasuyuki

    2016-06-01

    Orientational order in condensed matter plays a key role in determining material properties such as ferromagnetism, viscoelasticity or birefringence. We studied purely orientational ordering in closely-packed one-patch colloidal particles confined between flat substrates, where the particles can only rotate and are ordered via the sticky interaction between the patches. For the first time, we experimentally realized a rich variety of mesoscopic patterns through orientational ordering of colloids by controlling patch size and confinement thickness. The combination of experiment and numerical simulation reveals the decisive role of confinement: An ordered state(s) is selected from the (meta)stable options in bulk when it is commensurate with the system geometry and boundary conditions; otherwise, frustration induces a unique order. Our study offers a new means of systematic control over mesoscopic structures via orientational ordering in patchy particles. The system would also possess unique functionalities through the rotational response of the particles to external stimuli.

  3. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology

    NASA Astrophysics Data System (ADS)

    Samanta, Anirban; Medintz, Igor L.

    2016-04-01

    Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their myriad applications using examples from the literature. Overall, it is clear that this unique functional combination of nanomaterials has far more to offer than what we have seen to date and as new capabilities for each of these materials are developed, so, too, will new applications emerge.

  4. Fathers' Role in Play: Enhancing Early Language and Literacy of Children with Developmental Delays

    ERIC Educational Resources Information Center

    Stockall, Nancy; Dennis, Lindsay

    2013-01-01

    Fathers and paternal role models make a unique contribution to children's development. There is some research to suggest that the types of play males engage in with children is typically more active and thus offers unique possibilities for embedding activities for language and literacy development. In this article, we offer suggestions for how…

  5. Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Feng, Wenchun; Zhang, Huangxi; Wang, Zhenlong; Calcaterra, Heather A.; Yeom, Bongjun; Hu, Ping An; Kotov, Nicholas A.

    2016-02-01

    Nacre-like composites have been investigated typically in the form of coatings or free-standing sheets. They demonstrated remarkable mechanical properties and are used as ultrastrong materials but macroscale fibres with nacre-like organization can improve mechanical properties even further. The fiber form or nacre can, simplify manufacturing and offer new functional properties unknown yet for other forms of biomimetic materials. Here we demonstrate that nacre-like fibres can be produced by shear-induced self-assembly of nanoplatelets. The synergy between two structural motifs--nanoscale brick-and-mortar stacking of platelets and microscale twisting of the fibres--gives rise to high stretchability (>400%) and gravimetric toughness (640 J g-1). These unique mechanical properties originate from the multiscale deformation regime involving solid-state self-organization processes that lead to efficient energy dissipation. Incorporating luminescent CdTe nanowires into these fibres imparts the new property of mechanically tunable circularly polarized luminescence. The nacre-like fibres open a novel technological space for optomechanics of biomimetic composites, while their continuous spinning methodology makes scalable production realistic.

  6. Multiscale deformations lead to high toughness and circularly polarized emission in helical nacre-like fibres.

    PubMed

    Zhang, Jia; Feng, Wenchun; Zhang, Huangxi; Wang, Zhenlong; Calcaterra, Heather A; Yeom, Bongjun; Hu, Ping An; Kotov, Nicholas A

    2016-02-24

    Nacre-like composites have been investigated typically in the form of coatings or free-standing sheets. They demonstrated remarkable mechanical properties and are used as ultrastrong materials but macroscale fibres with nacre-like organization can improve mechanical properties even further. The fiber form or nacre can, simplify manufacturing and offer new functional properties unknown yet for other forms of biomimetic materials. Here we demonstrate that nacre-like fibres can be produced by shear-induced self-assembly of nanoplatelets. The synergy between two structural motifs--nanoscale brick-and-mortar stacking of platelets and microscale twisting of the fibres--gives rise to high stretchability (>400%) and gravimetric toughness (640 J g(-1)). These unique mechanical properties originate from the multiscale deformation regime involving solid-state self-organization processes that lead to efficient energy dissipation. Incorporating luminescent CdTe nanowires into these fibres imparts the new property of mechanically tunable circularly polarized luminescence. The nacre-like fibres open a novel technological space for optomechanics of biomimetic composites, while their continuous spinning methodology makes scalable production realistic.

  7. Interlaminar shear strength and thermo-mechanical properties of nano-enhanced composite materials under thermal shock

    NASA Astrophysics Data System (ADS)

    Gkikas, G.; Douka, D.-D.; Barkoula, N.-M.; Paipetis, A. S.

    2013-04-01

    The introduction of nanoscaled reinforcement in otherwise conventional fiber reinforced composite materials has opened an exciting new area in composites research. The unique properties of these materials combined with the design versatility of fibrous composites may offer both enhanced mechanical properties and multiple functionalities which has been a focus area of the aerospace technology on the last decades. Due to unique properties of carbon nanofillers such as huge aspect ratio, extremely large specific surface area as well as high electrical and thermal conductivity, Carbon Nanotubes have benn investigated as multifunvtional materials for electrical, thermal and mechanical applications. In this study, MWCNTs were incorporated in a typical epoxy system using a sonicator. The volume of the nanoreinforcement was 0.5 % by weight. Two different levels of sonication amplitude were used, 50% and 100% respectively. After the sonication, the hardener was introduced in the epoxy, and the system was cured according to the recommended cycle. For comparison purposes, specimens from neat epoxy system were prepared. The thermomechanical properties of the materials manufactured were investigated using a Dynamic Mechanical Analyser. The exposed specimens were subjected to thermal shock. Thermal cycles from +30 °C to -30 °C were carried out and each cycle lasted 24 hours. The thermomechanical properties were studied after 30 cycles . Furthermore, the epoxy systems prepared during the first stage of the study were used for the manufacturing of 16 plies quasi isotropic laminates CFRPs. The modified CFRPs were subjected to thermal shock. For comparison reasons unmodified CFRPs were manufactured and subjected to the same conditions. In addition, the interlaminar shear strength of the specimens was studied using 3-point bending tests before and after the thermal shock. The effect of the nanoreinforcement on the environmental degradation is critically assessed.

  8. Constraints on pulsar masses from the maximum observed glitch

    NASA Astrophysics Data System (ADS)

    Pizzochero, P. M.; Antonelli, M.; Haskell, B.; Seveso, S.

    2017-07-01

    Neutron stars are unique cosmic laboratories in which fundamental physics can be probed in extreme conditions not accessible to terrestrial experiments. In particular, the precise timing of rotating magnetized neutron stars (pulsars) reveals sudden jumps in rotational frequency in these otherwise steadily spinning-down objects. These 'glitches' are thought to be due to the presence of a superfluid component in the star, and offer a unique glimpse into the interior physics of neutron stars. In this paper we propose an innovative method to constrain the mass of glitching pulsars, using observations of the maximum glitch observed in a star, together with state-of-the-art microphysical models of the pinning interaction between superfluid vortices and ions in the crust. We study the properties of a physically consistent angular momentum reservoir of pinned vorticity, and we find a general inverse relation between the size of the maximum glitch and the pulsar mass. We are then able to estimate the mass of all the observed glitchers that have displayed at least two large events. Our procedure will allow current and future observations of glitching pulsars to constrain not only the physics of glitch models but also the superfluid properties of dense hadronic matter in neutron star interiors.

  9. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing

    PubMed Central

    Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto

    2015-01-01

    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres. PMID:26287252

  10. Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing.

    PubMed

    Wang, Pengfei; Bo, Lin; Semenova, Yuliya; Farrell, Gerald; Brambilla, Gilberto

    2015-07-22

    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres.

  11. Nacre-Templated Synthesis of Highly Dispersible Carbon Nanomeshes for Layered Membranes with High-Flux Filtration and Sensing Properties.

    PubMed

    Kong, Meng; Li, Mingjie; Shang, Ruoxu; Wu, Jingyu; Yan, Peisong; Xu, Dongmei; Li, Chaoxu

    2018-01-24

    Marine shells not only represent a rapidly accumulating type of fishery wastes but also offer a unique sort of hybrid nanomaterials produced greenly and massively in nature. The elaborate "brick and mortar" structures of nacre enabled the synthesis of carbon nanomeshes with <1 nm thickness, hierarchical porosity, and high specific surface area through pyrolysis, in which two-dimensional (2D) organic layers served as the carbonaceous precursor and aragonite platelets as the hard template. Mineral bridges within 2D organic layers templated the formation of mesh pores of 20-70 nm. In contrast to other hydrophobic carbon nanomaterials, these carbon nanomeshes showed super dispersibility in diverse solvents and thus processability for membranes through filtration, patterning, spray-coating, and ink-writing. The carbon membranes with layered structures were capable of serving not only for high-flux filtration and continuous flow absorption but also for electrochemical and strain sensing with high sensitivity. Thus, utilization of marine shells, on one hand, relieves the environmental concern of shellfish waste, on the other hand, offers a facile, green, low-cost, and massive approach to synthesize unique carbon nanomeshes alternative to graphene nanomeshes and applicable in environmental adsorption, filtration, wearable sensors, and flexible microelectronics.

  12. “Modular Biospheres” New testbed platforms for public environmental education and research

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Dempster, W. F.; Allen, J. P.

    This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term "modular biospheres", have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system "metabolism" and therefore are essentially a "mini-world". Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment.

  13. A Study of the Surface Structure of Polymorphic Graphene and Other Two-Dimensional Materials for Use in Novel Electronics and Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Grady, Maxwell

    For some time there has been interest in the fundamental physical properties of low- dimensional material systems. The discovery of graphene as a stable two-dimensional form of solid carbon lead to an exponential increase in research in two-dimensional and other re- duced dimensional systems. It is now known that there is a wide range of materials which are stable in two-dimensional form. These materials span a large configuration space of struc- tural, mechanical, and electronic properties, which results in the potential to create novel electronic devices from nano-scale heterostructures with exactly tailored device properties. Understanding the material properties at the nanoscale level requires specialized tools to probe materials with atomic precision. Here I present the growth and analysis of a novel graphene-ruthenium system which exhibits unique polymorphism in its surface structure, hereby referred to as polymorphic graphene. Scanning Tunneling Microscopy (STM) investigations of the polymorphic graphene surface reveal a periodically rippled structure with a vast array of domains, each exhibiting xvia unique moire period. The majority of moire domains found in this polymorphic graphene system are previously unreported in past studies of the structure of graphene on ruthenium. To better understand many of the structural properties of this system, characterization methods beyond those available at the UNH surface science lab are employed. Further investigation using Low Energy Electron Microscopy (LEEM) has been carried out at Sandia National Laboratory's Center for Integrated Nanotechnology and the Brookhaven National Laboratory Center for Functional Nanomaterials. To aid in analysis of the LEEM data, I have developed an open source software package to automate extraction of electron reflectivity curves from real space and reciprocal space data sets. This software has been used in the study of numerous other two-dimensional materials beyond graphene. When combined with computational modeling, the analysis of electron I(V) curves presents a method to quantify structural parameters in a material with angstrom level precision. While many materials studied in this thesis offer unique electronic properties, my work focuses primarily on their structural aspects, as well as the instrumentation required to characterize the structure with ultra high resolution.

  14. Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Ayaskanta; Russ, Boris; Su, Norman C.

    Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viablemore » hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- and n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi 2S 3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi 2Te 3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.« less

  15. Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing

    DOE PAGES

    Sahu, Ayaskanta; Russ, Boris; Su, Norman C.; ...

    2017-01-01

    Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viablemore » hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- and n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi 2S 3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi 2Te 3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.« less

  16. Chemical conversion coating for protecting magnesium alloys from corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhargava, Gaurang; Allen, Fred M.; Skandan, Ganesh

    A chromate-free, self-healing conversion coating solution for magnesium alloy substrates, composed of 10-20 wt. % Mg(NO.sub.3).sub.2.6H.sub.2O, 1-5 wt. % Al(NO.sub.3).sub.3.9H.sub.2O, and less than 1 wt. % of [V.sub.10O.sub.28].sup.6- or VO.sub.3.sup.- dissolved in water. The corrosion resistance offered by the resulting coating is in several hundreds of hours in salt-spray testing. This prolonged corrosion protection is attributed to the creation of a unique structure and morphology of the conversion coating that serves as a barrier coating with self-healing properties. Hydroxoaluminates form the backbone of the barrier protection offered while the magnesium hydroxide domains facilitate the "slow release" of vanadium compounds asmore » self-healing moieties to defect sites, thus providing active corrosion protection.« less

  17. Organic Nanocrystals with Bright Red Persistent Room-Temperature Phosphorescence for Biological Applications.

    PubMed

    Fateminia, S M Ali; Mao, Zhu; Xu, Shidang; Yang, Zhiyong; Chi, Zhenguo; Liu, Bin

    2017-09-25

    Persistent room-temperature phosphorescence (RTP) in pure organic materials has attracted great attention because of their unique optical properties. The design of organic materials with bright red persistent RTP remains challenging. Herein, we report a new design strategy for realizing high brightness and long lifetime of red-emissive RTP molecules, which is based on introducing an alkoxy spacer between the hybrid units in the molecule. The spacer offers easy Br-H bond formation during crystallization, which also facilitates intermolecular electron coupling to favor persistent RTP. As the majority of RTP compounds have to be confined in a rigid environment to quench nonradiative relaxation pathways for bright phosphorescence emission, nanocrystallization is used to not only rigidify the molecules but also offer the desirable size and water-dispersity for biomedical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of Cold Plasma on Food Quality: A Review.

    PubMed

    Pankaj, Shashi K; Wan, Zifan; Keener, Kevin M

    2018-01-01

    Cold plasma (CP) technology has proven very effective as an alternative tool for food decontamination and shelf-life extension. The impact of CP on food quality is very crucial for its acceptance as an alternative food processing technology. Due to the non-thermal nature, CP treatments have shown no or minimal impacts on the physical, chemical, nutritional and sensory attributes of various products. This review also discusses the negative impacts and limitations posed by CP technology for food products. The limited studies on interactions of CP species with food components at the molecular level offers future research opportunities. It also highlights the need for optimization studies to mitigate the negative impacts on visual, chemical, nutritional and functional properties of food products. The design versatility, non-thermal, economical and environmentally friendly nature of CP offers unique advantages over traditional processing technologies. However, CP processing is still in its nascent form and needs further research to reach its potential.

  19. Nanophotonic applications for silicon-on-insulator (SOI)

    NASA Astrophysics Data System (ADS)

    de la Houssaye, Paul R.; Russell, Stephen D.; Shimabukuro, Randy L.

    2004-07-01

    Silicon-on-insulator is a proven technology for very large scale integration of microelectronic devices. The technology also offers the potential for development of nanophotonic devices and the ability to interface such devices to the macroscopic world. This paper will report on fabrication techniques used to form nano-structured silicon wires on an insulating structure that is amenable to interfacing nanostructured sensors with high-performance microelectronic circuitry for practical implementation. Nanostructures formed on silicon-on-sapphire can also exploit the transparent substrate for novel device geometries. This research harnesses the unique properties of a high-quality single crystal film of silicon on sapphire and uses the film thickness as one of the confinement dimensions. Lateral arrays of silicon nanowires were fabricated in the thin (5 to 20 nm) silicon layer and studied. This technique offers simplified contact to individual wires and provides wire surfaces that are more readily accessible for controlled alteration and device designs.

  20. Green materials for sustainable development

    NASA Astrophysics Data System (ADS)

    Purwasasmita, B. S.

    2017-03-01

    Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.

  1. Mechanistic insights into the luminescent sensing of organophosphorus chemical warfare agents and simulants using trivalent lanthanide complexes.

    PubMed

    Dennison, Genevieve H; Johnston, Martin R

    2015-04-20

    Organophosphorus chemical warfare agents (OP CWAs) are potent acetylcholinesterase inhibitors that can cause incapacitation and death within minutes of exposure, and furthermore are largely undetectable by the human senses. Fast, efficient, sensitive and selective detection of these compounds is therefore critical to minimise exposure. Traditional molecular-based sensing approaches have exploited the chemical reactivity of the OP CWAs, whereas more recently supramolecular-based approaches using non-covalent interactions have gained momentum. This is due, in part, to the potential development of sensors with second-generation properties, such as reversibility and multifunction capabilities. Supramolecular sensors also offer opportunities for incorporation of metal ions allowing for the exploitation of their unique properties. In particular, trivalent lanthanide ions are being increasingly used in the OP CWA sensing event and their use in supramolecular sensors is discussed in this Minireview. We focus on the fundamental interactions of simple lanthanide systems with OP CWAs and simulants, along with the development of more elaborate and complex systems including those containing nanotubes, polymers and gold nanoparticles. Whilst literature investigations into lanthanide-based OP CWA detection systems are relatively scarce, their unique and versatile properties provide a promising platform for the development of more efficient and complex sensing systems into the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mirror neurons in the tree of life: mosaic evolution, plasticity and exaptation of sensorimotor matching responses.

    PubMed

    Tramacere, Antonella; Pievani, Telmo; Ferrari, Pier F

    2017-08-01

    Considering the properties of mirror neurons (MNs) in terms of development and phylogeny, we offer a novel, unifying, and testable account of their evolution according to the available data and try to unify apparently discordant research, including the plasticity of MNs during development, their adaptive value and their phylogenetic relationships and continuity. We hypothesize that the MN system reflects a set of interrelated traits, each with an independent natural history due to unique selective pressures, and propose that there are at least three evolutionarily significant trends that gave raise to three subtypes: hand visuomotor, mouth visuomotor, and audio-vocal. Specifically, we put forward a mosaic evolution hypothesis, which posits that different types of MNs may have evolved at different rates within and among species. This evolutionary hypothesis represents an alternative to both adaptationist and associative models. Finally, the review offers a strong heuristic potential in predicting the circumstances under which specific variations and properties of MNs are expected. Such predictive value is critical to test new hypotheses about MN activity and its plastic changes, depending on the species, the neuroanatomical substrates, and the ecological niche. © 2016 Cambridge Philosophical Society.

  3. An overview of nanomaterials applied for removing dyes from wastewater.

    PubMed

    Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie

    2017-07-01

    Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.

  4. The Active Target Time Projection Chamber at NSCL

    NASA Astrophysics Data System (ADS)

    Bazin, D.; Bradt, J.; Ayyad, Y.; Mittig, W.; Ahn, T.; Beceiro-Novo, S.; Carpenter, L.; Cortesi, M.; Fritsch, A.; Kolata, J. J.; Lynch, W.; Watwood, N.

    2017-11-01

    Reactions in inverse kinematics close to the Coulomb barrier offer unique opportunities to study exotic nuclei, but they are plagued by the difficulty to efficiently and precisely measure the characteristics of the emerging particles. The Active Target Time Projection Chamber (AT-TPC) offers an elegant solution to this dilemma. In this device, the detector gas of the time projection chamber is at the same time the target in which nuclear reactions take place. The use of this new paradigm offers several advantages over conventional inert target methods, the most significant being the ability to increase the luminosity of experiments without loss of resolution. The AT-TPC and some results obtained on resonant α scattering to explore the clustering properties of neutron-rich nuclei are presented, as well as fusion cross section results using a 10Be radioactive beam. In addition, the first re-accelerated radioactive beam experiment using the fully commissioned ReA3 linac was conducted recently at the NSCL with the AT-TPC, where proton resonant scattering of a 4.6 MeV/u 46Ar beam was used to measure the neutron single-particle strength in 47Ar.

  5. Incorporation of citrus essential oils into bacterial cellulose-based edible films and assessment of their physical properties

    NASA Astrophysics Data System (ADS)

    Indrarti, L.; Indriyati

    2017-03-01

    The use of edible films in food protection and preservation has recently gained more interest since they offer several advantages over synthetic packaging materials. Biocellulose (BC) offers great opportunity as edible film due to their unique physical and mechanical properties. In this study, biocellulose films were prepared by solution casting with addition of 30% carboxymethyl cellulose (CMC) and 30% glycerol as the homogenizer and plasticizer, respectively. Furthermore, various citrus essential oils (EOs) including lemon, lime, and sweet orange were added at 50% w/w of BC dried weight. The solutions were then cast on the tray and allowed to dry in the air convection oven at 40°C overnight. The films were characterized for water solubility, tensile strength (TS), elongation at break (EB), water vapour transmission rate (WVTR), and color. Those characteristics may influence consumer acceptability of the packaged products. Results revealed that addition of lemon and sweet orange EOs into BC-based edible film decreased water solubility and TS, but improved EB, as these oils acted as plasticizers in the film. However, different trend was observed for BC-based film incorporated with lime oil, which had higher solubility and TS, but lower EB and WVTR compared with that of control film. Addition of citrus EOs into BC-based films did not have much effect on color properties as stated in L*, a*, and b* values.

  6. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-11-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  7. Ionic Modification Turns Commercial Rubber into a Self-Healing Material.

    PubMed

    Das, Amit; Sallat, Aladdin; Böhme, Frank; Suckow, Marcus; Basu, Debdipta; Wiessner, Sven; Stöckelhuber, Klaus Werner; Voit, Brigitte; Heinrich, Gert

    2015-09-23

    Invented by Charles Goodyear, chemical cross-linking of rubbers by sulfur vulcanization is the only method by which modern automobile tires are manufactured. The formation of these cross-linked network structures leads to highly elastic properties, which substantially reduces the viscous properties of these materials. Here, we describe a simple approach to converting commercially available and widely used bromobutyl rubber (BIIR) into a highly elastic material with extraordinary self-healing properties without using conventional cross-linking or vulcanising agents. Transformation of the bromine functionalities of BIIR into ionic imidazolium bromide groups results in the formation of reversible ionic associates that exhibit physical cross-linking ability. The reversibility of the ionic association facilitates the healing processes by temperature- or stress-induced rearrangements, thereby enabling a fully cut sample to retain its original properties after application of the self-healing process. Other mechanical properties, such as the elastic modulus, tensile strength, ductility, and hysteresis loss, were found to be superior to those of conventionally sulfur-cured BIIR. This simple and easy approach to preparing a commercial rubber with self-healing properties offers unique development opportunities in the field of highly engineered materials, such as tires, for which safety, performance, and longer fatigue life are crucial factors.

  8. Imaging heterostructured quantum dots in cultured cells with epifluorescence and transmission electron microscopy

    PubMed Central

    Rivera, Erin M.; Provencio, Casilda Trujillo; Steinbruck, Andrea; Rastogi, Pawan; Dennis, Allison; Hollingsworth, Jennifer; Serrano, Elba

    2011-01-01

    Quantum dots (QDs) are semiconductor nanocrystals with extensive imaging and diagnostic capabilities, including the potential for single molecule tracking. Commercially available QDs offer distinct advantages over organic fluorophores, such as increased photostability and tunable emission spectra, but their cadmium selenide (CdSe) core raises toxicity concerns. For this reason, replacements for CdSe-based QDs have been sought that can offer equivalent optical properties. The spectral range, brightness and stability of InP QDs may comprise such a solution. To this end, LANL/CINT personnel fabricated moderately thick-shell novel InP QDs that retain brightness and emission over time in an aqueous environment. We are interested in evaluating how the composition and surface properties of these novel QDs affect their entry and sequestration within the cell. Here we use epifluorescence and transmission electron microscopy (TEM) to evaluate the structural properties of cultured Xenopus kidney cells (A6; ATCC) that were exposed either to commercially available CdSe QDs (Qtracker® 565, Invitrogen) or to heterostructured InP QDs (LANL). Epifluorescence imaging permitted assessment of the general morphology of cells labeled with fluorescent molecular probes (Alexa Fluor® ® phalloidin; Hoechst 33342), and the prevalence of QD association with cells. In contrast, TEM offered unique advantages for viewing electron dense QDs at higher resolution with regard to subcellular sequestration and compartmentalization. Preliminary results show that in the absence of targeting moieties, InP QDs (200 nM) can passively enter cells and sequester nonspecifically in cytosolic regions whereas commercially available targeted QDs principally associate with membranous structures within the cell. Supported by: NIH 5R01GM084702. PMID:21808662

  9. Processing and property evaluation of tungsten-based mixed oxides for photovoltaics and optoelectronics

    NASA Astrophysics Data System (ADS)

    Vargas, Mirella

    Tungsten Oxide (WO3) films and low-dimensional structures have proven to be promising candidates in the fields of photonics and electronics. WO3 is a well-established n-type semiconductor characterized by unique electrochromic behavior, an ideal optical band gap that permits transparency over a wide spectral range, and high chemical integrity. The plethora of diverse properties endow WO3 to be highly effective in applications related to electrochromism, gas sensing, and deriving economical energy. Compared to the bulk films, a materials system involving WO3 and a related species (elements or metal oxides) offer the opportunity to tailor the electrochromic response, and an overall enhancement of the physio-chemical and optical properties. In the present case, WO3 and TiO2 composite films have been fabricated by reactive magnetron sputtering employing W/Ti alloy targets, and individual W and Ti targets for co-sputtering. Composite WO3-TiO2 films were fabricated with variable chemical composition and the effect of variable bulk chemistry on film structure, surface/interface chemistry and chemical valence state of the W and Ti cations was investigated in detail. The process-property relationships between composition and physical properties for the films deposited by using W/Ti alloy targets of variable Ti content are associated with decreases in the deposition rate of the WO3-TiO2 films due to the lower sputter yield of the strongly bonded TiO2 formed on the target surface. Additionally, for the co-sputtered films using variable tungsten power, the optical properties demonstrate unique optical modulation. The changes associated with the physical color of the films demonstrate the potential to tailor the optical behavior for the design and fabrication of multilayer photovoltaic and catalytic devices. The process-structure-property correlation derived in this work will provide a road-map to optimize and produce W-Ti-O thin films with desired properties for a given technological application.

  10. High-temperature superconductivity for avionic electronic warfare and radar systems

    NASA Astrophysics Data System (ADS)

    Ryan, Paul A.

    1994-01-01

    The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS.

  11. Moisturizing alcohol hand gels for surgical hand preparation.

    PubMed

    Jones, R D; Jampani, H; Mulberry, G; Rizer, R L

    2000-03-01

    With the use of novel formulary technology, unique moisturizing hand gels have been developed that offer significant advantages in perioperative and other health care settings. These advantages include the time-saving capabilities of a waterless formulation, the persistence and effectiveness of a surgical scrub, and the moisturization and protective properties of a lotion. Extensive laboratory and clinical studies, involving in vivo antimicrobial activity against resident and transient flora, skin moisturization on normal and dry skin, and compatibility with latex gloves, have supported these advantages. Nondrying alcohol hand gels can be used for antiseptic hand washing, hand scrubs between procedures (i.e., reentry scrubs), brushless surgical scrubs, moisturizers, and glove-donning aids.

  12. Development of PLA hybrid yarns for biobased self-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Köhler, T.; Gries, T.; Seide, G.

    2017-10-01

    Lightweight materials are a necessity in various industries. Lightweight design is in the key interest of the mobility sector, e.g. the automotive and aerospace industry. This trend applies also for the consumer industries, e.g. sporting goods. In addition, the worldwide demand for replacing fossil-based materials has led to a significant growth of bioplastics. Due to their low mechanical performance and durability, their use is still limited. Therefore, it is necessary to develop biobased, sustainable polymeric materials with high stiffness, high impact and high durability without impairing recyclability at a similar price level of non-biobased solutions. Biobased self-reinforced polymer composites offer these unique properties.

  13. The recent progress of isoxazole in medicinal chemistry.

    PubMed

    Zhu, Jie; Mo, Jun; Lin, Hong-Zhi; Chen, Yao; Sun, Hao-Peng

    2018-05-28

    Isoxazole compounds exhibit a wide spectrum of targets and broad biological activities. Developing compounds with heterocycle rings has been one of the trends. The integration of isoxazole ring can offer improved physical-chemical properties. Because of the unique profiles, isoxazole ring becomes a popular moiety in compounds design. In this review article, the major focus has been paid to the applications of isoxazole compounds in treating multiple diseases, including anticancer, antimicrobial, anti-inflammatory, etc. Strategies for compounds design for preclinical, clinical, and FDA approved drugs were discussed. Also, the emphasis has been addressed to the future perspectives and trend for the application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The AGATA Campaign at GANIL

    NASA Astrophysics Data System (ADS)

    Lenzi, Silvia M.; Clement, Emmanuel

    2018-02-01

    The Advanced Gamma Tracking Array, AGATA, is presently in its construction phase in which the European γ-spectroscopy research community is involved since several years. This powerful HPGe array offers unique possibilities for the study of rare phenomena in nuclei by detailed gamma-ray spectroscopy. The physics campaign in GANIL foresees different setups, with AGATA coupled to different spectrometers, to study nuclear structure properties of nuclei all across the nuclear chart, from light nuclei to very heavy species, using stable and radioactive beams. After a brief description of the AGATA concept, some recent results are presented together with the very interesting opportunities for nuclear structure research in the forthcoming years with AGATA at GANIL.

  15. Graphene transport mediated by micropatterned substrates

    NASA Astrophysics Data System (ADS)

    Hinnefeld, J. Henry; Gill, Stephen T.; Mason, Nadya

    2018-04-01

    Engineered substrates offer a promising avenue towards graphene devices having tunable properties. In particular, topographically patterned substrates can expose unique behavior due to their ability to induce local variations in strain and electrostatic doping. However, to explore the range of possible science and applications, it is important to create topographic substrates that both have tunable features and are suitable for transport measurements. In this letter, we describe the fabrication of tunable, topographically patterned substrates suitable for transport measurements. We report both optical and transport measurements of graphene devices fabricated on these substrates and demonstrate the characteristic strain and local doping behavior induced by the topographic features.

  16. Tuning topological phases in the XMnSb2 system via chemical substitution from first principles

    NASA Astrophysics Data System (ADS)

    Griffin, Sinead M.; Neaton, Jeffrey B.

    New Dirac materials are sought for their interesting fundamental physics and for their potential technological applications. Protected symmetries offer a route to potential zero mass Dirac and Weyl fermions, and can lead unique transport properties and spectroscopic signatures. In this work, we use first-principles calculations to study the XMnSb2 family of materials and show how varying X changes the nature of bulk protected topological features in their electronic structure. We further discuss new design rules for predicting new topological materials suggested by our calculations. SG is supported by the Early Postdoc Mobility Fellowship of the SNF.

  17. Soil Physicochemical and Biological Properties of Paddy-Upland Rotation: A Review

    PubMed Central

    Lv, Teng-Fei; Chen, Yong; Westby, Anthony P.; Ren, Wan-Jun

    2014-01-01

    Paddy-upland rotation is an unavoidable cropping system for Asia to meet the increasing demand for food. The reduction in grain yields has increased the research interest on the soil properties of rice-based cropping systems. Paddy-upland rotation fields are unique from other wetland or upland soils, because they are associated with frequent cycling between wetting and drying under anaerobic and aerobic conditions; such rotations affect the soil C and N cycles, make the chemical speciation and biological effectiveness of soil nutrient elements varied with seasons, increase the diversity of soil organisms, and make the soil physical properties more difficult to analyze. Consequently, maintaining or improving soil quality at a desirable level has become a complicated issue. Therefore, fully understanding the soil characteristics of paddy-upland rotation is necessary for the sustainable development of the system. In this paper, we offer helpful insight into the effect of rice-upland combinations on the soil chemical, physical, and biological properties, which could provide guidance for reasonable cultivation management measures and contribute to the improvement of soil quality and crop yield. PMID:24995366

  18. Processing of polysiloxane-derived porous ceramics: a review

    PubMed Central

    Manoj Kumar, B V; Kim, Young-Wook

    2010-01-01

    Because of the unique combination of their attractive properties, porous ceramics are considered as candidate materials for several engineering applications. The production of porous ceramics from polysiloxane precursors offers advantages in terms of simple processing methodology, low processing cost, and easy control over porosity and other properties of the resultant ceramics. Therefore, considerable research has been conducted to produce various Si(O)C-based ceramics from polysiloxane precursors by employing different processing strategies. The complete potential of these materials can only be achieved when properties are tailored for a specific application, whereas the control over these properties is highly dependent on the processing route. This review deals with processing strategies of polysiloxane-derived porous ceramics. The essential features of processing strategies—replica, sacrificial template, direct foaming and reaction techniques—are explained and the available literature reports are thoroughly reviewed with particular regard to the critical issues that affect pore characteristics. A short note on the cross-linking methods of polysiloxanes is also provided. The potential of each processing strategy on porosity and strength of the resultant SiC or SiOC ceramics is outlined. PMID:27877344

  19. Experimental and theoretical study of the absorption properties of thiolated diamondoids

    NASA Astrophysics Data System (ADS)

    Landt, Lasse; Bostedt, Christoph; Wolter, David; Möller, Thomas; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Tkachenko, Boryslav A.; Fokin, Andrey A.; Schreiner, Peter R.; Kulesza, Alexander; Mitrić, Roland; Bonačić-Koutecký, Vlasta

    2010-04-01

    Nanoscale hybrid systems are a new class of molecular aggregates that offer numerous new possibilities in materials design. Diamondoid thiols are promising nanoscale building blocks for such hybrid systems. They allow the incorporation of functional groups and the investigation of their effects on the unique materials' properties of diamondoids. Here we combine experimental data with ab initio theory to explore the optical properties of diamondoid thiols and their dependence on size and shape. Agreement between theoretically and experimentally obtained absorption spectra allows the identification of the nature of the optical transitions that are responsible for some photophysical and photochemical processes. We show that the optical properties of diamondoid thiols in the deep UV regime depend on the functionalization site but are largely size independent. Our findings provide an explanation for the disappearance of diamondoid UV photoluminescence upon thiolation for smaller diamondoids. However, our theoretical results indicate that for larger diamondoid thiols beyond the critical size of six diamondoid cages the lowest energy transitions are characterized by diamondoidlike states suggesting that UV luminescence may be regained.

  20. Prospects for graphene–nanoparticle-based hybrid sensors

    PubMed Central

    Yin, Perry T.; Kim, Tae-Hyung; Choi, Jeong-Woo; Lee, Ki-Bum

    2014-01-01

    Graphene is a single-atom thick, two-dimensional sheet of carbon that is characterized by exceptional chemical, electrical, material, optical, and physical properties. As a result, graphene and related materials, such as graphene oxide and reduced graphene oxide, have been brought to the forefront in the field of sensing. Recently, a number of reports have demonstrated that graphene–nanoparticle hybrid structures can act synergistically to offer a number of unique physicochemical properties that are desirable and advantageous for sensing applications. These graphene–nanoparticle hybrid structures are particularly interesting because not only do they display the individual properties of the nanoparticles and of graphene, but they can also exhibit additional synergistic properties thereby enhancing the achievable sensitivity and selectivity using a variety of sensing mechanisms. As such, in this perspective, we will discuss the progress that has been made in the development and application of graphene–nanoparticle hybrid sensors and their future prospects. In particular, we will focus on the preparation of graphene–nanoparticle hybrid structures as well as their application in electronic, electrochemical, and optical sensors. PMID:23828095

  1. Impact of helical organization on the photovoltaic properties of oligothiophene supramolecular polymers† †Electronic supplementary information (ESI) available: Synthesis and characterization of 3 and 4, UV-vis spectra, solar cell device properties and AFM images. See DOI: 10.1039/c7sc05093c

    PubMed Central

    Ouchi, Hayato; Kizaki, Takahiro; Yamato, Masaki; Lin, Xu; Hoshi, Nagahiro; Silly, Fabien; Kajitani, Takashi; Fukushima, Takanori

    2018-01-01

    Helical self-assembly of functional π-conjugated molecules offers unique photochemical and electronic properties in the spectroscopic level, but there are only a few examples that demonstrate their positive impact on the optoelectronic device level. Here, we demonstrate that hydrogen-bonded tapelike supramolecular polymers of a barbiturated oligo(alkylthiophene) show notable improvement in their photovoltaic properties upon organizing into helical nanofibers. A tapelike hydrogen-bonded supramolecular array of barbiturated oligo(butylthiophene) molecules was directly visualized by STM at a liquid–solid interface. TEM, AFM and XRD revealed that the tapelike supramolecular polymers further organize into helical nanofibers in solution and bulk states. Bulk heterojunction solar cells of the helical nanofibers and soluble fullerene showed a power conversion efficiency of 4.5%, which is markedly high compared to that of the regioisomer of butyl chains organizing into 3D lamellar agglomerates. PMID:29780493

  2. 101 Ways To Build Enrollment in Your Early Childhood Program.

    ERIC Educational Resources Information Center

    Montanari, Ellen Orton

    Written for administrators of early childhood program centers, this book offers tips on how to increase enrollment. The book offers suggestions rather than a theoretical overview or a comprehensive marketing strategy. Suggestions offered include: (1) Offer a quality program; (2) be aware of your target market; (3) make your program unique; (4)…

  3. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abebe, Daniel G.; Fujiwara, Tomoko

    2012-09-05

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLAmore » comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.« less

  4. Use and application of gelatin as potential biodegradable packaging materials for food products.

    PubMed

    Nur Hanani, Z A; Roos, Y H; Kerry, J P

    2014-11-01

    The manufacture and potential application of biodegradable films for food application has gained increased interest as alternatives to conventional food packaging polymers due to the sustainable nature associated with their availability, broad and abundant source range, compostability, environmentally-friendly image, compatibility with foodstuffs and food application, etc. Gelatin is one such material and is a unique and popularly used hydrocolloid by the food industry today due to its inherent characteristics, thereby potentially offering a wide range of further and unique industrial applications. Gelatin from different sources have different physical and chemical properties as they contain different amino acid contents which are responsible for the varying characteristics observed upon utilization in food systems and when being utilized more specifically, in the manufacture of films. Packaging films can be successfully produced from all gelatin sources and the behaviour and characteristics of gelatin-based films can be altered through the incorporation of other food ingredients to produce composite films possessing enhanced physical and mechanical properties. This review will present the current situation with respect to gelatin usage as a packaging source material and the challenges that remain in order to move the manufacture of gelatin-based films nearer to commercial reality. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Unique Datasets Collected by NOAA Hurricane Hunter Aircraft during the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Zawislak, J.; Reasor, P.

    2017-12-01

    Each year, NOAA's Atlantic Oceanographic & Meteorological Laboratory (AOML) Hurricane Research Division (HRD), in partnership with the National Hurricane Center (NHC) and NOAA's Environmental Modeling Center (EMC), operates a hurricane field program, the Intensity Forecast Experiment (IFEX). The experiment leverages the NOAA P-3 and G-IV hurricane hunter aircraft, based at NOAA's Office of Marine and Aviation Operations (OMAO) Aircraft Operations Center (AOC). The goals of IFEX are to improve understanding of physical processes in tropical cyclones (TCs), improve operational forecasts of TC intensity, structure, and rainfall by providing data into operational numerical modeling systems, and to develop and refine measurement technologies. This season the IFEX program, leveraging mainly operationally tasked EMC and NHC missions, sampled extensively Hurricanes Harvey, Irma, Jose, Maria, and Nate, as well as Tropical Storm Franklin. We will contribute to this important session by providing an overview of aircraft missions into these storms, guidance on the datasets made available from instruments onboard the P-3 and G-IV, and will offer some perspective on the science that can be addressed with these unique datasets, such as the value of those datasets towards model forecast improvement. NOAA aircraft sampled these storms during critical periods of intensification, and for Hurricanes Harvey and Irma, just prior to the devastating landfalls in the Caribbean and United States. The unique instrument suite on the P-3 offers inner core observations of the three-dimensional precipitation and vortex structure, lower troposphere (boundary layer) thermodynamic properties, and surface wind speed. In contrast, the G-IV flies at higher altitudes, sampling the environment surrounding the storms, and provides deep-tropospheric soundings from dropsondes.

  6. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

  7. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high titanium content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of titanium and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of titanium alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is studied.

  8. Supported lipid bilayer/carbon nanotube hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose M.; Craighead, Harold G.; McEuen, Paul L.

    2007-03-01

    Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube-with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.

  9. Design and Synthesis of Multigraft Copolymer Thermoplastic Elastomers: Superelastomers

    DOE PAGES

    Wang, Huiqun; Lu, Wei; Wang, Weiyu; ...

    2017-09-28

    Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less

  10. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers.

    PubMed

    Cheng, Ziyong; Lin, Jun

    2015-05-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) have been an emerging and exciting research field in recent years due to their unique luminescent properties of converting near-infrared light to shorter wavelength radiation. UCNPs offer excellent prospects in luminescent labeling, displays, bioimaging, bioassays, drug delivery, sensors, and anticounterfeiting applications. Along with the abundant studies and rapid progress in this area, UCNPs are promising to be a new class of luminescent probe owing to their special advantages over the conventional organic dyes and quantum dots. Among them, polymers play an important role to improve properties or endow new function of UCNPs such as for matrix materials, water solubility, linking active targeting molecules, biocompatibility, and stimuli-responsive behavior. This article briefly reviews the compositions, optical mechanisms, architectures of upconversion nanocrystals and highlights the works on various functional UCNPs/polymer nanohybrids as well as many new interesting fruits in applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    PubMed Central

    2011-01-01

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment. PMID:21711877

  12. Quantum dots in imaging, drug delivery and sensor applications

    PubMed Central

    Matea, Cristian T; Mocan, Teodora; Tabaran, Flaviu; Pop, Teodora; Mosteanu, Ofelia; Puia, Cosmin; Iancu, Cornel; Mocan, Lucian

    2017-01-01

    Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications. PMID:28814860

  13. Self-organized molecular films with long-range quasiperiodic order.

    PubMed

    Fournée, Vincent; Gaudry, Émilie; Ledieu, Julian; de Weerd, Marie-Cécile; Wu, Dongmei; Lograsso, Thomas

    2014-04-22

    Self-organized molecular films with long-range quasiperiodic order have been grown by using the complex potential energy landscape of quasicrystalline surfaces as templates. The long-range order arises from a specific subset of quasilattice sites acting as preferred adsorption sites for the molecules, thus enforcing a quasiperiodic structure in the film. These adsorption sites exhibit a local 5-fold symmetry resulting from the cut by the surface plane through the cluster units identified in the bulk solid. Symmetry matching between the C60 fullerene and the substrate leads to a preferred adsorption configuration of the molecules with a pentagonal face down, a feature unique to quasicrystalline surfaces, enabling efficient chemical bonding at the molecule-substrate interface. This finding offers opportunities to investigate the physical properties of model 2D quasiperiodic systems, as the molecules can be functionalized to yield architectures with tailor-made properties.

  14. Expanding frontiers in materials chemistry and physics with multiple anions.

    PubMed

    Kageyama, Hiroshi; Hayashi, Katsuro; Maeda, Kazuhiko; Attfield, J Paul; Hiroi, Zenji; Rondinelli, James M; Poeppelmeier, Kenneth R

    2018-02-22

    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials.

  15. Generation of nondiffracting Bessel beam using digital micromirror device.

    PubMed

    Gong, Lei; Ren, Yu-Xuan; Xue, Guo-Sheng; Wang, Qian-Chang; Zhou, Jin-Hua; Zhong, Min-Cheng; Wang, Zi-Qiang; Li, Yin-Mei

    2013-07-01

    We experimentally demonstrated Bessel-like beams utilizing digital micromirror device (DMD). DMD with images imitating the equivalent axicon can shape the collimated Gaussian beam into Bessel beam. We reconstructed the 3D spatial field of the generated beam through a stack of measured cross-sectional images. The output beams have the profile of Bessel function after intensity modulation, and the beams extend at least 50 mm while the lateral dimension of the spot remains nearly invariant. Furthermore, the self-healing property has also been investigated, and all the experimental results agree well with simulated results numerically calculated through beam propagation method. Our observations demonstrate that the DMD offers a simple and efficient method to generate Bessel beams with distinct nondiffracting and self-reconstruction behaviors. The generated Bessel beams will potentially expand the applications to the optical manipulation and high-resolution fluorescence imaging owing to the unique nondiffracting property.

  16. Hyaluronan-Inorganic Nanohybrid Materials for Biomedical Applications.

    PubMed

    Cai, Zhixiang; Zhang, Hongbin; Wei, Yue; Cong, Fengsong

    2017-06-12

    Nanomaterials, including gold, silver, and magnetic nanoparticles, carbon, and mesoporous materials, possess unique physiochemical and biological properties, thus offering promising applications in biomedicine, such as in drug delivery, biosensing, molecular imaging, and therapy. Recent advances in nanotechnology have improved the features and properties of nanomaterials. However, these nanomaterials are potentially cytotoxic and demonstrate a lack of cell-specific function. Thus, they have been functionalized with various polymers, especially polysaccharides, to reduce toxicity and improve biocompatibility and stability under physiological conditions. In particular, nanomaterials have been widely functionalized with hyaluronan (HA) to enhance their distribution in specific cells and tissues. This review highlights the most recent advances on HA-functionalized nanomaterials for biotechnological and biomedical applications, as nanocarriers in drug delivery, contrast agents in molecular imaging, and diagnostic agents in cancer therapy. A critical evaluation of barriers affecting the use of HA-functionalized nanomaterials is also discussed, and insights into the outlook of the field are explored.

  17. Quantum dots in imaging, drug delivery and sensor applications.

    PubMed

    Matea, Cristian T; Mocan, Teodora; Tabaran, Flaviu; Pop, Teodora; Mosteanu, Ofelia; Puia, Cosmin; Iancu, Cornel; Mocan, Lucian

    2017-01-01

    Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huiqun; Lu, Wei; Wang, Weiyu

    Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less

  19. Amorphous microcellular polytetrafluoroethylene foam film

    NASA Astrophysics Data System (ADS)

    Tang, Chongzheng

    1991-11-01

    We report herein the preparation of novel low-density ultramicrocellular fluorocarbon foams and their application. These fluorocarbon foams are of interest for the biochemistry arena in numerous applications including foodstuff, pharmacy, wine making, beer brewery, fermentation medical laboratory, and other processing factories. All of those require good quality processing programs in which, after eliminating bacterium and virus, compressed air is needed. Ordinarily, compressed air contains bacterium and virus, its size is 0.01 - 2 micrometers fluorocarbon foam films. Having average porous diameter 0.04 - 0.1 micrometers , these are stable to high temperature (280 degree(s)C) and chemical environments, and generally have good engineering and mechanical properties (e.g., low coefficient of thermal expansion, high modulus, and good dimensional stability). Our new process for preparing low density fluorocarbon foams provides materials with unique properties. As such, they offer the possibility for being superior to earlier materials for a number of the filter applications mentioned.

  20. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment.

    PubMed

    Ramesh, Gopalan; Prabhu, Narayan Kotekar

    2011-04-14

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  1. Freely Suspended Two-Dimensional Electron Gases.

    NASA Astrophysics Data System (ADS)

    Blick, Robert; Monzon, Franklin; Roukes, Michael; Wegscheider, Werner; Stern, Frank

    1998-03-01

    We present a new technique that has allowed us to build the first freely suspended two-dimensional electron gas devices from AlGaAs/GaAs/AlAs heterostructures. This technique is based upon specially MBE grown structures that include a sacrificial layer. In order to design the MBE layer sequence, the conduction band lineup for these samples was modelled numerically. The overall focus of this work is to provide a new approach for studies of the quantum mechanical properties of nanomachined structures. Our current experiments are directed toward use of these techniques for research on very high frequency nanomechanical resonators. The high mobility 2DEG system provides a unique approach to realizing wideband, extremely sensitive displacement detection, using the piezoelectric properties of GaAs to modulate a suspended nanometer-scale HEMT. This approach offers promise for sensitive displacement detectors with sub-nanometer resolution and bandwidths into the microwave range.

  2. Chemical bath deposition of semiconductor thin films & nanostructures in novel microreactors

    NASA Astrophysics Data System (ADS)

    McPeak, Kevin M.

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures and thin films, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. CBD is traditionally performed in a batch reactor, requiring only a substrate to be immersed in a supersaturated solution of aqueous precursors such as metal salts, complexing agents, and pH buffers. Highlights of CBD include low cost, operation at low temperature and atmospheric pressure, and scalability to large area substrates. In this dissertation, I explore CBD of semiconductor thin films and nanowire arrays in batch and continuous flow microreactors. Microreactors offer many advantages over traditional reactor designs including a reduction in mass transport limitations, precise temperature control and ease of production scale-up by "numbering up". Continuous flow micoreactors offer the unique advantage of providing reaction conditions that are time-invariant but change smoothly as a function of distance down the reaction channel. Growth from a bath whose composition changes along the reactor length results in deposited materials whose properties vary as a function of position on the substrate, essentially creating a combinatorial library. These substrates can be rapidly characterized to identify relationships between growth conditions and material properties or growth mechanisms. I have used CBD in a continuous flow microreactor to deposit ZnO nanowire arrays and CdZnS films whose optoelectronic properties vary as a function of position. The spatially-dependent optoelectronic properties of these materials have been correlated to changes in the composition, structure or growth mechanisms of the materials and ultimately their growth conditions by rigorous spatial characterization. CBD in a continuous flow microreactor, coupled with spatial characterization, provides a new route to understanding the connection between CBD growth conditions and the resulting optoelectronic properties of the film. The high surface-to-volume ratio of a microreactor also lends itself to in situ characterization studies. I demonstrated the first in situ x-ray absorption fine-structure spectroscopy (XAFS) study of CBD. The high sensitivity and ability to characterize liquid, amorphous and crystalline materials simultaneously make in situ XAFS spectroscopy an ideal tool to study the CBD of inorganic nanomaterials.

  3. Drug-eluting stents. Insights from invasive imaging technologies.

    PubMed

    Honda, Yasuhiro

    2009-08-01

    Drug-eluting stents (DES) represent a revolutionary technology in their unique ability to provide both mechanical and biological solutions simultaneously to the target lesion. As a result of biological effects from the pharmacological agents and interaction of DES components with the arterial wall, considerable differences exist between DES and conventional bare metal stents (BMS), yet some of the old lessons learned in the BMS era remain clinically significant. In this context, contrast angiography provides very little information about in vivo device properties and their biomechanical effects on the arterial wall. In contrast, current catheter-based imaging tools, such as intravascular ultrasound, optical coherence tomography, and intracoronary angioscopy can offer unique insights into DES through direct assessment of the device and treated vessel in the clinical setting. This article reviews these insights from current DES with particular focus on performance and safety characteristics as well as discussing an optimal deployment technique, based upon findings obtained through the use of the invasive imaging technologies.

  4. Anomalous charge transport in conjugated polymers reveals underlying mechanisms of trapping and percolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollinger, Sonya A.; Salleo, Alberto; Spakowitz, Andrew J.

    While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transportmore » on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. Lastly, these insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing.« less

  5. Anomalous charge transport in conjugated polymers reveals underlying mechanisms of trapping and percolation

    DOE PAGES

    Mollinger, Sonya A.; Salleo, Alberto; Spakowitz, Andrew J.

    2016-11-10

    While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transportmore » on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. Lastly, these insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing.« less

  6. Generic pure quantum states as steady states of quasi-local dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Karuvade, Salini; Johnson, Peter D.; Ticozzi, Francesco; Viola, Lorenza

    2018-04-01

    We investigate whether a generic pure state on a multipartite quantum system can be the unique asymptotic steady state of locality-constrained purely dissipative Markovian dynamics. In the tripartite setting, we show that the problem is equivalent to characterizing the solution space of a set of linear equations and establish that the set of pure states obeying the above property has either measure zero or measure one, solely depending on the subsystems’ dimension. A complete analytical characterization is given when the central subsystem is a qubit. In the N-partite case, we provide conditions on the subsystems’ size and the nature of the locality constraint, under which random pure states cannot be quasi-locally stabilized generically. Also, allowing for the possibility to approximately stabilize entangled pure states that cannot be exact steady states in settings where stabilizability is generic, our results offer insights into the extent to which random pure states may arise as unique ground states of frustration-free parent Hamiltonians. We further argue that, to a high probability, pure quantum states sampled from a t-design enjoy the same stabilizability properties of Haar-random ones as long as suitable dimension constraints are obeyed and t is sufficiently large. Lastly, we demonstrate a connection between the tasks of quasi-local state stabilization and unique state reconstruction from local tomographic information, and provide a constructive procedure for determining a generic N-partite pure state based only on knowledge of the support of any two of the reduced density matrices of about half the parties, improving over existing results.

  7. If technological intelligent extraterrestrials exist, what biological traits are de rigueur

    NASA Astrophysics Data System (ADS)

    Taylor, E. R.

    2018-05-01

    If extraterrestrials exist in the depths of cosmic space, and are capable of interstellar communications, even space flight, there is no requirement that they be humanoid in form. However, certain humanoid capabilities would be advantageous for tool fashioning and critical to operating space craft as well as functioning under the disparate extreme conditions under which they may be forced to operate. They would have to be "gas breathing". The reasonable assumption that life based upon the same elements as Earth life requiring water stems from the unique properties of water that no other similar low molecular weight nonmetal hydride offers. Only water offers the diversity of chemical properties and reactivity, including the existence of the three common physical states within a limited temperature range of service to life, avoiding the issues presented by any alternatives. They must, like us, possess a large, abstract-thinking brain, and probably possess at least all the fundamental senses that humankind possess. They would also be carbon-based life, using oxygen as the electron sink of their biochemistry for the reasons considered. They most likely are homeothermic as us, though they may not necessarily be mammalian as we are. Their biochemistry could differ some from ours, perhaps presenting contact hazards for both species as discussed.

  8. DigiLens color sequential filtering for microdisplay-based projection applications

    NASA Astrophysics Data System (ADS)

    Sagan, Stephen F.; Smith, Ronald T.; Popovich, Milan M.

    2000-10-01

    Application Specific Integrated Filters (ASIFs), based on a unique holographic polymer dispersed liquid crystal (H-PDLC) material system offering high efficiency, fast switching and low power, are being developed for microdisplay based projection applications. A new photonics technology based H-PDLC materials combined with the ability to be electrically switched on and off offers a new approach to color sequential filtering of a white light source for microdisplay-based front and rear projection display applications. Switchable Bragg gratings created in the PDLC are fundamental building blocks. Combined with the well- defined spectral and angular characteristics of Bragg gratings, these selectable filters can provide a large color gamut and a dynamically adjustable white balance. These switchable Bragg gratings can be reflective or transmissive and in each case can be designed to operate in either additive or subtractive mode. The spectral characteristics of filters made from a stack of these Bragg gratings can be configured for a specific lamp spectrum to give high diffractive efficiency over the broad bandwidths required for an illumination system. When it is necessary to reduce the spectral bandwidth, it is possible to use the properties of reflection Bragg holograms to construct very narrow band high efficiency filters. The basic properties and key benefits of ASIFs in projection displays are reviewed.

  9. The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology

    NASA Astrophysics Data System (ADS)

    Li, Chaoxu; Mezzenga, Raffaele

    2013-06-01

    Recent advances in bio-nanotechnology have not only rapidly broadened the applications and scope of hybrid nanomaterials in biological fields, but also greatly enriched the examples of ordered materials based on supramolecular self-assembly. Among eminent examples of functional nanostructured materials of undisputed impact in nanotechnology and biological environments, carbon nanomaterials (such as fullerenes, carbon nanotubes and graphene) and amyloid fibrils have attracted great attention because of their unique architectures and exceptional physical properties. Nonetheless, combination of these two classes of nanomaterials into functional hybrids is far from trivial. For example, the presence of carbon nanomaterials can offer either an inhibitory effect or promotion of amyloid fibrillation, depending on the structural architectures of carbon nanomaterials and the starting amyloid proteins/peptides considered. To date, numerous studies have been devoted to evaluating both the biological toxicity of carbon nanomaterials and their use in developing therapies for amyloidosis. At the same time, hybridization of these two classes of nanomaterials offers new possibilities for combining some of their desirable properties into nanocomposites of possible use in electronics, actuators, sensing, biomedicine and structural materials. This review describes recent developments in the hybridization of carbon nanomaterials and amyloid fibrils and discusses the current state of the art on the application of carbon nanomaterial-amyloid fibril hybrids in bio-nanotechnology.

  10. Bioinspired magnetoreception and navigation using magnetic signatures as waypoints.

    PubMed

    Taylor, Brian K

    2018-05-15

    Diverse taxa use Earth's magnetic field in conjunction with other sensory modalities to accomplish navigation tasks ranging from local homing to long-distance migration across continents and ocean basins. However, despite extensive research, the mechanisms that underlie animal magnetoreception are not clearly understood, and how animals use Earth's magnetic field to navigate is an active area of investigation. Concurrently, Earth's magnetic field offers a signal that engineered systems can leverage for navigation in environments where man-made systems such as GPS are unavailable or unreliable. Using a proxy for Earth's magnetic field, and inspired by migratory animal behavior, this work implements a behavioral strategy that uses combinations of magnetic field properties as rare or unique signatures that mark specific locations. Using a discrete number of these signatures as goal waypoints, the strategy navigates through a closed set of points several times in a variety of environmental conditions, and with various levels of sensor noise. The results from this engineering/quantitative biology approach support existing notions that some animals may use combinations of magnetic properties as navigational markers, and provides insights into features and constraints that would enable navigational success or failure. The findings also offer insights into how autonomous engineered platforms might be designed to leverage the magnetic field as a navigational resource.

  11. A Study on Micro-Machining Technology for the Machining of NiTi: Five-Axis Micro-Milling and Micro Deep-Hole Drilling

    NASA Astrophysics Data System (ADS)

    Biermann, D.; Kahleyss, F.; Krebs, E.; Upmeier, T.

    2011-07-01

    Micro-sized applications are gaining more and more relevance for NiTi-based shape memory alloys (SMA). Different types of micro-machining offer unique possibilities for the manufacturing of NiTi components. The advantage of machining is the low thermal influence on the workpiece. This is important, because the phase transformation temperatures of NiTi SMAs can be changed and the components may need extensive post manufacturing. The article offers a simulation-based approach to optimize five-axis micro-milling processes with respect to the special material properties of NiTi SMA. Especially, the influence of the various tool inclination angles is considered for introducing an intelligent tool inclination optimization algorithm. Furthermore, aspects of micro deep-hole drilling of SMAs are discussed. Tools with diameters as small as 0.5 mm are used. The possible length-to-diameter ratio reaches up to 50. This process offers new possibilities in the manufacturing of microstents. The study concentrates on the influence of the cutting speed, the feed and the tool design on the tool wear and the quality of the drilled holes.

  12. Synthetic biology of cyanobacteria: unique challenges and opportunities

    PubMed Central

    Berla, Bertram M.; Saha, Rajib; Immethun, Cheryl M.; Maranas, Costas D.; Moon, Tae Seok; Pakrasi, Himadri B.

    2013-01-01

    Photosynthetic organisms, and especially cyanobacteria, hold great promise as sources of renewably-produced fuels, bulk and specialty chemicals, and nutritional products. Synthetic biology tools can help unlock cyanobacteria's potential for these functions, but unfortunately tool development for these organisms has lagged behind that for S. cerevisiae and E. coli. While these organisms may in many cases be more difficult to work with as “chassis” strains for synthetic biology than certain heterotrophs, the unique advantages of autotrophs in biotechnology applications as well as the scientific importance of improved understanding of photosynthesis warrant the development of these systems into something akin to a “green E. coli.” In this review, we highlight unique challenges and opportunities for development of synthetic biology approaches in cyanobacteria. We review classical and recently developed methods for constructing targeted mutants in various cyanobacterial strains, and offer perspective on what genetic tools might most greatly expand the ability to engineer new functions in such strains. Similarly, we review what genetic parts are most needed for the development of cyanobacterial synthetic biology. Finally, we highlight recent methods to construct genome-scale models of cyanobacterial metabolism and to use those models to measure properties of autotrophic metabolism. Throughout this paper, we discuss some of the unique challenges of a diurnal, autotrophic lifestyle along with how the development of synthetic biology and biotechnology in cyanobacteria must fit within those constraints. PMID:24009604

  13. Solutions for Hot Situations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    From the company that brought the world an integral heating and cooling food service system after originally developing it for NASA's Apollo Program, comes yet another orbital offshoot: a product that can be as thin as paper and as strong as steel. Nextel Ceramic Textiles and Composites from 3M Company offer space-age protection and innovative solutions for hot situations, ranging from NASA to NASCAR. With superior thermal protection, Nextel fabrics, tape, and sleevings outperform other high temperature textiles such as aramids, carbon, glass, and quartz, permitting engineers and manufacturers to handle applications up to 2,500 F (1,371 C). The stiffness and strength of Nextel Continuous Ceramic Fibers make them a great match for improving the rigidity of aluminum in metal matrix composites. Moreover, the fibers demonstrate low shrinkage at operating temperatures, which allow for the manufacturing of a dimensionally stable product. These novel fibers also offer excellent chemical resistance, low thermal conductivity, thermal shock resistance, low porosity, and unique electrical properties.

  14. NASA Astrophysics Data System (ADS)

    McHugh, K. M.; Key, J. F.

    1994-06-01

    Spray forming is a near- net- shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or pattern to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing, often while substantially improving product quality. Spray forming is applicable to a wide range of metals and nonmetals and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities, and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray forming technology for producing near- net- shape solids and coatings of a variety of metals, polymers, and composite materials using de Laval nozzles. This article briefly describes the atomization behavior of liquid metals in linear de Laval nozzles and illustrates the versatility of the process by summarizing results from two spray forming programs. In one program, low-carbon steel strip >0.75 mm thick was produced; in the other, polymer membranes ˜5 μm thick were spray formed.

  15. Manipulating molecule-substrate exchange interactions via graphene

    NASA Astrophysics Data System (ADS)

    Bhandary, Sumanta; Eriksson, Olle; Sanyal, Biplab

    2013-03-01

    Organometallic molecules with a 3d metal center carrying a spin offers many interesting properties, e.g., existence of multiple spin states. A recent interest has been in understanding the magnetic exchange interaction between these organometallic molecules and magnetic substrates both from experiments and theory. In this work, we will show by calculations based on density functional theory how the exchange interaction is mediated via graphene in a geometry containing iron porphyrin(FeP)/graphene/Ni(111). The exchange interaction varies from a ferromagnetic to an antiferromagnetic one depending on the lattice site and type of defect in the graphene lattice along with the switching of spin state of Fe in FeP between S=1 and S=2, which should be detectable by x-ray magnetic circular dichroism experiments. This scenario of complex magnetic couplings with large magnetic moments may offer a unique spintronic logic device. We acknowledge financial support from the Swedish Research Council, KAW foundation and the ERC(project 247062 - ASD).

  16. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    USGS Publications Warehouse

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  17. Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties

    NASA Astrophysics Data System (ADS)

    Bogdan, Janusz; Jackowska-Tracz, Agnieszka; Zarzyńska, Joanna; Pławińska-Czarnak, Joanna

    2015-02-01

    Nanotechnology is a field of science that is nowadays developing in a dynamic way. It seems to offer almost endless opportunities of contribution to many areas of economy and human activity, in general. Thanks to nanotechnology, the so-called nanomaterials can be designed. They present structurally altered materials, with their physical, chemical and biological properties entirely differing from properties of the same materials manufactured in microtechnology. Nanotechnology creates a unique opportunity to modify the matter at the level of atoms and particles. Therefore, it has become possible to obtain items displaying new, useful properties, i.e. self-disinfecting and self-cleaning surfaces. Those surfaces are usually covered by a thin layer of a photocatalyst. The role of the photocatalyst is most of the time performed by the nanosized titanium dioxide (nano-TiO2). Excitation of nano-TiO2 by ultraviolet radiation initiates advanced oxidation processes and reactions leading to the creation of oxygen vacancies that bind water particles. As a result, photocatalytic surfaces are given new properties. Those properties can then be applied in a variety of disciplines, such as medicine, food hygiene, environmental protection or building industry. Practically, the applications include inactivation of microorganisms, degradation of toxins, removing pollutants from buildings and manufacturing of fog-free windows or mirrors.

  18. Deciphering the Fluorine Code-The Many Hats Fluorine Wears in a Protein Environment.

    PubMed

    Berger, Allison Ann; Völler, Jan-Stefan; Budisa, Nediljko; Koksch, Beate

    2017-09-19

    Deciphering the fluorine code is how we describe not only the focus of this Account, but also the systematic approach to studying the impact of fluorine's incorporation on the properties of peptides and proteins used by our groups and others. The introduction of fluorine has been shown to impart favorable, but seldom predictable, properties to peptides and proteins, but up until about two decades ago the outcomes of fluorine modification of peptides and proteins were largely left to chance. Driven by the motivation to extend the application of the unique properties of the element fluorine from medicinal and agro chemistry to peptide and protein engineering we have established extensive research programs that enable the systematic investigation of effects that accompany the introduction of fluorine into this class of biopolymers. The introduction of fluorine into amino acids offers a universe of options for modifications with regard to number and position of fluorine substituents in the amino acid side chain. Moreover, it is important to emphasize that the consequences of incorporating the C-F bond into a biopolymer can be attributed to two distinct yet related phenomena: (i) the fluorine substituent can directly engage in intermolecular interactions with its environment and/or (ii) the other functional groups present in the molecule can be influenced by the electron withdrawing nature of this element (intramolecular) and in turn interact differently with their immediate environment (intermolecular). Based on our studies, we have shown that a change in number and/or position of as subtle as one single fluorine substituent has the power to considerably modify key properties of amino acids such as hydrophobicity, polarity, and secondary structure propensity. These properties are crucial factors in peptide and protein engineering, and thus, fluorinated amino acids can be applied to fine-tune properties such as protein folding, proteolytic stability, and protein-protein interactions provided we understand and become able to predict the outcome of a fluorine substitution in this context. With this Account, we attempt to analyze information we gained from our recent projects on how the nature of the fluorine atom and C-F bond influence four key properties of peptides and proteins: peptide folding, protein-protein interactions, ribosomal translation, and protease stability. These results impressively show why the introduction of fluorine creates a new class of amino acids with a repertoire of functionalities that is unique to the world of proteins and in some cases orthogonal to the set of canonical and natural amino acids. Our concluding statements aim to offer a few conserved design principles that have emerged from systematic studies over the last two decades; in this way, we hope to advance the field of peptide and protein engineering based on the judicious introduction of fluorinated building blocks.

  19. Coalbed methane: Clean energy for the world

    USGS Publications Warehouse

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  20. Regenerative nanomedicines: an emerging investment prospective?

    PubMed Central

    Prescott, Catherine

    2010-01-01

    Cells respond to their structural surrounding and within nanostructures exhibit unique proliferative and differentiation properties. The application of nanotechnologies to the field of regenerative medicine offers the potential to direct cell fate, target the delivery of cells and reduce immune rejection (via encapsulation), thereby supporting the development of regenerative medicines. The overall objective of any therapy is the delivery of the product not just into the clinic but also to patients on a routine basis. Such a goal typically requires a commercial vehicle and substantial levels of investment in scientific, clinical, regulatory and business expertise, resources, time and funding. Therefore, this paper focuses on some of the challenges facing this emerging industry, including investment by the venture capital community. PMID:20826478

  1. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the versatility of extrusion-based 3D printing technologies to interweave nanomaterials and fabricate novel bionic devices.

  2. 3D Printed Bionic Nanodevices

    PubMed Central

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the versatility of extrusion-based 3D printing technologies to interweave nanomaterials and fabricate novel bionic devices. PMID:27617026

  3. Career Design Education by Cooperation and Collaboration

    NASA Astrophysics Data System (ADS)

    Takahashi, Takeo; Koma, Tetsuya; Akiyama, Akira; Kihara, Hitoshi; Yamada, Hirofumi

    Kanazawa Technical College (KTC) was established to train beginner engineering students in 1962. Since then, KTC offers a unique education/hands on, and has maintained a 100% employment rate upon graduation. In the fourth grade, students participate in a unique industrial internship program for two weeks during summer vacation. As a result, students’ overall satisfaction rate concerning their education is high. Therefore, instead of offering traditional courses that value the experience of the present, it is necessary to offer a new course that lets student discover for themselves what their future will be like. In this paper, an outline of the career design education executed by the students together with their parent (s) /guardian, the school and industry is described.

  4. Spinel: where did it go?

    NASA Astrophysics Data System (ADS)

    Roy, Donald W.

    1997-11-01

    Polycrystalline magnesium aluminum oxide, transparent from 200 nanometers to 6 microns, offers a unique combination of optical and physical properties. A superior dome and window material in respect to rain and particle erosion, solar radiation, high temperatures and humidity; it is resistant to attack by strong acids, sea water, and jet fuels. Although it had been qualified for, and designed into several advanced UV/visible/IR optical systems, production of hot-pressed Spinel was stopped at Alpha Optical Systems in 1993 by the parent company Coors Ceramics. Development efforts on cold-pressed/sinter/HIP Spinel at RCS Technologies are reportedly stalemated at the present time. Therefore, there is no known significant effort directed toward the development of polycrystalline Spinel. however, the author is in contact with both domestic and foreign laboratories which have expressed a desire to develop the technology for transparent Spinel. Renewed development may begin during calendar year 1997. Because of the apparent continuing significant interest in Spinel this paper will review the properties of Spinel and will compare the most significant properties of Spinel with sapphire and aluminum oxynitride. The limitations of competing manufacturing processes, will be mentioned. Grinding and polishing considerations will be reviewed in respect to maximizing optical and structural properties.

  5. Retrieval of Absorbing Aerosols Above Clouds retrieval over the South East Atlantic Ocean from MSG/SEVIRI

    NASA Astrophysics Data System (ADS)

    Peers, F.; Haywood, J. M.; Francis, P. N.; Meyer, K.; Platnick, S. E.

    2017-12-01

    Over the South East Atlantic Ocean, biomass burning aerosols from Southern Africa are frequently observed above clouds during fire season. However, the quantification of their interactions with both radiations and clouds remains uncertain because of a lack of information on aerosol properties and on their interaction process. In the last decade, methods have been developed to retrieve aerosol optical properties above clouds from satellite measurements, especially over the South East Atlantic Ocean. Most of these methods have been applied to polar orbiting instruments which prevent the analysis of aerosols and clouds at a sub-daily scale. With its wide spatial coverage and its high temporal resolution, the geostationary instrument SEVIRI, on board the MSG platform, offers a unique opportunity to monitor aerosols in this region and to evaluate their impact on clouds and their radiative effects. In this study, we will investigate the possibility of retrieving simultaneously aerosol and cloud properties (i.e. aerosol and cloud optical thicknesses and cloud droplet effective radius) when aerosols are located above clouds. The retrieved properties will then be compared with the ones obtained from MODIS [Meyer et al., 2015] as well as observations from the CLARIFY-2017 field campaign.

  6. Novel conformal organic antireflective coatings for advanced I-line lithography

    NASA Astrophysics Data System (ADS)

    Deshpande, Shreeram V.; Nowak, Kelly A.; Fowler, Shelly; Williams, Paul; Arjona, Mikko

    2001-08-01

    Flash memory chips are playing a critical role in semiconductor devices due to increased popularity of hand held electronic communication devices such as cell phones and PDAs (personal Digital Assistants). Flash memory offers two primary advantages in semiconductor devices. First, it offers flexibility of in-circuit programming capability to reduce the loss from programming errors and to significantly reduce commercialization time to market for new devices. Second, flash memory has a double density memory capability through stacked gate structures which increases the memory capability and thus saves significantly on chip real estate. However, due to stacked gate structures the requirements for manufacturing of flash memory devices are significantly different from traditional memory devices. Stacked gate structures also offer unique challenges to lithographic patterning materials such as Bottom Anti-Reflective Coating (BARC) compositions used to achieve CD control and to minimize standing wave effect in photolithography. To be applicable in flash memory manufacturing a BARC should form a conformal coating on high topography of stacked gate features as well as provide the normal anti-reflection properties for CD control. In this paper we report on a new highly conformal advanced i-line BARC for use in design and manufacture of flash memory devices. Conformal BARCs being significantly thinner in trenches than the planarizing BARCs offer the advantage of reducing BARC overetch and thus minimizing resist thickness loss.

  7. 41 CFR 102-37.85 - Can surplus property being offered for sale be withdrawn and approved for donation?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... being offered for sale be withdrawn and approved for donation? 102-37.85 Section 102-37.85 Public... MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.85 Can surplus property being offered for sale be withdrawn and approved for donation...

  8. 41 CFR 102-37.85 - Can surplus property being offered for sale be withdrawn and approved for donation?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... being offered for sale be withdrawn and approved for donation? 102-37.85 Section 102-37.85 Public... MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.85 Can surplus property being offered for sale be withdrawn and approved for donation...

  9. 41 CFR 102-37.85 - Can surplus property being offered for sale be withdrawn and approved for donation?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... being offered for sale be withdrawn and approved for donation? 102-37.85 Section 102-37.85 Public... MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.85 Can surplus property being offered for sale be withdrawn and approved for donation...

  10. 41 CFR 102-37.85 - Can surplus property being offered for sale be withdrawn and approved for donation?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... being offered for sale be withdrawn and approved for donation? 102-37.85 Section 102-37.85 Public... MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.85 Can surplus property being offered for sale be withdrawn and approved for donation...

  11. 41 CFR 102-37.85 - Can surplus property being offered for sale be withdrawn and approved for donation?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... being offered for sale be withdrawn and approved for donation? 102-37.85 Section 102-37.85 Public... MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.85 Can surplus property being offered for sale be withdrawn and approved for donation...

  12. Mechanical exfoliation of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping

    2018-06-01

    Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.

  13. Bacterial-Derived Polymer Poly-y-Glutamic Acid (y-PGA)-Based Micro/Nanoparticles as a Delivery System for Antimicrobials and Other Biomedical Applications.

    PubMed

    Khalil, Ibrahim R; Burns, Alan T H; Radecka, Iza; Kowalczuk, Marek; Khalaf, Tamara; Adamus, Grazyna; Johnston, Brian; Khechara, Martin P

    2017-02-02

    In the past decade, poly-γ-glutamic acid (γ-PGA)-based micro/nanoparticles have garnered remarkable attention as antimicrobial agents and for drug delivery, owing to their controlled and sustained-release properties, low toxicity, as well as biocompatibility with tissue and cells. γ-PGA is a naturally occurring biopolymer produced by several gram-positive bacteria that, due to its biodegradable, non-toxic and non-immunogenic properties, has been used successfully in the medical, food and wastewater industries. Moreover, its carboxylic group on the side chains can offer an attachment point to conjugate antimicrobial and various therapeutic agents, or to chemically modify the solubility of the biopolymer. The unique characteristics of γ-PGA have a promising future for medical and pharmaceutical applications. In the present review, the structure, properties and micro/nanoparticle preparation methods of γ-PGA and its derivatives are covered. Also, we have highlighted the impact of micro/nanoencapsulation or immobilisation of antimicrobial agents and various disease-related drugs on biodegradable γ-PGA micro/nanoparticles.

  14. Mapping the Properties of Blue Compact Dwarf Galaxies by Means of Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P.; Papaderos, P.; García-Lorenzo, B.

    Blue Compact Dwarf (BCD) galaxies are metal-poor and gas-rich systems undergoing intense, spatially extended star-forming activity. These galaxies offer a unique opportunity to investigate dwarf galaxy formation and evolution, and probe violent star formation and its implications on the chemical, dynamical and structural properties of low-mass extragalactic systems near and far. Several fundamental questions in BCD research, such as their star formation histories and the mechanisms that control their cyclic starburst activity, are still far from well understood. In order to improve our understanding on BCD evolution, we are carrying out a comprehensive Integral Field Spectroscopic (IFS) survey of a large sample of BCDs. Integral Field Unit (IFU) spectroscopy provides simultaneously spectral and spatial information, allowing, in just one shot, to study the morphology and evolutionary status of the stellar component, and the physical properties of the warm interstellar medium (e.g., extinction, chemical abundances, kinematics). This ongoing IFS survey will supply much needed local templates that will ease the interpretation of IFS data for intermediate and high-redshift star-forming galaxies.

  15. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles for Cellular Imaging and Targeted Therapy Research

    PubMed Central

    Wang, Yi-Xiang J.; Xuan, Shouhu; Port, Marc; Idee, Jean-Marc

    2013-01-01

    Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering. PMID:23621536

  16. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  17. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes)

    DOE PAGES

    Anasori, Babak; Xie, Yu; Beidaghi, Majid; ...

    2015-07-24

    The higher the chemical diversity and structural complexity of two-dimensional (2D) materials, the higher the likelihood they possess unique and useful properties. In this paper, density functional theory (DFT) is used to predict the existence of two new families of 2D ordered, carbides (MXenes), M' 2M"C 2 and M' 2M" 2C 3, where M' and M" are two different early transition metals. In these solids, M' layers sandwich M" carbide layers. By synthesizing Mo 2TiC 2T x, Mo 2Ti 2C 3T x, and Cr 2TiC 2T x (where T is a surface termination), we validated the DFT predictions. Since themore » Mo and Cr atoms are on the outside, they control the 2D flakes’ chemical and electrochemical properties. The latter was proven by showing quite different electrochemical behavior of Mo 2TiC 2T x and Ti 3C 2T x. Finally, this work further expands the family of 2D materials, offering additional choices of structures, chemistries, and ultimately useful properties.« less

  18. Bacterial-Derived Polymer Poly-γ-Glutamic Acid (γ-PGA)-Based Micro/Nanoparticles as a Delivery System for Antimicrobials and Other Biomedical Applications

    PubMed Central

    Khalil, Ibrahim R.; Burns, Alan T. H.; Radecka, Iza; Kowalczuk, Marek; Khalaf, Tamara; Adamus, Grazyna; Johnston, Brian; Khechara, Martin P.

    2017-01-01

    In the past decade, poly-γ-glutamic acid (γ-PGA)-based micro/nanoparticles have garnered remarkable attention as antimicrobial agents and for drug delivery, owing to their controlled and sustained-release properties, low toxicity, as well as biocompatibility with tissue and cells. γ-PGA is a naturally occurring biopolymer produced by several gram-positive bacteria that, due to its biodegradable, non-toxic and non-immunogenic properties, has been used successfully in the medical, food and wastewater industries. Moreover, its carboxylic group on the side chains can offer an attachment point to conjugate antimicrobial and various therapeutic agents, or to chemically modify the solubility of the biopolymer. The unique characteristics of γ-PGA have a promising future for medical and pharmaceutical applications. In the present review, the structure, properties and micro/nanoparticle preparation methods of γ-PGA and its derivatives are covered. Also, we have highlighted the impact of micro/nanoencapsulation or immobilisation of antimicrobial agents and various disease-related drugs on biodegradable γ-PGA micro/nanoparticles. PMID:28157175

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anasori, Babak; Xie, Yu; Beidaghi, Majid

    The higher the chemical diversity and structural complexity of two-dimensional (2D) materials, the higher the likelihood they possess unique and useful properties. In this paper, density functional theory (DFT) is used to predict the existence of two new families of 2D ordered, carbides (MXenes), M' 2M"C 2 and M' 2M" 2C 3, where M' and M" are two different early transition metals. In these solids, M' layers sandwich M" carbide layers. By synthesizing Mo 2TiC 2T x, Mo 2Ti 2C 3T x, and Cr 2TiC 2T x (where T is a surface termination), we validated the DFT predictions. Since themore » Mo and Cr atoms are on the outside, they control the 2D flakes’ chemical and electrochemical properties. The latter was proven by showing quite different electrochemical behavior of Mo 2TiC 2T x and Ti 3C 2T x. Finally, this work further expands the family of 2D materials, offering additional choices of structures, chemistries, and ultimately useful properties.« less

  20. Temperature-dependent elastic properties of brain tissues measured with the shear wave elastography method.

    PubMed

    Liu, Yan-Lin; Li, Guo-Yang; He, Ping; Mao, Ze-Qi; Cao, Yanping

    2017-01-01

    Determining the mechanical properties of brain tissues is essential in such cases as the surgery planning and surgical training using virtual reality based simulators, trauma research and the diagnosis of some diseases that alter the elastic properties of brain tissues. Here, we suggest a protocol to measure the temperature-dependent elastic properties of brain tissues in physiological saline using the shear wave elastography method. Experiments have been conducted on six porcine brains. Our results show that the shear moduli of brain tissues decrease approximately linearly with a slope of -0.041±0.006kPa/°C when the temperature T increases from room temperature (~23°C) to body temperature (~37°C). A case study has been further conducted which shows that the shear moduli are insensitive to the temperature variation when T is in the range of 37 to 43°C and will increase when T is higher than 43°C. With the present experimental setup, temperature-dependent elastic properties of brain tissues can be measured in a simulated physiological environment and a non-destructive manner. Thus the method suggested here offers a unique tool for the mechanical characterization of brain tissues with potential applications in brain biomechanics research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Synthesis of Single-walled Carbon Nanotubes Coated with Thiol-reactive Gel via Emulsion Polymerization.

    PubMed

    Nagai, Yukiko; Tsutsumi, Yusuke; Nakashima, Naotoshi; Fujigaya, Tsuyohiko

    2018-06-15

    Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the de-sign and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to non-covalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via retro Diels-Alder reaction and then functionalized with thiol com-pounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluores-cent dye as a model thiol and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.

  2. Fluorescent Photo-conversion: A second chance to label unique cells.

    PubMed

    Mellott, Adam J; Shinogle, Heather E; Moore, David S; Detamore, Michael S

    2015-03-01

    Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the "unique" cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2 , allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2 -transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2 , offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population.

  3. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    PubMed Central

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  4. Collagen-Gold Nanoparticle Conjugates for Versatile Biosensing

    PubMed Central

    Unser, Sarah; Holcomb, Samuel; Cary, ReJeana; Sagle, Laura

    2017-01-01

    Integration of noble metal nanoparticles with proteins offers promising potential to create a wide variety of biosensors that possess both improved selectivity and versatility. The multitude of functionalities that proteins offer coupled with the unique optical properties of noble metal nanoparticles can allow for the realization of simple, colorimetric sensors for a significantly larger range of targets. Herein, we integrate the structural protein collagen with 10 nm gold nanoparticles to develop a protein-nanoparticle conjugate which possess the functionality of the protein with the desired colorimetric properties of the nanoparticles. Applying the many interactions that collagen undergoes in the extracellular matrix, we are able to selectively detect both glucose and heparin with the same collagen-nanoparticle conjugate. Glucose is directly detected through the cross-linking of the collagen fibrils, which brings the attached nanoparticles into closer proximity, leading to a red-shift in the LSPR frequency. Conversely, heparin is detected through a competition assay in which heparin-gold nanoparticles are added to solution and compete with heparin in the solution for the binding sites on the collagen fibrils. The collagen-nanoparticle conjugates are shown to detect both glucose and heparin in the physiological range. Lastly, glucose is selectively detected in 50% mouse serum with the collagen-nanoparticle devices possessing a linear range of 3–25 mM, which is also within the physiologically relevant range. PMID:28212282

  5. Two-dimensional IR spectroscopy of the anti-HIV agent KP1212 reveals protonated and neutral tautomers that influence pH-dependent mutagenicity.

    PubMed

    Peng, Chunte Sam; Fedeles, Bogdan I; Singh, Vipender; Li, Deyu; Amariuta, Tiffany; Essigmann, John M; Tokmakoff, Andrei

    2015-03-17

    Antiviral drugs designed to accelerate viral mutation rates can drive a viral population to extinction in a process called lethal mutagenesis. One such molecule is 5,6-dihydro-5-aza-2'-deoxycytidine (KP1212), a selective mutagen that induces A-to-G and G-to-A mutations in the genome of replicating HIV. The mutagenic property of KP1212 was hypothesized to originate from its amino-imino tautomerism, which would explain its ability to base pair with either G or A. To test the multiple tautomer hypothesis, we used 2D IR spectroscopy, which offers subpicosecond time resolution and structural sensitivity to distinguish among rapidly interconverting tautomers. We identified several KP1212 tautomers and found that >60% of neutral KP1212 is present in the enol-imino form. The abundant proportion of this traditionally rare tautomer offers a compelling structure-based mechanism for pairing with adenine. Additionally, the pKa of KP1212 was measured to be 7.0, meaning a substantial population of KP1212 is protonated at physiological pH. Furthermore, the mutagenicity of KP1212 was found to increase dramatically at pH <7, suggesting a significant biological role for the protonated KP1212 molecules. Overall, our data reveal that the bimodal mutagenic properties of KP1212 result from its unique shape shifting ability that utilizes both tautomerization and protonation.

  6. Graphene oxide as a scaffold for bone regeneration.

    PubMed

    Holt, Brian D; Wright, Zoe M; Arnold, Anne M; Sydlik, Stefanie A

    2017-05-01

    Graphene oxide (GO), the oxidized form of graphene, holds great potential as a component of biomedical devices, deriving utility from its ability to support a broad range of chemical functionalities and its exceptional mechanical, electronic, and thermal properties. GO composites can be tuned chemically to be biomimetic, and mechanically to be stiff yet strong. These unique properties make GO-based materials promising candidates as a scaffold for bone regeneration. However, questions still exist as to the compatibility and long-term toxicity of nanocarbon materials. Unlike other nanocarbons, GO is meta-stable, water dispersible, and autodegrades in water on the timescale of months to humic acid-like materials, the degradation products of all organic matter. Thus, GO offers better prospects for biological compatibility over other nanocarbons. Recently, many publications have demonstrated enhanced osteogenic performance of GO-containing composites. Ongoing work toward surface modification or coating strategies could be useful to minimize the inflammatory response and improve compatibility of GO as a component of medical devices. Furthermore, biomimetic modifications could offer mechanical and chemical environments that encourage osteogenesis. So long as care is given to assure their safety, GO-based materials may be poised to become the next generation scaffold for bone regeneration. WIREs Nanomed Nanobiotechnol 2017, 9:e1437. doi: 10.1002/wnan.1437 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  7. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography.

    PubMed

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-09-06

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.

  8. The Emerging Field of RNA Nanotechnology

    PubMed Central

    Guo, Peixuan

    2011-01-01

    RNA can be designed and manipulated just like DNA while having different rules for base-pairing and displaying functions similar to proteins. The large variety of loops and motifs in RNA allow them to fold into numerous complicated structures. This diversity provides a platform for identifying viable building blocks for particle assemblies, substrate binding and manufacture engineering. RNA thermal stability allows production of multivalent nanostructures with defined stoichiometry. Here we review the unique qualities of RNA nanotechnology and their distinct properties inside the body. We describe techniques for constructing RNA nanoparticles from different building blocks and their applications in nanomedicine. Finally, we discuss challenges in predicting and synthesizing RNA and offer some perspectives on the yield and cost of RNA production. PMID:21102465

  9. Thin-film luminescent concentrators for integrated devices: a cookbook.

    PubMed

    Evenson, S A; Rawicz, A H

    1995-11-01

    A luminescent concentrator (LC) is a nonimaging optical device used for collecting light energy. As a result of its unique properties, a LC also offers the possibility of separating different portions of the spectrum and concentrating them at the same time. Hence, LC's can be applied to a whole range of problems requiring the collection, manipulation, and distribution or measurement of light. Further-more, as described in our previous research, thin-film LC elements can be deposited directly over sensor and processing electronics in the form of integrated LC devices. As an aid to further research, the materials and technology required to fabricate these thin-film LC elements through the use of an ultraviolet-curable photopolymer are documented in detail.

  10. Preparation and Characterization of Mesoporous Nickel derived from Liquid crystalline Template and Evaluation of its Electro catalytic activity towards Methanol Oxidation

    NASA Astrophysics Data System (ADS)

    Mohanapriya, S.; Renuka devi, R.; Raj, V.

    2018-02-01

    Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.

  11. Potential of ordered mesoporous silica for oral delivery of poorly soluble drugs.

    PubMed

    Vialpando, Monica; Martens, Johan A; Van den Mooter, Guy

    2011-08-01

    The use of ordered mesoporous silica is one of the more recent and rapidly developing formulation techniques for enhancing the solubility of poorly water-soluble drugs. Their large surface area and pore volume make ordered mesoporous silica materials excellent candidates for efficient drug loading and rapid release. While this new approach offers many promising advantages, further research is still necessary to elucidate the molecular mechanisms and to improve our scientific insight into the behavior of this system. In this review, the significant developments to date are presented and research challenges highlighted. Aspects of downstream processability are discussed in view of their special bulk powder properties and unique pore architecture. Lastly, perspectives for successful oral dosage form development are presented.

  12. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  13. Surface Modification of Nonwoven fabrics by Atmospheric Brush Plasma

    NASA Astrophysics Data System (ADS)

    Oksuz, Lutfi; Uygun, Emre; Bozduman, Ferhat; Yurdabak Karaca, Gozde; Asan, Orkun Nuri; Uygun Oksuz, Aysegul

    2017-10-01

    Polypropylene nonwoven fabrics (PPNF) are used in disposable absorbent articles, such as diapers, feminine care products, wipes. PPNF need to be wettable by water or aqueous-based liquid. Plasma surface treatment/modification has turned out to be a well-accepted method since it offers superior surface property enhancement than other chemical methods. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical application. The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of two different nonwoven surfaces.

  14. Structural and functional studies on Ribonuclease S, retro S and retro-inverso S peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal-Bhowmick, Ipsita; Pati Pandey, Ramendra; Jarori, Gotam K.

    2007-12-21

    Ribonuclease S peptide and S protein offer a unique complementation system to understand the finer features of molecular recognition. In the present study the S peptide (1-16), and its retro and retro-inverso analogs have been analyzed for their structural and biological attributes. RPHPLC, CD, and NMR analyses have revealed that the physicochemical and conformational properties of the S peptide are distinct from those of its retro and retro-inverso analogs. On the functional side, while the S peptide complemented the S protein to give RNase activity, was recognized by anti-S peptide antibodies and induced T cell proliferation, neither the retro normore » the retro-inverso S peptides could do so.« less

  15. PhotoMEA: an opto-electronic biosensor for monitoring in vitro neuronal network activity.

    PubMed

    Ghezzi, Diego; Pedrocchi, Alessandra; Menegon, Andrea; Mantero, Sara; Valtorta, Flavia; Ferrigno, Giancarlo

    2007-02-01

    PhotoMEA is a biosensor useful for the analysis of an in vitro neuronal network, fully based on optical methods. Its function is based on the stimulation of neurons with caged glutamate and the recording of neuronal activity by Voltage-Sensitive fluorescent Dyes (VSD). The main advantage is that it will be possible to stimulate even at sub-single neuron level and to record with high resolution the activity of the entire network in the culture. A large-scale view of neuronal intercommunications offers a unique opportunity for testing the ability of drugs to affect neuronal properties as well as alterations in the behaviour of the entire network. The concept and a prototype for validation is described here in detail.

  16. Flexible Photodetectors Based on 1D Inorganic Nanostructures

    PubMed Central

    Lou, Zheng

    2015-01-01

    Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404

  17. Recent progress in high-mobility thin-film transistors based on multilayer 2D materials

    NASA Astrophysics Data System (ADS)

    Hong, Young Ki; Liu, Na; Yin, Demin; Hong, Seongin; Kim, Dong Hak; Kim, Sunkook; Choi, Woong; Yoon, Youngki

    2017-04-01

    Two-dimensional (2D) layered semiconductors are emerging as promising candidates for next-generation thin-film electronics because of their high mobility, relatively large bandgap, low-power switching, and the availability of large-area growth methods. Thin-film transistors (TFTs) based on multilayer transition metal dichalcogenides or black phosphorus offer unique opportunities for next-generation electronic and optoelectronic devices. Here, we review recent progress in high-mobility transistors based on multilayer 2D semiconductors. We describe the theoretical background on characterizing methods of TFT performance and material properties, followed by their applications in flexible, transparent, and optoelectronic devices. Finally, we highlight some of the methods used in metal-semiconductor contacts, hybrid structures, heterostructures, and chemical doping to improve device performance.

  18. Drugs and Cosmetics from the Sea

    PubMed Central

    Kijjoa, Anake; Sawangwong, Pichan

    2004-01-01

    The marine environment is a rich source of both biological and chemical diversity. This diversity has been the source of unique chemical compounds with the potential for industrial development as pharmaceuticals, cosmetics, nutritional supplements, molecular probes, fine chemicals and agrochemicals. In recent years, a significant number of novel metabolites with potent pharmacological properties has been discovered from the marine organisms. Although there are only a few marine-derived products currently on the market, several robust new compounds derived from marine natural products are now in the clinical pipeline, with more clinical development. While the marine world offers an extremely rich resource for novel compounds, it also represents a great challenge that requires inputs from various scientific areas to bring the marine chemical diversity up to its therapeutic potential.

  19. Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.

    PubMed

    Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L

    2000-12-15

    The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments.

  20. Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea

    PubMed Central

    Poli, Annarita; Di Donato, Paola; Abbamondi, Gennaro Roberto; Nicolaus, Barbara

    2011-01-01

    Extreme environments, generally characterized by atypical temperatures, pH, pressure, salinity, toxicity, and radiation levels, are inhabited by various microorganisms specifically adapted to these particular conditions, called extremophiles. Among these, the microorganisms belonging to the Archaea domain are of significant biotechnological importance as their biopolymers possess unique properties that offer insights into their biology and evolution. Particular attention has been devoted to two main types of biopolymers produced by such peculiar microorganisms, that is, the extracellular polysaccharides (EPSs), considered as a protection against desiccation and predation, and the endocellular polyhydroxyalkanoates (PHAs) that provide an internal reserve of carbon and energy. Here, we report the composition, biosynthesis, and production of EPSs and PHAs by different archaeal species. PMID:22007151

  1. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Petford-Long, A. K.; Phatak, C.

    2016-08-01

    Topologically non-trivial spin textures form a fundamental paradigm in solid-state physics and present unique opportunities to explore exciting phenomena such as the topological Hall effect. One such texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the perpendicular anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique spin configurations of artificial skyrmions and antiskyrmions that are stabilized by their demagnetization energy. We elucidate their behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. This research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.

  2. Single-crystalline dendritic bimetallic and multimetallic nanocubes.

    PubMed

    Kuang, Yun; Zhang, Ying; Cai, Zhao; Feng, Guang; Jiang, Yingying; Jin, Chuanhong; Luo, Jun; Sun, Xiaoming

    2015-12-01

    Developing facial synthetic routes for fabrication of multimetallic nanocatalysts with open porous morphology, tunable composition and tailored crystalline structure is a big challenge for fabrication of low-cost electrocatalysts. Here we report on the synthesis of single-crystalline dendritic bimetallic and multimetallic nanocubes via a solvothermal co-reduction method. These cubes show highly porous, complex 3D inner connections but single-crystalline structure. Tuning the reduction kinetics of metal precursors and introducing galvanic reaction at the active sites during growth were believed to be the keys for the formation of such unique nanostructure. Electro-catalytic oxygen reduction (ORR) and methanol oxidation (MOR) on these catalysts showed dramatic enhancements for both cathodic and anodic electrocatalysis in fuel cells, which were attributed to their unique morphology and crystalline structure, as well as synergetic effect of the multi-metallic components. This work uncovers the formation mechanism of such complex single-crystalline dendritic multimetallic nanocrystals and offers a promising synthetic strategy for geometric and crystalline control of multimetallic nanocrystals with tailored physical and chemical properties, which will benefit the development of clean energy.

  3. Ecological psychology and social psychology: it is Holt, or nothing!

    PubMed

    Charles, Eric P

    2011-03-01

    What is the greatest contribution that ecological psychologists can offer social psychology? Ideally, ecological psychologists could explain how people directly perceive the unique properties of their social partners. But social partners are distinguished from mundane objects because they possess mental traits, and tradition tells us that minds cannot be seen. When considering the ideal possibility, we reject that doctrine and posit minds as perceivable. For ecological psychology, this entails asserting that minds are the types of things able to structure ambient energy. Contemporary research and theory suggests distinctly ecological ways of attacking this problem, but the problem is not new. Almost 100 years ago, Holt argued for the visibility of minds. Thus when considering these ideas, ecological psychologists face a choice that is at once about their future and their past. Extending ecological psychology's first principles into the social realm, we come to the point where we must either accept or reject Holt's arguments, and the wider context they bring. In doing so, we accept or reject our ability to study the uniquely social.

  4. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering

    DOE PAGES

    Zhang, S.; Petford-Long, A. K.; Phatak, C.

    2016-08-10

    Topological spin textures form a fundamental paradigm in solid state physics and present unique opportunities to explore exciting phenomena such as the quantum Hall effect. One such non-trivial spin texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their topological and energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique domain configurations of artificial skyrmions and antiskyrmions. We elucidate theirmore » behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. As a result, this research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.« less

  5. Fundamentals of pulmonary drug delivery.

    PubMed

    Groneberg, D A; Witt, C; Wagner, U; Chung, K F; Fischer, A

    2003-04-01

    Aerosol administration of peptide-based drugs plays an important role in the treatment of pulmonary and systemic diseases and the unique cellular properties of airway epithelium offers a great potential to deliver new compounds. As the relative contributions from the large airways to the alveolar space are important to the local and systemic availability, the sites and mechanism of uptake and transport of different target compounds have to be characterized. Among the different respiratory cells, the ciliated epithelial cells of the larger and smaller airways and the type I and type II pneumocytes are the key players in pulmonary drug transport. With their diverse cellular characteristics, each of these cell types displays a unique uptake possibility. Next to the knowledge of these cellular aspects, the nature of aerosolized drugs, characteristics of delivery systems and the depositional and pulmonary clearance mechanisms display major targets to optimize pulmonary drug delivery. Based on the growing knowledge on pulmonary cell biology and pathophysiology due to modern methods of molecular biology, the future characterization of pulmonary drug transport pathways can lead to new strategies in aerosol drug therapy.

  6. 30 years of cosmic fullerenes

    NASA Astrophysics Data System (ADS)

    Berné, O.; Montillaud, J.; Mulas, G.; Joblin, C.

    2015-12-01

    In 1985, ``During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells'', Harry Kroto and his collaborators serendipitously discovered a new form of carbon: fullerenes. The most emblematic fullerene (i.e. C_{60} ``buckminsterfullerene''), contains exactly 60 carbon atoms organized in a cage-like structure similar to a soccer ball. Since their discovery impacted the field of nanotechnologies, Kroto and colleagues received the Nobel prize in 1996. The cage-like structure, common to all fullerene molecules, gives them unique properties, in particular an extraordinary stability. For this reason and since they were discovered in experiments aimed to reproduce conditions in space, fullerenes were sought after by astronomers for over two decades, and it is only recently that they have been firmly identified by spectroscopy, in evolved stars and in the interstellar medium. This identification offered the opportunity to study the molecular physics of fullerenes in the unique physical conditions provided by space, and to make the link with other large carbonaceous molecules thought to be present in space : polycyclic aromatic hydrocarbons.

  7. A new look at lunar soil collected from the sea of tranquility during the Apollo 11 mission.

    PubMed

    Kiely, Carol; Greenberg, Gary; Kiely, Christopher J

    2011-02-01

    Complementary state-of-the-art optical, scanning electron, and X-ray microscopy techniques have been used to study the morphology of Apollo 11 lunar soil particles (10084-47). The combination of innovative lighting geometries with image processing of a through focal series of images has allowed us to obtain a unique collection of high-resolution light micrographs of these fascinating particles. Scanning electron microscopy (SEM) stereo-pair imaging has been exploited to illustrate some of the unique morphological properties of lunar regolith. In addition, for the first time, X-ray micrographs with submicron resolution have been taken of individual particles using X-ray ultramicroscopy (XuM). This SEM-based technique lends itself readily to the imaging of pores, cracks, and inclusions and allows the internal structure of an entire particle to be viewed. Rotational SEM and XuM movies have also been constructed from a series of images collected at sequential angles through 360°. These offer a new and insightful view of these complex particles providing size, shape, and spatial information on many of their internal features.

  8. π-Extended triptycene-based material for capillary gas chromatographic separations.

    PubMed

    Yang, Yinhui; Wang, Qinsi; Qi, Meiling; Huang, Xuebin

    2017-10-02

    Triptycene-based materials feature favorable physicochemical properties and unique molecular recognition ability that offer good potential as stationary phases for capillary gas chromatography (GC). Herein, we report the investigation of utilizing a π-extended triptycene material (denoted as TQPP) for GC separations. As a result, the TQPP capillary column exhibited high column efficiency of 4030 plates m -1 and high-resolution performance for a wide range of analytes, especially structural and positional isomers. Interestingly, the TQPP stationary phase showed unique shape selectivity for alkanes isomers and preferential retention for analytes with halogen atoms and H-bonding nature mainly through their halogen-bonding and H-bonding interactions. In addition, the TQPP column had good repeatability and reproducibility with the RSD values of 0.02-0.34% for run-to-run, 0.09-0.80% for day-to-day and 1.4-5.2% for column-to-column, respectively, and favorable thermal stability up to 280 °C. This work demonstrates the promising future of triptycene-based materials as a new class of stationary phases for GC separations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Petford-Long, A. K.; Phatak, C.

    Topological spin textures form a fundamental paradigm in solid state physics and present unique opportunities to explore exciting phenomena such as the quantum Hall effect. One such non-trivial spin texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their topological and energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique domain configurations of artificial skyrmions and antiskyrmions. We elucidate theirmore » behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. As a result, this research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.« less

  10. Tilts, dopants, vacancies and non-stoichiometry: Understanding and designing the properties of complex solid oxide perovskites from first principles

    NASA Astrophysics Data System (ADS)

    Bennett, Joseph W.

    Perovskite oxides of formula ABO3 have a wide range of structural, electrical and mechanical properties, making them vital materials for many applications, such as catalysis, ultrasound machines and communication devices. Perovskite solid solutions with high piezoelectric response, such as ferroelectrics, are of particular interest as they can be employed as sensors in SONAR devices. Ferroelectric materials are unique in that their chemical and electrical properties can be non-invasively and reversibly changed, by switching the bulk polarization. This makes ferroelectrics useful for applications in non-volatile random access memory (NVRAM) devices. Perovskite solid solutions with a lower piezoelectric response than ferroelectrics are important for communication technology, as they function well as electroceramic capacitors. Also of interest is how these materials act as a component in a solid oxide fuel cell, as they can function as an efficient source of energy. Altering the chemical composition of these solid oxide materials offers an opportunity to change the desired properties of the final ceramic, adding a degree of flexibility that is advantageous for a variety of applications. These solid oxides are complex, sometimes disordered systems that are a challenge to study experimentally. However, as it is their complexity which produces favorable properties, highly accurate modeling which captures the essential features of the disordered structure is necessary to explain the behavior of current materials and predict favorable compositions for new materials. Methodological improvements and faster computer speeds have made first-principles and atomistic calculations a viable tool for understanding these complex systems. Offering a combination of accuracy and computational speed, the density functional theory (DFT) approach can reveal details about the microscopic structure and interactions of complex systems. Using DFT and a combination of principles from both inorganic chemistry and materials science, I have been able to gain insights into solid oxide perovskite-based systems.

  11. Modulating capacitive response of MoS2 flake by controlled nanostructuring through focused laser irradiation.

    PubMed

    Rani, Renu; Kundu, Anirban; Balal, Mohammad; Sheet, Goutam; Hazra, Kiran Shankar

    2018-08-24

    Unlike graphene nanostructures, various physical properties of nanostructured MoS 2 have remained unexplored due to the lack of established fabrication routes. Herein, we have reported unique electrostatic properties of MoS 2 nanostructures, fabricated in a controlled manner of different geometries on 2D flake by using focused laser irradiation technique. Electrostatic force microscopy has been carried out on MoS 2 nanostructures by varying tip bias voltage and lift height. The analysis depicts no contrast flip in phase image of the patterned nanostructure due to the absence of free surface charges. However, prominent change in phase shift at the patterned area is observed. Such contrast changes signify the capacitive interaction between tip and nanostructures at varying tip bias voltage and lift height, irrespective of their shape and size. Such unperturbed capacitive behavior of the MoS 2 nanostructures offer modulation of capacitance in periodic array on 2D MoS 2 flake for potential application in capacitive devices.

  12. Label-free in-flow detection of single DNA molecules using glass nanopipettes.

    PubMed

    Gong, Xiuqing; Patil, Amol V; Ivanov, Aleksandar P; Kong, Qingyuan; Gibb, Thomas; Dogan, Fatma; deMello, Andrew J; Edel, Joshua B

    2014-01-07

    With the view of enhancing the functionality of label-free single molecule nanopore-based detection, we have designed and developed a highly robust, mechanically stable, integrated nanopipette-microfluidic device which combines the recognized advantages of microfluidic systems and the unique properties/advantages of nanopipettes. Unlike more typical planar solid-state nanopores, which have inherent geometrical constraints, nanopipettes can be easily positioned at any point within a microfluidic channel. This is highly advantageous, especially when taking into account fluid flow properties. We show that we are able to detect and discriminate between DNA molecules of varying lengths when motivated through a microfluidic channel, upon the application of appropriate voltage bias across the nanopipette. The effects of applied voltage and volumetric flow rates have been studied to ascertain translocation event frequency and capture rate. Additionally, by exploiting the advantages associated with microfluidic systems (such as flow control and concomitant control over analyte concentration/presence), we show that the technology offers a new opportunity for single molecule detection and recognition in microfluidic devices.

  13. Human Locomotion under Reduced Gravity Conditions: Biomechanical and Neurophysiological Considerations

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.

    2014-01-01

    Reduced gravity offers unique opportunities to study motor behavior. This paper aims at providing a review on current issues of the known tools and techniques used for hypogravity simulation and their effects on human locomotion. Walking and running rely on the limb oscillatory mechanics, and one way to change its dynamic properties is to modify the level of gravity. Gravity has a strong effect on the optimal rate of limb oscillations, optimal walking speed, and muscle activity patterns, and gait transitions occur smoothly and at slower speeds at lower gravity levels. Altered center of mass movements and interplay between stance and swing leg dynamics may challenge new forms of locomotion in a heterogravity environment. Furthermore, observations in the lack of gravity effects help to reveal the intrinsic properties of locomotor pattern generators and make evident facilitation of nonvoluntary limb stepping. In view of that, space neurosciences research has participated in the development of new technologies that can be used as an effective tool for gait rehabilitation. PMID:25247179

  14. Extending Synthetic Routes for Oligosaccharides by Enzyme, Substrate and Reaction Engineering

    NASA Astrophysics Data System (ADS)

    Seibel, Jürgen; Jördening, Hans-Joachim; Buchholz, Klaus

    The integration of all relevant tools for bioreaction engineering has been a recent challenge. This approach should notably favor the production of oligo- and polysaccharides, which is highly complex due to the requirements of regio- and stereoselectivity. Oligosaccharides (OS) and polysaccharides (PS) have found many interests in the fields of food, pharmaceuticals, and cosmetics due to different specific properties. Food, sweeteners, and food ingredients represent important sectors where OS are used in major amounts. Increasing attention has been devoted to the sophisticated roles of OS and glycosylated compounds, at cell or membrane surfaces, and their function, e.g., in infection and cancer proliferation. The challenge for synthesis is obvious, and convenient approaches using cheap and readily available substrates and enzymes will be discussed. We report on new routes for the synthesis of oligosaccharides (OS), with emphasis on enzymatic reactions, since they offer unique properties, proceeding highly regio- and stereoselective in water solution, and providing for high yields in general.

  15. A Novel Characterization of Amalgamated Networks in Natural Systems

    PubMed Central

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-01-01

    Densely-connected networks are prominent among natural systems, exhibiting structural characteristics often optimized for biological function. To reveal such features in highly-connected networks, we introduce a new network characterization determined by a decomposition of network-connectivity into low-rank and sparse components. Based on these components, we discover a new class of networks we define as amalgamated networks, which exhibit large functional groups and dense connectivity. Analyzing recent experimental findings on cerebral cortex, food-web, and gene regulatory networks, we establish the unique importance of amalgamated networks in fostering biologically advantageous properties, including rapid communication among nodes, structural stability under attacks, and separation of network activity into distinct functional modules. We further observe that our network characterization is scalable with network size and connectivity, thereby identifying robust features significant to diverse physical systems, which are typically undetectable by conventional characterizations of connectivity. We expect that studying the amalgamation properties of biological networks may offer new insights into understanding their structure-function relationships. PMID:26035066

  16. Prospect of Thermal Insulation by Silica Aerogel: A Brief Review

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed Adnan; Sangashetty, Rashmi; Esther, A. Carmel Mary; Patil, Sharanabasappa B.; Sherikar, Baburao N.; Dey, Arjun

    2017-10-01

    Silica aerogel is a unique ultra light weight nano porous material which offers superior thermal insulation property as compared to the conventional thermal insulating materials. It can be applied not only for ground and aerospace applications but also in low and high temperatures and pressure regimes. Aerogel granules and monolith are synthesized by the sol-gel route while aerogel based composites are fabricated by the reinforcement of fibers, particle and opacifiers. Due to the characteristic brittleness (i.e., poor mechanical properties) of monolith or bulk aerogel, it is restricted in several applications. To improve the mechanical integrity and flexibility, usually different fibers are reinforced with aerogel and hence it can be used as flexible thermal insulation blankets. Further, to achieve effective thermal insulation behaviour particularly at high temperature, often opacifiers are doped with silica aerogel. In the present brief review, the prospects of bulk aerogel and aerogel based composites are discussed for the application of thermal insulation and thermal stability.

  17. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors.

    PubMed

    Jenie, S N Aisyiyah; Plush, Sally E; Voelcker, Nicolas H

    2016-10-01

    Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.

  18. Structural, electronic and magnetic properties of carbon doped boron nitride nanowire: Ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalilian, Jaafar, E-mail: JaafarJalilian@gmail.com; Kanjouri, Faramarz, E-mail: kanjouri@khu.ac.ir

    2016-11-15

    Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior suchmore » as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.« less

  19. Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3

    PubMed Central

    Preciado, Edwin; Schülein, Florian J.R.; Nguyen, Ariana E.; Barroso, David; Isarraraz, Miguel; von Son, Gretel; Lu, I-Hsi; Michailow, Wladislaw; Möller, Benjamin; Klee, Velveth; Mann, John; Wixforth, Achim; Bartels, Ludwig; Krenner, Hubert J.

    2015-01-01

    Lithium niobate is the archetypical ferroelectric material and the substrate of choice for numerous applications including surface acoustic wave radio frequencies devices and integrated optics. It offers a unique combination of substantial piezoelectric and birefringent properties, yet its lack of optical activity and semiconducting transport hamper application in optoelectronics. Here we fabricate and characterize a hybrid MoS2/LiNbO3 acousto-electric device via a scalable route that uses millimetre-scale direct chemical vapour deposition of MoS2 followed by lithographic definition of a field-effect transistor structure on top. The prototypical device exhibits electrical characteristics competitive with MoS2 devices on silicon. Surface acoustic waves excited on the substrate can manipulate and probe the electrical transport in the monolayer device in a contact-free manner. We realize both a sound-driven battery and an acoustic photodetector. Our findings open directions to non-invasive investigation of electrical properties of monolayer films. PMID:26493867

  20. Novel biomaterials: plasma-enabled nanostructures and functions

    NASA Astrophysics Data System (ADS)

    Levchenko, Igor; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua; (Ken Ostrikov, Kostya

    2016-07-01

    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials.

  1. Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers.

    PubMed

    Witting, Madeleine; Obst, Katja; Friess, Wolfgang; Hedtrich, Sarah

    2015-11-01

    Proteins and peptides are increasingly important therapeutics for the treatment of severe and complex diseases like cancer or autoimmune diseases due to their high specificity and potency. Their unique structure and labile physicochemical properties, however, require special attention in the production and formulation process as well as during administration. Aside from conventional systemic injections, the topical application of proteins and peptides is an appealing alternative due to its non-invasive nature and thus high acceptance by patients. For this approach, soft matter nanocarriers are interesting delivery systems which offer beneficial properties such as high biocompatibility, easiness of modifications, as well as targeted drug delivery and release. This review aims to highlight and discuss technological developments in the field of soft matter nanocarriers for the delivery of proteins and peptides via the skin, the eye, the nose, and the lung, and to provide insights in advantages, limitations, and practicability of recent advances. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Valence Band Control of Metal Silicide Films via Stoichiometry.

    PubMed

    Streller, Frank; Qi, Yubo; Yang, Jing; Mangolini, Filippo; Rappe, Andrew M; Carpick, Robert W

    2016-07-07

    The unique electronic and mechanical properties of metal silicide films render them interesting for advanced materials in plasmonic devices, batteries, field-emitters, thermoelectric devices, transistors, and nanoelectromechanical switches. However, enabling their use requires precisely controlling their electronic structure. Using platinum silicide (PtxSi) as a model silicide, we demonstrate that the electronic structure of PtxSi thin films (1 ≤ x ≤ 3) can be tuned between metallic and semimetallic by changing the stoichiometry. Increasing the silicon content in PtxSi decreases the carrier density according to valence band X-ray photoelectron spectroscopy and theoretical density of states (DOS) calculations. Among all PtxSi phases, Pt3Si offers the highest DOS due to the modest shift of the Pt5d manifold away from the Fermi edge by only 0.5 eV compared to Pt, rendering it promising for applications. These results, demonstrating tunability of the electronic structure of thin metal silicide films, suggest that metal silicides can be designed to achieve application-specific electronic properties.

  3. 41 CFR 102-38.155 - What is an offer to sell?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What is an offer to sell? 102-38.155 Section 102-38.155 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE OF PERSONAL PROPERTY...

  4. 41 CFR 102-38.155 - What is an offer to sell?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What is an offer to sell? 102-38.155 Section 102-38.155 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE OF PERSONAL PROPERTY...

  5. 41 CFR 102-38.155 - What is an offer to sell?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What is an offer to sell? 102-38.155 Section 102-38.155 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE OF PERSONAL PROPERTY...

  6. 41 CFR 102-38.155 - What is an offer to sell?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is an offer to sell? 102-38.155 Section 102-38.155 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE OF PERSONAL PROPERTY...

  7. 41 CFR 102-38.155 - What is an offer to sell?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What is an offer to sell? 102-38.155 Section 102-38.155 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE OF PERSONAL PROPERTY...

  8. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jingguang; Frenkel, Anatoly; Rodriguez, Jose

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, andmore » to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.« less

  10. Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: A review.

    PubMed

    Chen, Xuwei; Hai, Xin; Wang, Jianhua

    2016-05-30

    The distinctive/unique electrical, chemical and optical properties make graphene/graphene oxide-based materials popular in the field of analytical chemistry. Its large surface offers excellent capacity to anchor target analyte, making it an powerful sorbent in the adsorption and preconcentration of trace level analyte of interest in the field of sample preparation. The large delocalized π-electron system of graphene framework provides strong affinity to species containing aromatic rings, such as proteins, and the abundant active sites on its surface offers the chance to modulate adsorption tendency towards specific protein via functional modification/decoration. This review provides an overview of the current research on graphene/graphene oxide-based materials as attractive and powerful adsorption media in the separation/isolation and preconcentration of protein species from biological sample matrixes. These practices are aiming at providing protein sample of high purity for further investigations and applications, or to achieve certain extent of enrichment prior to quantitative assay. In addition, the challenges and future perspectives in the related research fields have been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. INEL Spray-forming Research

    NASA Technical Reports Server (NTRS)

    Mchugh, Kevin M.; Key, James F.

    1993-01-01

    Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.

  12. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis.

    PubMed

    Debecker, Damien P; Gaigneaux, Eric M; Busca, Guido

    2009-01-01

    Basic catalysis! The basic properties of hydrotalcites (see picture) make them attractive for numerous catalytic applications. Probing the basicity of the catalysts is crucial to understand the base-catalysed processes and to optimise the catalyst preparation. Various parameters can be employed to tune the basic properties of hydrotalcite-based catalysts towards the basicity demanded by each target chemical reaction.Hydrotalcites offer unique basic properties that make them very attractive for catalytic applications. It is of primary interest to make use of accurate tools for probing the basicity of hydrotalcite-based catalysts for the purpose of 1) fundamental understanding of base-catalysed processes with hydrotalcites and 2) optimisation of the catalytic performance achieved in reactions of industrial interest. Techniques based on probe molecules, titration techniques and test reactions along with physicochemical characterisation are overviewed in the first part of this review. The aim is to provide the tools for understanding how series of parameters involved in the preparation of hydrotalcite-based catalytic materials can be employed to control and adapt the basic properties of the catalyst towards the basicity demanded by each target chemical reaction. An overview of recent and significant achievements in that perspective is presented in the second part of the paper.

  13. Photocatalytic Hybrid Semiconductor-Metal Nanoparticles; from Synergistic Properties to Emerging Applications.

    PubMed

    Waiskopf, Nir; Ben-Shahar, Yuval; Banin, Uri

    2018-04-14

    Hybrid semiconductor-metal nanoparticles (HNPs) manifest unique combined and often synergetic properties stemming from the materials combination. These structures exhibit spatial charge separation across the semiconductor-metal junction upon light absorption, enabling their use as photocatalysts. So far, the main impetus of photocatalysis research in HNPs addresses their functionality in solar fuel generation. Recently, it was discovered that HNPs are functional in efficient photocatalytic generation of reactive oxygen species (ROS). This has opened the path for their implementation in diverse biomedical and industrial applications where high spatially temporally resolved ROS formation is essential. Here, the latest studies on the synergistic characteristics of HNPs are summarized, including their optical, electrical, and chemical properties and their photocatalytic function in the field of solar fuel generation is briefly discussed. Recent studies are then focused concerning photocatalytic ROS formation with HNPs under aerobic conditions. The emergent applications of this capacity are then highlighted, including light-induced modulation of enzymatic activity, photodynamic therapy, antifouling, wound healing, and as novel photoinitiators for 3D-printing. The superb photophysical and photocatalytic properties of HNPs offer already clear advantages for their utility in scenarios requiring on-demand light-induced radical formation and the full potential of HNPs in this context is yet to be revealed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall.

    PubMed

    Witthoft, Alexandra; Yazdani, Alireza; Peng, Zhangli; Bellini, Chiara; Humphrey, Jay D; Karniadakis, George Em

    2016-01-01

    Blood vessels have unique properties that allow them to function together within a complex, self-regulating network. The contractile capacity of the wall combined with complex mechanical properties of the extracellular matrix enables vessels to adapt to changes in haemodynamic loading. Homogenized phenomenological and multi-constituent, structurally motivated continuum models have successfully captured these mechanical properties, but truly describing intricate microstructural details of the arterial wall may require a discrete framework. Such an approach would facilitate modelling interactions between or the separation of layers of the wall and would offer the advantage of seamless integration with discrete models of complex blood flow. We present a discrete particle model of a multi-constituent, nonlinearly elastic, anisotropic arterial wall, which we develop using the dissipative particle dynamics method. Mimicking basic features of the microstructure of the arterial wall, the model comprises an elastin matrix having isotropic nonlinear elastic properties plus anisotropic fibre reinforcement that represents the stiffer collagen fibres of the wall. These collagen fibres are distributed evenly and are oriented in four directions, symmetric to the vessel axis. Experimental results from biaxial mechanical tests of an artery are used for model validation, and a delamination test is simulated to demonstrate the new capabilities of the model. © 2016 The Author(s).

  15. Study on optoelectronic properties of Spiro-CN for developing an efficient OLED

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok Kumar

    2018-05-01

    There are a class of organic molecules and polymers which exhibit semiconductor behavior because of nearly free conjugate π-electrons. Hopping of these electrons in molecules forms different excited singlet and triplet states named as excitons. Some of these organic molecules can be set to emit photons by triplet-singlet excitonic transition via a process called Thermally Activated Delayed Fluorescence (TADF) which is exploited for designing the Organic Light Emitting diode (OLED.) Spiro-CN (spirobifluorene skeletons) Spiro is one of these reported noble metal-free TADF molecules which offers unique optical and electronic properties arising from the efficient transition and reverse intersystem crossing between the lowest singlet (S) and triplet (T) excited states. Its ability to harvest triplet excitons for fluorescence through facilitated reverse intersystem crossing (T→S) could directly impact their properties and performances, which is attractive for a wide variety of low-cost optoelectronic device. In the present study, the Spiro-CN compounds have been taken up for the investigation of various optoelectronic properties including the thermally activated delayed fluorescence (TADF) by using the Koopmans Method and Density Functional Theory. The present study discusses the utility of the Spiro-CN organic semiconductor as a suitable TADF material essential for developing an efficient Organic Light Emitting Diode (OLED).

  16. Outdoor Recreation and Applied Ecology. Revised.

    ERIC Educational Resources Information Center

    Hendren, Travis E.; And Others

    This curriculum guide offers guidelines for structuring a course which exposes the students to various environmental careers. The guide is divided into three sections. The first section offers information about such a course: course description, purpose, credits, special or unique aspects, physical facilities, equipment, major materials, teacher…

  17. Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations

    NASA Astrophysics Data System (ADS)

    Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro

    2017-05-01

    In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.

  18. Programmable Hydrogels for Cell Encapsulation and Neo-Tissue Growth to Enable Personalized Tissue Engineering.

    PubMed

    Bryant, Stephanie J; Vernerey, Franck J

    2018-01-01

    Biomimetic and biodegradable synthetic hydrogels are emerging as a promising platform for cell encapsulation and tissue engineering. Notably, synthetic-based hydrogels offer highly programmable macroscopic properties (e.g., mechanical, swelling and transport properties) and degradation profiles through control over several tunable parameters (e.g., the initial network structure, degradation kinetics and behavior, and polymer properties). One component to success is the ability to maintain structural integrity as the hydrogel transitions to neo-tissue. This seamless transition is complicated by the fact that cellular activity is highly variable among donors. Thus, computational models provide an important tool in tissue engineering due to their unique ability to explore the coupled processes of hydrogel degradation and neo-tissue growth across multiple length scales. In addition, such models provide new opportunities to develop predictive computational tools to overcome the challenges with designing hydrogels for different donors. In this report, programmable properties of synthetic-based hydrogels and their relation to the hydrogel's structural properties and their evolution with degradation are reviewed. This is followed by recent progress on the development of computational models that describe hydrogel degradation with neo-tissue growth when cells are encapsulated in a hydrogel. Finally, the potential for predictive models to enable patient-specific hydrogel designs for personalized tissue engineering is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Single-Walled Carbon Nanotubes Probed with Insulator-Based Dielectrophoresis

    PubMed Central

    2017-01-01

    Single-walled carbon nanotubes (SWNTs) offer unique electrical and optical properties. Common synthesis processes yield SWNTs with large length polydispersity (several tens of nanometers up to centimeters) and heterogeneous electrical and optical properties. Applications often require suitable selection and purification. Dielectrophoresis is one manipulation method for separating SWNTs based on dielectric properties and geometry. Here, we present a study of surfactant and single-stranded DNA-wrapped SWNTs suspended in aqueous solutions manipulated by insulator-based dielectrophoresis (iDEP). This method allows us to manipulate SWNTs with the help of arrays of insulating posts in a microfluidic device around which electric field gradients are created by the application of an electric potential to the extremities of the device. Semiconducting SWNTs were imaged during dielectrophoretic manipulation with fluorescence microscopy making use of their fluorescence emission in the near IR. We demonstrate SWNT trapping at low-frequency alternating current (AC) electric fields with applied potentials not exceeding 1000 V. Interestingly, suspended SWNTs showed both positive and negative dielectrophoresis, which we attribute to their ζ potential and the suspension properties. Such behavior agrees with common theoretical models for nanoparticle dielectrophoresis. We further show that the measured ζ potentials and suspension properties are in excellent agreement with a numerical model predicting the trapping locations in the iDEP device. This study is fundamental for the future application of low-frequency AC iDEP for technological applications of SWNTs. PMID:29131586

  20. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  1. Ruthenium and osmium complexes that bear functional azolate chelates for dye-sensitized solar cells.

    PubMed

    Chi, Yun; Wu, Kuan-Lin; Wei, Tzu-Chien

    2015-05-01

    The preparation of sensitizers for dye-sensitized solar cells (DSSCs) represents an active area of research for both sustainability and renewable energy. Both Ru(II) and Os(II) metal sensitizers offer unique photophysical and electrochemical properties that arise from the intrinsic electronic properties, that is, the higher propensity to form the lower-energy metal-to-ligand charge-transfer (MLCT) transition, and their capability to support chelates with multiple carboxy groups, which serve as a bridge to the metal oxide and enable efficient injection of the photoelectron. Here we present an overview of the synthesis and testing of these metal sensitizers that bear functional azolate chelates (both pyrazolate and triazolate), which are capable of modifying the metal sensitizers in a systematic and beneficial manner. Basic principles of the molecular designs, the structural relationship to the photophysical and electrochemical properties, and performances of the as-fabricated DSSCs are highlighted. The success in the breakthrough of the synthetic protocols and potential applications might provide strong stimulus for the future development of technologies such as DSSCs, organic light-emitting diodes, solar water splitting, and so forth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport.

    PubMed

    Amadei, Carlo Alberto; Montessori, Andrea; Kadow, Julian P; Succi, Sauro; Vecitis, Chad D

    2017-04-18

    Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example consists of graphene oxide (GO) membranes for separation processes. Thus, here we investigate how individual GO properties can impact GO membrane characteristics and water permeability. GO chemistry and morphology were controlled with easy-to-implement photoreduction and sonication techniques and were quantitatively correlated, offering a valuable tool for accelerating characterization. Chemical GO modification allows for fine control of GO oxidation state, allowing control of GO architectural laminate (GOAL) spacing and permeability. Water permeability was measured for eight GOALs characterized by different GOAL chemistry and morphology and indicates that GOAL nanochannel height dictates water transport. The experimental outputs were corroborated with mesoscale water transport simulations of relatively large domains (thousands of square nanometers) and indicate a no-slip Darcy-like behavior inside the GOAL nanochannels. The experimental and simulation evidence presented in this study helps create a clearer picture of water transport in GOAL and can be used to rationally design more effective and efficient GO membranes.

  3. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis

    NASA Astrophysics Data System (ADS)

    Li, Jie; Yu, Ying; Zhang, Lizhi

    2014-07-01

    In recent years, layered bismuth oxyhalide nanomaterials have received more and more interest as promising photocatalysts because their unique layered structures endow them with fascinating physicochemical properties; thus, they have great potential photocatalytic applications for environment remediation and energy harvesting. In this article, we explore the synthesis strategies and growth mechanisms of layered bismuth oxyhalide nanomaterials, and propose design principles of tailoring a layered configuration to control the nanoarchitectures for high efficient photocatalysis. Subsequently, we focus on their layered structure dependent properties, including pH-related crystal facet exposure and phase transformation, facet-dependent photoactivity and molecular oxygen activation pathways, so as to clarify the origin of the layered structure dependent photoreactivity. Furthermore, we summarize various strategies for modulating the composition and arrangement of layered structures to enhance the photoactivity of nanostructured bismuth oxyhalides via internal electric field tuning, dehalogenation effect, surface functionalization, doping, plasmon modification, and heterojunction construction, which may offer efficient guidance for the design and construction of high-performance bismuth oxyhalide-based photocatalysis systems. Finally, we highlight some crucial issues in engineering the layered-structure mediated properties of bismuth oxyhalide photocatalysts and provide tentative suggestions for future research on increasing their photocatalytic performance.

  4. Using Polymeric Materials to Control Stem Cell Behavior for Tissue Regeneration

    PubMed Central

    Zhang, Nianli; Kohn, David H.

    2017-01-01

    Patients with organ failure often suffer from increased morbidity and decreased quality of life. Current strategies of treating organ failure have limitations, including shortage of donor organs, low efficiency of grafts, and immunological problems. Tissue engineering emerged about two decades ago as a strategy to restore organ function with a living, functional engineered substitute. However, the ability to engineer a functional organ substitute is limited by a limited understanding of the interactions between materials and cells that are required to yield functional tissue equivalents. Polymeric materials are one of the most promising classes of materials for use in tissue engineering due to their biodegradability, flexibility in processing and property design, and the potential to use polymer properties to control cell function. Stem cells offer potential in tissue engineering because of their unique capacity to self renew and differentiate into neurogenic, osteogenic, chondrogenic, myogenic lineages under appropriate stimuli from extracellular components. This review examines recent advances in stem cell-polymer interactions for tissue regeneration, specifically highlighting control of polymer properties to direct adhesion, proliferation, and differentiation of stem cells, and how biomaterials can be designed to provide some of the stimuli to cells that the natural extracellular matrix does. PMID:22457178

  5. Evolution of Excited-State Dynamics in Periodic Au 28, Au 36, Au 44, and Au 52 Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Meng; Zeng, Chenjie; Sfeir, Matthew Y.

    An understanding of the correlation between the atomic structure and optical properties of gold nanoclusters is essential for exploration of their functionalities and applications involving light harvesting and electron transfer. We report the femto-nanosecond excited state dynamics of a periodic series of face-centered cubic (FCC) gold nanoclusters (including Au 28, Au 36, Au 44, and Au 52), which exhibit a set of unique features compared with other similar sized clusters. Molecular-like ultrafast S n → S 1 internal conversions (i.e., radiationless electronic transitions) are observed in the relaxation dynamics of FCC periodic series. Excited-state dynamics with near-HOMO–LUMO gap excitation lacksmore » ultrafast decay component, and only the structural relaxation dominates in the dynamical process, which proves the absence of core–shell relaxation. Interestingly, both the relaxation of the hot carriers and the band-edge carrier recombination become slower as the size increases. The evolution in excited-state properties of this FCC series offers new insight into the structure-dependent properties of metal nanoclusters, which will benefit their optical energy harvesting and photocatalytic applications.« less

  6. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; Wing, W. J.; Gutha, R. R.; Capps, L.

    2017-03-01

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  7. Mesh electronics: a new paradigm for tissue-like brain probes.

    PubMed

    Hong, Guosong; Yang, Xiao; Zhou, Tao; Lieber, Charles M

    2018-06-01

    Existing implantable neurotechnologies for understanding the brain and treating neurological diseases have intrinsic properties that have limited their capability to achieve chronically-stable brain interfaces with single-neuron spatiotemporal resolution. These limitations reflect what has been dichotomy between the structure and mechanical properties of living brain tissue and non-living neural probes. To bridge the gap between neural and electronic networks, we have introduced the new concept of mesh electronics probes designed with structural and mechanical properties such that the implant begins to 'look and behave' like neural tissue. Syringe-implanted mesh electronics have led to the realization of probes that are neuro-attractive and free of the chronic immune response, as well as capable of stable long-term mapping and modulation of brain activity at the single-neuron level. This review provides a historical overview of a 10-year development of mesh electronics by highlighting the tissue-like design, syringe-assisted delivery, seamless neural tissue integration, and single-neuron level chronic recording stability of mesh electronics. We also offer insights on unique near-term opportunities and future directions for neuroscience and neurology that now are available or expected for mesh electronics neurotechnologies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Simple robust control laws for robot manipulators. Part 1: Non-adaptive case

    NASA Technical Reports Server (NTRS)

    Wen, J. T.; Bayard, D. S.

    1987-01-01

    A new class of exponentially stabilizing control laws for joint level control of robot arms is introduced. It has been recently recognized that the nonlinear dynamics associated with robotic manipulators have certain inherent passivity properties. More specifically, the derivation of the robotic dynamic equations from the Hamilton's principle gives rise to natural Lyapunov functions for control design based on total energy considerations. Through a slight modification of the energy Lyapunov function and the use of a convenient lemma to handle third order terms in the Lyapunov function derivatives, closed loop exponential stability for both the set point and tracking control problem is demonstrated. The exponential convergence property also leads to robustness with respect to frictions, bounded modeling errors and instrument noise. In one new design, the nonlinear terms are decoupled from real-time measurements which completely removes the requirement for on-line computation of nonlinear terms in the controller implementation. In general, the new class of control laws offers alternatives to the more conventional computed torque method, providing tradeoffs between robustness, computation and convergence properties. Furthermore, these control laws have the unique feature that they can be adapted in a very simple fashion to achieve asymptotically stable adaptive control.

  9. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials.

    PubMed

    Sadeghi, S M; Wing, W J; Gutha, R R; Capps, L

    2017-03-03

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  10. Inverse Perovskites - A New Platform For 3D Dirac Electron Physics

    NASA Astrophysics Data System (ADS)

    Rost, A. W.; Kim, J.; Shota, S.; Hayama, K.; Abdolazimi, V.; Bruin, J. A. N.; Muehle, C.; Schnyder, A.; Yaresko, A. N.; Nuss, J.; Takagi, H.

    3D Dirac semimetals show a wealth of phenomena including ultrahigh mobility, extreme transverse magnetoresistance and potential for negative longitudinal magnetoresistance. Furthermore, by introducing a gap these are often found to be topological crystalline insulators. Here, I will introduce our experiments on a new family of 3D Dirac materials - the inverse perovskites A3BO (A =Ca,Sr,Eu/B =Pb,Sn). These open up the possibility to chemically control the properties of Dirac electrons including (i) the anisotropy of the Dirac dispersion, (ii) role of spin orbit coupling, and (iii) magnetism. Our physical property measurements show all (Ca/Sr)3(Pb/Sn)O compounds host Dirac electrons at the Fermi energy with no other bands crossing EF. Quantum oscillations unveil small Fermi surfaces (frequencies <5 T) and light carriers (<0.02 me) only consistent with Dirac electrons. With the successful synthesis of Sr3Pb0.5Sn0.5O this group of materials therefore offers a unique chemical control over the physical properties of 3D Dirac electrons. Crucially, Eu3(Pb/Sn)O compounds allow for the introduction of magnetism. I will discuss the implications of this in particular with respect to surface states in these topological crystalline insulators.

  11. Evolution of Excited-State Dynamics in Periodic Au 28, Au 36, Au 44, and Au 52 Nanoclusters

    DOE PAGES

    Zhou, Meng; Zeng, Chenjie; Sfeir, Matthew Y.; ...

    2017-08-10

    An understanding of the correlation between the atomic structure and optical properties of gold nanoclusters is essential for exploration of their functionalities and applications involving light harvesting and electron transfer. We report the femto-nanosecond excited state dynamics of a periodic series of face-centered cubic (FCC) gold nanoclusters (including Au 28, Au 36, Au 44, and Au 52), which exhibit a set of unique features compared with other similar sized clusters. Molecular-like ultrafast S n → S 1 internal conversions (i.e., radiationless electronic transitions) are observed in the relaxation dynamics of FCC periodic series. Excited-state dynamics with near-HOMO–LUMO gap excitation lacksmore » ultrafast decay component, and only the structural relaxation dominates in the dynamical process, which proves the absence of core–shell relaxation. Interestingly, both the relaxation of the hot carriers and the band-edge carrier recombination become slower as the size increases. The evolution in excited-state properties of this FCC series offers new insight into the structure-dependent properties of metal nanoclusters, which will benefit their optical energy harvesting and photocatalytic applications.« less

  12. Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes

    PubMed Central

    No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala

    2017-01-01

    Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513

  13. Electronic and School-Based Victimization: Unique Contexts for Adjustment Difficulties during Adolescence

    ERIC Educational Resources Information Center

    Fredstrom, Bridget K.; Adams, Ryan E.; Gilman, Rich

    2011-01-01

    Previous research suggests that school-based and electronic victimization have similar negative consequences, yet it is unclear whether these two contexts offer overlapping or unique associations with adolescents' adjustment. 802 ninth-graders (43% male, mean age = 15.84 years), majority being Caucasian (82%), completed measures assessing the…

  14. One-pot synthesis of biocompatible Te@phenol formaldehyde resin core-shell nanowires with uniform size and unique fluorescent properties by a synergized soft-hard template process.

    PubMed

    Qian, Haisheng; Zhu, Enbo; Zheng, Shunji; Li, Zhengquan; Hu, Yong; Guo, Changfa; Yang, Xingyun; Li, Liangchao; Tong, Guoxiu; Guo, Huichen

    2010-12-10

    One-pot hydrothermal process has been developed to synthesize uniform Te@phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te@phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.

  15. Implementation of a finite element analysis procedure for structural analysis of shape memory behaviour of fibre reinforced shape memory polymer composites

    NASA Astrophysics Data System (ADS)

    Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong

    2017-12-01

    Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.

  16. Spincoat-fabricated multilayer PDMS-phosphor composites for thermometry

    NASA Astrophysics Data System (ADS)

    Parajuli, Pratikshya; Allison, Stephen W.; Sabri, Firouzeh

    2017-06-01

    Phosphor thermometry offers unique advantages over traditional forms of temperature sensing. Polymer-encapsulated phosphor powders provide versatility and flexibility not achievable when using the thermographic phosphors in powder form. By encapsulating the powder in a polymeric sleeve custom devices with unique properties can be created. Here, the authors report on the design, synthesis, and characterization of the first multilayer thermographic phosphor structure. A thin layer of neat PDMS, Sylgard 184, was sandwiched between two layers of La2O2S:Eu phosphor-doped PDMS. The thicknesses ranged from 0.15 to 4 mm depending on spin speed. The temperature dependent luminescence of the structure was characterized from  -40 °C to 75 °C, in a low humidity environmental chamber. Results show suitability for thermometry in this range. In addition, for design guidance, quantitative values for thermal conductivity and stress/strain characteristics versus phosphor loading percentage and temperature were measured. Thermal conductivities ranged from 0.15 W mK-1 for the Sylgard 184 to a value between 0.3 and 0.4 W mK-1 for pure phosphor powder for temperatures from  -55 °C to 195 °C. Tensile properties for a strain of up to 1 revealed differences between the different phosphor loadings and phosphor batches. Young’s modulus for the spincoat layered materials was between 1.2 and 1.4 N mm-2 and 0.8 for drop casted samples.

  17. Status and Prospects for Low-Light Visible Sensing from the VIIRS Day/Night Band on Suomi NPP and JPSS-1

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Seaman, C.; Combs, C.; Solbrig, J. E.; Straka, W. C.; Walther, A.; NOH, Y. J.; Heidinger, A.

    2016-12-01

    Since its launch in October 2011, the Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has delivered above and beyond expectations, revolutionizing our ability to observe and characterize the nocturnal environment. Taking advantage of natural and artificial (man-made) light sources, the DNB offers unique information content ranging from the surface to the upper atmosphere. Notable developments include the quantitative use of moonlight for cloud property retrievals and the discovery of nightglow sensitivity revealing the signatures of gravity waves. The DNB represents a remarkable advance to the heritage low-light visible sensing of the Operational Linescan System (OLS), providing spatial and radiometric resolution unprecedented to the space platform. Soon, we will have yet another dimension of resolution to consider—temporal. In early 2017, NOAA's Joint Polar Satellite System-1 (J1) will join S-NPP in early afternoon (1330 local time, ascending node) sun-synchronous orbital plane, displaced ½ orbit ( 50 min) from S-NPP. Having two DNB sensors will offer an expanded ability (lower latitudes) to examine the temporal properties of various light sources, track the motion of ships, low-level clouds and dust storms, fire line evolution, cloud optical properties, and even the dynamics of mesospheric gravity wave structures such as thunderstorm-induced concentric gravity waves and mesospheric bores. This presentation will provide an update to the science and application-oriented research involving the S-NPP/DNB, examples of key capabilities, first results of lunar irradiance model validation, and a look ahead toward the new research opportunities to be afforded by tandem S-NPP/J1 observations. The AGU is well-positioned for anticipating these capabilities "on the eve" of the J1 launch.

  18. In vivo degradation in modern orthopaedic UHMWPE bearings and structural characterization of a novel alternative UHMWPE material

    NASA Astrophysics Data System (ADS)

    Reinitz, Steven D.

    Ultra-high molecular weight polyethylene (UHMWPE) remains the most common bearing material for total joint arthroplasty. Advances in radiation cross-linking and other post-consolidation treatments have led to a rapid differentiation of polyethylene products on the market, with more than twenty unique materials currently being sold by the five largest orthopaedic manufacturers alone. Through oxidation, cross-link density, and free radical measurements, this work demonstrates for the first time that in vivo material degradation is occurring in cross-linked UHMWPE materials. Based on the rate of the reaction in certain materials, it is concluded that oxidative degradation may compromise the mechanical properties of the bearings in as few as ten years, potentially leading to early clinical failure of the devices. Using the knowledge gained from this work as well as previously published observations about UHMWPE oxidation, a two-mechanism model of oxidation is proposed that offers an explanation for the observed in vivo changes. From this model it is concluded that oxidative degradation is in part the result of in vivo chemical species. The two-mechanism model of oxidation suggests that different processing techniques for UHMWPE may reduce the risk of oxidative degradation. It is concluded that by avoiding any radiation cross-linking step, Equal Channel Angular Processing (ECAP) can produce UHMWPE materials with a reduced risk for in vivo oxidation while at the same time offering superior mechanical properties compared to commercially available UHMWPE materials, as well as similar wear behavior. Using dynamic mechanical analysis, the entanglement density in ECAP materials is quantified, and is related back to the ECAP processing parameters. The relationship between entanglement density and resultant material properties is established. The results will allow informed processing parameter selection for producing optimized materials for orthopaedics and other applications.

  19. Potentials and challenges of integration for complex metal oxides in CMOS devices and beyond

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Pham, C.; Chang, J. P.

    2015-02-01

    This review focuses on recent accomplishments on complex metal oxide based multifunctional materials and the potential they hold in advancing integrated circuits. It begins with metal oxide based high-κ materials to highlight the success of their integration since 45 nm complementary metal-oxide-semiconductor (CMOS) devices. By simultaneously offering a higher dielectric constant for improved capacitance as well as providing a thicker physical layer to prevent the quantum mechanical tunnelling of electrons, high-κ materials have enabled the continued down-scaling of CMOS based devices. The most recent technology driver has been the demand to lower device power consumption, which requires the design and synthesis of novel materials, such as complex metal oxides that exhibit remarkable tunability in their ferromagnetic, ferroelectric and multiferroic properties. These properties make them suitable for a wide variety of applications such as magnetoelectric random access memory, radio frequency band pass filters, antennae and magnetic sensors. Single-phase multiferroics, while rare, offer unique functionalities which have motivated much scientific and technological research to ascertain the origins of their multiferroicity and their applicability to potential devices. However, due to the weak magnetoelectric coupling for single-phase multiferroics, engineered multiferroic composites based on magnetostrictive ferromagnets interfacing piezoelectrics or ferroelectrics have shown enhanced multiferroic behaviour from effective strain coupling at the interface. In addition, nanostructuring of the ferroic phases has demonstrated further improvement in the coupling effect. Therefore, single-phase and engineered composite multiferroics consisting of complex metal oxides are reviewed in terms of magnetoelectric coupling effects and voltage controlled ferromagnetic properties, followed by a review on the integration challenges that need to be overcome to realize the materials’ full potential.

  20. Debris Disk Dust Characterization through Spectral Types: Deep Visible-Light Imaging of Nine Systems

    NASA Astrophysics Data System (ADS)

    Choquet, Elodie

    2017-08-01

    We propose STIS coronagraphy of 9 debris disks recently seen in the near-infrared from our re-analysis of archival NICMOS data. STIS coronagraphy will provide complementary visible-light images that will let us characterize the disk colors needed to place constraints on dust grain sizes, albedos, and anisotropy of scattering of these disks. With 3 times finer angular resolution and much better sensitivity, our STIS images will dramatically surpass the NICMOS discovery images, and will more clearly reveal disk local structures, cleared inner regions, and test for large-scale asymmetries in the dust distributions possibly triggered by associated planets in these systems. The exquisite sensitivity to visible-light scattering by submicron particles uniquely offered by STIS coronagraphy will let us detect and spatially characterize the diffuse halo of dust blown out of the systems by the host star radiative pressure. Our sample includes disks around 3 low-mass stars, 3 solar-type stars, and 3 massive A stars; together with our STIS+NICMOS imaging of 6 additional disks around F and G stars, our sample covers the full range of spectral types and will let us perform a comparative study of dust distribution properties as a function of stellar mass and luminosity. Our sample makes up more than 1/3 of all debris disks imaged in scattered light to date, and will offer the first homogeneous characterization of the visible-light to near-IR properties of debris disk systems over a large range of spectral types. Our program will let us analyze how the dynamical balance is affected by initial conditions and star properties, and how it may be perturbed by gas drag or planet perturbations.

  1. Advances in covalent organic frameworks in separation science.

    PubMed

    Qian, Hai-Long; Yang, Cheng-Xiong; Wang, Wen-Long; Yang, Cheng; Yan, Xiu-Ping

    2018-03-23

    Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Tamper indicating gold nanocup plasmonic films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.

    The spectral signature of nanoplasmonic films are both robust and tailorable with optical responses ranging from the visible to the near-infrared. We present the development of flexible, elastomeric nanoplasmonic films consisting of periodic arrays of gold nanocups as tamper indicating films. Gold nanocups have polarization-sensitive optical properties that may be manufactured into films that offer unique advantages for tamper indication. These flexible films can be made quickly and at low-cost using commercially available monodisperse polystyrene nanospheres through self-assembly followed by plasma etching, metal deposition, and lift-off from a sacrificial substrate. Polarization- and angle-dependent optical spectroscopic measurements were performed to characterizemore » the fabricated films. Furthermore, using polarization-sensitive hyperspectral imaging, we demonstrate how these films can be applied to tamper indication and counterfeit resistance applications.« less

  3. DAST single-nanometer crystal preparation using a substrate-supported rapid evaporation crystallization method.

    PubMed

    Tian, Tian; Cai, Bin; Sugihara, Okihiro

    2016-12-07

    A substrate-supported rapid evaporation crystallization (SSREC) method was used to develop a highly nonlinear optical material, 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST), which satisfies the Rayleigh scattering requirement for the fabrication of highly transparent composites. DAST nanocrystals have a second harmonic generation active crystal structure and a high signal-to-noise ratio second harmonic generation signal when excited by using a 1064 nm cw laser. The nanocrystals also possess size-dependent UV-vis absorption and fluorescence behavior which is not seen in the bulk state. SSREC offers a very convenient means of nanocrystal size control for fabricating nonlinear optical nanomaterials, and the unique properties of these DAST NCs provide potential applications in the fields of lasing, fluorescence probes, and other nonlinear optical photonics.

  4. Laser applications in ophthalmology: overview

    NASA Astrophysics Data System (ADS)

    Soederberg, Per G.

    1992-03-01

    In 1961, one year after its invention, the laser was used for experimental photocoagulation in animals. In 1963 it was tried for treatment of human eyes. Due to the fact that the optical media in the eye are transmissible to light, the laser offers the unique possibility of measuring and manipulating within a very strict localization without opening the eye. The properties of laser light are increasingly exploited for diagnostics in ophthalmic disease. The introduction of the laser as a tool in ophthalmology has revolutionized ophthalmic treatment. Unfortunately, it has been pointed out in international peace meetings that the biological effect evoked by lasers can also be used for intentional destruction of the vision of enemy soldiers. To prevent such an abuse of lasers against eyes, a strong formal international anti-laser weapon movement has been initiated.

  5. Antibiotic-containing polymers for localized, sustained drug delivery

    PubMed Central

    Stebbins, Nicholas D.; Ouimet, Michelle A.; Uhrich, Kathryn E.

    2014-01-01

    Many currently used antibiotics suffer from issues such as systemic toxicity, short half-life, and increased susceptibility to bacterial resistance. Although most antibiotic classes are administered systemically through oral or intravenous routes, a more efficient delivery system is needed. This review discusses the chemical conjugation of antibiotics to polymers, achieved by forming covalent bonds between antibiotics and a pre-existing polymer or by developing novel antibiotic-containing polymers. Through conjugating antibiotics to polymers, unique polymer properties can be taken advantage of. These polymeric antibiotics display controlled, sustained drug release and vary in antibiotic class type, synthetic method, polymer composition, bond lability, and antibacterial activity. The polymer synthesis, characterization, drug release, and antibacterial activities, if applicable, will be presented to offer a detailed overview of each system. PMID:24751888

  6. Structurally frustrated relaxor ferroelectric behavior in CaCu{sub 3}Ti{sub 4}O{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yun; Withers, Ray L.; Wei Xiaoyong

    2005-10-01

    Direct diffraction evidence for structurally frustrated relaxor ferroelectric behavior in the form of one-dimensionally correlated, off-center displacements of Ti ions within the TiO{sub 6} octahedra of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) has been obtained. When coupled with the observation of a ferroelectric effect, important implications for the understanding of the extraordinary dielectric properties of CCTO arise. That the incipient ferroelectric behavior is correlated only along one-dimensional <001> columns of TiO{sub 6} octahedra in the absence of an applied electric field offers a crucial insight into the underlying nature of CCTO and suggests the existence of a unique class of structurallymore » frustrated, ferroelectric relaxors.« less

  7. Global navigation satellite sounding of the atmosphere and GNSS altimetry : prospects for geosciences

    NASA Technical Reports Server (NTRS)

    Yunck, Tom P.; Hajj, George A.

    2003-01-01

    The vast illuminating power of the Global Positioning System (GPS), which transformed space geodesy in the 199Os, is now serving to probe the earth's fluid envelope in unique ways. Three distinct techniques have emerged: ground-based sensing of the integrated atmospheric moisture; space-based profiling of atmospheric refractivity, pressure, temperature, moisture, and other properties by active limb sounding; and surface (ocean and ice) altimetry and scatterometry with reflected signals detected from space. Ground-based GPS moisture sensing is already in provisional use for numerical weather prediction. Limb sounding, while less mature, offers a bevy of attractions, including high accuracy, stability, and vertical resolution; all-weather operation; and exceptionally low cost. GPS bistatic radar, r 'reflectometry,' is the least advanced but shows promise for a number of niche applications.

  8. Tamper indicating gold nanocup plasmonic films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.

    2017-02-13

    The spectral signature of nanoplasmonic films are both robust and tailorable with optical responses ranging from the visible to the near-infrared. We present the development of flexible, elastomeric nanoplasmonic films consisting of periodic arrays of gold nanocups as tamper indicating films. Gold nanocups have polarization-sensitive optical properties that may be manufactured into films that offer unique advantages for tamper indication. These flexible films can be made quickly and at low-cost using commercially available monodisperse polystyrene nanospheres through self-assembly followed by plasma etching, metal deposition, and lift-off from a sacrificial substrate. Polarization- and angle-dependent optical spectroscopic measurements were performed to characterizemore » the fabricated films. Using polarization-sensitive hyperspectral imaging, we demonstrate how these films can be applied to tamper indication and counterfeit resistance applications.« less

  9. DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic

    PubMed Central

    Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.

    2016-01-01

    Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710

  10. UCLA's Molecular Screening Shared Resource: enhancing small molecule discovery with functional genomics and new technology.

    PubMed

    Damoiseaux, Robert

    2014-05-01

    The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available.

  11. Probing Radiatively Inefficient Accretion Flow in the Neutron Star X-ray Binary System Aquila X-1

    NASA Astrophysics Data System (ADS)

    Maitra, Dipankar

    2016-09-01

    The nature of radiatively inefficient accretion flows (RIAF) near neutron stars and black holes remains largely enshrouded in mystery, primarily due to their low luminosity. Long term monitoring of Aql X-1 has revealed that during certain outbursts, the system goes into a relatively bright RIAF state for periods lasting several weeks. These low-intensity states offer a unique opportunity to probe radiatively inefficient flows. We request a 75 ksec Chandra/HETG ToO observation of Aql X-1 during a low-intensity state. Emission line diagnostics of the observed spectrum will be used to test different RIAF models and constrain flow properties such as the radial temperature and density profile, existence of an outflowing wind, spatial extent of the RIAF, and gas dynamics within the flow.

  12. Probing Radiatively Inefficient Accretion Flow in the Neutron Star X-ray Binary System Aquila X-1

    NASA Astrophysics Data System (ADS)

    Maitra, Dipankar

    2017-09-01

    The nature of radiatively inefficient accretion flows (RIAF) near neutron stars and black holes remains largely enshrouded in mystery, primarily due to their low luminosity. Long term monitoring of Aql X-1 has revealed that during certain outbursts, the system goes into a relatively bright RIAF state for periods lasting several weeks. These low-intensity states offer a unique opportunity to probe radiatively inefficient flows. We request a 75 ksec Chandra/HETG ToO observation of Aql X-1 during a low-intensity state. Emission line diagnostics of the observed spectrum will be used to test different RIAF models and constrain flow properties such as the radial temperature and density profile, existence of an outflowing wind, spatial extent of the RIAF, and gas dynamics within the flow.

  13. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  14. Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology.

    PubMed

    Im, Hyungsoon; Wittenberg, Nathan J; Lindquist, Nathan C; Oh, Sang-Hyun

    2012-02-28

    While atomic layer deposition (ALD) has been used for many years as an industrial manufacturing method for microprocessors and displays, this versatile technique is finding increased use in the emerging fields of plasmonics and nanobiotechnology. In particular, ALD coatings can modify metallic surfaces to tune their optical and plasmonic properties, to protect them against unwanted oxidation and contamination, or to create biocompatible surfaces. Furthermore, ALD is unique among thin-film deposition techniques in its ability to meet the processing demands for engineering nanoplasmonic devices, offering conformal deposition of dense and ultra-thin films on high-aspect-ratio nanostructures at temperatures below 100 °C. In this review, we present key features of ALD and describe how it could benefit future applications in plasmonics, nanosciences, and biotechnology.

  15. Influence of IR sensor technology on the military and civil defense

    NASA Astrophysics Data System (ADS)

    Becker, Latika

    2006-02-01

    Advances in basic infrared science and developments in pertinent technology applications have led to mature designs being incorporated in civil as well as military area defense systems. Military systems include both tactical and strategic, and civil area defense includes homeland security. Technical challenges arise in applying infrared sensor technology to detect and track targets for space and missile defense. Infrared sensors are valuable due to their passive capability, lower mass and power consumption, and their usefulness in all phases of missile defense engagements. Nanotechnology holds significant promise in the near future by offering unique material and physical properties to infrared components. This technology is rapidly developing. This presentation will review the current IR sensor technology, its applications, and future developments that will have an influence in military and civil defense applications.

  16. Nanoparticles for Control of Biofilms of Acinetobacter Species

    PubMed Central

    Singh, Richa; Nadhe, Shradhda; Wadhwani, Sweety; Shedbalkar, Utkarsha; Chopade, Balu Ananda

    2016-01-01

    Biofilms are the cause of 80% of microbial infections. Acinetobacter species have emerged as multi- and pan-drug-resistant bacteria and pose a great threat to human health. These act as nosocomial pathogens and form excellent biofilms, both on biotic and abiotic surfaces, leading to severe infections and diseases. Various methods have been developed for treatment and control of Acinetobacter biofilm including photodynamic therapy, radioimmunotherapy, prophylactic vaccines and antimicrobial peptides. Nanotechnology, in the present scenario, offers a promising alternative. Nanomaterials possess unique properties, and multiple bactericidal mechanisms render them more effective than conventional drugs. This review intends to provide an overview of Acinetobacter biofilm and the significant role of various nanoparticles as anti-biofouling agents, surface-coating materials and drug-delivery vehicles for biofilm control and treatment of Acinetobacter infections. PMID:28773507

  17. Femtosecond laser beam propagation through corneal tissue: Evaluation of therapeutic laser-stimulated second and third- harmonic generation

    NASA Astrophysics Data System (ADS)

    Calhoun, William R., III

    One of the most recent advancements in laser technology is the development of ultrashort pulsed femtosecond lasers (FSLs). FSLs are improving many fields due to their unique extreme precision, low energy and ablation characteristics. In the area of laser medicine, ophthalmic surgeries have seen very promising developments. Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (cataract surgery), and keratoplasty (cornea transplant), now employ FSLs for their unique abilities that lead to improved clinical outcome and patient satisfaction. The application of FSLs in medical therapeutics is a recent development, and although they offer many benefits, FSLs also stimulate nonlinear optical effects (NOEs), many of which were insignificant with previously developed lasers. NOEs can change the laser characteristics during propagation through a medium, which can subsequently introduce unique safety concerns for the surrounding tissues. Traditional approaches for characterizing optical effects, laser performance, safety and efficacy do not properly account for NOEs, and there remains a lack of data that describe NOEs in clinically relevant procedures and tissues. As FSL technology continues to expand towards new applications, FSL induced NOEs need to be better understood in order to ensure safety as FSL medical devices and applications continue to evolve at a rapid pace. In order to improve the understanding of FSL-tissue interactions related to NOEs stimulated during laser beam propagation though corneal tissue, research investigations were conducted to evaluate corneal optical properties and determine how corneal tissue properties including corneal layer, collagen orientation and collagen crosslinking, and laser parameters including pulse energy, repetition rate and numerical aperture affect second and third-harmonic generation (HG) intensity, duration and efficiency. The results of these studies revealed that all laser parameters and tissue properties had a substantial influence on HG. The dynamic relationship between optical breakdown and HG was responsible for many observed changes in HG metrics. The results also demonstrated that the new generation of therapeutic FSLs has the potential to generate hazardous effects if not carefully controlled. Finally, recommendations are made to optimize current and guide future FSL applications.

  18. Compounding Opportunities in Urology.

    PubMed

    Biundo, Bruce

    2017-01-01

    There are a lot of options that pharmacists, including compounding pharmacists, can offer urologists to assist their patients. Compounding pharmacists are in a great position to offer unique, effective preparations for many of the conditions urologists treat on a daily basis. It would be well worth the time to learn a little about the conditions these specialists treat and become familiar with what you can offer. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  19. An Examination of the Determinants of Top Management Support of Information Technology Projects

    ERIC Educational Resources Information Center

    Mahoney, Michael L.

    2011-01-01

    Despite compelling evidence that top management support promotes information technology project success, existing research fails to offer insight into the antecedents of top management support of such projects. This gap in the literature is significant since the exploitation of information technology offers organizations unique opportunities for…

  20. The Japanese Mind: Understanding Contemporary Japanese Culture.

    ERIC Educational Resources Information Center

    Davies, Roger J., Ed.; Ikeno, Osamu, Ed.

    This collection of essays offers an overview of contemporary Japanese culture, and can serve as a resource for classes studying Japan. The 28 essays offer an informative, accessible look at the values, attitudes, behavior patterns, and communication styles of modern Japan from the unique perspective of the Japanese people. Filled with examples…

  1. 76 FR 54998 - Request for Information on Consumer Financial Products and Services Offered to Servicemembers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... public disclosure. Sensitive personal information such as account numbers or Social Security numbers... in person and online? 4. What programs, policies, accommodations, or benefits do financial service... protections and fraud protections. 5. What unique assistance, if any, is currently offered by financial...

  2. Lafora disease offers a unique window into neuronal glycogen metabolism.

    PubMed

    Gentry, Matthew S; Guinovart, Joan J; Minassian, Berge A; Roach, Peter J; Serratosa, Jose M

    2018-05-11

    Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. FEL for the polymer processing industries

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  4. ASSESSING THE EFFECTS OF PULMONARY EXPOSURE TO NANOMATERIALS

    EPA Science Inventory

    Nanotechnology is a dynamic and enabling technology capable of producing a wide diversity of nano-scale (<100 nm) materials displaying unique physicochemical properties for a variety of applications. Nanomaterials may also display unique toxicological properties and routes of exp...

  5. RISK ASSESSMENT OF MANUFACTURED NANOMATERIAL: MORE THAN JUST SIZE

    EPA Science Inventory

    Nanotechnology is a dynamic and enabling technology capable of producing nano-scale materials with unique electrical, catalytic, thermal, mechanical, or imaging properties for a variety of applications. Nanomaterials may display unique toxicological properties and routes of expos...

  6. A Bird’s Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska

    DOE PAGES

    de Boer, Gijs; Ivey, Mark; Schmid, Beat; ...

    2018-03-14

    Here, we present that unmanned aerial capabilities offer exciting new perspectives on the Arctic atmosphere and the US Department of Energy is working with partners to offer such perspectives to the research community. Thorough understanding of aerosols, clouds, boundary layer structure and radiation is required to improve representation of the Arctic atmosphere in weather forecasting and climate models. To develop such understanding, new perspectives are needed to provide details on the vertical structure and spatial variability of key atmospheric properties, along with information over difficult-to-reach surfaces such as newly-forming sea ice. Over the last three years, the US Department ofmore » Energy (DOE) has supported various flight campaigns using unmanned aircraft systems (UAS, also known as UAVs and drones) and tethered balloon systems (TBS) at Oliktok Point, Alaska. These activities have featured in-situ measurements of thermodynamic state, turbulence, radiation, aerosol properties, cloud microphysics and turbulent fluxes to provide a detailed characterization of the lower atmosphere. Alongside a suite of active and passive ground-based sensors and radiosondes deployed by the DOE Atmospheric Radiation Measurement (ARM) program through the third ARM Mobile Facility (AMF-3), these flight activities demonstrate the ability of such platforms to provide critically-needed information. In addition to providing new and unique datasets, lessons learned during initial campaigns have assisted toward the development of an exciting new community resource.« less

  7. Two-dimensional IR spectroscopy of the anti-HIV agent KP1212 reveals protonated and neutral tautomers that influence pH-dependent mutagenicity

    PubMed Central

    Peng, Chunte Sam; Fedeles, Bogdan I.; Singh, Vipender; Li, Deyu; Amariuta, Tiffany; Essigmann, John M.; Tokmakoff, Andrei

    2015-01-01

    Antiviral drugs designed to accelerate viral mutation rates can drive a viral population to extinction in a process called lethal mutagenesis. One such molecule is 5,6-dihydro-5-aza-2′-deoxycytidine (KP1212), a selective mutagen that induces A-to-G and G-to-A mutations in the genome of replicating HIV. The mutagenic property of KP1212 was hypothesized to originate from its amino–imino tautomerism, which would explain its ability to base pair with either G or A. To test the multiple tautomer hypothesis, we used 2D IR spectroscopy, which offers subpicosecond time resolution and structural sensitivity to distinguish among rapidly interconverting tautomers. We identified several KP1212 tautomers and found that >60% of neutral KP1212 is present in the enol–imino form. The abundant proportion of this traditionally rare tautomer offers a compelling structure-based mechanism for pairing with adenine. Additionally, the pKa of KP1212 was measured to be 7.0, meaning a substantial population of KP1212 is protonated at physiological pH. Furthermore, the mutagenicity of KP1212 was found to increase dramatically at pH <7, suggesting a significant biological role for the protonated KP1212 molecules. Overall, our data reveal that the bimodal mutagenic properties of KP1212 result from its unique shape shifting ability that utilizes both tautomerization and protonation. PMID:25733867

  8. A Bird’s Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Boer, Gijs; Ivey, Mark; Schmid, Beat

    Here, we present that unmanned aerial capabilities offer exciting new perspectives on the Arctic atmosphere and the US Department of Energy is working with partners to offer such perspectives to the research community. Thorough understanding of aerosols, clouds, boundary layer structure and radiation is required to improve representation of the Arctic atmosphere in weather forecasting and climate models. To develop such understanding, new perspectives are needed to provide details on the vertical structure and spatial variability of key atmospheric properties, along with information over difficult-to-reach surfaces such as newly-forming sea ice. Over the last three years, the US Department ofmore » Energy (DOE) has supported various flight campaigns using unmanned aircraft systems (UAS, also known as UAVs and drones) and tethered balloon systems (TBS) at Oliktok Point, Alaska. These activities have featured in-situ measurements of thermodynamic state, turbulence, radiation, aerosol properties, cloud microphysics and turbulent fluxes to provide a detailed characterization of the lower atmosphere. Alongside a suite of active and passive ground-based sensors and radiosondes deployed by the DOE Atmospheric Radiation Measurement (ARM) program through the third ARM Mobile Facility (AMF-3), these flight activities demonstrate the ability of such platforms to provide critically-needed information. In addition to providing new and unique datasets, lessons learned during initial campaigns have assisted toward the development of an exciting new community resource.« less

  9. 32 CFR 235.6 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... review material offered or to be offered for sale or rental on property under DoD jurisdiction and... Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS SALE OR RENTAL... determines that any material offered for sale or rental on property under DoD jurisdiction is sexually...

  10. 41 CFR 102-38.160 - What must be included in the offer to sell?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What must be included in the offer to sell? 102-38.160 Section 102-38.160 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE...

  11. 41 CFR 102-38.160 - What must be included in the offer to sell?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What must be included in the offer to sell? 102-38.160 Section 102-38.160 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE...

  12. 41 CFR 102-38.160 - What must be included in the offer to sell?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What must be included in the offer to sell? 102-38.160 Section 102-38.160 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE...

  13. 41 CFR 102-38.160 - What must be included in the offer to sell?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What must be included in the offer to sell? 102-38.160 Section 102-38.160 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE...

  14. 41 CFR 102-38.160 - What must be included in the offer to sell?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What must be included in the offer to sell? 102-38.160 Section 102-38.160 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE...

  15. Unique Migraine Subtypes, Rare Headache Disorders, and Other Disturbances.

    PubMed

    Goadsby, Peter J

    2015-08-01

    The medical aphorism that common things happen commonly makes unique (and less common) migraine subtypes especially appropriate to review for the general neurologist. This article also identifies some rare headache disorders and other disturbances, and offers strategies to manage them. This article discusses migraine with brainstem aura, which is troublesome clinically and has had a change in terminology in the International Classification of Headache Disorders, Third Edition, beta version (ICHD-3 beta), and hemiplegic migraine, which is also troublesome in practice. The rare headache disorder hypnic headache and the exploding head syndrome are also discussed. When hypnic headache is recognized, it is eminently treatable, while exploding head syndrome is a benign condition with no reported consequences. Unique migraine subtypes, rare headache disorders, and other disturbances present to neurologists. When recognized, they can often be managed very well, which offers significant benefits to patients and practice satisfaction to neurologists.

  16. Religiosity as identity: toward an understanding of religion from a social identity perspective.

    PubMed

    Ysseldyk, Renate; Matheson, Kimberly; Anisman, Hymie

    2010-02-01

    As a social identity anchored in a system of guiding beliefs and symbols, religion ought to serve a uniquely powerful function in shaping psychological and social processes. Religious identification offers a distinctive "sacred" worldview and "eternal" group membership, unmatched by identification with other social groups. Thus, religiosity might be explained, at least partially, by the marked cognitive and emotional value that religious group membership provides. The uniqueness of a positive social group, grounded in a belief system that offers epistemological and ontological certainty, lends religious identity a twofold advantage for the promotion of well-being. However, that uniqueness may have equally negative impacts when religious identity itself is threatened through intergroup conflict. Such consequences are illustrated by an examination of identities ranging from religious fundamentalism to atheism. Consideration of religion's dual function as a social identity and a belief system may facilitate greater understanding of the variability in its importance across individuals and groups.

  17. Nanocontainers in and onto Nanofibers.

    PubMed

    Jiang, Shuai; Lv, Li-Ping; Landfester, Katharina; Crespy, Daniel

    2016-05-17

    Hierarchical structure is a key feature explaining the superior properties of many materials in nature. Fibers usually serve in textiles, for structural reinforcement, or as support for other materials, whereas spherical micro- and nanoobjects can be either highly functional or also used as fillers to reinforce structure materials. Combining nanocontainers with fibers in one single object has been used to increase the functionality of fibers, for example, antibacterial and thermoregulation, when the advantageous properties given by the encapsulated materials inside the containers are transferred to the fibers. Herein we focus our discussion on how the hierarchical structure composed of nanocontainers in nanofibers yields materials displaying advantages of both types of materials and sometimes synergetical effects. Such materials can be produced by first carefully designing nanocontainers with defined morphology and chemistry and subsequently electrospinning them to fabricate nanofibers. This method, called colloid-electrospinning, allows for marrying the properties of nanocontainers and nanofibers. The obtained fibers could be successfully applied in different fields such as catalysis, optics, energy conversion and production, and biomedicine. The miniemulsion process is a convenient approach for the encapsulation of hydrophobic or hydrophilic payloads in nanocontainers. These nanocontainers can be embedded in fibers by the colloid-electrospinning technique. The combination of nanocontainers with nanofibers by colloid-electrospinning has several advantages. (1) The fiber matrix serves as support for the embedded nanocontainers. For example, through combining catalysts nanoparticles with fiber networks, the catalysts can be easily separated from the reaction media and handled visually. This combination is beneficial for the reuse of the catalyst and the purification of products. (2) Electrospun nanofibers containing nanocontainers offer the active agents inside the nanocontainers a double protection by both the fiber matrix and the nanocontainers. Since the polymer of the fibers and the polymer of the nanocontainers have usually opposite polarities, the encapsulated substance, for example, catalysts, dyes, or drugs, can be protected against a large variety of environmental influences. (3) Electrospun nanofibers exhibit unique advantages for tissue engineering and drug delivery that are a structural similarity to the extracellular matrix of biological tissues, large specific surface area, high and interconnected porosity which enhances cell adhesion, proliferation, drug loading, and mass transfer properties, as well as the flexibility in selecting the raw materials. Moreover, the nanocontainer-in-nanofiber structure allows multidrug loading and programmable release of each drug, which are very important to achieve synergistic effects in tissue engineering and disease therapy. The advantages offered by these materials encourage us to further understand the relationship between colloidal properties and fibers, to predict the morphology and properties of the fibers obtained by colloid-electrospinning, and to explore new possible combination of properties offered by nanoparticles and nanofibers.

  18. Viscoelastic characterization of thin-film polymers exposed to low Earth orbit

    NASA Technical Reports Server (NTRS)

    Letton, Alan; Farrow, Allan; Strganac, Thomas

    1993-01-01

    The materials made available through the Long Duration Exposure Facility (LDEF) satellite provide a set of specimens that can be well characterized and have a known exposure history with reference to atomic oxygen and ultraviolet radiation exposure. Mechanical characteristics measured from control samples and exposed samples provide a data base for predicting the behavior of polymers in low earth orbit. Samples of 1.0 mil thick low density polyethylene were exposed to the low earth orbit environment for a period of six years. These materials were not directly exposed to ram atomic oxygen and offer a unique opportunity for measuring the effect of atomic oxygen and UV radiation on mechanical properties with little concern to the effect of erosion. The viscoelastic characteristics of these materials were measured and compared to the viscoelastic characteristics of control samples. To aid in differentiating the effects of changes in crystallinity resulting from thermal cycling, from the effects of changes in chemical structure resulting from atomic oxygen/UV attack to the polymer, a second set of control specimens, annealed to increase crystallinity, were measured as well. The resulting characterization of these materials will offer insight into the impact of atomic oxygen/UV on the mechanical properties of polymeric materials. The viscoelastic properties measured for the control, annealed, and exposed specimens were the storage and loss modulus as a function of frequency and temperature. From these datum is calculated the viscoelastic master curve derived using the principle of time/temperature superposition. Using the master curve, the relaxation modulus is calculated using the method of Ninomiya and Ferry. The viscoelastic master curve and the stress relaxation modulus provide a direct measure of the changes in the chemical or morphological structure. In addition, the effect of these changes on long-term and short-term mechanical properties is known directly. It should be noted that the dependence on directionality for the polymer films was considered since these films were manufactured by a blown-film process.

  19. Complex Cloud and Radiative Processes Unfolding at the Earth's Terminator: A Unique Perspective from the Proposed Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Marshak, A.

    2018-02-01

    The Deep Space Gateway offers a unique vantage for Earth observation using reflected sunlight: day/night or night/day terminators slowly marching across the disc. It's an opportunity to improve our understanding of clouds at that key moment in their daily cycle.

  20. Across the Nation: Unique Delivery and Inventive Approaches

    ERIC Educational Resources Information Center

    Fick, Jill; McKeown, Patricia; Whiteside, Ann B.; Paneitz, Becky; Flemming, Sondra; Wolf, Toni; West-Sands, Leslie; Gray, Patricia M.; Orre, Deborah J.; Adams, Ann-Marie

    2004-01-01

    In this article, American Association of Community Colleges member institutions provide information on the collaborative efforts in allied health programs between their colleges and the communities they serve. These are but a fraction of the inventive and unique programs community colleges across the U.S. offer to support the health and wellness…

  1. 44 CFR 79.7 - Offers and appeals under the SRL program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., and shall continue throughout the process. After FEMA awards the project grant, the subgrantee shall...), the responsibilities of and benefits to the property owner, a summary of the consultation process... the market value of the property, the basis for the purchase offer, and the final offer amount. The...

  2. Medical Robotic and Tele surgical Simulation Education Research

    DTIC Science & Technology

    2017-05-01

    training exercises, DVSS = 40, dVT = 65, and RoSS = 52 for skills development. All three offer 3D visual images but use different display technologies...capabilities with an emphasis on their educational skills. They offer unique advantages and capabilities in training robotic sur- geons. Each device has been...evaluate the transfer of training effect of each simulator. Collectively, this work will offer end users and potential buyers a comparison of the value

  3. Eight worst advertising mistakes.

    PubMed

    Maley, Catherine

    2010-11-01

    This article presents strategies for advertising the medical practice. The emphasis is on breaking out of the old rules of how one should advertise and delves into asking questions that lead to a true strategy unique to one's medical practice and offerings. The article discusses the myriad ways to think about and create a patient-centered approach, turning from "here is what we offer" to instead "what you want we offer." Copyright © 2010 Elsevier Inc. All rights reserved.

  4. A turn-on coordination nanoparticle-based fluorescent probe for phosphate in human serum

    NASA Astrophysics Data System (ADS)

    Lin, Na; Li, Jian; Lu, Zhixiang; Bian, Longchun; Zheng, Liyan; Cao, Qiue; Ding, Zhongtao

    2015-03-01

    Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in the detection of phosphate in human serum samples. This work not only develops a probe for phosphate but also provides a general strategy for designing nanoprobes or nanocarriers towards various targets by altering organic linkers or metal ions.Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in the detection of phosphate in human serum samples. This work not only develops a probe for phosphate but also provides a general strategy for designing nanoprobes or nanocarriers towards various targets by altering organic linkers or metal ions. Electronic supplementary information (ESI) available: Supplementary figures. See DOI: 10.1039/c5nr00515a

  5. 41 CFR 102-38.165 - Are the terms and conditions in the offer to sell binding?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are the terms and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE OF PERSONAL PROPERTY Sales Process Offer to Sell § 102-38.165 Are the terms and conditions...

  6. 41 CFR 102-38.165 - Are the terms and conditions in the offer to sell binding?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Are the terms and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE OF PERSONAL PROPERTY Sales Process Offer to Sell § 102-38.165 Are the terms and conditions...

  7. 41 CFR 102-38.165 - Are the terms and conditions in the offer to sell binding?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Are the terms and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE OF PERSONAL PROPERTY Sales Process Offer to Sell § 102-38.165 Are the terms and conditions...

  8. 41 CFR 102-38.165 - Are the terms and conditions in the offer to sell binding?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Are the terms and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE OF PERSONAL PROPERTY Sales Process Offer to Sell § 102-38.165 Are the terms and conditions...

  9. 41 CFR 102-38.165 - Are the terms and conditions in the offer to sell binding?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Are the terms and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 38-SALE OF PERSONAL PROPERTY Sales Process Offer to Sell § 102-38.165 Are the terms and conditions...

  10. Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering.

    PubMed

    Rajagopal, Adharsh; Yao, Kai; Jen, Alex K-Y

    2018-06-08

    High-efficiency and low-cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar-based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure-property-processing-performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state-of-the-art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge-transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability-durability-sustainability considerations pivotal for facilitating laboratory to industry translation are presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Opposing Development of Cytotoxic and Follicular Helper CD4 T Cells Controlled by the TCF-1-Bcl6 Nexus.

    PubMed

    Donnarumma, Tiziano; Young, George R; Merkenschlager, Julia; Eksmond, Urszula; Bongard, Nadine; Nutt, Stephen L; Boyer, Claude; Dittmer, Ulf; Le-Trilling, Vu Thuy Khanh; Trilling, Mirko; Bayer, Wibke; Kassiotis, George

    2016-11-01

    CD4 + T cells develop distinct and often contrasting helper, regulatory, or cytotoxic activities. Typically a property of CD8 + T cells, granzyme-mediated cytotoxic T cell (CTL) potential is also exerted by CD4 + T cells. However, the conditions that induce CD4 + CTLs are not entirely understood. Using single-cell transcriptional profiling, we uncover a unique signature of Granzyme B (GzmB) + CD4 + CTLs, which distinguishes them from other CD4 + T helper (Th) cells, including Th1 cells, and strongly contrasts with the follicular helper T (Tfh) cell signature. The balance between CD4 + CTL and Tfh differentiation heavily depends on the class of infecting virus and is jointly regulated by the Tfh-related transcription factors Bcl6 and Tcf7 (encoding TCF-1) and by the expression of the inhibitory receptors PD-1 and LAG3. This unique profile of CD4 + CTLs offers targets for their study, and its antagonism by the Tfh program separates CD4 + T cells with either helper or killer functions. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. HIV antibodies for treatment of HIV infection

    PubMed Central

    Margolis, David M.; Koup, Richard A.; Ferrari, Guido

    2016-01-01

    Summary The bar is high to improve on current combination antiretroviral therapy (ART), now highly effective, safe, and simple. However antibodies that bind the HIV envelope are able to uniquely target the virus as it seeks to enter new target cells, or as it is expressed from previously infected cells. Further, the use of antibodies against HIV as a therapeutic may offer advantages. Antibodies can have long half-lives, and are being considered as partners for long-acting antiretrovirals for use in therapy or prevention of HIV infection. Early studies in animal models and in clinical trials suggest that such antibodies can have antiviral activity but, as with small molecule antiretrovirals, the issues of viral escape and resistance will have to be addressed. Most promising, however, are the unique properties of anti-HIV antibodies: the potential ability to opsonize viral particles, to direct antibody-dependent cellular cytotoxicity (ADCC) against actively infected cells, and ultimately the ability to direct the clearance of HIV-infected cells by effector cells of the immune system. These distinctive activities suggest that HIV antibodies and their derivatives may play an important role in the next frontier of HIV therapeutics, the effort to develop treatments that could lead to an HIV cure. PMID:28133794

  13. Mid-infrared laser filaments in the atmosphere

    PubMed Central

    Mitrofanov, A. V.; Voronin, A. A.; Sidorov-Biryukov, D. A.; Pugžlys, A.; Stepanov, E. A.; Andriukaitis, G.; Flöry, T.; Ališauskas, S.; Fedotov, A. B.; Baltuška, A.; Zheltikov, A. M.

    2015-01-01

    Filamentation of ultrashort laser pulses in the atmosphere offers unique opportunities for long-range transmission of high-power laser radiation and standoff detection. With the critical power of self-focusing scaling as the laser wavelength squared, the quest for longer-wavelength drivers, which would radically increase the peak power and, hence, the laser energy in a single filament, has been ongoing over two decades, during which time the available laser sources limited filamentation experiments in the atmosphere to the near-infrared and visible ranges. Here, we demonstrate filamentation of ultrashort mid-infrared pulses in the atmosphere for the first time. We show that, with the spectrum of a femtosecond laser driver centered at 3.9 μm, right at the edge of the atmospheric transmission window, radiation energies above 20 mJ and peak powers in excess of 200 GW can be transmitted through the atmosphere in a single filament. Our studies reveal unique properties of mid-infrared filaments, where the generation of powerful mid-infrared supercontinuum is accompanied by unusual scenarios of optical harmonic generation, giving rise to remarkably broad radiation spectra, stretching from the visible to the mid-infrared. PMID:25687621

  14. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  15. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  16. Promoting justice in stem cell intellectual property.

    PubMed

    Regenberg, Alan; Mathews, Debra J H

    2011-11-01

    According to the World Trade Organization, intellectual property rights are "rights given to persons over the creations of their minds. They usually give the creator an exclusive right over the use of his/her creation for a certain period of time." The rationale behind intellectual property rights is to offer a quid pro quo, between creators and the public, intended to spur innovation. Inventors gain exclusivity (and an opportunity for profits) in exchange for publicly disclosing details about their creations. The public gains free access to information - information that can then be used to support further innovation. Innovation is seen as an inherent good in this context, as it can lead to the development of things people need (e.g., treatments for disease, green energy technologies or a better mousetrap). Exclusive rights to intellectual property are managed via patents and licenses, with patenting being primarily regulated at the national level. Intellectual property rights are the dominant mechanism used in innovation policy, particularly in science. However, myriad modifications and alternatives to intellectual property rights have been proposed and utilized, including patent pooling, intellectual property exchanges and clearing houses, innovation prizes and open-source licenses. The challenges related to competing models of innovation policy present in a fairly consistent manner across most fields of science. However, this paper will focus exclusively on intellectual property rights and models of innovation policy in the context of stem cell science. It is not that the issues themselves are unique in this context, but rather that there are a series of factors that make a discussion of intellectual property rights and models of innovation policy particularly important in the context of stem cell science.

  17. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? International biodeterioration & biodegradation

    Treesearch

    S. N. Kartal; Frederick Green; Carol A. Clausen

    2009-01-01

    Nanotechnology has the potential to affect the field of wood preservation through the creation of new and unique metal biocides with improved properties. This study evaluated leachability and efficacy of southern yellow pine wood...

  18. 2009 Legislative Session Resource Guide. Investing in North Dakota's Future

    ERIC Educational Resources Information Center

    North Dakota University System, 2009

    2009-01-01

    The North Dakota University System (NDUS) is composed of two doctoral universities, two master's degree-granting universities, two universities that offer bachelor's degrees and five community colleges that offer associate and trade/technical degrees. Each institution is unique in its mission to serve the people of North Dakota. The "2009…

  19. Three Views on Concurrent Enrollment. Feature on Research and Leadership. Vol. 1, No. 2

    ERIC Educational Resources Information Center

    Scheffel, Kent

    2016-01-01

    In this brief, Kent Scheffel offers a unique combination of expertise on dual credit and concurrent enrollment as he reviews questions of quality, program accreditation, and education policy for concurrent enrollment offerings from a national (National Alliance of Concurrent Enrollment Partnerships (NACEP), local (Lewis and Clark Community…

  20. A Study of Contextualised Mobile Information Delivery for Language Learning

    ERIC Educational Resources Information Center

    de Jong, Tim; Specht, Marcus; Koper, Rob

    2010-01-01

    Mobile devices offer unique opportunities to deliver learning content in authentic learning situations. Apart from being able to play various kinds of rich multimedia content, they offer new ways of tailoring information to the learner's situation or context. This paper presents the results of a study of mobile media delivery for language…

  1. Humanistic Wellness Services for Community Mental Health Providers

    ERIC Educational Resources Information Center

    Carney, Jolynn V.

    2007-01-01

    The author examines the unique ability of mental health providers to offer humanistic services in a highly competitive atmosphere by using a wellness approach. J. E. Myers and T. J. Sweeney's (2005) 5 second-order factors are offered as a conceptual model. Therapeutic techniques and humanizing benefits for individuals, families, and communities…

  2. Making Departments Distinctive: The Continuous Quality Improvement (CQI) Mindset.

    ERIC Educational Resources Information Center

    Chambliss, Catherine

    The Continuous Quality Improvement (CQI) approach has provided many corporations with a tool for adapting to ongoing shifts in demands and resources, and it can offer academic settings similar assistance. CQI offers a mechanism for building a collaborative process that can help departments define their unique strengths and cultivate a distinctive…

  3. Fostering Experiential Learning and Service through Client Projects in Graduate Business Courses Offered Online

    ERIC Educational Resources Information Center

    Hagan, Linda M.

    2012-01-01

    Undergraduate marketing and public relations capstone courses utilize client projects to allow students to apply their knowledge and encourage collaboration. Yet, at the graduate level, especially with courses offered in an online modality, experiential service learning in the form of client project assignments presents unique challenges. However,…

  4. Science 25. Curriculum Guide. Revised.

    ERIC Educational Resources Information Center

    Northwest Territories Dept. of Education, Yellowknife.

    This science curriculum is an activity-oriented program in which an attempt has been made to provide sufficient information for non-science specialists to enable them to offer an effective course at the grades 10 and 11 levels. This curriculum offers a solution to the unique needs of life in the Canadian Northwest Territories. The role of…

  5. Serving Stakeholders at a Small Regional University

    ERIC Educational Resources Information Center

    Burrage, Sean

    2015-01-01

    The Southeastern Oklahoma State University Honors Program serves a unique role in a small, rural setting such as Durant, Oklahoma. The honors program has a traditional mission in a university that offers a nontraditional setting and history within the context of higher education. The program thus offers special rewards to its students and to the…

  6. "It's the Camaraderie": A History of Parent Cooperative Preschools.

    ERIC Educational Resources Information Center

    Hewes, Dorothy W.

    This book offers a comprehensive history of the parent cooperative preschool movement, a unique educational system that attained its peak in the 1950s and 1960s. The book uses interviews with pioneers and current members of parent cooperatives, official documents, periodicals, and scholarly publications to offer a history that weaves the…

  7. Synthesis, properties, and reactivity of a series of non-heme {FeNO}(7/8) complexes: implications for Fe-nitroxyl coordination.

    PubMed

    Sanders, Brian C; Patra, Ashis K; Harrop, Todd C

    2013-01-01

    The biochemical properties of nitroxyl (HNO/NO(-)) are distinct from nitric oxide (NO). Metal centers, particularly Fe, appear as suitable sites of HNO activity, both for generation and targeting. Furthermore, reduced Fe-NO(-)/Fe-HNO or {FeNO}(8) (Enemark-Feltham notation) species offer unique bonding profiles that are of fundamental importance. Given the unique chemical properties of {FeNO}(8) systems, we describe herein the synthesis and properties of {FeNO}(7) and {FeNO}(8) non-heme complexes containing pyrrole donors that display heme-like properties, namely [Fe(LN(4)(R))(NO)] (R = C(6)H(4) or Ph for 3; and R = 4,5-Cl(2)C(6)H(2) or PhCl for 4) and K[Fe(LN(4)(R))(NO)] (R = Ph for 5; R = PhCl for 6). X-ray crystallography establishes that the Fe-N-O angle is ~155° for 3, which is atypical for low-spin square-pyramidal {FeNO}(7) species. Both 3 and 4 display ν(NO) at ~1700 cm(-1) in the IR and reversible diffusion-controlled cyclic voltammograms (CVs) (E(1/2)=~-1.20 V vs. Fc/Fc(+) (ferrocene/ferrocenium redox couple) in MeCN) suggesting that the {FeNO}(8) compounds 5 and 6 are stable on the CV timescale. Reduction of 3 and 4 with stoichiometric KC(8) provided the {FeNO}(8) compounds 5 and 6 in near quantitative yield, which were characterized by the shift in ν(NO) to 1667 and ~1580 cm(-1), respectively. While the ν(NO) for 6 is consistent with FeNO reduction, the ν(NO) for 5 appears more indicative of ligand-based reduction. Additionally, 5 and 6 engage in HNO-like chemistry in their reactions with ferric porphyrins [Fe(III)(TPP)X] (TPP = tetraphenylporphyrin; X = Cl(-), OTf(-) (trifluoromethanesulfonate anion or CF(3)SO(3)(-))) to form [Fe(TPP)NO] in stoichiometric yield via reductive nitrosylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Effect of fiber content on the thermal conductivity and dielectric constant of hair fiber reinforced epoxy composite

    NASA Astrophysics Data System (ADS)

    Prasad Nanda, Bishnu; Satapathy, Alok

    2018-03-01

    This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.

  9. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing.

    PubMed

    Berger, Or; Adler-Abramovich, Lihi; Levy-Sakin, Michal; Grunwald, Assaf; Liebes-Peer, Yael; Bachar, Mor; Buzhansky, Ludmila; Mossou, Estelle; Forsyth, V Trevor; Schwartz, Tal; Ebenstein, Yuval; Frolow, Felix; Shimon, Linda J W; Patolsky, Fernando; Gazit, Ehud

    2015-04-01

    The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs-CG, GC and GG-could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.

  10. Measuring sickle cell morphology in flow using spectrally encoded flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kviatkovsky, Inna; Zeidan, Adel; Yeheskely-Hayon, Daniella; Dann, Eldad J.; Yelin, Dvir

    2017-02-01

    During a sickle cell crisis in sickle cell anemia patients, deoxygenated red blood cells may change their mechanical properties and block small blood vessels, causing pain, local tissue damage and even organ failure. Measuring these cellular structural and morphological changes is important for understanding the factors contributing to vessel blockage and developing an effective treatment. In this work, we use spectrally encoded flow cytometry for confocal, high-resolution imaging of flowing blood cells from sickle cell anemia patients. A wide variety of cell morphologies were observed by analyzing the interference patterns resulting from reflections from the front and back faces of the cells' membrane. Using numerical simulation for calculating the two-dimensional reflection pattern from the cells, we propose an analytical expression for the three-dimensional shape of a characteristic sickle cell and compare it to a previous from the literature. In vitro spectrally encoded flow cytometry offers new means for analyzing the morphology of sickle cells in stress-free environment, and could provide an effective tool for studying the unique physiological properties of these cells.

  11. Design and Manufacturing Considerations for Shockproof and Corrosion-Immune Superelastic Nickel-Titanium Bearings for a Space Station Application

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Wozniak, Walter A.

    2012-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is a promising tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, easily lubricated and is non-magnetic. It also falls within the class of superelastic alloys and can elastically endure large strains (beyond 5 percent) making it highly resistant to excessive and unexpected (shock) loads. Key material properties and characteristics such as elastic modulus, tensile fracture sensitivity and residual stress behavior, however, differ from conventional alloys such as steel and this significantly affects bearing design and manufacturing. In this paper, the preliminary design and manufacture of ball bearings made from 60NiTi are considered for a highly corrosive, lightly loaded, low speed bearing application found inside the International Space Station s water recycling system. The information presented is expected to help guide more widespread commercialization of this new technology into space mechanism and other applications.

  12. [Spectral Analysis about the Pharmaceutical Cocrystal Formation of Piracetam and 3-Hydroxybenzoic Acid].

    PubMed

    Zhang, Hui-li; Xia, Yi; Hong, Zhi; Du, Yong

    2015-07-01

    Pharmaceutical cocrystal can improve physical and chemical properties of active pharmaceutical ingredient (API), meanwhile this feature has shown great potential in improving the pharmaceutical's properties and characteristics. In this study, cocrystal formation between piracetam and 3-hydroxybenzoic acid (3HBA) using grinding method has been characterized by Fourier transform infrared (FTIR), Raman and terahertz (THz) spectroscopical techniques. The vibrational modes of different motions are obtained by the assignment of the peaks in the spectra of the starting materials and the cocrystal components. FTIR, Raman and THz spectroscopical results show that the vibrational modes of the cocrystal are different from those of the starting materials. In addition, the dynamic process of the above cocrystal formation is investigated in-depth with Raman and THz spec- tra. Piracetam-3HBA cocrystal is formed pretty fast in first several minutes, and then the formation rate becomes slow. After 35 minutes, such formation process has been completed. The results offer the theoretical benchmark and unique means for real-time monitoring pharmaceutical cocrystal formation and also the corresponding quantitative analysis in the pharmaceutical field.

  13. Multifunctional Cellular Materials Based on 2D Nanomaterials: Prospects and Challenges.

    PubMed

    Qiu, Ling; He, Zijun; Li, Dan

    2018-01-01

    Recent advances in emerging 2D nanomaterial-based cellular materials (2D-CMs) open up new opportunities for the development of next generation cellular solids with exceptional properties. Herein, an overview of the current research status of 2D-CMs is provided and their future opportunities are highlighted. First, the unique features of 2D nanomaterials are introduced to illustrate why these nanoscale building blocks are promising for the development of novel cellular materials and what the new features of 2D nanoscale building blocks can offer when compared to their 0D and 1D counterparts. An in-depth discussion on the structure-property relationships of 2D-CMs is then provided, and the remarkable functions that can be achieved by engineering their cellular architecture are highlighted. Additionally, the use of 2D-CMs to tackle key challenges in different practical applications is demonstrated. In conclusion, a personal perspective on the challenges and future research directions of 2D-CMs is given. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Targeting Prolyl-tRNA Synthetase to Accelerate Drug Discovery against Malaria, Leishmaniasis, Toxoplasmosis, Cryptosporidiosis, and Coccidiosis.

    PubMed

    Jain, Vitul; Yogavel, Manickam; Kikuchi, Haruhisa; Oshima, Yoshiteru; Hariguchi, Norimitsu; Matsumoto, Makoto; Goel, Preeti; Touquet, Bastien; Jumani, Rajiv S; Tacchini-Cottier, Fabienne; Harlos, Karl; Huston, Christopher D; Hakimi, Mohamed-Ali; Sharma, Amit

    2017-10-03

    Developing anti-parasitic lead compounds that act on key vulnerabilities are necessary for new anti-infectives. Malaria, leishmaniasis, toxoplasmosis, cryptosporidiosis and coccidiosis together kill >500,000 humans annually. Their causative parasites Plasmodium, Leishmania, Toxoplasma, Cryptosporidium and Eimeria display high conservation in many housekeeping genes, suggesting that these parasites can be attacked by targeting invariant essential proteins. Here, we describe selective and potent inhibition of prolyl-tRNA synthetases (PRSs) from the above parasites using a series of quinazolinone-scaffold compounds. Our PRS-drug co-crystal structures reveal remarkable active site plasticity that accommodates diversely substituted compounds, an enzymatic feature that can be leveraged for refining drug-like properties of quinazolinones on a per parasite basis. A compound we termed In-5 exhibited a unique double conformation, enhanced drug-like properties, and cleared malaria in mice. It thus represents a new lead for optimization. Collectively, our data offer insights into the structure-guided optimization of quinazolinone-based compounds for drug development against multiple human eukaryotic pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Spike processing with a graphene excitable laser

    PubMed Central

    Shastri, Bhavin J.; Nahmias, Mitchell A.; Tait, Alexander N.; Rodriguez, Alejandro W.; Wu, Ben; Prucnal, Paul R.

    2016-01-01

    Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved “spiking” of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate a unified platform for spike processing with a graphene-coupled laser system. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation—fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system and also propose and simulate an analogous integrated device. The addition of graphene leads to a number of advantages which stem from its unique properties, including high absorption and fast carrier relaxation. These could lead to significant speed and efficiency improvements in unconventional laser processing devices, and ongoing research on graphene microfabrication promises compatibility with integrated laser platforms. PMID:26753897

  16. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics.

    PubMed

    Vallabani, N V Srikanth; Singh, Sanjay

    2018-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as chemically inert materials and, therefore, being extensively applied in the areas of imaging, targeting, drug delivery and biosensors. Their unique properties such as low toxicity, biocompatibility, potent magnetic and catalytic behavior and superior role in multifunctional modalities have epitomized them as an appropriate candidate for biomedical applications. Recent developments in the area of materials science have enabled the facile synthesis of Iron oxide nanoparticles (IONPs) offering easy tuning of surface properties and surface functionalization with desired biomolecules. Such developments have enabled IONPs to be easily accommodated in nanocomposite platform or devices. Additionally, the tag of biocompatible material has realized their potential in myriad applications of nanomedicines including imaging modalities, sensing, and therapeutics. Further, IONPs enzyme mimetic activity pronounced their role as nanozymes in detecting biomolecules like glucose, and cholesterol etc. Hence, based on their versatile applications in biomedicine, the present review article focusses on the current trends, developments and future prospects of IONPs in MRI, hyperthermia, photothermal therapy, biomolecules detection, chemotherapy, antimicrobial activity and also their role as the multifunctional agent in diagnosis and nanomedicines.

  17. The theory and design of piezoelectric/pyroelectric polymer film sensors for biomedical engineering applications.

    PubMed

    Brown, L F

    1989-01-01

    The unique properties of piezoelectric/pyroelectric polymers offer many new opportunities for biomedical engineering sensor applications. Since their discovery nearly 20 years ago, the polymer films have been used for many novel switching and sensor applications. Despite the prodigious exposure from many recent publications describing piezo film applications, methods of sensor fabrication and circuit interfacing still elude most engineers. This paper is presented as a tutorial guide to applying piezo polymers to biomedical engineering applications. A review of the fundamentals of piezoelectricity/pyroelectricity in piezo polymers is first presented. Their material properties are contrasted with piezoelectric ceramic materials. Some advantages and disadvantages of the films for biomedical sensors are discussed. Specific details on the fabrication of piezo film sensors are presented. Methods are described for forming, cutting, and mounting film sensors, and making lead connections. A brief discussion of equivalent circuit models for the design and simulation of piezoelectric/pyroelectric sensors is included, as well as common circuit interface techniques. Finally, several sources are recommended for further information on a variety of biomedical sensor applications.

  18. The Discovery of an Eccentric Millisecond Pulsar in the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Cordes, James M.; Hessels, Jason W. T.; Bassa, Cees; Lorimer, Duncan R.; Stairs, Ingrid H.; van Leeuwen, Joeri; Arzoumnian, Zaven; Backer, Don C.; Bhat, N. D. Ramesh; Chatterjee, Shami; Crawford, Fronefield; Deneva, Julia S.; Faucher-Giguère, Claude-André; Gaensler, B. M.; Han, Jinlin; Jenet, Fredrick A.; Kasian, Laura; Kondratiev, Vlad I.; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A.; Stappers, Ben W.; Venkataraman, Arun; Vlemmings, Wouter

    2008-02-01

    The evolution of binary systems is governed by their orbital properties and the stellar density of the local environment. Studies of neutron stars in binary star systems offer unique insights into both these issues. In an Arecibo survey of the Galactic disk, we have found PSR J1903+0327, a radio emitting neutron star (a ``pulsar'') with a 2.15 ms rotation period, in a 95-day orbit around a massive companion. Observations in the infra-red suggests that the companion may be a main-sequence star. Theories requiring an origin in the Galactic disk cannot account for the extraordinarily high orbital eccentricity observed (0.44) or a main-sequence companion of a pulsar that has spin properties suggesting a prolonged accretion history. The most likely formation mechanism is an exchange interaction in a globular star cluster. This requires that the binary was either ejected from its parent globular cluster as a result of a three-body interaction, or that that cluster was disrupted by repeated passages through the disk of the Milky Way.

  19. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    PubMed

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 41 CFR 60-30.19 - Objections; exceptions; offer of proof.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Objections; exceptions; offer of proof. 60-30.19 Section 60-30.19 Public Contracts and Property Management Other Provisions... EXECUTIVE ORDER 11246 Hearings and Related Matters § 60-30.19 Objections; exceptions; offer of proof. (a...

  1. 41 CFR 60-30.19 - Objections; exceptions; offer of proof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Objections; exceptions; offer of proof. 60-30.19 Section 60-30.19 Public Contracts and Property Management Other Provisions... EXECUTIVE ORDER 11246 Hearings and Related Matters § 60-30.19 Objections; exceptions; offer of proof. (a...

  2. Fluorescent Photo-conversion: A second chance to label unique cells

    PubMed Central

    Mellott, Adam J.; Shinogle, Heather E.; Moore, David S.; Detamore, Michael S.

    2014-01-01

    Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the “unique” cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2, allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2-transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2, offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population. PMID:25914756

  3. CNAV: A Unique Approach to a Web-Based College Information Navigator at Gettysburg College.

    ERIC Educational Resources Information Center

    Martys, Michael; Redman, Don; Huff, Alice; Czar, Dave; Mullane, Pat; Bennett, Joseph; Getty, Robert

    In 1997, Gettysburg College (Pennsylvania) deployed the CNAV (College Navigation) Web tool to allow the students' and the entire college community the ability to better navigate through its college's curricular, co-curricular, and extracurricular offerings. CNAV is unique because, rather than treating the Web as a series of static pages, it treats…

  4. Is God Coming to Campus Too? Thoughts on the Distinctive Features of Adventist Higher Education

    ERIC Educational Resources Information Center

    Andreason, Niels-Erik

    2005-01-01

    In this, the first of a series of short essays which explore the unique ethos embraced and advanced by different Christian denominations in their schools, Andreasen argues the necessity of Christian colleges and universities offering their students a unique, distinctive Christian perspective throughout their learning experience rather than some…

  5. Photo-Elicitation and Visual Semiotics: A Unique Methodology for Studying Inclusion for Children with Disabilities

    ERIC Educational Resources Information Center

    Stockall, Nancy

    2013-01-01

    The methodology in this paper discusses the use of photographs as an elicitation strategy that can reveal the thinking processes of participants in a qualitatively rich manner. Photo-elicitation techniques combined with a Piercian semiotic perspective offer a unique method for creating a frame of action for later participant analysis. Illustrative…

  6. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres.

    PubMed

    Bai, Kaikai; Hong, Bihong; He, Jianlin; Hong, Zhuan; Tan, Ran

    2017-01-01

    Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD 50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings.

  7. Creation of economical and robust large area MCPs by ALD method for photodetectors

    NASA Astrophysics Data System (ADS)

    Mane, Anil U.; Elam, Jeffrey W.; Wagner, Robert G.; Siegmund, Oswald H. W.; Minot, Michael J.

    2016-09-01

    We report a cost-effective and production achievable path to fabricate robust large-area microchannel plates (MCPs), which offers the new prospect for larger area MCP-based detector technologies. We used atomic Layer Deposition (ALD), a thin film growth technique, to independently adjust the desired electrical resistance and secondary electron emission (SEE) properties of low cost borosilicate glass micro-capillary arrays (MCAs). These capabilities allow a separation of the substrate material properties from the signal amplification properties. This methodology enables the functionalization of microporous, highly insulating MCA substrates to produce sturdy, large format MCPs with unique properties such as high gain (<107/MCP pair), low background noise, 10ps time resolution, sub-micron spatial resolution and excellent stability after only a short (2-3days) scrubbing time. The ALD self-limiting growth mechanism allows atomic level control over the thickness and composition of resistive and secondary electron emission (SEE) layers that can be deposited conformally on high aspect ratio ( 100) capillary glass arrays. We have developed several robust and consistent production doable ALD processes for the resistive coatings and SEE layers to give us precise control over the MCP parameters. Further, the adjustment of MCPs resistance by tailoring the ALD material composition permits the use of these MCPs at high or low temperature detector applications. Here we discuss ALD method for MCP functionalization and a variety of MCP testing results.

  8. Thermoelectric plastics: from design to synthesis, processing and structure–property relationships

    PubMed Central

    Kroon, Renee; Mengistie, Desalegn Alemu; Kiefer, David; Hynynen, Jonna; Ryan, Jason D.; Yu, Liyang

    2016-01-01

    Thermoelectric plastics are a class of polymer-based materials that combine the ability to directly convert heat to electricity, and vice versa, with ease of processing. Potential applications include waste heat recovery, spot cooling and miniature power sources for autonomous electronics. Recent progress has led to surging interest in organic thermoelectrics. This tutorial review discusses the current trends in the field with regard to the four main building blocks of thermoelectric plastics: (1) organic semiconductors and in particular conjugated polymers, (2) dopants and counterions, (3) insulating polymers, and (4) conductive fillers. The design and synthesis of conjugated polymers that promise to show good thermoelectric properties are explored, followed by an overview of relevant structure–property relationships. Doping of conjugated polymers is discussed and its interplay with processing as well as structure formation is elucidated. The use of insulating polymers as binders or matrices is proposed, which permit the adjustment of the rheological and mechanical properties of a thermoelectric plastic. Then, nanocomposites of conductive fillers such as carbon nanotubes, graphene and inorganic nanowires in a polymer matrix are introduced. A case study examines poly(3,4-ethylenedioxythiophene) (PEDOT) based materials, which up to now have shown the most promising thermoelectric performance. Finally, a discussion of the advantages provided by bulk architectures e.g. for wearable applications highlights the unique advantages that thermoelectric plastics promise to offer. PMID:27385496

  9. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres

    PubMed Central

    Bai, Kaikai; Hong, Bihong; He, Jianlin; Hong, Zhuan; Tan, Ran

    2017-01-01

    Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings. PMID:28684913

  10. Novel nano coordination polymer based synthesis of porous ZnO hexagonal nanodisk for higher gas sorption and photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Rakibuddin, M.; Ananthakrishnan, Rajakumar

    2016-01-01

    Zinc(II)-based nano co-ordination polymers (NCPs) are first prepared at room temperature from three different isomers of dihydroxysalophen (DHS) ligand with Zn(OAc)2·2H2O and 1,4-benzenedicarboxylic acid (BDC) in DMF solvent. Facile calcinations of [Zn (DHS) (BDC)]·nH2O (shortly denoted as Zn(II)-based NCP) at ambient conditions produces porous ZnO hexagonal nanodisks. Moreover, a novel approach has been introduced to observe the effect of ligand of the NCP on the physico-chemical properties of the as-synthesized ZnO. The porous ZnO nanodisks are characterized by FT-IR, PXRD, TEM, FESEM, EDX and BET analysis, and the results exhibit that they possess different sizes, surface areas and porosities. Nitrogen gas sorption capacity and photocatalytic activities of the as-prepared ZnO nanodisks are also checked, and it is noticed that they differ in these physico-chemical properties due to having different porosities and surface areas. A comparative study is also done with commercially available ZnO; interestingly, the commercial ZnO exhibited lower surface area, gas sorption and photocatalytic activity compared to the ZnO nanodisks. Hence, preparation of the ZnO through the NCP route and tuning their physico-chemical properties would offer new directions in synthesis of various nano metal oxides of unique properties.

  11. High-speed particle tracking in microscopy using SPAD image sensors

    NASA Astrophysics Data System (ADS)

    Gyongy, Istvan; Davies, Amy; Miguelez Crespo, Allende; Green, Andrew; Dutton, Neale A. W.; Duncan, Rory R.; Rickman, Colin; Henderson, Robert K.; Dalgarno, Paul A.

    2018-02-01

    Single photon avalanche diodes (SPADs) are used in a wide range of applications, from fluorescence lifetime imaging microscopy (FLIM) to time-of-flight (ToF) 3D imaging. SPAD arrays are becoming increasingly established, combining the unique properties of SPADs with widefield camera configurations. Traditionally, the photosensitive area (fill factor) of SPAD arrays has been limited by the in-pixel digital electronics. However, recent designs have demonstrated that by replacing the complex digital pixel logic with simple binary pixels and external frame summation, the fill factor can be increased considerably. A significant advantage of such binary SPAD arrays is the high frame rates offered by the sensors (>100kFPS), which opens up new possibilities for capturing ultra-fast temporal dynamics in, for example, life science cellular imaging. In this work we consider the use of novel binary SPAD arrays in high-speed particle tracking in microscopy. We demonstrate the tracking of fluorescent microspheres undergoing Brownian motion, and in intra-cellular vesicle dynamics, at high frame rates. We thereby show how binary SPAD arrays can offer an important advance in live cell imaging in such fields as intercellular communication, cell trafficking and cell signaling.

  12. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks.

    PubMed

    Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, María

    2017-06-01

    Nanotechnology has provided new tools for addressing unmet clinical situations, especially in the oncology field. The development of smart nanocarriers able to deliver chemotherapeutic agents specifically to the diseased cells and to release them in a controlled way has offered a paramount advantage over conventional therapy. Areas covered: Among the different types of nanoparticle that can be employed for this purpose, inorganic porous materials have received significant attention in the last decade due to their unique properties such as high loading capacity, chemical and physical robustness, low toxicity and easy and cheap production in the laboratory. This review discuss the recent advances performed in the application of porous inorganic and metal-organic materials for antitumoral therapy, paying special attention to the application of mesoporous silica, porous silicon and metal-organic nanoparticles. Expert opinion: The use of porous inorganic nanoparticles as drug carriers for cancer therapy has the potential to improve the life expectancy of the patients affected by this disease. However, much work is needed to overcome their drawbacks, which are aggravated by their hard nature, exploiting the advantages offered by highly the ordered pore network of these materials.

  13. Hierarchical Micro/Nano-Porous Acupuncture Needles Offering Enhanced Therapeutic Properties

    NASA Astrophysics Data System (ADS)

    in, Su-Ll; Gwak, Young S.; Kim, Hye Rim; Razzaq, Abdul; Lee, Kyeong-Seok; Kim, Hee Young; Chang, Suchan; Lee, Bong Hyo; Grimes, Craig A.; Yang, Chae Ha

    2016-10-01

    Acupuncture as a therapeutic intervention has been widely used for treatment of many pathophysiological disorders. For achieving improved therapeutic effects, relatively thick acupuncture needles have been frequently used in clinical practice with, in turn, enhanced stimulation intensity. However due to the discomforting nature of the larger-diameter acupuncture needles there is considerable interest in developing advanced acupuncture therapeutical techniques that provide more comfort with improved efficacy. So motivated, we have developed a new class of acupuncture needles, porous acupuncture needles (PANs) with hierarchical micro/nano-scale conical pores upon the surface, fabricated via a simple and well known electrochemical process, with surface area approximately 20 times greater than conventional acupuncture needles. The performance of these high-surface-area PANs is evaluated by monitoring the electrophysiological and behavioral responses from the in vivo stimulation of Shenmen (HT7) points in Wistar rats, showing PANs to be more effective in controlling electrophysiological and behavioral responses than conventional acupuncture needles. Comparative analysis of cocaine induced locomotor activity using PANs and thick acupuncture needles shows enhanced performance of PANs with significantly less pain sensation. Our work offers a unique pathway for achieving a comfortable and improved acupuncture therapeutic effect.

  14. Hierarchical Micro/Nano-Porous Acupuncture Needles Offering Enhanced Therapeutic Properties

    PubMed Central

    In, Su-ll; Gwak, Young S.; Kim, Hye Rim; Razzaq, Abdul; Lee, Kyeong-Seok; Kim, Hee Young; Chang, SuChan; Lee, Bong Hyo; Grimes, Craig A.; Yang, Chae Ha

    2016-01-01

    Acupuncture as a therapeutic intervention has been widely used for treatment of many pathophysiological disorders. For achieving improved therapeutic effects, relatively thick acupuncture needles have been frequently used in clinical practice with, in turn, enhanced stimulation intensity. However due to the discomforting nature of the larger-diameter acupuncture needles there is considerable interest in developing advanced acupuncture therapeutical techniques that provide more comfort with improved efficacy. So motivated, we have developed a new class of acupuncture needles, porous acupuncture needles (PANs) with hierarchical micro/nano-scale conical pores upon the surface, fabricated via a simple and well known electrochemical process, with surface area approximately 20 times greater than conventional acupuncture needles. The performance of these high-surface-area PANs is evaluated by monitoring the electrophysiological and behavioral responses from the in vivo stimulation of Shenmen (HT7) points in Wistar rats, showing PANs to be more effective in controlling electrophysiological and behavioral responses than conventional acupuncture needles. Comparative analysis of cocaine induced locomotor activity using PANs and thick acupuncture needles shows enhanced performance of PANs with significantly less pain sensation. Our work offers a unique pathway for achieving a comfortable and improved acupuncture therapeutic effect. PMID:27713547

  15. Space and Earth Observations from Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Peterzen, Steven; Ubertini, Pietro; Masi, Silvia; Ibba, Roberto; Ivano, Musso; Cardillo, Andrea; Romeo, Giovanni; Dragøy, Petter; Spoto, Domenico

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78o N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennal oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultralight payloads and TM system ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program

  16. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  17. Mesenchymal Stem Cell Therapy for Nonhealing Cutaneous Wounds

    PubMed Central

    Hanson, Summer E.; Bentz, Michael L.; Hematti, Peiman

    2014-01-01

    Summary Chronic wounds remain a major challenge in modern medicine and represent a significant burden, affecting not only physical and mental health, but also productivity, health care expenditure, and long-term morbidity. Even under optimal conditions, the healing process leads to fibrosis or scar. One promising solution, cell therapy, involves the transplantation of progenitor/stem cells to patients through local or systemic delivery, and offers a novel approach to many chronic diseases, including nonhealing wounds. Mesenchymal stem cells are multipotent, adult progenitor cells of great interest because of their unique immunologic properties and regenerative potential. A variety of preclinical and clinical studies have shown that mesenchymal stem cells may have a useful role in wound-healing and tissue-engineering strategies and both aesthetic and reconstructive surgery. Recent advances in stem cell immunobiology can offer insight into the multiple mechanisms through which mesenchymal stem cells could affect underlying pathophysiologic processes associated with nonhealing mesenchymal stem cells. Critical evaluation of the current literature is necessary for understanding how mesenchymal stem cells could potentially revolutionize our approach to skin and soft-tissue defects and designing clinical trials to address their role in wound repair and regeneration. PMID:20124836

  18. An all-in-one, Tet-On 3G inducible PiggyBac system for human pluripotent stem cells and derivatives.

    PubMed

    Randolph, Lauren N; Bao, Xiaoping; Zhou, Chikai; Lian, Xiaojun

    2017-05-08

    Human pluripotent stem cells (hPSCs) offer tremendous promise in tissue engineering and cell-based therapies due to their unique combination of two properties: pluripotency and unlimited proliferative capacity. However, directed differentiation of hPSCs to clinically relevant cell lineages is needed to achieve the goal of hPSC-based therapies. This requires a deep understanding of how cell signaling pathways converge on the nucleus to control differentiation and the ability to dissect gene function in a temporal manner. Here, we report the use of the PiggyBac transposon and a Tet-On 3G drug-inducible gene expression system to achieve versatile inducible gene expression in hPSC lines. Our new system, XLone, offers improvement over previous Tet-On systems with significantly reduced background expression and increased sensitivity to doxycycline. Transgene expression in hPSCs is tightly regulated in response to doxycycline treatment. In addition, the PiggyBac elements in our XLone construct provide a rapid and efficient strategy for generating stable transgenic hPSCs. Our inducible gene expression PiggyBac transposon system should facilitate the study of gene function and directed differentiation in human stem cells.

  19. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance.

    PubMed

    Kern, Marcelo; McGeehan, John E; Streeter, Simon D; Martin, Richard N A; Besser, Katrin; Elias, Luisa; Eborall, Will; Malyon, Graham P; Payne, Christina M; Himmel, Michael E; Schnorr, Kirk; Beckham, Gregg T; Cragg, Simon M; Bruce, Neil C; McQueen-Mason, Simon J

    2013-06-18

    Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.

  20. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance

    PubMed Central

    Kern, Marcelo; McGeehan, John E.; Streeter, Simon D.; Martin, Richard N. A.; Besser, Katrin; Elias, Luisa; Eborall, Will; Malyon, Graham P.; Payne, Christina M.; Himmel, Michael E.; Schnorr, Kirk; Beckham, Gregg T.; Cragg, Simon M.; Bruce, Neil C.; McQueen-Mason, Simon J.

    2013-01-01

    Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes. PMID:23733951

  1. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan

    2017-04-01

    Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.

  2. Development of a multichannel hyperspectral imaging probe for food property and quality assessment

    NASA Astrophysics Data System (ADS)

    Huang, Yuping; Lu, Renfu; Chen, Kunjie

    2017-05-01

    This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910 μm fiber as a point light source and 30 light receiving fibers of three sizes (i.e., 50 μm, 105 μm and 200 μm) arranged in a special pattern to enhance signal acquisitions over the spatial distances of up to 36 mm. The multichannel probe allows simultaneous acquisition of 30 spatially-resolved reflectance spectra of food samples with either flat or curved surface over the spectral region of 550-1,650 nm. The measured reflectance spectra can be used for estimating the optical scattering and absorption properties of food samples, as well as for assessing the tissues of the samples at different depths. Several calibration procedures that are unique to this probe were carried out; they included linearity calibrations for each channel of the hyperspectral imaging system to ensure consistent linear responses of individual channels, and spectral response calibrations of individual channels for each fiber size group and between the three groups of different size fibers. Finally, applications of this new multichannel probe were demonstrated through the optical property measurement of liquid model samples and tomatoes of different maturity levels. The multichannel probe offers new capabilities for optical property measurement and quality detection of food and agricultural products.

  3. Can you shrinkwrap a cow? Protections available for the intellectual property of the animal breeding industry.

    PubMed

    Ogden, E R; Weigel, K

    2007-12-01

    There are currently four main intellectual property protection statutory schemes available: copyright, trade secret, trademark and patent. Each of these protects a different aspect of intellectual property, which leaves gaps of protection when an innovation does not fit squarely within the boundaries of the statutes. Contracts allow the industry to tailor the protection desired. One very common approach is to license the product via contract. Licences allow intellectual property owners to retain ownership and give permission to others to use the product. Although there are several types of licences, the most common is the field of use licence, which limits the licensee's use of the product. This often leads to price discrimination where various levels of restriction are offered at corresponding prices. The more rights retained by the owner, the more restricted the buyer is and the lower the purchase price allowing customers to choose the level of restriction they are willing to accept. Therefore, the different uses and needs of various customers can be accounted for and reflected in the price. The animal breeding industry is currently struggling to protect their innovations falling into these statutory gaps. The protection for animal breeding industry innovations is most likely through contract law rather than traditional intellectual property law. By taking advantage of the unique nature of contracts, industry will be able to tailor protection and pricing to best suit the variety of customers and uses for the products sold.

  4. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants

    PubMed Central

    Yazici, Hilal; O'Neill, Mary B.; Kacar, Turgay; Wilson, Brandon R.; Oren, E. Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-01-01

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property. PMID:26795060

  5. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    PubMed

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  6. Non-coalescence of oppositely charged droplets in pH-sensitive emulsions

    PubMed Central

    Liu, Tingting; Seiffert, Sebastian; Thiele, Julian; Abate, Adam R.; Weitz, David A.; Richtering, Walter

    2012-01-01

    Like charges stabilize emulsions, whereas opposite charges break emulsions. This is the fundamental principle for many industrial and practical processes. Using micrometer-sized pH-sensitive polymeric hydrogel particles as emulsion stabilizers, we prepare emulsions that consist of oppositely charged droplets, which do not coalesce. We observe noncoalescence of oppositely charged droplets in bulk emulsification as well as in microfluidic devices, where oppositely charged droplets are forced to collide within channel junctions. The results demonstrate that electrostatic interactions between droplets do not determine their stability and reveal the unique pH-dependent properties of emulsions stabilized by soft microgel particles. The noncoalescence can be switched to coalescence by neutralizing the microgels, and the emulsion can be broken on demand. This unusual feature of the microgel-stabilized emulsions offers fascinating opportunities for future applications of these systems. PMID:22203968

  7. Quantum chemical approaches to [NiFe] hydrogenase.

    PubMed

    Vaissier, Valerie; Van Voorhis, Troy

    2017-05-09

    The mechanism by which [NiFe] hydrogenase catalyses the oxidation of molecular hydrogen is a significant yet challenging topic in bioinorganic chemistry. With far-reaching applications in renewable energy and carbon mitigation, significant effort has been invested in the study of these complexes. In particular, computational approaches offer a unique perspective on how this enzyme functions at an electronic and atomistic level. In this article, we discuss state-of-the art quantum chemical methods and how they have helped deepen our comprehension of [NiFe] hydrogenase. We outline the key strategies that can be used to compute the (i) geometry, (ii) electronic structure, (iii) thermodynamics and (iv) kinetic properties associated with the enzymatic activity of [NiFe] hydrogenase and other bioinorganic complexes. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Methods for nanoparticle labeling of ricin and effect on toxicity

    NASA Astrophysics Data System (ADS)

    Wark, Alastair W.; Yu, Jun; Lindsay, Christopher D.; Nativo, Paola; Graham, Duncan

    2009-09-01

    The unique optical properties associated with nanostructured materials that support the excitation of surface plasmons offer many new opportunities for the enhanced optical investigation of biological materials that pose a security threat. In particular, ricin is considered a significant bioterrorism risk due to its high toxicity combined with its ready availability as a byproduct in castor oil production. Therefore, the development of optical techniques capable of rapid on-site toxin detection with high molecular specificity and sensitivity continues to be of significant importance. Furthermore, understanding of the ricin cell entry and intracellular pathways remains poor due to a lack of suitable bioanalytical techniques. Initial work aimed at simultaneously tackling both these issues is described where different approaches for the nanoparticle labeling of ricin are investigated along with changes in ricin toxicity associated with the labeling process.

  9. Nanotechnology based approaches in cancer therapeutics

    NASA Astrophysics Data System (ADS)

    Kumer Biswas, Amit; Reazul Islam, Md; Sadek Choudhury, Zahid; Mostafa, Asif; Fahim Kadir, Mohammad

    2014-12-01

    The current decades are marked not by the development of new molecules for the cure of various diseases but rather the development of new delivery methods for optimum treatment outcome. Nanomedicine is perhaps playing the biggest role in this concern. Nanomedicine offers numerous advantages over conventional drug delivery approaches and is particularly the hot topic in anticancer research. Nanoparticles (NPs) have many unique criteria that enable them to be incorporated in anticancer therapy. This topical review aims to look at the properties and various forms of NPs and their use in anticancer treatment, recent development of the process of identifying new delivery approaches as well as progress in clinical trials with these newer approaches. Although the outcome of cancer therapy can be increased using nanomedicine there are still many disadvantages of using this approach. We aim to discuss all these issues in this review.

  10. Nanomaterials as analytical tools for genosensors.

    PubMed

    Abu-Salah, Khalid M; Alrokyan, Salman A; Khan, Muhammad Naziruddin; Ansari, Anees Ahmad

    2010-01-01

    Nanomaterials are being increasingly used for the development of electrochemical DNA biosensors, due to the unique electrocatalytic properties found in nanoscale materials. They offer excellent prospects for interfacing biological recognition events with electronic signal transduction and for designing a new generation of bioelectronic devices exhibiting novel functions. In particular, nanomaterials such as noble metal nanoparticles (Au, Pt), carbon nanotubes (CNTs), magnetic nanoparticles, quantum dots and metal oxide nanoparticles have been actively investigated for their applications in DNA biosensors, which have become a new interdisciplinary frontier between biological detection and material science. In this article, we address some of the main advances in this field over the past few years, discussing the issues and challenges with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination.

  11. Expression of enzymes for the usage in food and feed industry with Pichia pastoris.

    PubMed

    Spohner, Sebastian C; Müller, Hagen; Quitmann, Hendrich; Czermak, Peter

    2015-05-20

    The methylotrophic yeast Pichia pastoris is an established protein expression host for the production of industrial enzymes. This yeast can be grown to very high cell densities and produces high titers of recombinant protein, which can be expressed intercellularly or be secreted to the fermentation medium. P. pastoris offers some advantages over other established expression systems especially in protein maturation. In food and feed production many enzymatically catalyzed processes are reported and the demand for new enzymes grows continuously. For instance the unique catalytic properties of enzymes are used to improve resource efficiency, maintain quality, functionalize food, and to prevent off-flavors. This review aims to provide an overview on recent developments in heterologous production of enzymes with P. pastoris and their application within the food sector. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Marine natural flavonoids: chemistry and biological activities.

    PubMed

    Martins, Beatriz T; Correia da Silva, Marta; Pinto, Madalena; Cidade, Honorina; Kijjoa, Anake

    2018-05-04

    As more than 70% of the world's surface is covered by oceans, marine organisms offer a rich and unlimited resource of structurally diverse bioactive compounds. These organisms have developed unique properties and bioactive compounds that are, in majority of them, unparalleled by their terrestrial counterparts due to the different surrounding ecological systems. Marine flavonoids have been extensively studied in the last decades due to a growing interest concerning their promising biological/pharmacological activities. The most common classes of marine flavonoids are flavones and flavonols, which are mostly isolated from marine plants. Although most of flavonoids are hydroxylated and methoxylated, some marine flavonoids possess an unusual substitution pattern, not commonly found in terrestrial organisms, namely the presence of sulphate, chlorine, and amino groups. This review presents, for the first time in a systematic way, the structure, natural occurrence, and biological activities of marine flavonoids.

  13. Ultrathin Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability.

    PubMed

    Yang, Shuang; Niu, Wenxin; Wang, An-Liang; Fan, Zhanxi; Chen, Bo; Tan, Chaoliang; Lu, Qipeng; Zhang, Hua

    2017-04-03

    Two-dimensional (2D) organic-inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single- and few-layer free-standing phenylethylammonium lead halide perovskite NSs, that is, (PEA) 2 PbX 4 (PEA=C 8 H 9 NH 3 , X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene

    PubMed Central

    Zhu, Zhigang; Garcia-Gancedo, Luis; Flewitt, Andrew J.; Xie, Huaqing; Moussy, Francis; Milne, William I.

    2012-01-01

    There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs) by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area. PMID:22778628

  15. Nanomaterials as Analytical Tools for Genosensors

    PubMed Central

    Abu-Salah, Khalid M.; Alrokyan, Salman A.; Khan, Muhammad Naziruddin; Ansari, Anees Ahmad

    2010-01-01

    Nanomaterials are being increasingly used for the development of electrochemical DNA biosensors, due to the unique electrocatalytic properties found in nanoscale materials. They offer excellent prospects for interfacing biological recognition events with electronic signal transduction and for designing a new generation of bioelectronic devices exhibiting novel functions. In particular, nanomaterials such as noble metal nanoparticles (Au, Pt), carbon nanotubes (CNTs), magnetic nanoparticles, quantum dots and metal oxide nanoparticles have been actively investigated for their applications in DNA biosensors, which have become a new interdisciplinary frontier between biological detection and material science. In this article, we address some of the main advances in this field over the past few years, discussing the issues and challenges with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination. PMID:22315580

  16. Ideas, properties, and standards of fracture repositioning with osteopathy in traditional Mongolian medicine in China.

    PubMed

    Wang, Mei; Wang, Hongxia; Zhao, Namula

    2015-02-01

    To explore the unique ideas, properties, and standards of fracture repositioning with osteopathy in traditional Mongolian medicine in China. Based on the natural life concept of "integration of universe and man", osteopathy in traditional Mongolian medicine in China uses the modern principles and methods of physiology, psychology, and biomechanics. Against this background, we explored the unique ideas, properties, and stan- dards of fracture repositioning in traditional Mongolian medicine. Fracture treatment with osteopathy in traditional Mongolian medicine in China is based on (a) the ideas of natural, sealed, self and dynamic repositioning of fractures; (b) the properties of structural continuity and functional completeness; (c) the standards of "integration of movement and stillness" and "force to force". The unique ideas, properties, and standards of fracture repositioning with osteopathy in traditional Mongolian medicine in China have resulted in the widespread use of such techniques and represents the future direction of the development of fracture repositioning.

  17. Dehomogenized Elastic Properties of Heterogeneous Layered Materials in AFM Indentation Experiments.

    PubMed

    Lee, Jia-Jye; Rao, Satish; Kaushik, Gaurav; Azeloglu, Evren U; Costa, Kevin D

    2018-06-05

    Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of heterogeneous multilayered samples without destructively separating individual components before testing. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. THE RAPID GROWTH OF COMMUNITY COLLEGES AND THEIR ACCESSIBILITY IN RURAL AREAS.

    ERIC Educational Resources Information Center

    ELDRIDGE, DONALD A.

    THE COURSE OFFERINGS IN SOME JUNIOR COLLEGES FAIL TO MEET ADEQUATELY THE UNIQUE NEEDS OF RURAL YOUTH. A STUDY IN 1964 REVEALED THAT ONLY TWENTY OF THE SEVENTY JUNIOR COLLEGES IN CALIFORNIA OFFERED TRAINING IN AGRICULTURE, ALTHOUGH THE RECENTLY PUBLISHED "DIRECTORY OF JUNIOR COLLEGES" SHOWS AN INCREASE TO SIXTY. FURTHER STATISTICS REVEAL THAT 253…

  19. Developing Fully Online Pre-Service Music and Arts Education Courses

    ERIC Educational Resources Information Center

    Lierse, Sharon

    2015-01-01

    Charles Darwin University (CDU) offers education courses for students who want to teach in Australian schools. The university is unique due to its geographic location, proximity to Asia and its high Indigenous population compared to the rest of the country. Many courses are offered fully online including music education for pre-service teachers.…

  20. Segment-based Mass Customization: An Exploration of a New Conceptual Marketing Framework.

    ERIC Educational Resources Information Center

    Jiang, Pingjun

    2000-01-01

    Suggests that the concept of mass customization should be seen as an integral part of market segmentation theory which offers the best way to satisfy consumers' unique needs and wants while yielding profits to companies. Proposes a new concept of "segment-based based mass customization," and offers a series of propositions which are…

  1. Minimum Competencies for Teaching Undergraduate Sport Philosophy Courses. Guidance Document

    ERIC Educational Resources Information Center

    National Association for Sport and Physical Education, 2004

    2004-01-01

    Although sport philosophy is considered to be a sub-discipline with its own unique body of knowledge, sport philosophy is more commonly offered as a single course rather than a degree program. Therefore, these guidelines are offered specifically for the teaching of a single course at the undergraduate level. In order to be effective, the course…

  2. Graphene Oxide–Silver Nanoparticles Nanocomposite Stimulates Differentiation in Human Neuroblastoma Cancer Cells (SH-SY5Y)

    PubMed Central

    Gurunathan, Sangiliyandi

    2017-01-01

    Recently, graphene and graphene related nanocomposite receive much attention due to high surface-to-volume ratio, and unique physiochemical and biological properties. The combination of metallic nanoparticles with graphene-based materials offers a promising method to fabricate novel graphene–silver hybrid nanomaterials with unique functions in biomedical nanotechnology, and nanomedicine. Therefore, this study was designed to prepare graphene oxide (GO) silver nanoparticles (AgNPs) nanocomposite (GO-AgNPs) containing two different nanomaterials in single platform with distinctive properties using luciferin as reducing agents. In addition, we investigated the effect of GO-AgNPs on differentiation in SH-SY5Y cells. The synthesized GO-AgNPs were characterized by ultraviolet-visible absorption spectroscopy (UV-vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The differentiation was confirmed by series of cellular and biochemical assays. The AgNPs were distributed uniformly on the surface of graphene oxide with an average size of 25 nm. As prepared GO-AgNPOs induces differentiation by increasing the expression of neuronal differentiation markers and decreasing the expression of stem cell markers. The results indicated that the redox biology involved the expression of various signaling molecules, which play an important role in differentiation. This study suggests that GO-AgNP nanocomposite could stimulate differentiation of SH-SY5Y cells. Furthermore, understanding the mechanisms of differentiation of neuroblastoma cells could provide new strategies for cancer and stem cell therapies. Therefore, these studies suggest that GO-AgNPs could target specific chemotherapy-resistant cells within a tumor. PMID:29182571

  3. Silk-Based Biomaterials for Sustained Drug Delivery

    PubMed Central

    Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.

    2014-01-01

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  4. Programmable Nucleic Acid Based Polygons with Controlled Neuroimmunomodulatory Properties for Predictive QSAR Modeling.

    PubMed

    Johnson, Morgan Brittany; Halman, Justin R; Satterwhite, Emily; Zakharov, Alexey V; Bui, My N; Benkato, Kheiria; Goldsworthy, Victoria; Kim, Taejin; Hong, Enping; Dobrovolskaia, Marina A; Khisamutdinov, Emil F; Marriott, Ian; Afonin, Kirill A

    2017-11-01

    In the past few years, the study of therapeutic RNA nanotechnology has expanded tremendously to encompass a large group of interdisciplinary sciences. It is now evident that rationally designed programmable RNA nanostructures offer unique advantages in addressing contemporary therapeutic challenges such as distinguishing target cell types and ameliorating disease. However, to maximize the therapeutic benefit of these nanostructures, it is essential to understand the immunostimulatory aptitude of such tools and identify potential complications. This paper presents a set of 16 nanoparticle platforms that are highly configurable. These novel nucleic acid based polygonal platforms are programmed for controllable self-assembly from RNA and/or DNA strands via canonical Watson-Crick interactions. It is demonstrated that the immunostimulatory properties of these particular designs can be tuned to elicit the desired immune response or lack thereof. To advance the current understanding of the nanoparticle properties that contribute to the observed immunomodulatory activity and establish corresponding designing principles, quantitative structure-activity relationship modeling is conducted. The results demonstrate that molecular weight, together with melting temperature and half-life, strongly predicts the observed immunomodulatory activity. This framework provides the fundamental guidelines necessary for the development of a new library of nanoparticles with predictable immunomodulatory activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chemically engineered graphene-based 2D organic molecular magnet.

    PubMed

    Hong, Jeongmin; Bekyarova, Elena; de Heer, Walt A; Haddon, Robert C; Khizroev, Sakhrat

    2013-11-26

    Carbon-based magnetic materials and structures of mesoscopic dimensions may offer unique opportunities for future nanomagnetoelectronic/spintronic devices. To achieve their potential, carbon nanosystems must have controllable magnetic properties. We demonstrate that nitrophenyl functionalized graphene can act as a room-temperature 2D magnet. We report a comprehensive study of low-temperature magnetotransport, vibrating sample magnetometry (VSM), and superconducting quantum interference (SQUID) measurements before and after radical functionalization. Following nitrophenyl (NP) functionalization, epitaxially grown graphene systems can become organic molecular magnets with ferromagnetic and antiferromagnetic ordering that persists at temperatures above 400 K. The field-dependent, surface magnetoelectric properties were studied using scanning probe microscopy (SPM) techniques. The results indicate that the NP-functionalization orientation and degree of coverage directly affect the magnetic properties of the graphene surface. In addition, graphene-based organic magnetic nanostructures were found to demonstrate a pronounced magneto-optical Kerr effect (MOKE). The results were consistent across different characterization techniques and indicate room-temperature magnetic ordering along preferred graphene orientations in the NP-functionalized samples. Chemically isolated graphene nanoribbons (CINs) were observed along the preferred functionality directions. These results pave the way for future magnetoelectronic/spintronic applications based on promising concepts such as current-induced magnetization switching, magnetoelectricity, half-metallicity, and quantum tunneling of magnetization.

  6. Atomic Layer Deposition of Rhenium Disulfide.

    PubMed

    Hämäläinen, Jani; Mattinen, Miika; Mizohata, Kenichiro; Meinander, Kristoffer; Vehkamäki, Marko; Räisänen, Jyrki; Ritala, Mikko; Leskelä, Markku

    2018-06-01

    2D materials research is advancing rapidly as various new "beyond graphene" materials are fabricated, their properties studied, and materials tested in various applications. Rhenium disulfide is one of the 2D transition metal dichalcogenides that has recently shown to possess extraordinary properties such as that it is not limited by the strict monolayer thickness requirements. The unique inherent decoupling of monolayers in ReS 2 combined with a direct bandgap and highly anisotropic properties makes ReS 2 one of the most interesting 2D materials for a plethora of applications. Here, a highly controllable and precise atomic layer deposition (ALD) technique is applied to deposit ReS 2 thin films. Film growth is demonstrated on large area (5 cm × 5 cm) substrates at moderate deposition temperatures between 120 and 500 °C, and the films are extensively characterized using field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy, X-ray diffractometry using grazing incidence, atomic force microscopy, focused ion beam/transmission electron microscopy, X-ray photoelectron spectroscopy, and time-of-flight elastic recoil detection analysis techniques. The developed ReS 2 ALD process highlights the potential of the material for applications beyond planar structure architectures. The ALD process also offers a route to an upgrade to an industrial scale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Label-free immunosensor based on hyperbranched polyester for specific detection of α-fetoprotein.

    PubMed

    Niu, Yanlian; Yang, Tian; Ma, Shangshang; Peng, Fang; Yi, Meihui; Wan, Mimi; Mao, Chun; Shen, Jian

    2017-06-15

    A novel label-free immunosensor based on hyperbranched polyester nanoparticles with nitrite groups (HBPE-NO 2 ), which were synthesized through a simple one-step chemical reaction, was first developed for specific detection of α-fetoprotein (AFP), the tumor marker for liver cancer. The obtained HBPE-NO 2 nanoparticles (NPs) were characterized by the proton nuclear magnetic resonance spectroscopy ( 1 H NMR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). And the fabricated process of immunosensor was investigated by attenuated total reflection Fourier-transform infrared spectra (ATR-FTIR), static water contact angles, scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical performances of the AFP immunosensor were studied. Results indicated the prepared HBPE-NO 2 -modified immunosensor showed excellent electrochemical properties and satisfactory accuracy for the detection of AFP of the real clinical samples that attributed to the properties of the HBPE-NO 2 NPs, which had nanosized structure to increase the specific surface area and unique chemical reactivity for loading capacity of protein molecules. Construction of biosensors using the structure and properties of hyperbranched molecules will offer ideal electrode substrates, which provided more possibilities for the design of biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Static flexural properties of hedgehog spines conditioned in coupled temperature and relative humidity environments.

    PubMed

    Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze

    2017-11-01

    Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Engineering highly organized and aligned single walled carbon nanotube networks for electronic device applications: Interconnects, chemical sensor, and optoelectronics

    NASA Astrophysics Data System (ADS)

    Kim, Young Lae

    For 20 years, single walled carbon nanotubes (SWNTs) have been studied actively due to their unique one-dimensional nanostructure and superior electrical, thermal, and mechanical properties. For these reasons, they offer the potential to serve as building blocks for future electronic devices such as field effect transistors (FETs), electromechanical devices, and various sensors. In order to realize these applications, it is crucial to develop a simple, scalable, and reliable nanomanufacturing process that controllably places aligned SWNTs in desired locations, orientations, and dimensions. Also electronic properties (semiconducting/metallic) of SWNTs and their organized networks must be controlled for the desired performance of devices and systems. These fundamental challenges are significantly limiting the use of SWNTs for future electronic device applications. Here, we demonstrate a strategy to fabricate highly controlled micro/nanoscale SWNT network structures and present the related assembly mechanism to engineer the SWNT network topology and its electrical transport properties. A method designed to evaluate the electrical reliability of such nano- and microscale SWNT networks is also presented. Moreover, we develop and investigate a robust SWNT based multifunctional selective chemical sensor and a range of multifunctional optoelectronic switches, photo-transistors, optoelectronic logic gates and complex optoelectronic digital circuits.

  10. Nanofluidic transport through isolated carbon nanotube channels: Advances, controversies, and challenges

    DOE PAGES

    Guo, Shirui; Meshot, Eric R.; Kuykendall, Tevye; ...

    2015-06-02

    Owing to their simple chemistry and structure, controllable geometry, and a plethora of unusual yet exciting transport properties, carbon nanotubes (CNTs) have emerged as exceptional channels for fundamental nanofluidic studies, as well as building blocks for future fluidic devices that can outperform current technology in many applications. Leveraging the unique fluidic properties of CNTs in advanced systems requires a full understanding of their physical origin. Recent advancements in nanofabrication technology enable nanofluidic devices to be built with a single, nanometer-wide CNT as a fluidic pathway. These novel platforms with isolated CNT nanochannels offer distinct advantages for establishing quantitative structure–transport correlationsmore » in comparison with membranes containing many CNT pores. In addition, they are promising components for single-molecule sensors as well as for building nanotube-based circuits wherein fluidics and electronics can be coupled. With such advanced device architecture, molecular and ionic transport can be manipulated with vastly enhanced control for applications in sensing, separation, detection, and therapeutic delivery. Recent achievements in fabricating isolated-CNT nanofluidic platforms are highlighted, along with the most-significant findings each platform enables for water, ion, and molecular transport. Furthermore, the implications of these findings and remaining open questions on the exceptional fluidic properties of CNTs are also discussed.« less

  11. Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

    PubMed Central

    Scheer, Elke; Polarz, Sebastian

    2017-01-01

    Single layer graphite, known as graphene, is an important material because of its unique two-dimensional structure, high conductivity, excellent electron mobility and high surface area. To explore the more prospective properties of graphene, graphene hybrids have been synthesised, where graphene has been integrated with other important nanoparticles (NPs). These graphene–NP hybrid structures are particularly interesting because after hybridisation they not only display the individual properties of graphene and the NPs, but also they exhibit further synergistic properties. Reduced graphene oxide (rGO), a graphene-like material, can be easily prepared by reduction of graphene oxide (GO) and therefore offers the possibility to fabricate a large variety of graphene–transition metal oxide (TMO) NP hybrids. These hybrid materials are promising alternatives to reduce the drawbacks of using only TMO NPs in various applications, such as anode materials in lithium ion batteries (LIBs), sensors, photocatalysts, removal of organic pollutants, etc. Recent studies have shown that a single graphene sheet (GS) has extraordinary electronic transport properties. One possible route to connecting those properties for application in electronics would be to prepare graphene-wrapped TMO NPs. In this critical review, we discuss the development of graphene–TMO hybrids with the detailed account of their synthesis. In addition, attention is given to the wide range of applications. This review covers the details of graphene–TMO hybrid materials and ends with a summary where an outlook on future perspectives to improve the properties of the hybrid materials in view of applications are outlined. PMID:28462071

  12. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    NASA Astrophysics Data System (ADS)

    Francés, A. B.; Navarro Bañón, M. V.

    2014-08-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction.

  13. Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs.

    PubMed

    Massey, Melissa; Ancona, Mario G; Medintz, Igor L; Algar, W Russ

    2015-12-01

    Nucleic acid hybridization probes are sought after for numerous assay and imaging applications. These probes are often limited by the properties of fluorescent dyes, prompting the development of new probes where dyes are paired with novel or nontraditional luminescent materials. Luminescent terbium complexes are an example of such a material, and these complexes offer several unique spectroscopic advantages. Here, we demonstrate two nonstem-loop designs for light-up nucleic acid hybridization beacons that utilize time-resolved Förster resonance energy transfer (TR-FRET) between a luminescent Lumi4-Tb cryptate (Tb) donor and a fluorescent reporter dye, where time-resolved emission from the dye provides an analytical signal. Both designs are based on probe oligonucleotides that are labeled at their opposite termini with Tb and a fluorescent reporter dye. In one design, a probe is partially blocked with a quencher dye-labeled oligonucleotide, and target hybridization is signaled through toehold-mediated strand displacement and loss of a competitive FRET pathway. In the other design, the intrinsic folding properties of an unblocked probe are utilized in combination with a temporal mechanism for signaling target hybridization. This temporal mechanism is based on a recently elucidated "sweet spot" for TR-FRET measurements and exploits distance control over FRET efficiencies to shift the Tb lifetime within or outside the time-gated detection window for measurements. Both the blocked and unblocked beacons offer nanomolar (femtomole) detection limits, response times on the order of minutes, multiplexing through the use of different reporter dyes, and detection in complex matrices such as serum and blood. The blocked beacons offer better mismatch selectivity, whereas the unblocked beacons are simpler in design. The temporal mechanism of signaling utilized with the unblocked beacons also plays a significant role with the blocked beacons and represents a new and effective strategy for developing FRET probes for bioassays.

  14. Droppin' Knowledge: Black Women's Communication and Informal Learning in an Online Community

    ERIC Educational Resources Information Center

    Steptoe, Leslye Carynn

    2011-01-01

    The experiences of black women offer a unique perspective on how life is lived at the juncture of race and gender in the United States. This case study of an online community for black women centers on the site's potentiality as an online learning community as well as a uniquely black woman's space. It also explores interrelated aspects of…

  15. The Transition Year: A Unique Programme in Irish Education Bridging the Gap between School and the Workplace

    ERIC Educational Resources Information Center

    Moynihan, Joseph A.

    2015-01-01

    Transition Year is a unique and exciting programme situated in the middle of the six year second level education system in Ireland. Since its introduction in 1974, the programme has experienced unprecedented growth now being offered in over 80% of schools on the island. Transition Year seeks to emphasize alternative learning methodologies…

  16. The challenge of doing science in wilderness: historical, legal, and policy context

    Treesearch

    Peter Landres; Judy Alderson; David J. Parsons

    2003-01-01

    Lands designated by Congress under the Wilderness Act of 1964 (Public Law 88-577) offer unique opportunities for social and biophysical research in areas that are relatively unmodified by modern human actions. Wilderness designation also imposes a unique set of constraints on the methods that may be used or permitted to conduct this research. For example, legislated...

  17. Effects of unique biomedical education programs for engineers: REDEEM and ESTEEM projects.

    PubMed

    Matsuki, Noriaki; Takeda, Motohiro; Yamano, Masahiro; Imai, Yohsuke; Ishikawa, Takuji; Yamaguchi, Takami

    2009-06-01

    Current engineering applications in the medical arena are extremely progressive. However, it is rather difficult for medical doctors and engineers to discuss issues because they do not always understand one another's jargon or ways of thinking. Ideally, medical engineers should become acquainted with medicine, and engineers should be able to understand how medical doctors think. Tohoku University in Japan has managed a number of unique reeducation programs for working engineers. Recurrent Education for the Development of Engineering Enhanced Medicine has been offered as a basic learning course since 2004, and Education through Synergetic Training for Engineering Enhanced Medicine has been offered as an advanced learning course since 2006. These programs, which were developed especially for engineers, consist of interactive, modular, and disease-based lectures (case studies) and substantial laboratory work. As a result of taking these courses, all students obtained better objective outcomes, on tests, and subjective outcomes, through student satisfaction. In this article, we report on our unique biomedical education programs for engineers and their effects on working engineers.

  18. Pandemic influenza preparedness and response in Israel: a unique model of civilian-defense collaboration.

    PubMed

    Kohn, Sivan; Barnett, Daniel J; Leventhal, Alex; Reznikovich, Shmuel; Oren, Meir; Laor, Danny; Grotto, Itamar; Balicer, Ran D

    2010-07-01

    In April 2009, the World Health Organization announced the emergence of a novel influenza A(H1N1-09) virus and in June 2009 declared the outbreak a pandemic. The value of military structures in responding to pandemic influenza has become widely acknowledged in recent years. In 2005, the Israeli Government appointed the Ministry of Defense to be in charge of national preparedness and response for a severe pandemic influenza scenario. The Israeli case offers a unique example of civilian-defense partnership where the interface between the governmental, military and civilian spheres has formed a distinctive structure. The Israeli pandemic preparedness protocols represent an example of a collaboration in which aspects of an inherently medical problem can be managed by the defense sector. Although distinctive concepts of the model are not applicable to all countries, it offers a unique forum for governments and international agencies to evaluate this interface within the context of pandemic influenza.

  19. A unique degree program for pre-pharmacy education: An undergraduate degree in pharmaceutical sciences.

    PubMed

    Jafari, Mahtab

    2018-02-01

    Within the coming decade, the demand for well-trained pharmacists is expected to only increase, especially with the aging of the United States (US) population. To help fill this growing demand, the University of California, Irvine (UCI) aims to offer a unique pre-pharmacy degree program and has developed a Bachelor of Science (BS) degree in Pharmaceutical Sciences to help achieve this goal. In this commentary, we share our experience with our curriculum and highlight its features in an effort to encourage other institutions to enhance the learning experience of their pre-pharmacy students. The efforts of the UCI Department of Pharmaceutical Sciences has resulted in UCI being consistently ranked as one of the top feeder institutions by the Pharmacy College Application Service (PharmCAS) in recent years. The UCI Pharmaceutical Sciences Bachelor of Science offers a unique pre-pharmacy educational experience in an effort to better prepare undergraduates for the rigors of the doctorate of pharmacy curriculum. Copyright © 2017. Published by Elsevier Inc.

  20. Silicon photonics for high-performance interconnection networks

    NASA Astrophysics Data System (ADS)

    Biberman, Aleksandr

    2011-12-01

    We assert in the course of this work that silicon photonics has the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems, and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. This work showcases that chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, enable unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of this work, we demonstrate such feasibility of waveguides, modulators, switches, and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. Furthermore, we leverage the unique properties of available silicon photonic materials to create novel silicon photonic devices, subsystems, network topologies, and architectures to enable unprecedented performance of these photonic interconnection networks and computing systems. We show that the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. Furthermore, we explore the immense potential of all-optical functionalities implemented using parametric processing in the silicon platform, demonstrating unique methods that have the ability to revolutionize computation and communication. Silicon photonics enables new sets of opportunities that we can leverage for performance gains, as well as new sets of challenges that we must solve. Leveraging its inherent compatibility with standard fabrication techniques of the semiconductor industry, combined with its capability of dense integration with advanced microelectronics, silicon photonics also offers a clear path toward commercialization through low-cost mass-volume production. Combining empirical validations of feasibility, demonstrations of massive performance gains in large-scale systems, and the potential for commercial penetration of silicon photonics, the impact of this work will become evident in the many decades that follow.

  1. Rotaxane and catenane host structures for sensing charged guest species.

    PubMed

    Langton, Matthew J; Beer, Paul D

    2014-07-15

    CONSPECTUS: The promise of mechanically interlocked architectures, such as rotaxanes and catenanes, as prototypical molecular switches and shuttles for nanotechnological applications, has stimulated an ever increasing interest in their synthesis and function. The elaborate host cavities of interlocked structures, however, can also offer a novel approach toward molecular recognition: this Account describes the use of rotaxane and catenane host systems for binding charged guest species, and for providing sensing capability through an integrated optical or electrochemical reporter group. Particular attention is drawn to the exploitation of the unusual dynamic properties of interlocked molecules, such as guest-induced shuttling or conformational switching, as a sophisticated means of achieving a selective and functional sensor response. We initially survey interlocked host systems capable of sensing cationic guests, before focusing on our accomplishments in synthesizing rotaxanes and catenanes designed for the more challenging task of selective anion sensing. In our group, we have developed the use of discrete anionic templation to prepare mechanically interlocked structures for anion recognition applications. Removal of the anion template reveals an interlocked host system, possessing a unique three-dimensional geometrically restrained binding cavity formed between the interlocked components, which exhibits impressive selectivity toward complementary anionic guest species. By incorporating reporter groups within such systems, we have developed both electrochemical and optical anion sensors which can achieve highly selective sensing of anionic guests. Transition metals, lanthanides, and organic fluorophores integrated within the mechanically bonded structural framework of the receptor are perturbed by the binding of the guest, with a concomitant change in the emission profile. We have also exploited the unique dynamics of interlocked hosts by demonstrating that an anion-induced conformational change can be used as a means of signal transduction. Electrochemical sensing has been realized by integration of the redox-active ferrocene functionality within a range of rotaxane and catenanes; binding of an anion perturbs the metallocene, leading to a cathodic shift in the ferrocene/ferrocenium redox couple. In order to obtain practical sensors for target charged guest species, confinement of receptors at a surface is necessary in order to develop robust, reuseable devices. Surface confinement also offers advantages over solution based receptors, including amplification of signal, enhanced guest binding thermodynamics and the negation of solubility problems. We have fabricated anion-templated rotaxanes and catenanes on gold electrode surfaces and demonstrated that the resulting mechanically bonded self-assembled monolayers are electrochemically responsive to the binding of anions, a crucial first step toward the advancement of sophisticated, highly selective, anion sensory devices. Rotaxane and catenane host molecules may be engineered to offer a superior level of molecular recognition, and the incorporation of optical or electrochemical reporter groups within these interlocked frameworks can allow for guest sensing. Advances in synthetic templation strategies has facilitated the synthesis of interlocked architectures and widened their interest as prototype molecular machines. However, their unique host-guest properties are only now beginning to be exploited as a sophisticated approach to chemical sensing. The development of functional host-guest sensory systems such as these is of great interest to the interdisciplinary field of supramolecular chemistry.

  2. Industrial uses and applications of ionic liquids

    NASA Astrophysics Data System (ADS)

    Gutowski, Keith E.

    2018-02-01

    Ionic liquids are salts that melt at low temperatures (usually defined as less than 100 °C) and have a number of interesting properties that make them useful for industrial applications. Typical ionic liquid properties include high thermal stabilities, negligible vapor pressures, wide liquidus ranges, broad electrochemical windows, and unique solvation properties. Furthermore, the potential combinations of cations and anions provide nearly unlimited chemical tunability. This article will describe the diverse industrial uses of ionic liquids and how their unique properties are leveraged, with examples ranging from chemical processing to consumer packaged goods.

  3. The operation, products and promotion of waterpipe businesses in New York City, Abu Dhabi and Dubai.

    PubMed

    Joudrey, P J; Jasie, K A; Pykalo, L; Singer, S T; Woodin, M B; Sherman, S

    2016-07-10

    We evaluated the customers, operations, products and advertising of these businesses to explore the unique policy challenges created by the suppliers of waterpipes. We completed a cross-sectional survey consisting of structured site observations and in-person interviews of businesses in New York City, Abu Dhabi and Dubai identified using Google, Yelp, Timeout Dubai and Timeout Abu Dhabi and neighbourhood visits in 2014. Regular customers made up 59% of customers. Franchises or chains were 28% of businesses. Waterpipes made up 39% of sales with 87% of businesses offering food within their menu. Flavoured tobacco made up 94% of sales. Discounts were offered by 47% of businesses and 94% of businesses used advertising, often through social media. The market consists of largely independent businesses, with a large regular customer base, frequently offering diversified services beyond waterpipes. These businesses advertise using both traditional and social media. The economics of waterpipe businesses is very different from the economics of cigarettes, and unique regulatory strategies are needed to control this epidemic.

  4. Unique Offerings of the ISS as an Earth Observing Platform

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    2013-01-01

    The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.

  5. Properties of acetylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlovcak, J.T.

    1994-12-31

    Acetylene continues to be the most widely used fuel in the oxyfuel cutting and welding industry. It displays properties that enhance its benefits to the industry, but at the same time, present potential hazards that have to be addressed. The presentation explores the main properties or characteristics of acetylene -- odor, toxicity, flammability, composition, and manufacture. it expands on those properties that are unique to acetylene and which account for its main value to the user or which constitute the chief concern for safe use of acetylene. The presentation explains characteristics such as anosmia, flammable or explosive range, ignition energy,more » autoignition temperature, and flame temperature, comparing these values for acetylene to other common gaseous fuels. it explains the unique property of acetylene to decompose explosively in the absence of air or oxygen. The toxicological aspects of acetylene is discussed, including anesthetic effect and simple asphyxiant, showing the increasing severity of symptoms to increasing levels of oxygen deficiency. The main value of this basic review of the properties of acetylene is to remind people of the benefits of acetylene due to its unique properties, and to realert them to the potential hazards that also have to be addressed to control the properties of acetylene.« less

  6. Effects of uniquely processed cowpea and plantain flours on wheat bread properties

    USDA-ARS?s Scientific Manuscript database

    The effect of incorporating uniquely processed whole-seed cowpeas or plantain flours at 10 or 20 g/100 g in all-purpose flour on paste viscosity and bread-baking properties in model bread was determined. Flours from plantains processed as follows: unblanched plantains dried at 60 degrees C (PLC), so...

  7. Unique Nanoparticle Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Testing and Ranking

    EPA Science Inventory

    Nanomaterials are a diverse collection of novel materials that exhibit at least one dimension less than 100 nm and display unique chemical and physical properties due to their nanoscale size. An emphasis has been put on developing high throughput screening (HTS) assays to charac...

  8. Unique Nanoparticle Optical Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Screening and Ranking

    EPA Science Inventory

    Nanoparticles (NPs) are novel materials having at least one dimension less than 100 nm and display unique physicochemical properties due to their nanoscale size. An emphasis has been placed on developing high throughput screening (HTS) assays to characterize and rank the toxiciti...

  9. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

    PubMed

    Peng, Fei; Su, Yuanyuan; Zhong, Yiling; Fan, Chunhai; Lee, Shuit-Tong; He, Yao

    2014-02-18

    Silicon nanomaterials are an important class of nanomaterials with great potential for technologies including energy, catalysis, and biotechnology, because of their many unique properties, including biocompatibility, abundance, and unique electronic, optical, and mechanical properties, among others. Silicon nanomaterials are known to have little or no toxicity due to favorable biocompatibility of silicon, which is an important precondition for biological and biomedical applications. In addition, huge surface-to-volume ratios of silicon nanomaterials are responsible for their unique optical, mechanical, or electronic properties, which offer exciting opportunities for design of high-performance silicon-based functional nanoprobes, nanosensors, and nanoagents for biological analysis and detection and disease treatment. Moreover, silicon is the second most abundant element (after oxygen) on earth, providing plentiful and inexpensive resources for large-scale and low-cost preparation of silicon nanomaterials for practical applications. Because of these attractive traits, and in parallel with a growing interest in their design and synthesis, silicon nanomaterials are extensively investigated for wide-ranging applications, including energy, catalysis, optoelectronics, and biology. Among them, bioapplications of silicon nanomaterials are of particular interest. In the past decade, scientists have made an extensive effort to construct a silicon nanomaterials platform for various biological and biomedical applications, such as biosensors, bioimaging, and cancer treatment, as new and powerful tools for disease diagnosis and therapy. Nonetheless, there are few review articles covering these important and promising achievements to promote the awareness of development of silicon nanobiotechnology. In this Account, we summarize recent representative works to highlight the recent developments of silicon functional nanomaterials for a new, powerful platform for biological and biomedical applications, including biosensor, bioimaging, and cancer therapy. First, we show that the interesting photoluminescence properties (e.g., strong fluorescence and robust photostability) and excellent biocompatibility of silicon nanoparticles (SiNPs) are superbly suitable for direct and long-term visualization of biological systems. The strongly fluorescent SiNPs are highly effective for bioimaging applications, especially for long-term cellular labeling, cancer cell detection, and tumor imaging in vitro and in vivo with high sensitivity. Next, we discuss the utilization of silicon nanomaterials to construct high-performance biosensors, such as silicon-based field-effect transistors (FET) and surface-enhanced Raman scattering (SERS) sensors, which hold great promise for ultrasensitive and selective detection of biological species (e.g., DNA and protein). Then, we introduce recent exciting research findings on the applications of silicon nanomaterials for cancer therapy with encouraging therapeutic outcomes. Lastly, we highlight the major challenges and promises in this field, and the prospect of a new nanobiotechnology platform based on silicon nanomaterials.

  10. A Fundamental Study of Inorganic Clathrate and Other Open-Framework Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolas, George

    Due to formidable synthetic challenges, many materials of scientific and technological interest are first obtained as microcrystalline powders. High purity, high yield processing techniques are often lacking and thus care must be taken in interpretation of the observed structural, chemical, and physical properties of powder or polycrystalline materials, which can be strongly influenced by extrinsic properties. Furthermore, the preparation of high-quality single crystals for many materials by traditional techniques can be especially challenging in cases where the elemental constituents have greatly differing melting points and/or vapor pressures, when the desired compound is thermodynamically metastable, or where growth with participation ofmore » the melt is generally not possible. New processing techniques are therefore imperative in order to investigate the intrinsic properties of these materials and elucidate their fundamental physical properties. Intermetallic clathrates constitute one such class of materials. The complex crystal structures of intermetallic clathrates are characterized by mainly group 14 host frameworks encapsulating guest-ions in polyhedral cages. The unique features of clathrate structures are intimately related to their physical properties, offering ideal systems for the study of structure-property relationships in crystalline solids. Moreover, intermetallic clathrates are being actively investigated due to their potential for application in thermoelectrics, photovoltaics and opto-electronics, superconductivity, and magnetocaloric technologies. We have developed different processing techniques in order to synthesize phase-pure high yield clathrates reproducibly, as well as grow single crystals for the first time. We also employed these techniques to synthesize new “open-framework” compounds. These advances in materials processing and crystal growth allowed for the investigation of the physical properties of a variety of different clathrate compositions for the first time.« less

  11. A Model Vocational High Technology in Health Care Demonstration Project. Final Performance Report.

    ERIC Educational Resources Information Center

    Valencia Community Coll., Orlando, FL.

    A unique training program in high tech obstetrical, neonatal, and pediatric nursing care areas was designed to be offered on site at Orlando (Florida) Regional Medical/Arnold Palmer Hospital for Children and Women. The training program offered 16 different courses to 355 employees over the 18-month period of the project. A needs assessment was…

  12. Georgia on Our Minds

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2011-01-01

    Oil pastels offer many advantages. They come in a large range of hues, intensities and values, and they lend themselves to blending and shading in a unique way that no other art medium offers. They can be worked and reworked from day to day by the students without the large mess and cleanup time that oil paints require. An artist whose works are a…

  13. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting

    NASA Astrophysics Data System (ADS)

    Nie, Xiang-Kun; Xu, Yi-Ting; Song, Zhi-Ling; Ding, Ding; Gao, Feng; Liang, Hao; Chen, Long; Bian, Xia; Chen, Zhuo; Tan, Weihong

    2014-10-01

    Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities.Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03837a

  14. Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak

    NASA Astrophysics Data System (ADS)

    Wong, Zi Jing; Wang, Yuan; O'Brien, Kevin; Rho, Junsuk; Yin, Xiaobo; Zhang, Shuang; Fang, Nicholas; Yen, Ta-Jen; Zhang, Xiang

    2017-08-01

    Metamaterials are artificially engineered materials that exhibit novel properties beyond natural materials. By carefully designing the subwavelength unit cell structures, unique effective properties that do not exist in nature can be attained. Our metamaterial research aims to develop new subwavelength structures with unique physics and experimentally demonstrate unprecedented properties. Here we review our research efforts in optical and acoustic metamaterials in the past 15 years which may lead to exciting applications in communications, sensing and imaging.

  15. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties

    NASA Astrophysics Data System (ADS)

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan

    2017-04-01

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.

  16. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties

    PubMed Central

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan

    2017-01-01

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments. PMID:28387345

  17. Targeting Unique Metabolic Properties of Breast Tumor Initiating Cells

    PubMed Central

    Feng, Weiguo; Gentles, Andrew; Nair, Ramesh V.; Huang, Min; Lin, Yuan; Lee, Cleo Y.; Cai, Shang; Scheeren, Ferenc A.; Kuo, Angera H.; Diehn, Maximilian

    2014-01-01

    Normal stem cells from a variety of tissues display unique metabolic properties compared to their more differentiated progeny. However, relatively little is known about heterogeneity of metabolic properties cancer stem cells, also called tumor initiating cells (TICs). In this study we show that, analogous to some normal stem cells, breast TICs have distinct metabolic properties compared to non-tumorigenic cancer cells (NTCs). Transcriptome profiling using RNA-Seq revealed TICs under-express genes involved in mitochondrial biology and mitochondrial oxidative phosphorylation and metabolic analyses revealed TICs preferentially perform glycolysis over oxidative phosphorylation compared to NTCs. Mechanistic analyses demonstrated that decreased expression and activity of pyruvate dehydrogenase (Pdh), a key regulator of oxidative phosphorylation, play a critical role in promoting the pro-glycolytic phenotype of TICs. Metabolic reprogramming via forced activation of Pdh preferentially eliminates TICs both in vitro and in vivo. Our findings reveal unique metabolic properties of TICs and demonstrate that metabolic reprogramming represents a promising strategy for targeting these cells. PMID:24497069

  18. 48 CFR 12.205 - Offers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... research, review existing product literature generally available in the industry to determine its adequacy... literature from offerors of commercial items in lieu of unique technical proposals. (b) Contracting officers...

  19. 48 CFR 12.205 - Offers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... research, review existing product literature generally available in the industry to determine its adequacy... literature from offerors of commercial items in lieu of unique technical proposals. (b) Contracting officers...

  20. 48 CFR 12.205 - Offers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... research, review existing product literature generally available in the industry to determine its adequacy... literature from offerors of commercial items in lieu of unique technical proposals. (b) Contracting officers...

  1. One-step, simple, and green synthesis of tin dioxide/graphene nanocomposites and their application to lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Jiang, Zaixing; Zhang, Dongjie; Li, Yue; Cheng, Hao; Wang, Mingqiang; Wang, Xueqin; Bai, Yongping; Lv, Haibao; Yao, Yongtao; Shao, Lu; Huang, Yudong

    2014-10-01

    Graphene with extraordinary thermal, mechanical and electrical properties offers possibilities in a variety of applications. Recent advances in the synthesis of graphene composites using supercritical fluids are highlighted. Supercritical fluids exhibit unique features for the synthesis of composites due to its low viscosity, high diffusivity, near-zero surface tension, and tunability. Here, we report the preparation of tin dioxide (SnO2)/graphene nanocomposite through supercritical CO2 method. It demonstrates that the SnO2 nanoparticles are homogeneously dispersed on the surface of graphene sheets with a particle size of 2.3-2.6 nm. The SnO2/graphene nanocomposites exhibit higher lithium storage capacity and better cycling performance compared to that of the similar CNT nanocomposites. The reported synthetic procedure is straightforward, green and inexpensive. And it may be readily adopted to produce large quantities of graphene based nanocomposites.

  2. 3D visualization of additive occlusion and tunable full-spectrum fluorescence in calcite

    PubMed Central

    Green, David C.; Ihli, Johannes; Thornton, Paul D.; Holden, Mark A.; Marzec, Bartosz; Kim, Yi-Yeoun; Kulak, Alex N.; Levenstein, Mark A.; Tang, Chiu; Lynch, Christophe; Webb, Stephen E. D.; Tynan, Christopher J.; Meldrum, Fiona C.

    2016-01-01

    From biomineralization to synthesis, organic additives provide an effective means of controlling crystallization processes. There is growing evidence that these additives are often occluded within the crystal lattice. This promises an elegant means of creating nanocomposites and tuning physical properties. Here we use the incorporation of sulfonated fluorescent dyes to gain new understanding of additive occlusion in calcite (CaCO3), and to link morphological changes to occlusion mechanisms. We demonstrate that these additives are incorporated within specific zones, as defined by the growth conditions, and show how occlusion can govern changes in crystal shape. Fluorescence spectroscopy and lifetime imaging microscopy also show that the dyes experience unique local environments within different zones. Our strategy is then extended to simultaneously incorporate mixtures of dyes, whose fluorescence cascade creates calcite nanoparticles that fluoresce white. This offers a simple strategy for generating biocompatible and stable fluorescent nanoparticles whose output can be tuned as required. PMID:27857076

  3. Imperceptible magnetoelectronics

    PubMed Central

    Melzer, Michael; Kaltenbrunner, Martin; Makarov, Denys; Karnaushenko, Dmitriy; Karnaushenko, Daniil; Sekitani, Tsuyoshi; Someya, Takao; Schmidt, Oliver G.

    2015-01-01

    Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m−2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices. PMID:25607534

  4. Noninvasive identification of bladder cancer with subsurface backscattered light

    NASA Astrophysics Data System (ADS)

    Bigio, Irving J.; Mourant, Judith R.; Boyer, James D.; Johnson, Tamara M.; Shimada, Tsutomu; Conn, Richard L.

    1994-05-01

    We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. Absorption bands in the tissue also add useful complexity to the spectral data collected. The data acquisition and storage/display time with the OBS instrument is approximately 1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of- the-art methods, the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amendable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g., as in skin cancer or cervical cancer). We report here specifically on its potential application in the detection of bladder cancer.

  5. Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer

    NASA Astrophysics Data System (ADS)

    Liang, Yeru; Wu, Dingcai; Fu, Ruowen

    2013-01-01

    Electrospinning offers a powerful route for building one-dimensional (1D) micro/nanostructures, but a common requirement for toxic or corrosive organic solvents during the preparation of precursor solution has limited their large scale synthesis and broad applications. Here we report a facile and low-cost way to prepare 1D porous carbon microfibers by using an electrospun fiber-like natural product, i.e., silk cocoon, as precursor. We surprisingly found that by utilizing a simple carbonization treatment, the cocoon microfiber can be directly transformed into 1D carbon microfiber of ca. 6 μm diameter with a unique three-dimensional porous network structure composed of interconnected carbon nanoparticles of 10~40 nm diameter. We further showed that the as-prepared carbon product presents superior electrochemical performance as binder-free electrodes of supercapacitors and good adsorption property toward organic vapor.

  6. Anapole nanolasers for mode-locking and ultrafast pulse generation

    PubMed Central

    Totero Gongora, Juan S.; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2017-01-01

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry. PMID:28561017

  7. Identification of an iridium(III) complex with anti-bacterial and anti-cancer activity

    PubMed Central

    Lu, Lihua; Liu, Li-Juan; Chao, Wei-chieh; Zhong, Hai-Jing; Wang, Modi; Chen, Xiu-Ping; Lu, Jin-Jian; Li, Ruei-nian; Ma, Dik-Lung; Leung, Chung-Hang

    2015-01-01

    Group 9 transition metal complexes have been widely explored as therapeutic agents due to their unique geometry, their propensity to undergo ligand exchanges with biomolecules and their diverse steric and electronic properties. These metal complexes can offer distinct modes of action in living organisms compared to carbon-based molecules. In this study, we investigated the antimicrobial and anti-proliferative abilities of a series of cyclometallated iridium(III) complexes. The iridium(III) complex 1 inhibited the growth of S. aureus with MIC and MBC values of 3.60 and 7.19 μM, respectively, indicating its potent bactericidal activity. Moreover, complex 1 also exhibited cytotoxicity against a number of cancer cell lines, with particular potency against ovarian, cervical and melanoma cells. This cyclometallated iridium(III) complex is the first example of a substitutionally-inert, Group 9 organometallic compound utilized as a direct and selective inhibitor of S. aureus. PMID:26416333

  8. Imperceptible magnetoelectronics

    NASA Astrophysics Data System (ADS)

    Melzer, Michael; Kaltenbrunner, Martin; Makarov, Denys; Karnaushenko, Dmitriy; Karnaushenko, Daniil; Sekitani, Tsuyoshi; Someya, Takao; Schmidt, Oliver G.

    2015-01-01

    Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m-2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices.

  9. Highly compressible 3D periodic graphene aerogel microlattices

    PubMed Central

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  10. Stable Radical Materials for Energy Applications.

    PubMed

    Wilcox, Daniel A; Agarkar, Varad; Mukherjee, Sanjoy; Boudouris, Bryan W

    2018-06-07

    Although less studied than their closed-shell counterparts, materials containing stable open-shell chemistries have played a key role in many energy storage and energy conversion devices. In particular, the oxidation-reduction (redox) properties of these stable radicals have made them a substantial contributor to the progress of organic batteries. Moreover, the use of radical-based materials in photovoltaic devices and thermoelectric systems has allowed for these emerging molecules to have impacts in the energy conversion realm. Additionally, the unique doublet states of radical-based materials provide access to otherwise inaccessible spin states in optoelectronic devices, offering many new opportunities for efficient usage of energy in light-emitting devices. Here, we review the current state of the art regarding the molecular design, synthesis, and application of stable radicals in these energy-related applications. Finally, we point to fundamental and applied arenas of future promise for these designer open-shell molecules, which have only just begun to be evaluated in full.

  11. Investigation of burn effect on skin using simultaneous Raman-Brillouin spectroscopy, and fluorescence microspectroscopy

    NASA Astrophysics Data System (ADS)

    Coker, Zachary; Meng, Zhaokai; Troyanova-Wood, Maria; Traverso, Andrew; Ballmann, Charles; Petrov, Georgi; Ibey, Bennett L.; Yakovlev, Vladislav

    2017-02-01

    Burns are thermal injuries that can completely damage or at least compromise the protective function of skin, and affect the ability of tissues to manage moisture. Burn-damaged tissues exhibit lower elasticity than healthy tissues, due to significantly reduced water concentrations and plasma retention. Current methods for determining burn intensity are limited to visual inspection, and potential hospital x-ray examination. We present a unique confocal microscope capable of measuring Raman and Brillouin spectra simultaneously, with concurrent fluorescence investigation from a single spatial location, and demonstrate application by investigating and characterizing the properties of burn-afflicted tissue on chicken skin model. Raman and Brillouin scattering offer complementary information about a material's chemical and mechanical structure, while fluorescence can serve as a useful diagnostic indicator and imaging tool. The developed instrument has the potential for very diverse analytical applications in basic biomedical science and biomedical diagnostics and imaging.

  12. Fatigue of Nitinol: The state-of-the-art and ongoing challenges.

    PubMed

    Mahtabi, M J; Shamsaei, Nima; Mitchell, M R

    2015-10-01

    Nitinol, a nearly equiatomic alloy of nickel and titanium, has been considered for a wide range of applications including medical and dental devices and implants as well as aerospace and automotive components and structures. The realistic loading condition in many of these applications is cyclic; therefore, fatigue is often the main failure mode for such components and structures. The fatigue behavior of Nitinol involves many more complexities compared with traditional metal alloys arising from its uniqueness in material properties such as superelasticity and shape memory effects. In this paper, a review of the present state-of-the-art on the fatigue behavior of superelastic Nitinol is presented. Various aspects of fatigue of Nitinol are discussed and microstructural effects are explained. Effects of material preparation and testing conditions are also reviewed. Finally, several conclusions are made and recommendations for future works are offered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Selection of Single-Walled Carbon Nanotube with Narrow Diameter Distribution by Using a PPE PPV Copolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Kelly A; Chen, Yusheng; Malkovskiy, Andrey

    2012-01-01

    Electronic and mechanic properties of single-walled carbon nanotubes (SWNTs) are uniquely dependent on the tube's chiralities and diameters. Isolation of different type SWNTs remains one of the fundamental and challenging issues in nanotube science. Herein, we demonstrate that SWNTs can be effectively enriched to a narrow diameter range by sequential treatment of the HiPco sample with nitric acid and a {pi}-conjugated copolymer poly(phenyleneethynylene) (PPE)-co-poly(phenylenevinylene) (PPV). On the basis of Raman, fluorescence, and microscopic evidence, the nitric acid is found to selectively remove the SWNTs of small diameter. The polymer not only effectively dispersed carbon nanotubes but also exhibited a goodmore » selectivity toward a few SWNTs. The reported approach thus offers a new methodology to isolate SWNTs, which has the potential to operate in a relatively large scale.« less

  14. Mechanism on brain information processing: Energy coding

    NASA Astrophysics Data System (ADS)

    Wang, Rubin; Zhang, Zhikang; Jiao, Xianfa

    2006-09-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, the authors present a brand new scientific theory that offers a unique mechanism for brain information processing. They demonstrate that the neural coding produced by the activity of the brain is well described by the theory of energy coding. Due to the energy coding model's ability to reveal mechanisms of brain information processing based upon known biophysical properties, they cannot only reproduce various experimental results of neuroelectrophysiology but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, they estimate that the theory has very important consequences for quantitative research of cognitive function.

  15. Antibody repertoire development in camelids.

    PubMed

    De Genst, Erwin; Saerens, Dirk; Muyldermans, Serge; Conrath, Katja

    2006-01-01

    The humoral immune response of the Camelidae is unique as these animals are the only known mammals that seem to possess functional homodimeric heavy-chain antibodies besides the classical heteromeric antibodies composed of heavy (H) and light (L) chains. By definition, the heavy-chain antibodies lack the L-chain, and it was noticed that their H-chain is devoid of the typical first constant domain (CH1) and contains a dedicated variable domain, referred to as VHH. The VHH exon is assembled from separate V-D-J gene segments. The recombined VHH region is subjected to somatic hypermutations; however, the timing and actual mechanism of the class switch from mu to the dedicated gamma-isotype remains elusive. Interestingly, antigen-specific VHHs are easily retrieved after panning of a phage-displayed rearranged V-gene pool cloned from an immunised camelid. These single-domain antigen binding entities possess a number of biophysical properties that offer particular advantages in various medical and biotechnological applications.

  16. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface

    PubMed Central

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T.; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M.; Wan, Kai-Tak; Jung, Yung Joon

    2015-01-01

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems. PMID:26511284

  17. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface.

    PubMed

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M; Wan, Kai-Tak; Jung, Yung Joon

    2015-10-29

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems.

  18. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  19. Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends

    PubMed Central

    2018-01-01

    Group 4 metal-based metal–organic frameworks (MIV-MOFs), including Ti-, Zr-, and Hf-based MOFs, are one of the most attractive classes of MOF materials owing to their superior chemical stability and structural tunability. Despite being a relatively new field, MIV-MOFs have attracted significant research attention in the past few years, leading to exciting advances in syntheses and applications. In this outlook, we start with a brief overview of the history and current status of MIV-MOFs, emphasizing the challenges encountered in their syntheses. The unique properties of MIV-MOFs are discussed, including their high chemical stability and strong tolerance toward defects. Particular emphasis is placed on defect engineering in Zr-MOFs which offers additional routes to tailor their functions. Photocatalysis of MIV-MOF is introduced as a representative example of their emerging applications. Finally, we conclude with the perspective of new opportunities in synthesis and defect engineering. PMID:29721526

  20. Cooperativity in Monomeric Enzymes with Single Ligand-Binding Sites

    PubMed Central

    Porter, Carol M.

    2011-01-01

    Cooperativity is widespread in biology. It empowers a variety of regulatory mechanisms and impacts both the kinetic and thermodynamic properties of macromolecular systems. Traditionally, cooperativity is viewed as requiring the participation of multiple, spatially distinct binding sites that communicate via ligand-induced structural rearrangements; however, cooperativity requires neither multiple ligand binding events nor multimeric assemblies. An underappreciated manifestation of cooperativity has been observed in the non-Michaelis-Menten kinetic response of certain monomeric enzymes that possess only a single ligand-binding site. In this review, we present an overview of kinetic cooperativity in monomeric enzymes. We discuss the primary mechanisms postulated to give rise to monomeric cooperativity and highlight modern experimental methods that could offer new insights into the nature of this phenomenon. We conclude with an updated list of single subunit enzymes that are suspected of displaying cooperativity, and a discussion of the biological significance of this unique kinetic response. PMID:22137502

  1. Characterization of an Autonomous Non-Volatile Ferroelectric Memory Latch

    NASA Technical Reports Server (NTRS)

    John, Caroline S.; MacLeod, Todd C.; Evans, Joe; Ho, Fat D.

    2011-01-01

    We present the electrical characterization of an autonomous non-volatile ferroelectric memory latch using the principle that when an electric field is applied to a ferroelectriccapacitor,the positive and negative remnant polarization charge states of the capacitor are denoted as either data 0 or data 1. The properties of the ferroelectric material to store an electric polarization in the absence of an electric field make the device non-volatile. Further the memory latch is autonomous as it operates with the ground, power and output node connections, without any externally clocked control line. The unique quality of this latch circuit is that it can be written when powered off. The advantages of this latch over flash memories are: a) It offers unlimited reads/writes b) works on symmetrical read/write cycles. c) The latch is asynchronous. The circuit was initially developed by Radiant Technologies Inc., Albuquerque, New Mexico.

  2. Studies of self-reciprocating characteristic of carbon nanotube film-based cantilevers under light and thermal radiation.

    PubMed

    Gong, Zhongcheng; Tseng, Yi-Hsuan; He, Yuan; Que, Long

    2012-01-01

    Self-reciprocating characteristic of carbon nanotube film (CNF)-Cu cantilevers upon exposure to light and thermal radiation was observed. This unique characteristic offers an attractive technical platform for harvesting solar and thermal energies on a single chip, which has been demonstrated recently. This paper reports the detailed experimental studies of this phenomenon. It reveals that the low-frequency self-reciprocation, sensitive to the thicknesses of CNF and Cu and the intensity of the light and thermal radiation, is mainly attributed to the electrostatic interaction among randomly connected carbon nanotubes (CNTs) in CNF. This is due to the fact that electrical currents in CNF induced by light and thermal radiation also exhibit an oscillating characteristic, similar to the self-reciprocating characteristic of the CNF-Cu cantilevers. The mechanism for this observed phenomenon is also discussed by relating the optical, thermal, electrical, elastic and mechanical properties of the CNF.

  3. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions

    PubMed Central

    Katsuki, Fumi; Constantinidis, Christos

    2012-01-01

    The dorsolateral prefrontal cortex (PFC) and posterior parietal cortex (PPC) are two parts of a broader brain network involved in the control of cognitive functions such as working-memory, spatial attention, and decision-making. The two areas share many functional properties and exhibit similar patterns of activation during the execution of mental operations. However, neurophysiological experiments in non-human primates have also documented subtle differences, revealing functional specialization within the fronto-parietal network. These differences include the ability of the PFC to influence memory performance, attention allocation, and motor responses to a greater extent, and to resist interference by distracting stimuli. In recent years, distinct cellular and anatomical differences have been identified, offering insights into how functional specialization is achieved. This article reviews the common functions and functional differences between the PFC and PPC, and their underlying mechanisms. PMID:22563310

  4. Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Zhang, Baile

    2016-11-01

    Lorentz-violating type-II Weyl fermions, which were missed in Weyl's prediction of nowadays classified type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems. The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern number. Our study also provides an approach of constructing acoustic topological phases at different dimensions with the same building blocks.

  5. Development of Platinum(iv) Complexes as Anticancer Prodrugs: the Story so Far

    NASA Astrophysics Data System (ADS)

    Wong, Daniel Yuan Qiang; Ang, Wee Han

    2012-06-01

    The serendipitous discovery of the antitumor properties of cisplatin by Barnett Rosenberg some forty years ago brought about a paradigm shift in the field of medicinal chemistry and challenged conventional thinking regarding the role of potentially toxic heavy metals in drugs. Platinum(II)-based anticancer drugs have since become some of the most effective and widely-used drugs in a clinician's arsenal and have saved countless lives. However, they are limited by high toxicity, severe side-effects and the incidence of drug resistance. In recent years, attention has shifted to stable platinum(IV) complexes as anticancer prodrugs. By exploiting the unique chemical and structural attributes of their scaffolds, these platinum(IV) prodrugs offer new strategies of targeting and killing cancer cells. This review summarizes the development of anticancer platinum(IV) prodrugs to date and some of the exciting strategies that utilise the platinum(IV) construct as targeted chemotherapeutic agents against cancer.

  6. Three-dimensional graphdiyne as a topological nodal-line semimetal

    NASA Astrophysics Data System (ADS)

    Nomura, Takafumi; Habe, Tetsuro; Sakamoto, Ryota; Koshino, Mikito

    2018-05-01

    We study the electronic band structure of three-dimensional ABC-stacked (rhombohedral) graphdiyne, which is a new planar carbon allotrope recently fabricated. Using first-principles calculation, we show that the system is a nodal-line semimetal, in which the conduction band and valence band cross at a closed ring in the momentum space. We derive the minimum tight-binding model and the low-energy effective Hamiltonian in a 4 ×4 matrix form. The nodal line is protected by a nontrivial winding number, and it ensures the existence of the topological surface state in a finite-thickness slab. The Fermi surface of the doped system exhibits a peculiar, self-intersecting hourglass structure, which is quite different from the torus or pipe shape in the previously proposed nodal semimetals. Despite its simple configuration, three-dimensional graphdiyne offers unique electronic properties distinct from any other carbon allotropes.

  7. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility

    NASA Astrophysics Data System (ADS)

    Olejník, K.; Schuler, V.; Marti, X.; Novák, V.; Kašpar, Z.; Wadley, P.; Campion, R. P.; Edmonds, K. W.; Gallagher, B. L.; Garces, J.; Baumgartner, M.; Gambardella, P.; Jungwirth, T.

    2017-05-01

    Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III-V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets.

  8. Atomic-Scale Characterization of Oxide Interfaces and Superlattices Using Scanning Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spurgeon, Steven R.; Chambers, Scott A.

    Scanning transmission electron microscopy (STEM) has become one of the fundamental tools to characterize oxide interfaces and superlattices. Atomic-scale structure, chemistry, and composition mapping can now be conducted on a wide variety of materials systems thanks to the development of aberration-correctors and advanced detectors. STEM imaging and diffraction, coupled with electron energy loss (EELS) and energy-dispersive X-ray (EDS) spectroscopies, offer unparalleled, high-resolution analysis of structure-property relationships. In this chapter we highlight investigations into key phenomena, including interfacial conductivity in oxide superlattices, charge screening effects in magnetoelectric heterostructures, the design of high-quality iron oxide interfaces, and the complex physics governing atomic-scalemore » chemical mapping. These studies illustrate how unique insights from STEM characterization can be integrated with other techniques and first-principles calculations to develop better models for the behavior of functional oxides.« less

  9. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery

    PubMed Central

    Wolf, Daniel A.; Hesterman, Jacob Y.; Sullivan, Jenna M.; Orcutt, Kelly D.; Silva, Matthew D.; Lobo, Merryl; Wellman, Tyler; Hoppin, Jack

    2016-01-01

    The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI. Using simultaneous dual-isotope imaging, we demonstrate that the regional CNS tissue exposure of molecules with varying chemical properties is affected by IT space anatomy, cerebrospinal fluid (CSF) dynamics, CSF clearance routes, and the location and volume of the injected bolus. These imaging approaches can be used across species to optimize the safety and efficacy of IT drug therapy for neurological disorders. PMID:27699254

  10. Synthesis of Metal Nanoparticles in Metal-Phenolic Networks: Catalytic and Antimicrobial Applications of Coated Textiles.

    PubMed

    Yun, Gyeongwon; Pan, Shuaijun; Wang, Ting-Yi; Guo, Junling; Richardson, Joseph J; Caruso, Frank

    2018-03-01

    The synthesis of metal nanoparticle (NP)-coated textiles (nanotextiles) is achieved by a dipping process in water without toxic chemicals or complicated synthetic procedures. By taking advantage of the unique nature of tannic acid, metal-phenolic network-coated textiles serve as reducing and stabilizing sites for the generation of metal nanoparticles of controllable size. The textiles can be decorated with various metal nanoparticles, including palladium, silver, or gold, and exhibit properties derived from the presence of the metal nanoparticles, for example, catalytic activity in water (>96% over five cycles using palladium nanoparticles) and antibacterial activity against Gram-negative bacteria (inhibition of Escherichia coli using silver nanoparticles) that outperforms a commercial bandage. The reported strategy offers opportunities for the development of hybrid nanomaterials that may have application in fields outside of catalysis and antimicrobials, such as sensing and smart clothing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The unusual dynamics of parasite actin result from isodesmic polymerization

    PubMed Central

    Skillman, Kristen M.; Ma, Christopher I.; Fremont, Daved H.; Diraviyam, Karthikeyan; Cooper, John A.; Sept, David; Sibley, L. David

    2013-01-01

    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here, we re-examine the polymerization properties of actin in Toxoplasma gondii (TgACTI), unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. TgACTI polymerization kinetics lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly, and the size distribution of TgACTI filaments in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers. PMID:23921463

  12. Supramolecular reactivity in the gas phase: investigating the intrinsic properties of non-covalent complexes.

    PubMed

    Cera, Luca; Schalley, Christoph A

    2014-03-21

    The high vacuum inside a mass spectrometer offers unique conditions to broaden our view on the reactivity of supramolecules. Because dynamic exchange processes between complexes are efficiently suppressed, the intrinsic and intramolecular reactivity of the complexes of interest is observed. Besides this, the significantly higher strength of non-covalent interactions in the absence of competing solvent allows processes to occur that are unable to compete in solution. The present review highlights a series of examples illustrating different aspects of supramolecular gas-phase reactivity ranging from the dissociation and formation of covalent bonds in non-covalent complexes through the reactivity in the restricted inner phase of container molecules and step-by-step mechanistic studies of organocatalytic reaction cycles to cage contraction reactions, processes induced by electron capture, and finally dynamic molecular motion within non-covalent complexes as unravelled by hydrogen-deuterium exchange processes performed in the gas phase.

  13. Ultralow-frequency collective compression mode and strong interlayer coupling in multilayer black phosphorus

    DOE PAGES

    Dong, Shan; Zhang, Anmin; Liu, Kai; ...

    2016-02-26

    The recent renaissance of black phosphorus (BP) as a two-dimensional (2D) layered material has generated tremendous interest, but its unique structural characters underlying many of its outstanding properties still need elucidation. Here we report Raman measurements that reveal an ultralow-frequency collective compression mode (CCM) in BP, which is unprecedented among similar 2D layered materials. This novel CCM indicates an unusually strong interlayer coupling, and this result is quantitatively supported by a phonon frequency analysis and first-principles calculations. Moreover, the CCM and another branch of low-frequency Raman modes shift sensitively with changing number of layers, allowing an accurate determination of themore » thickness up to tens of atomic layers, which is considerably higher than previously achieved by using high-frequency Raman modes. Lastly, these findings offer fundamental insights and practical tools for further exploration of BP as a highly promising new 2D semiconductor.« less

  14. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review.

    PubMed

    Jiang, Jiang; Xiong, Youling L

    2016-10-01

    Fresh and processed meats offer numerous nutritional and health benefits and provide unique eating satisfaction in the lifestyle of the modern society. However, consumption of red meat including processed products is subjected to increasing scrutiny due to the health risks associated with cytotoxins that potentially could be generated during meat preparation. Evidence from recent studies suggests free radical pathways as a plausible mechanism for toxin formation, and antioxidants have shown promise to mitigate process-generated chemical hazards. The present review discusses the involvements of lipid and protein oxidation in meat quality, nutrition, safety, and organoleptic properties; animal production and meat processing strategies which incorporate natural antioxidants to enhance the nutritional and health benefits of meat; and the application of mixed or purified natural antioxidants to eliminate or minimize the formation of carcinogens for chemical safety of cooked and processed meats. Copyright © 2016. Published by Elsevier Ltd.

  15. Energy coding in biological neural networks

    PubMed Central

    Zhang, Zhikang

    2007-01-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model’s ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function. PMID:19003513

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sypek, John T.; Yu, Hang; Dusoe, Keith J.

    Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less

  17. Sub-Shot-Noise Transmission Measurement Enabled by Active Feed-Forward of Heralded Single Photons

    NASA Astrophysics Data System (ADS)

    Sabines-Chesterking, J.; Whittaker, R.; Joshi, S. K.; Birchall, P. M.; Moreau, P. A.; McMillan, A.; Cable, H. V.; O'Brien, J. L.; Rarity, J. G.; Matthews, J. C. F.

    2017-07-01

    Harnessing the unique properties of quantum mechanics offers the possibility of delivering alternative technologies that can fundamentally outperform their classical counterparts. These technologies deliver advantages only when components operate with performance beyond specific thresholds. For optical quantum metrology, the biggest challenge that impacts on performance thresholds is optical loss. Here, we demonstrate how including an optical delay and an optical switch in a feed-forward configuration with a stable and efficient correlated photon-pair source reduces the detector efficiency required to enable quantum-enhanced sensing down to the detection level of single photons and without postselection. When the switch is active, we observe a factor of improvement in precision of 1.27 for transmission measurement on a per-input-photon basis compared to the performance of a laser emitting an ideal coherent state and measured with the same detection efficiency as our setup. When the switch is inoperative, we observe no quantum advantage.

  18. Time-Resolved Detection of Fingermarks on Non-Porous and Semi-Porous Substrates Using Sr2MgSi2O7:Eu2+, Dy3+ Phosphors.

    PubMed

    Xiong, Xiaobo; Yuan, Ximing; Song, Jiangqi; Yin, Guoxiang

    2016-06-01

    Eu(2+), Dy(3+) co-doped strontium-magnesium silicate phosphors, Sr2MgSi2O7:Eu(2+), Dy(3+) (SMSEDs), have shown great potential in optoelectronic device due to their unique luminescent property. However, their potential applications in forensic science, latent fingermark detection in particular, are still being investigated. In this contribution, SMSEDs were successfully employed to latent fingermarks on a variety of non-porous and semi-porous surfaces, including aluminum foil, porcelain, glass, painted wood, colored paper, and leather. All the results illustrated that this luminescent powder, as a long-lasting phosphorescence material (LLP), was an ideal time-resolved detection reagent of fingermark for elimination of background interferences from various difficult substrates, and offered a good contrast to allow their identification without the need to enhance the results compared to nanosized organic fluorescent powder. © The Author(s) 2016.

  19. Perspective: The future of quantum dot photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Norman, Justin C.; Jung, Daehwan; Wan, Yating; Bowers, John E.

    2018-03-01

    Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS) foundries.

  20. Preparation of sandwich-structured graphene/mesoporous silica composites with C8-modified pore wall for highly efficient selective enrichment of endogenous peptides for mass spectrometry analysis.

    PubMed

    Yin, Peng; Wang, Yuhua; Li, Yan; Deng, Chunhui; Zhang, Xiangmin; Yang, Pengyuan

    2012-09-01

    In this study, sandwich-structured graphene/mesoporous silica composites (C8-modified graphene@mSiO(2)) were synthesized by coating mesoporous silica onto hydrophilic graphene nanosheets through a surfactant-mediated cocondensation sol-gel process. The newly prepared C8-modified graphene@mSiO(2) nanocomposites possess unique properties of extended plate-like morphology, good water dispersibility, highly open pore structure, uniform pore size (2.8 nm), high surface area (632 m(2)/g), and C8-modified-interior pore walls. The unique structure of the C8-modified graphene@mSiO(2) composite nanosheets not only provide extended planes with hydrophilic surface that prevents aggregation in solution, but also offer a huge number of C8-modified mesopores with high surface area that can ensure an efficient adsorption of peptides through hydrophobic-hydrophobic interaction between C8-moified pore walls and target molecules. The obtained C8-modified graphene@mSiO(2) materials were utilized for size selectively and specifically enriching peptides in standard peptide mixtures and endogenous peptides in real biological samples (mouse brain tissue). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top