Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... for non-display of Primary Pegged Orders with an offset amount. The text of the proposed rule change... Exchange's current rule, Midpoint Pegged Orders are not displayed, while Primary and Market Pegged Orders... ``quote flickering.'' A rule change to eliminate display of Primary Pegged Orders with an offset amount...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... Primary Pegged Orders with an offset amount will never be displayed. The text of the proposed rule change.... Under the Exchange's current rule, Midpoint Pegged Orders are not displayed, while Primary and Market... messaging and ``quote flickering.'' A [[Page 20672
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... offset amount will not be displayed,\\3\\ a change to improve system and inter-market price stability. The... Change To Delay the Implementation of Non-Display of Primary Pegged Orders With an Offset Amount August 1... Proposed Rule Change The Exchange proposes a rule change to delay the implementation date for its rule...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... a Market Maker from designating a more aggressive offset from the National Best Bid or National Best... designates a more aggressive offset from the National Best Bid or National Best Offer, the price of a Market... more aggressive (i.e., smaller) than the Designated Percentage for any given Market Maker Peg Order...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... quotation for display to comply with market making obligations. Compliant displayed quotations are... able to qualify as bona-fide market making for purposes of Regulation SHO, depending on the facts and... making is appropriate with respect to the particular Market Maker Peg Order and its designated offset...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
...) to add a new order type, the NBBO Offset Peg Order, to the rule. The text of the proposed rule change... Change Relating to EDGX Rule 11.5 To Add a New Order Type October 2, 2012. Pursuant to Section 19(b)(1... and discussed any comments it received on the proposed rule change. The text of these statements may...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
...) to add a new order type, the NBBO Offset Peg Order, to the rule. The text of the proposed rule change... Change Relating to EDGA Rule 11.5 To Add a New Order Type October 2, 2012. Pursuant to Section 19(b)(1... and discussed any comments it received on the proposed rule change. The text of these statements may...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... EDGA Members. The text of the proposed rule change is available on the Exchange's Internet Web site at... received on the proposed rule change. The text of these statements may be examined at the places specified... proposes to amend Rule 11.5(c)(15), the NBBO Offset Peg Order, to state that the order type will: (1) Only...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... EDGX Members. The text of the proposed rule change is available on the Exchange's Internet Web site at... received on the proposed rule change. The text of these statements may be examined at the places specified... proposes to amend Rule 11.5(c)(15), the NBBO Offset Peg Order, to state that the order type will: (1) Only...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... not be displayed,\\3\\ a change that will improve system and inter-market price stability. The display... Delay the Implementation Date of Non-Display of Primary Pegged Orders With an Offset Amount August 1... Proposed Rule Change The Exchange proposes a rule change to delay the implementation date for its rule...
Cesari, A B; Paulucci, N S; Biasutti, M A; Reguera, Y B; Gallarato, L A; Kilmurray, C; Dardanelli, M S
2016-01-01
We study the Azospirillum brasilense tolerance to water deficit and the dynamics of adaptive process at the level of the membrane. Azospirillum brasilense was exposed to polyethylene glycol (PEG) growth and PEG shock. Tolerance, phospholipids and fatty acid (FA) composition and membrane fluidity were determined. Azospirillum brasilense was able to grow in the presence of PEG; however, its viability was reduced. Cells grown with PEG showed membrane fluidity similar to those grown without, the lipid composition was modified, increasing phosphatidylcholine and decreasing phosphatidylethanolamine amounts. The unsaturation FAs degree was reduced. The dynamics of the adaptive response revealed a decrease in fluidity 20 min after the addition of PEG, indicating that the PEG has a fluidizing effect on the hydrophobic region of the cell membrane. Fluidity returned to initial values after 60 min of PEG exposure. Azospirillum brasilense is able to perceive osmotic changes by changing the membrane fluidity. This effect is offset by changes in the composition of membrane phospholipid and FA, contributing to the homeostasis of membrane fluidity under water deficit. This knowledge can be used to develop new Azospirillum brasilense formulations showing an adapted membrane to water deficit. © 2015 The Society for Applied Microbiology.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
... on the book at $1.105, an incoming Midpoint Peg Post-Only Order to sell will also post to the book at... non-displayed trading interest. Midpoint Peg Post-Only Orders that post to the book and lock a pre... the non-displayed Midpoint Peg Post-Only Order will not execute before an order already on the book...
Veenaas, Cathrin; Haglund, Peter
2018-02-09
The characterization and identification of compounds in complex real-world samples is quite difficult and new concepts and workflows are highly desirable. Retention indices (RIs) are widely used in gas chromatography (GC) to support the identification of unknown compounds. Several attempts have been made to introduce a similar concept for the second dimension in comprehensive two-dimensional (2D) GC (GC × GC) but, an easily applicable and robust system remains elusive. In the present study, a new RI system for GC × GC was developed. Polyethylene glycols (PEGs) were used in combination with a simple linear regression, with n-alkanes as reference points for virtually unretained compounds and PEG homologs as reference compounds for second-dimension RIs (PEG- 2 I). The n-alkanes were assigned a PEG- 2 I of zero and the distance between consecutive PEG homologs from PEG-2 (diethylene glycol) and higher were assigned a PEG- 2 I value of 10. We used ethylene glycol and PEG-2 through PEG-10 as reference compounds, thereby covering a PEG- 2 I range from 20.0 for ethylene glycol, over 50.0 for diethylene glycol (PEG-2) to 130.0 for decaethylene glycol (PEG-10); additional PEGs can be added to cover a wider polarity range. The PEG- 2 I system was initially evaluated using a 30 m × 0.25 mm non-polar (5% phenyl, 0.25 μm film thickness) first-dimension column and a 1.6 m × 0.18 mm polar (50% phenyl, 0.18 μm film thickness) second-dimension column. This system was validated for use with non-polar first-dimension columns and a semi-polar (50% phenyl) second-dimension column, and exhibited robustness to changes in the carrier gas flow velocity, oven temperature ramping rate, and secondary oven temperature offset. An average relative standard deviation of 2.7%, equal to a 95% confidence interval of 1.27 PEG- 2 I units, was obtained for the PEG- 2 I values of 72 environmental pollutants. Additionally, the system was found to be applicable over a wide range of boiling points (in the current case, from n-heptane to n-dotriacontane (C 7 -C 32 )) and can be used with various column dimensions. Changing the second-dimension column to either a narrower 0.1 mm column or a wider 0.25 mm column, yielded similar 95%-percentiles to that of the 0.18 mm column, differing by only 3.20 and 2.80 PEG- 2 I units, respectively. Moreover, methods for improving the system were suggested. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
..., for stocks listed on the New York Stock Exchange LLC (the ``NYSE''), regular session orders can be... relative to other orders on the EDGA Book. The proposed rule change was published for comment in the... Exchange proposed to add a new order type, the Route Peg Order.\\5\\ A Route Peg Order would be a non...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... listed on the New York Stock Exchange LLC (the ``NYSE''), regular session orders can be posted to the... relative to other orders on the EDGX Book. The proposed rule change was published for comment in the... to add a new order type, the Route Peg Order.\\5\\ A Route Peg Order would be a non-displayed limit...
PEG and mPEG-anthracene induce DNA condensation and particle formation.
Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A
2011-08-18
In this study, we investigated the binding of DNA with poly(ethylene glycol) (PEG) of different sizes and compositions such as PEG 3350, PEG 6000, and mPEG-anthracene in aqueous solution at physiological conditions. The effects of size and composition on DNA aggregation and condensation as well as conformation were determined using Fourier transform infrared (FTIR), UV-visible, CD, fluorescence spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed moderate complex formation for PEG 3350 and PEG 6000 and weaker interaction for mPE-anthracene-DNA adducts with both hydrophilic and hydrophobic contacts. The order of ± stability of the complexes formed is K(PEG 6000) = 1.5 (±0.4) × 10(4) M(-1) > K(PEG 3350) = 7.9 (±1) × 10(3) M(-1) > K(m(PEG-anthracene))= 3.6 (±0.8) × 10(3) M(-1) with nearly 1 bound PEG molecule per DNA. No B-DNA conformational changes were observed, while DNA condensation and particle formation occurred at high PEG concentration.
Hu, Tianmu; Qahtan, Anwar Saeed Ahmed; Lei, Lei; Lei, Zhixin; Zhao, Dapeng; Nie, Hemin
2018-03-01
In order to improve the release pattern of chemotherapy drug and reduce the possibility of drug resistance, poly(ethylene glycol amine) (PEG)-modified alginate microparticles (ALG-PEG MPs) were developed then two different mechanisms were employed to load doxorubicin (Dox): 1) forming Dox/ALG-PEG complex by electrostatic attractions between unsaturated functional groups in Dox and ALG-PEG; 2) forming Dox-ALG-PEG complex through EDC-reaction between the amino and carboxyl groups in Dox and ALG, respectively. Additionally, tuftsin (TFT), a natural immunomodulation peptide, was conjugated to MPs in order to enhance the efficiency of cellular uptake. It was found that the Dox-ALG-PEG-TFT MPs exhibited a significantly slower release of Dox than Dox/ALG-PEG-TFT MPs in neutral medium, suggesting the role of covalent bonding in prolonging Dox retention. Besides, the release of Dox from these MPs was pH-sensitive, and the release rate was observably increased at pH 6.5 compared to the case at pH 7.4. Compared with Dox/ALG-PEG MPs and Dox-ALG-PEG MPs, their counterparts further conjugated with TFT more efficiently inhibited the growth of HeLa cells over a period of 48 h, implying the effectiveness of TFT in enhancing cellular uptake of MPs. Over a period of 48 h, Dox-ALG-PEG-TFT MPs inhibited the growth of HeLa cells less efficiently than Dox/ALG-PEG-TFT MPs but the difference was not significant ( p > 0.05). In consideration of the prolonged and sustained release of Dox, Dox-ALG-PEG-TFT MPs possess the advantages for long-term treatment.
Han, Xue; Hou, Jing; Xie, Jixun; Yin, Jian; Tong, Yi; Lu, Conghua; Möhwald, Helmuth
2016-06-29
Here we report a simple, novel, yet robust nonlithographic method for the controlled fabrication of two-dimensional (2-D) ordered arrays of polyethylene glycol (PEG) microspheres. It is based on the synergistic combination of two bottom-up processes enabling periodic structure formation for the first time: dewetting and the mechanical wrinkle formation. The deterministic dewetting results from the hydrophilic polymer PEG on an incompatible polystyrene (PS) film bound to a polydimethylsiloxane (PDMS) substrate, which is directed both by a wrinkled template and by the template-directed in-situ self-wrinkling PS/PDMS substrate. Two strategies have been introduced to achieve synergism to enhance the 2-D ordering, i.e., employing 2-D in-situ self-wrinkling substrates and boundary conditions. As a result, we achieve highly ordered 2-D arrays of PEG microspheres with desired self-organized microstructures, such as the array location (e.g., selectively on the crest/in the valley of the wrinkles), diameter, spacing of the microspheres, and array direction. Additionally, the coordination of PEG with HAuCl4 is utilized to fabricate 2-D ordered arrays of functional PEG-HAuCl4 composite microspheres, which are further converted into different Au nanoparticle arrays. This simple versatile combined strategy could be extended to fabricate highly ordered 2-D arrays of other functional materials and achieve desirable properties and functionalities.
NASA Astrophysics Data System (ADS)
Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng
2015-03-01
A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 103:3.0 × 104. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.
Han, Yuchun; Xia, Lin; Zhu, Linyi; Zhang, Shusheng; Li, Zhibo; Wang, Yilin
2012-10-30
The association behaviors of single-chain surfactant dodecyltrimethylammonium bromide (DTAB) with double hydrophilic block co-polymers poly(ethylene glycol)-b-poly(sodium glutamate) (PEG(113)-PGlu(50) or PEG(113)-PGlu(100)) were investigated using isothermal titration microcalorimetry, cryogenic transmission electron microscopy, circular dichroism, ζ potential, and particle size measurements. The electrostatic interaction between DTAB and the oppositely charged carboxylate groups of PEG-PGlu induces the formation of super-amphiphiles, which further self-assemble into ordered aggregates. Dependent upon the charge ratios between DTAB and the glutamic acid residue of the co-polymer, the mixture solutions can change from transparent to opalescent without precipitation. Dependent upon the chain length of the PGlu block, the mixture of DTAB and PEG-PGlu diblocks can form two different aggregates at their corresponding electroneutral point. Spherical and rod-like aggregates are formed in the PEG(113)-PGlu(50)/DTAB mixture, while the vesicular aggregates are observed in the PEG(113)-PGlu(100)/DTAB mixture solution. Because the PEG(113)-PGlu(100)/DTAB super-amphiphile has more hydrophobic components than that of the PEG(113)-PGlu(50)/DTAB super-amphiphile, the former prefers forming the ordered aggregates with higher curvature, such as spherical and rod aggregates, but the latter prefers forming vesicular aggregates with lower curvature.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... not apply to non-displayed trading interest. Midpoint Peg Post-Only Orders that post to the book and... Peg Post-Only Order has expressed its intention not to execute against posted liquidity, and therefore... book until it is removed by another order, cancelled by the user or its Time-in-Force expires. To...
Macroscopic and tunable nanoparticle superlattices
Zhang, Honghu; Wang, Wenjie; Mallapragada, Surya; ...
2016-10-24
In this paper, we describe a robust method to assemble nanoparticles into highly ordered superlattices by inducing aqueous phase separation of neutral capping polymers. Here we demonstrate the approach with thiolated polyethylene-glycol-functionalized gold nanoparticles (PEG-AuNPs) in the presence of salts (for example, K 2CO 3) in solutions that spontaneously migrate to the liquid–vapor interface to form a Gibbs monolayer. We show that by increasing salt concentration, PEG-AuNP monolayers transform from two-dimensional (2D) gas-like to liquid-like phase and eventually, beyond a threshold concentration, to a highly ordered hexagonal structure, as characterized by surface sensitive synchrotron X-ray reflectivity and grazing incidence X-raymore » diffraction. Furthermore, the method allows control of the inplane packing in the crystalline phase by varying the K 2CO 3 and PEG-AuNPs concentrations and the length of PEG. Using polymer-brush theory, we argue that the assembly and crystallization is driven by the need to reduce surface tension between PEG and the salt solution. Our approach of taking advantage of the phase separation of PEG in salt solutions is general (i.e., can be used with any nanoparticles) leads to high-quality macroscopic and tunable crystals. In conclusion, we discuss how the method can also be applied to the design of orderly 3D structures.« less
Differences in taste between two polyethylene glycol preparations.
Szojda, Maria M; Mulder, Chris J J; Felt-Bersma, Richelle J F
2007-12-01
Polyethylene glycol preparations (PEG) are increasingly used for chronic constipation in both adults and children. There are some suggestions that PEG 4000 with orange flavour (Forlax) tastes better than PEG 3350 which contains salt (Movicolon). Poor taste is an important factor for non-compliance and is one of the leading causes of therapy failure. The aim of the study was to compare the taste of two commonly used PEG preparations, PEG 4000 and PEG 3350. A double-blind, cross over randomised trial. A hundred people were recruited by advertisement. All tasted both preparations without swallowing and after tasting each of the preparations, they rinsed their mouths. Then a score, on a 5-point scale, was given for both preparations. 100 volunteers were included (27 males and 73 females, mean age 36). The taste score for PEG 4000 (mean 3.9, SD 0.7) was significantly better than for PEG 3350 (mean 2.7, SD 0.7) (p<0.0001, Wilcoxon matched pairs test). No difference in gender or age was observed. The volunteers which tasted PEG 3350 liked it more, when they tasted it first rather than when they tasted it after PEG 4000 (p<0.0001). The order in which volunteers tested PEG 4000 had no influence on the taste results. PEG 4000 tastes better than PEG 3350. This may have implications for patient compliance and effectiveness of treatment in patients with chronic constipation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... and test these significant changes to their systems by January 15, 2013. The Exchange has received... member firms adequate time to program and test their systems to use the Market Maker Peg Order \\6\\ or... Market Maker Peg Order, which is designed to replace AQR. See Securities Exchange Act Release No. 67584...
Ma, Guilei; Zhang, Chao; Zhang, Linhua; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling
2016-01-01
Star-shaped block copolymers based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(ethylene glycol) (PEG) (st-PLGA-PEG) were synthesized with structural variation on arm numbers in order to investigate the relationship between the arm numbers of st-PLGA-PEG copolymers and their micelle properties. st-PLGA-PEG copolymers with arm numbers 3, 4 and 6 were synthesized by using different cores such as trimethylolpropane, pentaerythritol and dipentaerythritol, and were characterized by nuclear magnetic resonance and gel permeation chromatography. The critical micelle concentration decreased with increasing arm numbers in st-PLGA-PEG copolymers. The doxorubicin-loaded st-PLGA-PEG micelles were prepared by a modified nanoprecipitation method. Micellar properties such as particle size, drug loading content and in vitro drug release behavior were investigated as a function of the number of arms and compared with each other. The doxorubicin-loaded 4-arm PLGA-PEG micelles were found to have the highest cellular uptake efficiency and cytotoxicity compared with 3-arm PLGA-PEG micelles and 6-arm PLGA-PEG micelles. The results suggest that structural tailoring of arm numbers from st-PLGA-PEG copolymers could provide a new strategy for designing drug carriers of high efficiency. Structural tailoring of arm numbers from star shaped-PLGA-PEG copolymers (3-arm/4-arm/6-arm-PLGA-PEG) could provide a new strategy for designing drug carriers of high efficiency.
NASA Astrophysics Data System (ADS)
Zhao, Caiyan; Deng, Hongzhang; Xu, Jing; Li, Shuyi; Zhong, Lin; Shao, Leihou; Wu, Yan; Liang, Xing-Jie
2016-05-01
PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02174c
Buzzi, Olivier; Yuan, Shengyang; Routley, Benjamin
2017-06-10
A near-infrared absorption based laser sensor has been designed and validated for the real-time measurement of polyethylene glycol (PEG) concentration. The wavelength was selected after the determination of the absorption spectrum of deionised water and PEG solutions using a Varian Cary 6000i spectrophotometer, in order to limit the influence of PEG molecular mass on the absorption measurement. With this new sensor, the water is treated as the attenuating species and the addition of PEG in water reduces the absorbance of the medium. The concept was validated using three different PEG types (PEG 6,000, 20,000, and 35,000) and it was found that the results follow Beer Lambert's law. The influence of temperature was assessed by testing the PEG 20,000 at four different temperatures that could be encountered in a laboratory environment. The data show a slight temperature influence (increase of absorbance by 8% when the temperature rises from about 20 to about 29 degrees). Following the validation phase conducted ex situ, a prototype of an immersible sensor was built and calibrated for in situ measurements.
Beverage intake preference and bowel preparation laxative taste preference for colonoscopy
Laiyemo, Adeyinka O; Burnside, Clinton; Laiyemo, Maryam A; Kwagyan, John; Williams, Carla D; Idowu, Kolapo A; Ashktorab, Hassan; Kibreab, Angesom; Scott, Victor F; Sanderson, Andrew K
2015-01-01
AIM: To examine whether non-alcoholic beverage intake preferences can guide polyethylene glycol (PEG)-based bowel laxative preparation selection for patients. METHODS: We conducted eight public taste test sessions using commercially procured (A) unflavored PEG, (B) citrus flavored PEG and (C) PEG with ascorbate (Moviprep). We collected characteristics of volunteers including their beverage intake preferences. The volunteers tasted the laxatives in randomly assigned orders and ranked the laxatives as 1st, 2nd, and 3rd based on their taste preferences. Our primary outcome is the number of 1st place rankings for each preparation. RESULTS: A total of 777 volunteers completed the study. Unflavored PEG was ranked as 1st by 70 (9.0%), flavored PEG by 534 (68.7%) and PEG with ascorbate by 173 (22.3%) volunteers. Demographic, lifestyle characteristics and beverage intake patterns for coffee, tea, and carbonated drinks did not predict PEG-based laxative preference. CONCLUSION: Beverage intake pattern was not a useful guide for PEG-based laxative preference. It is important to develop more tolerable and affordable bowel preparation laxatives for colonoscopy. Also, patients should taste their PEG solution with and without flavoring before flavoring the entire gallon as this may give them more opportunity to pick a pattern that may be more tolerable. PMID:26261736
Beverage intake preference and bowel preparation laxative taste preference for colonoscopy.
Laiyemo, Adeyinka O; Burnside, Clinton; Laiyemo, Maryam A; Kwagyan, John; Williams, Carla D; Idowu, Kolapo A; Ashktorab, Hassan; Kibreab, Angesom; Scott, Victor F; Sanderson, Andrew K
2015-08-06
To examine whether non-alcoholic beverage intake preferences can guide polyethylene glycol (PEG)-based bowel laxative preparation selection for patients. We conducted eight public taste test sessions using commercially procured (A) unflavored PEG, (B) citrus flavored PEG and (C) PEG with ascorbate (Moviprep). We collected characteristics of volunteers including their beverage intake preferences. The volunteers tasted the laxatives in randomly assigned orders and ranked the laxatives as 1(st), 2(nd), and 3(rd) based on their taste preferences. Our primary outcome is the number of 1(st) place rankings for each preparation. A total of 777 volunteers completed the study. Unflavored PEG was ranked as 1(st) by 70 (9.0%), flavored PEG by 534 (68.7%) and PEG with ascorbate by 173 (22.3%) volunteers. Demographic, lifestyle characteristics and beverage intake patterns for coffee, tea, and carbonated drinks did not predict PEG-based laxative preference. Beverage intake pattern was not a useful guide for PEG-based laxative preference. It is important to develop more tolerable and affordable bowel preparation laxatives for colonoscopy. Also, patients should taste their PEG solution with and without flavoring before flavoring the entire gallon as this may give them more opportunity to pick a pattern that may be more tolerable.
Bremmell, Kristen E; Britcher, Leanne; Griesser, Hans J
2013-06-01
Addition of ionized terminal groups to PEG graft layers may cause additional interfacial forces to modulate the net interfacial interactions between PEG graft layers and proteins. In this study we investigated the effect of terminal sulfonate groups, characterizing PEG-aldehyde (PEG-CHO) and sulfonated PEG (PEG-SO3) graft layers by XPS and colloid probe AFM interaction force measurements as a function of ionic strength, in order to determine surface forces relevant to protein resistance and models of bio-interfacial interaction of such graft coatings. On the PEG-CHO surface the measured interaction force does not alter with ionic strength, typical of a repulsive steric barrier coating. An analogous repulsive interaction force of steric origin was also observed on the PEG-SO3 graft coating; however, the net interaction force changed with ionic strength. Interaction forces were modelled by steric and electrical double layer interaction theories, with fitting to a scaling theory model enabling determination of the spacing and stretching of the grafted chains. Albumin, fibrinogen, and lysozyme did not adsorb on the PEG-CHO coating, whereas the PEG graft with terminal sulfonate groups showed substantial adsorption of albumin but not fibrinogen or lysozyme from 0.15 M salt solutions. Under lower ionic strength conditions albumin adsorption was again minimized as a result of the increased electrical double-layer interaction observed with the PEG-SO3 modified surface. This unique and unexpected adsorption behaviour of albumin provides an alternative explanation to the "negative cilia" model used by others to rationalize observed thromboresistance on PEG-sulfonate coatings. Copyright © 2013 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... is available on the Exchange's Web site at http://www.nsx.com , at the principal office of the...: Midpoint Peg x 500 (Auto-Ex mode/Dark) 134.50 x 400 (Order Delivery mode) 134.50 x 200 (Auto-Ex mode... shares priced at 134.50 would execute against the Midpoint Peg Dark Auto-Ex order of 500 shares at 134...
Rennerfeldt, Deena A; Renth, Amanda N; Talata, Zsolt; Gehrke, Stevin H; Detamore, Michael S
2013-11-01
Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells. © 2013 Elsevier Ltd. All rights reserved.
A distance-controlled nanoparticle array using PEGylated ferritin
NASA Astrophysics Data System (ADS)
He, Chao; Uenuma, Mutsunori; Okamoto, Naofumi; Kamitake, Hiroki; Ishikawa, Yasuaki; Yamashita, Ichiro; Uraoka, Yukiharu
2014-12-01
A distance-controlled nanoparticle (NP) array was investigated using a simple spin coating process. It was found that the separation distance of NPs was controlled at the nanoscale by using polyethylene glycols (PEGs). Ferritin was used to synthesize NPs and carry them to a substrate by using the different molecular weight of PEGs. In order to control the distance of the NPs, PEGs with molecular weights of 2k, 5k, 10k and 20k were modified on ferritin with 10 mM ion strength and 0.01 mg ml-1 ferritin concentration. The separated distances of NPs increased along with increase in PEG molecular weight.
Formulation and Evaluation of Tramadol hydrochloride Rectal Suppositories.
Saleem, M A; Taher, M; Sanaullah, S; Najmuddin, M; Ali, Javed; Humaira, S; Roshan, S
2008-09-01
Rectal suppositories of tramadol hydrochloride were prepared using different bases and polymers like PEG, cocoa butter, agar and the effect of different additives on in vitro release of tramadol hydrochloride was studied. The agar-based suppositories were non-disintegrating/non-dissolving, whereas PEGs were disintegrating/dissolving and cocoa butter were melting suppositories. All the prepared suppositories were evaluated for various physical parameters like weight variation, drug content and hardness. The PEG and cocoa butter suppositories were evaluated for macromelting range, disintegration and liquefaction time. In vitro release study was performed by USP type I apparatus. The prepared suppositories were within the permissible range of all physical parameters. In vitro drug release was in the order of PEG>Agar>cocoa butter. Addition of PVP, HPMC in agar suppositories retards the release. The mechanism of drug release was diffusion controlled and follows first order kinetics. The results suggested that blends of PEG of low molecular weight (1000) with high molecular weight (4000 and 6000) in different percentage and agar in 10% w/w as base used to formulate rapid release suppositories. The sustained release suppositories can be prepared by addition of PVP, HPMC in agar-based suppositories and by use of cocoa butter as base.
Galactosylated DNA lipid nanocapsules for efficient hepatocyte targeting.
Morille, M; Passirani, C; Letrou-Bonneval, E; Benoit, J-P; Pitard, B
2009-09-11
The main objective of gene therapy via a systemic pathway is the development of a stable and non-toxic gene vector that can encapsulate and deliver foreign genetic materials into specific cell types with the transfection efficiency of viral vectors. With this objective, DNA complexed with cationic lipids of DOTAP/DOPE was encapsulated into lipid nanocapsules (LNCs) forming nanocarriers (DNA LNCs) with a size suitable for systemic injection (109+/-6 nm). With the goal of increasing systemic delivery, LNCs were stabilised with long chains of poly(ethylene glycol) (PEG), either from a PEG lipid derivative (DSPE-mPEG(2000)) or from an amphiphilic block copolymer (F108). In order to overcome internalisation difficulties encountered with PEG shield, a specific ligand (galactose) was covalently added at the distal end of the PEG chains, in order to provide active targeting of the asialoglycoprotein-receptor present on hepatocytes. This study showed that DNA LNCs were as efficient as positively charged DOTAP/DOPE lipoplexes for transfection. In primary hepatocytes, when non-galactosylated, the two polymers significantly decreased the transfection, probably by creating a barrier around the DNA LNCs. Interestingly, galactosylated F108 coated DNA LNCs led to a 18-fold increase in luciferase expression compared to non-galactosylated ones.
The influence of polymer molecular weight in lamellar gels based on PEG-lipids.
Warriner, H E; Keller, S L; Idziak, S H; Slack, N L; Davidson, P; Zasadzinski, J A; Safinya, C R
1998-01-01
We report x-ray scattering, rheological, and freeze-fracture and polarizing microscopy studies of a liquid crystalline hydrogel called Lalpha,g. The hydrogel, found in DMPC, pentanol, water, and PEG-DMPE mixtures, differs from traditional hydrogels, which require high MW polymer, are disordered, and gel only at polymer concentrations exceeding an "overlap" concentration. In contrast, the Lalpha,g uses very low-molecular-weight polymer-lipids (1212, 2689, and 5817 g/mole), shows lamellar order, and requires a lower PEG-DMPE concentration to gel as water concentration increases. Significantly, the Lalpha,g contains fluid membranes, unlike Lbeta' gels, which gel via chain ordering. A recent model of gelation in Lalpha phases predicts that polymer-lipids both promote and stabilize defects; these defects, resisting shear in all directions, then produce elasticity. We compare our observations to this model, with particular attention to the dependence of gelation on the PEG MW used. We also use x-ray lineshape analysis of scattering from samples spanning the fluid-gel transition to obtain the elasticity coefficients kappa and B; this analysis demonstrates that although B in particular depends strongly on PEG-DMPE concentration, gelation is uncorrelated to changes in membrane elasticity. PMID:9649387
Avgoustakis, K; Beletsi, A; Panagi, Z; Klepetsanis, P; Karydas, A G; Ithakissios, D S
2002-02-19
The in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties of PLGA-mPEG nanoparticles of cisplatin were investigated. The nanoparticles were prepared by a double emulsion method and characterized with regard to their morphology, size, zeta potential and drug loading. The rate of in vitro degradation of the PLGA-mPEG nanoparticles in PBS (pH 7.4) depended on their composition, increasing when the mPEG content (mPEG:PLGA ratio) of the nanoparticles increased. Sustained cisplatin release over several hours from the PLGA-mPEG nanoparticles in vitro (PBS) was observed. The composition of the nanoparticles affected drug release: the rate of release increased when the mPEG content of the nanoparticles increased. Within the range of drug loadings investigated, the drug loading of the nanoparticles did not have any significant effect on drug release. The loading efficiency was low and needs improvement in order to obtain PLGA-mPEG nanoparticles with a satisfactory cisplatin content for therapeutic application. The i.v. administration of PLGA-mPEG nanoparticles of cisplatin in BALB/c mice resulted in prolonged cisplatin residence in systemic blood circulation. The results appear to justify further investigation of the suitability of the PLGA-mPEG nanoparticles for the controlled i.v. delivery and/or targeting of cisplatin.
Warrack, Bethanne M; Redding, Brian P; Chen, Guodong; Bolgar, Mark S
2013-05-01
PEGylation has been widely used to improve the biopharmaceutical properties of therapeutic proteins and peptides. Previous studies have used multiple analytical techniques to determine the fate of both the therapeutic molecule and unconjugated poly(ethylene glycol) (PEG) after drug administration. A straightforward strategy utilizing liquid chromatography-mass spectrometry (LC-MS) to characterize high-molecular weight PEG in biologic matrices without a need for complex sample preparation is presented. The method is capable of determining whether high-MW PEG is cleaved in vivo to lower-molecular weight PEG species. Reversed-phase chromatographic separation is used to take advantage of the retention principles of polymeric materials whereby elution order correlates with PEG molecular weight. In-source collision-induced dissociation (CID) combined with selected reaction monitoring (SRM) or selected ion monitoring (SIM) mass spectrometry (MS) is then used to monitor characteristic PEG fragment ions in biological samples. MS provides high sensitivity and specificity for PEG and the observed retention times in reversed-phase LC enable estimation of molecular weight. This method was successfully used to characterize PEG molecular weight in mouse serum samples. No change in molecular weight was observed for 48 h after dosing.
NASA Astrophysics Data System (ADS)
Warriner, Heidi E.; Davidson, Patrick; Slack, Nelle L.; Schellhorn, Matthias; Eiselt, Petra; Idziak, Stefan H. J.; Schmidt, Hans-Werner; Safinya, Cyrus R.
1997-09-01
A series of four polymer-surfactant macromolecules, each consisting of a double-chain hydrophobic moiety attached onto a monofunctional polyethylene glycol (PEG) polymer chain, were synthesized in order to study their effect upon the fluid lamellar liquid crystalline (Lα) phase of the dimyristoylphosphatidylcholine/pentanol/water system. The main finding of this study is that the addition of these compounds induces a new lamellar gel, called Lα,g. We have determined the phase diagrams as a function of PEG-surfactant concentration, cPEG, and weight fraction water, ΦW. All phase diagrams are qualitatively similar and show the existence of the gel. Unlike more common polymer physical gels, this gel can be induced either by increasing cPEG or by adding water at constant cPEG. In particular, less polymer is required for gelation as water concentration increases. Moreover, the gel phase is attained at concentrations of PEG-surfactant far below that required for classical polymer gels and is stable at temperatures comparable to the lower critical solution temperature of free PEG-water mixtures. Small angle x-ray experiments demonstrate the lamellar structure of the gel phase, while wide angle x-ray scattering experiments prove that the structure is Lα, not Lβ' (a common chain-ordered phase which is also a gel). The rheological behavior of the Lα,g phase demonstrates the existence of three dimensional elastic properties. Polarized light microscopy of Lα,g samples reveals that the Lα,g is induced by a proliferation of defect structures, including whispy lines, spherulitic defects, and a nematiclike Schlieren texture. We propose a model of topological defects created by the aggregation of PEG-surfactant into highly curved regions within the membranes. This model accounts for both the inverse relationship between ΦW and cPEG observed along the gel transition line and the scaling dependence of the interlayer spacing at the gel transition with the PEG molecular weight. These Lα hydrogels could serve as the matrix for membrane-anchored peptides, proteins or other drug molecules, creating a "bioactive gel" with mechanical stability deriving from the polymer-lipid minority component.
Improved Micellar Formulation for Enhanced Delivery for Paclitaxel.
Xu, Jieni; Zhang, Xiaolan; Chen, Yichao; Huang, Yixian; Wang, Pengcheng; Wei, Yuan; Ma, Xiaochao; Li, Song
2017-01-03
We have previously improved the bioactivity of PEG 5k -FTS 2 system by incorporating disulfide bond (PEG 5k -S-S-FTS 2 ) to facilitate the release of farnesyl thiosalicylic acid (FTS).1 Later, fluorenylmethyloxycarbonyl (Fmoc) moiety has been introduced to PEG 5k -FTS 2 system (PEG 5k -Fmoc-FTS 2 ) in order to enhance drug loading capacity (DLC) and formulation stability.2 In this study, we have brought in both disulfide linkage and Fmoc group to PEG 5k -FTS 2 to form a simple PEG 5k -Fmoc-S-S-FTS 2 micellar system. PEG 5k -Fmoc-S-S-FTS 2 conjugate formed filamentous micelles with a ∼10-fold decrease in critical micellar concentration (CMC). Compared with PEG 5k -Fmoc-FTS 2 , our novel system exhibited further strengthened DLC and colloidal stability. More FTS was freed from PEG 5k -Fmoc-S-S-FTS 2 in treated tumor cells compared to PEG 5k -Fmoc-FTS 2 , which was correlated to an increased cytotoxicity of our new carrier in these cancer cells. After loading Paclitaxel (PTX) into PEG 5k -Fmoc-S-S-FTS 2 micelles, it showed more potent efficiency in inhibition of tumor cell proliferation than Taxol and PTX-loaded PEG 5k -Fmoc-FTS 2 . PTX release kinetics of PTX/PEG 5k -Fmoc-S-S-FTS 2 was much slower than that of Taxol and PTX/PEG 5k -Fmoc-FTS 2 in normal release medium. In contrast, in glutathione (GSH)-containing medium, PTX in PEG 5k -Fmoc-S-S-FTS 2 micelles revealed faster and more complete release. Pharmacokinetics and tissue distribution study showed that our PEG 5k -Fmoc-S-S-FTS 2 system maintained PTX in circulation for a longer time and delivered more PTX to tumor sites with less accumulation in major organs. Finally, PTX-loaded PEG 5k -Fmoc-S-S-FTS 2 micelles resulted in a superior therapeutic effect in vivo compared to Taxol and PTX formulated in PEG 5k -Fmoc-FTS 2 micelles.
Site-Specific Albumination as an Alternative to PEGylation for the Enhanced Serum Half-Life in Vivo.
Yang, Byungseop; Lim, Sung In; Kim, Jong Chul; Tae, Giyoong; Kwon, Inchan
2016-05-09
Polyethylene glycol (PEG) has been widely used as a serum half-life extender of therapeutic proteins. However, due to immune responses and low degradability of PEG, developing serum half-life extender alternatives to PEG is required. Human serum albumin (HSA) has several beneficial features as a serum half-life extender, including a very long serum half-life, good degradability, and low immune responses. In order to further evaluate the efficacy of HSA, we compared the extent of serum half-life extension of a target protein, superfolder green fluorescent protein (sfGFP), upon HSA conjugation with PEG conjugation side-by-side. Combination of site-specific incorporation of p-azido-l-phenylalanine into sfGFP and copper-free click chemistry achieved the site-specific conjugation of a single HSA, 20 kDa PEG, or 30 kDa PEG to sfGFP. These sfGFP conjugates exhibited the fluorescence comparable to or even greater than that of wild-type sfGFP (sfGFP-WT). In mice, HSA-conjugation to sfGFP extended the serum half-life 9.0 times compared to that of unmodified sfGFP, which is comparable to those of PEG-conjugated sfGFPs (7.3 times for 20 kDa PEG and 9.5 times for 30 kDa PEG). These results clearly demonstrated that HSA was as effective as PEG in extending the serum half-life of a target protein. Therefore, with the additional favorable features, HSA is a good serum half-life extender of a (therapeutic) protein as an alternative to PEG.
Waveform modeling of the seismic response of a mid-ocean ridge axial melt sill
NASA Astrophysics Data System (ADS)
Xu, Min; Stephen, R. A.; Canales, J. Pablo
2017-12-01
Seismic reflections from axial magma lens (AML) are commonly observed along many mid-ocean ridges, and are thought to arise from the negative impedance contrast between a solid, high-speed lid and the underlying low-speed, molten or partially molten (mush) sill. The polarity of the AML reflection ( P AML P) at vertical incidence and the amplitude vs offset (AVO) behavior of the AML reflections (e.g., P AML P and S-converted P AML S waves) are often used as a diagnostic tool for the nature of the low-speed sill. Time-domain finite difference calculations for two-dimensional laterally homogeneous models show some scenarios make the interpretation of melt content from partial-offset stacks of P- and S-waves difficult. Laterally heterogeneous model calculations indicate diffractions from the edges of the finite-width AML reducing the amplitude of the AML reflections. Rough seafloor and/or a rough AML surface can also greatly reduce the amplitude of peg-leg multiples because of scattering and destructive interference. Mid-crustal seismic reflection events are observed in the three-dimensional multi-channel seismic dataset acquired over the RIDGE-2000 Integrated Study Site at East Pacific Rise (EPR, cruise MGL0812). Modeling indicates that the mid-crustal seismic reflection reflections are unlikely to arise from peg-leg multiples of the AML reflections, P-to- S converted phases, or scattering due to rough topography, but could probably arise from deeper multiple magma sills. Our results support the identification of Marjanović et al. (Nat Geosci 7(11):825-829, 2014) that a multi-level complex of melt lenses is present beneath the axis of the EPR.
Pegvisomant in acromegaly: an update.
Giustina, A; Arnaldi, G; Bogazzi, F; Cannavò, S; Colao, A; De Marinis, L; De Menis, E; Degli Uberti, E; Giorgino, F; Grottoli, S; Lania, A G; Maffei, P; Pivonello, R; Ghigo, E
2017-06-01
In 2007, we published an opinion document to review the role of pegvisomant (PEG) in the treatment of acromegaly. Since then, new evidence emerged on the biochemical and clinical effects of PEG and on its long-term efficacy and safety. We here reviewed the emerging aspects of the use of PEG in clinical practice in the light of the most recent literature. The clinical use of PEG is still suboptimal, considering that it remains the most powerful tool to control IGF-I in acromegaly allowing to obtain, with a pharmacological treatment, the most important clinical effects in terms of signs and symptoms, quality of life and comorbidities. The number of patients with acromegaly exposed to PEG worldwide has become quite elevated and the prolonged follow-up allows now to deal quite satisfactorily with many clinical issues including major safety issues, such as the concerns about possible tumour (re)growth under PEG. The positive or neutral impact of PEG on glucose metabolism has been highlighted, and the clinical experience, although limited, with sleep apnoea and pregnancy has been reviewed. Finally, the current concept of somatostatin receptor ligands (SRL) resistance has been addressed, in order to better define the acromegaly patients to whom the PEG option may be offered. PEG increasingly appears to be an effective and safe medical option for many patients not controlled by SRL but its use still needs to be optimized.
Ge, Zhishen; Chen, Qixian; Osada, Kensuke; Liu, Xueying; Tockary, Theofilus A; Uchida, Satoshi; Dirisala, Anjaneyulu; Ishii, Takehiko; Nomoto, Takahiro; Toh, Kazuko; Matsumoto, Yu; Oba, Makoto; Kano, Mitsunobu R; Itaka, Keiji; Kataoka, Kazunori
2014-03-01
Adequate retention in systemic circulation is the preliminary requirement for systemic gene delivery to afford high bioavailability into the targeted site. Polyplex micelle formulated through self-assembly of oppositely-charged poly(ethylene glycol) (PEG)-polycation block copolymer and plasmid DNA has gained tempting perspective upon its advantageous core-shell architecture, where outer hydrophilic PEG shell offers superior stealth behaviors. Aiming to promote these potential characters toward systemic applications, we strategically introduced hydrophobic cholesteryl moiety at the ω-terminus of block copolymer, anticipating to promote not only the stability of polyplex structure but also the tethered PEG crowdedness. Moreover, Mw of PEG in the PEGylated polyplex micelle was elongated up to 20 kDa for expecting further enhancement in PEG crowdedness. Furthermore, cyclic RGD peptide as ligand molecule to integrin receptors was installed at the distal end of PEG in order for facilitating targeted delivery to the tumor site as well as promoting cellular uptake and intracellular trafficking behaviors. Thus constructed cRGD conjugated polyplex micelle with the elevated PEG shielding was challenged to a modeled intractable pancreatic cancer in mice, achieving potent tumor growth suppression by efficient gene expression of antiangiogenic protein (sFlt-1) at the tumor site. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microstructure, optical, and electrochromic properties of sol-gel nanoporous tungsten oxide films
NASA Astrophysics Data System (ADS)
Djaoued, Yahia; Ashrit, P. V.; Badilescu, S.; Bruning, R.
2003-08-01
Porous tungsten oxide films have been prepared by a nonhydrolitic sol-gel method using poly(ethylene glycol) (PEG) as a structure directing agent. The method entails the hydrolysis of an ethanolic solution of tungsten ethoxide (formed by the reaction of WCl6 with ethanol) followed by condensation and polymerization at the PEG-tungsten oxide oligometers interface. A highly porous WO3 framework was obtained after PEG was burned off by calcination at a relativley low temperature. AFM images of the films treated thermally show an ordered material rather than microscopic particulates. Both fibrilar nanostructures and striped phase can be obtained via this approach, depending on the concentration of PEG in the coating solution. XRD data from the fibrils indicate that they are crystalline with very small crystals, whereas the striped phases obtained with 20% PEG correspond to two crystalline phases, one, the stoichiometric WO3 and the other one an oxygen deficient phase, containing larger crystals (~28 nm). The results show that PEG promotes the formation of oxygen deficient phases and delays crystallization. Compared to WO3 with no PEG, the optical and electrochromic properties of the macroporous tungsten oxide films appear to be significantly improved. The formation of organized nanostructures is tentatively accounted for by the strong hydrogen bonding interactions between PEG and the tungsten oxide oligomers.
Low-volume plus ascorbic acid vs high-volume plus simethicone bowel preparation before colonoscopy
Pontone, Stefano; Angelini, Rita; Standoli, Monica; Patrizi, Gregorio; Culasso, Franco; Pontone, Paolo; Redler, Adriano
2011-01-01
AIM: To investigate the effectiveness of low-volume plus ascorbic acid [polyethylene glycol plus ascorbic acid (PEG + Asc)] and high-volume plus simethicone [polyethylene glycol plus simethicone (PEG + Sim)] bowel preparations. METHODS: A total of one hundred and forty-four outpatients (76 males), aged from 20 to 84 years (median age 59.5 years), who attended our Department, were divided into two groups, age and sex matched, and underwent colonoscopy. Two questionnaires, one for patients reporting acceptability and the other for endoscopists evaluating bowel cleansing effectiveness according to validated scales, were completed. Indications, timing of examination and endoscopical findings were recorded. Biopsy forceps were used as a measuring tool in order to determine polyp endoscopic size estimation. Difficulty in completing the preparation was rated in a 5-point Likert scale (1 = easy to 5 = unable). Adverse experiences (fullness, cramps, nausea, vomiting, abdominal pain, headache and insomnia), number of evacuations and types of activities performed during preparation (walking or resting in bed) were also investigated. RESULTS: Seventy-two patients were selected for each group. The two groups were age and sex matched as well as being comparable in terms of medical history and drug therapies taken. Fourteen patients dropped out from the trial because they did not complete the preparation procedure. Ratings of global bowel cleansing examinations were considered to be adequate in 91% of PEG + Asc and 88% of PEG + Sim patients. Residual Stool Score indicated similar levels of amount and consistency of residual stool; there was a significant difference in the percentage of bowel wall visualization in favour of PEG + Sim patients. In the PEG + Sim group, 12 adenomas ≤ 10 mm diameter (5/left colon + 7/right colon) vs 9 (8/left colon + 1/right colon) in the PEG + Asc group were diagnosed. Visualization of small lesions seems to be one of the primary advantages of the PEG + Sim preparation. CONCLUSION: PEG + Asc is a good alternative solution as a bowel preparation but more improvements are necessary in order to achieve the target of a perfect preparation. PMID:22180711
Low-volume plus ascorbic acid vs high-volume plus simethicone bowel preparation before colonoscopy.
Pontone, Stefano; Angelini, Rita; Standoli, Monica; Patrizi, Gregorio; Culasso, Franco; Pontone, Paolo; Redler, Adriano
2011-11-14
To investigate the effectiveness of low-volume plus ascorbic acid [polyethylene glycol plus ascorbic acid (PEG + Asc)] and high-volume plus simethicone [polyethylene glycol plus simethicone (PEG + Sim)] bowel preparations. A total of one hundred and forty-four outpatients (76 males), aged from 20 to 84 years (median age 59.5 years), who attended our Department, were divided into two groups, age and sex matched, and underwent colonoscopy. Two questionnaires, one for patients reporting acceptability and the other for endoscopists evaluating bowel cleansing effectiveness according to validated scales, were completed. Indications, timing of examination and endoscopical findings were recorded. Biopsy forceps were used as a measuring tool in order to determine polyp endoscopic size estimation. Difficulty in completing the preparation was rated in a 5-point Likert scale (1 = easy to 5 = unable). Adverse experiences (fullness, cramps, nausea, vomiting, abdominal pain, headache and insomnia), number of evacuations and types of activities performed during preparation (walking or resting in bed) were also investigated. Seventy-two patients were selected for each group. The two groups were age and sex matched as well as being comparable in terms of medical history and drug therapies taken. Fourteen patients dropped out from the trial because they did not complete the preparation procedure. Ratings of global bowel cleansing examinations were considered to be adequate in 91% of PEG + Asc and 88% of PEG + Sim patients. Residual Stool Score indicated similar levels of amount and consistency of residual stool; there was a significant difference in the percentage of bowel wall visualization in favour of PEG + Sim patients. In the PEG + Sim group, 12 adenomas ≤ 10 mm diameter (5/left colon + 7/right colon) vs 9 (8/left colon + 1/right colon) in the PEG + Asc group were diagnosed. Visualization of small lesions seems to be one of the primary advantages of the PEG + Sim preparation. PEG + Asc is a good alternative solution as a bowel preparation but more improvements are necessary in order to achieve the target of a perfect preparation.
Semi-solid dosage form of clonazepam for rapid oral mucosal absorption.
Sakata, Osamu; Machida, Yoshiharu; Onishi, Hiraku
2011-07-01
In order to obtain an alternative to the intravenous (i.v.) dosage form of clonazepam (CZ), an oral droplet formulation of CZ was developed previously; however, the droplet was physically unstable. Therefore, in the present study, it was attempted to develop an easily-handled dosage form, which was more physically stable and allowed rapid drug absorption from oral mucosa. A semi-solid dosage form, composed of polyethylene glycol 1500 (PEG), CZ, and oleic acid (OA) at 37/1/2 (w/w) and named PEG/CZ/OA, and a semi-solid dosage form containing PEG and CZ at 39/1 (w/w), called PEG/CZ, were prepared. Their physical stability in air at room temperature and oral mucosal absorption in rats were investigated. The semi-solid dosage forms were much more stable physically than the droplet, that is, no recrystallization of CZ was observed for at least 8 days. The effective concentration for humans and rats (20 ng/mL or more) was achieved within 30 min after buccal administration for both PEG/CZ/OA and PEG/CZ. The plasma concentration increased gradually and less varied at each time point for PEG/CZ/OA. PEG/CZ/OA was found to show more rapid and higher absorption of CZ in buccal administration than in sublingual administration. Buccal administration with the semi-solid dosage PEG/CZ with or without OA was suggested to be a possibly useful novel dosage form as an alternative to i.v. injection.
Kulkarni, Sameer; Shearrow, Anne M; Malik, Abdul
2007-12-07
Sol-gel coating with covalently bonded low-molecular-weight (MW<300 Da) poly(ethylene glycol) (PEG) chains was developed for capillary microextraction (CME). The sol-gel chemistry proved effective in the immobilization of low-molecular-weight PEGs thanks to the formation of chemical bonds between the organic-inorganic hybrid sol-gel PEG coating and the fused silica capillary inner surface. This chemical anchorage provided excellent thermal and solvent stability to the created sol-gel PEG coating as is evidenced by its high upper limit of allowable conditioning temperature (340 degrees C) and its practically identical performance before and after rinsing with various solvents. The prepared sol-gel PEG coating provided simultaneous extraction of moderately polar and highly polar analytes from aqueous samples without requiring derivatization, pH adjustment or salting-out procedures. Detection limits on the order of nanogram per liter (ng/L) were achieved in CME-GC-flame ionization detection experiments designed for the preconcentration and trace analysis of both highly polar and moderately polar compounds extracted directly from aqueous media using sol-gel short-chain PEG coated microextraction capillaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar
Air–water interfacial monolayers of poly((d,l-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA–PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure–area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air–water monolayers formed by a PLGA–PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((d,l-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL–PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA filmmore » and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA–PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA–PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the “n-cluster” effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the “n-cluster” effects.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... calculation for Auto-Ex Mode, (ii) provide a fixed per share rebate for Midpoint Peg Zero Display Reserve... NMS stocks with quoted prices less than one dollar, (ii) create a fixed per share rebate for Midpoint Peg Zero Display Reserve Orders,\\3\\ and (iii) correct typographical inconsistencies within the Fee...
X-ray Spectral Analysis of the Cataclysmic Variable LS Peg using XMM-Newton Observatory Data
NASA Astrophysics Data System (ADS)
Talebpour Sheshvan, N.; Nabizadeh, A.; Balman, S.
2017-10-01
LS Peg is a Cataclysmic Variable (CV) suggested as Intermediate Polar (IP) because of similar properties to those observed in IP systems. We used archival XMM-Newton observation of LS Peg in order to study the X-ray characteristics of the system. We show LS Peg light curves in several different energy bands, and discuss about orbital modulations and power spectral analysis. Unlike the previous spectral analysis of the EPIC-MOS data by fitting a hot optically thin plasma emission model with a single temperature, we simultaneously fit EPIC spectrum (pn+MOS) using a composite model of absorption (tbabs) along with two different partial covering absorbers plus a multi-temperature plasma emission component in XSPEC. In addition, we find a Gaussian emission line at 6.4 keV. For LS Peg the maximum temperature of the plasma distribution is found to be ˜ 17.8 keV with a luminosity of ˜ 7.4×10^{32}erg s^{-1} translating to an accretion rate of ˜ 1.7×10 ^{-10} M_{⊙} yr^{-1}. We present spectra for orbital minimum and orbital maximum. In addition, we use SWIFT observations of the source in order to make a comparison. We elaborate on the geometry of accretion and absorption in the X-ray emitting region with articulation on the magnetic nature.
Pegylation of Magnetically Oriented Lipid Bilayers
NASA Astrophysics Data System (ADS)
King, Valencia; Parker, Margaret; Howard, Kathleen P.
2000-01-01
We report NMR data for magnetically oriented phospholipid bilayers which have been doped with a lipid derivatized with a polyethylene glycol polymer headgroup to stabilize samples against aggregation. 13C, 31P, and 2H NMR data indicate that the incorporation of PEG2000-PE (1% molar to DMPC) does not interfere with the orientation properties of bicelles prepared at 25% w/v with or without the presence of lanthanide. Bicelles prepared at 10% w/v are also shown to orient when PEG2000-PE is added. The addition of PEG2000-PE to cholesterol-containing, lanthanide-flipped bicelles is shown to inhibit sample phase separation and improve spectral quality. Furthermore, the addition of PEG2000-PE to high w/v bicelles (40% w/v) is demonstrated to lead to an increase in overall sample order.
Gastrointestinal bioavailability of 2.0 nm diameter gold nanoparticles.
Smith, Candice A; Simpson, Carrie A; Kim, Ganghyeok; Carter, Carly J; Feldheim, Daniel L
2013-05-28
The use of gold nanoparticles as imaging agents and therapeutic delivery systems is growing rapidly. However, a significant limitation of gold nanoparticles currently is their low absorption efficiencies in the gastrointestinal (GI) tract following oral administration. In an attempt to identify ligands that facilitate gold nanoparticle absorption in the GI tract, we have studied the oral bioavailability of 2.0 nm diameter gold nanoparticles modified with the small molecules p-mercaptobenzoic acid and glutathione, and polyethylene glycols (PEG) of different lengths and charge (neutral and anionic). We show that GI absorption of gold nanoparticles modified with the small molecules tested was undetectable. However, the absorption of PEGs depended upon PEG length, with the shortest PEG studied yielding gold nanoparticle absorptions that are orders-of-magnitude larger than observed previously. As the oral route is the most convenient one for administering drugs and diagnostic reagents, these results suggest that short-chain PEGs may be useful in the design of gold nanoparticles for the diagnosis and treatment of disease.
Rodríguez-Contreras, Alejandra; Marqués-Calvo, María Soledad; Gil, Francisco Javier; Manero, José María
2016-08-01
Novel researches are focused on the prevention and management of post-operative infections. To avoid this common complication of implant surgery, it is preferable to use new biomaterials with antibacterial properties. Therefore, the aim of this work is to develop a method of combining the antibacterial properties of antibiotic-loaded poly(3-hydroxybutyrate) (PHB) nano- and micro-spheres and poly(ethylene glycol) (PEG) as an antifouling agent, with titanium (Ti), as the base material for implants, in order to obtain surfaces with antibacterial activity. The Ti surfaces were linked to both PHB particles and PEG by a covalent bond. This attachment was carried out by firstly activating the surfaces with either Oxygen plasma or Sodium hydroxide. Further functionalization of the activated surfaces with different alkoxysilanes allows the reaction with PHB particles and PEG. The study confirms that the Ti surfaces achieved the antibacterial properties by combining the antibiotic-loaded PHB spheres, and PEG as an antifouling agent.
Fine-tuned PEGylation of chitosan to maintain optimal siRNA-nanoplex bioactivity.
Guţoaia, Andra; Schuster, Liane; Margutti, Simona; Laufer, Stefan; Schlosshauer, Burkhard; Krastev, Rumen; Stoll, Dieter; Hartmann, Hanna
2016-06-05
Polyethylene glycol (PEG) is a widely used modification for drug delivery systems. It reduces undesired interaction with biological components, aggregation of complexes and serves as a hydrophilic linker of ligands for targeted drug delivery. However, PEGylation can also lead to undesired changes in physicochemical characteristics of chitosan/siRNA nanoplexes and hamper gene silencing. To address this conflicting issue, PEG-chitosan copolymers were synthesized with stepwise increasing degrees of PEG substitution (1.5% to 8.0%). Subsequently formed PEG-chitosan/siRNA nanoplexes were characterized physicochemically and biologically. The results showed that small ratios of chitosan PEGylation did not affect nanoplex stability and density. However, higher PEGylation ratios reduced nanoplex size and charge, as well as cell uptake and final siRNA knockdown efficiency. Therefore, we recommend fine-tuning of PEGylation ratios to generate PEG-chitosan/siRNA delivery systems with maximum bioactivity. The degree of PEGylation for chitosan/siRNA nanoplexes should be kept low in order to maintain optimal nanoplex efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
78 FR 5812 - Proposed Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... Information Collection Activity; Comment Request Proposed Projects Title: Federal Tax Offset, Administrative Offset, and Passport Denial. OMB No.: 0970-0161. The Federal Tax Offset, Administrative Offset, and... payments, including federal tax refunds, of parents who have been ordered to pay child support and who are...
Reuter, Sascha; Hofmann, Anna M; Busse, Karsten; Frey, Holger; Kressler, Jörg
2011-03-01
Langmuir films of multifunctional, hydrophilic polyethers containing a hydrophobic cholesterol group (Ch) were studied by surface pressure-mean molecular area (π-mmA) measurements and Brewster angle microscopy (BAM). The polyethers were either homopolymers or diblock copolymers of linear poly(glycerol) (lPG), linear poly(glyceryl glycidyl ether) (lPGG), linear poly(ethylene glycol) (lPEG), or hyperbranched poly(glycerol) (hbPG). Surface pressure measurements revealed that the homopolymers lPG and hbPG did not stay at the water surface after spreading and solvent evaporation, in contrast to lPEG. Because of the incorporation of the Ch group in the polymer structure, stable Langmuir films were formed by Ch-lPG(n), Ch-lPGG(n), and Ch-hbPG(n). The Ch-hbPG(n), Ch-lPEG(n), Ch-lPEG(n)-b-lPG(m), Ch-lPEG(n)-b-lPGG(m), and Ch-lPEG(n)-b-hbPG(m) systems showed an extended plateau region assigned to a phase transition involving the Ch groups. Typical hierarchically ordered morphologies of the LB films on hydrophilic substrates were observed for all Ch-initiated polymers. All LB films showed that Ch of the Ch-initiated homopolymers is able to crystallize. This strong tendency of self-aggregation then triggers further dewetting effects of the respective polyether entities. Fingerlike morphologies are observed for Ch-lPEG(69), since the lPEG(69) entity is able to undergo crystallization after transfer onto the silicon substrate.
Shenoy, Dinesh; Fu, Wei; Li, Jane; Crasto, Curtis; Jones, Graham; DiMarzio, Charles; Sridhar, Srinivas; Amiji, Mansoor
2006-01-01
For the development of surface-functionalized gold nanoparticles as cellular probes and delivery agents, we have synthesized hetero-bifunctional poly(ethylene glycol) (PEG, MW 1500) having a thiol group on one terminus and a reactive functional group on the other for use as a flexible spacer. Coumarin, a model fluorescent dye, was conjugated to one end of the PEG spacer and gold nanoparticles were modified with coumarin-PEG-thiol. Surface attachment of coumarin through the PEG spacer decreased the fluorescence quenching effect of gold nanoparticles. The results of cellular cytotoxicity and fluorescence confocal analyses showed that the PEG spacer-modified nanoparticles were essentially non-toxic and could be efficiently internalized in the cells within 1 hour of incubation. Intracellular particle tracking using a Keck 3-D Fusion Microscope System showed that the functionalized gold nanoparticles were rapidly internalized in the cells and localized in the peri-nuclear region. Using the PEG spacer, the gold nano-platform can be conjugated with a variety of biologically relevant ligands such as fluorescent dyes, antibodies, etc in order to target, probe, and induce a stimulus at the target site. PMID:16467923
Lu, Chengfei; Das, Susmita; Magut, Paul K. S.; Li, Min; El Zahab, Bilal; Warner, Isiah M.
2014-01-01
We report on the synthesis and characterization of a PEGylated IR786 GUMBOS (Group of Uniform Materials Based on Organic Salts). The synthesis of this material was accomplished using a three step protocol: (1) substitution of chloride on the cyclohexenyl ring in the heptamethine chain of IR786 by 6-aminohexanoic acid, (2) grafting of methoxy poly ethyleneglycol (MeOPEG) onto the 6-aminohexanoic acid via an esterification reaction, and (3) anion exchange between [PEG786][I] and lithium bis(trifluoromethylsulfonyl)imide (LiNTf2) or sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in order to obtain PEG786 GUMBOS. Examination of spectroscopic data for this PEG786 GUMBOS indicates a large stokes shift (122 nm). It was observed that this PEG786 GUMBOS associates in aqueous solution to form nano-and meso-scale self-assemblies with sizes ranging from 100 to 220 nm. These nano- and meso-scale GUMBOS are also able to resist nonspecific binding to proteins. PEGylation of the original IR786 leads to reduced cytotoxicity. In addition, it was noted that anions, such as NTf2 and AOT, play a significant role in improving the photostability of PEG786 GUMBOS. Irradiation-induced J aggregation in [PEG786][NTf2] and to some extent in [PEG786][AOT] produced enhanced photostability. This observation was supported by use of both steady state and time-resolved fluorescence measurements. PMID:22957476
Non-Invasive Nanodiagnostics of Cancer (NINOC)
2010-04-01
tested. CONCLUSIONS Well-defined diblock copolymers of poly(ethylene glycol) and polymethacrylic acid (PEG-b-PMA) with aldehyde functionality were...treatment of cancer, tumor-specific targeting has been proposed using a variety of targeting moieties such as folic acid , transferrin, RGD-peptides...tert-butyl and PEG groups (Table 1). In order to obtain the final block copolymer 6, the hydrolysis of copolymer 5 was carried out in the acidic
Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.
Angelopoulou, A; Voulgari, E; Diamanti, E K; Gournis, D; Avgoustakis, K
2015-06-01
To investigate the application of water-dispersible poly(lactide)-poly(ethylene glycol) (PLA-PEG) copolymers for the stabilization of graphene oxide (GO) aqueous dispersions and the feasibility of using the PLA-PEG stabilized GO as a delivery system for the potent anticancer agent paclitaxel. A modified Staudenmaier method was applied to synthesize graphene oxide (GO). Diblock PLA-PEG copolymers were synthesized by ring-opening polymerization of dl-lactide in the presence of monomethoxy-poly(ethylene glycol) (mPEG). Probe sonication in the presence of PLA-PEG copolymers was applied in order to reduce the hydrodynamic diameter of GO to the nano-size range according to dynamic light scattering (DLS) and obtain nano-graphene oxide (NGO) composites with PLA-PEG. The composites were characterized by atomic force microscopy (AFM), thermogravimetric analysis (TGA), and DLS. The colloidal stability of the composites was evaluated by recording the size of the composite particles with time and the resistance of composites to aggregation induced by increasing concentrations of NaCl. The composites were loaded with paclitaxel and the in vitro release profile was determined. The cytotoxicity of composites against A549 human lung cancer cells in culture was evaluated by flow cytometry. The uptake of FITC-labeled NGO/PLA-PEG by A549 cells was also estimated with flow cytometry and visualized with fluorescence microscopy. The average hydrodynamic diameter of NGO/PLA-PEG according to DLS ranged between 455 and 534 nm, depending on the molecular weight and proportion of PLA-PEG in the composites. NGO/PLA-PEG exhibited high colloidal stability on storage and in the presence of high concentrations of NaCl (far exceeding physiological concentrations). Paclitaxel was effectively loaded in the composites and released by a highly sustained fashion. Drug release could be regulated by the molecular weight of the PLA-PEG copolymer and its proportion in the composite. The paclitaxel-loaded composites exhibited cytotoxicity against A549 cancer cells which increased with incubation time, in conjunction with the increasing with time uptake of composites by the cancer cells. Graphene oxide aqueous dispersions were effectively stabilized by water-dispersible, biocompatible and biodegradable PLA-PEG copolymers. The graphene oxide/PLA-PEG composites exhibited satisfactory paclitaxel loading capacity and sustained in vitro drug release. The paclitaxel-loaded composites could enter the A549 cancer cells and exert cytotoxicity. The results justify further investigation of the suitability of PLA-PEG stabilized graphene oxide for the controlled delivery of paclitaxel. Copyright © 2015 Elsevier B.V. All rights reserved.
pH-responsive polymer-drug conjugates as multifunctional micelles for cancer-drug delivery
NASA Astrophysics Data System (ADS)
Kang, Yang; Ha, Wei; Liu, Ying-Qian; Ma, Yuan; Fan, Min-Min; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing
2014-08-01
We developed a novel linear pH-sensitive conjugate methoxy poly(ethylene glycol)-4β-aminopodophyllotoxin (mPEG-NPOD-I) by a covalently linked 4β-aminopodophyllotoxin (NPOD) and PEG via imine bond, which was amphiphilic and self-assembled to micelles in an aqueous solution. The mPEG-NPOD-I micelles simultaneously served as an anticancer drug conjugate and as drug carriers. As a drug conjugate, mPEG-NPOD-I showed a significantly faster NPOD release at a mildly acidic pH of 5.0 and 4.0 than a physiological pH of 7.4. Notably, it was confirmed that this drug conjugate could efficiently deliver NPOD to the nuclei of the tumor cells and led to much more cytotoxic effects to A549, Hela, and HepG2 cancer cells than the parent NPOD. The half maximal inhibitory concentration (IC50) of mPEG-NPOD-I was about one order magnitude lower than that of the NPOD. In vivo, mPEG-NPOD-I reduced the size of the tumors significantly, and the biodistribution studies indicated that this drug conjugate could selectively accumulate in tumor tissues. As drug carriers, the mPEG-NPOD-I micelles encapsulated hydrophobic PTX with drug-loading efficiencies of 57% and drug-loading content of 16%. The loaded PTX also showed pH-triggered fast release behavior, and good additive cytotoxicity effect was observed for the PEG-NPOD-I/PTX. We are convinced that these multifunctional drug conjugate micelles have tremendous potential for targeted cancer therapy.
pH-responsive polymer-drug conjugates as multifunctional micelles for cancer-drug delivery.
Kang, Yang; Ha, Wei; Liu, Ying-Qian; Ma, Yuan; Fan, Min-Min; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing
2014-08-22
We developed a novel linear pH-sensitive conjugate methoxy poly(ethylene glycol)-4β-aminopodophyllotoxin (mPEG-NPOD-I) by a covalently linked 4β-aminopodophyllotoxin (NPOD) and PEG via imine bond, which was amphiphilic and self-assembled to micelles in an aqueous solution. The mPEG-NPOD-I micelles simultaneously served as an anticancer drug conjugate and as drug carriers. As a drug conjugate, mPEG-NPOD-I showed a significantly faster NPOD release at a mildly acidic pH of 5.0 and 4.0 than a physiological pH of 7.4. Notably, it was confirmed that this drug conjugate could efficiently deliver NPOD to the nuclei of the tumor cells and led to much more cytotoxic effects to A549, Hela, and HepG2 cancer cells than the parent NPOD. The half maximal inhibitory concentration (IC₅₀) of mPEG-NPOD-I was about one order magnitude lower than that of the NPOD. In vivo, mPEG-NPOD-I reduced the size of the tumors significantly, and the biodistribution studies indicated that this drug conjugate could selectively accumulate in tumor tissues. As drug carriers, the mPEG-NPOD-I micelles encapsulated hydrophobic PTX with drug-loading efficiencies of 57% and drug-loading content of 16%. The loaded PTX also showed pH-triggered fast release behavior, and good additive cytotoxicity effect was observed for the PEG-NPOD-I/PTX. We are convinced that these multifunctional drug conjugate micelles have tremendous potential for targeted cancer therapy.
GEOMETRIC OFFSETS ACROSS SPIRAL ARMS IN M51: NATURE OF GAS AND STAR FORMATION TRACERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louie, Melissa; Koda, Jin; Egusa, Fumi, E-mail: melissa.louie@stonybrook.edu
We report measurements of geometric offsets between gas spiral arms and associated star-forming regions in the grand-design spiral galaxy M51. These offsets are a suggested measure of the star formation timescale after the compression of gas at spiral arm entry. A surprising discrepancy, by an order of magnitude, has been reported in recent offset measurements in nearby spiral galaxies. Measurements using CO and H{alpha} emission find large and ordered offsets in M51. On the contrary, small or non-ordered offsets have been found using the H I 21 cm and 24 {mu}m emissions, possible evidence against gas flow through spiral arms,more » and thus against the conventional density-wave theory with a stationary spiral pattern. The goal of this paper is to understand the cause of this discrepancy. We investigate potential causes by repeating those previous measurements using equivalent data, methods, and parameters. We find offsets consistent with the previous measurements and conclude that the difference of gas tracers, i.e., H I versus CO, is the primary cause. The H I emission is contaminated significantly by the gas photodissociated by recently formed stars and does not necessarily trace the compressed gas, the precursor of star formation. The H I gas and star-forming regions coincide spatially and tend to show small offsets. We find mostly positive offsets with substantial scatter between CO and H{alpha}, suggesting that gas flow through spiral arms (i.e., density wave) though the spiral pattern may not necessarily be stationary.« less
NASA Technical Reports Server (NTRS)
Szkody, Paula
1987-01-01
IUE time-resolved spectra of the high-inclination cataclysmic variables IP Peg, PG 1030+590, and V1315 Aql are analyzed in order to determine the characteristics of the disk, hotspots, and white dwarfs. The UV continuum flux distributions are generally flatter than systems of low inclination and high mass-transfer rate, and the white dwarfs/inner disk appear to be relatively cool (15,000-19,000 K) for their orbital periods, possibly because the boundary layers are blocked from view. The continuum fluxes increase at spot phases, with the spot providing the dominant flux in IP Peg. The spot temperatures range from hot (20,000 K) in IP Peg, and perhaps in PG 1030+590, to cool (11,000 K) in V1315 Aql. The C IV emission lines show slightly larger decreases at spot phases than during eclipse, which implies an extended stream area.
Crystallisation of alpha-crustacyanin, the lobster carapace astaxanthin-protein: results from EURECA
NASA Astrophysics Data System (ADS)
Zagalsky, P. F.; Wright, C. E.; Parsons, M.
1995-08-01
Crystallisation of alpha-crustacyanin, the lobster carapace astaxanthin-protein was attempted under microgravity conditions in EURECA satellite using liquid-liquid diffusion with polyethyleneglycol (PEG) as precipitant; in a second reaction chamber phenol and dioxan were used as additives to prevent composite crystal growth. Crystals of alpha-crustacyanin grown under microgravity from PEG were larger than those grown terrestrially in the same apparatus under otherwise identical conditions. On retrieval, the crystals from PEG were shown to be composite and gave a powder diffraction pattern. The second reaction chamber showed leakage on retrieval and had also been subjected to rapid temperature variation during flight. Crystal fragments were nevertheless recovered but showed a powder diffraction pattern. It is concluded, certainly for liquid-liquid diffusion using PEG alone, that, for crustacyanin, although microgravity conditions resulted in an increase in dimensions of crystals, a measurable improvement in molecular ordering was not achieved.
NASA Astrophysics Data System (ADS)
Christensen, M.; Nielsen, O. F.; Jensen, P.; Schnell, U.
2005-02-01
The interaction between polyethylene glycol (PEG) and water in mixtures has been investigated with a particular emphasis on the existence of 'free' water with a tetragonal bulk-like water structure. PEG is used in museum preservation of wooden objects, where free water must be avoided due to the danger of further microbial growth, contractile capillary forces and aqueous transport in wooden archaeological artefacts. A NIR-FT-Raman instrument with excitation at 1064 nm was used for this investigation. The OH stretch region around 3200 cm-1 shows changes in intensity with changing water content and the R(νbar)-function was applied in order to observe free water in the 100-300 cm-1 region. Mixtures of PEG and water were investigated with water contents ranging from 0 to 90% volume. It was found that free water appears around 28-32% volume in a PEG 600 mixture.
Cosco, Donato; Paolino, Donatella; De Angelis, Francesco; Cilurzo, Felisa; Celia, Christian; Di Marzio, Luisa; Russo, Diego; Tsapis, Nicolas; Fattal, Elias; Fresta, Massimo
2015-01-01
Novel PEGylated PLA nanocapsules (PEG-AcPLA nanocapsules), loading high percentage of water soluble drugs have been formulated by using multiple emulsion technique without using conventional stabilizers. In particular, sodium deoxycholate hydrate has been used to obtain nanocapsules having a mean diameter of about 200 nm and a polydispersity index of ∼ 0.1. Gemcitabine hydrochloride (GEM) was used as a model of hydrophilic drug. GEM-loaded PEG-AcPLA nanocapsules demonstrated a high encapsulation efficacy and the drug-release followed a zero-order kinetic. MTT-assay evidenced an increased antitumor effect of GEM-loaded PEG-AcPLA nanocapsules compared to the free drug on different cancer cell lines and confocal laser scanning microscopy showed a significant improvement of cell interaction at 6h of incubation. In vivo anticancer activity of GEM-loaded PEG-AcPLA nanocapsules using two xenograft murine models of human solid tumors further supported the efficacy of this nano-drug, thus providing preliminary results about the potential clinical application of this innovative nanotherapeutic. Copyright © 2014 Elsevier B.V. All rights reserved.
Probing the binding of cationic lipids with dendrimers.
Mandeville, J S; Bourassa, P; Tajmir-Riahi, H A
2013-01-14
Polycationic polymers are used extensively in biology to disrupt cell membranes and thus enhance the transport of materials into the cell. We report the bindings of several lipids cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane(DOTAP), dioctadecyldimethylammoniumbromide (DDAB), and dioleoylphosphatidylethanolamine (DOPE) to dendrimers of different compositions such as mPEG-PAMAM (G3), mPEG-PAMAM (G4), and PAMAM (G4) under physiological conditions. FTIR, UV-visible spectroscopic, methods and molecular modeling were used to analyze the lipid binding mode, the binding constant, and the effects of lipid complexation on the dendrimer structure. The structural analysis showed that lipids bind dendrimers through both hydrophilic and hydrophobic contacts with overall binding constants of K(chol-mPEG-G3) = 1.7 × 10(3) M(-1), K(chol-mPEG-PAMAM-G4) = 2.7 × 10(3) M(-1), K(chol-PAMAM-G4) = 1.0 × 10(3) M(-1), K(DOPE-mPEG-G3) = 1.5 × 10(3) M(-1), K(DOPE-mPEG-PAMAM-G4) = 1.6 × 10(3) M(-1), K(DOPE-PAMAM-G4) = 5.3 × 10(2) M(-1), K(DDAB-mPEG-G3) = 1.5 × 10(3) M(-1), K(DDAB-mPEG-PAMAM-G4) = 1.9 × 10(2) M(-1), K(DDAB-PAMAM-G4) = 7.0 × 10(2) M(-1), K(DOTAP-mPEG-G3) = 1.9 × 10(3) M(-1), K(DOTAP-mPEG-PAMAM-G4) = 1.5 × 10(3) M(-1), and K(DOTAP-PAMAM-G4) = 5.7 × 10(2) M(-1). Weaker interaction was observed as dendrimer cationic charges increased. The free binding energies from docking were -5.15 (cholesterol), -5.79 (DDAB), and -5.36 kcal/mol (DOTAP) with the order of stability DDAB-PAMAM-G-4 > DOTAP-PAMAM-G4 > cholesterol-PAMAM-G4, consistent with the spectroscopic results. Dendrimers might act as carriers to transport lipids in vitro.
He, Zelai; Shi, Zengfang; Sun, Wenjie; Ma, Jing; Xia, Junyong; Zhang, Xiangyu; Chen, Wenjun; Huang, Jingwen
2016-06-01
In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles.
Biorecognition Element Design and Characterization for Human Performance Biomarkers Sensing
2015-07-16
immobilize aptamers and peptides on the AuNP surface. The parameters optimized in this work included reaction times, ligand ratio (PEG-OH vs PEG- COOH...instructions for performing peptides and aptamers surface immobilization were provided to collaborators in order to create nanoprobes that were integrated...with sequences made of less than 20 amino acids) and DNA aptamers (via on-off structural switching properties) are appealing BREs for new sensors
Targeted Riluzole Delivery by Antioxidant Nanovectors for Treating Amyotrophic Lateral Sclerosis
2015-06-01
neuronal marker ( choline acetyltransferase) and quantified image analysis. Motoneurons were counted in the anterior horn region of the lumbar spinal...cord (both sides , then averaged). We do not detect a statistical difference in surviving motoneurons between PEG-HCC and vehicle-treated subjects...beyond this particular funding mechanism in order to better develop PEG-HCCs as a novel and effective treatment for ALS. What was the impact on other
NASA Astrophysics Data System (ADS)
El Jai, Mostapha; Akhrif, Iatimad; Mesrar, Laila; Jabrane, Raouf
2018-05-01
The aim of this paper is to characterize mechanically the new micro-composites that have been developed in our laboratories. The composites are composed by natural clay (as a matrix) with variant percentages of Polyethylene Glycol 6000 (PEG 6000) as micro-fillers. We used the compression test for the measurement of the static parameters such as elasticity modulus in elastic region and the hardening coefficient which permits to describe the plasticity behaviour of the materials. An additional energetic approach is proposed in order to quantify the evolution of the plasticity of the reinforced materials, caused by the PEG 6000, for different percentages of this polymer.
Guo, Qian; Luo, Ping; Luo, Yu; Du, Fang; Lu, Wei; Liu, Shiyuan; Huang, Jin; Yu, Jiahui
2012-12-01
Biodegradable micelles with sheddable poly(ethylene glycol) shells were fabricated based on poly(ethylene glycol)-block-poly(γ-benzyl L-glutamate) (mPEG-SS-PBLG) diblock copolymer and applied as the carrier of 7-ethyl-10-hydroxy-camptothecin (SN-38) in order to enhance its solubility and stability in aqueous media. The diblock polymer was designed to have the hydrophilic PEG moiety and hydrophobic PBLG moiety linked by biodegradable disulfide bond, so in reducing environment the PEG shells can be detached. The polymer was able to form the micelles of nano-scale in aqueous media, suggesting their passive targeting potential to tumor tissue. Water-insoluble antitumor drug, SN-38, was easily encapsulated into mPEG-SS-PBLG nanomicelles by lyophilization method. When setting theoretical drug loading content at 10 wt%, the drug encapsulation efficiency (EE) was assayed as 73.5%. Owing to the disulfide bond in mPEG-SS-PBLG, intense release of SN-38 occurred in the presence of dithiothreitol (DTT) at the concentration of simulating the intracellular condition, however, micelles showed gradual release of SN-38 in the absence of DTT. Also, the mPEG-SS-PBLG micelles effectively protected the active lactone ring of SN-38 from hydrolysis under physiological condition. Compared with free SN-38, SN-38-loaded nanomicelles showed essentially decreased cytotoxicity against L929 cell line in 24h, bare mPEG-SS-PBLG nanomicelles showed almost non-toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.
Kooijmans, S A A; Fliervoet, L A L; van der Meel, R; Fens, M H A M; Heijnen, H F G; van Bergen En Henegouwen, P M P; Vader, P; Schiffelers, R M
2016-02-28
Extracellular vesicles (EVs) are increasingly being recognized as candidate drug delivery systems due to their ability to functionally transfer biological cargo between cells. However, the therapeutic applicability of EVs may be limited due to a lack of cell-targeting specificity and rapid clearance of exogenous EVs from the circulation. In order to improve EV characteristics for drug delivery to tumor cells, we have developed a novel method for decorating EVs with targeting ligands conjugated to polyethylene glycol (PEG). Nanobodies specific for the epidermal growth factor receptor (EGFR) were conjugated to phospholipid (DMPE)-PEG derivatives to prepare nanobody-PEG-micelles. When micelles were mixed with EVs derived from Neuro2A cells or platelets, a temperature-dependent transfer of nanobody-PEG-lipids to the EV membranes was observed, indicative of a 'post-insertion' mechanism. This process did not affect EV morphology, size distribution, or protein composition. After introduction of PEG-conjugated control nanobodies to EVs, cellular binding was compromised due to the shielding properties of PEG. However, specific binding to EGFR-overexpressing tumor cells was dramatically increased when EGFR-specific nanobodies were employed. Moreover, whereas unmodified EVs were rapidly cleared from the circulation within 10min after intravenous injection in mice, EVs modified with nanobody-PEG-lipids were still detectable in plasma for longer than 60min post-injection. In conclusion, we propose post-insertion as a novel technique to confer targeting capacity to isolated EVs, circumventing the requirement to modify EV-secreting cells. Importantly, insertion of ligand-conjugated PEG-derivatized phospholipids in EV membranes equips EVs with improved cell specificity and prolonged circulation times, potentially increasing EV accumulation in targeted tissues and improving cargo delivery. Copyright © 2015. Published by Elsevier B.V.
Hu, Xiaohong; Zhu, Qi; Gu, Zhibin; Zhang, Nan; Liu, Na; Stanislaus, Mishma S; Li, Dawei; Yang, Yingnan
2017-05-01
TiO 2 photocatalyst film recently has been utilized as the potential candidate for the wastewater treatment, due to its high stability and low toxicity. In order to further increase the photocatalytic ability and stability, different molecular weight of polyethylene glycol (PEG) were used to modify TiO 2 structure to synthesize porous thin film used in the developed Photocatalytic-Ultrasonic system in this work. The results showed that PEG2000 modified TiO 2 calcinated under 450°C for 2h exhibited the highest photocatalytic activity, attributed to the smallest crystallite size and optimal particle size. Over 95.0% of rhodamine B (Rh B) was photocatalytically degraded by optimized PEG 2000 -TiO 2 film after 60min of UV irradiation, while only about 50.8% of Rh B was decolored over pure TiO 2 film. Furthermore, optimized PEG 2000 -TiO 2 film was used in a circular Photocatalytic-Ultrasonic system, and the obtained synergy (0.6519) of sonophotocatalysis indicated its extremely high efficiency for Rh B degradation. In this Photocatalytic-Ultrasonic system, larger amount of PEG 2000 -TiO 2 coated glass beads, stronger ultrasonic power and longer experimental time could result to higher degradation efficiency of Rh B. In addition, repetitive experiments showed that about 97.2% of Rh B were still degraded in the fifth experiment by sonophotocatalysis using PEG 2000 -TiO 2 film. Therefore, PEG 2000 -TiO 2 film used in Photocatalytic-Ultrasonic system has promising potential for wastewater treatment, due to its excellent photocatalytic activity and high stability. Copyright © 2016 Elsevier B.V. All rights reserved.
Kudryashova, E V; Suhoverkov, K V; Sokolov, N N
2015-01-01
A new approach to the regulation of catalytic properties of medically relevant enzymes has been proposed using the novel recombinant preparation of L-asparaginase from Erwinia carotovora (EwA), a promising antitumor agent. New branched co-polymers of different composition based on chitosan modified with polyethylene glycol (PEG) molecules, designated as PEG-chitosan, have been synthesized. PEG-chitosan copolymers were further conjugated with EwA. In order to optimize the catalytic properties of asparaginase two types of conjugates differing in their architecture have been synthesized: (1) crown-type conjugates were synthesized by reductive amination reaction between the reducing end of the PEG-chitosan copolymer and enzyme amino groups; (2) multipoint-conjugates were synthesized using the reaction of multipoint amide bond formation between PEG-chitosan amino groups and carboxyl groups of the enzyme in the presence of the Woodward's reagent. The structure and composition of these conjugates were determined by IR spectroscopy. The content of the copolymers in the conjugates was controlled by the characteristic absorption band of C-O-C bonds in the PEG structure at the frequency of 1089 cm-1. The study of catalytic characteristics of EwA preparations by conductometry showed that at physiological pH values the enzyme conjugates with PEG-chitosan with optimized structure and the optimal composition demonstrated 5-8-fold higher catalytic efficiency (kcat/Km) than the native enzyme. To certain extent, this can be attributed to favorable shift of pH-optima in result of positively charged amino-groups introduction in the vicinity of the active site. The proposed approach, chito-pegylation, is effective for regulating the catalytic and pharmacokinetic properties of asparaginase, and is promising for the development of prolonged action dosage forms for other enzyme therapeutics.
Short-Chain PEG Mixed-Monolayer Protected Gold Clusters Increase Clearance and Red Blood Cell Counts
Simpson, Carrie A.; Agrawal, Amanda C.; Balinski, Andrzej; Harkness, Kellen M.; Cliffel, David E.
2011-01-01
Monolayer-protected gold nanoparticles have great potential as novel building blocks for the design of new drugs and therapeutics based on the easy ability to multifunctionalize them for biological targeting and drug activity. In order to create nanoparticles that are biocompatible in vivo, poly-ethylene glycol functional groups have been added to many previous multifunctionalized particles to eliminate non-specific binding. Recently, monolayer-protected gold nanoparticles with mercaptoglycine functionalities were shown to elicit deleterious effects on the kidney in vivo that were eliminated by incorporating a long-chain, mercapto-undecyl-tetraethylene glycol, at very high loadings into a mixed monolayer. These long-chain PEGs induced an immune response to the particle presumably generating an anti-PEG antibody as seen in other long-chain PEG-ylated nanoparticles in vivo. In the present work, we explore the in vivo effects of high and low percent ratios of a shorter chain, mercapto-tetraethylene glycol, within the monolayer using simple place-exchange reactions. The shorter chain PEG MPCs were expected to have better water solubility due to elimination of the alkyl chain, no toxicity, and long-term circulation in vivo. Shorter chain lengths at lower concentrations should not trigger the immune system into creating an anti-PEG antibody. We found that a 10% molar exchange of this short chain PEG within the monolayer met three of the desired goals: high water solubility, no toxicity, and no immune response as measured by white blood cell counts, but none of the short chain PEG mixed monolayer compositions enabled the nanoparticles to have a long circulation time within the blood as compared to mercapto-undecyl-ethylene glycol, which had a residence time of 4 weeks. We also compared the effects of a hydroxyl versus a carboxylic acid terminal functional group on the end of the PEG thiol on both clearance and immune response. The results indicate that short-chain length PEGs, regardless of termini, increase clearance rates compared to the previous long-chain PEG studies while carboxylated-termini increase red blood cell counts at high loadings. Given these findings, short-chain, alcohol-terminated PEG, exchanged at 10% was identified as a potential nanoparticle for further in vivo applications requiring short circulation lifetimes with desired features of no toxicity, no immune response, and high water solubility. PMID:21473648
Ramanathan, S; Qiu, B; Pooyan, S; Zhang, G; Stein, S; Leibowitz, M J; Sinko, P J
2001-12-13
We previously described the enhanced cell uptake and transport of R.I-K(biotin)-Tat9, a large ( approximately 1500 Da) peptidic inhibitor of HIV-1 Tat protein, via SMVT, the intestinal biotin transporter. The aim of the present study was to investigate the feasibility of targeting biotinylated PEG-based conjugates to SMVT in order to enhance cell uptake and transport of Tat9. The 29 kDa peptide-loaded bioconjugate (PEG:(R.I-Cys-K(biotin)-Tat9)8) used in these studies contained eight copies of R.I-K(biotin)-Tat9 appended to PEG by means of a cysteine linkage. The absorptive transport of biotin-PEG-3400 (0.6-100 microM) and the bioconjugate (0.1-30 microM) was studied using Caco-2 cell monolayers. Inhibition of biotin-PEG-3400 by positive controls (biotin, biocytin, and desthiobiotin) was also determined. Uptake of these two compounds was also determined in CHO cells transfected with human SMVT (CHO/hSMVT) and control cells (CHO/pSPORT) over the concentration ranges of 0.05-12.5 microM and 0.003-30 microM, respectively. Nonbiotinylated forms of these two compounds, PEG-3350 and PEG:(R.I-Cys-K-Tat9)8, were used in the control studies. Biotin-PEG-3400 transport was found to be concentration-dependent and saturable in Caco-2 cells (K(m)=6.61 microM) and CHO/hSMVT cells (K(m)=1.26 microM). Transport/uptake was significantly inhibited by positive control substrates of SMVT. PEG:(R.I-Cys-K(biotin)Tat9)8 also showed saturable transport kinetics in Caco-2 cells (K(m)=6.13 microM) and CHO/hSMVT cells (K(m)=8.19 microM). Maximal uptake in molar equivalents of R.I-Cys-K(biotin)Tat9 was 5.7 times greater using the conjugate versus the biotinylated peptide alone. Transport of the nonbiotinylated forms was significantly lower (P<0.001) in all cases. The present results demonstrate that biotin-PEG-3400 and PEG:(R.I-Cys-K(biotin)Tat9)8 interact with human SMVT to enhance the cellular uptake and transport of these larger molecules and that targeted bioconjugates may have potential for enhancing the cellular uptake and transport of small peptide therapeutic agents.
Müller, Egbert; Josic, Djuro; Schröder, Tim; Moosmann, Anna
2010-07-09
Dynamic binding capacities and resolution of PEGylated lysozyme derivatives with varying molecular weights of poly (ethylene) glycol (PEG) with 5 kDa, 10 kDa and 30 kDa for HIC resins and columns are presented. To find the optimal range for the operating conditions, solubility studies were performed by high-throughput analyses in a 96-well plate format, and optimal salt concentrations and pH values were determined. The solubility of PEG-proteins was strongly influenced by the length of the PEG moiety. Large differences in the solubilities of PEGylated lysozymes in two different salts, ammonium sulfate and sodium chloride were found. Solubility of PEGylated lysozyme derivatives in ammonium sulfate decreases with increased length of attached PEG chains. In sodium chloride all PEGylated lysozyme derivatives are fully soluble in a concentration range between 0.1 mg protein/ml and 10 mg protein/ml. The binding capacities for PEGylated lysozyme to HIC resins are dependent on the salt type and molecular weight of the PEG polymer. In both salt solutions, ammonium sulfate and sodium chloride, the highest binding capacity of the resin was found for 5 kDa PEGylated lysozyme. For both native lysozyme and 30 kDa mono-PEGylated lysozyme the binding capacities were lower. In separation experiments on a TSKgel Butyl-NPR hydrophobic-interaction column with ammonium sulfate as mobile phase, the elution order was: native lysozyme, 5 kDa mono-PEGylated lysozyme and oligo-PEGylated lysozyme. This elution order was found to be reversed when sodium chloride was used. Furthermore, the resolution of the three mono-PEGylated forms was not possible with this column and ammonium sulfate as mobile phase. In 4 M sodium chloride a resolution of all PEGylated lysozyme forms was achieved. A tentative explanation for these phenomena can be the increased solvation of the PEG polymers in sodium chloride which changes the usual attractive hydrophobic forces in ammonium sulfate to more repulsive hydration forces in this hydrotrophic salt.
NASA Astrophysics Data System (ADS)
Pozzi, Daniela; Colapicchioni, Valentina; Caracciolo, Giulio; Piovesana, Susy; Capriotti, Anna Laura; Palchetti, Sara; de Grossi, Stefania; Riccioli, Anna; Amenitsch, Heinz; Laganà, Aldo
2014-02-01
When nanoparticles (NPs) enter a physiological environment, medium components compete for binding to the NP surface leading to formation of a rich protein shell known as the ``protein corona''. Unfortunately, opsonins are also adsorbed. These proteins are immediately recognized by the phagocyte system with rapid clearance of the NPs from the bloodstream. Polyethyleneglycol (PEG) coating of NPs (PEGylation) is the most efficient anti-opsonization strategy. Linear chains of PEG, grafted onto the NP surface, are able to create steric hindrance, resulting in a significant inhibition of protein adsorption and less recognition by macrophages. However, excessive PEGylation can lead to a strong inhibition of cellular uptake and less efficient binding with protein targets, reducing the potential of the delivery system. To reach a compromise in this regard we employed a multi-component (MC) lipid system with uncommon properties of cell uptake and endosomal escape and increasing length of PEG chains. Nano liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS) analysis allowed us to accurately determine the corona composition showing that apolipoproteins are the most abundant class in the corona and that increasing the PEG length reduced the protein adsorption and the liposomal surface affinity for apolipoproteins. Due to the abundance of apolipoproteins, we exploited the ``protein corona effect'' to deliver cationic liposome-human plasma complexes to human prostate cancer PC3 cells that express a high level of scavenger receptor class B type 1 in order to evaluate the cellular uptake efficiency of the systems used. Combining laser scanning confocal microscopy with flow cytometry analysis in PC3 cells we demonstrated that MC-PEG2k is the best compromise between an anti-opsonization strategy and active targeting and could be a promising candidate to treat prostate cancer in vivo.When nanoparticles (NPs) enter a physiological environment, medium components compete for binding to the NP surface leading to formation of a rich protein shell known as the ``protein corona''. Unfortunately, opsonins are also adsorbed. These proteins are immediately recognized by the phagocyte system with rapid clearance of the NPs from the bloodstream. Polyethyleneglycol (PEG) coating of NPs (PEGylation) is the most efficient anti-opsonization strategy. Linear chains of PEG, grafted onto the NP surface, are able to create steric hindrance, resulting in a significant inhibition of protein adsorption and less recognition by macrophages. However, excessive PEGylation can lead to a strong inhibition of cellular uptake and less efficient binding with protein targets, reducing the potential of the delivery system. To reach a compromise in this regard we employed a multi-component (MC) lipid system with uncommon properties of cell uptake and endosomal escape and increasing length of PEG chains. Nano liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS) analysis allowed us to accurately determine the corona composition showing that apolipoproteins are the most abundant class in the corona and that increasing the PEG length reduced the protein adsorption and the liposomal surface affinity for apolipoproteins. Due to the abundance of apolipoproteins, we exploited the ``protein corona effect'' to deliver cationic liposome-human plasma complexes to human prostate cancer PC3 cells that express a high level of scavenger receptor class B type 1 in order to evaluate the cellular uptake efficiency of the systems used. Combining laser scanning confocal microscopy with flow cytometry analysis in PC3 cells we demonstrated that MC-PEG2k is the best compromise between an anti-opsonization strategy and active targeting and could be a promising candidate to treat prostate cancer in vivo. Electronic supplementary information (ESI) available: Table S1. The slope of the lines fitting the temporal evolution of size and zeta-potential of MC, MC-PEG1k, MC-PEG2k and MC-PEG5k liposomes. Table S2. The full list of the most abundant corona proteins associated with MC, MC-PEG1k, MC-PEG2k and MC-PEG5k liposomes as identified by NanoLC-MS/MS. See DOI: 10.1039/c3nr05559k
Rolston, Kenneth V I; Mihu, Coralia; Tarrand, Jeffrey J
2011-08-01
Percutaneous endoscopic gastrostomy (PEG) is frequently used to provide enteral access in cancer patients who are unable to swallow. Infection is an important complication in this setting. Current microbiological data are needed to guide infection prevention and treatment strategies. The microbiological records of our institution (a 550-bed comprehensive cancer center) were retrospectively reviewed over an 8-month study period in order to identify patients who developed PEG tube insertion site infections, and review their microbiological details and susceptibility/resistance data. Fifty-eight episodes of PEG tube insertion site infections were identified. Of these, 31 (53%) were monomicrobial, and the rest were polymicrobial. The most common organisms isolated were Candida species, Staphylococcus aureus, and Pseudomonas aeruginosa. All infections were local (cellulitis, complicated skin, and skin structure infections including abdominal wall abscess) with no cases of concomitant bacteremia being documented. Most of the organisms isolated were susceptible to commonly used antimicrobial agents, although some quinolone-resistant and some multidrug-resistant organisms were isolated. This retrospective study provides descriptive data regarding PEG tube insertion site infections. These data have helped us update institutional guidelines for infection prevention and treatment as part of our focus on antimicrobial stewardship.
Design of polymer conjugated 3-helix micelles as nanocarriers with tunable shapes.
Ma, Dan; DeBenedictis, Elizabeth P; Lund, Reidar; Keten, Sinan
2016-11-24
Amphiphilic peptide-polymer conjugates have the ability to form stable nanoscale micelles, which show great promise for drug delivery and other applications. A recent design has utilized the end-conjugation of alkyl chains to 3-helix coiled coils to achieve amphiphilicity, combined with the side-chain conjugation of polyethylene glycol (PEG) to tune micelle size through entropic confinement forces. Here we investigate this phenomenon in depth, using coarse-grained dissipative particle dynamics (DPD) simulations in an explicit solvent and micelle theory. We analyze the conformations of PEG chains conjugated to three different positions on 3-helix bundle peptides to ascertain the degree of confinement upon assembly, as well as the ordering of the subunits making up the micelle. We discover that the micelle size and stability is dictated by a competition between the entropy of PEG chain conformations in the assembled state, as well as intermolecular cross-interactions among PEG chains that promote cohesion between neighboring conjugates. Our analyses build on the role of PEG molecular weight and conjugation site and lead to computational phase diagrams that can be used to design 3-helix micelles. This work opens pathways for the design of multifunctional micelles with tunable size, shape and stability.
Martina, Marie-Sophie; Nicolas, Valerie; Wilhelm, Claire; Ménager, Christine; Barratt, Gillian; Lesieur, Sylviane
2007-10-01
Binding and uptake kinetics of magnetic-fluid-loaded liposomes (MFL) by endocytotic cells were investigated in vitro on the model cell-line J774. MFL consisted of unilamellar phosphatidylcholine vesicles (mean hydrodynamic diameter close to 200nm) encapsulating 8-nm nanocrystals of maghemite (gamma-Fe(2)O(3)) and sterically stabilized by introducing 5mol% of distearylphosphatidylcholine poly(ethylene glycol)(2,000) (DSPE-PEG(2,000)) in the vesicle bilayer. The association processes with living macrophages were followed at two levels. On one hand, the lipid vesicles were imaged by confocal fluorescence microscopy. For this purpose 1mol% of rhodamine-marked phosphatidylethanolamine was added to the liposome composition. On the other hand, the iron oxide particles associated with cells were independently quantified by magnetophoresis. All the experiments were similarly performed with PEG-ylated or conventional MFL to point out the role of polymer coating. The results showed cell association with both types of liposomes resulting from binding followed by endocytosis. Steric stabilization by PEG chains reduced binding efficiency limiting the amount of MFL internalized by the macrophages. In contrast, PEG coating did not change the kinetics of endocytosis which exhibited the same first-order rate constant for both conventional and PEG-ylated liposomes. Moreover, lipids and iron oxide particle uptakes were perfectly correlated, indicating that MFL vesicle structure and encapsulation rate were preserved upon cell penetration.
Zhang, Zuoheng; Lin, Xubo; Gu, Ning
2017-12-01
Plasma membrane internalization of nanoparticles (NPs) is important for their biomedical applications such as drug-delivery carriers. On one hand, in order to improve their half-life in circulation, PEGylation has been widely used. However, it may hinder the NPs' membrane internalization ability. On the other hand, higher temperature could enhance the membrane permeability and may affect the NPs' ability to enter into or exit from cells. To make full use of their advantages, we systematically investigated the effects of temperature and PEG density on the translocation of PEGylated nanoparticles across the plasma asymmetric membrane of eukaryotic cells, using near-atom level coarse-grained molecular dynamics simulations. Our results showed that higher temperature could accelerate the translocation of NPs across membranes by making lipids more disorder and faster diffusion. On the contrary, steric hindrance effects of PEG would inhibit NPs' translocation process and promote lipids flip-flops. The PEG chains could rearrange themselves to minimize the contacts between PEG and lipid tails during the translocation, which was similar to 'snorkeling effect'. Moreover, lipid flip-flops were affected by PEGylated density as well as NPs' translocation direction. Higher PEG grafting density could promote lipid flip-flops, but inhibit lipid extraction from bilayers. The consequence of lipid flip-flop and extraction was that the membranes got more symmetric. Copyright © 2017. Published by Elsevier B.V.
Ma, Shan-Shan; Ho, Seong-Hyun; Ma, Su-Yong; Li, Yue-Juan; Li, Kai-Tong; Tang, Xiao-Chuang; Zhao, Guang-Rong; Xu, Song-Shan
2017-10-01
In order to improve the pharmacokinetic and pharmacodynamic properties of recombinant human interleukin-11 mutein (mIL-11) and to reduce the frequency of administration, we examined the feasibility of chemical modification of mIL-11 by methoxy polyethylene glycol succinimidyl carbonate (mPEG-SC). PEG-mIL-11 was prepared by a pH controlled amine specific method. Bioactivity of the protein was determined in a IL-11-dependent in vitro bioassay, its pharmacodynamic and pharmacokinetic properties were investigated by using normal and thrombocytopenic monkey models. N-terminus sequencing and peptide mapping analysis revealed that Lys33 is the PEGylated position for PEG-mIL-11. Bioactivity of PEG-mIL-11 assessed by B9-11 cell proliferation assay was comparable to that of mIL-11. More than 79-fold increase in area-under-the curve (AUC) and 26-fold increase in maximum plasma concentration (C max ) was observed in pharmacokinetic analysis. Single dose administration of the PEG-mIL-11 induced blood platelets number increase and the effect duration were comparable to that of 7 to 10 consecutive daily administration of mIL-11 to the normal and thrombocytopenic monkey models. PEG-mIL-11 is a promising therapeutic for thrombocytopenia. Copyright © 2017 Elsevier B.V. All rights reserved.
Ostomy metastasis after pull endoscopic gastrostomy: a unique favorable outcome.
Fonseca, Jorge; Adriana, Carla; Fróis-Borges, Miguel; Meira, Tânia; Oliveira, Gabriel; Santos, José Carlos
2015-04-01
Head and neck cancer (HNC) patients tend to develop dysphagia. In order to preserve the nutritional support, many undergo endoscopic gastrostomy (PEG). In HNC patients, ostomy metastasis is considered a rare complication of PEG, but there are no reports of successful treatment of these metastatic cancers. We report the case of a 65 years old pharyngeal/laryngeal cancer patient who underwent a PEG before the neck surgery. He was considered to be cured, resumed oral intake and the PEG tube was removed. Ten months after, he returned with a metastasis at the ostomy site. A block resection of the stomach and abdominal wall was performed. Two years after the abdominal surgery, he is free of disease. Although usually considered a rare complication of the endoscopic gastrostomy, ostomy metastasis may be more frequent than usually considered and the present case report demonstrates that these patients may have a favourable outcome. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Towards Virtual FLS: Development of a Peg Transfer Simulator
Arikatla, Venkata S; Ahn, Woojin; Sankaranarayanan, Ganesh; De, Suvranu
2014-01-01
Background Peg transfer is one of five tasks in the Fundamentals of Laparoscopic Surgery (FLS), program. We report the development and validation of a Virtual Basic Laparoscopic Skill Trainer-Peg Transfer (VBLaST-PT©) simulator for automatic real-time scoring and objective quantification of performance. Methods We have introduced new techniques in order to allow bi-manual manipulation of pegs and automatic scoring/evaluation while maintaining high quality of simulation. We performed a preliminary face and construct validation study with 22 subjects divided into two groups: experts (PGY 4–5, fellow and practicing surgeons) and novice (PGY 1–3). Results Face validation shows high scores for all the aspects of the simulation. A two-tailed Mann-Whitney U-test scores showed significant difference between the two groups on completion time (p=0.003), FLS score (p=0.002) and the VBLaST-PT© score (p=0.006). Conclusions VBLaST-PT© is a high quality virtual simulator that showed both face and construct validity. PMID:24030904
Wichitnithad, Wisut; Nimmannit, Ubonthip; Callery, Patrick S; Rojsitthisak, Pornchai
2011-12-01
We investigated the effects of different carboxylic ester spacers of mono-PEGylated curcumin conjugates on chemical stability, release characteristics, and anticancer activity. Three novel conjugates were synthesized with succinic acid, glutaric acid, and methylcarboxylic acid as the respective spacers between curcumin and monomethoxy polyethylene glycol of molecular weight 2000 (mPEG(2000) ): mPEG(2000) -succinyl-curcumin (PSC), mPEG(2000) -glutaryl-curcumin (PGC), and mPEG(2000) -methylcarboxyl-curcumin (PMC), respectively. Hydrolysis of all conjugates in buffer and human plasma followed pseudo first-order kinetics. In phosphate buffer, the overall degradation rate constant and half-life values indicated an order of stability of PGC > PSC > PMC > curcumin. In human plasma, more than 90% of curcumin was released from the esters after incubation for 0.25, 1.5, and 2 h, respectively. All conjugates exhibited cytotoxicity against four human cancer cell lines: Caco-2 (colon), KB (oral cavity), MCF7 (breast), and NCI-H187 (lung) with half maximal inhibitory concentration (IC(50) ) values in the range of 1-6 µM, similar to that observed for curcumin itself. Our results suggest that mono-PEGylation of curcumin produces prodrugs that are stable in buffer at physiological pH, release curcumin readily in human plasma, and show anticancer activity. Copyright © 2011 Wiley-Liss, Inc.
Radović, Magdalena; Calatayud, María Pilar; Goya, Gerardo Fabián; Ibarra, Manuel Ricardo; Antić, Bratislav; Spasojević, Vojislav; Nikolić, Nadežda; Janković, Drina; Mirković, Marija; Vranješ-Đurić, Sanja
2015-01-01
Two different types of magnetic nanoparticles (MNPs) were synthesized in order to compare their efficiency as radioactive vectors, Fe₃O₄-Naked (80 ± 5 nm) and polyethylene glycol 600 diacid functionalized Fe₃O₄(Fe₃O₄-PEG600) MNPs (46 ± 0.6 nm). They were characterized based on the external morphology, size distribution, and colloidal and magnetic properties. The obtained specific power absorption value for Fe₃O₄-PEG600 MNPs was 200 W/g, indicated their potential in hyperthermia based cancer treatments. The labeling yield, in vitro stability and in vivo biodistribution profile of (90) Y-MNPs were compared. Both types of MNPs were (90)Y-labeled in reproducible high yield (>97%). The stability of the obtained radioactive nanoparticles was evaluated in saline and human serum media in order to optimize the formulations for in vivo use. The biodistribution in Wistar rats showed different pharmacokinetic behaviors of nanoparticles: a large fraction of both injected MNPs ended in the liver (14.58%ID/g for (90)Y-Fe₃O₄-Naked MNPs and 19.61%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) whereas minor fractions attained in other organs. The main difference between the two types of MNPs was the higher accumulation of (90)Y-Fe₃O₄-Naked MNPs in the lungs (12.14%ID/g vs. 2.00%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) due to their in vivo agglomeration. The studied radiolabeled magnetic complexes such as (90)Y-Fe₃O₄-PEG600 MNPs constitute a great promise for multiple diagnostic-therapeutic uses combining, for example, MRI-magnetic hyperthermia and regional radiotherapy. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Fujigaya, Tsuyohiko; Yamamoto, Yuki; Kano, Arihiro; Maruyama, Atsushi; Nakashima, Naotoshi
2011-10-01
The use of single-walled carbon nanotubes (SWNTs) for biomedical applications is a promising approach due to their unique outer optical stimuli response properties, such as a photothermal response triggered by near-IR laser irradiation. The challenging task in order to realize such applications is to render the SWNTs biocompatible. For this purpose, the stable and homogeneous functionalization of the SWNTs with a molecule carrying a biocompatible group is very important. Here, we describe the design and synthesis of a polyanionic SWNT/DNA hybrid combined with a cationic poly(l-lysine) grafted by polyethylene glycol (PLL-g-PEG) to provide a supramolecular SWNT assembly. A titration experiment revealed that the assembly undergoes an approximately 1 : 1 reaction of the SWNT/DNA with PLL-g-PEG. We also found that SWNT/DNA is coated with PLL-g-PEG very homogeneously that avoids the non-specific binding of proteins on the SWNT surface. The experiment using the obtained supramolecular hybrid was carried out in vitro and a dramatic enhancement in the cell uptake efficiency compared to that of the SWNT/DNA hybrid without PLL-g-PEG was found.The use of single-walled carbon nanotubes (SWNTs) for biomedical applications is a promising approach due to their unique outer optical stimuli response properties, such as a photothermal response triggered by near-IR laser irradiation. The challenging task in order to realize such applications is to render the SWNTs biocompatible. For this purpose, the stable and homogeneous functionalization of the SWNTs with a molecule carrying a biocompatible group is very important. Here, we describe the design and synthesis of a polyanionic SWNT/DNA hybrid combined with a cationic poly(l-lysine) grafted by polyethylene glycol (PLL-g-PEG) to provide a supramolecular SWNT assembly. A titration experiment revealed that the assembly undergoes an approximately 1 : 1 reaction of the SWNT/DNA with PLL-g-PEG. We also found that SWNT/DNA is coated with PLL-g-PEG very homogeneously that avoids the non-specific binding of proteins on the SWNT surface. The experiment using the obtained supramolecular hybrid was carried out in vitro and a dramatic enhancement in the cell uptake efficiency compared to that of the SWNT/DNA hybrid without PLL-g-PEG was found. Electronic supplementary information (ESI) available: Additional absorption spectra, DLS plots and PL spectra. See DOI: 10.1039/c1nr10635j
76 FR 31019 - Distribution of Continued Dumping and Subsidy Offset to Affected Domestic Producers
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
...Pursuant to the Continued Dumping and Subsidy Offset Act of 2000, this document is U.S. Customs and Border Protection's notice of intent to distribute assessed antidumping or countervailing duties (known as the continued dumping and subsidy offset) for Fiscal Year 2011 in connection with countervailing duty orders, antidumping duty orders, or findings under the Antidumping Act of 1921. This document sets forth the case name and number of each order or finding for which funds may become available for distribution, together with the list of affected domestic producers, based on the list supplied by the United States International Trade Commission (USITC) associated with each order or finding, who are potentially eligible to receive a distribution. This document also provides the instructions for affected domestic producers (and anyone alleging eligibility to receive a distribution) to file certifications to claim a distribution in relation to the listed orders or findings.
75 FR 30529 - Distribution of Continued Dumping and Subsidy Offset to Affected Domestic Producers
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
...Pursuant to the Continued Dumping and Subsidy Offset Act of 2000, this document is U.S. Customs and Border Protection's notice of intent to distribute assessed antidumping or countervailing duties (known as the continued dumping and subsidy offset) for Fiscal Year 2010 in connection with countervailing duty orders, antidumping duty orders, or findings under the Antidumping Act of 1921. This document sets forth the case name and number of each order or finding for which funds may become available for distribution, together with the list of affected domestic producers, based on the list supplied by the United States International Trade Commission (USITC) associated with each order or finding, who are potentially eligible to receive a distribution. This document also provides the instructions for affected domestic producers (and anyone alleging eligibility to receive a distribution) to file certifications to claim a distribution in relation to the listed orders or findings.
77 FR 32717 - Distribution of Continued Dumping and Subsidy Offset to Affected Domestic Producers
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
...Pursuant to the Continued Dumping and Subsidy Offset Act of 2000, this document is U.S. Customs and Border Protection's notice of intent to distribute assessed antidumping or countervailing duties (known as the continued dumping and subsidy offset) for Fiscal Year 2012 in connection with countervailing duty orders, antidumping duty orders, or findings under the Antidumping Act of 1921. This document sets forth the case name and number of each order or finding for which funds may become available for distribution, together with the list of affected domestic producers, based on the list supplied by the United States International Trade Commission (USITC) associated with each order or finding, who are potentially eligible to receive a distribution. This document also provides the instructions for affected domestic producers (and anyone alleging eligibility to receive a distribution) to file certifications to claim a distribution in relation to the listed orders or findings.
78 FR 32713 - Distribution of Continued Dumping and Subsidy Offset to Affected Domestic Producers
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
...Pursuant to the Continued Dumping and Subsidy Offset Act of 2000, this document is U.S. Customs and Border Protection's notice of intent to distribute assessed antidumping or countervailing duties (known as the continued dumping and subsidy offset) for Fiscal Year 2013 in connection with countervailing duty orders, antidumping duty orders, or findings under the Antidumping Act of 1921. This document sets forth the case name and number of each order or finding for which funds may become available for distribution, together with the list of affected domestic producers, based on the list supplied by the United States International Trade Commission (USITC) associated with each order or finding, who are potentially eligible to receive a distribution. This document also provides the instructions for affected domestic producers (and anyone alleging eligibility to receive a distribution) to file certifications to claim a distribution in relation to the listed orders or findings.
Holzapfel, Genevieve; Buhrman, Greg; Mattos, Carla
2012-08-07
Ras GTPase cycles between its active GTP-bound form promoted by GEFs and its inactive GDP-bound form promoted by GAPs to affect the control of various cellular functions. It is becoming increasingly apparent that subtle regulation of the GTP-bound active state may occur through promotion of substates mediated by an allosteric switch mechanism that induces a disorder to order transition in switch II upon ligand binding at an allosteric site. We show with high-resolution structures that calcium acetate and either dithioerythritol (DTE) or dithiothreitol (DTT) soaked into H-Ras-GppNHp crystals in the presence of a moderate amount of poly(ethylene glycol) (PEG) can selectively shift the equilibrium to the "on" state, where the active site appears to be poised for catalysis (calcium acetate), or to what we call the "ordered off" state, which is associated with an anticatalytic conformation (DTE or DTT). We also show that the equilibrium is reversible in our crystals and dependent on the nature of the small molecule present. Calcium acetate binding in the allosteric site stabilizes the conformation observed in the H-Ras-GppNHp/NOR1A complex, and PEG, DTE, and DTT stabilize the anticatalytic conformation observed in the complex between the Ras homologue Ran and Importin-β. The small molecules are therefore selecting biologically relevant conformations in the crystal that are sampled by the disordered switch II in the uncomplexed GTP-bound form of H-Ras. In the presence of a large amount of PEG, the ordered off conformation predominates, whereas in solution, in the absence of PEG, switch regions appear to remain disordered in what we call the off state, unable to bind DTE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzapfel, Genevieve; Buhrman, Greg; Mattos, Carla
2012-08-31
Ras GTPase cycles between its active GTP-bound form promoted by GEFs and its inactive GDP-bound form promoted by GAPs to affect the control of various cellular functions. It is becoming increasingly apparent that subtle regulation of the GTP-bound active state may occur through promotion of substates mediated by an allosteric switch mechanism that induces a disorder to order transition in switch II upon ligand binding at an allosteric site. We show with high-resolution structures that calcium acetate and either dithioerythritol (DTE) or dithiothreitol (DTT) soaked into H-Ras-GppNHp crystals in the presence of a moderate amount of poly(ethylene glycol) (PEG) canmore » selectively shift the equilibrium to the 'on' state, where the active site appears to be poised for catalysis (calcium acetate), or to what we call the 'ordered off' state, which is associated with an anticatalytic conformation (DTE or DTT). We also show that the equilibrium is reversible in our crystals and dependent on the nature of the small molecule present. Calcium acetate binding in the allosteric site stabilizes the conformation observed in the H-Ras-GppNHp/NOR1A complex, and PEG, DTE, and DTT stabilize the anticatalytic conformation observed in the complex between the Ras homologue Ran and Importin-{beta}. The small molecules are therefore selecting biologically relevant conformations in the crystal that are sampled by the disordered switch II in the uncomplexed GTP-bound form of H-Ras. In the presence of a large amount of PEG, the ordered off conformation predominates, whereas in solution, in the absence of PEG, switch regions appear to remain disordered in what we call the off state, unable to bind DTE.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... Maker Peg Order to more closely resemble analogous order types offered by NASDAQ Stock Market LLC...\\ The Exchange notes that EDGA Exchange, Inc. also has an order type identical to that of EDGX, however, for the purposes of this filing, the Exchange is referring only to the order type functionality...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... Maker Peg Order to more closely resemble analogous order types offered by NASDAQ Stock Market LLC...\\ The Exchange notes that EDGA Exchange, Inc. also has an order type identical to that of EDGX, however, for the purposes of this filing, the Exchange is referring only to the order type functionality...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-23
... system) and orders utilizing the INAV Pegged Order functionality for that ETF already in the system would... on a flawed INAV (e.g., whether such orders would be cancellable). The commenter questions the... represents that it currently utilizes a number of systems and processes aimed at detecting dissemination or...
A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.
Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard
2017-07-25
A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almasbahi, M.S.
In a world of generalized floating exchange rates, it is not enough to solve the problem of exchange rate policy by determining whether to peg or float the currency under consideration. It is also necessary to choose to what major currency to peg. The main purpose of this study is to investigate and determine empirically the optimum currency peg for the Saudi riyal. To accomplish this goal, a simple conventional trade model, that includes variables found in many other studies of import and export demand, was used. In addition, an exchange rate term was added as a separate independent variablemore » in the import and export demand equations in order to assess the effect of exchange rate on the trade flows. The criteria for the optimal currency peg in this study were based on two factors. First, the error statistics for projected imports and exports using alternative exchange rate regimes. Second, variances of projected imports, exports and trade balance using alternative exchange rate regimes. The exchange rate has a significant impact on the Saudia Arabian trade flows which implies that changes in the riyals value affect the Saudi trade deficit. Moreover, the exchange rate has a more powerful effect on its aggregate imports than on the world demand for its exports. There is also a strong support for the hypothesis that the exchange rate affects the value of the Saudi bilateral trade with its five major trade partners. On the aggregate level, the SDR peg seems to be the best currency peg for the Saudi riyal since it provides the best prediction errors and the lowest variance for the trade balance. Finally, on the disaggregate level, the US dollar provides the best performance and yields the best results among all the six currency pegs considered in this study.« less
Infrared spectroscopic study of thermotropic phase behavior of newly developed synthetic biopolymers
NASA Astrophysics Data System (ADS)
Bista, Rajan K.; Bruch, Reinhard F.; Covington, Aaron M.
2011-10-01
The thermotropic phase behavior of a suite of newly developed self-forming synthetic biopolymers has been investigated by variable-temperature Fourier transform infrared (FT-IR) absorption spectroscopy. The temperature-induced infrared spectra of these artificial biopolymers (lipids) composed of 1,2-dimyristoyl- rac-glycerol-3-dodecaethylene glycol (GDM-12), 1,2-dioleoyl- rac-glycerol-3-dodecaethylene glycol (GDO-12) and 1,2-distearoyl- rac-glycerol-3-triicosaethylene glycol (GDS-23) in the spectral range of 4000-500 cm -1 have been acquired by using a thin layered FT-IR spectrometer in conjunction with a custom built temperature-controlled demountable liquid cell having a pathlength of ˜15 μm. The lipids under consideration have long hydrophobic acyl chains and contain various units of hydrophilic polyethylene glycol (PEG) headgroups. In contrast to conventional phospholipids, this new kind of lipids forms liposomes or nanovesicles spontaneously upon hydration, without requiring external activation energy. We have found that the thermal stability of the PEGylated lipids differs greatly depending upon the acyl chain-lengths as well as the nature of the associated bonds and the number of PEG headgroup units. In particular, GDM-12 (saturated 14 hydrocarbon chains with 12 units of PEG headgroup) exhibits one sharp order-disorder phase transition over a temperature range increasing from 3 °C to 5 °C. Similarly, GDS-23 (saturated 18 hydrocarbon chains with 23 units of PEG headgroup) displays comparatively broad order-disorder phase transition profiles between temperature 17 °C and 22 °C. In contrast, GDO-12 (monounsaturated 18 hydrocarbon chains with 12 units of PEG headgroup) does not reveal any order-disorder transition phenomena demonstrating a highly disordered behavior for the entire temperature range. To confirm these observations, differential scanning calorimetry (DSC) was applied to the samples and revealed good agreement with the infrared spectroscopy results. Finally, the investigation of thermal properties of lipids is extremely critical for numerous purposes and the result obtained in this work may find application in various studies including the development of PEGylated lipid based novel drug and substances delivery vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masunaga, Shin-ichiro; Kasaoka, Satoshi; Maruyama, Kazuo
2006-12-01
Purpose: To evaluate GB-10-encapsulating transferrin (TF)-pendant-type polyethyleneglycol (PEG) liposomes as tumor-targeting {sup 1}B-carriers for boron neutron capture therapy. Methods and Materials: A free mercaptoundecahydrododecaborate-{sup 1}B (BSH) or decahydrodecaborate-{sup 1}B (GB-10) solution, bare liposomes, PEG liposomes, or TF-PEG liposomes were injected into SCC VII tumor-bearing mice, and {sup 1}B concentrations in the tumors and normal tissues were measured by {gamma}-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all intratumor proliferating cells, then injected with these {sup 1}B-carriers containing BSH or GB-10 in the same manner. Right after thermal neutron irradiation, the response of quiescent (Q) cells wasmore » assessed in terms of the micronucleus frequency using immunofluorescence staining for BrdU. The frequency in the total tumor cells was determined from the BrdU nontreated tumors. Results: Transferrin-PEG liposomes showed a prolonged retention in blood circulation, low uptake by reticuloendothelial system, and the most enhanced accumulation of {sup 1}B in solid tumors. In general, the enhancing effects were significantly greater in total cells than Q cells. In both cells, the enhancing effects of GB-10-containing {sup 1}B-carriers were significantly greater than BSH-containing {sup 1}B-carriers, whether loaded in free solution or liposomes. In both cells, whether BSH or GB-10 was employed, the greatest enhancing effect was observed with TF-PEG liposomes followed in decreasing order by PEG liposomes, bare liposomes, and free BSH or GB-10 solution. In Q cells, the decrease was remarkable between PEG and bare liposomes. Conclusions: In terms of biodistribution characteristics and tumor cell-killing effect as a whole, including Q cells, GB-10 TF-PEG liposomes were regarded as promising {sup 1}B-carriers.« less
Fu, YunLin; Pao, Te; Chen, Sih-Zih; Yau, ShuehLin; Dow, Wei-Ping; Lee, Yuh-Lang
2012-07-03
This study employed real-time in situ STM imaging to examine the adsorption of PEG molecules on Pt(111) modified by a monolayer of copper adatoms and the subsequent bulk Cu deposition in 1 M H(2)SO(4) + 1 mM CuSO(4)+ 1 mM KCl + 88 μM PEG. At the end of Cu underpotential deposition (~0.35 V vs Ag/AgCl), a highly ordered Pt(111)-(√3 × √7)-Cu + HSO(4)(-) structure was observed in 1 M H(2)SO(4) + 1 mM CuSO(4). This adlattice restructured upon the introduction of poly(ethylene glycol) (PEG, molecular weight 200) and chloride anions. At the onset potential for bulk Cu deposition (~0 V), a Pt(111)-(√3 × √3)R30°-Cu + Cl(-) structure was imaged with a tunneling current of 0.5 nA and a bias voltage of 100 mV. Lowering the tunneling current to 0.2 nA yielded a (4 × 4) structure, presumably because of adsorbed PEG200 molecules. The subsequent nucleation and deposition processes of Cu in solution containing PEG and Cl(-) were examined, revealing the nucleation of 2- to 3-nm-wide CuCl clusters on an atomically smooth Pt(111) surface at overpotentials of less than 50 mV. With larger overpotential (η > 150 mV), Cu deposition seemed to bypass the production of CuCl species, leading to layered Cu deposition, starting preferentially at step defects, followed by lateral growth to cover the entire Pt electrode surface. These processes were observed with both PEG200 and 4000, although the former tended to produce more CuCl nanoclusters. Raising [H(2)SO(4)] to 1 M substantiates the suppressing effect of PEG on Cu deposition. This STM study provided atomic- or molecular-level insight into the effect of PEG additives on the deposition of Cu.
NASA Astrophysics Data System (ADS)
Gelman, Danny; Lasman, Itay; Elfimchev, Sergey; Starosvetsky, David; Ein-Eli, Yair
2015-07-01
The severe corrosion accompanied with hydrogen evolution process is the main obstacle preventing the implementation of Al as an anode in alkaline batteries. It impairs the functionality of alkaline battery, due to a drastic capacity loss and a short shelf life. The possibility to reduce Al corrosion rate in alkaline solution with the use of hybrid organic∖inorganic inhibitor based on poly (ethylene glycol) di-acid (PEG di-acid) and zinc oxide (ZnO) was examined in this work. A correlation between an Al corrosion rates and the concentrations of both PEG di-acid and ZnO in alkaline is shown. Selecting 5000 ppm PEG di-acid and 16 gr/l ZnO provides substantial corrosion protection of Al, reducing the corrosion rate in a strong alkaline solution by more than one order of magnitude. Moreover, utilizing the same formulation results in increase in Al-air battery discharge capacity, from 44.5 (for a battery utilizing only KOH in the electrolyte) to 70 mhA/cm2 (for a battery utilizing ZnO/PEG di-acid hybrid inhibitor in the electrolyte). The morphology and composition of the Al electrode surface (studied by SEM, EDS, and XRD) depend on PEG di-acid and ZnO concentrations.
Gagnon, Cynthia; Lavoie, Caroline; Lessard, Isabelle; Mathieu, Jean; Brais, Bernard; Bouchard, Jean-Pierre; Fluet, Marie-Christine; Gassert, Roger; Lambercy, Olivier
2014-12-15
This paper introduces a novel assessment tool to provide clinicians with quantitative and more objective measures of upper limb coordination in patients suffering from Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS). The Virtual Peg Insertion Test (VPIT) involves manipulating an instrumented handle in order to move nine pegs into nine holes displayed in a virtual environment. The main outcome measures were the number of zero-crossings of the hand acceleration vector, as a measure of movement coordination and the total time required to complete the insertion of the nine pegs, as a measure of overall upper limb performance. 8\\9 patients with ARSACS were able to complete five repetitions with the VPIT. Patients were found to be significantly less coordinated and slower than age-matched healthy subjects (p<0.01). Performance of ARSACS patients was positively correlated with the Nine-Hole Peg Test (r=0.85, p<0.01) and with age (r=0.93, p<0.01), indicative of the degenerative nature of the disease. This study presents preliminary results on the use of a robotics and virtual reality assessment tool with ARSACS patients. Results highlight its potential to assess impaired coordination and monitor its progression over time. Copyright © 2014 Elsevier B.V. All rights reserved.
Suzuki, Shuko; Dawson, Rebecca A.; Chirila, Traian V.; Shadforth, Audra M. A.; Hogerheyde, Thomas A.; Edwards, Grant A.; Harkin, Damien G.
2015-01-01
A silk protein, fibroin, was isolated from the cocoons of the domesticated silkworm (Bombyx mori) and cast into membranes to serve as freestanding templates for tissue-engineered corneal cell constructs to be used in ocular surface reconstruction. In this study, we sought to enhance the attachment and proliferation of corneal epithelial cells by increasing the permeability of the fibroin membranes and the topographic roughness of their surface. By mixing the fibroin solution with poly(ethylene glycol) (PEG) of molecular weight 300 Da, membranes were produced with increased permeability and with topographic patterns generated on their surface. In order to enhance their mechanical stability, some PEG-treated membranes were also crosslinked with genipin. The resulting membranes were thoroughly characterized and compared to the non-treated membranes. The PEG-treated membranes were similar in tensile strength to the non-treated ones, but their elastic modulus was higher and elongation lower, indicating enhanced rigidity. The crosslinking with genipin did not induce a significant improvement in mechanical properties. In cultures of a human-derived corneal epithelial cell line (HCE-T), the PEG treatment of the substratum did not improve the attachment of cells and it enhanced only slightly the cell proliferation in the longer term. Likewise, primary cultures of human limbal epithelial cells grew equally well on both non-treated and PEG-treated membranes, and the stratification of cultures was consistently improved in the presence of an underlying culture of irradiated 3T3 feeder cells, irrespectively of PEG-treatment. Nevertheless, the cultures grown on the PEG-treated membranes in the presence of feeder cells did display a higher nuclear-to-cytoplasmic ratio suggesting a more proliferative phenotype. We concluded that while the treatment with PEG had a significant effect on some structural properties of the B. mori silk fibroin (BMSF) membranes, there were minimal gains in the performance of these materials as a substratum for corneal epithelial cell growth. The reduced mechanical stability of freestanding PEG-treated membranes makes them a less viable choice than the non-treated membranes. PMID:26034883
PEG Enhancement for EM1 and EM2+ Missions
NASA Technical Reports Server (NTRS)
Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt
2018-01-01
NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The next evolution of SLS, the Block-1B Exploration Mission 2 (EM-2), is currently being designed. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm. Due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS), certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions. In order to accommodate mission design for EM-2 and beyond, PEG has been significantly improved since its use on the Space Shuttle program. The current version of PEG has the ability to switch to different targets during Core Stage (CS) or EUS flight, and can automatically reconfigure for a single Engine Out (EO) scenario, loss of communication with the Launch Abort System (LAS), and Inertial Navigation System (INS) failure. The Thrust Factor (TF) algorithm uses measured state information in addition to a priori parameters, providing PEG with an improved estimate of propulsion information. This provides robustness against unknown or undetected engine failures. A loft parameter input allows LAS jettison while maximizing payload mass. The current PEG algorithm is now able to handle various classes of missions with burn arcs much longer than were seen in the shuttle program. These missions include targeting a circular LEO orbit with a low-thrust, long-burn-duration upper stage, targeting a highly eccentric Trans-Lunar Injection (TLI) orbit, targeting a disposal orbit using the low-thrust Reaction Control System (RCS), and targeting a hyperbolic orbit. This paper will describe the design and implementation of the TF algorithm, the strategy to handle EO in various flight regimes, algorithms to cover off-nominal conditions, and other enhancements to the Block-1 PEG algorithm. This paper illustrates challenges posed by the Block-1B vehicle, and results show that the improved PEG algorithm is capable for use on the SLS Block 1-B vehicle as part of the Guidance, Navigation, and Control System.
Variation on the similar-size disk tower of hanoi puzzle
NASA Astrophysics Data System (ADS)
Zuchri, S.
2017-02-01
The famous Tower of Hanoi puzzle was invented by Edouard Lucas in 1883. This puzzle proposed three pegs, and the number of disks with different size. The puzzle starts with the disks in a neat stack in ascending order of size on one peg, the smallest at the top. The objective of the puzzle is to move the entire stack to another peg, by following these simple rules: (1) only one disk can be moved at a time; (2) Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack; (2) No disk is placed on the top of a smaller disk and the minimum number of move is the goal of this puzzle. Many variations have been proposed as exercises and challenges. Some have more than three pegs and some with colours. This paper poses a new variation. There are two or more disks with similar size. The goal is to move each stack of the disk from its initial location to its final location. As usual, disk must be moved one at a time and a disk can never sit above a disk of smaller. Let n be a number of disks and there are p similar size disks. The disks are labelled from 1 to n - p + 1 in increasing order of size so the disk with similar size has the same label. If m is the label of the similar disks, so Mp(n; m) is the minimum number moves needed to move all the disks in original peg to destination peg. We have, M2(n; m) = 2n-1 + 2n-m-1 - 1 M3(n; m) = 2n-2 + 2n-m-1 - 1 The number moves needed to move if there are p1 similar size disks m1 and p2 similar size disks m2 is Mp1,p2 (n; m1, m2) = 2n-p1-p2 + 2[(p12-m1 + p22-m2 ) - (2-m1 + 2-m2 + 1] - 1
Zhu, Wenxia; Song, Zhimei; Wei, Peng; Meng, Ning; Teng, Fangfang; Yang, Fengying; Liu, Na; Feng, Runliang
2015-04-01
In order to improve curcumin's low water-solubility and selective delivery to cancer, we reported ligand-mediated micelles based on a Y-shaped biotin-poly (ethylene glycol)-poly (epsilon-caprolactone)2 (biotin-PEG-PCL2) copolymer. Its structure was characterized by (1)H NMR. The blank and drug-loaded micelles obtained by way of thin-film hydration were characterized by dynamic light scattering, X-ray diffraction, infrared spectroscopy and hemolytic test. Curcumin was loaded into micelles with a high encapsulating efficiency (93.83%). Curcumin's water-solubility was enhanced 170,400 times higher than free curcumin. Biotin-PEG-PCL2 micelles showed slower drug release in vitro than H2N-PEG-PCL2 micelles. In vitro cellular uptake and cytotoxicity tests showed that higher dosage of curcumin might overcome the effect of slow release on cytotoxicities because of its higher uptake induced by biotin, resulting in higher anticancer activities against MDA-MB-436 cells. In brief, Y-shaped biotin-PEG-PCL2 is a promising delivery carrier for anticancer drug. Copyright © 2014 Elsevier Inc. All rights reserved.
Sanyakamdhorn, S; Agudelo, D; Tajmir-Riahi, H A
2017-08-01
In this review, the binding and loading efficacy (LE) of anticancer drugs doxorubicin (DOX), tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox) with several synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3), and polyamidoamine (PAMAM-G4) dendrimers were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling of conjugated drug-polymer were examined. Structural analysis showed that drug-polymer conjugation occurs mainly via H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4 > mPEG-PAMAM-G3 > PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Doxorubicin shows stronger affinity for PAMAM-G4 than tamoxifen and its metabolites. The drug LE was 30-55%. TEM showed significant changes in the carrier morphology upon drug encapsulation. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with DOX forming more stable polymer conjugates.
Sanyakamdhorn, S; Agudelo, D; Bekale, L; Tajmir-Riahi, H A
2016-09-01
Conjugation of antitumor drug tamoxifen and its metabolites, 4-hydroxytamxifen and ednoxifen with synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3) and polyamidoamine (PAMAM-G4) dendrimers was studied in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize the drug binding process to synthetic polymers. Structural analysis showed that drug-polymer binding occurs via both H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4>mPEG-PAMAM-G3>PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Transmission electron microscopy showed significant changes in carrier morphology with major changes in the shape of the polymer aggregate as drug encapsulation occurred. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with the free binding energy of -3.79 for tamoxifen, -3.70 for 4-hydroxytamoxifen and -3.69kcal/mol for endoxifen, indicating of spontaneous drug-polymer interaction at room temperature. Copyright © 2016 Elsevier B.V. All rights reserved.
Measurements of Attractive Forces between Proteins and End-Grafted Poly(Ethylene Glycol) Chains
NASA Astrophysics Data System (ADS)
Sheth, S. R.; Leckband, D.
1997-08-01
The surface force apparatus was used to measure directly the molecular forces between streptavidin and lipid bilayers displaying grafted Mr 2,000 poly(ethylene glycol) (PEG). These measurements provide direct evidence for the formation of relatively strong attractive forces between PEG and protein. At low compressive loads, the forces were repulsive, but they became attractive when the proteins were pressed into the polymer layer at higher loads. The adhesion was sufficiently robust that separation of the streptavidin and PEG uprooted anchored polymer from the supporting membrane. These interactions altered the properties of the grafted chains. After the onset of the attraction, the polymer continued to bind protein for several hours. The changes were not due to protein denaturation. These data demonstrate directly that the biological activity of PEG is not due solely to properties of simple polymers such as the excluded volume. It is also coupled to the competitive interactions between solvent and other materials such as proteins for the chain segments and to the ability of this material to adopt higher order intrachain structures.
Bypassing non-adherence via PEG in a critically ill HIV-1-infected patient.
Leipe, J; Hueber, A J; Rech, J; Harrer, T
2008-08-01
This case study describes a 44-year-old, chronically non-adherent, HIV-infected male with relapsing, life threatening toxoplasmic encephalitis (TE) and other recurring opportunistic infections. Non-adherence resulted in critical illness, suppressed CD4 lymphocyte count and elevated viral load. In order to bypass the patient's complete psychological aversion to taking medication, and after exhausting various psychological interventions, a percutaneous endoscopic gastronomy (PEG) tube was inserted for delivery of indispensable medication. During the 15-month follow-up the patient was adherent, exhibiting a consistently undetectable viral load, high CD4 count and a remission of the opportunistic infections. This is an interesting case study demonstrating life-saving and long-term benefit of PEG in an exceptional setting, which has implications for future research and treatment of non-adherent HIV-infected patients.
Antitumor effect of a new nano-vector with miRNA-135a on malignant glioma.
Liang, Chaofeng; Sun, Weitong; He, Haiyong; Zhang, Baoyu; Ling, Cong; Wang, Bocheng; Huang, Tengchao; Hou, Bo; Guo, Ying
2018-01-01
MiR-135a is found to selectively induce apoptosis in glioma cell but not in normal neurons and glial cells. However, low transfection efficacy limits its application in vivo as other miRNAs. We prepared a new kind of nano-vector based on polyethylene glycol methyl ether (mPEG) and hyper-branched polyethylenimine (hy-PEI) in order to improve the miRNA delivery system into the glioma cells. The mPEG-g-PEI/miR-135a was constructed and detected by 1H NMR and FTIR analyses. Transmission electron microscope was utilized for its characteristics. Stability and release efficiency was assessed by electrophoresis. Biocompatibility was observed and analyzed through co-culture with astrocytes and malignant glioma cells (C6). Transfection rate was monitored by laser confocal microscopy and flow cytometry. The antitumor effect of mPEG-g-PEI/miR-135a to C6 was confirmed in vivo by MR scanning, pathology and survival curve. RT-PCR was used to assay transfection efficiency of mPEG-g-PEI/miR-135a in vitro and in vivo. And Western blotting was used to assess the expressions of the targeted proteins of miR-135a. In this experiment, we found the optimal N/P ratio of mPEG-g-PEI/miR-135a was about 6 judged by Zeta potential, particle size and encapsulation ability. The stability of mPEG-g-PEI/miR-135a in serum and the release efficiency in acid(pH=5.0) of mPEG-g-PEI/miR-135a were simulated the environment in vivo and in tumor. The mPEG-g-PEI nano-vector was co-cultured with malignant glioma cell C6 and normal astrocytes in vitro and showed good biocompatibility evaluated by CCK8 assay. The cell experiments in vitro indicated that mPEG-g-PEI could significantly improve miR-135a transfection by enhancing uptake effect of both normal glial and glioma cells. Given the C6 implanted in situ model, we discovered that the mPEG-g-PEI/miR-135a could obviously increase the survival period and inhibit the growth of glioma confirmed by MRI and histochemistry. In addition, the transfection efficiency of mPEG-g-PEI was better than that of other transfection agents either in vitro or in vivo confirmed by RT-PCR. Moreover, the expressions of the targeted proteins of miR-135a were consistent with the in vitro results. These results suggest that mPEG-g-PEI is expected to provide a new effective intracellular miRNA delivery system with low toxicity for glioma therapy.
Antitumor effect of a new nano-vector with miRNA-135a on malignant glioma
Zhang, Baoyu; Ling, Cong; Wang, Bocheng; Huang, Tengchao; Hou, Bo; Guo, Ying
2018-01-01
Introduction MiR-135a is found to selectively induce apoptosis in glioma cell but not in normal neurons and glial cells. However, low transfection efficacy limits its application in vivo as other miRNAs. We prepared a new kind of nano-vector based on polyethylene glycol methyl ether (mPEG) and hyper-branched polyethylenimine (hy-PEI) in order to improve the miRNA delivery system into the glioma cells. Methods The mPEG-g-PEI/miR-135a was constructed and detected by 1H NMR and FTIR analyses. Transmission electron microscope was utilized for its characteristics. Stability and release efficiency was assessed by electrophoresis. Biocompatibility was observed and analyzed through co-culture with astrocytes and malignant glioma cells (C6). Transfection rate was monitored by laser confocal microscopy and flow cytometry. The antitumor effect of mPEG-g-PEI/miR-135a to C6 was confirmed in vivo by MR scanning, pathology and survival curve. RT-PCR was used to assay transfection efficiency of mPEG-g-PEI/miR-135a in vitro and in vivo. And Western blotting was used to assess the expressions of the targeted proteins of miR-135a. Results In this experiment, we found the optimal N/P ratio of mPEG-g-PEI/miR-135a was about 6 judged by Zeta potential, particle size and encapsulation ability. The stability of mPEG-g-PEI/miR-135a in serum and the release efficiency in acid(pH=5.0) of mPEG-g-PEI/miR-135a were simulated the environment in vivo and in tumor. The mPEG-g-PEI nano-vector was co-cultured with malignant glioma cell C6 and normal astrocytes in vitro and showed good biocompatibility evaluated by CCK8 assay. The cell experiments in vitro indicated that mPEG-g-PEI could significantly improve miR-135a transfection by enhancing uptake effect of both normal glial and glioma cells. Given the C6 implanted in situ model, we discovered that the mPEG-g-PEI/miR-135a could obviously increase the survival period and inhibit the growth of glioma confirmed by MRI and histochemistry. In addition, the transfection efficiency of mPEG-g-PEI was better than that of other transfection agents either in vitro or in vivo confirmed by RT-PCR. Moreover, the expressions of the targeted proteins of miR-135a were consistent with the in vitro results. Conclusion These results suggest that mPEG-g-PEI is expected to provide a new effective intracellular miRNA delivery system with low toxicity for glioma therapy. PMID:29343959
Improvement of PET surface hydrophilicity and roughness through blending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolahchi, Ahmad Rezaei; Ajji, Abdellah; Carreau, Pierre J.
Controlling the adhesion of the polymer surface is a key issue in surface science, since polymers have been a commonly used material for many years. The surface modification in this study includes two different aspects. One is to enhance the hydrophilicity and the other is to create the roughness on the PET film surface. In this study we developed a novel and simple approach to modify polyethylene terephthalate (PET) film surface through polymer blending in twin-screw extruder. One example described in the study uses polyethylene glycol (PEG) in polyethylene terephthalate (PET) host to modify a PET film surface. Low contentmore » of polystyrene (PS) as a third component was used in the system to increase the rate of migration of PEG to the surface of the film. Surface enrichment of PEG was observed at the polymer/air interface of the polymer film containing PET-PEG-PS whereas for the PET-PEG binary blend more PEG was distributed within the bulk of the sample. Furthermore, a novel method to create roughness at the PET film surface was proposed. In order to roughen the surface of PET film, a small amount of PKHH phenoxy resin to change PS/PET interfacial tension was used. The compatibility effect of PKHH causes the formation of smaller PS droplets, which were able to migrate more easily through PET matrix. Consequently, resulting in a locally elevated concentration of PS near the surface of the film. The local concentration of PS eventually reached a level where a co-continuous morphology occurred, resulting in theinstabilities on the surface of the film.« less
[Gastrocolocutaneous fistula: an uncommon complication of percutaneous endoscopic gastrostomy].
Ruiz Ruiz, J M; Rando Muñoz, J F; Salvá Villar, P; Lamarca Hurtado, J C; Sánchez Molinero, Ma D; Sanjurgo Molezun, E; Vázquez Pedreño, L; Manteca González, R
2012-01-01
Endoscopic percutaneous gastrostomy is a safe technique although with potential complications before which the clinician has to be on alert in order to early detect them even after a long period of normal functioning. Most of them represent minor problems. Gastrocolocutaneous fistula is a rare but severe complication favored by some risk factors such as previous post-surgical adherences, deformities of the spine, or excessive gastric inflation at the time of performing the technique. We present the case of a patient with PEG with this complication that occurred after the first tube replacement. Our goal was in two senses: on the one hand, to analyze the preventive aspects and basic guidelines for a safe PEG placement to minimize the risks; on the other hand, to alert on the possible presence of this entity to prevent a progressive nutritional impairment. This complication ought to be included in the differential diagnosis of the diarrhea syndrome in the patient carrying a PEG. The diagnostic techniques of choice are radiologic tests such as CT scan and contrast media administration through the tube. Surgical therapy should be reserved to patients with acute peritonitis in order to perform a new gastrostomy.
Xiang, Guang-Hua; Hong, Guo-Bin; Wang, Yong; Cheng, Du; Zhou, Jing-Xing; Shuai, Xin-Tao
2013-01-01
To evaluate the cytotoxicity of poly(ethylene glycol)-block-poly(D,L-lactic acid) (PEG-PDLLA) nanovesicles loaded with doxorubicin (DOX) and the photosensitizer hematoporphyrin monomethyl ether (HMME) on human hepatocellular carcinoma HepG2 cells and to investigate potential apoptotic mechanisms. PEG-PDLLA nanovesicles were simultaneously loaded with DOX and HMME (PEG-PDLLA-DOX-HMME), and PEG-PDLLA nanovesicles were loaded with DOX (PEG-PDLLA-DOX), HMME (PEG-PDLLA-HMME), or the PEG-PDLLA nanovesicle alone as controls. The cytotoxicity of PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA against HepG2 cells was measured, and the cellular reactive oxygen species, percentage of cells with mitochondrial membrane potential depolarization, and apoptotic rate following treatment were determined. Four nanovesicles (PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA) were synthesized, and mean particle sizes were 175±18 nm, 154±3 nm, 196±2 nm, and 147±15 nm, respectively. PEG-PDLLA-DOX-HMME was more cytotoxic than PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA. PEG-PDLLA-HMME-treated cells had the highest mean fluorescence intensity, followed by PEG-PDLLA-DOX-HMME-treated cells, whereas PEG-PDLLA-DOX- and PEG-PDLLA-treated cells had a similar fluorescence intensity. Mitochondrial membrane potential depolarization was observed in 54.2%, 59.4%, 13.8%, and 14.8% of the cells treated with PEG-PDLLA-DOX-HMME, PEG-PDLLA-HMME, PEG-PDLLA-DOX, and PEG-PDLLA, respectively. The apoptotic rate was significantly higher in PEG-PDLLA-DOX-HMME-treated cells compared with PEG-PDLLA-DOX- and PEG-PDLLA-HMME-treated cells. The PEG-PDLLA nanovesicle, a drug delivery carrier, can be simultaneously loaded with two anticancer drugs (hydrophilic DOX and hydrophobic HMME). PEG-PDLLA-DOX-HMME cytotoxicity to HepG2 cells is significantly higher than the PEG-PDLLA nanovesicle loaded with DOX or HMME alone, and DOX and HMME have a synergistic effect against human hepatocellular carcinoma HepG2 cells.
Offset quadrature communications with decision-feedback carrier synchronization
NASA Technical Reports Server (NTRS)
Simon, M. K.; Smith, J. G.
1974-01-01
In order to accommodate a quadrature amplitude-shift-keyed (QASK) signal, Simon and Smith (1974) have modified the decision-feedback loop which tracks a quadrature phase-shift-keyed (QPSK). In the investigation reported approaches are considered to modify the loops in such a way that offset QASK signals can be tracked, giving attention to the special case of an offset QPSK. The development of the stochastic integro-differential equation of operation for a decision-feedback offset QASK loop is discussed along with the probability density function of the phase error process.
Merrick, S; Farrell, D
2012-07-01
Head and neck cancer patients are at high risk of malnutrition and its complications and therefore often undergo non-oral nasogastric or percutaneous endoscopic gastrostomy (PEG) nutrition support. However, there is little evidence that either approach is effective in this group. While one possible explanation for these findings relates to the relationship between artificial tube feeding and poor quality of life, there is little research that examines the patient's subjective experience of nutrition support. This study investigated the experiences of PEG tube feeding in head and neck cancer patients undergoing radical treatment. Conventional Q-methodology was used with 15 head and neck cancer patients, who rank-ordered 36 statements according to the extent to which these reflected their experiences of PEG tube feeding. The sorted statements were factor-analysed case-wise to provide clusters of similar experiences. Three perspectives emerged. Factor 1, labelled 'Constructive cognitive appraisal', focused around positive adaptation to, and acceptance of, PEG feeding. Factor 2, labelled 'Cognitive-affective dissonance', reflected ambivalence between cognitive acceptance and affective rejection of the PEG tube. Factor 3, labelled 'Emotion-focused appraisal', was characterised by tube-focused anxiety and fear. The findings broadly confirm Levanthal et al.'s Self-Regulatory Model of coping and support the need for genuine and individualised patient-centred nutritional care. © 2012 Blackwell Publishing Ltd.
Long, Han; Cai, XingHua; Yang, Hui; He, JunBin; Wu, Jia; Lin, RiHui
2017-09-01
In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.
Marik, Anikó Rita; Fazekas, Gábor
2018-01-01
This paper introduces a smart nine-hole peg tester (s-9HPT), which comprises a standard nine-hole peg test pegboard, but with light-emitting diodes (LEDs) next to each hole. The s-9HPT still supports the traditional nine-hole peg test operating mode, in which the order of the peg placement and removal can be freely chosen. Considering this, the s-9HPT was used in lab research to analyze the traditional procedure and possible new procedures. As this analysis required subjects with similar levels of dexterity, measurement data from 16 healthy subjects (seven females, nine males, 25–80 years old) were used. We consequently found that illuminating the LEDs in various patterns facilitated guided tests of diverse complexity levels. Next, to demonstrate the clinical application of the s-9HPT, the improvement in the hand dexterity of 12 hospitalized stroke patients (45–80 years old, six females and six males) was monitored during their rehabilitation. Here, we used traditional and guided tests validated by healthy subjects. Consequently, improvements were found to be patient specific. At the beginning of rehabilitation, traditional tests suitably indicate improvements, while guided tests are beneficial following improvements in motor functions. Further, the guided tests motivated certain patients, meaning the rehabilitation was more effective for these individuals. PMID:29850001
Achieving biodiversity benefits with offsets: Research gaps, challenges, and needs.
Gelcich, Stefan; Vargas, Camila; Carreras, Maria Jose; Castilla, Juan Carlos; Donlan, C Josh
2017-03-01
Biodiversity offsets are becoming increasingly common across a portfolio of settings: national policy, voluntary programs, international lending, and corporate business structures. Given the diversity of ecological, political, and socio-economic systems where offsets may be applied, place-based information is likely to be most useful in designing and implementing offset programs, along with guiding principles that assure best practice. We reviewed the research on biodiversity offsets to explore gaps and needs. While the peer-reviewed literature on offsets is growing rapidly, it is heavily dominated by ecological theory, wetland ecosystems, and U.S.-based research. Given that majority of offset policies and programs are occurring in middle- and low-income countries, the research gaps we identified present a number of risks. They also present an opportunity to create regionally based learning platforms focused on pilot projects and institutional capacity building. Scientific research should diversify, both topically and geographically, in order to support the successful design, implementation, and monitoring of biodiversity offset programs.
Boileau, Pascal; Moineau, Grégory; Roussanne, Yannick; O'Shea, Kieran
2011-09-01
Scapular notching, prosthetic instability, limited shoulder rotation and loss of shoulder contour are associated with conventional medialized design reverse shoulder arthroplasty. Prosthetic (ie, metallic) lateralization increases torque at the baseplate-glenoid interface potentially leading to failure. We asked whether bony lateralization of reverse shoulder arthroplasty would avoid the problems caused by humeral medialization without increasing torque or shear force applied to the glenoid component. We prospectively followed 42 patients with rotator cuff deficiency treated with bony increased-offset reverse shoulder arthroplasty. A cylinder of autologous cancellous bone graft, harvested from the humeral head, was placed between the reamed glenoid surface and baseplate. Graft and baseplate fixation was achieved using a lengthened central peg (25 mm) and four screws. Patients underwent clinical, radiographic, and CT assessment at a minimum of 2 years after surgery. The humeral graft incorporated completely in 98% of cases (41 of 42) and partially in one. At a mean of 28 months postoperatively, no graft resorption, glenoid loosening, or postoperative instability was observed. Inferior scapular notching occurred in 19% (eight of 42). The absolute Constant-Murley score improved from 31 to 67. Thirty-six patients (86%) were able to internally rotate sufficiently to reach their back over the sacrum. Grafting of the glenoid surface during reverse shoulder arthroplasty effectively creates a long-necked scapula, providing the benefits of lateralization. Bony increased-offset reverse shoulder arthroplasty is associated with low rates of inferior scapular notching, improved shoulder rotation, no prosthetic instability and improved shoulder contour. In contrast to metallic lateralization, bony lateralization has the advantage of maintaining the prosthetic center of rotation at the prosthesis-bone interface, thus minimizing torque on the glenoid component. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Role of the Methoxy Group in Immune Responses to mPEG-Protein Conjugates
2012-01-01
Anti-PEG antibodies have been reported to mediate the accelerated clearance of PEG-conjugated proteins and liposomes, all of which contain methoxyPEG (mPEG). The goal of this research was to assess the role of the methoxy group in the immune responses to mPEG conjugates and the potential advantages of replacing mPEG with hydroxyPEG (HO-PEG). Rabbits were immunized with mPEG, HO-PEG, or t-butoxyPEG (t-BuO-PEG) conjugates of human serum albumin, human interferon-α, or porcine uricase as adjuvant emulsions. Assay plates for enzyme-linked immunosorbent assays (ELISAs) were coated with mPEG, HO-PEG, or t-BuO-PEG conjugates of the non-cross-reacting protein, porcine superoxide dismutase (SOD). In sera from rabbits immunized with HO-PEG conjugates of interferon-α or uricase, the ratio of titers of anti-PEG antibodies detected on mPEG-SOD over HO-PEG-SOD (“relative titer”) had a median of 1.1 (range 0.9–1.5). In contrast, sera from rabbits immunized with mPEG conjugates of three proteins had relative titers with a median of 3.0 (range 1.1–20). Analyses of sera from rabbits immunized with t-BuO-PEG-albumin showed that t-butoxy groups are more immunogenic than methoxy groups. Adding Tween 20 or Tween 80 to buffers used to wash the assay plates, as is often done in ELISAs, greatly reduced the sensitivity of detection of anti-PEG antibodies. Competitive ELISAs revealed that the affinities of antibodies raised against mPEG-uricase were c. 70 times higher for 10 kDa mPEG than for 10 kDa PEG diol and that anti-PEG antibodies raised against mPEG conjugates of three proteins had >1000 times higher affinities for albumin conjugates with c. 20 mPEGs than for analogous HO-PEG-albumin conjugates. Overall, these results are consistent with the hypothesis that antibodies with high affinity for methoxy groups contribute to the loss of efficacy of mPEG conjugates, especially if multiply-PEGylated. Using monofunctionally activated HO-PEG instead of mPEG in preparing conjugates for clinical use might decrease this undesirable effect. PMID:22332808
Reusability Performance of Zinc Oxide Nanoparticles for Photocatalytic Degradation of POME
NASA Astrophysics Data System (ADS)
Zarifah Zainuri, Nur; Hanis Hayati Hairom, Nur; Abu Bakar Sidik, Dilaelyana; Misdan, Nurasyikin; Yusof, Norhaniza; Wahab Mohammad, Abdul
2018-03-01
Performance and reusability of different zinc oxide nanoparticles (ZnO-PVP and ZnO-PEG) for photocatalytic degradation of palm-mill oil effluent (POME) has been studied. The nanoparticles properties were characterised with fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM results show that ZnO-PEG nanoparticles exhibit the smaller size than ZnO-PVP with less agglomeration. It was found that ZnO-PEG shows better effectiveness than ZnO-PVP in reducing turbidity, colour and increasing the dissolved oxygen (DO). By using two types of reusability methods: (a) oven drying (b) hot water rinsing, the oven drying method portrayed the most efficient route for POME treatment. This research would be a solution to the palm oil industry for photocatalyst recovering as well as reduction of the chemical usage in order to meet the development of advanced and greener technologies.
Ghanbarzadeh, Saeed; Arami, Sanam; Pourmoazzen, Zhaleh; Khorrami, Arash
2014-03-01
pH-responsive polymers produce liposomes with pH-sensitive property which can release their encapsulated drug under mild acidic conditions found inside the cellular endosomes, inflammatory tissues and cancerous cells. The aim of this study was preparing pH-sensitive and plasma stable liposomes in order to enhance the selectivity and antiproliferative effect of Rapamycin. In the present study we used PEG-poly (monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) copolymer and Oleic acid (OA) to induce pH-sensitive property in Rapamycin liposomes. pH-sensitive liposomal formulations bearing copolymer PEG-PMMI-CholC6 and OA were characterized in regard to physicochemical stability, pH-responsiveness and stability in human plasma. The ability of pH-sensitive liposomes in enhancing the cytotoxicity of Rapamycin was evaluated in vitro by using colon cancer cell line (HT-29) and compared with its cytotoxicity on human umbilical vein endothelial cell (HUVEC) line. Both formulations were found to release their contents under mild acidic conditions rapidly. However, unlike OA-based liposomes, the PEG-PMMI-CholC6 bearing liposomes preserved their pH-sensitivity in plasma. Both types of pH-sensitive Rapamycin-loaded liposomes exhibited high physicochemical stability and could deliver antiproliferative agent into HT-29 cells much more efficiently in comparison with conventional liposomes. Conversely, the antiproliferative effect of pH-sensitive liposomes on HUVEC cell line was less than conventional liposomes. This study showed that both OA and PEG-PMMI-CholC6-based vesicles could submit pH-sensitive property, however, only PEG-PMMI-CholC6-based liposomes could preserve pH-sensitive property after incubation in plasma. As a result pH-sensitive PEG-PMMI-CholC6-based liposomal formulation can improve the selectivity, stability and antiproliferative effect of Rapamycin. Copyright © 2014 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-26
...'') proposes to amend Exchange Rule 11.5(c) to add a new order type, the Mid-Point Discretionary Order, to the... functionality to its System \\3\\ and its Users,\\4\\ the Exchange proposes to add a new order type, the Mid-Point Discretionary Order (the ``MDO''), to Rule 11.5(c)(17). MDOs to buy would be displayed at and pegged to the...
NASA Astrophysics Data System (ADS)
Ye, Yin; Yu, Shuhui; Huang, Haitao; Zhou, Limin
2007-07-01
Polyethylene glycol (PEG)-assisted solid state reaction route is employed to prepare the relaxor-type ferroelectric powders and ceramics of (1-x)Pb(Ni 1/3Nb 2/3)O 3-xPbTiO 3 (PNN-PT) with the morphotropic phase boundary (MPB) composition at x=0.36 (0.64PNN-0.36PT). PEG additive with the molecular weight of 200 is introduced into PNN-PT oxide precursors in order to obtain the perovskite phase. The XRD and TG/DSC results demonstrate that the interactions between PbO and PEG favor the transformation from the lead-rich pyrochlore to the lead-deficient pyrochlore, thus facilitating the formation of the perovskite. Consequently, nearly pure perovskite 0.64PNN-0.36PT powders are synthesized at a relatively low temperature of 850 °C. A significant improvement of electric properties of the ceramics sintered at 1200 °C is achieved by PEG modification. The dielectric constant at room temperature and the maximum dielectric constant at T c reach 4987 and 24307, respectively, at a frequency of 1 kHz. The piezoelectric constant d 33 is 460 pC/N.
NASA Astrophysics Data System (ADS)
Gao, Nansha; Chen, Zhihong; Xiao, Xiaojun; Ruan, Changshun; Mei, Lin; Liu, Zhigang; Zeng, Xiaowei
2015-08-01
In order to enhance the therapeutic effect of chemotherapy on liver cancer, a biodegradable formulation of protamine-modified paclitaxel-loaded poly(lactide- co-glycolide)- b-poly(ethylene glycol)- b-poly(lactide- co-glycolide) (PLGA- b-PEG- b-PLGA) nanoparticles (PTX-loaded/protamine NPs) was prepared. Tri-block copolymer PLGA- b-PEG- b-PLGA was synthesized by ring-opening polymerization and characterized by 1H NMR spectroscopy and gel permeation chromatography. PTX-loaded and PTX-loaded/protamine NPs were characterized in terms of size, size distribution, zeta potential, surface morphology, drug encapsulation efficiency, and drug release. Confocal laser scanning microscopy showed that coumarin 6-loaded/protamine NPs were internalized by hepatocellular carcinoma cell line HepG2. The cellular uptake efficiency of NPs was obviously elevated after protamine modification. With commercial formulation Taxol® as the reference, HepG2 cells were also used to study the cytotoxicity of the NPs. PTX-loaded/protamine NPs exhibited significantly higher cytotoxicity than PTX-loaded NPs and Taxol® did. All the results suggested that surface modification of PTX-loaded PLGA- b-PEG- b-PLGA NPs with protamine boosted the therapeutic efficacy on liver cancer.
Effects of block copolymer properties on nanocarrier protection from in vivo clearance
D’Addio, Suzanne M.; Saad, Walid; Ansell, Steven M.; Squiers, John J.; Adamson, Douglas; Herrera-Alonso, Margarita; Wohl, Adam R.; Hoye, Thomas R.; Macosko, Christopher W.; Mayer, Lawrence D.; Vauthier, Christine; Prud’homme, Robert K.
2012-01-01
Drug nanocarrier clearance by the immune system must be minimized to achieve targeted delivery to pathological tissues. There is considerable interest in finding in vitro tests that can predict in vivo clearance outcomes. In this work, we produce nanocarriers with dense PEG layers resulting from block copolymer-directed assembly during rapid precipitation. Nanocarriers are formed using block copolymers with hydrophobic blocks of polystyrene (PS), poly-ε-caprolactone (PCL), poly-D,L-lactide (PLA), or poly-lactide-co-glycolide (PLGA), and hydrophilic blocks of polyethylene glycol (PEG) with molecular weights from 1.5 kg/mol to 9 kg/mol. Nanocarriers with paclitaxel prodrugs are evaluated in vivo in Foxn1nu mice to determine relative rates of clearance. The amount of nanocarrier in circulation after 4 h varies from 10% to 85% of initial dose, depending on the block copolymer. In vitro complement activation assays are conducted in an effort to correlate the protection of the nanocarrier surface from complement binding and activation and in vivo circulation. Guidelines for optimizing block copolymer structure to maximize circulation of nanocarriers formed by rapid precipitation and directed assembly are proposed, relating to the relative size of the hydrophilic and hydrophobic block, the hydrophobicity of the anchoring block, the absolute size of the PEG block, and polymer crystallinity. The in vitro results distinguish between the poorly circulating PEG5k-PCL9k and the better circulating nanocarriers, but could not rank the better circulating nanocarriers in order of circulation time. Analysis of PEG surface packing on monodisperse 200 nm latex spheres indicates that the sizes of the hydrophobic PCL, PS, and PLA blocks are correlated with the PEG blob size, and possibly the clearance from circulation. Suggestions for next step in vitro measurements are made. PMID:22732478
Polymeric micelle for tumor pH and folate-mediated targeting.
Lee, Eun Seong; Na, Kun; Bae, You Han
2003-08-28
Novel pH-sensitive polymeric mixed micelles composed of poly(L-histidine) (polyHis; M(w) 5000)/PEG (M(n) 2000) and poly(L-lactic acid) (PLLA) (M(n) 3000)/PEG (M(n) 2000) block copolymers with or without folate conjugation were prepared by diafiltration. The micelles were investigated for pH-dependent drug release, folate receptor-mediated internalization and cytotoxicity using MCF-7 cells in vitro. The polyHis/PEG micelles showed accelerated adriamycin release as the pH decreased from 8.0. When the cumulative release for 24 h was plotted as a function of pH, the gradual transition in release rate appeared in a pH range from 8.0 to 6.8. In order to tailor the triggering pH of the polymeric micelles to the more acidic extracellular pH of tumors, while improving the micelle stability at pH 7.4, the PLLA/PEG block copolymer was blended with polyHis/PEG to form mixed micelles. Blending shifted the triggering pH to a lower value. Depending on the amount of PLLA/PEG, the mixed micelles were destabilized in the pH range of 7.2-6.6 (triggering pH for adriamycin release). When the mixed micelles were conjugated with folic acid, the in vitro results demonstrated that the micelles were more effective in tumor cell kill due to accelerated drug release and folate receptor-mediated tumor uptake. In addition, after internalization polyHis was found to be effective for cytosolic ADR delivery by virtue of fusogenic activity. This approach is expected to be useful for treatment of solid tumors in vivo.
Santos-Ebinuma, Valéria Carvalho; Lopes, André Moreni; Pessoa, Adalberto; Teixeira, Maria Francisca Simas
2015-01-01
Safety concerns related to the increasing and widespread application of synthetic coloring agents have increased the demand for natural colorants. Fungi have been employed in the production of novel and safer colorants. In order to obtain the colorants from fermented broth, suitable extraction systems must be developed. Aqueous two-phase polymer systems (ATPPS) offer a favorable chemical environment and provide a promising alternative for extracting and solubilizing these molecules. The aim of this study was to investigate the partitioning of red colorants from the fermented broth of Penicillium purpurogenum using an ATPPS composed of poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA). Red colorants partitioned preferentially to the top (PEG-rich phase). In systems composed of PEG 6,000 g/mol/NaPA 8,000 g/mol, optimum colorant partition coefficient (KC ) was obtained in the presence of NaCl 0.1 M (KC = 10.30) while the PEG 10,000 g/mol/NaPA 8,000 g/mol system in the presence of Na2 SO4 0.5 M showed the highest KC (14.78). For both polymers, the mass balance (%MB) and yield in the PEG phase (%ηTOP ) were close to 100 and 79%, respectively. The protein selectivity in all conditions evaluated ranged from 2.0-3.0, which shows a suitable separation of the red colorants and proteins present in the fermented broth. The results suggest that the partitioning of the red colorants is dependent on both the PEG molecular size and salt type. Furthermore, the results obtained support the potential application of ATPPS as the first step of a purification process to recover colorants from fermented broth of microorganisms. © 2015 American Institute of Chemical Engineers.
Biodiversity Offsets: Two New Zealand Case Studies and an Assessment Framework
NASA Astrophysics Data System (ADS)
Norton, David A.
2009-04-01
Biodiversity offsets are increasingly being used for securing biodiversity conservation outcomes as part of sustainable economic development to compensate for the residual unavoidable impacts of projects. Two recent New Zealand examples of biodiversity offsets are reviewed—while both are positive for biodiversity conservation, the process by which they were developed and approved was based more on the precautionary principal than on any formal framework. Based on this review and the broader offset literature, an environmental framework for developing and approving biodiversity offsets, comprising six principles, is outlined: (1) biodiversity offsets should only be used as part of an hierarchy of actions that first seeks to avoid impacts and then minimizes the impacts that do occur; (2) a guarantee is provided that the offset proposed will occur; (3) biodiversity offsets are inappropriate for certain ecosystem (or habitat) types because of their rarity or the presence of threatened species within them; (4) offsets most often involve the creation of new habitat, but can include protection of existing habitat where there is currently no protection; (5) a clear currency is required that allows transparent quantification of values to be lost and gained in order to ensure ecological equivalency between cleared and offset areas; (6) offsets must take into account both the uncertainty involved in obtaining the desired outcome for the offset area and the time-lag that is involved in reaching that point.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... imbalances by including d-Quotes \\6\\ and all other e-Quotes \\7\\ containing pegging instructions eligible to participate in the closing transaction in the NYSE Amex Order Imbalance Information datafeed.\\8\\ \\6\\ See... participate in the closing transaction NYSE Amex Order Imbalance Information datafeed). In addition, on...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... data feed for imbalances by including d-Quotes \\6\\ and all other e-Quotes \\7\\ containing pegging instructions eligible to participate in the closing transaction in the NYSE Order Imbalance Information... participate in the closing transaction NYSE Order Imbalance Information datafeed). In addition, on December 23...
Matro, Rebecca; Tupchong, Keegan; Daskalakis, Constantine; Gordon, Victoria; Katz, Leo; Kastenberg, David
2012-11-29
Colonic bubbles associated with polyethylene glycol-electrolyte solution (PEG-ELS) are common and obscure mucosal visualization. This study aimed to determine whether adding simethicone decreases the incidence of bubbles. Prospective, single-blind, randomized comparison of split dose PEG-ELS vs. PEG-ELS+simethicone (PEG-S) for outpatient colonoscopy. Bubble severity for colonic segments was assessed on withdrawal as A=no/minimal bubbles, B=moderate bubbles/interfere with detecting 5 mm polyp, C=severe bubbles/interfere with detecting 10 mm polyp. Primary end point was Grade B or C bubbles in any colon segment. Secondary end points were cleansing quality, incidence and severity of side effects, and polyp detection. One hundred and thirty nine patients enrolled; 13 withdrew before colonoscopy. Of 123 patients evaluated, 62 took PEG-S and 61 PEG-ELS. The incidence of grade B or C bubbles was much lower with PEG-S compared with PEG-ELS (2% vs. 38%; P=0.001). Overall cleansing (excellent or good) quality was not significantly different for either the whole colon (89% PEG-ELS, 94% of PEG-S, P=0.529) or right colon (88% PEG-ELS, 94% PEG-S, P=0.365). More PEG-S patients had excellent rather than good preps (whole colon 53% vs. 28%, P=0.004; right colon 53% vs. 35%, P=0.044). Need for any flushing was less with PEG-S (38% vs. 70%, P=0.001). The groups were not significantly different with respect to total procedure and withdrawal times, incidence or severity of side effects, or number of polyps/patient or adenomas/patient. Adding simethicone to PEG-ELS effectively eliminates bubbles, substantially reduces the need for flushing, and results in more excellent preparations.
Matro, Rebecca; Tupchong, Keegan; Daskalakis, Constantine; Gordon, Victoria; Katz, Leo; Kastenberg, David
2012-01-01
OBJECTIVES: Colonic bubbles associated with polyethylene glycol-electrolyte solution (PEG-ELS) are common and obscure mucosal visualization. This study aimed to determine whether adding simethicone decreases the incidence of bubbles. METHODS: Prospective, single-blind, randomized comparison of split dose PEG-ELS vs. PEG-ELS+simethicone (PEG-S) for outpatient colonoscopy. Bubble severity for colonic segments was assessed on withdrawal as A=no/minimal bubbles, B=moderate bubbles/interfere with detecting 5 mm polyp, C=severe bubbles/interfere with detecting 10 mm polyp. Primary end point was Grade B or C bubbles in any colon segment. Secondary end points were cleansing quality, incidence and severity of side effects, and polyp detection. RESULTS: One hundred and thirty nine patients enrolled; 13 withdrew before colonoscopy. Of 123 patients evaluated, 62 took PEG-S and 61 PEG-ELS. The incidence of grade B or C bubbles was much lower with PEG-S compared with PEG-ELS (2% vs. 38% P=0.001). Overall cleansing (excellent or good) quality was not significantly different for either the whole colon (89% PEG-ELS, 94% of PEG-S, P=0.529) or right colon (88% PEG-ELS, 94% PEG-S, P=0.365). More PEG-S patients had excellent rather than good preps (whole colon 53% vs. 28%, P=0.004; right colon 53% vs. 35%, P=0.044). Need for any flushing was less with PEG-S (38% vs. 70%, P=0.001). The groups were not significantly different with respect to total procedure and withdrawal times, incidence or severity of side effects, or number of polyps/patient or adenomas/patient. CONCLUSIONS: Adding simethicone to PEG-ELS effectively eliminates bubbles, substantially reduces the need for flushing, and results in more excellent preparations. PMID:23238113
Addition of simethicone improves small bowel capsule endoscopy visualisation quality.
Krijbolder, M S; Grooteman, K V; Bogers, S K; de Jong, D J
2018-01-01
Small bowel capsule endoscopy (SBCE) is an important diagnostic tool for small-bowel diseases but its quality may be hampered by intraluminal gas. This study evaluated the added value of the anti-foaming agent, simethicone, to a bowel preparation with polyethylene glycol (PEG) on the quality of small bowel visualisation and its use in the Netherlands. This was a retrospective, single-blind, cohort study. Patients in the PEG group only received PEG prior to SBCE. Patients in the PEG-S group ingested additional simethicone. Two investigators assessed the quality of small-bowel visualisation using a four-point scale for 'intraluminal gas' and 'faecal contamination'. By means of a survey, the use of anti-foaming agents was assessed in a random sample of 16 Dutch hospitals performing SBCE. The quality of small bowel visualisation in the PEG group (n = 33) was significantly more limited by intraluminal gas when compared with the PEG-S group (n = 31): proximal segment 83.3% in PEG group vs. 18.5% in PEG-S group (p < 0.01), distal segment 66.7% vs. 18.5% respectively (p < 0.01). No difference was observed in the amount of faecal contamination (proximal segment 80.0% PEG vs. 59.3% PEG-S, p = 0.2; distal segment 90.0% PEG vs. 85.2% PEG-S, p = 0.7), mean small bowel transit times (4.0 PEG vs. 3.9 hours PEG-S, p = 0.7) and diagnostic yield (43.3% PEG vs. 22.2% PEG-S, p = 0.16). Frequency of anti-foaming agent use in the Netherlands was low (3/16, 18.8%). Simethicone is of added value to a PEG bowel preparation in improving the quality of visualisation of the small bowel by reducing intraluminal gas. At present, the use of anti-foaming agents in SBCE preparation is not standard practice in the Netherlands.
Smith, Ryan J; Beck, Rachel W; Prevette, Lisa E
2015-01-01
Poly(ethylene glycol) (PEG) is often conjugated to polyethylenimine (PEI) to provide colloidal stability to PEI-DNA polyplexes and shield charge leading to toxicity. Here, a library of nine cationic copolymers was synthesized by grafting three molecular weights (750, 2000, 5000Da) of PEG to linear PEI at three conjugation ratios. Using isothermal titration calorimetry, we have quantified the thermodynamics of the associations between the copolymers and DNA and determined the extent to which binding is hindered as a function of PEG molecular weight and conjugation ratio. Low conjugation ratios of 750Da PEG to PEI resulted in little decrease in DNA affinity, but a significant decrease-up to two orders of magnitude-was found for the other copolymers. We identified limitations in determination of affinity using indirect assays (electrophoretic mobility shift and ethidium bromide exclusion) commonly used in the field. Dynamic light scattering of the DNA complexes at physiological ionic strength showed that PEI modifications that did not reduce DNA affinity also did not confer significant colloidal stability, a finding that was supported by calorimetric data on the aggregation process. These results quantify the DNA interaction thermodynamics of PEGylated polycations for the first time and indicate that there is an optimum PEG chain length and degree of substitution in the design of agents that have desirable properties for effective in vivo gene delivery. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Jinrong; Qi, Tingting; Liao, Jinfeng; Fan, Min; Luo, Feng; Li, He; Qian, Zhiyong
2012-03-01
In this study, a temperature/pH dual-response nanogel based on NIPAm, MAA, and PEGMA was synthesized via emulsion polymerization and characterized by 1H-NMR, FT-IR, TEM and DLS. By introducing a novel initiator, through which PEG-AIBN-PEG was synthesized, it was revealed that the PEG segments from PEG-AIBN-PEG with a dosage of initiator had a significant influence over the macro-state and stability of the nanogels. In order to optimize the feeding prescription for better application as a drug delivery system, the effect of the co-monomer contents on the response to stimuli (temperature and pH value) and cytotoxicity of the nanogels has been studied in detail. The results demonstrated that the responsiveness, reversibility and volume phase transition critical value of the nanogels could be controlled by adjusting the feeding ratio of the co-monomers in the synthesis process. MTT assay results revealed that nanogels with appropriate compositions showed good biocompatibility and relatively low toxicity. Most importantly, by studying the drug loading behavior, it was found that the dimensions of the drug molecules had a considerable influence on the drug loading efficiency and loading capacity of the nanogels, and that the mechanism by which drug molecule sizes influence the drug loading behavior of nanogels needs further investigation. The results indicated that such PNMP nanogels might have potential applications in drug delivery and other medical applications, but that the drug loading mechanism must be further developed.
Partitioning of mercury in aqueous biphasic systems and on ABEC resins.
Rogers, R D; Griffin, S T
1998-06-26
Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABS) can be utilized to separate and recover metal ions in environmental and hydrometallurgical applications. A concurrent study was conducted comparing the partitioning of mercury between aqueous layers in an ABS [Me-PEG-5000/(NH4)2SO4] and partitioning of mercury from aqueous solutions to aqueous biphasic extraction chromatographic (ABEC-5000) resins. In ammonium sulfate solutions, mercury partitions to the salt-rich phase in ABS, but by using halide ion extractants, mercury will partition to the PEG-rich phase after formation of a chloro, bromo or iodo complex. The efficacy of the extractant increases in the order Cl-
Gentile, Maurizio; De Rosa, Michele; Cestaro, Giovanni; Forestieri, Pietro
2013-06-01
The 2 L polyethylene glycol (PEG) lavage solution has been proved to be similarly safe and effective as 4 L PEG formulations, in spite of the reduced volume. To compare low-volume PEG-based solution combined with ascorbic acid with high-volume PEG-based solution combined with simethicon in terms of efficacy and patient tolerability. This was a single-blind prospective randomized trial. Patients were randomized to receive either 2 L PEG plus ascorbic acid (PEG+Asc) or 4 L PEG plus simethicon (PEG+Sim). The primary endpoint was overall colon cleansing evaluation, assessed by blinded investigators using Aronchick score. Secondary end points included patient compliance and tolerability and adverse events. Sixty patients received PEG+Asc and 60 received PEG+Sim. Overall bowel cleansing score was considered adequate in 81.67% of the PEG+Asc and 80% of the PEG+Sim groups, respectively. Excellent and good ratings were recorded in 11.6% and 38.3% receiving PEG+Asc as compared with 26.6% and 23.3% of patients receiving PEG+Sim. Patient tolerability and safety were similar with both the preparations. According to our data, low-volume PEG+Asc has comparable efficacy, safety, and tolerability as high-volume PEG+Sim; therefore, it can be considered as a good alternative solution for bowel preparation. More improvements are necessary to achieve the target of a perfect preparation.
NASA Astrophysics Data System (ADS)
Wei, Lim Keuw; Ing, Wong Kwee; Badri, Khairiah Haji; Ban, Wong Chong
2013-11-01
The effect of polyethylene glycol (PEG) as a deproteinizing agent in commercial natural rubber latex (NRL) onto the physicochemical properties of the NRL was investigated. Three types of PEG were used namely PEG200, PEG4000 and PEG20000 (molecular weight of 200, 4000 and 20000 g/mol respectively). The optimum amount of PEG in NRL was determined from viscosity changes, protein content and Fourier Transform Infrared spectroscopy. Level of protein reduction was affected by molecular weight of PEG. The addition of PEG in NRL reduced the protein content of NRL (3.30 %) to the lowest (2.01 %) at 0.40 phr of PEG200 due to more attractive hydrophobic interactions between short chains PEG compared to PEG4000 (2.24%) and PEG20000 (2.15%). This was verified through FTIR spectroscopy analysis by observing the primary and secondary amide peak where PEG4000 has lesser absorption at the region compared to with PEG20000.
NASA Astrophysics Data System (ADS)
Kamimura, Masao; Kanayama, Naoki; Tokuzen, Kimikazu; Soga, Kohei; Nagasaki, Yukio
2011-09-01
A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate repeating unit in another segment (PEG-block-poly(4-vinylbenzylphosphonate)) (PEG-b-PVBP) was designed and successfully synthesized. As a control, an end-functionalized PEG possessing a mono-phosphonate group (PEG-PO3H2) was also synthesized. The surface of near-infrared (NIR) phosphors (i.e., ytterbium (Yb) and erbium (Er) ion-codoped Y2O3 nanoparticles (YNPs)) were modified with PEG-b-PVBP (PEG-YNP(b)s) and PEG-PO3H2 (PEG-YNP(1)s). The adsorption of PEG-b-PVBP and PEG-PO3H2 was estimated by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The physicochemical characteristics of the obtained YNP samples were analyzed by ζ-potential and dynamic light scattering (DLS) measurements. The ζ-potentials of YNPs modified by these polymers were close to zero, indicating the effective coverage of the YNP surface by our new PEG derivatives. However, the dispersion stability of the PEGylated YNPs was strongly affected by the structure of the PEG terminus. The average diameter of the PEG-YNP(1)s increased, and aggregates precipitated after less than 1 h in phosphate buffer saline (PBS). In contrast, the size did not change at all in the case of PEG-YNP(b)s and the dispersion in PBS was stable for over 1 week. PEG-YNP(b)s also showed high erosion resistance under acidic conditions. The multiple coordinated PVBP segment of the block copolymer on the YNP surface plays a substantial role in improving such dispersion stability. The excellent dispersion stability and strong NIR luminescence of the obtained PEG-YNP(b)s were also confirmed in fetal bovine serum (FBS) solution over 1 week. Furthermore, in vivo NIR imaging of live mice was performed, and the 1550 nm NIR emission of PEG-YNP(b)s from the organ of live mice was confirmed without dissection.A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate repeating unit in another segment (PEG-block-poly(4-vinylbenzylphosphonate)) (PEG-b-PVBP) was designed and successfully synthesized. As a control, an end-functionalized PEG possessing a mono-phosphonate group (PEG-PO3H2) was also synthesized. The surface of near-infrared (NIR) phosphors (i.e., ytterbium (Yb) and erbium (Er) ion-codoped Y2O3 nanoparticles (YNPs)) were modified with PEG-b-PVBP (PEG-YNP(b)s) and PEG-PO3H2 (PEG-YNP(1)s). The adsorption of PEG-b-PVBP and PEG-PO3H2 was estimated by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The physicochemical characteristics of the obtained YNP samples were analyzed by ζ-potential and dynamic light scattering (DLS) measurements. The ζ-potentials of YNPs modified by these polymers were close to zero, indicating the effective coverage of the YNP surface by our new PEG derivatives. However, the dispersion stability of the PEGylated YNPs was strongly affected by the structure of the PEG terminus. The average diameter of the PEG-YNP(1)s increased, and aggregates precipitated after less than 1 h in phosphate buffer saline (PBS). In contrast, the size did not change at all in the case of PEG-YNP(b)s and the dispersion in PBS was stable for over 1 week. PEG-YNP(b)s also showed high erosion resistance under acidic conditions. The multiple coordinated PVBP segment of the block copolymer on the YNP surface plays a substantial role in improving such dispersion stability. The excellent dispersion stability and strong NIR luminescence of the obtained PEG-YNP(b)s were also confirmed in fetal bovine serum (FBS) solution over 1 week. Furthermore, in vivo NIR imaging of live mice was performed, and the 1550 nm NIR emission of PEG-YNP(b)s from the organ of live mice was confirmed without dissection. Electronic supplementary information (ESI) available: 1H-NMR spectra of PEG-b-PCMS, PEG-b-PDEVBP and PEG-b-PVBP, 31P-NMR spectra of PEG-b-PDEVBP and PEG-b-PVBP, schematic representation of PEG-PO3H2 synthesis, 1H-NMR spectra of PEG-PO3Et2 and PEG-PO3H2, FT-IR spectra of YNP samples, PEG brush density on the YNP surface, and size distribution of YNP samples under acidic conditions are described. See DOI: 10.1039/c1nr10466g
Tunable Solid State Lasers and Synthetic Nonlinear Materials
1987-09-23
marketed devices. Several auxilliary pieces of equipment were purchased for use with the FTIR spectrometer. i) The MMR refrigerator was bought in order... Kotler , and H. J. Shaw, Electron. Lett. observed with the offset-locked oscillators. Careful 16,280 (1980). thermal design will permit offset locking of
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
... improve system and inter-market price stability. In order to implement this change contemporaneous with... Proposed Rule Change To Delay the Implementation Date for Non-Display of Primary Pegged Orders With an... Exchange proposes a rule change to delay the implementation date for its rule change that provides for non...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
... liquidity'' ratio.\\11\\ The Exchange believes this amendment to Footnotes 12 and 13 supports the Exchange's... transparency for its Members. \\11\\ The ``add liquidity'' ratio is the ratio of the ``added'' flags/(``added... Exchange's fee schedule for Non-Displayed Orders that add liquidity using the Route Peg Order type.\\4\\ The...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
...-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate Effectiveness of... 19b-4 thereunder,\\2\\ notice is hereby given that on March 23, 2012, The NASDAQ Stock Market LLC...-market price stability. Pegged Orders are orders that, once entered, adjust in price automatically, in...
Effect of PEG and mPEG-anthracene on tRNA aggregation and particle formation.
Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A
2012-01-09
Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG 3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG 6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.
Poly(dimethylsiloxane) coatings for controlled drug release--polymer modifications.
Schulze Nahrup, J; Gao, Z M; Mark, J E; Sakr, A
2004-02-11
Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.
Highly sensitive detection for proteins using graphene oxide-aptamer based sensors.
Gao, Li; Li, Qin; Li, Raoqi; Yan, Lirong; Zhou, Yang; Chen, Keping; Shi, Haixia
2015-07-07
In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.
NASA Astrophysics Data System (ADS)
Meylan, G.; Burki, G.; Rufener, F.; Mayor, M.; Burnet, M.; Ischi, E.
1986-04-01
Simultaneous measurements in the Geneva seven-color photometry and in radial velocities with the spectrophotometer CORAVEL for two RR Lyrae, one Delta Scuti and one SX Phoenicis field star were obtained in order to apply the Baade-Wesselink method to these kinds of variable stars. As a first step, the data regarding the RR Cet, DX Del, BS Aqr, and DY Peg are presented. The target of this study will consist in determining the physical parameters (temperature, gravity, metal content, mass, luminosity) and distances of these stars.
NASA Astrophysics Data System (ADS)
Shiryaeva, V. E.; Popova, T. P.; Korolev, A. A.; Kanat'eva, A. Yu.; Kurganov, A. A.
2017-08-01
New stationary phases for capillary columns in GC are synthesized and studied. The phases are prepared by depositing oligo(ethylene glycol)diacrylates on the column walls and subsequent polymerization (crosslinking) in the presence of peroxide initiators. It is shown that stationary phases based on monomers with molecular weights of 10 kDa or higher exhibit separation properties similar to those of conventional stationary phases based on polyethylene glycol (PEG); however, their thermal stability is higher because they have a higher degree of crosslinking and a more ordered structure of the crosslinked polymers than the respective parameters of phases based on native PEG.
2012-01-01
Background PEG-based laxatives are considered today the gold standard for the treatment of constipation in children. PEG formulations differ in terms of composition of inactive ingredients which may have an impact on acceptance, compliance and adherence to treatment. We therefore compared the efficacy, tolerability, acceptance and compliance of a new PEG-only formulation compared to a reference PEG-electrolyte (PEG-EL) formulation in resolving faecal impaction and in the treatment of chronic constipation. Methods Children aged 2–16 years with functional chronic constipation for at least 2 months were randomized to receive PEG-only 0.7 g/kg/day in 2 divided doses or 6.9 g PEG-EL 1–4 sachets according to age for 4 weeks. Children with faecal impaction were randomized to receive PEG-only 1.5/g/kg in 2 divided doses until resolution or for 6 days or PEG-EL with an initial dose of 4 sachets and increasing 2 sachets a day until resolution or for 7 days. Results Ninety-six children were randomized into the study. Five patients withdrew consent before starting treatment. Three children discontinued treatment for refusal due to bad taste of the product (1 PEG-only, 2 PEG-EL); 1 (PEG-EL) for an adverse effect (abdominal pain). Intent-to-treat analysis was carried out in 49 children in the PEG-only group and 42 in the PEG-EL group. No significant differences were observed between the two treatment groups at baseline. Adequate relief of constipation in terms of normalized frequency and painless defecation of soft stools was achieved in all patients in both groups. The number of stools/week was 9.2 ± 3.2 (mean ± SD) in the PEG-only group and 7.8 ± 2.4 in the PEG-EL group (p = 0.025); the number of days with stool was 22.4 ± 5.1 in the PEG-only group and 19.6 ± 7.2 in the PEG-EL group (p = 0.034). In the PEG-only group faecaloma resolution was observed in 5 children on the second day and in 2 children on the third day, while in the PEG-EL group it was observed in 2 children on the second day, in 3 children on the third day and in 1 child on the fifth day. Only 2 patients reported mild treatment-related adverse events: 1 child in the PEG-only group had diarrhoea and vomiting and 1 child in the PEG-EL group had abdominal pain requiring treatment discontinuation. The PEG-only preparation was better tolerated as shown by the lower frequency of nausea than in the PEG-EL group. In the PEG-only group, 96% of patients did not demonstrate any difficulties associated with treatment, as compared with 52% of patients in the PEG-EL group (p < 0.001). Also, the PEG-only formulation taste was better than that of PEG-EL (p < 0.001). The difference between the percentage of subjects who took > 80% of the prescribed dose was in favour of the PEG-only group (98% vs. 88%), though it did not reach a conventional statistical level (p = 0.062). Conclusion PEG-only was better tolerated and accepted than PEG-EL in children with chronic constipation. At the higher PEG doses recommended by the manufactures children in the PEG-only group had higher and more regular soft stool frequency than PEG-EL. Trial registration ClinicalTrials.gov: NCT01592734 PMID:23152962
Angiolillo, Anne L.; Schore, Reuven J.; Devidas, Meenakshi; Borowitz, Michael J.; Carroll, Andrew J.; Gastier-Foster, Julie M.; Heerema, Nyla A.; Keilani, Taha; Lane, Ashley R.; Loh, Mignon L.; Reaman, Gregory H.; Adamson, Peter C.; Wood, Brent; Wood, Charlotte; Zheng, Hao W.; Raetz, Elizabeth A.; Winick, Naomi J.; Carroll, William L.; Hunger, Stephen P.
2014-01-01
Purpose Asparaginase is a critical agent used to treat acute lymphoblastic leukemia (ALL). Pegaspargase (SS-PEG), a pegylated form of Escherichia coli L-asparaginase with a succinimidyl succinate (SS) linker, is the first-line asparaginase product used in Children's Oncology Group (COG) ALL trials. Calaspargase pegol (SC-PEG) replaces the SS linker in SS-PEG with a succinimidyl carbamate linker, creating a more stable molecule. COG AALL07P4 was designed to determine the pharmacokinetic and pharmacodynamic comparability of SC-PEG to SS-PEG in patients with newly diagnosed high-risk (HR) B-cell ALL. Patients and Methods A total of 165 evaluable patients were randomly assigned at a 2:1 ratio to receive SC-PEG at 2,100 (SC-PEG2100; n = 69) or 2,500 IU/m2 (SC-PEG2500; n = 42) versus SS-PEG 2,500 IU/m2 (SS-PEG2500; n = 54) as part of an otherwise identical chemotherapy regimen. The groups were similar demographically, except more female patients received SC-PEG2500. Results The mean half-life of plasma asparaginase activity for both SC-PEG doses was approximately 2.5× longer than that of SS-PEG2500. The total systemic exposure, as defined by induction area under the curve from time 0 to 25 days, was greater with SC-PEG2500 than with SS-PEG2500 or SC-PEG2100. The proportion of patients with plasma asparaginase activity ≥ 100 mIU/mL and ≥ 400 mIU/mL was higher in patients who received SC-PEG as compared with SS-PEG2500. After one dose of pegylated asparaginase on induction day 4, plasma asparagine was undetectable for 11 days for SS-PEG2500 and 18 days for both SC-PEG groups. Conclusion SC-PEG2500 achieves a significantly longer period of asparaginase activity above defined thresholds and asparagine depletion compared with SS-PEG2500 and has a comparable toxicity profile in children with HR B-cell ALL. PMID:25348002
Li, Zhenbao; Han, Xiaopeng; Zhai, Yinglei; Lian, He; Zhang, Dong; Zhang, Wenjuan; Wang, Yongjun; He, Zhonggui; Liu, Zheng; Sun, Jin
2015-06-01
Pegylation method is widely used to prolong the blood circulation time of proteins and nanoparticles after intravenous administration, but the effect of surface poly (ethylene glycol) (PEG) chain length on oral absorption of the pegylated nanoparticles is poorly reported. The aim of our study was to investigate the influence of PEG corona chain length on membrane permeability and oral bioavailability of the amphiphilic pegylated prodrug-based nanomicelles, taking all trans-retinoic acid (ATRA) as a model drug. The amphiphilic ATRA-PEG conjugates were synthesized by esterification reaction between all trans-retinoic acid and mPEGs (mPEG500, mPEG1000, mPEG2000, and mPEG5000). The conjugates could self-assemble in aqueous medium to form nanomicelles by emulsion-solvent evaporation method. The resultant nanomicelles were in spherical shape with an average diameter of 13-20 nm. The drug loading efficiency of ATRA-PEG500, ATRA-PEG1000, ATRA-PEG2000, and ATRA-PEG5000 was about 38.4, 26.6, 13.1, and 5.68 wt%, respectively. With PEG chain length ranging from 500 to 5000, ATRA-PEG nanomicelles exhibited a bell shape of chemical stability in different pH buffers, intestinal homogenate and plasma. More importantly, they were all rapidly hydrolyzed into the parent drug in hepatic homogenate, with the half-time values being 0.3-0.4h. In comparison to ATRA solution and ATRA prodrug-based nanomicelles, ATRA-PEG1000 showed the highest intestinal permeability. After oral administration, ATRA-PEG2000 and ATRA-PEG5000 nanomicelles were not nearly absorbed, while the oral bioavailability of ATRA-PEG500 and ATRA-PEG1000 demonstrated about 1.2- and 2.0-fold higher than ATRA solution. Our results indicated that PEG1000 chain length of ATRA-PEG prodrug nanomicelles has the optimal oral bioavailability probably due to improved stability and balanced mucus penetration capability and cell binding, and that the PEG chain length on a surface of nanoparticles cannot exceed a key threshold with the purpose of enhancement in oral bioavailability. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Shim, Hyun-Woo; Lee, Ji-Hye; Choi, Chang-Hyoung; Song, Hwan-Moon; Kim, Bo-Yeol; Kim, Dong-Pyo; Lee, Chang-Soo
2007-12-01
The patterning of biomolecules in well-defined microstructures is critical issue for the development of biosensors and biochips. However, the fabrication of microstructures with well-ordered and spatially discrete forms to provide the patterned surface for the immobilization of biomolecules is difficult because of the lack of distinct physical and chemical barriers separating patterns. This study present rapid biomolecule patterning using micromolding in capillaries (MIMIC), soft-lithographic fabrication of PEG microstructures for prevention of nonspecific binding as a biological barrier, and self assembled polymeric thin film for efficient immobilization of proteins or cells. For the proof of concept, protein (FITC-BSA), bacteria (E.coli BL21-pET23b-GFP) were used for biomolecules patterning on polyelectrolyte coated surface within PEG microstructures. The novel approach of MIMIC combined with LbL coating provides a general platform for patterning a broad range of materials because it can be easily applied to various substrates such as glass, silicon, silicon dioxide, and polymers.
Formulation development of allopurinol suppositories and injectables.
Lee, D K; Wang, D P
1999-11-01
Allopurinol was formulated into injectable and suppository dosage forms. The injectable formulation was prepared by dissolving allopurinol in a cosolvent system consisting of dimethyl sulfoxide (DMSO) and propylene glycol (v/v = 50/50). The stability of allopurinol in the cosolvent system was studied under accelerated storage conditions, and results indicate first-order degradation kinetics with an activation energy of 24.3 kcal/mol. The development of suppository dosage forms was performed by formulating allopurinol with polyethylene glycol (PEG) mixtures of different molecular weights. In vitro release profiles of suppositories formulated with different polyethylene bases were obtained in the pH 7.4 buffer solution using the USP 23 paddle method at 100 rpm. Results indicate that the release rate of the suppository formulations containing PEG 1500/PEG 4000 at the ratio (w/w) of 2.5/10 to 10/2.5 appeared to be similar. However, the addition of sodium lauryl sulfate in the suppository decreased the release rate of allopurinol significantly. A future study to establish in vitro/in vivo correlation (iv/ivc) is suggested.
Tyler, Rakim; Schiraldi, David; Roperto, Renato; Faddoul, Fady; Teich, Sorin
2017-01-01
Background Bio cellulose is a byproduct of sweet tea fermentation known as kombusha. During the biosynthesis by bacteria cellulose chains are polymerized by enzyme from activated glucose. The single chains are then extruded through the bacterial cell wall. Interestingly, a potential of the Kombucha’s byproduct bio cellulose (BC) as biomaterial had come into focus only in the past few decades. The unique physical and mechanical properties such as high purity, an ultrafine and highly crystalline network structure, a superior mechanical strength, flexibility, pronounced permeability to gases and liquids, and an excellent compatibility with living tissue that reinforced by biodegradability, biocompatibility, large swelling ratios. Material and Methods The bio-cellulose film specimens were provided by the R.P Dressel dental materials laboratory, Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, US. The films were harvested, washed with water and dried at room temperature overnight. 1wt% of PEG-2000 and 10wt% of NaOH were added into ultrapure water to prepare PEG/NaOH solution. Then bio-cellulose film was added to the mixture and swell for 3 h at room temperature. All bio-cellulose film specimens were all used in the TA Instruments Q500 Thermogravmetric Analyzer to investigate weight percent lost and degradation. The TGA was under ambient air conditions at a heating rate of 10ºC/min. Results and Conclusions PEG control exhibited one transition with the peak at 380ºC. Cellulose and cellulose/ PEG films showed 3 major transitions. Interestingly, the cellulose/PEG film showed slightly elevated temperatures when compared to the corresponding transitions for cellulose control. The thermal gravimetric analysis (TGA) degradation curves were analyzed. Cellulose control film exhibited two zero order transitions, that indicate the independence of the rate of degradation from the amount on the initial substance. The activation energies for three transitions for cellulose and cellulose/PEG showed increasingly higher values for the transitions at higher temperatures. Key words:TGA, Bio-cellulose, PEG. PMID:28828153
Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H. P.
2015-01-01
Aim: The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Materials and Methods: Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. Results: All vehicles exhibited bactericidal activity at 100% concentration. Conclusion: Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only. PMID:25992336
Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H P
2015-01-01
The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. All vehicles exhibited bactericidal activity at 100% concentration. Propylene glycol was effective against three organisms namely S. mutans E. faecalis and E. coli and its bactericidal activity was at 50%, 25% and 50% respectively. PEG 1000 was effective against S. mutans and E. coli at 25%. Hence propylene glycol was effective on more number of organisms of which E. faecalis is a known resistant species. PEG 1000 was bactericidal at a lower concentration but was effective on two organisms only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuboi, Masaki; Hibino, Mitsuhiro; Mizuno, Noritaka
2016-02-15
Crystalline polyoxometalate (POM)–polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors were synthesized and characterized by single crystal and powder XRD, solid state MASNMR, and TG-DTA measurements. Among the POM–PEG composites, Cs{sub 2.7}H{sub 0.3}[PW{sub 12}O{sub 40}]·1.2PEG1000 (CsHPW-PEG1000) possessed one-dimensional channels with diameters of ca. 6 and 8 Å, where PEG probably resided, and showed the best performance as a proton conductor (1.2×10{sup −5} S cm{sup −1} at 443 K). Proton conductivities of POM–PEG composites decreased by the increase in molecular weights of PEG (CsHPW-PEG12,000) or anion charges (CsHSiW-PEG1000). Variable contact time {sup 13}C-CP (cross polarization) MASNMR revealed that localmore » mobility (i.e., segmental motion) of PEG is related to the trends in proton conductivities. These results show that amount of acidic protons (H{sup +}) is not the primary factor in proton conduction and that segmental motion of PEG assists the proton hopping among POMs in the crystal lattice of POM–PEG composites. - Graphical abstract: Non-humidified intermediate-temperature proton conduction in crystalline polyoxometalate (POM)–polyethylene (PEG) composites are assisted by the segmental motion of PEG. - Highlights: • Crystalline polyoxometalate–polyethlene glycol (PEG) composites were synthesized. • CsHPW-PEG1000 possessed one-dimensional channels and showed the highest proton conductivity. • {sup 13}C CPMASNMR revealed that segmental motion of PEG is related to the proton conduction.« less
Wang, Aihua; Huo, Xiaolin; Zhang, Guanghao; Wang, Xiaochen; Zhang, Cheng; Wu, Changzhe; Rong, Wei; Xu, Jing; Song, Tao
2016-05-04
It has been shown that polyethylene glycol (PEG) can reseal membrane disruption on the spinal cord, but only high concentrations of PEG have been shown to have this effect. Therefore, the effect of PEG is somewhat limited, and it is necessary to investigate a new approach to repair spinal cord injury. This study assesses the ability of 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly (ethylene glycol)) 2000] (DSPE-PEG) to recover physiological function and attenuate the injury-induced influx of extracellular ions in ex vivo spinal cord injury. Isolated spinal cords were subjected to compression injury and treated with PEG or DSPE-PEG immediately after injury. The compound action potential (CAP) was recorded before and after injury to assess the functional recovery. Furthermore, injury potential, the difference in gap potentials before and after compression, and the concentration of intracellular ions were used to evaluate the effect of DSPE-PEG on reducing ion influx. Data showed that the injury potential and ion concentration of the untreated, PEG and DSPE-PEG group, without significant difference among them, are remarkably higher than those of the intact group. Moreover, the CAP recovery of the DSPE-PEG and PEG treated spinal cords was significantly greater than that of the untreated spinal cords. The level of CAP recovery in the DSPE-PEG and PEG treated groups was the same, but the concentration of DSPE-PEG used was much lower than the concentration of PEG. These results suggest that instant application of DSPE-PEG could effectively repair functional disturbance in SCI at a much lower concentration than PEG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yang, Kai; Wan, Jianmei; Zhang, Shuai; Tian, Bo; Zhang, Youjiu; Liu, Zhuang
2012-03-01
Photothermal therapy as a physical treatment approach to destruct cancer has emerged as an alternative of currently used cancer therapies. Previously we have shown that polyethylene glycol (PEG) functionalized nano-graphene oxide (nGO-PEG) with strong optical absorption in the near-infrared (NIR) region was a powerful photothermal agent for in vivo cancer treatment. In this work, by using ultra-small reduced graphene oxide (nRGO) with non-covalent PEG coating, we study how sizes and surface chemistry affect the in vivo behaviors of graphene, and remarkably improve the performance of graphene-based in vivo photothermal cancer treatment. Owing to the enhanced NIR absorbance and highly efficient tumor passive targeting of nRGO-PEG, excellent in vivo treatment efficacy with 100% of tumor elimination is observed after intravenous injection of nRGO-PEG and the followed 808 nm laser irradiation, the power density (0.15 W/cm(2), 5 min) of which is an order of magnitude lower than that usually applied for in vivo tumor ablation using many other nanomaterials. All mice after treatment survive over a period of 100 days without a single death or any obvious sign of side effect. Our results highlight that both surface chemistry and sizes are critical to the in vivo performance of graphene, and show the promise of using optimized nano-graphene for ultra-effective photothermal treatment, which may potentially be combined with other therapeutic approaches to assist our fight against cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanimoto, Keishi; Maeda, Tomoki; Hotta, Atsushi
Poly (D,L-lactide-co-glycolide)-b-poly (ethylene glycol)-b-poly (D,L-lactide-co-glycolide) (PLGA-PEG-PLGA) possesses moderate biocompatibility originating from the relatively shorter PEG block in its polymeric molecule. For the maximum utilization of the highly biocompatible PEG block, the PEG block should be relatively longer, and thus the PEG/PLGA ratio, the molecular weight ratio of PEG and PLGA, should be higher. In addition, for the wider use of PLGA-PEG-PLGA in the biological fields, the aqueous PLGA-PEG-PLGA solution should transfer from sol to gel states in response to the increase in temperature. It was reported, however, through the previous researches, that the PLGA-PEG-PLGA solution with a high PEG/PLGA ratio (above 0.5) would not exhibit thermoresponsive sol-gel transitions. In this work, PLGA-PEG-PLGAs with higher PEG/PLGA ratios were synthesized and the laponite, an inorganic nanoparticle, was added to the solutions to realize the thermoresponsive sol-gel transition. It was found that the PLGA-PEG-PLGA with the high PEG/PLGA ratio of 3.0 could exhibit the thermoresponsive sol-gel transition by adding laponite at 1.25 weight percent. The physical characteristics of the gel were also studied by the dynamic mechanical analysis (DMA) This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.
Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use
Shin, Chan Young; Kim, Kyu-Bong
2015-01-01
Polyethylene glycols (PEGs) are products of condensed ethylene oxide and water that can have various derivatives and functions. Since many PEG types are hydrophilic, they are favorably used as penetration enhancers, especially in topical dermatological preparations. PEGs, together with their typically nonionic derivatives, are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. The compounds studied in this review include PEG/PPG-17/6 copolymer, PEG-20 glyceryl triisostearate, PEG-40 hydrogenated castor oil, and PEG-60 hydrogenated castor oil. Overall, much of the data available in this review are on PEGylated oils (PEG-40 and PEG-60 hydrogenated castor oils), which were recommended as safe for use in cosmetics up to 100% concentration. Currently, PEG-20 glyceryl triisostearate and PEGylated oils are considered safe for cosmetic use according to the results of relevant studies. Additionally, PEG/PPG-17/6 copolymer should be further studied to ensure its safety as a cosmetic ingredient. PMID:26191379
Ke, Shan; Wright, John C; Kwon, Glen S
2007-01-01
Bovine carboxypeptidase A (CPA) conjugated with biotinylated poly(ethylene glycol) (PEG) has been synthesized and characterized in terms of stoichiometry and half-life of the avidin-biotin-PEG(s)-CPA complex. The half-lives for dissociation are 3.34 days for the avidin-biotin-PEG(3400)-CPA 1:1 complex, 3.65 days for the avidin-biotin-PEG(5000)-CPA 1:1 complex, 3.91 days for the avidin-biotin-PEG(3400)-CPA-PEG(2000) 1:1 complex, and 2.74 days for the avidin-biotin-PEG(5000)-CPA-PEG(2000) 1:1 complex. The slow dissociation demonstrates the stability of complexes using a PEGylated biotin terminus as a linker with avidin. The stoichiometry of the biotin-PEGylated CPA with avidin was determined by the 2,6-ANS method, and the results are consistent with measurements of the stoichiometry using size exclusion chromatography. The stoichiometries are 1:2 for the avidin-biotin-PEG(3400)-CPA complex and the avidin-biotin-PEG(3400)-CPA-PEG(2000) complex, 1:1 for the avidin-biotin-PEG(5000)-CPA complex, and 1:4 for the avidin-biotin-PEG(5000)-CPA-PEG(2000) complex. These findings stress both the importance of the length of a PEG chain as an appropriate spacer between the biotin terminus and a functional group, and the great potential of the avidin-biotin-PEGylated-protein complex as a therapeutic protein delivery system for solid tumor prodrug targeting.
Preparation of Polyamide-6 Submicrometer-Sized Spheres by In Situ Polymerization.
Zhao, Xingke; Xia, Housheng; Fu, Xubing; Duan, Jianping; Yang, Guisheng
2015-11-01
Polyamide-6 (PA6) submicron-sized spheres are prepared by two steps: (1) anionic ring-opening polymerization of ε-caprolactam in the presence of poly(ethylene glycol)-block-poly-(propylene glycol)-block-poly(ethylene glycol)(PEG-b-PPG-b-PEG) and (2) separation of PA6 spheres by dissolving PEG-b-PPG-b-PEG from the prepared blends. The PA6 microspheres obtained are regular spherical, with diameter ranging from 200 nm to 2 μm and narrow size distribution, as confirmed by scanning electron microscopy. By comparison with PA6/PS and PA6/PEG systems, it is denominated that the PEG blocks in PEG-b-PPG-b-PEG can effectively reduce the surface tension of PA6 droplets and further decrease the diameter of the PA6 microspheres. The PPG block in PEG-b-PPG-b-PEG can prevent the PA6 droplets coalescing with each other, and isolated spherical particles can be obtained finally. The phase inversion of the PA6/PEG-b-PPG-b-PEG blends occurs at very low PEG-b-PPG-b-PEG content; the PEG-b-PPG-b-PEG phase can be removed by water easily. The whole experiment can be finished in a short time (approximately in half an hour) without using any organic solvents; it is an efficient strategy for the preparation of submicron-sized PA6 microspheres. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laitila, Jussi; Moilanen, Atte; Pouzols, Federico M
2014-01-01
Biodiversity offsetting, which means compensation for ecological and environmental damage caused by development activity, has recently been gaining strong political support around the world. One common criticism levelled at offsets is that they exchange certain and almost immediate losses for uncertain future gains. In the case of restoration offsets, gains may be realized after a time delay of decades, and with considerable uncertainty. Here we focus on offset multipliers, which are ratios between damaged and compensated amounts (areas) of biodiversity. Multipliers have the attraction of being an easily understandable way of deciding the amount of offsetting needed. On the other hand, exact values of multipliers are very difficult to compute in practice if at all possible. We introduce a mathematical method for deriving minimum levels for offset multipliers under the assumption that offsetting gains must compensate for the losses (no net loss offsetting). We calculate absolute minimum multipliers that arise from time discounting and delayed emergence of offsetting gains for a one-dimensional measure of biodiversity. Despite the highly simplified model, we show that even the absolute minimum multipliers may easily be quite large, in the order of dozens, and theoretically arbitrarily large, contradicting the relatively low multipliers found in literature and in practice. While our results inform policy makers about realistic minimal offsetting requirements, they also challenge many current policies and show the importance of rigorous models for computing (minimum) offset multipliers. The strength of the presented method is that it requires minimal underlying information. We include a supplementary spreadsheet tool for calculating multipliers to facilitate application. PMID:25821578
Santos, Carla Adriana; Pereira, Marta; Martins, Vera Santos; Fonseca, Jorge
2015-08-01
tracheoesophageal fistula (TEF) may result from cancer or mechanical ventilation. Endoscopic Gastrostomy or Gastrojejunostomy (PEG/PEG-J) is used for nutritional support. in TEF-patients, evaluating nutritional status when PEG is performed, safety of PEG/PEG-J and clinical outcome. from the files of PEG/PEG-J feed TEF-patients we collected: clinical data, Body Mass Index, albumin, transferrin and cholesterol when gastrostomy was performed, and clinical outcome globally and according with the TEF cause: Group 1: complication of mechanical ventilation, Group 2: cancer. twelve patients, 18-91 years (median: 53), 11 PEG, one PEG-J: six complications of ventilation (neurological diseases), 6 cancers. Mean period from TEF diagnosis until gastrostomy: 2 months in Group 1, 10 months in Group 2. In the day of the gastrostomy, patients presented with malnutrition parameters, most strikingly in the cancer group. Group 1: died a single patient, 3 closed the TEF, resuming oral intake, 2 are still PEG-feed. All cancer patients died (7 months after gastrostomy). One needed a jejunal extension to create a PEG-J. No more complications. PEG/PEG-J was safe in TEF-patients, but cancer patients underwent gastrostomy too late. In TEF-patients, PEG/PEG-J should be considered in a regular basis, earlier in the disease evolution, before established malnutrition. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Wrenn, Steven P.; Dicker, Stephen M.; Small, Eleanor F.; Dan, Nily R.; Mleczko, Michał; Schmitz, Georg; Lewin, Peter A.
2012-01-01
This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol) (PEG) - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power) with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented, including those involving microbubbles to deliver cargo into a cell, and those - not necessarily involving microubbles - to release cargo from a phospholipid vesicle (or reverse sonoporation). It is shown that the rate of (reverse) sonoporation from liposomes correlates with phospholipid bilayer phase behavior, liquid-disordered phases giving appreciably faster release than liquid-ordered phases. Moreover, liquid-disordered phases exhibit evidence of two release mechanisms, which are described well mathematically by enhanced diffusion (possibly via dilation of membrane phospholipids) and irreversible membrane disruption, whereas liquid-ordered phases are described by a single mechanism, which has yet to be positively identified. The ability to tune release kinetics with bilayer composition makes reverse sonoporation of phospholipid vesicles a promising methodology for controlled drug delivery. Moreover, nesting of microbubbles inside vesicles constitutes a truly “theranostic” vehicle, one that can be used for both long-lasting, safe imaging and for controlled drug delivery. PMID:23382772
Bursting bubbles and bilayers.
Wrenn, Steven P; Dicker, Stephen M; Small, Eleanor F; Dan, Nily R; Mleczko, Michał; Schmitz, Georg; Lewin, Peter A
2012-01-01
This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition-- in particular, poly (ethylene glyclol) (PEG)--is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the "brush" regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power) with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented, including those involving microbubbles to deliver cargo into a cell, and those--not necessarily involving microubbles--to release cargo from a phospholipid vesicle (or reverse sonoporation). It is shown that the rate of (reverse) sonoporation from liposomes correlates with phospholipid bilayer phase behavior, liquid-disordered phases giving appreciably faster release than liquid-ordered phases. Moreover, liquid-disordered phases exhibit evidence of two release mechanisms, which are described well mathematically by enhanced diffusion (possibly via dilation of membrane phospholipids) and irreversible membrane disruption, whereas liquid-ordered phases are described by a single mechanism, which has yet to be positively identified. The ability to tune release kinetics with bilayer composition makes reverse sonoporation of phospholipid vesicles a promising methodology for controlled drug delivery. Moreover, nesting of microbubbles inside vesicles constitutes a truly "theranostic" vehicle, one that can be used for both long-lasting, safe imaging and for controlled drug delivery.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... Proposed Rule Change Amending Exchange Rule 1600 (New York Block Exchange \\SM\\) To Add Provisions on Short... York Block Exchange \\SM\\) (``NYBX'' or the ``Facility'') to add provisions on short sales in order to... Sale Period, New York Block Exchange Market Pegging Orders, as defined in Rule 1600(c)(2)(A)(iii), to...
The efficacy of nimodipine drug delivery using mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles.
Huang, Shuling; Yu, Xiaohong; Yang, Linlin; Song, Fenglan; Chen, Gang; Lv, Zhufen; Li, Tiao; Chen, De; Zhu, Wanhua; Yu, Anan; Zhang, Yongming; Yang, Fan
2014-10-15
In order to develop and compare mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles, with the intention to develop a highly efficient formulation for nimodipine (NIM), NIM-loaded micelles and mixed micelles were made and their pharmacokinetics were studied. Single factor experiments and orthogonal experiments were designed to optimize the final preparation process, characterizations and drug release behaviors were studied. Pharmacokinetics of NIM micelles, NIM mixed micelles were researched and were compared to NIM solution. Micelles and mixed micelles were prepared by solvent evaporation method, with relatively high drug loading efficiency and within nano-particle size range. The CMC value of mPEG-PLA was lower than that of mPEG-PLA/TPGS. The results of FTIR and TEM confirmed the spherical core-shell structure of micelles as well as mixed micelles, and the encapsulation of NIM inside the cores. In vitro release showed that micelles and mixed micelles had sustained release effect in the forms of passive diffusion and dissolution process, respectively. Following intraperitoneal administration (5mg/kg), micelles and mixed micelles were absorbed faster than solution, and with larger MRT(0-t), smaller CLz and larger AUC(0-t) as compared to that of solution, which showed micelles and mixed micelles had higher retention, slower elimination and higher bioavailability. This experiment also showed that mixed micelles released NIM more stably than micelles. By evaluate the bioequivalence, NIM micelles and NIM mixed micelles were testified non-bioequivalent to NIM solution. Micelles and mixed micelles could sustain the NIM concentrations more efficiently in plasma as compared to solution. Mixed micelles were the best ones since they had high loading content and released more stably. Thus, apprehending micelles and mixed micelles were suited as poor aqueous solubility drug carriers, and mixed micelles were better due to their high loading content and more stable release. Copyright © 2014 Elsevier B.V. All rights reserved.
Wen, Ran; Zhang, Qing; Xu, Pan; Bai, Jie; Li, Pengyue; Du, Shouying; Lu, Yang
2016-01-01
Xingnaojing microemulsion (XNJ-M) administered intranasally is used for stroke treatment. In order to decrease the XNJ-M-induced mucosal irritation, XNJ-M modified by mPEG2000-PLA (XNJ-MM) were prepared in a previous work. The present work aimed to assess the impact of mPEG2000-PLA on pharmacokinetic features and brain-targeting ability of XNJ-M. The bioavailability and brain-target effects of borneol and geniposide in XNJ-M and XNJ-MM were compared in mice after intravenous (i.v.) and intranasal (i.n.) administrations. Gas chromatography, high-performance liquid chromatography, and ultra-performance liquid chromatography/tandem mass spectrometry methods were developed for the quantification of borneol and geniposide. Blood and brain samples were collected from mice at different time points after i.v. and i.n. treatments with borneol at 8.0 mg/kg, geniposide at 4.12 mg/kg. In addition, near-infrared fluorescence dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethyl indotricarbocyanine iodide was loaded into microemulsions to evaluate the brain-targeting ability of XNJ-M and XNJ-MM by near-infrared fluorescence imaging in vivo and ex vivo. For XNJ-M and XNJ-MM, the relative brain targeted coefficients (Re) were 134.59% and 198.09% (borneol), 89.70% and 188.33% (geniposide), respectively. Besides, significant near-infrared fluorescent signal was detected in the brain after i.n. administration of microemulsions, compared with that of groups for i.v. administration. These findings indicated that mPEG2000-PLA modified microemulsion improved drug entry into blood and brain compared with normal microemulsion: the introduction of mPEG2000-PLA in microemulsion resulted in brain-targeting enhancement of both fat-soluble and water-soluble drugs. These findings provide a basis for the significance of mPEG2000-PLA addition in microemulsion, defining its effects on the drugs in microemulsion.
NASA Astrophysics Data System (ADS)
Shinzawa, Hideyuki; Mizukado, Junji
2018-03-01
Tensile deformations of a partially miscible blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG) is studied by a rheo-optical characterization near-infrared (NIR) technique to probe deformation behavior during tensile deformation. Sets of NIR spectra of the polymer samples were collected by using an acousto-optic tunable filter (AOTF) NIR spectrometer coupled with a tensile testing machine as an excitation device. While deformations of the samples were readily captured as strain-dependent NIR spectra, the entire feature of the spectra was overwhelmed with the baseline fluctuation induced by the decrease in the sample thickness and subsequent change in the light scattering. Several pretreatment techniques, including multiplicative scatter collection (MSC) and null-space projection, are subjected to the NIR spectra prior to the determination of the sequential order of the spectral intensity changes by two-dimensional (2D) correlation analysis. The comparison of the MSC and null-space projection provided an interesting insight into the system, especially deformation-induced variation of light scattering observed during the tensile testing of the polymer sample. In addition, the sequential order determined with the 2D correlation spectra revealed that orientation of a specific part of PMMA chain occurs before that of the others because of the interaction between Cdbnd O group of PMMA and terminal sbnd OH group of PEG.
NASA Technical Reports Server (NTRS)
Galindo-Israel, V.; Imbriale, W.; Shogen, K.; Mittra, R.
1990-01-01
In obtaining solutions to the first-order nonlinear partial differential equations (PDEs) for synthesizing offset dual-shaped reflectors, it is found that previously observed computational problems can be avoided if the integration of the PDEs is started from an inner projected perimeter and integrated outward rather than starting from an outer projected perimeter and integrating inward. This procedure, however, introduces a new parameter, the main reflector inner perimeter radius p(o), when given a subreflector inner angle 0(o). Furthermore, a desired outer projected perimeter (e.g., a circle) is no longer guaranteed. Stability of the integration is maintained if some of the initial parameters are determined first from an approximate solution to the PDEs. A one-, two-, or three-parameter optimization algorithm can then be used to obtain a best set of parameters yielding a close fit to the desired projected outer rim. Good low cross-polarization mapping functions are also obtained. These methods are illustrated by synthesis of a high-gain offset-shaped Cassegrainian antenna and a low-noise offset-shaped Gregorian antenna.
Park, Eun Ji; Lee, Kyung Soo; Lee, Kang Choon; Na, Dong Hee
2010-11-01
The purpose of this study was to evaluate the microchip CGE (MCGE) for the analysis of PEG-modified granulocyte-colony stimulating factor (PEG-G-CSF) prepared with PEG-aldehydes. The unmodified and PEG-modified G-CSFs were analyzed by Protein 80 and 230 Labchips on the Agilent 2100 Bioanalyzer. The MCGE allowed size-based separation and quantitation of PEG-G-CSF. The Protein 80 Labchip was useful for PEG-5K-G-CSF, while the Protein 230 Labchip was more suitable for PEG-20K-G-CSF. The MCGE was also used to monitor a search for optimal PEG-modification (PEGylation) conditions to produce mono-PEG-G-CSF. This study demonstrates the usefulness of MCGE for monitoring and optimizing the PEGylation of G-CSF with the advantages of speed, minimal sample consumption, and automatic quantitation.
Valiante, Flavio; Bellumat, Angelo; De Bona, Manuela; De Boni, Michele
2013-09-07
To compare the bowel cleansing efficacy, tolerability and acceptability of split 2-L polyethylene glycol (PEG)-citrate-simethicone (PEG-CS) plus bisacodyl (BIS) vs 4-L PEG for fecal occult blood test-positive screening colonoscopy. This was a randomised, observer-blind comparative study. Two hundred and sixty-four subjects underwent screening colonoscopy (mean age 62.5 ± 7.4 years, male 61.7%). The primary objective of the study was to compare the bowel cleansing efficacy of the two preparations. BIS plus PEG-CS: 3 tablets of 5-mg BIS at 16:00, PEG-CS 1-L at 19:00 and 1-L at 7:00, 4-L PEG: 3-L at 17:00, and 1-L at 7:00. Colonoscopy was carried out after 11:00, at least 3 h after the completion of bowel preparation. Bowel cleansing was evaluated using the Harefield Cleansing Scale. Bowel preparation was successful for 92.8% of subjects in the PEG-CS group and for 92.1% of subjects in the 4-L PEG (RR = 1.01; 95%CI: 0.94-1.08). BIS + PEG-CS was better tolerated than 4-L PEG. A greater rate of patients in the BIS + PEG-CS group had no difficulty and/or were willing to repeat the same preparation compared to split-dose 4-L PEG group. Subjects in the BIS + PEG-CS group rated the prep as good or satisfactory in 90.6% as compared to 77% in the 4-L PEG (P = 0.003). Subjects receiving BIS + PEG-CS stated they fully adhered to instructions drinking all the 2-L solution in 97.1% compared with 87.3% in the 4-L PEG (P = 0.003). BIS plus split 2-L PEG-CS was as effective as but better tolerated and accepted than split 4-L PEG for screening colonoscopy. This new procedure may increase the positive attitude and participation to colorectal cancer screening colonoscopy.
Toxicity Evaluation of Engineered Nanomaterials (Phase 1 Studies)
2012-01-01
Surface Chemistry on Cellular Response ...................................................................................................... 48...Gold Nanomaterial Solution Purity and Surface Chemistry Toxicity ................................................................. 18 Figure 7...Solution Purity and Surface Chemistry Control Although several studies have shown that both MPS and PEG are biocompatible, in order to ensure that
Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy.
Liu, Jian; Ohta, Shin-Ichi; Sonoda, Akinaga; Yamada, Masatoshi; Yamamoto, Masaya; Nitta, Norihisa; Murata, Kiyoshi; Tabata, Yasuhiko
2007-01-22
A novel photosensitizer with magnetic resonance imaging (MRI) activity was designed from fullerene (C(60)) for efficient photodynamic therapy (PDT) of tumor. After chemical conjugation of polyethylene glycol (PEG) to C(60) (C(60)-PEG), diethylenetriaminepentaacetic acid (DTPA) was subsequently introduced to the terminal group of PEG to prepare PEG-conjugated C(60) (C(60)-PEG-DTPA). The C(60)-PEG-DTPA was mixed with gadolinium acetate solution to obtain Gd(3+)-chelated C(60)-PEG (C(60)-PEG-Gd). Following intravenous injection of C(60)-PEG-Gd into tumor-bearing mice, the PDT anti-tumor effect and the MRI tumor imaging were evaluated. The similar O(2)(*-)generation was observed with or without Gd(3+) chelation upon light irradiation. Both of the C(60)-PEG-Gd and Magnevist(R) aqueous solutions exhibited a similar MRI activity. When intravenously injected into tumor-bearing mice, the C(60)-PEG-Gd maintained an enhanced MRI signal at the tumor tissue for a longer time period than Magnevist(R). Injection of C(60)-PEG-Gd plus light irradiation showed significant tumor PDT effect although the effect depended on the timing of light irradiation. The PDT efficacy of C(60)-PEG-Gd was observed at the time when the tumor accumulation was detected by the enhanced intensity of MRI signal. This therapeutic and diagnostic hybrid system is a promising tool to enhance the PDT efficacy for tumor.
Kamimura, Masao; Kanayama, Naoki; Tokuzen, Kimikazu; Soga, Kohei; Nagasaki, Yukio
2011-09-01
A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate repeating unit in another segment (PEG-block-poly(4-vinylbenzylphosphonate)) (PEG-b-PVBP) was designed and successfully synthesized. As a control, an end-functionalized PEG possessing a mono-phosphonate group (PEG-PO(3)H(2)) was also synthesized. The surface of near-infrared (NIR) phosphors (i.e., ytterbium (Yb) and erbium (Er) ion-codoped Y(2)O(3) nanoparticles (YNPs)) were modified with PEG-b-PVBP (PEG-YNP(b)s) and PEG-PO(3)H(2) (PEG-YNP(1)s). The adsorption of PEG-b-PVBP and PEG-PO(3)H(2) was estimated by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The physicochemical characteristics of the obtained YNP samples were analyzed by ζ-potential and dynamic light scattering (DLS) measurements. The ζ-potentials of YNPs modified by these polymers were close to zero, indicating the effective coverage of the YNP surface by our new PEG derivatives. However, the dispersion stability of the PEGylated YNPs was strongly affected by the structure of the PEG terminus. The average diameter of the PEG-YNP(1)s increased, and aggregates precipitated after less than 1 h in phosphate buffer saline (PBS). In contrast, the size did not change at all in the case of PEG-YNP(b)s and the dispersion in PBS was stable for over 1 week. PEG-YNP(b)s also showed high erosion resistance under acidic conditions. The multiple coordinated PVBP segment of the block copolymer on the YNP surface plays a substantial role in improving such dispersion stability. The excellent dispersion stability and strong NIR luminescence of the obtained PEG-YNP(b)s were also confirmed in fetal bovine serum (FBS) solution over 1 week. Furthermore, in vivo NIR imaging of live mice was performed, and the 1550 nm NIR emission of PEG-YNP(b)s from the organ of live mice was confirmed without dissection.
Link, B M; Cosgrove, D J
1999-12-01
In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.
NASA Technical Reports Server (NTRS)
Link, B. M.; Cosgrove, D. J.
1999-01-01
In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.
Nag, Okhil K; Yadav, Vivek R; Hedrick, Andria; Awasthi, Vibhudutta
2013-01-01
We report synthesis and characterization of a novel PEG2000-conjugated hexadecylcarbamoylmethyl hexadecanoate (HDAS-PEG) as a PEG-phospholipid substitute for enhancing circulation persistence of liposomes. HDAS-PEG showed critical micelle concentration of 4.25 μM. We used post-insertion technique to introduce HDAS-PEG in outer lipid layer of the preformed liposomes. The presence of surface HDAS-PEG was confirmed by altered electrophoretic mobility, confocal microscopy and PEG estimation by ELISA. The post-inserted HDAS-PEG desorbed at approximately half the rate at which post-inserted DSPE-PEG desorbed from the liposome surface. HDAS-PEG significantly reduced liposome-induced complement activation (C4d, Bb and SC5b); HDAS-PEG was more effective than more commonly used DSPE-PEG in this capacity. For studying circulation persistence, the liposomes were labeled with 99mTc radionuclide and administered in rats. 99mTc-HDAS-PEG-liposomes showed prolonged persistence in blood as compared to that shown by 99mTc-plain liposomes. After 24 h of administration, < 1% of 99mTc-plain liposomes remained in blood, whereas approximately 28% of injected 99mTc-HDAS-PEG-liposomes were present in blood. In comparison, only 4.8% of 99mTc-DSPE-PEG-liposomes was measured in blood after 24 h. As expected, the clearance route of the liposomes was through liver and spleen. These results demonstrate the potential of a novel non-phosphoryl HDAS-PEG for surface modification of preformed liposomes with a goal of prolonging their circulation persistence and more effective inhibition of complement activation. PMID:23419666
McKenna, Thomas; Macgill, Alice; Porat, Gail; Friedenberg, Frank K
2012-12-01
Four liters of polyethylene glycol 3350 (PEG) with balanced electrolytes for colonoscopy preparation has had poor acceptance. Another approach is the use of electrolyte-free PEG combined with 1.9 L of Gatorade. Despite its widespread use, there are no data on metabolic safety and minimal data on efficacy. Our aim was to assess the efficacy and electrolyte safety of these two PEG-based preparations. This was a prospective, randomized, single-blind, non-inferiority trial. Patients were randomized to 238 g PEG + 1.9 L Gatorade or 4 L of PEG-ELS containing 236 g PEG. Split dosing was not performed. On procedure day blood was drawn for basic chemistries. The primary outcome was preparation quality from procedure photos using the Boston Bowel Preparation Scale. We randomized 136 patients (66 PEG + Gatorade, 70 PEG-ELS). There were no differences in preparation scores between the two agents in the ITT analysis (7.2 ± 1.9 for PEG-ELS and 7.0 ± 2.1 for PEG + Gatorade; p = 0.45). BBPS scores were identical for those who completed the preparation and dietary instructions as directed (7.4 ± 1.7 for PEG-ELS, and 7.4 ± 1.8 for PEG + Gatorade; p = 0.98). There were no statistical differences in serum electrolytes between the two preparations. Patients who received PEG + Gatorade gave higher overall satisfaction scores for the preparation experience (p = 0.001), and had fewer adverse effects. Use of 238 g PEG + 1.9 L Gatorade appears to be safe, better tolerated, and non-inferior to 4 L PEG-ELS. This preparation may be especially useful for patients who previously tolerated PEG-ELS poorly.
Smith, Mackensie C; Crist, Rachael M; Clogston, Jeffrey D; McNeil, Scott E
2015-05-01
Surface characteristics of a nanoparticle, such as functionalization with polyethylene glycol (PEG), are critical to understand and achieve optimal biocompatibility. Routine physicochemical characterization such as UV-vis spectroscopy (for gold nanoparticles), dynamic light scattering, and zeta potential are commonly used to assess the presence of PEG. However, these techniques are merely qualitative and are not sensitive enough to distinguish differences in PEG quantity, density, or presentation. As an alternative, two methods are described here which allow for quantitative measurement of PEG on PEGylated gold nanoparticles. The first, a displacement method, utilizes dithiothreitol to displace PEG from the gold surface. The dithiothreitol-coated gold nanoparticles are separated from the mixture via centrifugation, and the excess dithiothreitol and dissociated PEG are separated through reversed-phase high-performance liquid chromatography (RP-HPLC). The second, a dissolution method, utilizes potassium cyanide to dissolve the gold nanoparticles and liberate PEG. Excess CN(-), Au(CN)2 (-), and free PEG are separated using RP-HPLC. In both techniques, the free PEG can be quantified against a standard curve using charged aerosol detection. The displacement and dissolution methods are validated here using 2-, 5-, 10-, and 20-kDa PEGylated 30-nm colloidal gold nanoparticles. Further value in these techniques is demonstrated not only by quantitating the total PEG fraction but also by being able to be adapted to quantitate the free unbound PEG and the bound PEG fractions. This is an important distinction, as differences in the bound and unbound PEG fractions can affect biocompatibility, which would not be detected in techniques that only quantitate the total PEG fraction.
Correction of elevation offsets in multiple co-located lidar datasets
Thompson, David M.; Dalyander, P. Soupy; Long, Joseph W.; Plant, Nathaniel G.
2017-04-07
IntroductionTopographic elevation data collected with airborne light detection and ranging (lidar) can be used to analyze short- and long-term changes to beach and dune systems. Analysis of multiple lidar datasets at Dauphin Island, Alabama, revealed systematic, island-wide elevation differences on the order of 10s of centimeters (cm) that were not attributable to real-world change and, therefore, were likely to represent systematic sampling offsets. These offsets vary between the datasets, but appear spatially consistent within a given survey. This report describes a method that was developed to identify and correct offsets between lidar datasets collected over the same site at different times so that true elevation changes over time, associated with sediment accumulation or erosion, can be analyzed.
NASA Astrophysics Data System (ADS)
Wang, Anqi; Meng, Zhixin; Feng, Yanying
2017-10-01
We design a fiber electro-optic modulator (FEOM)-based laser frequency-offset locking system using frequency modulation spectroscopy (FMS) with the 3F modulation. The modulation signal and the frequency-offset control signal are simultaneously loaded on the FEOM by a mixer in order to suppress the frequency and power jitter caused by internal modulation on the current or piezoelectric ceramic transducer (PZT). It is expected to accomplish a fast locking, a widely tunable frequency-offset, a sensitive and rapid detection of narrow spectral features with the 3F modulation. The laser frequency fluctuation is limited to +/-1MHz and its overlapping Allan deviation is around 10-12 in twenty minutes, which successfully meets the requirements of the cold atom interferometer.
Königshausen, M; Jettkant, B; Sverdlova, N; Ehlert, C; Gessmann, J; Schildhauer, T A; Seybold, D
2015-01-01
There is no biomechanical basis to determine the influence of different length of the central peg of the baseplate anchored within the native scapula in glenoid defect reconstruction in cases of degenerative or posttraumatic glenoid bone loss in reversed shoulder arthroplasty. The purpose of this study was to analyse the stability of different peg lengths used in glenoid bone loss in reversed shoulder arthroplasty. Different lengths of metaglene pegs with different depths of peg anchorage performed with or without metaglene screws in sawbone foam blocks were loaded in vertical and horizontal directions for differentiating load capacities. Simulated physiological loadings were then applied to the peg implants to determine the limits of loading in each depth of anchorage. The loading capacity of the implant was reduced as less of the peg was anchored. The vertically loaded implants showed a significantly higher stability, in contrast to those loaded horizontally at a corresponding peg length and depth of anchorage (p < 0.05). The tests revealed that the metaglene screws are more essential for primary stability than is the peg particularly in the vertically directed loadings (2/3 anchored: peg contributed to 28% of the stability, 1/3 anchorage: peg contributed to 12%). Under the second test conditions, the lowest depth of peg anchorage (1/3) resulted in 322 Newtons [N] in the long peg with a vertical loading direction, and in 130 N in the long peg with a horizontal loading direction (p < 0.05). The pegs should be anchored as deeply as possible into the native scapula bone stock. The metaglene screws play a major role in the initial stability, in contrast to the peg, and they become more important when the depth of the peg anchorage is reduced. If possible, four metaglene screws should be used in cases of uncontained bone loss to guarantee the highest stability.
Bhatnagar, Bakul S; Martin, Susan W H; Hodge, Tamara S; Das, Tapan K; Joseph, Liji; Teagarden, Dirk L; Shalaev, Evgenyi Y; Suryanarayanan, Raj
2011-08-01
The objectives of the current study were to investigate (i) the phase behavior of a PEGylated recombinant human growth hormone (PEG-rhGH, ∼60 kDa) during freeze-drying and (ii) its storage stability. The phase transitions during freeze-thawing of an aqueous solution containing PEG-rhGH and sucrose were characterized by differential scanning calorimetry. Finally, PEG-rhGH and sucrose formulations containing low, medium, and high polyethylene glycol (PEG) to sucrose ratios were freeze-dried in dual-chamber syringes and stored at 4°C and 25°C. Chemical decomposition (methionine oxidation and deamidation) and irreversible aggregation were characterized by size-exclusion and ion-exchange chromatography, and tryptic mapping. PEG crystallization was facilitated when it was covalently linked with rhGH. When the solutions were frozen, phase separation into PEG-rich and sucrose-rich phases facilitated PEG crystallization and the freeze-dried cake contained crystalline PEG. Annealing caused PEG crystallization and when coupled with higher drying temperatures, the primary drying time decreased by up to 51%. When the freeze-dried cakes were stored at 4°C, while there was no change in the purity of the PEG-rhGH monomer, deamidation was highest in the formulations with the lowest PEG to sucrose ratio. When stored at 25°C, this composition also showed the most pronounced decrease in monomer purity, the highest level of aggregation, and deamidation. Furthermore, an increase in PEG crystallinity during storage was accompanied by a decrease in PEG-rhGH stability. Interestingly, during storage, there was no change in PEG crystallinity in formulations with medium and high PEG to sucrose ratios. Although PEG crystallization during freeze-drying did not cause protein degradation, crystallization during storage might have influenced protein stability. Copyright © 2011 Wiley-Liss, Inc.
Artesunate-modified nano-graphene oxide for chemo-photothermal cancer therapy
Pang, Yilin; Mai, Zihao; Wang, Bin; Wang, Lu; Wu, Liping; Wang, Xiaoping; Chen, Tongsheng
2017-01-01
Poor water-solubility of artesunate (ARS) hampers its clinical application. We here covalently linked ARS to PEGylated nanographene oxide (nGO-PEG) to obtain ARS-modified nGO-PEG (nGO-PEG-ARS) with excellent photothermal effect and dispersibility in physiological environment. nGO-PEG-ARS induced reactive oxygen species (ROS) and peroxynitrite (ONOO─) generations. Although nGO-PEG with near-infrared (NIR) irradiation did not induce cytotoxicity, the photothermal effect of nGO-PEG under NIR irradiation enhanced not only cell uptake but also ONOO─ generation of nGO-PEG-ARS, resulting in the synergistic chemo-photothermal effect of nGO-PEG-ARS in killing HepG2 cells. Pretreatment with Fe(III) 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato chloride (FeTTPS, a ONOO─ scavenger) instead of antioxidant N-Acetyle-Cysteine (NAC, an ROS scavenger) significantly blocked the cytotoxicity of nGO-PEG-ARS with or without NIR irradiation, demonstrating that ONOO─ instead of ROS dominated the synergistic chemo-photothermal anti-cancer action of nGO-PEG-ARS. nGO-PEG-ARS with NIR irradiation resulted in a complete tumor cure within 15 days earlier than other treatment groups, and did not induce apparent histological lesion for the mice treated with nGO-PEG-ARS with or without NIR irradiation for 30 days, further proving the synergistic chemo-photothermal anti-cancer effect of nGO-PEG-ARS. Collectively, nGO-PEG-ARS is a versatile nano-platform for multi-modal synergistic cancer therapy. PMID:29212190
Kang, Mi-Lan; Jeong, Se-Young; Im, Gun-Il
2017-07-01
Synthetic hyaluronic acid (HA) containing a covalently integrated drug is capable of releasing therapeutic molecules and is an attractive candidate for the intra-articular treatment of osteoarthritis (OA). Herein, self-assembled PEGylated kartogenin (PEG/KGN) micelles consisting of hydrophilic polyethylene glycol (PEG) and hydrophobic KGN, which has been shown to induce chondrogenesis in human mesenchymal stem cells, were prepared by covalent crosslinking. HA hydrogels containing PEG/KGN micelles (HA/PEG/KGN) were prepared by covalently bonding PEG chains to HA. The physicochemical properties of the HA/PEG/KGN conjugate gels were investigated using Fourier transform infrared spectroscopy, 1 H NMR, dynamic light scattering (DLS), and scanning electron microscopy (SEM). HA/PEG/KGN gels exhibited larger micelles in aqueous solution than PEG/KGN. SEM images of PEG/KGN micelles showed a dark core and a bright shell, whereas PEG/KGN micelles covalently integrated into HA had an irregular oval shape. Covalent integration of PEG/KGN micelles in HA hydrogels significantly reduced drug release rates and provided sustained release over a prolonged period of time. HA/PEG/KGN hydrogels were degradable enzymatically by collagenase and hyaluronidase in vitro. Injection of HA/PEG/KGN hydrogels into articular cartilage significantly suppressed the progression of OA in rats compared with free-HA hydrogel injection. These results suggest that the HA/PEG/KGN hydrogels have greater potency than free-HA hydrogels against OA as biodegradable synthetic therapeutics.
NASA Astrophysics Data System (ADS)
Gong, ChangYang; Wei, XiaWei; Wang, XiuHong; Wang, YuJun; Guo, Gang; Mao, YongQiu; Luo, Feng; Qian, ZhiYong
2010-05-01
This study aims to develop self-assembled poly(ethylene glycol)-poly(ɛ-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.
NASA Astrophysics Data System (ADS)
Zhu, Feng; Wang, Jinwei; Li, Shanghua; Zhang, Jin
2012-09-01
Oxide coatings are prepared on AZ31B Mg alloy in an environment-friendly electrolyte with additives by plasma electrolytic anodization, and the effect of ethylene glycol oligmers on the performances of the anodized film is investigated. Under a constant current density of 10 mA cm-2, the reaction overpotential of the silicate electrolytes with additives are found higher than that of the original electrolyte as measured by potential-time test. The EIS and DC polarization results reveal that the addition of PEG increases the impedance of the film and reduces its corrosion current density (Icorr) at least by one order of magnitude. The surface morphologies are more and more compact and homogeneous with the increase in EG numbers, while a rougher surface appeared again if the PEG4000 is used as observed by SEM. As detected by XRD, the anodic films are found mainly consist of MgO, MgSiO3 and Mg2SiO4, and their relative amounts are related to the lengths of EGs, resulting in the differences in morphology and anticorrosion variations. Furthermore, the improvement in abrasive resistance of the anodic film formed in the electrolyte with PEG1000 may be attributed to its much more compact surface and the incorporation of ductile PEG chains among those oxides.
Ramos Yacasi, Gladys Rosario; García López, María Luisa; Espina García, Marta; Parra Coca, Alexander; Calpena Campmany, Ana Cristina
2016-01-01
This study investigated the suspension of poly(ε-caprolactone) nanoparticles as an ocular delivery system for flurbiprofen (FB-PεCL-NPs) in order to overcome the associated problems, such as stability, sterility, tolerance, and efficacy, with two different FB-PεCL-NP formulations. The formulations were stabilized with poloxamer 188 (1.66% and 3.5%) and submitted individually for freeze-drying and γ-irradiation with polyethylene glycol 3350 (PEG3350) and d-(+)-trehalose (TRE). Both formulations satisfied criteria according to all physicochemical parameters required for ocular pharmaceuticals. The FB-PεCL-NP formulations showed non-Newtonian behavior and sustained drug release. Ex vivo permeation analysis using isolated ocular pig tissues suggested that the presence of PEG3350 results in a reduction of FB transcorneal permeation. Moreover, TRE improved the penetration of FB across the cornea, especially after γ-irradiation. In addition, both formulations did not show a significant affinity in increasing FB transscleral permeation. Both formulations were classified as nonirritating, safe products for ophthalmic administration according to hen’s egg test-chorioallantoic membrane and Draize eye test. Furthermore, an in vivo anti-inflammatory efficacy test showed that irradiated FB-PεCL-NPs prepared with PEG3350 (IR-NPsPEG) have longer anti-inflammatory effects than those presented with irradiated FB-PεCL-NPs prepared with TRE (IR-NPsTRE). IR-NPsPEG showed a suitable physical stability after an aqueous reconstitution over >30 days. This study concludes that both formulations meet the Goldman’s criteria and demonstrate how irradiated nanoparticles, with innovative permeation characteristics, could be used as a feasible alternative to a flurbiprofen solution for ocular application in clinical trials. PMID:27601897
Derakhshandeh, Katayoun; Soheili, Marzieh; Dadashzadeh, Simin; Saghiri, Reza
2010-08-09
The purpose in this study was to investigate poly(ethylene glycol)-modified poly (d,l-lactide-co-glycolide) nanoparticles (PLGA-PEG-NPs) loading 9-nitrocamptothecin (9-NC) as a potent anticancer drug. 9-NC is an analog of the natural plant alkaloid camptothecin that has shown high antitumor activity and is currently in the end stage of clinical trial. Unfortunately, at physiological pH, these potent agents undergo a rapid and reversible hydrolysis with the loss of antitumor activity. Previous researchers have shown that the encapsulation of this drug in PLGA nanoparticles could increase its stability and release profile. In this research we investigated PLGA-PEG nanoparticles and their effect on in vitro characteristics of this labile drug. 9-NC-PLGA-PEG nanoparticles with particle size within the range of 148.5 ± 30 nm were prepared by a nanoprecipitation method. The influence of four different independent variables (amount of polymer, percent of emulsifier, internal phase volume, and external phase volume) on nanoparticle drug-loading was studied. Differential scanning calorimetry and X-ray diffractometry were also evaluated for physical characterizing. The results of optimized formulation showed a narrow size distribution, suitable zeta potential (+1.84), and a drug loading of more than 45%. The in vitro drug release from PLGA-PEG NPs showed a sustained release pattern of up to 120 hours and comparing with PLGA-NPs had a significant decrease in initial burst effect. These experimental results indicate that PLGA-PEG-NPs (versus PLGA-NPs) have a better physicochemical characterization and can be developed as a drug carrier in order to treat different malignancies.
Derakhshandeh, Katayoun; Soheili, Marzieh; Dadashzadeh, Simin; Saghiri, Reza
2010-01-01
The purpose in this study was to investigate poly(ethylene glycol)-modified poly (d,l-lactide-co-glycolide) nanoparticles (PLGA-PEG-NPs) loading 9-nitrocamptothecin (9-NC) as a potent anticancer drug. 9-NC is an analog of the natural plant alkaloid camptothecin that has shown high antitumor activity and is currently in the end stage of clinical trial. Unfortunately, at physiological pH, these potent agents undergo a rapid and reversible hydrolysis with the loss of antitumor activity. Previous researchers have shown that the encapsulation of this drug in PLGA nanoparticles could increase its stability and release profile. In this research we investigated PLGA-PEG nanoparticles and their effect on in vitro characteristics of this labile drug. 9-NC-PLGA-PEG nanoparticles with particle size within the range of 148.5 ± 30 nm were prepared by a nanoprecipitation method. The influence of four different independent variables (amount of polymer, percent of emulsifier, internal phase volume, and external phase volume) on nanoparticle drug-loading was studied. Differential scanning calorimetry and X-ray diffractometry were also evaluated for physical characterizing. The results of optimized formulation showed a narrow size distribution, suitable zeta potential (+1.84), and a drug loading of more than 45%. The in vitro drug release from PLGA-PEG NPs showed a sustained release pattern of up to 120 hours and comparing with PLGA-NPs had a significant decrease in initial burst effect. These experimental results indicate that PLGA-PEG-NPs (versus PLGA-NPs) have a better physicochemical characterization and can be developed as a drug carrier in order to treat different malignancies. PMID:20957168
Sánchez-López, Elena; Ettcheto, Miren; Egea, Maria Antonia; Espina, Marta; Cano, Amanda; Calpena, Ana Cristina; Camins, Antoni; Carmona, Nuria; Silva, Amélia M; Souto, Eliana B; García, Maria Luisa
2018-03-27
Memantine, drug approved for moderate to severe Alzheimer's disease, has not shown to be fully effective. In order to solve this issue, polylactic-co-glycolic (PLGA) nanoparticles could be a suitable solution to increase drug's action on the target site as well as decrease adverse effects. For these reason, Memantine was loaded in biodegradable PLGA nanoparticles, produced by double emulsion method and surface-coated with polyethylene glycol. MEM-PEG-PLGA nanoparticles (NPs) were aimed to target the blood-brain barrier (BBB) upon oral administration for the treatment of Alzheimer's disease. The production parameters were optimized by design of experiments. MEM-PEG-PLGA NPs showed a mean particle size below 200 nm (152.6 ± 0.5 nm), monomodal size distribution (polydispersity index, PI < 0.1) and negative surface charge (- 22.4 mV). Physicochemical characterization of NPs confirmed that the crystalline drug was dispersed inside the PLGA matrix. MEM-PEG-PLGA NPs were found to be non-cytotoxic on brain cell lines (bEnd.3 and astrocytes). Memantine followed a slower release profile from the NPs against the free drug solution, allowing to reduce drug administration frequency in vivo. Nanoparticles were able to cross BBB both in vitro and in vivo. Behavioral tests carried out on transgenic APPswe/PS1dE9 mice demonstrated to enhance the benefit of decreasing memory impairment when using MEM-PEG-PLGA NPs in comparison to the free drug solution. Histological studies confirmed that MEM-PEG-PLGA NPs reduced β-amyloid plaques and the associated inflammation characteristic of Alzheimer's disease. Memantine NPs were suitable for Alzheimer's disease and more effective than the free drug.
Ramos Yacasi, Gladys Rosario; García López, María Luisa; Espina García, Marta; Parra Coca, Alexander; Calpena Campmany, Ana Cristina
This study investigated the suspension of poly(ε-caprolactone) nanoparticles as an ocular delivery system for flurbiprofen (FB-PεCL-NPs) in order to overcome the associated problems, such as stability, sterility, tolerance, and efficacy, with two different FB-PεCL-NP formulations. The formulations were stabilized with poloxamer 188 (1.66% and 3.5%) and submitted individually for freeze-drying and γ-irradiation with polyethylene glycol 3350 (PEG3350) and d-(+)-trehalose (TRE). Both formulations satisfied criteria according to all physicochemical parameters required for ocular pharmaceuticals. The FB-PεCL-NP formulations showed non-Newtonian behavior and sustained drug release. Ex vivo permeation analysis using isolated ocular pig tissues suggested that the presence of PEG3350 results in a reduction of FB transcorneal permeation. Moreover, TRE improved the penetration of FB across the cornea, especially after γ-irradiation. In addition, both formulations did not show a significant affinity in increasing FB transscleral permeation. Both formulations were classified as nonirritating, safe products for ophthalmic administration according to hen's egg test-chorioallantoic membrane and Draize eye test. Furthermore, an in vivo anti-inflammatory efficacy test showed that irradiated FB-PεCL-NPs prepared with PEG3350 (IR-NPsPEG) have longer anti-inflammatory effects than those presented with irradiated FB-PεCL-NPs prepared with TRE (IR-NPsTRE). IR-NPsPEG showed a suitable physical stability after an aqueous reconstitution over >30 days. This study concludes that both formulations meet the Goldman's criteria and demonstrate how irradiated nanoparticles, with innovative permeation characteristics, could be used as a feasible alternative to a flurbiprofen solution for ocular application in clinical trials.
Effects of Polymer Hydrophobicity on Protein Structure and Aggregation Kinetics in Crowded Milieu.
Breydo, Leonid; Sales, Amanda E; Frege, Telma; Howell, Mark C; Zaslavsky, Boris Y; Uversky, Vladimir N
2015-05-19
We examined the effects of water-soluble polymers of various degrees of hydrophobicity on the folding and aggregation of proteins. The polymers we chose were polyethylene glycol (PEG) and UCON (1:1 copolymer of ethylene glycol and propylene glycol). The presence of additional methyl groups in UCON makes it more hydrophobic than PEG. Our earlier analysis revealed that similarly sized PEG and UCON produced different changes in the solvent properties of water in their solutions and induced morphologically different α-synuclein aggregates [Ferreira, L. A., et al. (2015) Role of solvent properties of aqueous media in macromolecular crowding effects. J. Biomol. Struct. Dyn., in press]. To improve our understanding of molecular mechanisms defining behavior of proteins in a crowded environment, we tested the effects of these polymers on secondary and tertiary structure and aromatic residue solvent accessibility of 10 proteins [five folded proteins, two hybrid proteins; i.e., protein containing ordered and disordered domains, and three intrinsically disordered proteins (IDPs)] and on the aggregation kinetics of insulin and α-synuclein. We found that effects of both polymers on secondary and tertiary structures of folded and hybrid proteins were rather limited with slight unfolding observed in some cases. Solvent accessibility of aromatic residues was significantly increased for the majority of the studied proteins in the presence of UCON but not PEG. PEG also accelerated the aggregation of protein into amyloid fibrils, whereas UCON promoted aggregation to amyloid oligomers instead. These results indicate that even a relatively small change in polymer structure leads to a significant change in the effect of this polymer on protein folding and aggregation. This is an indication that protein folding and especially aggregation are highly sensitive to the presence of other macromolecules, and an excluded volume effect is insufficient to describe their effect.
Final report on the safety assessment of Triethylene Glycol and PEG-4.
2006-01-01
Triethylene Glycol and PEG-4 (polyethylene glycol) are polymers of ethylene oxide alcohol. Triethylene Glycol is a specific three-unit chain, whereas PEG-4 is a polymer with an average of four units, but may contain polymers ranging from two to eight ethylene oxide units. In the same manner, other PEG compounds, e.g., PEG-6, are mixtures and likely contain some Triethylene Glycol and PEG-4. Triethylene Glycol is a fragrance ingredient and viscosity decreasing agent in cosmetic formulations, with a maximum concentration of use of 0.08% in skin-cleansing products. Following oral doses, Triethylene Glycol and its metabolites are excreted primarily in urine, with small amounts released in feces and expired air. With oral LD50 values in rodents from 15 to 22 g/kg, this compound has little acute toxicity. Rats given short term oral doses of 3% in water showed no signs of toxicity, whereas all rats given 10% died by the 12th day of exposure. At levels up to 1 g/m3, rats exposed to aerosolized Triethylene Glycol for 6 h per day for 9 days showed no signs of toxicity. Rats fed a diet containing 4% Triethylene Glycol for 2 years showed no signs of toxicity. There were no treatment-related effects on rats exposed to supersaturated Triethylene Glycol vapor for 13 months nor in rats that consumed 0.533 cc Triethylene Glycol per day in drinking water for 13 months. Triethylene Glycol was not irritating to the skin of rabbits and produced only minimal injury to the eye. In reproductive and developmental toxicity studies in rats and mice, Triethylene Glycol did not produce biologically significant embryotoxicity or teratogenicity. However, some maternal toxicity was seen in dams given 10 ml/kg/day during gestation. Triethylene Glycol was not mutagenic or genotoxic in Ames-type assays, the Chinese hamster ovary mutation assay, and the sister chromatid exchange assays. PEG-4 is a humectant and solvent in cosmetic products, with a maximum concentration of use of 20% in the "other manicuring preparations" product category. This ingredient, with an oral LD50 in rats of 32.77 g/kg, has low acute toxicity. Rats given up to 50,000 ppm PEG-4 in drinking water for 5 days showed no permanent signs of toxicity. Rats given daily oral doses up to 2 g/kg/day of PEG-4 for 33 days showed no signs of toxicity. Undiluted PEG-4 produced only minimal injury to the rabbit eye. PEG-4 was not mutagenic in Ames-type assays, did not induce chromosome aberration in an in vivo bone marrow assay, and was negative for genotoxicity in a dominant lethal assay using rats. Other PEG compounds, which have previously been reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel, e.g., PEG-6, are mixtures that likely include Triethylene Glycol and PEG-4, so these data were also considered. PEG-6 and PEG-8 were not dermal irritants in several rabbit studies. PEG-2 Stearate had a potential for slight irritation in rabbits but was not a sensitizer in guinea pigs. PEG-2 Cocamine was a moderate irritant in rabbits, producing severe erythema. In one dermal study, PEG-2 Cocamine was determined to be corrosive to rabbit skin, causing eschar and necrosis. PEG-6 and PEG-8 caused little to no ocular irritation. PEG-8 was not mutagenic or genotoxic in a Chinese hamster ovary assay, a sister-chromatid exchange assay, and in an unscheduled DNA synthesis assay. In clinical studies on normal skin, PEG-6 and PEG-8 caused mild cases of immediate hypersensitivity; PEG-8 was not a sensitizer; PEG-2 Stearate was not an irritant, a sensitizer, or a photosensitizer; and PEG-6 Stearate was not an irritant or sensitizer. In damaged skin, cases of systemic toxicity and contact dermatitis in burn patients were attributed to a PEG-based topical ointment. The CIR Expert Panel acknowledged the lack of dermal sensitization data for Triethylene Glycol and dermal irritation and sensitization data for PEG-4. That PEG-6, PEG-8, and PEG-2 Stearate were not irritants or sensitizers suggested that Triethylene Glycol and PEG-4 also would not be irritants or sensitizers, and the absence of any reported reactions in the case literature and the professional experience of the Expert Panel further supported the absence of any significant sensitization potential. The need for additional data to demonstrate the safety of PEGs Cocamine was related to the Cocamine moiety and is not relevant here. The Panel reminded formulators of cosmetic products that, as with other PEG compounds, Triethylene Glycol and PEG-4 should not be used on damaged skin because of cases of systemic toxicity and contact dermatitis in burn patients have been attributed to a PEG-based topical ointment. Based on its consideration of the available information, the CIR Expert Panel concluded that Triethylene Glycol and PEG-4 are safe as cosmetic ingredients in the present practices and concentrations of use as described in this safety assessment.
Analysis of low-offset CTIA amplifier for small-size-pixel infrared focal plane array
NASA Astrophysics Data System (ADS)
Zhang, Xue; Huang, Zhangcheng; Shao, Xiumei
2014-11-01
The design of input stage amplifier becomes more and more difficult as the expansion of format arrays and reduction of pixel size. A design method of low-offset amplifier based on 0.18-μm process used in small-size pixel is analyzed in order to decrease the dark signal of extended wavelength InGaAs infrared focal plane arrays (IRFPA). Based on an example of a cascode operational amplifier (op-amp), the relationship between input offset voltage and size of each transistor is discussed through theoretical analysis and Monte Carlo simulation. The results indicate that input transistors and load transistors have great influence on the input offset voltage while common-gate transistors are negligible. Furthermore, the offset voltage begins to increase slightly when the width and length of transistors decrease along with the diminution of pixel size, and raises rapidly when the size is smaller than a proximate threshold value. The offset voltage of preamplifiers with differential architecture and single-shared architecture in small pitch pixel are studied. After optimization under same conditions, simulation results show that single-shared architecture has smaller offset voltage than differential architecture.
On determining fluxgate magnetometer spin axis offsets from mirror mode observations
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Narita, Yasuhito
2016-09-01
In-flight calibration of fluxgate magnetometers that are mounted on spacecraft involves finding their outputs in vanishing ambient fields, the so-called magnetometer offsets. If the spacecraft is spin-stabilized, then the spin plane components of these offsets can be relatively easily determined, as they modify the spin tone content in the de-spun magnetic field data. The spin axis offset, however, is more difficult to determine. Therefore, usually Alfvénic fluctuations in the solar wind are used. We propose a novel method to determine the spin axis offset: the mirror mode method. The method is based on the assumption that mirror mode fluctuations are nearly compressible such that the maximum variance direction is aligned to the mean magnetic field. Mirror mode fluctuations are typically found in the Earth's magnetosheath region. We introduce the method and provide a first estimate of its accuracy based on magnetosheath observations by the THEMIS-C spacecraft. We find that 20 h of magnetosheath measurements may already be sufficient to obtain high-accuracy spin axis offsets with uncertainties on the order of a few tenths of a nanotesla, if offset stability can be assumed.
Band Offsets at the Interface between Crystalline and Amorphous Silicon from First Principles
NASA Astrophysics Data System (ADS)
Jarolimek, K.; Hazrati, E.; de Groot, R. A.; de Wijs, G. A.
2017-07-01
The band offsets between crystalline and hydrogenated amorphous silicon (a -Si ∶H ) are key parameters governing the charge transport in modern silicon heterojunction solar cells. They are an important input for macroscopic simulators that are used to further optimize the solar cell. Past experimental studies, using x-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here, we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction-band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.29 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence-band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015), 10.1063/1.4906195].
Valiante, Flavio; Bellumat, Angelo; De Bona, Manuela; De Boni, Michele
2013-01-01
AIM: To compare the bowel cleansing efficacy, tolerability and acceptability of split 2-L polyethylene glycol (PEG)-citrate-simethicone (PEG-CS) plus bisacodyl (BIS) vs 4-L PEG for fecal occult blood test-positive screening colonoscopy. METHODS: This was a randomised, observer-blind comparative study. Two hundred and sixty-four subjects underwent screening colonoscopy (mean age 62.5 ± 7.4 years, male 61.7%). The primary objective of the study was to compare the bowel cleansing efficacy of the two preparations. Interventions: BIS plus PEG-CS: 3 tablets of 5-mg BIS at 16:00, PEG-CS 1-L at 19:00 and 1-L at 7:00, 4-L PEG: 3-L at 17:00, and 1-L at 7:00. Colonoscopy was carried out after 11:00, at least 3 h after the completion of bowel preparation. Bowel cleansing was evaluated using the Harefield Cleansing Scale. RESULTS: Bowel preparation was successful for 92.8% of subjects in the PEG-CS group and for 92.1% of subjects in the 4-L PEG (RR = 1.01; 95%CI: 0.94-1.08). BIS + PEG-CS was better tolerated than 4-L PEG. A greater rate of patients in the BIS + PEG-CS group had no difficulty and/or were willing to repeat the same preparation compared to split-dose 4-L PEG group. Subjects in the BIS + PEG-CS group rated the prep as good or satisfactory in 90.6% as compared to 77% in the 4-L PEG (P = 0.003). Subjects receiving BIS + PEG-CS stated they fully adhered to instructions drinking all the 2-L solution in 97.1% compared with 87.3% in the 4-L PEG (P = 0.003). CONCLUSION: BIS plus split 2-L PEG-CS was as effective as but better tolerated and accepted than split 4-L PEG for screening colonoscopy. This new procedure may increase the positive attitude and participation to colorectal cancer screening colonoscopy. PMID:24023492
Repici, A; Cestari, R; Annese, V; Biscaglia, G; Vitetta, E; Minelli, L; Trallori, G; Orselli, S; Andriulli, A; Hassan, C
2012-10-01
Low-volume bowel preparations with polyethylene glycol (PEG) have been shown to provide an equivalent cleansing with improved tolerability as compared with standard PEG bowel preparation for colonoscopy. A new iso-osmotic sulphate-free formulation of PEG-Citrate-Simethicone (PEG-CS) in combination with bisacodyl has been recently developed. To compare the quality of bowel cleansing with PEG-CS with bisacodyl vs. PEG-Ascorbate (PEG-ASC) in adult out-patients undergoing colonoscopy. Randomised, observer-blind, parallel group study in adult out-patients undergoing colonoscopy in five Italian centres. Both preparations were taken the evening before the procedure. Subjects were instructed to take 2-4 tablets of 5 mg bisacodyl at 16:00 hours and 2 L of PEG-CS at 20:00 hours or 2 L of PEG-ASC plus 1 L of additional water the day before colonoscopy. Bowel cleansing was evaluated according to the Boston Bowel Preparation Scale (≥6 scores were considered as 'clinical success'), and mucosal visibility according to a 3-point scale. Tolerability, acceptability and compliance were also evaluated. Four hundred and eight patients were randomly allocated to PEG-CS and bisacodyl (n = 204, male patient 48%, mean age 59.1 years) or PEG-ASC (n = 204, male patient 51%, age 59.4 years). In the planned per-protocol analysis, the rate of successful preparation was 79.1% following PEG-CS with bisacodyl, and 70% following PEG-ASC (P < 0.05). Mucosal visibility was evaluated as optimal in 56.1% in the PEG-CS and bisacodyl and 46.3% in the PEG-ASC group (P < 0.05). There were no serious adverse events (AE) in each of the two experimental groups. Two subjects in the PEG-ASC group discontinued the study because of AE. Polyethylene glycol-Citrate-Simethicone in combination with bisacodyl was more effective for bowel cleansing than PEG-ASC for out-patient colonoscopy. Tolerability, safety, acceptability and compliance of the two low-volume bowel preparations were similar. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Fukunaga, Naoto; Konishi, Katsuaki
2015-12-01
Poly(ethylene glycol) (PEG) has been widely used for the surface protection of inorganic nanoobjects because of its virtually `inert' nature, but little attention has been paid to its inherent electronic impacts on inorganic cores. Herein, we definitively show, through studies on optical properties of a series of PEG-modified Cd10Se4(SR)10 clusters, that the surrounding PEG environments can electronically affect the properties of the inorganic core. For the clusters with PEG units directly attached to an inorganic core (R = (CH2CH2O)nOCH3, 1-PEGn, n = 3, ~7, ~17, ~46), the absorption bands, associated with the low-energy transitions, continuously blue-shifted with the increasing PEG chain length. The chain length dependencies were also observed in the photoluminescence properties, particularly in the excitation spectral profiles. By combining the spectral features of several PEG17-modified clusters (2-Cm-PEG17 and 3) whose PEG and core units are separated by various alkyl chain-based spacers, it was demonstrated that sufficiently long PEG units, including PEG17 and PEG46, cause electronic perturbations in the cluster properties when they are arranged near the inorganic core. These unique effects of the long-PEG environments could be correlated with their large dipole moments, suggesting that the polarity of the proximal chemical environment is critical when affecting the electronic properties of the inorganic cluster core.Poly(ethylene glycol) (PEG) has been widely used for the surface protection of inorganic nanoobjects because of its virtually `inert' nature, but little attention has been paid to its inherent electronic impacts on inorganic cores. Herein, we definitively show, through studies on optical properties of a series of PEG-modified Cd10Se4(SR)10 clusters, that the surrounding PEG environments can electronically affect the properties of the inorganic core. For the clusters with PEG units directly attached to an inorganic core (R = (CH2CH2O)nOCH3, 1-PEGn, n = 3, ~7, ~17, ~46), the absorption bands, associated with the low-energy transitions, continuously blue-shifted with the increasing PEG chain length. The chain length dependencies were also observed in the photoluminescence properties, particularly in the excitation spectral profiles. By combining the spectral features of several PEG17-modified clusters (2-Cm-PEG17 and 3) whose PEG and core units are separated by various alkyl chain-based spacers, it was demonstrated that sufficiently long PEG units, including PEG17 and PEG46, cause electronic perturbations in the cluster properties when they are arranged near the inorganic core. These unique effects of the long-PEG environments could be correlated with their large dipole moments, suggesting that the polarity of the proximal chemical environment is critical when affecting the electronic properties of the inorganic cluster core. Electronic supplementary information (ESI) available: Details of synthetic procedures and characterisation data of the PEGylated thiols and clusters and additional absorption, photoluminescence emission and excitation spectral data. See DOI: 10.1039/c5nr06307h
NASA Astrophysics Data System (ADS)
Sun, Fang; Jiang, Shaoyi; Yu, Qiuming
2016-03-01
Polyethylene glycol (PEG) is widely used to modify many therapeutic proteins and nanoparticles to reduce their immunogenicity and to improve their pharmacokinetic and therapeutic properties. It is generally accepted that PEG is non-immunogenic and non-antigenic. However, an emerging of literature and studies shows that the immune system can generate specific antibodies binding PEG. These anti-PEG antibodies not only correlate with adverse reactions appeared after patient infusions, but are also found to be the reason for therapeutic efficacy loss during chronical administrations. In addition, because of constant exposure to PEG in daily consumer products including detergents, processed food and cosmetics, a substantial proportion of the population has likely developed anti-PEG immunity. Thus a method to quickly and accurately measure the anti-PEG antibody level is desired. Nevertheless, the gold standard to detect anti-PEG antibodies is ELISA, which is costly and time-consuming especially for quantification. Herein, we demonstrated the anti-PEG measurement in blood serum using surface plasmon resonance (SPR) sensor. Several PEG-based surface functionalization on SPR sensor chip were studied in terms of protein resistance and the limit of detection (LOD) of anti-PEG. The quantitative detection can be achieved in less than 30 min with LOD comparable to ELISA. Furthermore, the IgG and IgM of anti-PEG can be differentiated by following the secondary antibody.
Mei, Tingzhen; Zhu, Yonghe; Ma, Tongcui; He, Tao; Li, Linjing; Wei, Chiju; Xu, Kaitian
2014-09-01
A series of alternating block polyurethanes (abbreviated as PULA-alt-PEG) and random block polyurethanes (abbreviated as PULA-ran-PEG) based on poly(L-lactic acid) (PLA) and poly(ethylene glycol) (PEG) were synthesized. The differences of PULA-alt/ran-PEG chemical structure, molecular weight, distribution, thermal properties, mechanical properties and static contact angle were systematically investigated. The PULA-alt/ran-PEG polyurethanes exhibited low T(g) (-47.3 ∼ -34.4°C), wide mechanical properties (stress σ(t): 4.6-32.6 MPa, modulus E: 11.4-323.9 MPa and strain ε: 468-1530%) and low water contact angle (35.4-51.4°). Scanning electron microscope (SEM) observation showed that PULA-alt-PEG film displays rougher and more patterned surface morphology than PULA-ran-PEG does, due to more regular structures of PULA-alt-PEG. Hydrolytic degradation shows that degradation rate of random block polyurethane series PULA-ran-PEG is higher than the alternating counterpart PULA-alt-PEG. PLA segment degradation is faster than urethane linkage and PEG segment almost does not degrade in the buffer solution. Platelet adhesion study showed that all the polyurethanes possess excellent hemocompatibility. The cell culture assay revealed that PULA-alt/ran-PEG polyurethanes were cell inert and unfavorable for the attachment of rat glial cell due to the hydrophilic characters of the materials. © 2013 Wiley Periodicals, Inc.
The effect of polyoxyethylene polymers on the transport of ranitidine in Caco-2 cell monolayers.
Ashiru-Oredope, Diane A I; Patel, Nilesh; Forbes, Ben; Patel, Rajesh; Basit, Abdul W
2011-05-16
Previous in vivo studies using PEG 400 showed an enhancement in the bioavailability of ranitidine. This study investigated the effect of PEG 200, 300 and 400 on ranitidine transport across Caco-2 cells. The effect of PEG polymers (20%, v/v) on the bi-directional flux of (3)H-ranitidine across Caco-2 cell monolayers was measured. The concentration dependence of PEG 400 effects on ranitidine transport was also studied. A specific screen for P-glycoprotein (P-gp) activity was used to test for an interaction between PEG and P-gp. In the absence of PEG, ranitidine transport showed over 5-fold greater flux across Caco-2 monolayers in the secretory than the absorptive direction; efflux ratio 5.38. PEG 300 and 400 significantly reduced this efflux ratio (p<0.05), whereas PEG 200 had no effect (p>0.05). In concordance, PEG 300 and 400 showed an interaction with the P-gp transporter, whereas PEG 200 did not. Interestingly, with PEG 400 a non-linear concentration dependence was seen for the inhibition of the efflux ratio of ranitidine, with a maxima at 1%, v/v (p<0.05). The inhibition of ranitidine efflux by PEG 300 and 400 which interact with P-gp provides a mechanism that may account for the observations of ranitidine absorption enhancement by PEG 400 in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhai, Yanqin; Zhao, Yongjiang; Lei, Jiandu; Su, Zhiguo; Ma, Guanghui
2009-07-15
Recombinant human granulocyte colony stimulating factor (rhG-CSF) and its PEGylated product "mono-PEG20-GCSF" have already been widely used for treatment of all kinds of neutropenia. However, the high required dosage of mono-PEG20-GCSF made it relatively expensive in clinical use. We postulated that an N-terminal site-specific PEGylated rhG-CSF with higher PEG Mw (PEG30 kDa) might be able to achieve longer circulation half-life while retaining its bioactivity, allowing the reduction of dosage for clinical use. rhG-CSF was PEGylated at the N-terminus by 5 kDa, 10 kDa, 20 kDa and 30 kDa methoxy-poly(ethylene glycol)-propionaldehyde (mPEG-ALD), and the four PEGylates were compared with respect to reaction, separation, characterization and also in vivo/in vitro activity, results showed that the mPEG-ALD of higher Mw demonstrated better N-terminal site-specific selectivity, separation purity and yield. The production cost and in vitro activity of mono-PEG30-GCSF and mono-PEG20-GCSF were almost the same, while mono-PEG30-GCSF showed longer in vivo circulation half-life and 60% higher drug bioavailability than mono-PEG20-GCSF. Consequently, mono-PEG30-GCSF shall be administered at a lower dosage than mono-PEG20-GCSF while retaining the same therapeutic efficacy.
Yang, Wuyang; McNutt, Todd R; Dudley, Sara A; Kumar, Rachit; Starmer, Heather M; Gourin, Christine G; Moore, Joseph A; Evans, Kimberly; Allen, Mysha; Agrawal, Nishant; Richmon, Jeremy D; Chung, Christine H; Quon, Harry
2016-04-01
The prophylactic placement of a percutaneous endoscopic gastrostomy (PEG) tube in the head and neck cancer (HNC) patient is controversial. We sought to identify factors associated with prophylactic PEG placement and actual PEG use. Since 2010, data regarding PEG placement and use were prospectively recorded in a departmental database from January 2010 to December 2012. HNC patients treated with intensity-modulated radiation therapy (IMRT) were retrospectively evaluated from 2010 to 2012. Variables potentially associated with patient post-radiation dysphagia from previous literature, and our experience was evaluated. We performed multivariate logistic regression on these variables with PEG placement and PEG use, respectively, to compare the difference of association between the two arms. We identified 192 HNC patients treated with IMRT. Prophylactic PEG placement occurred in 121 (63.0 %) patients, with PEG use in 97 (80.2 %) patients. PEG placement was associated with male gender (p < .01), N stage ≥ N2 (p < .05), pretreatment swallowing difficulties (p < .01), concurrent chemotherapy (p < .01), pretreatment KPS ≥80 (p = .01), and previous surgery (p = .02). Concurrent chemotherapy (p = .03) was positively associated with the use of PEG feeding by the patient, whereas pretreatment KPS ≥80 (p = .03) and prophylactic gabapentin use (p < .01) were negatively associated with PEG use. The analysis suggests there were discrepancies between prophylactic PEG tube placement and actual use. Favorable pretreatment KPS, no pretreatment dysphagia, no concurrent chemotherapy, and the use of gabapentin were significantly associated with reduced PEG use. This analysis may help refine the indications for prophylactic PEG placement.
McKenna, Thomas; Macgill, Alice; Porat, Gail; Friedenberg, Frank K.
2013-01-01
Background Four liters of polyethylene glycol 3350 with balanced electrolytes for colonoscopy preparation has had poor acceptance. Another approach is the use of electrolyte-free PEG combined with 1.9L of Gatorade. Despite its widespread use, there are no data on metabolic safety and minimal data on efficacy. Our aim was to assess the efficacy and electrolyte safety of these two PEG-based preparations. Methods This was a prospective, randomized, single-blind, non-inferiority trial. Patients were randomized to 238g PEG + 1.9L Gatorade or 4L of PEG-ELS containing 236g PEG. Split dosing was not performed. On procedure day blood was drawn for basic chemistries. The primary outcome was preparation quality from procedure photos using the Boston Bowel Preparation Scale. Results We randomized 136 patients (66 PEG + Gatorade, 70 PEG-ELS). There were no differences in preparation scores between the two agents in the ITT analysis (7.2 ± 1.9 for PEG-ELS and 7.0 ± 2.1 for PEG + Gatorade; p = 0.45). BBPS scores were identical for those who completed the preparation and dietary instructions as directed (7.4 ± 1.7 for PEG-ELS, and 7.4 ± 1.8 for PEG + Gatorade; p = 0.98). There were no statistical differences in serum electrolytes between the two preparations. Patients who received PEG + Gatorade gave higher overall satisfaction scores for the preparation experience (p = 0.001), and had fewer adverse effects. Conclusions Use of 238g PEG + 1.9L Gatorade appears to be safe, better tolerated, and non-inferior to 4L PEG-ELS. This preparation may be especially useful for patients who previously tolerated PEG-ELS poorly. PMID:22711499
Directed aggregation of carbon nanotube on curved surfaces by polymer induced depletion attraction
NASA Astrophysics Data System (ADS)
Lee, Hsin-Chieh; Jiang, Hong-Ren
2017-12-01
In this study, we show that by chemically grafting macromolecule, polyethylene glycol (PEG), onto CNTs, PEG-CNTs become dispersible in an aqueous solution with tunable depletion interactions with each other. The aggregation of the PEG-CNTs can be controlled by adding PEG polymers into the solution. PEG-CNTs not only aggregate with each other but also tend to aggregate on curved surfaces. Due to this property, we show that PEG-CNTs can be directed to aggregate on particles and patterned surfaces. Depletion interaction induced aggregation of PEG-CNTs may provide a method to place PEG-CNTs on a specific position for different applications ranging from biomedical to industrial usages.
NASA Astrophysics Data System (ADS)
Seo, Kwang Su
The objective of this research was to design and synthesize multifunctional poly(ethylene glycol)s (PEG)s using enzyme-catalyzed reactions for multivalent targeted drug delivery. Based on computer simulation for optimum folate binding, a four-arm PEG star topology with Mn = 1000 g/mol was proposed. First, a four-functional core based on tetraethylene glycol (TEG) was designed and synthesized using transesterification and Michael addition reactions in the presence of Candida antarctica lipase B (CALB) as a biocatalyst. The four-functional core (HO)2-TEG-(OH)2 core was successfully prepared by the CALB-catalyzed transesterification of vinyl acrylate (VA) with TEG and then Michael addition of diethanolamine to the resulting TEG diacrylate with/without the use of solvent. The functional PEG arms with fluorescein isothiocyanate (FITC) and folic acid (FA) were prepared using both traditional organic chemistry and enzyme-catalyzed reactions. FITC was reacted with the amine group of H2N-PEG-OH in the presence of triethylamine via nucleophilic addition onto the isothiocyanate group. Then, divinyl adipate (DVA) was transesterified with the FITC-PEG-OH product in the presence of CALB to produce the FITC-PEG vinyl ester that will be attached to the four-functional core via CALC-catalyzed transesterification. For the synthesis of FA-PEG vinyl ester arm, DVA was first reacted with PEG-monobenzyl ether (BzPEG-OH) in bulk in the presence of CALB. The BzPEG vinyl ester was then transesterified with 12-bromo-1-dodecanol in the presence of CALB. Finally, BzPEG-Br was attached to FA exclusively in the gamma position using a new method. The thesis also discusses fundamental studies that were carried out in order to get better understanding of enzyme catalyzed transesterification and Michael addition reactions. First, in an effort to investigate the effects of reagent and enzyme concentrations in transesterification, vinyl methacrylate (VMA) was reacted with 2-(hydroxyethyl) acrylate (2HEA) in the presence of CALB. When the reaction was performed in tetrahydrofuran (THF) with a 2HEA concentration of 0.10 mol/L, only 19% conversion was observed within 4 hours, whereas complete conversion was achieved under solventless conditions. The effect of enzyme concentration in reactions with and without solvent was also studied. The effect of DVA concentration on the CALB-catalyzed transesterification with TEG was studied under solventless conditions. When 1.5 molar equivalent of DVA per OH in TEG was used, 42% divinyl-functionalized product was observed together with 56.5% oligomerized (di-, tri-, tetra- and pentamer) products. At 10 eq. of DVA, only 18.4% oligomerized products were obtained. The effect of diol molecular weight was also investigated. At 10.0 eq. DVA per OH only 2% dimer was observed with PEG Mn=1000 g/mol, and a single divinyl functionalized product was obtained with M n=2000 g/mol. The effects of polymer molecular weight and DVA concentration were also studied in the reaction of DVA with PEG monomethyl ether (MPEG-OH, Mn=1100 g/mol and 2000 g/mol). The extent of coupling decreased from 35% to 0.4% when the DVA concentration was increased from 1.5 to 10 per -OH in the MPEG-OH. No coupling was observed with MPEG-OH Mn=2000 g/mol at 5 eq. DVA per -OH. Following these fundamental studies, TEGs and PEGs were enzymatically functionalized. TEGs were transesterified with VMA and vinyl crotonate in the presence of CALB under solventless conditions within 4 hours of reaction time. Benzyl protected TEG-OHs were also successfully functionalized with VMA and vinyl crotonate in the presence of CALB under solventless conditions within 2 hours. An eight-functional molecule was also synthesized from (HO)2-TEG-(OH) 2. First an alpha-vinyl-o-acrylate linker was prepared by the transesterification of DVA with 2HEA. This linker was then transesterified with (HO)-TEG-(OH)2, followed by Michael addition of DEA to the tetra-acrylated TEG. (Abstract shortened by UMI.)
de Leone, Annalisa; Tamayo, Darina; Fiori, Giancarla; Ravizza, Davide; Trovato, Cristina; De Roberto, Giuseppe; Fazzini, Linda; Dal Fante, Marco; Crosta, Cristiano
2013-01-01
AIM: To evaluate the efficacy, tolerability, acceptability and feasibility of bisacodyl plus low volume polyethyleneglycol-citrate-simeticone (2-L PEG-CS) taken the same day as compared with conventional split-dose 4-L PEG for late morning colonoscopy. METHODS: Randomised, observer-blind, parallel group, comparative trial carried out in 2 centres. Out patients of both sexes, aged between 18 and 85 years, undergoing colonoscopy for diagnostic investigation, colorectal cancer screening or follow-up were eligible. The PEG-CS group received 3 bisacodyl tablets (4 tablets for patients with constipation) at bedtime and 2-L PEG-CS in the morning starting 5 h before colonoscopy. The control group received a conventional 4-L PEG formulation given as split regimen; the morning dose was taken with the same schedule of the low volume preparation. The Ottawa Bowel Preparation Scale (OBPS) score was used as the main outcome measure. RESULTS: A total of 164 subjects were enrolled and 154 completed the study; 78 in the PEG-CS group and 76 in the split 4-L PEG group. The two groups were comparable at baseline. The OBPS score in the PEG-CS group (3.09 ± 2.40) and in the PEG group (2.39 ± 2.55) were equivalent (difference +0.70; 95%CI: -0.09-1.48). This was confirmed by the rate of successful bowel cleansing in the PEG-CS group (89.7%) and in the PEG group (92.1%) (difference -2.4%; 95%CI: -11.40- 6.70). PEG-CS was superior in terms of mucosa visibility compared to PEG (85.7% vs 72.4%, P = 0.042). There were no significant differences in caecum intubation rate, time to reach the caecum and withdrawal time between the two groups. The adenoma detection rate was similar (PEG-CS 43.6% vs PEG 44.7%). No serious adverse events occurred. No difference was found in tolerability of the bowel preparations. Compliance was equal in both groups: more than 90% of subjects drunk the whole solution. Willingness to repeat the same bowel preparations was about 90% for both regimes. CONCLUSION: Same-day PEG-CS is feasible, effective as split-dose 4-L PEG for late morning colonoscopy and does not interfere with work and daily activities the day before colonoscopy. PMID:24044042
de Leone, Annalisa; Tamayo, Darina; Fiori, Giancarla; Ravizza, Davide; Trovato, Cristina; De Roberto, Giuseppe; Fazzini, Linda; Dal Fante, Marco; Crosta, Cristiano
2013-09-16
To evaluate the efficacy, tolerability, acceptability and feasibility of bisacodyl plus low volume polyethyleneglycol-citrate-simeticone (2-L PEG-CS) taken the same day as compared with conventional split-dose 4-L PEG for late morning colonoscopy. Randomised, observer-blind, parallel group, comparative trial carried out in 2 centres. Out patients of both sexes, aged between 18 and 85 years, undergoing colonoscopy for diagnostic investigation, colorectal cancer screening or follow-up were eligible. The PEG-CS group received 3 bisacodyl tablets (4 tablets for patients with constipation) at bedtime and 2-L PEG-CS in the morning starting 5 h before colonoscopy. The control group received a conventional 4-L PEG formulation given as split regimen; the morning dose was taken with the same schedule of the low volume preparation. The Ottawa Bowel Preparation Scale (OBPS) score was used as the main outcome measure. A total of 164 subjects were enrolled and 154 completed the study; 78 in the PEG-CS group and 76 in the split 4-L PEG group. The two groups were comparable at baseline. The OBPS score in the PEG-CS group (3.09 ± 2.40) and in the PEG group (2.39 ± 2.55) were equivalent (difference +0.70; 95%CI: -0.09-1.48). This was confirmed by the rate of successful bowel cleansing in the PEG-CS group (89.7%) and in the PEG group (92.1%) (difference -2.4%; 95%CI: -11.40- 6.70). PEG-CS was superior in terms of mucosa visibility compared to PEG (85.7% vs 72.4%, P = 0.042). There were no significant differences in caecum intubation rate, time to reach the caecum and withdrawal time between the two groups. The adenoma detection rate was similar (PEG-CS 43.6% vs PEG 44.7%). No serious adverse events occurred. No difference was found in tolerability of the bowel preparations. Compliance was equal in both groups: more than 90% of subjects drunk the whole solution. Willingness to repeat the same bowel preparations was about 90% for both regimes. Same-day PEG-CS is feasible, effective as split-dose 4-L PEG for late morning colonoscopy and does not interfere with work and daily activities the day before colonoscopy.
Cho, C S; Han, S Y; Ha, J H; Kim, S H; Lim, D Y
1999-04-30
Poly(ethylene glycol)(PEG) macromers terminated with acrylate groups and semi-interpenetrating polymer networks (SIPNs) composed of poly(epsilon-caprolactone)(PCL) and PEG macromer were synthesized to obtain a bioerodible hydrogel. Polymerization of PEG macromer resulted in the formation of cross-linked gels due to the multifunctionality of macromer. Glass transition temperature (Tg) and melting temperature (Tm) of PEG networks and PCL in the SIPNs were inner-shifted, indicating an interpenetration of PCL and PEG chains. Water content in the SIPNs increased with increasing PEG weight fraction due to the hydrophilicity of PEG. The amount of clonazepam (CNZ) released from the SIPNs increased with higher content in the SIPNs, lower drug loading, lower concentration of PEG macromer during the SIPNs preparation, and higher molecular weight of PEG. In particular, a combination with low PEG content and low CNZ solubility in water led to long-term constant release from these matrices in vitro and in vivo. Copyright.
Ahmadi, Shiva; Winter, Dominic
2018-06-05
Poly(ethylene glycol) (PEG) is one of the most common polymer contaminations in mass spectrometry (MS) samples. At present, the detection of PEG and other polymers relies largely on manual inspection of raw data, which is laborious and frequently difficult due to sample complexity and retention characteristics of polymer species in reversed-phase chromatography. We developed a new strategy for the automated identification of PEG molecules from tandem mass spectrometry (MS/MS) data using protein identification algorithms in combination with a database containing "PEG-proteins". Through definition of variable modifications, we extend the approach for the identification of commonly used PEG-based detergents. We exemplify the identification of different types of polymers by static nanoelectrospray tandem mass spectrometry (nanoESI-MS/MS) analysis of pure detergent solutions and data analysis using Mascot. Analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) runs of a PEG-contaminated sample by Mascot identified 806 PEG spectra originating from four PEG species using a defined set of modifications covering PEG and common PEG-based detergents. Further characterization of the sample for unidentified PEG species using error-tolerant and mass-tolerant searches resulted in identification of 3409 and 3187 PEG-related MS/MS spectra, respectively. We further demonstrate the applicability of the strategy for Protein Pilot and MaxQuant.
Dong, Baiyan; Jiang, Hongquan; Manolache, Sorin; Wong, Amy C Lee; Denes, Ferencz S
2007-06-19
A simple cold plasma technique was developed to functionalize the surfaces of polyamide (PA) and polyester (PET) for the grafting of polyethylene glycol (PEG) with the aim of reducing biofilm formation. The surfaces of PA and PET were treated with silicon tetrachloride (SiCl4) plasma, and PEG was grafted onto plasma-functionalized substrates (PA-PEG, PET-PEG). Different molecular weights of PEG and grafting times were tested to obtain optimal surface coverage by PEG as monitored by electron spectroscopy for chemical analysis (ESCA). The presence of a predominant C-O peak on the PEG-modified substrates indicated that the grafting was successful. Data from hydroxyl group derivatization and water contact angle measurement also indicated the presence of PEG after grafting. The PEG-grafted PA and PET under optimal conditions had similar chemical composition and hydrophilicity; however, different morphology changes were observed after grafting. Both PA-PEG and PET-PEG surfaces developed under optimal plasma conditions showed about 96% reduction in biofilm formation by Listeria monocytogenes compared with that of the corresponding unmodified substrates. This plasma functionalization method provided an efficient way to graft PEG onto PA and PET surfaces. Because of the high reactivity of Si-Cl species, this method could potentially be applied to other polymeric materials.
Sofi, Aijaz A; Nawras, Ali T; Pai, Chetan; Samuels, Qiana; Silverman, Ann L
2015-01-01
Bowel preparation using large volume of polyethylene glycol (PEG) solutions is often poorly tolerated. Therefore, there are ongoing efforts to develop an alternative bowel cleansing regimen that should be equally effective and better tolerated. The aim of this study was to assess the efficacy of lubiprostone (versus placebo) plus PEG as a bowel cleansing preparation for colonoscopy. Our study was a randomized, double-blind placebo-controlled design. Patients scheduled for screening colonoscopy were randomized 1:1 to lubiprostone (group 1) or placebo (group 2) plus 1 gallon of PEG. The primary endpoints were patient's tolerability and endoscopist's evaluation of the preparation quality. The secondary endpoint was to determine any reduction in the amount of PEG consumed in the lubiprostone group compared with the placebo group. One hundred twenty-three patients completed the study and were included in the analysis. There was no difference in overall cleanliness. The volume of PEG was similar in both the groups. The volume of PEG approached significance as a predictor of improved score for both the groups (P = 0.054). Lubiprostone plus PEG was similar to placebo plus PEG in colon cleansing and volume of PEG consumed. The volume of PEG consumed showed a trend toward improving the quality of the colon cleansing.
NASA Astrophysics Data System (ADS)
Rodríguez Sartori, Damián; Lillo, Cristian R.; Romero, Juan J.; Dell‧Arciprete, María Laura; Miñán, Alejandro; de Mele, Mónica Fernández Lorenzo; Gonzalez, Mónica C.
2016-11-01
Grafting of polyethylene glycol (PEG) to ultrasmall photoluminescent silicon dots (SiDs) is expected to improve and expand the applications of these particles to aqueous environments and biological systems. Herein we report a novel one-pot synthesis of robust, highly water compatible PEG-coated SiDs (denoted as PEG-SiDs) of (3.3 ± 0.5) nm size. The nanoparticles’ synthesis is based on the liquid phase oxidation of magnesium silicide using PEG as reaction media and leading to high PEG density grafting. PEG-SiDs enhanced photophysical, photosensitising, and solution properties in aqueous environments are described and compared to those of 2 nm size PEG-coated SiDs with low PEG density grafting (denoted as PEG-NHSiDs) obtained from a multistep synthesis strategy. PEG-SiDs form highly dispersed suspensions in water showing stable photoluminescence and quantum yields of Φ = 0.13 ± 0.04 at 370 nm excitation in air-saturated suspensions. These particles exhibited the capacity of photosensitising the formation of singlet molecular oxygen, not observed for PEG-NHSiDs. PEG robust shielding of the silicon core luminescent properties is further demonstrated in bio-imaging experiments stressing the strong interaction between PEG-SiDs and Staphylococcus aureus smears by observing the photoluminescence of particles. PEG-SiDs were found to be nontoxic to S. aureus cells at concentrations of 100 mg ml-1, though a bacteriostatic effect on S. aureus biofilms was observed upon UV-A irradiation under conditions where light alone has no effect.
Antitumor Effect of GO-PEG-DOX Complex on EMT-6 Mouse Breast Cancer Cells.
Yan, Jinyin; Song, Bo; Hu, Wanning; Meng, Ying; Niu, Fengling; Han, Xiaochen; Ge, Yuhui; Li, Ning
2018-05-01
Doxorubicin (DOX) can be used to treat malignant tumors, but with multiple adverse effects. Graphene oxide-polyethylene glycol (GO-PEG) is a novel nanoscale carrier material and can elevate solubility and biocompatibility of drugs. This study prepared a GO-PEG-DOX complex, whose toxicity and antitumor effects were evaluated on mouse EMT-6 breast cancer cells. GO-PEG-DOX complex was prepared for calculating the drug carrier rate of DOX on GO-PEG by MV approach. EMT-6 cells were treated with 40 μg/mL GO-PEG, 1 μg/mL DOX, or 40 μg/mL +1 μg/mL GO-PEG-DOX for 72 h of incubation. Cells without treatment were considered the control group. Cell survival rate and apoptotic rate were tested at different time points. GO-PEG and GO-PEG-DOX complex were successfully prepared with satisfactory solubility. After 72 h of incubation, EMT-6 cells after GO-PEG-DOX treatment had significantly higher survival rate than GO-PEG group (p < 0.05). All three treatment groups had significantly elevated apoptotic rates than control group (p < 0.05). GO-PEG-DOX group had much more apoptosis (p < 0.05 compared with DOX group). Moreover, with elongated treatment time, all groups showed decreased survival rate (p < 0.05). GO-PEG did not reduce the cytotoxicity of DOX on EMT-6 cells. GO-PEG-DOX complex can increase the water solubility and targeting sensitivity of DOX, with facilitating effects on DOX-induced tumor cell apoptosis.
Ultrastable laser array at 633 nm for real-time dimensional metrology
NASA Astrophysics Data System (ADS)
Lawall, John; Pedulla, J. Marc; Le Coq, Yann
2001-07-01
We describe a laser system for very-high-accuracy dimensional metrology. A sealed-cavity helium-neon laser is offset locked to an iodine-stabilized laser in order to realize a secondary standard with higher power and less phase noise. Synchronous averaging is employed to remove the effect of the frequency modulation present on the iodine-stabilized laser. Additional lasers are offset locked to the secondary standard for use in interferometry. All servo loops are implemented digitally. The offset-locked lasers have intrinsic linewidths of the order of 2.5 kHz and exhibit a rms deviation from the iodine-stabilized laser below 18 kHz. The amplitude noise is at the shot-noise limit for frequencies above 700 kHz. We describe and evaluate the system in detail, and include a discussion of the noise associated with various types of power supplies.
Matro, R; Daskalakis, C; Negoianu, D; Katz, L; Henry, C; Share, M; Kastenberg, D
2014-09-01
Polyethylene glycol 3350 plus sports drink (PEG-SD) is a hypo-osmotic purgative commonly used for colonoscopy, though little safety data are available. To evaluate the effect of PEG-SD on serum sodium (Na) and other electrolytes compared with PEG-electrolyte solution (PEG-ELS). We performed a single center, prospective, randomised, investigator-blind comparison of PEG-ELS to PEG-SD in out-patients undergoing colonoscopy. Laboratories were obtained at baseline and immediately before and after colonoscopy. The primary endpoint was development of hyponatraemia (Na <135 mmol/L) the day of colonoscopy. Changes in electrolyte levels were computed as the difference between the lowest value on the day of colonoscopy and baseline. Purgative tolerance and efficacy were assessed. A total of 389 patients were randomised; 364 took purgative and had baseline and day of colonoscopy labs (180 PEG-SD, 184 PEG-ELS). The groups were well matched except for a higher fraction of women and Blacks in PEG-ELS. Seven patients (3.9%) in PEG-SD and four patients (2.2%) in PEG-ELS developed hyponatraemia (OR = 1.82, 95% CI: 0.45-8.62, P = 0.376). Changes in electrolytes from baseline were small but significantly worse with PEG-SD for sodium, potassium and chloride (P = 0.001, 0.012, 0.001, respectively). Preparation completion, adverse events, and overall colon cleansing were similar between the groups, but PEG-ELS had more excellent preparations (52% vs. 30%; P = 0.001). Greater, but very modest, electrolyte changes occur with PEG-SD. Hyponatraemia is infrequent with both purgatives. A significant increase in hyponatraemia was not identified for PEG-SD vs. PEG-ELS, but the sample size may have been inadequate to identify a small, but clinically important difference. ClinicalTrials.gov identifier NCT01299779. © 2014 John Wiley & Sons Ltd.
Sardo, Carla; Bassi, Barbara; Craparo, Emanuela F; Scialabba, Cinzia; Cabrini, Elisa; Dacarro, Giacomo; D'Agostino, Agnese; Taglietti, Angelo; Giammona, Gaetano; Pallavicini, Piersandro; Cavallaro, Gennara
2017-03-15
To overcome the low bioavailability of siRNA (small interfering RNA) and to improve their transfection efficiency, the use of non-viral delivery carriers is today a feasible approach to transform the discovery of these incredibly potent and versatile drugs into clinical practice. Polymer-modified gold nanoconstructs (AuNCs) are currently viewed as efficient and safe intracellular delivery carriers for siRNA, as they have the possibility to conjugate the ability to stably entrap and deliver siRNAs inside cells with the advantages of gold nanoparticles, which can act as theranostic agents and radiotherapy enhancers through laser-induced hyperthermia. In this study, AuNCs were prepared by coating Gold Nano Stars (GNS) with suitable functionalised polymers, to give new insight on the choice of the coating in order to obtain colloidal stability, satisfying in vitro transfection behaviour and reliability in terms of homogeneous results upon GNS type changing. For this goal, GNS synthesized with three different sizes and shapes were coated with two different polymers: i) α-mercapto-ω-amino polyethylene glycol 3000Da (SH-PEG 3000 -NH 2 ), a hydrophilic linear polymer; ii) PHEA-PEG 2000 -EDA-LA (PPE-LA), an amphiphilic hydroxyethylaspartamide copolymer containing a PEG moiety. Both polymers contain SH or SS groups for anchoring on gold surface and NH 2 groups, which can be protonated in order to obtain a positive surface for successive siRNA layering. The effect of the features of the coating polymers on siRNA layering, and the extent of intracellular uptake and luciferase gene silencing effect were evaluated for each of the obtained coated GNS. The results highlight that amphiphilic biocompatible polymers with multi-grafting function are more suitable for ensuring the colloidal stability and the effectiveness of these colloidal systems, compared to the coating with linear PEG. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis and Characterization of a Poly(ethylene glycol)-Poly(simvastatin) Diblock Copolymer
Asafo-Adjei, Theodora A.; Dziubla, Thomas D.; Puleo, David A.
2014-01-01
Biodegradable polyesters are commonly used as drug delivery vehicles, but their role is typically passive, and encapsulation approaches have limited drug payload. An alternative drug delivery method is to polymerize the active agent or its precursor into a degradable polymer. The prodrug simvastatin contains a lactone ring that lends itself to ring-opening polymerization (ROP). Consequently, simvastatin polymerization was initiated with 5 kDa monomethyl ether poly(ethylene glycol) (mPEG) and catalyzed via stannous octoate. Melt condensation reactions produced a 9.5 kDa copolymer with a polydispersity index of 1.1 at 150 °C up to a 75 kDa copolymer with an index of 6.9 at 250 °C. Kinetic analysis revealed first-order propagation rates. Infrared spectroscopy of the copolymer showed carboxylic and methyl ether stretches unique to simvastatin and mPEG, respectively. Slow degradation was demonstrated in neutral and alkaline conditions. Lastly, simvastatin, simvastatin-incorporated molecules, and mPEG were identified as the degradation products released. The present results show the potential of using ROP to polymerize lactone-containing drugs such as simvastatin. PMID:25431653
Chlorine effect on the formation of carbon nanofibers.
Lin, Wang-Hua; Takahashi, Yusuke; Li, Yuan-Yao; Sakoda, Akiyoshi
2012-12-01
Platelet graphite nanofibers (GNFs) and turbostratic carbon nanofibers (CNFs) are synthesized by the thermal evaporation and decomposition of a polymer-based mixture at 700 degrees C using Ni as a catalyst. The mixture consists of poly(ethylene glycol) (PEG), serving as the carbon source, and hydrochloric acid solution (HCl(aq)), serving as the promoter/additive for the growth of CNFs. High-purity zigzag-shaped platelet GNFs form with 10 wt% HCl(aq) as an additive in the PEG. The diameters of the platelet GNFs are in the range of 40-60 nm, with lengths of a few micrometers. High-resolution transmission electron microscopy images indicate a high degree of graphitization and well ordered graphene layers along the fiber axis. In contrast, high-purity turbostratic CNFs form with 20 wt% HCl(aq) in the PEG. The diameter and length of the turbostratic CNFs are 20-40 nm and a few micrometers, respectively. The participation of HCl in the thermal process leads to the formation of Ni-Cl compounds. The amount of chlorine affects the shape of the Ni catalyst, which determines the type of CNF formed.
Panwar, Preety; Pandey, Bhumika; Lakhera, P C; Singh, K P
2010-01-01
The purpose of the present study was to formulate effective and controlled release albendazole liposomal formulations. Albendazole, a hydrophobic drug used for the treatment of hydatid cysts, was encapsulated in nanosize liposomes. Rapid evaporation method was used for the preparation of albendazole-encapsulated conventional and PEGylated liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (6:4) and PC:CH: polyethylene glycol (PEG) (5:4:1), respectively. In this study, PEGylated and conventional liposomes containing albendazole were prepared and their characteristics, such as particle size, encapsulation efficiency, and in vitro drug release were investigated. The drug encapsulation efficiency of PEGylated and conventional liposomes was 81% and 72%, respectively. The biophysical characterization of both conventional and PEG-coated liposomes were done by transmission electron microscopy and UV-vis spectrophotometry. Efforts were made to study in vitro release of albendazole. The drug release rate showed decrease in albendazole release in descending order: free albendazole, albendazole-loaded conventional liposomes, and least with albendazole-loaded PEG-liposomes. Biologically relevant vesicles were prepared and in vitro release of liposome-entrapped albendazole was determined. PMID:20309396
Jing, Zi-Wei; Ma, Zhi-Wei; Li, Chen; Jia, Yi-Yang; Luo, Min; Ma, Xi-Xi; Zhou, Si-Yuan; Zhang, Bang-Le
2017-02-15
The covalently cross-linked chitosan-poly(ethylene glycol) 1540 derivatives have been developed as a controlled release system with potential for the delivery of protein drug. The swelling characteristics of the hydrogels based on these derivatives as the function of different PEG content and the release profiles of a model protein (bovine serum albumin, BSA) from the hydrogels were evaluated in simulated gastric fluid with or without enzyme in order to simulate the gastrointestinal tract conditions. The derivatives cross-linked with difunctional PEG 1540 -dialdehyde via reductive amination can swell in alkaline pH and remain insoluble in acidic medium. The cumulative release amount of BSA was relatively low in the initial 2h and increased significantly at pH 7.4 with intestinal lysozyme for additional 12h. The results proved that the release-and-hold behavior of the cross-linked CS-PEG 1540 H-CS hydrogel provided a swell and intestinal enzyme controlled release carrier system, which is suitable for oral protein drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Seinelä, Lauri; Sairanen, Ulla; Laine, Tarmo; Kurl, Sangita; Pettersson, Tiina; Happonen, Pertti
2009-01-01
Polyethylene glycol (PEG) is a commonly used osmotic laxative. PEG with electrolytes is mixed with water, but PEG without electrolytes can also be mixed with, for example, juice, coffee or tea, making it more palatable. Laxatives, including PEG, are commonly used by the elderly, particularly those living in institutions. Few clinical studies, however, have investigated the use of PEG in this population. To test whether PEG 4000 without electrolytes (hypotonic PEG) is at least as effective and safe as PEG 4000 with electrolytes (isotonic PEG) in elderly institutionalized constipated patients. The acceptability of the treatments was also compared. This randomized, double-blind, parallel-group study was conducted at ten private assisted-living facilities or communal nursing homes in Finland. Eligible patients were required to have used isotonic PEG at a stable dose without any other treatment for constipation (except for Plantago ovata seeds) for at least 2 weeks prior to a run-in period. After the 1-week run-in, 62 patients (mean age 86 years; range 66-99 years) were randomly either switched to receive hypotonic PEG or continued to receive isotonic PEG, both dissolved in water, 12 g once or twice daily or once every other day, for 4 weeks. Stool frequency, stool consistency, stool straining and gastrointestinal symptoms were recorded. Safety laboratory tests were conducted before and after the treatment period. Acceptability was assessed at the end of the study. At week 4, mean (SD) weekly stool frequencies in the hypotonic and isotonic PEG groups were 8.5 (4.5) and 8.4 (3.6), respectively. The mean stool frequency ratio (95% CI) was 0.90 (0.74, 1.10); thus, the PEG products were considered equally effective. At week 4, the proportion of patients with soft or normal stool consistency was higher in the hypotonic PEG group than in the isotonic PEG group (70% vs 52%), but this difference was not statistically significant. There were no differences between the groups in stool straining or gastrointestinal symptoms. In the safety laboratory tests, no clinically significant differences between the groups were detected, although plasma sodium level was statistically significantly lower in the hypotonic PEG group at the end of the study (137.7 vs 138.9 mmol/L, respectively; p = 0.012). Most patients were willing to continue their study treatment (85% in the hypotonic PEG and 63% in the isotonic PEG group; p = 0.070). Compared with only 12% of the patients receiving hypotonic PEG, however, 31% of the patients in the isotonic PEG group rated the taste of the study treatment as bad or very bad (p = 0.101). Hypotonic PEG solution is as effective as isotonic PEG in the treatment of constipation in elderly institutionalized patients. Both treatments appear safe, well tolerated and, when dissolved in water, well accepted by the majority of the patients. When desired, switching from isotonic to hypotonic PEG can safely take place in elderly individuals without compromising efficacy.
Nanoengineering of bioactive glasses: hollow and dense nanospheres
NASA Astrophysics Data System (ADS)
Luz, Gisela M.; Mano, João F.
2013-02-01
The possibility of engineering bioactive glass (BG) nanoparticles into suitable sizes and shapes represents a significant achievement regarding the development of new osteoconductive biomaterials for therapeutic strategies to replace or regenerate damaged mineralised tissues. Herein we report the structural and chemical evolution of sol-gel derived BG nanoparticles for both the binary (SiO2:CaO (mol%) = 70:30) and ternary (SiO2:CaO:P2O5 (mol%) = 55:40:5) formulations, in order to understand how the particles formation can be directed. Hollow BG nanospheres were obtained through Ostwald ripening. The presence of a non ionic surfactant, poly(ethylene glycol) (PEG), allowed the formation of dense BG nanospheres with controllable diameters depending on the molecular weight of PEG. A deep insight into the genesis of BG nanoparticles formation is essential to design BG based materials with controlled compositions, morphologies and sizes at the nanoscale, in order to improve their performance in orthopaedic applications including bone tissue engineering.
Szymański, Jan K; Temprano-Coleto, Fernando; Pérez-Mercader, Juan
2015-03-14
The cerium(IV)-alcohol couple in an acidic medium is an example of a redox system capable of initiating free radical polymerization. When the alcohol has a polymeric nature, the outcome of such a process is a block copolymer, a member of a class of compounds possessing many useful properties. The most common polymer with a terminal -OH group is poly(ethylene glycol) (PEG); however, the detailed mechanism of its reaction with cerium(IV) remains underexplored. In this paper, we report our findings for this reaction based on spectrophotometric measurements and kinetic modeling. We find that both the reaction order and the net rate constant for the oxidation process depend strongly on the nature of the acidic medium used. In order to account for the experimental observations, we postulate that protonation of PEG decreases its affinity for some of the cerium(IV)-sulfate complexes formed in the system.
Kohay, Hagay; Sarisozen, Can; Sawant, Rupa; Jhaveri, Aditi; Torchilin, Vladimir P; Mishael, Yael G
2017-06-01
A novel drug delivery system for doxorubicin (DOX), based on organic-inorganic composites was developed. DOX was incorporated in micelles (M-DOX) of polyethylene glycol-phosphatidylethanolamine (PEG-PE) which in turn were adsorbed by the clay, montmorillonite (MMT). The nano-structures of the PEG-PE/MMT composites of LOW and HIGH polymer loadings were characterized by XRD, TGA, FTIR, size (DLS) and zeta measurements. These measurements suggest that for the LOW composite a single layer of polymer intercalates in the clay platelets and the polymer only partially covers the external surface, while for the HIGH composite two layers of polymer intercalate and a bilayer may form on the external surface. These nanostructures have a direct effect on formulation stability and on the rate of DOX release. The release rate was reversely correlated with the degree of DOX interaction with the clay and followed the sequence: M-DOX>HIGH formulation>LOW formulation>DOX/MMT. Despite the slower release from the HIGH formulation, its cytotoxicity effect on sensitive cells was as high as the "free" DOX. Surprisingly, the LOW formulation, with the slowest release, demonstrated the highest cytotoxicity in the case of Adriamycin (ADR) resistant cells. Confocal microscopy images and association tests provided an insight into the contribution of formulation-cell interactions vs. the contribution of DOX release rate. Internalization of the formulations was suggested as a mechanism that increases DOX efficiency, particularly in the ADR resistant cell line. The employment of organic-inorganic hybrid materials as drug delivery systems, has not reached its full potential, however, its functionality as an efficient tunable release system was demonstrated. DOX PEG-PE/clay formulations were design as an efficient drug delivery system. The main aim was to develop PEG-PE/clay formulations of different structures based on various PEG-PE/clay ratios in order to achieve tunable release rates, to control the external surface characteristics and formulation stability. The formulations showed significantly higher toxicity in comparison to "free" DOX, explained by formulation internalization. For each cell line tested, sensitive and ADR resistant, a different formulation structure was found most efficient. The potential of PEG-PE/clay-DOX formulations to improve DOX administration efficacy was demonstrated and should be further explored and implemented for other cancer drugs and cells. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles
NASA Astrophysics Data System (ADS)
Yamini, D.; Devanand Venkatasubbu, G.; Kumar, J.; Ramakrishnan, V.
2014-01-01
The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass.
NASA Astrophysics Data System (ADS)
Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk
2015-11-01
We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.
Chinnam, Parameswara Rao; Mantravadi, Ramya; Jimenez, Jayvic C; Dikin, Dmitriy A; Wunder, Stephanie L
2016-01-20
Blends of methyl cellulose (MC) and liquid pegylated polyoctahedralsilsesquioxane (POSS-PEG) were prepared from non-gelled, aqueous solutions at room temperature (RT), which was below their gel temperatures (Tm). Lamellar, fibrillated films (pure MC) and increasingly micro-porous morphologies with increasing POSS-PEG content were formed, which had RT moduli between 1 and 5GPa. Evidence of distinct micro-phase separated MC and POSS-PEG domains was indicated by the persistence of the MC and POSS-PEG (at 77K) crystal structures in the X-ray diffraction data, and scanning transmission electron images. Mixing of MC and POSS-PEG in the interface region was indicated by suppression of crystallinity in the POSS-PEG, and increases/decreases in the glass transition temperatures (Tg) of POSS-PEG/MC in the blends compared with the pure components. These interface interactions may serve as cross-link sites between the micro-phase separated domains that permit incorporation of high amounts of POSS-PEG in the blends, prevent macro-phase separation and result in rubbery material properties (at high POSS-PEG content). Above Tg/Tm of POSS-PEG, the moduli of the blends increase with MC content as expected. However, below Tg/Tm of POSS-PEG, the moduli are greater for blends with high POSS-PEG content, suggesting that it behaves like semi-crystalline polyethylene oxide reinforced with silica (SiO1.5). Copyright © 2015 Elsevier Ltd. All rights reserved.
Du, Xiao-Jiao; Wang, Ji-Long; Liu, Wei-Wei; Yang, Jin-Xian; Sun, Chun-Yang; Sun, Rong; Li, Hong-Jun; Shen, Song; Luo, Ying-Li; Ye, Xiao-Dong; Zhu, Yan-Hua; Yang, Xian-Zhu; Wang, Jun
2015-11-01
Poly(ethylene glycol) (PEG) is usually used to protect nanoparticles from rapid clearance in blood. The effects are highly dependent on the surface PEG density of nanoparticles. However, there lacks a detailed and informative study in PEG density and in vivo drug delivery due to the critical techniques to precisely control the surface PEG density when maintaining other nano-properties. Here, we regulated the polymeric nanoparticles' size and surface PEG density by incorporating poly(ε-caprolactone) (PCL) homopolymer into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) and adjusting the mass ratio of PCL to PEG-PCL during the nanoparticles preparation. We further developed a library of polymeric nanoparticles with different but controllable sizes and surface PEG densities by changing the molecular weight of the PCL block in PEG-PCL and tuning the molar ratio of repeating units of PCL (CL) to that of PEG (EG). We thus obtained a group of nanoparticles with variable surface PEG densities but with other nano-properties identical, and investigated the effects of surface PEG densities on the biological behaviors of nanoparticles in mice. We found that, high surface PEG density made the nanoparticles resistant to absorption of serum protein and uptake by macrophages, leading to a greater accumulation of nanoparticles in tumor tissue, which recuperated the defects of decreased internalization by tumor cells, resulting in superior antitumor efficacy when carrying docetaxel. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Jinsong; Zeng, Youyun; Shi, Shuai; Xu, Lihua; Zhang, Hualin; Pathak, Janak L; Pan, Yihuai
2017-01-01
Treatment of cancer metastasized to bone is still a challenge due to hydrophobicity, instability, and lack of target specificity of anticancer drugs. Poly (ethylene glycol)-poly (ε-caprolactone) polymer (PEG-PCL) is an effective, biodegradable, and biocompatible hydrophobic drug carrier, but lacks bone specificity. Polyaspartic acid with eight peptide sequences, that is, (Asp)8, has a strong affinity to bone surface. The aim of this study was to synthesize (Asp)8-PEG-PCL nanoparticles as a bone-specific carrier of hydrophobic drugs to treat cancer metastasized to bone. 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, and transmission electron microscopy data showed that (Asp)8-PEG-PCL nanoparticles (size 100 nm) were synthesized successfully. (Asp)8-PEG-PCL nanoparticles did not promote erythrocyte aggregation. Fluorescence microscopy showed clear uptake of Nile red-loaded (Asp)8-PEG-PCL nanoparticles by cancer cells. (Asp)8-PEG-PCL nanoparticles did not show cytotoxic effect on MG63 and human umbilical vein endothelial cells at the concentration of 10–800 μg/mL. (Asp)8-PEG-PCL nanoparticles bound with hydroxyapatite 2-fold more than PEG-PCL. Intravenously injected (Asp)8-PEG-PCL nanoparticles accumulated 2.7-fold more on mice tibial bone, in comparison to PEG-PCL. Curcumin is a hydrophobic anticancer drug with bone anabolic properties. Curcumin was loaded in the (Asp)8-PEG-PCL. (Asp)8-PEG-PCL showed 11.07% loading capacity and 95.91% encapsulation efficiency of curcumin. The curcumin-loaded (Asp)8-PEG-PCL nanoparticles gave sustained release of curcumin in high dose for >8 days. The curcumin-loaded (Asp)8-PEG-PCL nanoparticles showed strong antitumorigenic effect on MG63, MCF7, and HeLa cancer cells. In conclusion, (Asp)8-PEG-PCL nanoparticles were biocompatible, permeable in cells, a potent carrier, and an efficient releaser of hydrophobic anticancer drug and were bone specific. The curcumin-loaded (Asp)8-PEG-PCL nanoparticles showed strong antitumorigenic ability in vitro. Therefore, (Asp)8-PEG-PCL nanoparticles could be a potent carrier of hydrophobic anticancer drugs to treat the cancer metastasized to bone. PMID:28507436
Single endoscopist-performed percutaneous endoscopic gastrostomy tube placement.
Erdogan, Askin
2013-07-14
To investigate whether single endoscopist-performed percutaneous endoscopic gastrostomy (PEG) is safe and to compare the complications of PEG with those reported in the literature. Patients who underwent PEG placement between June 2001 and August 2011 at the Baskent University Alanya Teaching and Research Center were evaluated retrospectively. Patients whose PEG was placed for the first time by a single endoscopist were enrolled in the study. PEG was performed using the pull method. All of the patients were evaluated for their indications for PEG, major and minor complications resulting from PEG, nutritional status, C-reactive protein (CRP) levels and the use of antibiotic treatment or antibiotic prophylaxis prior to PEG. Comorbidities, rates, time and reasons for mortality were also evaluated. The reasons for PEG removal and PEG duration were also investigated. Sixty-two patients underwent the PEG procedure for the first time during this study. Eight patients who underwent PEG placement by 2 endoscopists were not enrolled in the study. A total of 54 patients were investigated. The patients' mean age was 69.9 years. The most common indication for PEG was cerebral infarct, which occurred in approximately two-thirds of the patients. The mean albumin level was 3.04 ± 0.7 g/dL, and 76.2% of the patients' albumin levels were below the normal values. The mean CRP level was high in 90.6% of patients prior to the procedure. Approximately two-thirds of the patients received antibiotics for either prophylaxis or treatment for infections prior to the PEG procedure. Mortality was not related to the procedure in any of the patients. Buried bumper syndrome was the only major complication, and it occurred in the third year. In such case, the PEG was removed and a new PEG tube was placed via surgery. Eight patients (15.1%) experienced minor complications, 6 (11.1%) of which were wound infections. All wound infections except one recovered with antibiotic treatment. Two patients had bleeding from the PEG site, one was resolved with primary suturing and the other with fresh frozen plasma transfusion. The incidence of major and minor complications is in keeping with literature. This finding may be noteworthy, especially in developing countries.
Liu, Jinsong; Zeng, Youyun; Shi, Shuai; Xu, Lihua; Zhang, Hualin; Pathak, Janak L; Pan, Yihuai
2017-01-01
Treatment of cancer metastasized to bone is still a challenge due to hydrophobicity, instability, and lack of target specificity of anticancer drugs. Poly (ethylene glycol)-poly (ε-caprolactone) polymer (PEG-PCL) is an effective, biodegradable, and biocompatible hydrophobic drug carrier, but lacks bone specificity. Polyaspartic acid with eight peptide sequences, that is, (Asp) 8 , has a strong affinity to bone surface. The aim of this study was to synthesize (Asp) 8 -PEG-PCL nanoparticles as a bone-specific carrier of hydrophobic drugs to treat cancer metastasized to bone. 1 H nuclear magnetic resonance, Fourier transform infrared spectroscopy, and transmission electron microscopy data showed that (Asp) 8 -PEG-PCL nanoparticles (size 100 nm) were synthesized successfully. (Asp) 8 -PEG-PCL nanoparticles did not promote erythrocyte aggregation. Fluorescence microscopy showed clear uptake of Nile red-loaded (Asp) 8 -PEG-PCL nanoparticles by cancer cells. (Asp) 8 -PEG-PCL nanoparticles did not show cytotoxic effect on MG63 and human umbilical vein endothelial cells at the concentration of 10-800 μg/mL. (Asp) 8 -PEG-PCL nanoparticles bound with hydroxyapatite 2-fold more than PEG-PCL. Intravenously injected (Asp) 8 -PEG-PCL nanoparticles accumulated 2.7-fold more on mice tibial bone, in comparison to PEG-PCL. Curcumin is a hydrophobic anticancer drug with bone anabolic properties. Curcumin was loaded in the (Asp) 8 -PEG-PCL. (Asp) 8 -PEG-PCL showed 11.07% loading capacity and 95.91% encapsulation efficiency of curcumin. The curcumin-loaded (Asp) 8 -PEG-PCL nanoparticles gave sustained release of curcumin in high dose for >8 days. The curcumin-loaded (Asp) 8 -PEG-PCL nanoparticles showed strong antitumorigenic effect on MG63, MCF7, and HeLa cancer cells. In conclusion, (Asp) 8 -PEG-PCL nanoparticles were biocompatible, permeable in cells, a potent carrier, and an efficient releaser of hydrophobic anticancer drug and were bone specific. The curcumin-loaded (Asp) 8 -PEG-PCL nanoparticles showed strong antitumorigenic ability in vitro. Therefore, (Asp) 8 -PEG-PCL nanoparticles could be a potent carrier of hydrophobic anticancer drugs to treat the cancer metastasized to bone.
Effect of DC Offset on the T-Wave Residuum Parameter
NASA Technical Reports Server (NTRS)
Scott, N.; Greco, E. C.; Schlegel, Todd T.
2006-01-01
The T-wave residuum (TWR) is a relatively new 12-lead ECG parameter that may reflect cardiac repolarization heterogeneity. TWR shows clinical promise and may become an important diagnostic tool if accurate, consistent, and convenient methods for its calculation can be developed. However, there are discrepancies between the methods that various investigators have used to calculate TWR, as well as some questions about basic methodology and assumptions that require resolution. The presence of a DC offset or very low frequency AC component to the ECG is often observed. Many researchers have attempted to compensate for these by high pass filters and by median beat techniques. These techniques may help minimize the contribution of a low frequency AC component to the TWR, but they will not eliminate a DC offset inherent within the instrumentation. The present study examined the presence of DC offsets in the ECG record, and their effect on TWR. Specifically, in healthy individuals, a DC offset was added to all 8 channels collectively or to each channel selectively. Even with offsets that were relatively small compared to T-wave amplitude, the addition of either collectively or individually applied offsets was observed to produce very significant changes in the TWR, affecting its value by as much as an order of magnitude. These DC offsets may arise from at least two possible sources: a transient artifact from EMG or electrode movement resulting in a transient baseline offset in one or more channels. Since highpass filters have a settling time of several seconds, these artifacts will contribute to a transitory baseline offset lasting 1020 cycles. The machine hardware may also introduce an offset. Regardless of the cause or source of a DC offset, this study demonstrates that offsets have a very significant impact on TWR, and that future studies must not ignore their presence, but rather more appropriately compensate for them.
Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA
Kim, NaJung; Jiang, Dahai; Jacobi, Ashley; Lennox, Kim A.; Rose, Scott; Behlke, Mark A.; Salem, Aliasger K.
2011-01-01
Regulation of gene expression using small interfering RNA (siRNA) is a promising strategy for research and treatment of numerous diseases. In this study, we develop and characterize a delivery system for siRNA composed of polyethylenimine (PEI), polyethylene glycol (PEG), and mannose (Man). Cationic PEI complexes and compacts siRNA, PEG forms a hydrophilic layer outside of the polyplex for steric stabilization, and mannose serves as a cell binding ligand for macrophages. The PEI-PEG-mannose delivery system was constructed in two different ways. In the first approach, mannose and PEG chains are directly conjugated to the PEI backbone. In the second approach, mannose is conjugated to one end of the PEG chain and the other end of the PEG chain is conjugated to the PEI backbone. The PEI-PEG-mannose delivery systems were synthesized with 3.45 – 13.3 PEG chains and 4.7 – 3.0 mannose molecules per PEI. The PEI-PEG-Man-siRNA polyplexes displayed a coarse surface in Scanning Electron Microscopy (SEM) images. Polyplex sizes were found to range from 169nm to 357nm. Gel retardation assays showed that the PEI-PEG-mannose polymers are able to efficiently complex with siRNA at low N/P ratios. Confocal microscope images showed that the PEI-PEG-Man-siRNA polyplexes could enter cells and localized in the lysosomes at 2 hours post-incubation. Pegylation of the PEI reduced toxicity without any adverse reduction in knockdown efficiency relative to PEI alone. Mannosylation of the PEI-PEG could be carried out without any significant reduction in knockdown efficiency relative to PEI alone. Conjugating mannose to PEI via the PEG spacer generated superior toxicity and gene knockdown activity relative to conjugating mannose and PEG directly onto the PEI backbone. PMID:21864664
Affinity partitioning of human antibodies in aqueous two-phase systems.
Rosa, P A J; Azevedo, A M; Ferreira, I F; de Vries, J; Korporaal, R; Verhoef, H J; Visser, T J; Aires-Barros, M R
2007-08-24
The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the target protein remained in the bottom phase when the non-functionalised systems were tested. The effect of increasing functionalised PEG concentration and the type of ligand were studied. Afterwards, selectivity studies were performed with the most successful ligands first by using systems containing pure proteins and an artificial mixture of proteins and, subsequently, with systems containing a Chinese hamster ovary (CHO) cells supernatant. The PEG/phosphate ATPS was not suitable for the affinity partitioning of IgG. In the PEG/dextran ATPS, the diglutaric acid functionalised PEGs (PEG-COOH) displayed great affinity to IgG, and all IgG could be recovered in the top phase when 20% (w/w) of PEG 150-COOH and 40% (w/w) PEG 3350-COOH were used. The selectivity of these functionalised PEGs was evaluated using an artificial mixture of proteins, and PEG 3350-COOH did not show affinity to IgG in the presence of typical serum proteins such as human serum albumin and myoglobin, while in systems with PEG 150-COOH, IgG could be recovered with a yield of 91%. The best purification of IgG from the CHO cells supernatant was then achieved in a PEG/dextran ATPS in the presence of PEG 150-COOH with a recovery yield of 93%, a purification factor of 1.9 and a selectivity to IgG of 11. When this functionalised PEG was added to the ATPS, a 60-fold increase in selectivity was observed when compared to the non-functionalised systems.
A joint equalization algorithm in high speed communication systems
NASA Astrophysics Data System (ADS)
Hao, Xin; Lin, Changxing; Wang, Zhaohui; Cheng, Binbin; Deng, Xianjin
2018-02-01
This paper presents a joint equalization algorithm in high speed communication systems. This algorithm takes the advantages of traditional equalization algorithms to use pre-equalization and post-equalization. The pre-equalization algorithm takes the advantage of CMA algorithm, which is not sensitive to the frequency offset. Pre-equalization is located before the carrier recovery loop in order to make the carrier recovery loop a better performance and overcome most of the frequency offset. The post-equalization takes the advantage of MMA algorithm in order to overcome the residual frequency offset. This paper analyzes the advantages and disadvantages of several equalization algorithms in the first place, and then simulates the proposed joint equalization algorithm in Matlab platform. The simulation results shows the constellation diagrams and the bit error rate curve, both these results show that the proposed joint equalization algorithm is better than the traditional algorithms. The residual frequency offset is shown directly in the constellation diagrams. When SNR is 14dB, the bit error rate of the simulated system with the proposed joint equalization algorithm is 103 times better than CMA algorithm, 77 times better than MMA equalization, and 9 times better than CMA-MMA equalization.
Abavisani, Abbas; Arshami, Javad; Naserian, Abbas Ali; Sheikholeslami Kandelousi, Mohammad Ali; Azizzadeh, Mohammad
2013-01-01
Background: This study was conducted to evaluate the potential protective effects of omega-3 poly unsaturated fatty acids (Ω-3 PUFAs) on bovine sperm quality in response to cooling and cryopreservation. Materials and Methods: In this experimental study included ejaculates from five proven fertile bulls, allocated to the control and the four experimental groups. For group 1, polyethylene glycol (PEG) as a solvent was added alone to the extender, while for groups 2, 3 and 4, different concentration of omega-3 PUFAs (1, 2.5 and 5%, respectively) in combination with PEG were added to the semen extender. Motility [using computer aided sperm analysis (CASA)], viability and morphology of bovine sperm were investigated after 24 and 48 hours in both cold liquid storage and frozen-thawed conditions. Results: Our findings showed that PEG has some detrimental effects on sperm quality. Cooling as well as cryopreservation decreased significantly most of measured variables of sperm as compared to fresh semen, whereas the treatments did not improve sperm quality. Furthermore, levels of some variables were decreased significantly during treatments (p<0.05). Conclusion: Addition of Ω-3 PUFAs to semen extenders cannot be effectively introduced to conservation media as well as sperm membrane in order to protect spermatozoa in response to cooling and freezing. It can be suggested if Ω-3 PUFAs is supplemented to the diet of bulls in order to modify the fatty acid compositions of sperm, they might perform their preventive properties. PMID:24520481
Hall, Kristina K.; Gattás-Asfura, Kerim M.; Stabler, Cherie L.
2010-01-01
Functionalized alginate and PEG polymers were used to generate covalently linked alginate-PEG (XAlgPEG) microbeads of high stability. The cell-compatible Staudinger ligation scheme was used to chemoselectively cross-link phosphine-terminated poly(ethylene glycol) (PEG) to azide-functionalized alginate, resulting in XAlgPEG hydrogels. XAlgPEG microbeads were formed by co-incubation of the two polymers, followed by ionic cross-linking of the alginate using barium ions. The enhanced stability and gel properties of the resulting XAlgPEG microbeads, as well as the compatibility of these polymers for the encapsulation of islets and beta cells lines, were investigated. Our data show that XAlgPEG microbeads exhibit superior resistance to osmotic swelling compared to traditional barium cross-linked alginate (Ba-Alg) beads, with a 5-fold reduction in observed swelling, as well as resistance to dissolution via chelation solution. Diffusion and porosity studies found XAlgPEG beads to exhibit properties comparable to standard Ba-Alg. Our data found XAlgPEG microbeads to be highly cell compatible with insulinoma cell lines, as well as rat and human pancreatic islets, where the viability and functional assessment of cells within XAlgPEG were comparable to Ba-Alg controls. The remarkable improved stability, as well as demonstrated cellular compatibility, of XAlgPEG hydrogels makes them an appealing option for a wide variety of tissue engineering applications. PMID:20654745
Polyethylene glycol as marker for nitrofurazone allergy: 20 years of experience from Turkey.
Özkaya, Esen; Kılıç, Sıla
2018-03-01
Polyethylene glycols (PEGs) and propylene glycol (PG) are used as vehicles in various medicinal and cosmetic products. They are potential contact sensitizers, including low molecular weight PEGs in nitrofurazone preparations that are still widely used in Turkey. To investigate the prevalence of allergic contact dermatitis caused by PEG and PG in a relatively large group of patients in Turkey. In this retrospective, cross-sectional, single-centre study, 836 patients patch tested with PEG and PG between 1996 and 2015 were reviewed. Thirty-five patients (4.2%) showed positive patch test reactions to PEG, and 7 (0.8%) showed positive patch test reactions to PG, partly as late positive reactions with PEG. PEG sensitivity was almost exclusively related to nitrofurazone allergy. Patch test reactions to PG were currently relevant mainly with regard to the use of minoxidil, and antiherpetic or corticosteroid creams. Ten patients (25%) had concomitant contact allergies to various topical drugs containing mainly PEGs. PEG sensitivity seems to be a marker for contact allergy to topical nitrofurazone in Turkey. Nitrofurazone allergy appears to favour concomitant sensitization to PEG. We would suggest the inclusion of PEG in an extended baseline patch test series in Turkey. Late patch test readings are important to diagnose delayed positive reactions to PEG. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Boles, Erin E.; Gaines, Cameryn L.
2015-01-01
OBJECTIVES: The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. METHODS: A retrospective, observational, institutional review board–approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. RESULTS: Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p < 0.01). CONCLUSIONS: Theses results suggest that PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects. PMID:26170773
Boles, Erin E; Gaines, Cameryn L; Tillman, Emma M
2015-01-01
The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients. A retrospective, observational, institutional review board-approved study was conducted over a 1-year time period. Patients were included in the study if they were admitted to the hospital with a diagnosis of fecal impaction or constipation and were treated with either polyethylene glycol-electrolyte solution (PEG-ES) or polyethylene glycol-3350 (PEG-3350). Patients were excluded if they were discharged prior to resolution of treatment and/or did not receive PEG-ES or PEG-3350. Fifty-one patients (ranging in age from 1 month to 15 years) were evaluated: 23 patients received PEG-ES and 28 patients received PEG-3350. Sex, race, age, and weight were not statistically different between the 2 groups. Resolution of fecal impaction was not significantly different between PEG-ES vs PEG-3350 (87% and 86%, respectively; p = 0.87). There was only 1 reported side effect with PEG-3350, vs 11 reported side effects with PEG-ES (p < 0.01). Theses results suggest that PEG-3350 is as effective as PEG-ES for the treatment of fecal impaction in pediatric patients and is associated with fewer side effects.
Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles.
Yamini, D; Devanand Venkatasubbu, G; Kumar, J; Ramakrishnan, V
2014-01-03
The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass. Copyright © 2013 Elsevier B.V. All rights reserved.
Alvarez, Guillermo Cabrera; Madrid-Marina, Vicente; Jimenez-Mendez, Ricardo; Buitimea, Angel Leon; Román, Margarita Bahena; Cortez-Gomez, Rudyard; Esparza, Jorge Reyes; Rodríguez-Fragoso, Lourdes
2007-01-01
The aim of this study was to investigate the effects of combinations of pegilated-interferon (PEG-IFN), ribavirin, and danazol on thrombocytopenia and liver injury in rats with fibrosis. Male adult Wistar rats were treated with either mineral oil, danazol (0.83 mg/kg per day), PEG-interferon alpha-2a (PEG-IFN, 0.3 microg/ week) + ribavirin (12 mg/kg per day), PEG-IFN + ribavirin + danazol, CCl(4) (4 g/kg for eight weeks), CCl(4) + PEG-IFN + ribavirin, or CCl(4) + PEG-IFN + ribavirin+ danazol. The following assays were conducted: hematology, clinical chemistry, liver function, liver fibrosis, lymphocyte cytokine mRNA expression, and bone-marrow DNA content. Platelet counts were low in sham-treated animals and animals treated with PEG- IFN + ribavirin (30% and 25% respectively; P < 0.05). PEG-IFN + ribavirin + danazol reduced platelet counts of fibrotic animals by only 9% (P < 0.05). PEG- IFN + ribavirin reduced hepatic collagen content by 50%, whereas danazol + PEG-IFN + ribavirin reduced hepatic collagen content by 60% (P < 0.05). PEG-IFN + ribavirin reduced the total bilirubin concentration by 27%, alanine amino transferase (ALT) activity by 75% and gamma-glutamyl transpeptidase (gamma-GTP) activity by 74% (P < 0.05). In contrast, danazol + PEG-IFN + ribavirin reduced total bilirubin levels by 61%, alkaline phosphatase activity by 45%, ALT activity by 76%, and gamma-GTP activity by 74% (P < 0.05). The only treatment that increased interleukin 10 (IL-10) mRNA in fibrotic rats was PEG-IFN + ribavirin. However, danazol + PEG-IFN + ribavirin reduced the expression of IL-6, IL-10, tumor necrosis factor alpha and transforming growth factor ss. Bone-marrow DNA content was not altered by any treatment. In conclusion, PEG-IFN + ribavirin + danazol could be a new therapeutic option for patients with liver injury, fibrosis, and thrombocytopenia.
Kusano, Chika; Yamada, Nobuo; Kikuchi, Kenji; Hashimoto, Masaji; Gotoda, Takuji
2016-01-01
Background: There has been debate over the indications for percutaneous endoscopic gastrostomy (PEG) in recent years in Japan. In addition, the level of satisfaction of patients and patient’s family after PEG remains unclear. The aim of this study was to investigate the current status of PEG and the level of satisfaction of patients and patients’ families after PEG in Japan. Methods: We reviewed the existing data of all patients who underwent PEG tube insertion at Yuri Kumiai General Hospital (Akita, Japan) between February 2000 and December 2010. We examined the following points: underlying diseases requiring PEG, levels of consciousness, and performance status. We also sent a questionnaire to the patients and patient’s families to ask about their satisfaction with and thoughts about PEG. Results: The data of 545 patients who underwent PEG were reviewed. There were 295 men and 250 women, with a mean age of 77.2 ± 11.4 years. PEG was indicated most frequently for cerebrovascular disorders (48.2%, 239/545). There were 515 (94.4%, 515/545) patients showing consciousness disturbance and 444 (81.5%, 444/545) bedridden patients. The questionnaire was answered by one patient himself and 316 patients’ families. When asked, “Was performing PEG a good decision?”, 57.5% (182/316) of the patients’ families answered yes. Meanwhile, when patients’ family members were asked if they would wish to undergo PEG if they were in the same condition as the patient, 28.4% (90/316) answered yes, whereas 55.3% (175/316) answered no. Conclusions: Few patients were able to make their own decision about PEG tube placement because of consciousness disturbance. As a result, many family members of the patients did not want to experience PEG for themselves. Future studies should be performed to clarify the quality of life and ethical aspects associated with PEG. PMID:27313796
Gong, Jiachang; Gu, Xiaomei; Achanzar, William E; Chadwick, Kristina D; Gan, Jinping; Brock, Barry J; Kishnani, Narendra S; Humphreys, W Griff; Iyer, Ramaswamy A
2014-08-05
The covalent conjugation of polyethylene glycol (PEG, typical MW > 10k) to therapeutic peptides and proteins is a well-established approach to improve their pharmacokinetic properties and diminish the potential for immunogenicity. Even though PEG is generally considered biologically inert and safe in animals and humans, the slow clearance of large PEGs raises concerns about potential adverse effects resulting from PEG accumulation in tissues following chronic administration, particularly in the central nervous system. The key information relevant to the issue is the disposition and fate of the PEG moiety after repeated dosing with PEGylated proteins. Here, we report a novel quantitative method utilizing LC-MS/MS coupled with in-source CID that is highly selective and sensitive to PEG-related materials. Both (40K)PEG and a tool PEGylated protein (ATI-1072) underwent dissociation in the ionization source of mass spectrometer to generate a series of PEG-specific ions, which were subjected to further dissociation through conventional CID. To demonstrate the potential application of the method to assess PEG biodistribution following PEGylated protein administration, a single dose study of ATI-1072 was conducted in rats. Plasma and various tissues were collected, and the concentrations of both (40K)PEG and ATI-1072 were determined using the LC-MS/MS method. The presence of (40k)PEG in plasma and tissue homogenates suggests the degradation of PEGylated proteins after dose administration to rats, given that free PEG was absent in the dosing solution. The method enables further studies for a thorough characterization of disposition and fate of PEGylated proteins.
VizieR Online Data Catalog: Radial velocities of 51 Peg (Martins+, 2015)
NASA Astrophysics Data System (ADS)
Martins, J. H. C.; Santos, N. C.; Figueira, P.; Faria, J. P.; Montalto, M.; Boisse, I.; Ehrenreich, D.; Lovis, C.; Mayor, M.; Melo, C.; Pepe, F.; Sousa, S.; Udry, S.; Cunha, D.
2015-04-01
The table contains the radial velocity data for HARPS observations of 51 Peg. This data was collected with the HARPS spectrograph at ESO's 3.6-m Telescope at La Silla-Paranal Observatory, as part of ESO programme 091.C-0271. It consists of 91 spectra observed in seven different nights (2013-06-08, 2013-06-25, 2013-08-02, 2013-08-04, 2013-09-05, 2013-09-09 and 2013-09-30) totalling around 12.5h of observing time. The obtained spectra have a S/N on the 50th order (~5560Å) that varies between 122 and 388. The spectra cover the wavelengths range from roughly 3781Å to 6910Å. (1 data file).
Gold and Iron-Gold Nanoparticles for Intracellular Tracking and in Vivo Medical Applicatons
NASA Astrophysics Data System (ADS)
Fu, Wei
2005-03-01
We have fabricated Au and Fe-Au nanoparticles for potential use in ex vivo experiments such as intracellular tracking, as well as a variety of in vivo medical applications. In order to improve their targeting potential, circulation time and flexibility, gold NPs were surface modified using a hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500) spacers. A coumarin-PEG-gold NP complex was formed and cell viability studies and optical fluorescence experiments were carried out demonstrating the use of these surface-modified gold NPs for drug delivery, gene therapy and cell trafficking experiments. Fe-Au nanoparticles were also fabricated and show significant contrast enhancement in MRI studies through a substantial reduction of the T2 relaxation time.
Dai, ChuanYun; Fu, Ya; Chen, ShaoCheng; Li, Biao; Yao, Bo; Liu, WanHong; Zhu, LiQing; Chen, Nan; Chen, Ji; Zhang, Qiang
2013-01-01
To design a releasable PEGylated TNF-α (rPEG-TNF-α), a cathepsin B-sensitive dipeptide (Val-Cit moiety) was inserted into conventional PEG-modified TNF-α (PEG-TNF-α), facilitating its clinical use for anti-tumor therapy. Comparative pharmacokinetic and pharmacodynamic studies showed that the half-lives of both PEGylated forms of TNF-α were ∼60-fold greater than that of unmodified TNF-α. In addition, the in vitro bioactivity of rPEG-TNF-α was greater than that of PEG-TNF-α with the same degree of PEG modification. Release of TNF-α from rPEG-TNF-α in vitro was dependent on the presence of cathepsin B and was inhibited by a cathepsin B inhibitor. Despite the potent cytotoxicity of unmodified TNF-α against normal cells, its PEGylated forms at higher TNF-α concentrations showed low cytotoxic activity against these cells. In contrast, both forms of PEGylated TNF-α showed potent cytotoxic activity against the B16 and L929 cell lines, with rPEG-TNF-α being 5- and 9-fold more potent, respectively, than PEG-TNF-α. Moreover, rPEG-TNF-α was a more potent in vivo antitumor agent than PEG-TNF-α.
Hak, Sjoerd; Garaiova, Zuzana; Olsen, Linda Therese; Nilsen, Asbjørn Magne; de Lange Davies, Catharina
2015-04-01
Lipid-based nanoparticles are extensively studied for drug delivery. These nanoparticles are often surface-coated with polyethylene glycol (PEG) to improve their biodistribution. Until now, the effects of varying PEG surface density have been studied in a narrow and low range. Here, the effects of high and a broad range of PEG surface densities on the in vivo performance of lipid-based nanoparticles were studied. Oil-in-water nanoemulsions were prepared with PEG surface densities of 5-50 mol%. Confocal microscopy was used to assess intracellular disintegration in vitro. In vivo pharmacokinetics and biodistribution in tumor bearing mice were studied using a small animal optical imager. PEG surface density did not affect intracellular nanoemulsion stability. Surprisingly, circulation half-lives decreased with increasing PEG surface density. A plausible explanation was that nanoemulsion with high (50 mol%) PEG surface density activated the complement in a whole blood assay, whereas nanoemulsion with low (5 mol%) PEG density did not. In vivo, nanoemulsion with low PEG surface density was mostly confined to the tumor and organs of the mononuclear phagocyte system, whereas nanoemulsion with high PEG density accumulated throughout the mouse. Optimal PEG surface density of lipid-based nanoparticles for tumor targeting was found to be below 10 mol%.
Structural analysis of binding functionality of folic acid-PEG dendrimers against folate receptor.
Sampogna-Mireles, Diana; Araya-Durán, Ingrid D; Márquez-Miranda, Valeria; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D
2017-03-01
Dendrimers functionalized with folic acid (FA) are drug delivery systems that can selectively target cancer cells with folate receptors (FR-α) overexpression. Incorporation of polyethylene glycol (PEG) can enhance dendrimers solubility and pharmacokinetics, but ligand-receptor binding must not be affected. In this work we characterized, at atomic level, the binding functionality of conventional site-specific dendrimers conjugated with FA with PEG 750 or PEG 3350 as a linker. After Molecular Dynamics simulation, we observed that both PEG's did not interfere over ligand-receptor binding functionality. Although binding kinetics could be notably affected, the folate fragment from both dendrimers remained exposed to the solvent before approaching selectively to FR-α. PEG 3350 provided better solubility and protection from enzymatic degradation to the dendrimer than PEG 750. Also, FA-PEG3350 dendrimer showed a slightly better interaction with FR-α than FA-PEG750 dendrimer. Therefore, theoretical evidence supports that both dendrimers are suitable as drug delivery systems for cancer therapies. Copyright © 2017 Elsevier Inc. All rights reserved.
Lin, Xuliang; Qiu, Xueqing; Yuan, Long; Li, Zihao; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie
2015-06-01
Water-soluble lignin-based polyoxyethylene ether (EHL-PEG), prepared from enzymatic hydrolysis lignin (EHL) and polyethylene glycol (PEG1000), was used to improve enzymatic hydrolysis efficiency of corn stover. The glucose yield of corn stover at 72h was increased from 16.7% to 70.1% by EHL-PEG, while increase in yield with PEG4600 alone was 52.3%. With the increase of lignin content, EHL-PEG improved enzymatic hydrolysis of microcrystalline cellulose more obvious than PEG4600. EHL-PEG could reduce at least 88% of the adsorption of cellulase on the lignin film measured by quartz crystal microbalance with dissipation monitoring (QCM-D), while reduction with PEG4600 was 43%. Cellulase aggregated at 1220nm in acetate buffer analyzed by dynamic light scattering. EHL-PEG dispersed cellulase aggregates and formed smaller aggregates with cellulase, thereby, reduced significantly nonproductive adsorption of cellulase on lignin and enhanced enzymatic hydrolysis of lignocelluloses. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koynova, Rumiana; Tihova, Mariana; Biopharma)
Hydrated diacylglycerol-PEG lipid conjugates, glyceryl dioleate-PEG12 (GDO-PEG12) and glyceryl dipalmitate-PEG23 (GDP-PEG23), spontaneously form uni- or oligolamellar liposomes in their liquid crystalline phase, in distinct difference from the PEGylated phospholipids which form micelles. GDP-PEG23 exhibits peculiar hysteretic phase behavior and can arrange into a long-living hexagonal phase at ambient and physiological temperatures. Liposomes of GDO-PEG12 and its mixture with soy lecithin exchange lipids with the membranes much more actively than common lecithin liposomes; such an active lipid exchange might facilitate the discharging of the liposome cargo upon uptake and internalization, and can thus be important in drug delivery applications. Diacylglycerol-PEG lipidmore » liposome formulations can encapsulate up to 20-30 wt.% lipophilic dietary supplements such as fish oil, coenzyme Q10, and vitamins D and E. The encapsulation is feasible by way of dry mixing, avoiding the use of organic solvent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Yosuke; Shimizu, Taro; Mima, Yu
PEGylation, the attachment of polyethylene glycol (PEG) to nanocarriers and proteins, is a widely accepted approach to improving the in vivo efficacy of the non-PEGylated products. However, both PEGylated liposomes and PEGylated proteins reportedly trigger the production of specific antibodies, mainly IgM, against the PEG moiety, which possibly leads to a reduction in safety and therapeutic efficacy of the PEGylated products. In the present study, two monoclonal anti-PEG IgMs — HIK-M09 via immunization with an intravenous injection of PEGylated liposomes (SLs) and HIK-M11 via immunization with a subcutaneous administration of PEGylated ovalbumin (PEG-OVA) were successfully generated. The generated IgMs showedmore » efficient reactivity to mPEG{sub 2000} conjugated to 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine (DSPE), PEGylated liposome (SL) and PEG-OVA. It appears that HIK-M09 recognizes ethoxy (OCH{sub 2}CH{sub 2}) repeat units along with a terminal motif of PEG, while HIK-M11 recognizes only ethoxy repeat units of PEG. Such unique properties allow HIK-M09 to bind with dense PEG. In addition, their impact on the in vivo clearance of the PEGylated products was investigated. It was found that the generated ant-PEG IgMs induced a clearance of SL as they were intravenously administered with SL. Interestingly, the HIK-M11, generated by PEG-OVA, induced the clearance of both SL and PEG-OVA, while the HIK-M09, generated by SL, induced the clearance of SL only. We here revealed that the presence of serum anti-PEG IgM and the subsequent binding of anti-PEG IgM to the PEGylated products are not necessarily related to the enhanced clearance of the products. It appears that subsequent complement activation following anti-PEG IgM binding is the most important step in dictating the in vivo fate of PEGylated products. This study may have implications for the design, development and clinical application of PEGylated products and therapeutics. - Highlights: • Two monoclonal anti-PEG IgMs were generated against distinct PEGylated materials. • In vivo cross-reactivity to the immunized materials was limited. • Although in vitro cross-reactivity of generated monoclonal IgMs has been confirmed.« less
Single endoscopist-performed percutaneous endoscopic gastrostomy tube placement
Erdogan, Askin
2013-01-01
AIM: To investigate whether single endoscopist-performed percutaneous endoscopic gastrostomy (PEG) is safe and to compare the complications of PEG with those reported in the literature. METHODS: Patients who underwent PEG placement between June 2001 and August 2011 at the Baskent University Alanya Teaching and Research Center were evaluated retrospectively. Patients whose PEG was placed for the first time by a single endoscopist were enrolled in the study. PEG was performed using the pull method. All of the patients were evaluated for their indications for PEG, major and minor complications resulting from PEG, nutritional status, C-reactive protein (CRP) levels and the use of antibiotic treatment or antibiotic prophylaxis prior to PEG. Comorbidities, rates, time and reasons for mortality were also evaluated. The reasons for PEG removal and PEG duration were also investigated. RESULTS: Sixty-two patients underwent the PEG procedure for the first time during this study. Eight patients who underwent PEG placement by 2 endoscopists were not enrolled in the study. A total of 54 patients were investigated. The patients’ mean age was 69.9 years. The most common indication for PEG was cerebral infarct, which occurred in approximately two-thirds of the patients. The mean albumin level was 3.04 ± 0.7 g/dL, and 76.2% of the patients’ albumin levels were below the normal values. The mean CRP level was high in 90.6% of patients prior to the procedure. Approximately two-thirds of the patients received antibiotics for either prophylaxis or treatment for infections prior to the PEG procedure. Mortality was not related to the procedure in any of the patients. Buried bumper syndrome was the only major complication, and it occurred in the third year. In such case, the PEG was removed and a new PEG tube was placed via surgery. Eight patients (15.1%) experienced minor complications, 6 (11.1%) of which were wound infections. All wound infections except one recovered with antibiotic treatment. Two patients had bleeding from the PEG site, one was resolved with primary suturing and the other with fresh frozen plasma transfusion. CONCLUSION: The incidence of major and minor complications is in keeping with literature. This finding may be noteworthy, especially in developing countries. PMID:23864780
Rheological and thermal properties of polylactide/silicate nanocomposites films.
Ahmed, Jasim; Varshney, Sunil K; Auras, Rafeal
2010-03-01
Polylactide (DL)/polyethylene glycol/silicate nanocomposite blended biodegradable films have been prepared by solvent casting method. Rheological and thermal properties were investigated for both neat amorphous polylactide (PLA-DL form) and blend of montmorillonite (clay) and poly (ethylene glycol) (PEG). Melt rheology of the PLA individually and blends (PLA/clay; PLA/PEG; PLA/PEG/clay) were performed by small amplitude oscillation shear (SAOS) measurement. Individually, PLA showed an improvement in the viscoelastic properties in the temperature range from 180 to 190 degrees C. Incorporation of nanoclay (3% to 9% wt) was attributed by significant improvements in the elastic modulus (G') of PLA/clay blend due to intercalation at higher temperature. Both dynamic modulii of PLA/PEG blend were significantly reduced with addition of 10% PEG. Rheometric measurement could not be conducted while PLA/PEG blends containing 25% PEG. A blend of PLA/PEG/clay (68/23/9) showed liquid-like properties with excellent flexibility. Thermal analysis of different clay loading films indicated that the glass transition temperatures (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) of the blend (PLA/PEG and PLA/PEG/clay) significantly. Both rheological and thermal analysis data supported plasticization and flexibility of the blended films. It is also interesting to study competition between PLA and PEG for the intercalation into the interlayer spacing of the clay. This study indicates that PLA/montmorillonite blend could serve as effective nano-composite for packaging and other applications.
Yao, X; Yoshioka, Y; Morishige, T; Eto, Y; Watanabe, H; Okada, Y; Mizuguchi, H; Mukai, Y; Okada, N; Nakagawa, S
2009-12-01
Cancer gene therapy by adenovirus vectors (Advs) for metastatic cancer is limited because systemic administration of Adv produces low therapeutic effect and severe side effects. In this study, we generated a dual cancer-specific targeting vector system by using PEGylation and the telomere reverse transcriptase (TERT) promoter and attempted to treat experimental metastases through systemic administration of the vectors. We first optimized the molecular size of PEG and modification ratios used to create PEG-Ads. Systemic administration of PEG-Ad with 20-kDa PEG at a 45% modification ratio (PEG[20K/45%]-Ad) resulted in higher tumor-selective transgene expression than unmodified Adv. Next, we examined the effectiveness against metastases and side effects of a TERT promoter-driven PEG[20K/45%]-Ad containing the herpes simplex virus thymidine kinase (HSVtk) gene (PEG-Ad-TERT/HSVtk). Systemic administration of PEG-Ad-TERT/HSVtk showed superior antitumor effects against metastases with negligible side effects. A cytomegalovirus (CMV) promoter-driven PEG[20K/45%]-Ad also produced antimetastatic effects, but these were accompanied by side effects. Combining PEG-Ad-TERT/HSVtk with etoposide or 5-fluorouracil enhanced the therapeutic effects with negligible side effects. These results suggest that modification with 20-kDa PEG at a 45% modification ratio is the optimal condition for PEGylation of Adv, and PEG-Ad-TERT/HSVtk is a prototype Adv for systemic cancer gene therapy against metastases.
Majumdar, R; Alexander, K S; Riga, A T
2010-05-01
Polyethylene glycols (PEGs) are well known as excipients in tablet dosage formulations. PEGs are generally known to be inert and have very few interactions with other components in the solid dosage forms. However, the physical nature of PEGs and how they affect the disintegration of tablets is not very well understood for the different molecular weights of PEGs. The knowledge of the effect of molecular weight of PEGs on their physical properties and the effect of humidity on the physical properties of PEGs are important parameters for the choice of a PEG to be acceptable as an excipient in pharmaceutical formulations. This study was done to determine the precision of the DSC physical properties for a wide range of PEGs with varying molecular weights from 194 to 23000 daltons. Nine different molecular weights of PEGs were examined in a DSC controlled Heat-Cool-Heat-Cool-Heat (HCHCH) cycle and the observed reproducible values of melting temperature, heat of fusion, crystallization temperature and the heat of crystallization were compared with values obtained from the literature and the observed percent crystallinity was again cross-checked by X-ray Diffraction (XRD) studies. The comparison values indicated acceptable precision. This study was also done to check the effect of humidity on the DSC physical properties for the entire range of PEGs. The results indicated that humidity probably has a higher effect on the physical properties of the low molecular weight PEGs as compared to the high molecular weight PEGs.
NASA Astrophysics Data System (ADS)
Zhang, Yumin; Yang, Cuihong; Wang, Weiwei; Liu, Jinjian; Liu, Qiang; Huang, Fan; Chu, Liping; Gao, Honglin; Li, Chen; Kong, Deling; Liu, Qian; Liu, Jianfeng
2016-02-01
Ample attention has focused on cancer drug delivery via prodrug nanoparticles due to their high drug loading property and comparatively lower side effects. In this study, we designed a PEG-DOX-Cur prodrug nanoparticle for simultaneous delivery of doxorubicin (DOX) and curcumin (Cur) as a combination therapy to treat cancer. DOX was conjugated to PEG by Schiff’s base reaction. The obtained prodrug conjugate could self-assemble in water at pH 7.4 into nanoparticles (PEG-DOX NPs) and encapsulate Cur into the core through hydrophobic interaction (PEG-DOX-Cur NPs). When the PEG-DOX-Cur NPs are internalized by tumor cells, the Schiff’s base linker between PEG and DOX would break in the acidic environment that is often observed in tumors, causing disassembling of the PEG-DOX-Cur NPs and releasing both DOX and Cur into the nuclei and cytoplasma of the tumor cells, respectively. Compared with free DOX, free Cur, free DOX-Cur combination, or PEG-DOX NPs, PEG-DOX-Cur NPs exhibited higher anti-tumor activity in vitro. In addition, the PEG-DOX-Cur NPs also showed prolonged blood circulation time, elevated local drug accumulation and increased tumor penetration. Enhanced anti-tumor activity was also observed from the PEG-DOX-Cur-treated animals, demonstrating better tumor inhibitory property of the NPs. Thus, the PEG-DOX-Cur prodrug nanoparticle system provides a simple yet efficient approach of drug delivery for chemotherapy.
Preparation before colonoscopy: a randomized controlled trial comparing different regimes.
Jansen, Sita V; Goedhard, Jelle G; Winkens, Bjorn; van Deursen, Cees Th B M
2011-10-01
A good bowel preparation is essential for optimal visualization of the large intestine. Several preparations with a difference in composition and volume are available. We compared five methods for bowel cleansing quality and patients' acceptability. Adult ambulatory outpatients scheduled for elective colonoscopy were randomized to receive 4-l polyethylene glycol (PEG) solution (Klean-prep), 2-l PEG solution+ascorbic acid (Moviprep), or a sodium phosphate (NaP) solution, Phosphoral. Patients with the PEG solutions were also randomized to receive simethicone (Aeropax), to investigate whether this improves the bowel cleansing efficacy. Before colonoscopy patients completed a questionnaire about the acceptability and tolerability of the preparation. Endoscopists blinded to the type of preparation gave a bowel cleansing score. Data were available for 461 patients. 2-l PEG+ascorbic acid was noninferior to 4-l PEG in bowel cleansing quality of rectosigmoid and colon. NaP was noninferior to 4-l PEG in bowel cleansing quality of rectosigmoid but inferior for the whole colon. Compliance was significantly less in the group with 4-l PEG compared with the 2-l PEG and NaP group. No difference was found for abdominal cramps. Taste was significantly better in the 2-l PEG group. Simethicone did not improve the bowel cleansing quality. 2-l PEG+ascorbic acid was noninferior to the 4-l PEG solution in bowel cleansing quality and was better in taste and compliance. NaP was inferior to 4-l PEG in bowel cleansing quality. Addition of simethicone gave no improvement.
Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles.
Khemtong, Chalermchai; Kessinger, Chase W; Togao, Osamu; Ren, Jimin; Takahashi, Masaya; Sherry, A Dean; Gao, Jinming
2009-01-01
An off-resonance saturation (ORS) method was used for magnetic resonance imaging of superparamagnetic polymeric micelles (SPPM). SPPM was produced by encapsulating a cluster of magnetite nanoparticles (9.9+/-0.4 nm in diameter) in poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) copolymer micelles (micelle diameter: 60+/-9 nm). In ORS MRI, a selective radiofrequency (RF) pulse was applied at an off-resonance position (0-50 ppm) from the bulk water signal, and the SPPM particles were visualized by the contrast on a division image constructed from two images acquired with and without pre-saturation. Here, the effects of saturation offset frequencies, saturation durations, and RF powers on ORS contrasts were investigated as these parameters are critical for optimization of ORS MRI for in vivo imaging applications. The ability to turn "ON" and "OFF" ORS contrast of SPPM solutions permits for an accurate image subtraction and a contrast enhancement to visualize SPPM probes for in vivo imaging of cancer.
PEG-asparaginase induced severe hypertriglyceridemia.
Galindo, Rodolfo J; Yoon, Justin; Devoe, Craig; Myers, Alyson K
2016-04-01
Asparaginase (ASP) is an effective chemotherapy agent extensively used in children with acute lymphocytic leukemia (ALL). There has been a recent interest in using ASP in adults with ALL, particularly the less toxic pegylated (PEG) formulation. Hypertriglyceridemia (HTG) is a rare complication of PEG-ASP therapy. We report two cases of obese patients who developed severe HTG after receiving PEG for ALL. Both patients were incidentally found to have severe HTG (TG of 4,330 and 4,420 mg/dL). In both patients, there was no personal or family history of dyslipidemia or hypothyroidism. There was no evidence of pancreatitis or skin manifestations of HTG. Both patients were treated with PEG cessation, low-fat diet and pharmacotherapy. Both patients were re-challenged with PEG, with subsequent increase in TG but no associated complications. TG returned to baseline after discontinuing PEG and while on therapy for HTG. A literature review of PEG-induced HTG in adults demonstrated similar results: asymptomatic presentation despite very severe HTG. HTG is a rare but clinically important adverse effect of PEG. Underlying obesity and/or diabetes may represent risk factors. Clinicians should monitor TG levels during PEG therapy to avoid TG-induced pancreatitis.
2015-01-01
Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP’s lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 °C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell–matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics. PMID:25111283
Wang, Huiyuan; Cai, Lei; Paul, Alexandra; Enejder, Annika; Heilshorn, Sarah C
2014-09-08
Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP's lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 °C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell-matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics.
Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei
2016-11-01
Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.
Surfactant-enhanced PEG-4000-NZVI for remediating trichloroethylene-contaminated soil.
Tian, Huifang; Liang, Ying; Zhu, Tianle; Zeng, Xiaolan; Sun, Yifei
2018-03-01
In this study a NZVI was prepared by the liquid phase reduction method. The modified NZVI obtained was characterized by BET, TEM and XRD. The results showed that the iron in the PEG-4000 modified material is mainly zero-valent iron with a stable crystal structure. It has a uniform particle size, ranging from 20 to 80 nm, and a larger specific surface area than CTAB modified NZVI, SDS modified NZVI and commercial zero-valent iron. The two surfactants CTAB and SDS are also selected as solubilizers, the results showed that the two selected surfactants obviously solubilize trichloroethylene in soil. Compared with commercial zero-valent iron, PEG-4000 modified NZVI is better removed trichloroethylene from soil; Also, the optimal operational parameters were obtained. When the experimental conditions were: PEG-4000 modified NZVI dosage 1.0 g/L, CTAB/SDS concentration equal to the CMC, SDS concentration was 2.0 × CMC, CTAB was concentration 1.0 × CMC and the vibration speed 150 r/min, the removal efficiency of trichloroethylene in a soil-water system reached 100% after 4 h. Both NZVI combined with CTAB and NZVI combined with SDS followed fitted first order reaction kinetics during the removal of trichloroethylene and their reaction rate constant k was 0.6869 mg/(L·h) and 0.5659 mg/(L·h), respectively. According to the chloride ion detection test, the trichloroethylene degradation is mainly due to reductive dechlorination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exercising Spatiotemporal Control of Cell Attachment with Optically Transparent Microelectrodes
Shah, Sunny S.; Lee, Ji Youn; Verkhoturov, Stanislav; Tuleuova, Nazgul; Schweikert, Emile A.; Ramanculov, Erlan; Revzin, Alexander
2013-01-01
This paper describes a novel approach of controlling cell-surface interactions through an electrochemical “switching” of biointerfacial properties of optically transparent microelectrodes. The indium tin oxide (ITO) microelectrodes, fabricated on glass substrates, were modified with poly(ethylene glycol) (PEG) silane to make glass and ITO regions resistant to protein and cell adhesion. Cyclic voltammetry, with potassium ferricyanide serving as a redox reporter molecule, was used to monitor electron transfer across the electrolyte–ITO interface. PEG silane modification of ITO correlated with diminished electron transfer, judged by the disappearance of ferricyanide redox activity. Importantly, application of reductive potential (−1.4 V vs Ag/AgCl reference) corresponded with reappearance of typical ferricyanide redox peaks, thus pointing to desorption of an insulating PEG silane layer. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) characterization of the silanized ITO surfaces after electrical stimulation indicated complete removal of the silane layer. Significantly, electrical stimulation allowed to “switch” chosen electrodes from nonfouling to protein-adhesive while leaving other ITO and glass regions protected by a nonfouling PEG silane layer. The spatial and temporal control of biointerfacial properties afforded by our approach was utilized to micropattern proteins and cells and to construct micropatterned co-cultures. In the future, control of the biointerfacial properties afforded by this novel approach may allow the organization of multiple cell types into precise geometric configurations in order to create better in vitro mimics of cellular complexity of the native tissues. PMID:18512875
Miller, R G; Jackson, C E; Kasarskis, E J; England, J D; Forshew, D; Johnston, W; Kalra, S; Katz, J S; Mitsumoto, H; Rosenfeld, J; Shoesmith, C; Strong, M J; Woolley, S C
2009-10-13
To systematically review evidence bearing on the management of patients with amyotrophic lateral sclerosis (ALS). The authors analyzed studies from 1998 to 2007 to update the 1999 practice parameter. Topics covered in this section include slowing disease progression, nutrition, and respiratory management for patients with ALS. The authors identified 8 Class I studies, 5 Class II studies, and 43 Class III studies in ALS. Important treatments are available for patients with ALS that are underutilized. Noninvasive ventilation (NIV), percutaneous endoscopic gastrostomy (PEG), and riluzole are particularly important and have the best evidence. More studies are needed to examine the best tests of respiratory function in ALS, as well as the optimal time for starting PEG, the impact of PEG on quality of life and survival, and the effect of vitamins and supplements on ALS. Riluzole should be offered to slow disease progression (Level A). PEG should be considered to stabilize weight and to prolong survival in patients with ALS (Level B). NIV should be considered to treat respiratory insufficiency in order to lengthen survival (Level B) and to slow the decline of forced vital capacity (Level B). NIV may be considered to improve quality of life (Level C) [corrected].Early initiation of NIV may increase compliance (Level C), and insufflation/exsufflation may be considered to help clear secretions (Level C).
Tomé, Luciana I N; Pereira, Jorge F B; Rogers, Robin D; Freire, Mara G; Gomes, José R B; Coutinho, João A P
2014-05-01
The well-recognized advantageous properties of poly(ethylene glycol)s (PEGs) and ionic liquids (ILs) in the context of an increasing demand for safe and efficient biotechnological processes has led to a growing interest in the study of their combinations for a wide range of procedures within the framework of green chemistry. Recently, one of the most promising and attractive applications has been the novel IL/polymer-based aqueous biphasic systems (ABS) for the extraction and purification of biomolecules. There still lacks, however, a comprehensive picture of the molecular phenomena that control the phase behavior of these systems. In order to further delve into the interactions that govern the mutual solubilities between ILs and PEGs and the formation of PEG/IL-based ABS, (1)H NMR spectroscopy in combination with classical molecular dynamics (MD) simulations performed for binary mixtures of tetraethylene glycol (TEG) and 1-alkyl-3-methylimidazolium-chloride-based ILs and for the corresponding ternary TEG/IL/water solutions, at T = 298.15 K, were employed in this work. The results of the simulations show that the mutual solubilities of the ILs and TEG are mainly governed by the hydrogen bonds established between the chloride anion and the -OH group of the polymer in the binary systems. Additionally, the formation of IL/PEG-based ABS is shown to be controlled by a competition between water and chloride for the interactions with the hydroxyl group of TEG.
Beaune, Grégory; Tamang, Sudarsan; Bernardin, Aude; Bayle-Guillemaud, Pascale; Fenel, Daphna; Schoehn, Guy; Vinet, Françoise; Reiss, Peter; Texier, Isabelle
2011-08-22
The use of click chemistry for quantum dot (QD) functionalization could be very promising for the development of bioconjugates dedicated to in vivo applications. Alkyne-azide ligation usually requires copper(I) catalysis. The luminescence response of CdSeTe/ZnS nanoparticles coated with polyethylene glycol (PEG) is studied in the presence of copper cations, and compared to that of InP/ZnS QDs coated with mercaptoundecanoic acid (MUA). The quenching mechanisms appear different. Luminescence quenching occurs without any wavelength shift in the absorption and emission spectra for the CdSeTe/ZnS/PEG nanocrystals. In this case, the presence of copper in the ZnS shell is evidenced by energy-filtered transmission electron microscopy (EF-TEM). By contrast, in the case of InP/ZnS/MUA nanocrystals, a redshift of the excitation and emission spectra, accompanied by an increase in absorbance and a decrease in photoluminescence, is observed. For CdSeTe/ZnS/PEG nanocrystals, PL quenching is enhanced for QDs with 1) smaller inorganic-core diameter, 2) thinner PEG shell, and 3) hydroxyl terminal groups. Whereas copper-induced PL quenching can be interesting for the design of sensitive cation sensors, copper-free click reactions should be used for the efficient functionalization of nanocrystals dedicated to bioapplications, in order to achieve highly luminescent QD bioconjugates. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Knowles, DB; Shkel, Irina A; Phan, Noel M; Sternke, Matt; Lingeman, Emily; Cheng, Xian; Cheng, Lixue; O’Connor, Kevin; Record, M. Thomas
2015-01-01
Here we obtain the data needed to predict chemical interactions of polyethylene glycols (PEGs) and glycerol with proteins and related organic compounds, and thereby interpret or predict chemical effects of PEGs on protein processes. To accomplish this we determine interactions of glycerol and tetraEG with >30 model compounds displaying the major C, N, and O functional groups of proteins. Analysis of these data yields coefficients (α-values) quantifying interactions of glycerol, tetraEG and PEG end (-CH2OH) and interior (-CH2OCH2-) groups with these groups, relative to interactions with water. TetraEG (strongly) and glycerol (weakly) interact favorably with aromatic C, amide N, and cationic N, but unfavorably with amide O, carboxylate O and salt ions. Strongly unfavorable O and salt anion interactions help make both small and large PEGs effective protein precipitants. Interactions of tetraEG and PEG interior groups with aliphatic C are quite favorable, while interactions of glycerol and PEG end groups with aliphatic C are not. Hence tetraEG and PEG 300 favor unfolding of the DNA-binding domain of lac repressor (lacDBD) while glycerol, di- and mono-ethylene glycol are stabilizers. Favorable interactions with aromatic and aliphatic C explain why PEG400 greatly increases the solubility of aromatic hydrocarbons and steroids. PEG400-steroid interactions are unusually favorable, presumably because of simultaneous interactions of multiple PEG interior groups with the fused ring system of the steroid. Using α-values reported here, chemical contributions to PEG m-values can be predicted or interpreted in terms of changes in water-accessible surface area (ΔASA), and separated from excluded volume effects. PMID:25962980
Treatment with mPEG-SPA improves the survival of corneal grafts in rats by immune camouflage.
Wang, Shuangyong; Li, Liangliang; Liu, Ying; Li, Chaoyang; Zhang, Min; Wang, Bowen; Huang, Zheqian; Gao, Xinbo; Wang, Zhichong
2015-03-01
We investigated the immune camouflage effects of methoxy polyethylene glycol succinimidyl propionate (mPEG-SPA) on corneal antigens and explored a novel approach for reducing corneal antigenicity, thereby decreasing corneal graft rejection. Importantly, this approach did not alter normal local immunity. Corneal grafts were treated with mPEG-SPA 5KD or 20KD (3% W/V), which could shield major histocompatibility antigen class I molecules (RT1-A) of corneal grafts. Skin grafts of Wistar rats were transplanted to SD rats. Then the splenic lymphocytes were isolated from SD rats. Subsequently, the lymphocytes were co-cultured with autologous corneal grafts or untreated corneal grafts and PEGylated grafts treated with mPEG-SPA 5KD or 20KD obtained from the counterpart skin donors, which were used as autologous control, allogeneic control, mPEG-SPA 5KD group and mPEG-SPA 20KD group, respectively. Lymphocyte proliferation was lower in mPEG-SPA 5KD group and mPEG-SPA 20KD group than in the allogeneic control. SD rats with corneal neovascularisation were used as recipients for high-risk corneal transplantation and were randomly divided into four groups: autologous control, allogeneic control, mPEG-SPA 5KD group and mPEG-SPA 20KD group. The recipients received corneal grafts from Wistar rats. Corneal graft survival was prolonged and graft rejection was reduced in the mPEG-SPA 5KD group and the mPEG-SPA 20KD group compared to the allogeneic control. Thus, we think that mPEG-SPA could immunologically camouflage corneal antigens to prolong corneal grafts survival in high-risk transplantation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bowel preparations for colonoscopy: an RCT.
Di Nardo, Giovanni; Aloi, Marina; Cucchiara, Salvatore; Spada, Cristiano; Hassan, Cesare; Civitelli, Fortunata; Nuti, Federica; Ziparo, Chiara; Pession, Andrea; Lima, Mario; La Torre, Giuseppe; Oliva, Salvatore
2014-08-01
The ideal preparation regimen for pediatric colonoscopy remains elusive, and available preparations continue to represent a challenge for children. The aim of this study was to compare the efficacy, safety, tolerability, and acceptance of 4 methods of bowel cleansing before colonoscopy in children. This randomized, investigator-blinded, noninferiority trial enrolled all children aged 2 to 18 years undergoing elective colonoscopy in a referral center for pediatric gastroenterology. Patients were randomly assigned to receive polyethylene glycol (PEG) 4000 with simethicon (PEG-ELS group) or PEG-4000 with citrates and simethicone plus bisacodyl (PEG-CS+Bisacodyl group), or PEG 3350 with ascorbic acid (PEG-Asc group), or sodium picosulfate plus magnesium oxide and citric acid (NaPico+MgCit group). Bowel cleansing was evaluated according to the Boston Bowel Preparation Scale. The primary end point was overall colon cleansing. Tolerability, acceptability, and compliance were also evaluated. Two hundred ninety-nine patients were randomly allocated to the 4 groups. In the per-protocol analysis, PEG-CS+Bisacodyl, PEG-Asc, and NaPico+MgCit were noninferior to PEG-ELS in bowel-cleansing efficacy of both the whole colon (P = .910) and colonic segments. No serious adverse events occurred in any group. Rates of tolerability, acceptability, and compliance were significantly higher in the NaPico+MgCit group. Low-volume PEG preparations (PEG-CS+Bisacodyl, PEG-Asc) and NaPico+MgCit are noninferior to PEG-ELS in children, representing an attractive alternative to high-volume regimens in clinical practice. Because of the higher tolerability and acceptability profile, NaPico+MgCit would appear as the most suitable regimen for bowel preparation in children. Copyright © 2014 by the American Academy of Pediatrics.
Zhang, Chun; Fan, Kai; Ma, Xuefeng; Wei, Dongzhi
2012-01-01
Uricase has proven therapeutic value in treating hyperuricemia but sufficient reduction of its immunogenicity may be the largest obstacle to its chronic use. In this study, canine uricase was modified with 5 kDa mPEG-SPA and the impact of large aggregated uricases and cross-linked conjugates induced by difunctional PEG diol on immunogenicity was investigated. Recombinant canine uricase was first expressed and purified to homogeneity. Source 15Q anion-exchange chromatography was used to separate tetrameric and aggregated uricase prior to pegylation, while DEAE anion-exchange chromatography was used to remove Di-acid PEG (precursor of PEG diol) from unfractionated 5 kDa mPEG-propionic acid. Tetrameric and aggregated uricases were separately modified with the purified mPEG-SPA. In addition, tetrameric uricases was modified with unfractionated mPEG-SPA, resulting in three types of 5 kDa mPEG-SPA modified uricase. The conjugate size was evaluated by dynamic light scattering and transmission electron microscope. The influence of differently PEGylated uricases on pharmacokinetics and immunogenicity were evaluated in vivo. The accelerated blood clearance (ABC) phenomenon previously identified for PEGylated liposomes occurred in rats injected with PEGylated uricase aggregates. Anti-PEG IgM antibodies, rather than neutralizing antibodies, were found to mediate the ABC. The size of conjugates is important for triggering such phenomena and we speculate that 40-60 nm is the lower size limit that can trigger ABC. Removal of the uricase aggregates and the PEG diol contaminant and modifying with small PEG reagents enabled ABC to be successfully avoided and sufficient reduction in the immunogenicity of 5 kDa mPEG-modified tetrameric canine uricase.
Zhang, Chun; Fan, Kai; Ma, Xuefeng; Wei, Dongzhi
2012-01-01
Background Uricase has proven therapeutic value in treating hyperuricemia but sufficient reduction of its immunogenicity may be the largest obstacle to its chronic use. In this study, canine uricase was modified with 5 kDa mPEG-SPA and the impact of large aggregated uricases and cross-linked conjugates induced by difunctional PEG diol on immunogenicity was investigated. Methods and Findings Recombinant canine uricase was first expressed and purified to homogeneity. Source 15Q anion-exchange chromatography was used to separate tetrameric and aggregated uricase prior to pegylation, while DEAE anion-exchange chromatography was used to remove Di-acid PEG (precursor of PEG diol) from unfractionated 5 kDa mPEG-propionic acid. Tetrameric and aggregated uricases were separately modified with the purified mPEG-SPA. In addition, tetrameric uricases was modified with unfractionated mPEG-SPA, resulting in three types of 5 kDa mPEG-SPA modified uricase. The conjugate size was evaluated by dynamic light scattering and transmission electron microscope. The influence of differently PEGylated uricases on pharmacokinetics and immunogenicity were evaluated in vivo. The accelerated blood clearance (ABC) phenomenon previously identified for PEGylated liposomes occurred in rats injected with PEGylated uricase aggregates. Anti-PEG IgM antibodies, rather than neutralizing antibodies, were found to mediate the ABC. Conclusions The size of conjugates is important for triggering such phenomena and we speculate that 40–60 nm is the lower size limit that can trigger ABC. Removal of the uricase aggregates and the PEG diol contaminant and modifying with small PEG reagents enabled ABC to be successfully avoided and sufficient reduction in the immunogenicity of 5 kDa mPEG-modified tetrameric canine uricase. PMID:22745806
Javiya, Curie; Jonnalagadda, Sriramakamal
2016-09-01
The use of spray-drying to prepare blended PLGA:PEG microspheres with lower immune detection. To study physical properties, polymer miscibility and alveolar macrophage response for blended PLGA:PEG microspheres prepared by a laboratory-scale spray-drying process. Microspheres were prepared by spray-drying 0-20% w/w ratios of PLGA 65:35 and PEG 3350 in dichloromethane. Particle size and morphology was studied using scanning electron microscopy. Polymer miscibility and residual solvent levels evaluated by thermal analysis (differential scanning calorimetry - DSC and thermogravimetric analysis - TGA). Immunogenicity was assessed in vitro by response of rat alveolar macrophages (NR8383) by the MTT-based cell viability assay and reactive oxygen species (ROS) detection. The spray dried particles were spherical, with a size range of about 2-3 µm and a yield of 16-60%. Highest yield was obtained at 1% PEG concentration. Thermal analysis showed a melting peak at 59 °C (enthalpy: 170.61 J/g) and a degradation-onset of 180 °C for PEG 3350. PLGA 65:35 was amorphous, with a Tg of 43 °C. Blended PLGA:PEG microspheres showed a delayed degradation-onset of 280 °C, and PEG enthalpy-loss corresponding to 15% miscibility of PEG in PLGA. NR8383 viability studies and ROS detection upon exposure to these cells suggested that blended PLGA:PEG microspheres containing 1 and 5% PEG are optimal in controling cell proliferation and activation. This research establishes the feasibility of using a spray-drying process to prepare spherical particles (2-3 µm) of molecularly-blended PLGA 65:35 and PEG 3350. A PEG concentration of 1-5% was optimal to maximize process yield, with minimal potential for immune detection.
Saab, S; Gordon, S C; Park, H; Sulkowski, M; Ahmed, A; Younossi, Z
2014-09-01
Sofosbuvir, an oral NS5B nucleotide polymerase inhibitor, is indicated for the treatment of patients infected with hepatitis C virus (HCV). To evaluate the long-term health economic outcomes of sofosbuvir + pegylated interferon alfa/ribavirin (pegIFN/RBV) compared with current treatments in patients infected with HCV genotype 1 in the US. A decision-analytic Markov model was developed to estimate health outcomes, number needed to treat and short-term and long-term economic outcomes, including incremental cost-effectiveness ratios and cost per sustained virological response (SVR), for several sofosbuvir-comparator regimen pairings for a cohort of 10 000 patients. It considered three patient cohorts: treatment-naïve, treatment-experienced and treatment-naïve human immunodeficiency virus (HIV) co-infected. Subgroup analyses were conducted for treatment-naïve patients with and without cirrhosis. Reductions in the incidence of new cases of liver-disease complications with sofosbuvir + pegIFN/RBV compared with pegIFN/RBV, boceprevir + pegIFN/RBV, telaprevir + pegIFN/RBV and simeprevir + pegIFN/RBV were 64-82%, 50-68%, 43-58% and 33-56%, respectively. Sofosbuvir + pegIFN/RBV was typically associated with the lowest 1-year cost per SVR. When considering the lifetime incremental cost per quality-adjusted life-year gained, sofosbuvir + pegIFN/RBV was the most cost-effective treatment option assessed. Sofosbuvir + pegIFN/RBV generally dominated (less costly and more effective than) boceprevir + pegIFN/RBV, telaprevir + pegIFN/RBV and simeprevir + pegIFN/RBV. Sofosbuvir + pegIFN/RBV yields more favourable future health and economic outcomes than current treatment regimens for patients across all levels of treatment experience and cirrhosis stage, as well as for individuals with or without HIV co-infection. © 2014 John Wiley & Sons Ltd.
Faigle, Roland; Carrese, Joseph A; Cooper, Lisa A; Urrutia, Victor C; Gottesman, Rebecca F
2018-01-01
Percutaneous endoscopic gastrostomy (PEG) tubes are widely used for enteral feeding after stroke; however, PEG tubes placed in patients in whom death is imminent are considered non-beneficial. We sought to determine whether placement of non-beneficial PEG tubes differs by race and sex. In this retrospective cohort study, inpatient admissions for stroke patients who underwent palliative/withdrawal of care, were discharged to hospice, or died during the hospitalization, were identified from the Nationwide Inpatient Sample between 2007 and 2011. Logistic regression was used to evaluate the association between race and sex with PEG placement. Of 36,109 stroke admissions who underwent palliative/withdrawal of care, were discharge to hospice, or experienced in-hospital death, a PEG was placed in 2,258 (6.3%). Among PEG recipients 41.1% were of a race other than white, while only 22.0% of patients without PEG were of a minority race (p<0.001). The proportion of men was higher among those with compared to without a PEG tube (50.0% vs. 39.2%, p<0.001). Minority race was associated with PEG placement compared to whites (OR 1.75, 95% CI 1.57-1.96), and men had 1.27 times higher odds of PEG compared to women (95% CI 1.16-1.40). Racial differences were most pronounced among women: ethnic/racial minority women had over 2-fold higher odds of a PEG compared to their white counterparts (OR 2.09, 95% CI 1.81-2.41), while male ethnic/racial minority patients had 1.44 increased odds of a PEG when compared to white men (95% CI 1.24-1.67, p-value for interaction <0.001). Minority race and male sex are risk factors for non-beneficial PEG tube placements after stroke.
Bioactive coating with low-fouling polymers for the development of biocompatible vascular implants
NASA Astrophysics Data System (ADS)
Thalla, Pradeep Kumar
The replacement of occluded blood vessels and endovascular aneurysm repair (EVAR) are performed with the use of synthetic vascular grafts and stent grafts, respectively. Both implants lead to frequent clinical complications that are different but due to a similar problem, namely the inadequate surface properties of the polymeric biomaterials used (generally polyethylene terephthalate (PET) or expanded polytetrafluoroethylene (ePTFE)). Therefore the general objective of this thesis was to create a versatile bioactive coating on vascular biomaterials that reduce material-induced thrombosis and promote desired cell interactions favorable to tissue healing around implants. The use of low-fouling backgrounds was decided in order to reduce platelet adhesion as well as the non-specific protein adsorption and thus increase the bioactivity of immobilized biomolecules. As part of the preliminary objective, a multi-arm polyethylene glycol (PEG) was chosen to create a versatile low-fouling surface, since the current coating methods are far from being versatile and rely on the availability of compatible functional groups on both PEG and the host surface. This PEG coating method was developed by taking advantage of novel primary amine-rich plasma polymerized coatings (LP). As demonstrated by quartz crystal microbalance with dissipation (QCM-D), fluorescence measurements and platelet adhesion assays, our PEG coatings exhibited low protein adsorption and almost no platelet adhesion after 15 min perfusion in whole blood. Although protein adsorption was not completely abrogated and short-term platelet adhesion assay was clearly insufficient to draw conclusions for long-term prevention of thrombosis in vivo, the low-fouling properties of this PEG coating were sufficient to be exploited for further coupling of bioactive molecules to create bioactive coatings. Therefore, as a part of the second objective, an innovative and versatile bioactive coating was developed on PEG and carboxymethylated dextran (CMD), using the combination of an adhesive peptide (KQAGDV/RGD) and epidermal growth factor (EGF). CMD was chosen as an alternative to PEG due to its better low-fouling properties and the presence of abundant carboxyl terminal groups. Although the QCM-D technique enabled us to optimize the combined immobilization of KQAGDV/RGD and EGF, cell adhesion assay results did not show improvement of vascular smooth muscle cell (VSMC) adhesion on peptide-modified PEG or CMD surfaces. Among the reasons explaining low cell adhesion on peptides grafted low-fouling surfaces is the difficulty of preventing protein adsorption/platelet adhesion without significantly reducing cell adhesion. Preliminary data in our laboratory indicated that CS could be an ideal substrate to find this compromise. For that reason, the final objective of this PhD consisted in evaluating the potential of chondroitin sulfate (CS) coating by comparing its properties with well-known low-fouling polymers such as PEG and CMD. It was shown that CS presents selective low-fouling properties, low-platelet adhesion and pro-endothelial cell (EC) adhesive properties As demonstrated by QCM-D and fluorescence measurements, CS was as effective as PEG in reducing fibrinogen adsorption, but it reduced adsorption of bovine serum albumin (BSA) and fetal bovine serum (FBS) to a lower extent than PEG and CMD surfaces. Whole blood perfusion assays indicated that all three surfaces drastically decreased platelet adhesion and activation to levels significantly lower than PET surfaces. However, while EC adhesion and growth were found to be very limited on PEG and CMD, cell attachment on CS was strong, with focal adhesion points and resistance to shear stress. CS coatings therefore form a low-thrombogenic background promoting the formation of a confluent endothelium layer, which may then act as an active anti-thrombogenic surface. CS coating can also be used to further graft biomolecules. Combination of LP, CS coating followed by GF immobilization shows great promise as a bioactive coating to optimize the biocompatibility and clinical outcome of vascular implants, in particular vascular grafts.
Phan, Quoc Thong; Le, Mai Huong; Le, Thi Thu Huong; Tran, Thi Hong Ha; Xuan, Phuc Nguyen; Ha, Phuong Thu
2016-06-30
Targeting delivery system use natural drugs for tumor cells is an appealing platform help to reduce the side effects and enhance the therapeutic effects of the drug. In this study, we synthesized curcumin (Cur) loaded (D, L Poly lactic - Poly ethylenglycol) micelle (Cur/PLA-PEG) with the ratio of PLA/PEG of 3:1 2:1 1:1 1:2 and 1:3 (w/w) and another micelle modified by folate (Cur/PLA-PEG-Fol) for targeting cancer therapy. The PLA-PEG copolymer was synthesized by ring opening polymerization method. After loading onto the micelle, solubility of Cur increased from 0.38 to 0.73mgml(-1). The average size of prepared Cur/PLA-PEG micelles was from 60 to 69nm (corresponding to the ratio difference of PLA/PEG) and the drug encapsulating efficiency was from 48.8 to 91.3%. Compared with the Cur/PLA-PEG micelles, the size of Cur/PLA-PEG-Fol micelles were from 80 to 86nm and showed better in vitro cellular uptake and cytotoxicity towards HepG2 cells. The cytotoxicity of the NPs however depends much on the PEG component. The results demonstrated that Folate-modified micelles could serve as a potential nano carrier to improve solubility, anti-cancer activity of Cur and targeting ability of the system. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Su, Yu-Cheng; Burnouf, Pierre-Alain; Chuang, Kuo-Hsiang; Chen, Bing-Mae; Cheng, Tian-Lu; Roffler, Steve R.
2017-06-01
Triple-negative breast cancer (TNBC) lacks effective treatment options due to the absence of traditional therapeutic targets. The epidermal growth factor receptor (EGFR) has emerged as a promising target for TNBC therapy because it is overexpressed in about 50% of TNBC patients. Here we describe a PEG engager that simultaneously binds polyethylene glycol and EGFR to deliver PEGylated nanomedicines to EGFR+ TNBC. The PEG engager displays conditional internalization by remaining on the surface of TNBC cells until contact with PEGylated nanocarriers triggers rapid engulfment of nanocargos. PEG engager enhances the anti-proliferative activity of PEG-liposomal doxorubicin to EGFR+ TNBC cells by up to 100-fold with potency dependent on EGFR expression levels. The PEG engager significantly increases retention of fluorescent PEG probes and enhances the antitumour activity of PEGylated liposomal doxorubicin in human TNBC xenografts. PEG engagers with specificity for EGFR are promising for improved treatment of EGFR+ TNBC patients.
Li, Lin; Crow, Desiree; Turatti, Fabio; Bading, James R; Anderson, Anne-Line; Poku, Erasmus; Yazaki, Paul J; Carmichael, Jenny; Leong, David; Wheatcroft, David; Wheatcroft, Michael P; Raubitschek, Andrew A; Hudson, Peter J; Colcher, David; Shively, John E
2011-04-20
Optimal PET imaging of tumors with radiolabeled engineered antibodies requires, among other parameters, matching blood clearance and tumor uptake with the half-life of the engineered antibody. Although diabodies have favorable molecular sizes (50 kDa) for rapid blood clearance (t(1/2) = 30-60 min) and are bivalent, thereby increasing tumor uptake, they exhibit substantial kidney uptake as their major route of clearance, which is especially evident when they are labeled with the PET isotope (64)Cu (t(1/2) = 12 h). To overcome this drawback, diabodies may be conjugated to PEG, a modification that increases the apparent molecular size of the diabody and reduces kidney uptake without adversely affecting tumor uptake or the tumor to blood ratio. We show here that site-specific attachment of monodispersed PEGn of increasing molecular size (n = 12, 24, and 48) can uniformly increase the apparent molecular size of the PEG-diabody conjugate, decrease kidney uptake, and increase tumor uptake, the latter due to the increased residence time of the conjugate in the blood. Since the monodispersed PEGs were preconjugated to the chelator DOTA, the conjugates were able to bind radiometals such as (111)In and (64)Cu that can be used for SPECT and PET imaging, respectively. To allow conjugation of the DOTA-PEG to the diabody, the DOTA-PEG incorporated a terminal cysteine conjugated to a vinyl sulfone moiety. In order to control the conjugation chemistry, we have engineered a surface thiolated diabody that incorporates two cysteines per monomer (four per diabody). The thiolated diabody was expressed and purified from bacterial fermentation and only needs to be reduced prior to conjugation to the DOTA-PEGn-Cys-VS. This novel imaging agent (a diabody with DOTA-PEG48-Cys-VS attached to introduced thiols) gave up to 80%ID/g of tumor uptake with a tumor to blood ratio (T/B) of 8 at 24 h when radiolabeled with (111)In and 37.9% ID/g of tumor uptake (T/B = 8) at 44 h when radiolabeled with (64)Cu in PET imaging in an animal model. Tumor uptake was significantly improved from the 50% ID/g at 24 h observed with diabodies that were pegylated on surface lysine residues. Importantly, there was no loss of immunoreactivity of the site-specific Cys-conjugated diabody to its antigen (TAG-72) compared to the parent, unconjugated diabody. We propose that thiolated diabodies conjugated to DOTAylated monodisperse PEGs have the potential for superior SPECT and PET imaging in a clinical setting.
Grallert, Agnes; Beuter, Christoph; Craven, Rachel A.; Bagley, Steve; Wilks, Deepti; Fleig, Ursula; Hagan, Iain M.
2006-01-01
The Schizosaccharomyces pombe CLIP170-associated protein (CLASP) Peg1 was identified in a screen for mutants with spindle formation defects and a screen for molecules that antagonized EB1 function. The conditional peg1.1 mutant enabled us to identify key features of Peg1 function. First, Peg1 was required to form a spindle and astral microtubules, yet destabilized interphase microtubules. Second, Peg1 was required to slow the polymerization rate of interphase microtubules that establish end-on contact with the cortex at cell tips. Third, Peg1 antagonized the action of S. pombe CLIP170 (Tip1) and EB1 (Mal3). Fourth, although Peg1 resembled higher eukaryotic CLASPs by physically associating with both Mal3 and Tip1, neither Tip1 nor Mal3 was required for Peg1 to destabilize interphase microtubules or for it to associate with microtubules. Conversely, neither Mal3 nor Tip1 required Peg1 to associate with microtubules or cell tips. Consistently, while mal3.Δ and tip1.Δ disrupted linear growth, corrupting peg1 + did not. Fifth, peg1.1 phenotypes resembled those arising from deletion of the single heavy or both light chains of fission yeast dynein. Furthermore, all interphase phenotypes arising from peg1 + manipulation relied on dynein function. Thus, the impact of S. pombe CLASP on interphase microtubule behavior is more closely aligned to dynein than EB1 or CLIP170. PMID:16951255
Lin, Xuliang; Qiu, Xueqing; Zhu, Duming; Li, Zihao; Zhan, Ningxin; Zheng, Jieyi; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie
2015-10-01
Effect of the molecular structure of lignin-based polyoxyethylene ether (EHL-PEG) on enzymatic hydrolysis of Avicel and corn stover was investigated. With the increase of PEG contents and molecular weight of EHL-PEG, glucose yield of corn stover increased. EHL-PEG enhanced enzymatic hydrolysis of corn stover significantly at buffer pH 4.8-5.5. Glucose yield of corn stover at 20% solid content increased from 32.8% to 63.8% by adding EHL-PEG, while that with PEG4600 was 54.2%. Effect of EHL-PEG on enzymatic hydrolysis kinetics of cellulose film was studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). An enhancing mechanism of EHL-PEG on enzymatic hydrolysis kinetics of cellulose was proposed. Cellulase aggregates dispersed by EHL-PEG excavated extensive cavities into the surface of cellulose film, making the film become more loose and exposed. After the maximum enzymatic hydrolysis rate, the film was mainly peeled off layer by layer until equilibrium. Copyright © 2015 Elsevier Ltd. All rights reserved.
Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles.
Lu, Lu; Zheng, Yan; Weng, Shuqiang; Zhu, Wenwei; Chen, Jinhong; Zhang, Xiaomin; Lee, Robert J; Yu, Bo; Jia, Huliang; Qin, Lunxiu
2016-06-01
7-Ethyl-10-hydroxy-comptothecin (SN38) is an active metabolite of irinotecan (CPT-11) and the clinical application of SN38 is limited by its hydrophobicity and instability. To address these issues, a series of novel amphiphilic mPEG-PLA-SN38-conjugates were synthesized by linking SN38 to mPEG-PLA-SA, and they could form micelles by self-assembly. The effects of mPEG-PLA composition were studied in vitro and in vivo. The mean diameters of mPEG2K-PLA-SN38 micelles and mPEG4K-PLA-SN38 micelles were 10-20nm and 120nm, respectively, and mPEG2K-PLA-SN38 micelles showed greater antitumor efficacy than mPEG4K-PLA-SN38 micelles both in vitro and in vivo. These data suggest that the lengths of mPEG and PLA chains had a major impact on the physicochemical characteristics and antitumor activity of SN38-conjugate micelles. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Jiaming; Cao, Lihua; Cui, Yuecheng; Tu, Kehua; Wang, Hongjun; Wang, Li-Qun
2018-01-01
The nano-sized poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) particles with core-shell structure were efficiently prepared by using coaxial tri-capillary electrospray-template removal method. The cellular uptake mechanism, intracellular distribution and exocytosis in A549 cell model of electrosprayed PLA-PEG nanoparticles were systemically studied. The drug release behavior of electrosprayed PLA-PEG nanoparticles were also investigated. Our results showed that PLA-PEG nanoparticles can be endocytosed quickly by A549 cells. The cellular uptake of PLA-PEG nanoparticles was an energy dependent endocytosis process. Caveolae-mediated endocytosis was only one of endocytosis pathways in A549 cells for PLA-PEG nanoparticles, while clathrin mediated endocytosis was not involved in the endocytosis process. The endocytosed PLA-PEG nanoparticles enriched in the head of A549 cells and only a small amount of them was transported into lysosome after 24h incubation. These findings provided insights into the application of electrosprayed PLA-PEG nanoparticles in nano drug delivery field. Copyright © 2017 Elsevier B.V. All rights reserved.
Safety of polyethylene glycol 3350 for the treatment of chronic constipation in children.
Pashankar, Dinesh S; Loening-Baucke, Vera; Bishop, Warren P
2003-07-01
To assess the clinical and biochemical safety profile of long-term polyethylene glycol 3350 (PEG) therapy in children with chronic constipation and to assess pediatric patient acceptance of PEG therapy. Prospective observational study. Pediatric clinics at a referral center. Patients Eighty-three children (44 with chronic constipation, 39 with constipation and encopresis) receiving PEG therapy for more than 3 months. Clinical adverse effects related to PEG therapy and acceptance and compliance with PEG therapy. Serum electrolyte levels, osmolality, albumin levels, and liver and renal function test results were measured. At the time of evaluation, the mean duration of PEG therapy was 8.7 months, and the mean PEG dose was 0.75 g/kg daily. There were no major clinical adverse effects. All blood test results were normal, except for transient minimal alanine aminotransferase elevation unrelated to therapy in 9 patients. All children preferred PEG to previously used laxatives, and daily compliance was measured as good in 90% of children. Long-term PEG therapy is safe and is well accepted by children with chronic constipation with and without encopresis.
Yin, Lei; Su, Chong; Ren, Tianming; Meng, Xiangjun; Shi, Meiyun; Paul Fawcett, J; Zhang, Mengliang; Hu, Wei; Gu, Jingkai
2017-11-06
The covalent attachment of polyethylene glycol (PEG) to therapeutic compounds (known as PEGylation) is one of the most promising techniques to improve the biological efficacy of small molecular weight drugs. After administration, PEGylated prodrugs can be metabolized into pharmacologically active compounds so that PEGylated drug, free drug and released PEG are present simultaneously in the body. Understanding the pharmacokinetic behavior of these three compounds is needed to guide the development of pegylated theranostic agents. However, PEGs are polydisperse molecules with a wide range of molecular weights, so that the simultaneous quantitation of PEGs and PEGylated molecules in biological matrices is very challenging. This article reports the application of a data-independent acquisition method (MS All ) based on liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-q-q-TOF-MS) in the positive ion mode to the simultaneous determination of methoxyPEG2000-doxorubicin (mPEG2K-Dox) and its breakdown products in rat blood. Using the MS All technique, precursor ions of all molecules are generated in q1, fragmented to product ions in q2 (collision cell), and subjected to TOF separation before precursor and product ions are recorded using low and high collision energies (CE) respectively in different experiments for a single sample injection. In this study, dissociation in q2 generated a series of high resolution PEG-related product ions at m/z 89.0611, 133.0869, 177.1102, 221.1366, 265.1622, 309.1878, and 353.2108 corresponding to fragments containing various numbers of ethylene oxide subunits, Dox-related product ions at m/z 321.0838 and 361.0785, and an mPEG2K-Dox specific product ion at m/z 365.0735. Detection of mPEGs and mPEG2K-Dox was based on high resolution extracted ions of mPEG and the specific compound. The method was successfully applied to a pharmacokinetic study of doxorubicin, mPEG2K (methylated polyethylene glycol 2K), and mPEG2K-doxorubicin in rats after a single intravenous injection of mPEG2K-doxorubicin. To the best of our knowledge, this is the first assay that simultaneously determines mPEG, Dox, and mPEG2K-Dox in a biological matrix. We believe the MS All technique as applied in this study can be potentially extended to the determination of other PEGylated small molecules or polymeric compounds.
Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy
NASA Astrophysics Data System (ADS)
Han, Jishu; Zhang, Jingjing; Yang, Meng; Cui, Daxiang; de La Fuente, Jesus M.
2015-12-01
Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future.Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future. Electronic supplementary information (ESI) available: The evolution of the UV-vis absorption of Au NPrs by centrifugation, TEM image of PEG-capped Au NPrs, the UV-vis absorption of glucose, cytotoxicity of Au@PEG-Glc NPrs, gastric cell viabilities versus the concentration of Au@PEG-Glc NPrs and gastric cell viabilities filled with 80 μg Au@PEG-Glc NPrs versus the irradiation time, optoacoustic signals of Au NPr solution and Au@PEG NPrs. See DOI: 10.1039/c5nr06261f
Ashbrook, Sharon E; Wimperis, Stephen
2009-11-21
Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and (27)Al.
Choi, Dongkil; Lee, Woojin; Park, Jinwon; Koh, Wongun
2008-01-01
In this study, poly(ethylene glycol) (PEG)-based hydrogels having different network structures were synthesized by UV-initiated photopolymerization and used for the enzyme immobilization. PEGs with different molecular weight were acrylated by derivatizing both ends with acryloyl chloride and photopolymerization of PEG-diacrylate (PEG-DA) yielded crosslinked hydrogel network within 5 seconds. Attachment of acrylate groups and gelation were confirmed by ATR/FT-IR and FT-Raman spectroscopy. Network structures of hydrogels could be easily controlled by changing the molecular weight (MW) of PEG-DA and characterized by calculating molecular weight between crosslinks and mesh size from the swelling measurement. Synthesis of hydrogels with higher MW of PEG produced less crosslinked hydrogels having higher water content, larger value of Mc and mesh size, which resulted in enhanced mass transfer but loss of mechanical properties. For the enzyme immobilization, glucose oxidase (GOX) was immobilized inside PEG hydrogels by means of physical entrapment and covalent immobilization. Encapsulated GOX were covalently bound to PEG backbone using acryloyl-PEG-N-hydroxysuccinimide and maintained their activity over a week period without leakage. Kinetic study indicated that immobilized enzyme inside hydrogel prepared from higher MW of PEG possessed lower apparent Km (Michaelis-Menten constant) and higher activity.
Gill, Kanwaldeep K; Kaddoumi, Amal; Nazzal, Sami
2015-04-01
PEG-lipid micelles, primarily conjugates of polyethylene glycol (PEG) and distearyl phosphatidylethanolamine (DSPE) or PEG-DSPE, have emerged as promising drug-delivery carriers to address the shortcomings associated with new molecular entities with suboptimal biopharmaceutical attributes. The flexibility in PEG-DSPE design coupled with the simplicity of physical drug entrapment have distinguished PEG-lipid micelles as versatile and effective drug carriers for cancer therapy. They were shown to overcome several limitations of poorly soluble drugs such as non-specific biodistribution and targeting, lack of water solubility and poor oral bioavailability. Therefore, considerable efforts have been made to exploit the full potential of these delivery systems; to entrap poorly soluble drugs and target pathological sites both passively through the enhanced permeability and retention (EPR) effect and actively by linking the terminal PEG groups with targeting ligands, which were shown to increase delivery efficiency and tissue specificity. This article reviews the current state of PEG-lipid micelles as delivery carriers for poorly soluble drugs, their biological implications and recent developments in exploring their active targeting potential. In addition, this review sheds light on the physical properties of PEG-lipid micelles and their relevance to the inherent advantages and applications of PEG-lipid micelles for drug delivery.
Turecek, Peter L; Bossard, Mary J; Schoetens, Freddy; Ivens, Inge A
2016-02-01
Modification of biopharmaceutical molecules by covalent conjugation of polyethylene glycol (PEG) molecules is known to enhance pharmacologic and pharmaceutical properties of proteins and other large molecules and has been used successfully in 12 approved drugs. Both linear and branched-chain PEG reagents with molecular sizes of up to 40 kDa have been used with a variety of different PEG derivatives with different linker chemistries. This review describes the properties of PEG itself, the history and evolution of PEGylation chemistry, and provides examples of PEGylated drugs with an established medical history. A trend toward the use of complex PEG architectures and larger PEG polymers, but with very pure and well-characterized PEG reagents is described. Nonclinical toxicology findings related to PEG in approved PEGylated biopharmaceuticals are summarized. The effect attributed to the PEG part of the molecules as observed in 5 of the 12 marketed products was cellular vacuolation seen microscopically mainly in phagocytic cells which is likely related to their biological function to absorb and remove particles and macromolecules from blood and tissues. Experience with marketed PEGylated products indicates that adverse effects in toxicology studies are usually related to the active part of the drug but not to the PEG moiety. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Recent development of poly(ethylene glycol)-cholesterol conjugates as drug delivery systems.
He, Zhi-Yao; Chu, Bing-Yang; Wei, Xia-Wei; Li, Jiao; Edwards, Carl K; Song, Xiang-Rong; He, Gu; Xie, Yong-Mei; Wei, Yu-Quan; Qian, Zhi-Yong
2014-07-20
Poly(ethylene glycol)-cholesterol (PEG-Chol) conjugates are composed of "hydrophilically-flexible" PEG and "hydrophobically-rigid" Chol molecules. PEG-Chol conjugates are capable of forming micelles through molecular self-assembly and they are also used extensively for the PEGylation of drug delivery systems (DDS). The PEGylated DDS have been shown to display optimized physical stability properties in vitro and longer half-lives in vivo when compared with non-PEGylated DDS. Cell uptake studies have indicated that PEG-Chol conjugates are internalized via clathrin-independent pathways into endosomes and Golgi apparatus. Acid-labile PEG-Chol conjugates are also able to promote the content release of PEGylated DDS when triggered by dePEGylation at acidic conditions. More importantly, biodegradable PEG-Chol molecules have been shown to decrease the "accelerated blood clearance" phenomenon of PEG-DSPE. Ligands, peptides or antibodies which have been modified with PEG-Chols are oftentimes used to formulate active targeting DDS, which have been shown in many systems recently to enhance the efficacy and lower the adverse effects of drugs. Production of PEG-Chol is simple and efficient, and production costs are relatively low. In conclusion, PEG-Chol conjugates appear to be very promising multifunctional biomaterials for many uses in the biomedical sciences and pharmaceutical industries. Copyright © 2014 Elsevier B.V. All rights reserved.
Beugin, S; Edwards, K; Karlsson, G; Ollivon, M; Lesieur, S
1998-01-01
Monomethoxypoly(ethylene glycol) cholesteryl carbonates (M-PEG-Chol) with polymer chain molecular weights of 1000 (M-PEG1000-Chol) and 2000 (M-PEG2000-Chol) have been newly synthesized and characterized. Their aggregation behavior in mixture with diglycerol hexadecyl ether (C16G2) and cholesterol has been examined by cryotransmission electron microscopy, high-performance gel exclusion chromatography, and quasielastic light scattering. Nonaggregated, stable, unilamellar vesicles were obtained at low polymer levels with optimal shape and size homogeneity at cholesteryl conjugate/ lipids ratios of 10 mol% M-PEG1000-Chol or 5 mol% M-PEG2000-Chol, corresponding to the theoretically predicted brush conformational state of the PEG chains. At 20 mol% M-PEG1000-Chol or 10 mol% M-PEG2000-Chol, the saturation threshold of the C16G2/cholesterol membrane in polymer is exceeded, and open disk-shaped aggregates are seen in coexistence with closed vesicles. Higher levels up to 30 mol% lead to the complete solubilization of the vesicles into disk-like structures of decreasing size with increasing PEG content. This study underlines the bivalent role of M-PEG-Chol derivatives: while behaving as solubilizing surfactants, they provide an efficient steric barrier, preventing the vesicles from aggregation and fusion over a period of at least 2 weeks. PMID:9635773
Doménech, José David; Muñoz, Pascual; Capmany, José
2009-11-09
In this paper, a novel technique to set the coupling constant between cells of a coupled resonator optical waveguide (CROW) device, in order to tailor the filter response, is presented. The technique is demonstrated by simulation assuming a racetrack ring resonator geometry. It consists on changing the effective length of the coupling section by applying a longitudinal offset between the resonators. On the contrary, the conventional techniques are based in the transversal change of the distance between the ring resonators, in steps that are commonly below the current fabrication resolution step (nm scale), leading to strong restrictions in the designs. The proposed longitudinal offset technique allows a more precise control of the coupling and presents an increased robustness against the fabrication limitations, since the needed resolution step is two orders of magnitude higher. Both techniques are compared in terms of the transmission esponse of CROW devices, under finite fabrication resolution steps.
Tung, Bui Thanh; Hai, Nguyen Thanh; Son, Phan Ke
2016-01-01
Curcumin has been shown to possess strong cytotoxic effect against various cancer cell lines. However, curcumin has not applied as a drug for treatment of cancer yet due to low solubility in water and low bioavailability. The aims of this study were to prepare a new polyethylene glycol (PEG) conjugated curcumin and to evaluate its antitumor activity in vitro. PEG-CUR was prepared by the reaction between curcumin and PEG. PEG-CUR which was characterized by SEM, TEM, FTIR, DSC and 1H NMR analysis. The physicochemical parameters of PEG-CUR such as zeta potential, size distribution, solubility and percentage of curcumin were also investigated. Our results showed that the percentage of curcumin in PEG-CUR was 13.26 ± 1.25 %. PEG-CUR has nanosize values of 96.3 nm and the zeta potential values of - 48.4 mV. The PEG-CUR showed significantly increasing curcumin's solubility in water and another medium such as in 0,1 N HCl, phosphate buffer pH 4.5 and pH 6.8 solution and n-octanol. Our data also have shown cytotoxicity effect of PEG-CUR was much greater than curcumin-free in two different HepG2 and HCT116 cancer cell lines. It could be concluded from our results that the PEG-CUR may be a potential candidate for cancer treatment. Further studies are needed to evaluate the antitumor efficacy of PEG-CUR in vivo.
NASA Astrophysics Data System (ADS)
Kandel, Prakash K.; Fernando, Lawrence P.; Ackroyd, P. Christine; Christensen, Kenneth A.
2011-03-01
We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG) lipids by reprecipitation. These nanoparticles retain the fundamental spectroscopic properties of conjugated polymer nanoparticles prepared without PEG lipid, but demonstrate greater hydrophilicity and quantum yield compared to unmodified conjugated polymer nanoparticles. The sizes of these nanoparticles, as determined by TEM, were 21-26 nm. Notably, these nanoparticles were prepared with several PEG lipid functional end groups, including biotin and carboxy moieties that can be easily conjugated to biomolecules. We have demonstrated the availability of these end groups for functionalization using the interaction of biotin PEG lipid conjugated polymer nanoparticles with streptavidin. Biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-linked magnetic beads, while carboxy and methoxy PEG lipid modified nanoparticles did not. Similarly, biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-coated glass slides and could be visualized as diffraction-limited spots, while nanoparticles without PEG lipid or with non-biotin PEG lipid end groups were not bound. To demonstrate that nanoparticle functionalization could be used for targeted labelling of specific cellular proteins, biotinylated PEG lipid conjugated polymer nanoparticles were bound to biotinylated anti-CD16/32 antibodies on J774A.1 cell surface receptors, using streptavidin as a linker. This work represents the first demonstration of targeted delivery of conjugated polymer nanoparticles and demonstrates the utility of these new nanoparticles for fluorescence based imaging and sensing.We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG) lipids by reprecipitation. These nanoparticles retain the fundamental spectroscopic properties of conjugated polymer nanoparticles prepared without PEG lipid, but demonstrate greater hydrophilicity and quantum yield compared to unmodified conjugated polymer nanoparticles. The sizes of these nanoparticles, as determined by TEM, were 21-26 nm. Notably, these nanoparticles were prepared with several PEG lipid functional end groups, including biotin and carboxy moieties that can be easily conjugated to biomolecules. We have demonstrated the availability of these end groups for functionalization using the interaction of biotin PEG lipid conjugated polymer nanoparticles with streptavidin. Biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-linked magnetic beads, while carboxy and methoxy PEG lipid modified nanoparticles did not. Similarly, biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-coated glass slides and could be visualized as diffraction-limited spots, while nanoparticles without PEG lipid or with non-biotin PEG lipid end groups were not bound. To demonstrate that nanoparticle functionalization could be used for targeted labelling of specific cellular proteins, biotinylated PEG lipid conjugated polymer nanoparticles were bound to biotinylated anti-CD16/32 antibodies on J774A.1 cell surface receptors, using streptavidin as a linker. This work represents the first demonstration of targeted delivery of conjugated polymer nanoparticles and demonstrates the utility of these new nanoparticles for fluorescence based imaging and sensing. Electronic supplementary information (ESI) available: Additional TEM data, supplemental light scattering measurements, absorbance and fluorescence emission spectra, and photostability measurements. See DOI: 10.1039/c0nr00746c
NASA Astrophysics Data System (ADS)
Kumari, G. Vanitha; Asha, S.; Ananth, A. Nimrodh; Rajan, M. A. Jothi; Mathavan, T.
2018-04-01
Polyethylene glycol (PEG)/Silver (Ag) functionalized reduced graphene oxide aerogel (RGOA) was synthesized. PEG/Ag decorated reduced graphene oxide aerogel was characterized using XRD, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR). The surface morphology of PEG/Ag/RGOA was analyzed using scanning electron microscope. The non-covalent interaction between reduced graphene oxide layers and the interaction between PEG and Ag on RGOA were studied by FT-IR spectra. It was observed that the interaction between Ag and PEG could enhance the properties of RGOA. Methyl Orange (MO) dye degradation was observed from UV-Vis Spectra. The process was studied by monitoring the simultaneous decrease in the height of UV-Vis absorption peak of dye solution. The results show that PEG/RGOA and PEG/Ag/RGOA are an efficient catalyst for dye degradation.
NASA Technical Reports Server (NTRS)
Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton
1988-01-01
Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.
Can pegylated interferon improve the outcome of polycythemia vera patients?
Crisà, Elena; Cerrano, Marco; Beggiato, Eloise; Benevolo, Giulia; Lanzarone, Giuseppe; Manzini, Paola Maria; Borchiellini, Alessandra; Riera, Ludovica; Boccadoro, Mario; Ferrero, Dario
2017-01-13
Pegylated interferon (peg-IFN) was proven by phase II trials to be effective in polycythemia vera (PV); however, it is not clear whether it could improve patient outcome compared to hydroxyurea (HU). Here, we present an observational study on 65 PV patients aged 65 years or younger, who received either peg-IFN (30) or HU (35) according to the physician choice. Median follow-up was 75 months. The two cohorts were comparable for patient and disease characteristics. Eighty-seven percent of the patients treated with peg-INF responded, with a CR rate of 70% as compared to 100 and 49% with HU, respectively. Discontinuation rate was similar in the two groups (20% in peg-IFN vs 17% in HU). JAK2 allele burden was monitored in peg-INF arm only, and a reduction was observed in 88% of the patients. No thrombotic events were observed during peg-IFN treatment compared to three on HU. Disease progression to myelofibrosis or acute myeloid leukemia occurred to a patient only in peg-INF, compared to three in HU. Overall, three second malignancies were observed during the study, two in patients who received HU only, and one in a patient largely treated HU who received also peg-IFN for 3 months. Overall survival was significantly better for peg-IFN patients compared to HU, p = 0.027. Our study, albeit limited by small patient and event number and lack of randomization, confirms the efficacy of peg-INF in PV and shows a significant survival advantage for peg-INF-treated patients. Waiting for confirming data from the ongoing phase III trials, our study can support peg-INF as a first-line treatment option for PV, at least for younger patients.
Cattani-Scholz, Anna; Pedone, Daniel; Blobner, Florian; Abstreiter, Gerhard; Schwartz, Jeffrey; Tornow, Marc; Andruzzi, Luisa
2009-03-09
The synthesis and characterization of two types of silicon-based biofunctional interfaces are reported; each interface bonds a dense layer of poly(ethylene glycol) (PEG(n)) and peptide nucleic acid (PNA) probes. Phosphonate self-assembled monolayers were derivatized with PNA using a maleimido-terminated PEG(45). Similarly, siloxane monolayers were functionalized with PNA using a maleimido-terminated PEG(45) spacer and were subsequently modified with a shorter methoxy-terminated PEG(12) ("back-filling"). The long PEG(45) spacer was used to distance the PNA probe from the surface and to minimize undesirable nonspecific adsorption of DNA analyte. The short PEG(12) "back-filler" was used to provide additional passivation of the surface against nonspecific DNA adsorption. X-ray photoelectron spectroscopic (XPS) analysis near the C 1s and N 1s ionization edges was done to characterize chemical groups formed in the near-surface region, which confirmed binding of PEG and PNA to the phosphonate and silane films. XPS also indicated that additional PEG chains were tethered to the surface during the back-filling process. Fluorescence hybridization experiments were carried out with complementary and noncDNA strands; both phosphonate and siloxane biofunctional surfaces were effective for hybridization of cDNA strands and significantly reduced nonspecific adsorption of the analyte. Spatial patterns were prepared by polydimethylsiloxane (PDMS) micromolding on the PNA-functionalized surfaces; selective hybridization of fluorescently labeled DNA was shown at the PNA functionalized regions, and physisorption at the probe-less PEG-functionalized regions was dramatically reduced. These results show that PNA-PEG derivatized phosphonate monolayers hold promise for the smooth integration of device surface chemistry with semiconductor technology for the fabrication of DNA biosensors. In addition, our results confirm that PNA-PEG derivatized self-assembled carboxyalkylsiloxane films are promising substrates for DNA microarray applications.
Pang, Pengfei; Li, Bing; Hu, Xiaojun; Kang, Zhuang; Guan, Shouhai; Gong, Faming; Meng, Xiaochun; Li, Dan; Huang, Mingsheng; Shan, Hong
2014-04-08
To examine the feasibility and efficacy of using superparamagnetic iron oxide nanoparticles coated with polyethylene glycol-grafted polyethylenimine (PEG-g-PEI-SPION) as a carrier for gene delivery into human adipose derived mesenchymal stem cells (hADMSCs) and in vitro cellular magnetic resonance imaging (MRI). PEG-g-PEI-SPION was synthesized as previously reported. Gel electrophoresis was performed to assess the pDNA condensation capacity of PEG-g-PEI-SPION. The particle size and zeta potential of PEG-g-PEI-SPION/pDNA complexes were determined by dynamic light scattering. Cytotoxicity of PEG-g-PEI-SPION was evaluated by CCK-8 assay with hADMSCs. Gene transfection efficiency of PEG-g-PEI-SPION in hADMSCs was quantified by flow cytometry. The cellular internalization of PEG-g-PEI-SPION/pDNA nanocomplexes was studied by confocal laser scanning microscopy and Prussian blue staining. MRI function of PEG-g-PEI-SPION was studied by in vitro cellular MRI scanning. PEG-g-PEI-SPION condensed pDNA to form stable complexes of 80-100 nm in diameter and showed low cytotoxicity in hADMSCs. At the optimal N/P ratio of 20, PEG-g-PEI-SPION/pDNA obtained the highest transfection efficiency of 22.8% ± 3.6% in hADMSCs. And it was higher than that obtained with lipofectamine 11.2% ± 2.6% (P < 0.05). Furthermore, hADMSCs labeled with PEG-g-PEI-SPION showed sensitive low signal intensity on MRI T2-weighted images in vitro. PEG-g-PEI-SPION is an efficient and MRI-visible nano-vector for gene delivery into hADMSCs.
Ma, Qing; Li, Bo; Yu, Yiyi; Zhang, Ying; Wu, Yang; Ren, Wen; Zheng, Yu; He, Jun; Xie, Yongmei; Song, Xiangrong; He, Gu
2013-03-10
A novel biomaterial poly(ethylene glycol)-block-poly(γ-cholesterol-l-glutamate) (mPEG-PCHLG) was designed and synthesized by introducing cholesterol side chains into this pegylated poly(amino acid) copolymers to enlarge the core space to increase the drug capacity. Paclitaxel (PTX) loaded mPEG-PCHLG nanoparticles (PTX-mPEG-PCHLG-Nps) were developed for the first time. The preparation method of nanoparticles was screened and optimized systemically. The optimal PTX-mPEG-PCHLG-Nps with the average diameter of 213.71 nm were constructed through the O/W single-emulsion solvent evaporation method. The entrapment efficiency and drug loading was 38.02 ± 4.51% and 93.90 ± 4.56%, respectively. PTX-mPEG-PCHLG-Nps were spherical and well-dispersed and displayed a dramatic sustained-release property. The in vitro cytotoxicity experiments demonstrated that the blank mPEG-PCHLG nanoparticles had no cytotoxicities on four tumor cell lines including A549, HepG-2, MCF-7 and C26, which implied that mPEG-PCHLG might be biocompatible. PTX-mPEG-PCHLG-Nps obtained the same cell growth inhibition activities as free PTX when incubated with the above tumor cells for 48h. It can be inferred that PTX-mPEG-PCHLG-Nps could probably have higher anticancer efficacy due to the inadequate release of PTX from nanoparticles. PTX-mPEG-PCHLG-Nps achieved the highest antitumor activity in A549 rather than HepG-2, MCF-7 and C26, thus PTX-mPEG-PCHLG-Nps could have a potential application in lung cancer therapy. All the data indicated that mPEG-PCHLG was one of biocompatible biomaterials and worth being widely investigated as hydrophobic antitumor drug carrier. Copyright © 2013 Elsevier B.V. All rights reserved.
Chapman, R W; Stanghellini, V; Geraint, M; Halphen, M
2013-09-01
Polyethylene glycol (PEG) 3350 plus electrolytes (PEG 3350+E) is an established treatment for constipation and has been proposed as a treatment option for constipation associated with irritable bowel syndrome (IBS-C). This study aimed to compare the efficacy and safety of PEG 3350+E vs. placebo in adult patients with IBS-C. Following a 14-day run-in period without study medication, patients with confirmed IBS-C were randomized to receive PEG 3350+E (N=68) or placebo (N=71) for 28 days. The primary endpoint was the mean number of spontaneous bowel movements (SBMs) per day in the last treatment week. In both groups, mean weekly number of SBMs (±s.d.) increased from run-in. The difference between the groups in week 4 (PEG 3350+E, 4.40±2.581; placebo, 3.11±1.937) was statistically significant (95% confidence interval: 1.17, 1.95; P<0.0001). Although mean severity score for abdominal discomfort/pain was significantly reduced compared with run-in with PEG 3350+E, there was no difference vs. placebo. Spontaneous complete bowel movements, responder rates, stool consistency, and severity of straining also showed superior improvement in the PEG 3350+E group over placebo in week 4. The most common drug related treatment-emergent adverse events were abdominal pain (PEG 3350+E, 4.5%; placebo, 0%) and diarrhoea (PEG 3350+E, 4.5%; placebo, 4.3%). In IBS-C, PEG 3350+E was superior to placebo for relief of constipation, and although a statistically significant improvement in abdominal discomfort/pain was observed compared with baseline, there was no associated improvement compared with placebo. PEG 3350+E is a well-established and effective treatment that should be considered suitable for use in IBS-C.
Zhao, Jing; Feng, Si-Shen
2014-03-01
Drug formulation by ligand conjugated nanoparticles of biodegradable polymers has become one of the most important strategies in drug targeting. We have developed in our previous work nanoparticles of a mixture of two vitamin E TPGS based copolymers PLA-TPGS and TPGS-TOOH with the latter for Herceptin conjugation for targeted delivery of anticancer drugs such as docetaxel to the cancer cells of human epidermal growth factor receptor 2 (HER2) overexpression. In this research, we investigated the effects of the PEG chain length in TPGS, which is in fact a PEGylated vitamin E, on the cellular uptake and cytotoxicity of the drug formulated in the Herceptin-conjugated nanoparticles of PLA-TPGS/TPGS-COOH blend (NPs). Such NPs of PEG1000, PEG2000, PEG3350 and PEG5000, i.e. the PEG of molecule weight 1000, 2000, 3350 and 5000, were prepared by the nanoprecipitation method and characterized for their size and size distribution, drug loading, surface morphology, surface charge and surface chemistry as well as in vitro drug release profile, cellular uptake and cytotoxicity. We found among such nanoparticles, those of PEG1000, i.e. of the shortest PEG tethering chain length, could result in the best therapeutic effects, which are 24.1%, 37.3%, 38.1% more efficient in cellular uptake and 68.1%, 90%, 92.6% lower in IC50 (thus higher in cytotoxicity) than the Herceptin-conjugated nanoparticles of PLA-TPGS/TPGS-COOH blend of PEG2000, PEG3350 and PEG5000 respectively in treatment of SK-BR-3 cancer cells which are of high HER2 overexpression. We provided a theoretical explanation from surface mechanics and thermodynamics for endocytosis of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Quan; Zhang, Xuanmiao; Chen, Tijia; Wang, Xinyi; Fu, Yao; Jin, Yun; Sun, Xun; Gong, Tao; Zhang, Zhirong
2015-05-01
A safe and efficient liver targeted PEGylated liposome (PEG-Lip) based on N-terminal myristoylated preS1/21-47 (preS1/21-47myr) of hepatitis B virus was successfully developed. The study aimed to elucidate the cellular uptake mechanism of preS1/21-47myr modified PEG-Lip (preS1/21-47myr-PEG-Lip) in hepatogenic cells and the distribution behavior of preS1/21-47myr-PEG-Lip in Vr:CD1 (ICR) mice. The cellular uptake results showed that preS1/21-47myr-PEG-Lip was effectively taken up by hepatogenic cells (including primary hepatocytes and liver tumor cells) through a receptor-mediated endocytosis pathway compared with non-hepatogenic cells. After systemic administration to H22 hepatoma-bearing mice, preS1/21-47myr-PEG-Lip showed significant liver-specific delivery and an increase in the distribution of preS1/21-47myr-PEG-Lip in hepatic tumor. Furthermore, the antitumor effect of preS1/21-47myr-PEG-Lip loaded with paclitaxel (PTX) was remarkably stronger than that of PTX injection and PTX loaded liposomes (including common liposomes and PEG-Lip). In safety evaluation, no acute systemic toxicity and immunotoxicity were observed after intravenous injection of preS1/21-47myr-PEG-Lip. No liver toxicity was observed despite the dramatic increase of preS1/21-47myr-PEG-Lip in liver. Taken together, preS1/21-47myr-PEG-Lip represents a promising carrier system for targeted liver disease therapy and imaging.
NASA Astrophysics Data System (ADS)
Jin, Jiting; Fu, Wandong; Liao, Miaofei; Han, Baoqin; Chang, Jing; Yang, Yan
2017-10-01
In the present study, galactosylated chitosan (Gal-CS) was conjugated with methoxy poly(ethylene glycol) (mPEG) as a hydrophilic group. The structure of Gal-CS-mPEG polymer was characterized and the nanoparticles (NPs) were prepared using ironic gelation method. The study was designed to investigate the characteristics and functions of Gal-CS-mPEG NPs. The morphology of Gal-CS-mPEG NPs was observed by SEM and it was a compact and spherical shape. The size of the NPs was approximately 200 nm in diameter under the ideal process parameters. The interaction between Gal-CS-mPEG NPs and pDNA, and the protection of pDNA against DNase I and serum degradation by Gal-CS-mPEG NPs were evaluated. Agarose gel electrophoresis results showed that Gal-CS-mPEG NPs had strong interaction with pDNA at the weight ratio of 12:1, 4:1 and 2:1 and could protect pDNA from DNase I and serum degradation. Gal-CS-mPEG NPs exhibited high loading efficiency and sustainable in vitro release. The blood compatibility studies demonstrated that Gal-CS-mPEG NPs had superior compatibility with erythrocytes in terms of aggregation degree and hemolysis level. Gal-CS-mPEG NPs showed no cytotoxicity on L929 cells, which is a normal mouse connective tissue fibroblast, but showed inhibitory effects on the proliferation of Bel-7402 cells, which is a liver cancer cell line. In conclusion, Gal-CS-mPEG NP is a bio-safe and efficient gene carrier with potential application in gene delivery.
Jiang, Cho-Pei; Chen, Yo-Yu; Hsieh, Ming-Fa; Lee, Hung-Maan
2013-04-01
Bone tissue engineering is an emerging approach to provide viable substitutes for bone regeneration. Poly(ethylene glycol) (PEG) is a good candidate of bone scaffold because of several advantages such as hydrophilicity, biocompatibility, and intrinsic resistance to protein adsorption and cell adhesion. However, its low compressive strength limits application for bone regeneration. Poly(ε-caprolactone) (PCL), a hydrophobic nonionic polymer, is adopted to enhance the compressive strength of PEG alone.We aimed to investigate the in-vitro response of osteoblast-like cells cultured with porous scaffolds of triblock PEG-PCL-PEG copolymer fabricated by an air pressure-aided deposition system. A desktop air pressure-aided deposition system that involves melting and plotting PEG-PCL-PEG was used to fabricate three-dimensional scaffolds having rectangular pores. The experimental results showed that PEG-PCL-PEG with a molecular weight of 25,000 can be melted and stably deposited through a heating nozzle at an air pressure of 0.3 MPa and no crack occurs after it solidifies. The scaffolds with pre-determined pore size of 400× 420 μm and a porosity of 79 % were fabricated, and their average compressive strength was found to be 18.2 MPa. Osteoblast-like cells, MC3T3-E1, were seeded on fabricated scaffolds to investigate the in-vitro response of cells including toxicity and cellular locomotion. In a culture period of 28 days, the neutral-red stained osteoblasts were found to well distributed in the interior of the scaffold. Furthermore, the cellular attachment and movement in the first 10 h of cell culture were observed with time-lapse microscopy indicating that the porous PEG-PCL-PEG scaffolds fabricated by air pressure-aided deposition system is non-toxicity for osteoblast-like cells.
Johansson, Hans-Olof; Matos, Tiago; Luz, Juliana S; Feitosa, Eloi; Oliveira, Carla C; Pessoa, Adalberto; Bülow, Leif; Tjerneld, Folke
2012-04-13
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na(2)SO(4) systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coli can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coli homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na(2)SO(4)-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. Copyright © 2012 Elsevier B.V. All rights reserved.
Naproxen conjugated mPEG-PCL micelles for dual triggered drug delivery.
Karami, Zahra; Sadighian, Somayeh; Rostamizadeh, Kobra; Parsa, Maliheh; Rezaee, Saeed
2016-04-01
A conjugate of the NSAIDs drug, naproxen, with diblock methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) copolymer was synthesized by the reaction of copolymer with naproxen in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. The naproxen conjugated copolymers were characterized with different techniques including (1)HNMR, FTIR, and DSC. The naproxen conjugated mPEG-PCL copolymers were self-assembled into micelles in aqueous solution. The TEM analysis revealed that the micelles had the average size of about 80 nm. The release behavior of conjugated copolymer was investigated in two different media with the pH values of 7.4 and 5.2. In vitro release study showed that the drug release rate was dependant on pH as it was higher at lower pH compared to neutral pH. Another feature of the conjugated micelles was a more sustained release profile compared to the conjugated copolymer. The kinetic of the drug release from naproxen conjugated micelles under different values of pH was also investigated by different kinetic models such as first-order, Makoid-Banakar, Weibull, Logistic, and Gompertz. Copyright © 2015 Elsevier B.V. All rights reserved.
Hodgson, Derek J; Aubin, Yves
2017-05-10
A number of recombinant protein therapeutic products, such as filgrastim (methionyl granulocyte colony stimulating factor [Met-GCSF] used to boost the immune system in chemotherapy treated cancer patients), and interferon alpha-2 (used for the treatment of various viral infections), have been chemically modified with the addition of a polyethylene glycol (PEG) chain. This modification prolongs residency of the drug in the body and reduces metabolic degradation, which allows less frequent administration of the products. Here we show how NMR spectroscopy methods can assess the higher order structure (HOS) of pegylated-filgrastim (Neulasta®), pegylated interferon-α2a (Pegasys®) pegylated interferon-α2b (PEG-Intron®) purchased from the marketplace. The addition of the PEG moiety effectively doubles the molecular weight of the three products. This presents a significant challenge for the application of NMR techniques. Nevertheless, the results showed that high-resolution spectra could be recorded for two of the three products. Comparison of the spectra of the pegylated protein and the non-pegylated protein shows that the chemical modification did not alter the HOS of these proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Polyethylene-Glycol-Mediated Self-Assembly of Magnetite Nanoparticles at the Liquid/Vapor Interface
Vaknin, David; Wang, Wenjie; Islam, Farhan; ...
2018-03-23
It is shown that magnetite nanoparticles (MagNPs) grafted with polyethylene glycol (PEG) self-assemble and short-range-order as 2D films at surfaces of aqueous suspensions by manipulating salt concentrations. Synchrotron X-ray reflectivity and grazing-incidence small angle X-ray scattering studies reveal that K 2CO 3 induces the migration of the PEG-MagNPs to the liquid/vapor interface to form a Gibbs layer of monoparticle in thickness. As the salt concentration and/or nanoparticle concentration increase, the surface-adsorbed nanoparticles become more organized. And further increase in salt concentration leads to the growth of an additional incomplete nanoparticle layer contiguous to the first one at the vapor/liquid interfacemore » that remains intact.« less
Polyethylene-Glycol-Mediated Self-Assembly of Magnetite Nanoparticles at the Liquid/Vapor Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaknin, David; Wang, Wenjie; Islam, Farhan
It is shown that magnetite nanoparticles (MagNPs) grafted with polyethylene glycol (PEG) self-assemble and short-range-order as 2D films at surfaces of aqueous suspensions by manipulating salt concentrations. Synchrotron X-ray reflectivity and grazing-incidence small angle X-ray scattering studies reveal that K 2CO 3 induces the migration of the PEG-MagNPs to the liquid/vapor interface to form a Gibbs layer of monoparticle in thickness. As the salt concentration and/or nanoparticle concentration increase, the surface-adsorbed nanoparticles become more organized. And further increase in salt concentration leads to the growth of an additional incomplete nanoparticle layer contiguous to the first one at the vapor/liquid interfacemore » that remains intact.« less
Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J
1995-01-01
We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface. PMID:8534807
Pharmacokinetic analysis of multi PEG-theophylline conjugates.
Grassi, Mario; Bonora, Gian Maria; Drioli, Sara; Cateni, Francesca; Zacchigna, Marina
2012-10-01
In the attempt of prolonging the effect of drugs, a new branched, high-molecular weight multimeric poly(ethylene glycol) (MultiPEG), synthesized with a simple assembling procedure that devised the introduction of functional groups with divergent and selective reactivity, was employed as drug carrier. In particular, the attention was focused on the study of theophylline (THEO) and THEO-MultiPEG conjugates pharmacokinetic after oral administration in rabbit. Pharmacokinetic behavior was studied according to an ad hoc developed mathematical model accounting for THEO-MultiPEG in vivo absorption and decomposition into drug (THEO) and carrier (MultiPEG). The branched high-molecular weight MultiPEG proved to be a reliable drug delivery system able to prolong theophylline staying in the blood after oral administration of a THEO-MultiPEG solution. The analysis of experimental data by means of the developed mathematical model revealed that the prolongation of THEO effect was essentially due to the low THEO-MultiPEG permeability in comparison to that of pure THEO. Copyright © 2012 Elsevier Ltd. All rights reserved.
Informed peg-in-hole insertion using optical sensors
NASA Astrophysics Data System (ADS)
Paulos, Eric; Canny, John F.
1993-08-01
Peg-in-hole insertion is not only a longstanding problem in robotics but the most common automated mechanical assembly task. In this paper we present a high precision, self-calibrating peg-in-hole insertion strategy using several very simple, inexpensive, and accurate optical sensors. The self-calibrating feature allows us to achieve successful dead-reckoning insertions with tolerances of 25 microns without any accurate initial position information for the robot, pegs, or holes. The program we implemented works for any cylindrical peg, and the sensing steps do not depend on the peg diameter, which the program does not know. The key to the strategy is the use of a fixed sensor to localize both a mobile sensor and the peg, while the mobile sensor localizes the hole. Our strategy is extremely fast, localizing pegs as they are in route to their insertion location without pausing. The result is that insertion times are dominated by the transport time between pick and place operations.
Ryan, C M; Yarmush, M L; Tompkins, R G
1992-04-01
Polyethylene glycol 3350 (PEG 3350) is useful as an orally administered probe to measure in vivo intestinal permeability to macromolecules. Previous methods to detect polyethylene glycol (PEG) excreted in the urine have been hampered by inherent inaccuracies associated with liquid-liquid extraction and turbidimetric analysis. For accurate quantitation by previous methods, radioactive labels were required. This paper describes a method to separate and quantitate PEG 3350 and PEG 400 in human urine that is independent of radioactive labels and is accurate in clinical practice. The method uses sized regenerated cellulose membranes and mixed ion-exchange resin for sample preparation and high-performance liquid chromatography with refractive index detection for analysis. The 24-h excretion for normal individuals after an oral dose of 40 g of PEG 3350 and 5 g of PEG 400 was 0.12 +/- 0.04% of the original dose of PEG 3350 and 26.3 +/- 5.1% of the original dose of PEG 400.
Marcińska, Izabela; Czyczyło-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T.; Janowiak, Franciszek; Filek, Maria; Dziurka, Michał; Dziurka, Kinga; Waligórski, Piotr; Juzoń, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanisław
2013-01-01
The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity. PMID:23803653
Zorzi, Manuel; Valiante, Flavio; Germanà, Bastianello; Baldassarre, Gianluca; Coria, Bartolomea; Rinaldi, Michela; Heras Salvat, Helena; Carta, Alessandra; Bortoluzzi, Francesco; Cervellin, Erica; Polo, Maria Luisa; Bulighin, Gianmarco; Azzurro, Maurizio; Di Piramo, Daniele; Turrin, Anna; Monica, Fabio
2016-03-01
The high volume and poor palatability of 4 L of polyethylene glycol (PEG)-based bowel cleansing preparation required before a colonoscopy represent a major obstacle for patients. The aim of this study was to compare two low volume PEG-based preparations with standard 4 L PEG in individuals with a positive fecal immunochemical test (FIT) within organized screening programs in Italy. A total of 3660 patients with a positive FIT result were randomized to receive, in a split-dose regimen, 4 L PEG or 2 L PEG plus ascorbate (PEG-A) or 2 L PEG with citrate and simethicone plus bisacodyl (PEG-CS). The noninferiority of the low volume preparations vs. 4 L PEG was tested through the difference in proportions of adequate cleansing. A total of 2802 patients were included in the study. Adequate bowel cleansing was achieved in 868 of 926 cases (93.7 %) in the 4 L PEG group, in 872 out of 911 cases in the PEG-A group (95.7 %, difference in proportions + 1.9 %, 95 % confidence interval [CI] - 0.1 to 3.9), and in 862 out of 921 cases in the PEG-CS group (93.6 %, difference in proportions - 0.2 %, 95 %CI - 2.4 to 2.0). Bowel cleansing was adequate in 95.5 % of cases when the preparation-to-colonoscopy interval was between 120 and 239 minutes, whereas it dropped to 83.3 % with longer intervals. Better cleansing was observed in patients with regular bowel movements (95.6 %) compared with those with diarrhea (92.4 %) or constipation (90.8 %). Low volume PEG-based preparations administered in a split-dose regimen guarantee noninferior bowel cleansing compared with 4 L PEG. Constipated patients require a personalized preparation. EudraCT 2012 - 003958 - 82. © Georg Thieme Verlag KG Stuttgart · New York.
Li, Wenjing; Li, Xinru; Gao, Yajie; Zhou, Yanxia; Ma, Shujin; Zhao, Yong; Li, Jinwen; Liu, Yan; Wang, Xinglin; Yin, Dongdong
2014-01-06
The present study aimed to investigate the effect of monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid) (mPEG-PLA) on the activity of P-glycoprotein (P-gp) in Caco-2 cells and further unravel the relationship between PLA chain length in mPEG-PLA and influence on P-gp efflux and the action mechanism. The transport results of rhodamine 123 (R123) across Caco-2 cell monolayers suggested that mPEG-PLA unimers were responsible for its P-gp inhibitory effect. Furthermore, transport studies of R123 revealed that the inhibitory potential of P-gp efflux by mPEG-PLA analogues was strongly correlated with their structural features and showed that the hydrophilic mPEG-PLA copolymers with an intermediate PLA chain length and 10.20 of hydrophilic-lipophilic balance were more effective at inhibiting P-gp efflux in Caco-2 cells. The fluorescence polarization measurement results ruled out the plasma membrane fluidization as a contributor for inhibition of P-gp by mPEG-PLA. Concurrently, mPEG-PLA inhibited neither basal P-gp ATPase (ATP is adenosine triphosphate) activity nor substrate stimulated P-gp ATPase activity, suggesting that mPEG-PLA seemed not to be a substrate of P-gp and a competitive inhibitor. No evident alteration in P-gp surface level was detected by flow cytometry upon exposure of the cells to mPEG-PLA. The depletion of intracellular ATP, which was likely to be a result of partial inhibition of cellular metabolism, was directly correlated with inhibitory potential for P-gp mediated efflux by mPEG-PLA analogues. Hence, intracellular ATP-depletion appeared to be possible explanation to the inhibition mechanism of P-gp by mPEG-PLA. Taken together, the establishment of a relationship between PLA chain length and impact on P-gp efflux activity and interpretation of action mechanism of mPEG-PLA on P-gp are of fundamental importance and will facilitate future development of mPEG-PLA in the drug delivery area.
Li, Tianshu; Takeoka, Shinji
2013-01-01
Maleimide is a stable and easy-to-handle moiety that rapidly and covalently conjugates thiol groups of cysteine residues in proteins or peptides. Herein, we use maleimide to modify the surface of liposomes in order to obtain an advanced drug delivery system. Employing a small amount (0.3 mol%) of maleimide-polyethylene glycol (PEG) to modify the surface of the liposomes M-GGLG-liposomes, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate (GGLG)/cholesterol/poly(ethylene glycol) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (PEG5000-DSPE)/maleimide-PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03, drug delivery efficiency was remarkably improved both in vitro and in vivo compared to unmodified liposomes (GGLG-liposomes, composed of GGLG/cholesterol/PEG5000-DSPE/PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03). Moreover, this modification did not elicit any detectable increase in cytotoxicity. The maleimide-modification did not alter the physical characteristics of the liposomes such as size, zeta potential, pH sensitivity, dispersibility and drug encapsulation efficiency. However, M-GGLG-liposomes were more rapidly (≥2-fold) internalized into HeLa, HCC1954, and MDA-MB-468 cells compared to GGLG-liposomes. In vivo, M-GGLG-liposomes encapsulating doxorubicin (M-GGLG-DOX-liposomes) also showed a more potent antitumor effect than GGLG-DOX-liposomes and the widely used 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-DOX-liposomes after two subcutaneous injections around breast cancer tissue in mice. The biodistribution of liposomes in this model was observed using an in vivo imaging system, which showed that M-GGLG-liposomes were present for significantly longer at the injection site compared to GGLG-liposomes. The outstanding biological functions of the maleimide-modified liposomes as a novel drug delivery system make them ideally suited to a wide range of applications.
Li, Tianshu; Takeoka, Shinji
2013-01-01
Maleimide is a stable and easy-to-handle moiety that rapidly and covalently conjugates thiol groups of cysteine residues in proteins or peptides. Herein, we use maleimide to modify the surface of liposomes in order to obtain an advanced drug delivery system. Employing a small amount (0.3 mol%) of maleimide-polyethylene glycol (PEG) to modify the surface of the liposomes M-GGLG-liposomes, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate (GGLG)/cholesterol/poly(ethylene glycol) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (PEG5000-DSPE)/maleimide-PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03, drug delivery efficiency was remarkably improved both in vitro and in vivo compared to unmodified liposomes (GGLG-liposomes, composed of GGLG/cholesterol/PEG5000-DSPE/PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03). Moreover, this modification did not elicit any detectable increase in cytotoxicity. The maleimide-modification did not alter the physical characteristics of the liposomes such as size, zeta potential, pH sensitivity, dispersibility and drug encapsulation efficiency. However, M-GGLG-liposomes were more rapidly (≥2-fold) internalized into HeLa, HCC1954, and MDA-MB-468 cells compared to GGLG-liposomes. In vivo, M-GGLG-liposomes encapsulating doxorubicin (M-GGLG-DOX-liposomes) also showed a more potent antitumor effect than GGLG-DOX-liposomes and the widely used 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-DOX-liposomes after two subcutaneous injections around breast cancer tissue in mice. The biodistribution of liposomes in this model was observed using an in vivo imaging system, which showed that M-GGLG-liposomes were present for significantly longer at the injection site compared to GGLG-liposomes. The outstanding biological functions of the maleimide-modified liposomes as a novel drug delivery system make them ideally suited to a wide range of applications. PMID:24143089
DC coupled Doppler radar physiological monitor.
Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga
2011-01-01
One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.
Learning Low-Rank Decomposition for Pan-Sharpening With Spatial-Spectral Offsets.
Yang, Shuyuan; Zhang, Kai; Wang, Min
2017-08-25
Finding accurate injection components is the key issue in pan-sharpening methods. In this paper, a low-rank pan-sharpening (LRP) model is developed from a new perspective of offset learning. Two offsets are defined to represent the spatial and spectral differences between low-resolution multispectral and high-resolution multispectral (HRMS) images, respectively. In order to reduce spatial and spectral distortions, spatial equalization and spectral proportion constraints are designed and cast on the offsets, to develop a spatial and spectral constrained stable low-rank decomposition algorithm via augmented Lagrange multiplier. By fine modeling and heuristic learning, our method can simultaneously reduce spatial and spectral distortions in the fused HRMS images. Moreover, our method can efficiently deal with noises and outliers in source images, for exploring low-rank and sparse characteristics of data. Extensive experiments are taken on several image data sets, and the results demonstrate the efficiency of the proposed LRP.
An Experimental Investigation of Potential Icing of the Space Shuttle External Tank,
1982-09-01
PEG 4000, a PEG 1000/400 mixture, and PEG 6000. The number corresponds to the molecular weight of the compound. 2 4.65m Foam Inslation Side 8 ob o 4m(l...Level Emiseivity panel (PEG coated) (Uncoated) Emissivity Panel Left Right 1 4.4 -28.8 -31.6 4.7 -12.2 -15.3 2 4.4 -20.2 -22.2 4.7 -12.8 -13.4 3 4.3...constant dry bulb temperature of 60*F. PEG was tested on one half of side A of the panel. A mixture of 450 g of molecular weight 4000 PEG and 400 g of H20
Effects of PEG4000 template on sol-gel synthesis of porous cerium titanate photocatalyst
NASA Astrophysics Data System (ADS)
Zhang, Wenjie; Tao, Yingjie; Li, Chuanguo
2018-04-01
Porous cerium titanate was synthesized by sol-gel method, using polyethylene glycol (PEG4000) as template agent. Brannerite structured CeTi2O6 in monoclinic system is the major substance formed in the materials. Formation of CeO2 and rutile TiO2 depends on the amount of PEG4000. The addition of PEG4000 leads to production of fine particles in the samples, but it does not apparently affect the band gap energy. Pore volume of the cerium titanate sample continuously increases with rising PEG4000 amount. The sample obtained using 3.5 g PEG4000 has BET surface area of 16.2 m2/g and pore volume of 0.0232 cm3/g. The addition of PEG4000 can obviously promote photocatalytic activity of cerium titanate, which can be proven by both enhanced production of hydroxyl radical and ofloxacin degradation efficiency. As much as 95.2% of the initial ofloxacin molecules are removed from the solution after 50 min of photocatalytic degradation on the cerium titanate obtained using 3.5 g PEG4000, while only 48.4% ofloxacin is removed on cerium titanate obtained without PEG4000.
Effect of polyethylene glycol on the liquid–liquid phase transition in aqueous protein solutions
Annunziata, Onofrio; Asherie, Neer; Lomakin, Aleksey; Pande, Jayanti; Ogun, Olutayo; Benedek, George B.
2002-01-01
We have studied the effect of polyethylene glycol (PEG) on the liquid–liquid phase separation (LLPS) of aqueous solutions of bovine γD-crystallin (γD), a protein in the eye lens. We observe that the phase separation temperature increases with both PEG concentration and PEG molecular weight. PEG partitioning, which is the difference between the PEG concentration in the two coexisting phases, has been measured experimentally and observed to increase with PEG molecular weight. The measurements of both LLPS temperature and PEG partitioning in the ternary γD-PEG-water systems are used to successfully predict the location of the liquid–liquid phase boundary of the binary γD-water system. We show that our LLPS measurements can be also used to estimate the protein solubility as a function of the concentration of crystallizing agents. Moreover, the slope of the tie-lines and the dependence of LLPS temperature on polymer concentration provide a powerful and sensitive check of the validity of excluded volume models. Finally, we show that the increase of the LLPS temperature with PEG concentration is due to attractive protein–protein interactions. PMID:12391331
Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes
NASA Astrophysics Data System (ADS)
Kumar, M.; Klimke, S.; Preiss, A.; Unruh, D.; Wengerowsky, D.; Lehmann, R.; Sindelar, R.; Klingelhöfer, G.; Boča, R.; Renz, F.
2017-11-01
An electrospinning technique was used to fabricate PLA, PLA-PEG and PLA-PEG-MNPs composite fibrous membranes. The morphology of electrospun composite membranes were characterized by scanning electron microscope. To test the potential availability of MNPs in PLA-PEG composite membranes, TG, Raman, Mössbauer, VSM and ICP-OES analysis were used. The PLA-PEG composite fibrous membranes showed the presence of MNPs, hence offers the possibility for magnetically triggered on-demand drug delivery.
Cellular delivery of PEGylated PLGA nanoparticles.
Pamujula, Sarala; Hazari, Sidhartha; Bolden, Gevoni; Graves, Richard A; Chinta, Dakshinamurthy Devanga; Dash, Srikanta; Kishore, Vimal; Mandal, Tarun K
2012-01-01
The objective of this study was to investigate the efficiency of uptake of PEGylated polylactide-co-gycolide (PLGA) nanoparticles by breast cancer cells. Nanoparticles of PLGA containing various amounts of polyethylene glycol (PEG, 5%-15%) were prepared using a double emulsion solvent evaporation method. The nanoparticles were loaded with coumarin-6 (C6) as a fluorescence marker. The particles were characterized for surface morphology, particle size, zeta potential, and for cellular uptake by 4T1 murine breast cancer cells. Irrespective of the amount of PEG, all formulations yielded smooth spherical particles. However, a comparison of the particle size of various formulations showed bimodal distribution of particles. Each formulation was later passed through a 1.2 µm filter to obtain target size particles (114-335 nm) with zeta potentials ranging from -2.8 mV to -26.2 mV. While PLGA-PEG di-block (15% PEG) formulation showed significantly higher 4T1 cellular uptake than all other formulations, there was no statistical difference in cellular uptake among PLGA, PLGA-PEG-PLGA tri-block (10% PEG), PLGA-PEG di-block (5% PEG) and PLGA-PEG di-block (10% PEG) nanoparticles. These preliminary findings indicated that the nanoparticle formulation prepared with 15% PEGylated PLGA showed maximum cellular uptake due to it having the smallest particle size and lowest zeta potential. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
A method to optimize PEG-coating of red blood cells.
Hashemi-Najafabadi, Sameereh; Vasheghani-Farahani, Ebrahim; Shojaosadati, Seyed Abbas; Rasaee, Mohammad Javad; Armstrong, Jonathan K; Moin, Mostafa; Pourpak, Zahra
2006-01-01
Alloimmunization to donor blood group antigens remains a significant problem in transfusion medicine. A proposed method to overcome donor-recipient blood group incompatibility is to mask the blood group antigens by the covalent attachment of poly(ethylene glycol) (PEG) to the red blood cell (RBC) membrane. Despite much work in the development of PEG-coating of RBCs, there is a paucity of data on the optimization of the PEG-coating technique; it is the aim of this study to determine the optimum conditions for PEG coating using a cyanuric chloride reactive derivative of methoxy-PEG as a model polymer. Activated PEG of molecular mass 5 kDa was covalently attached to human RBCs under various reaction conditions. Inhibition of binding of a blood-type specific antiserum (anti-D) was employed to evaluate the effect of the PEG-coating, quantified by hemocytometry and flow-cytometry. RBC morphology was examined by light and scanning electron microscopy. Statistical analysis of experimental design together with microscopy results showed that the optimum PEGylation conditions are pH = 8.7, temperature = 14 degrees C, and reaction time = 30 min. An optimum concentration of reactive PEG could not be determined. At high polymer concentrations (>25 mg/mL) a predominance of type III echinocytes was observed, and as a result, a concentration of 15 mg/mL is the highest recommended concentration for a linear PEG of molecular mass 5 kDa.
Applied automatic offset detection using HECTOR within EPOS-IP
NASA Astrophysics Data System (ADS)
Fernandes, R. M. S.; Bos, M. S.
2016-12-01
It is well known that offsets are present in most GNSS coordinate time series. These offsets need to be taken into account in the analysis to avoid incorrect estimation of the tectonic motions. The time of the offsets are normally determined by visual inspection of the time series but with the ever increasing amount of GNSS stations, this is becoming too time consuming and automatic offset detection algorithms are required. This is particularly true in projects like EPOS (European Plate Observing System), where the routinely analysis of thousands of daily time-series will be required. It is also planned to include stations installed for technical applications which metadata is also not always properly maintained. In this research we present an offset detection scheme that uses the Bayesian Information Criterion (BIC) to determine the most likely time of an offset. The novelty of this scheme is that it takes the temporal correlation of the noise into account. This aspect is normally ignored due to the fact that it significantly increases the computation time. However, it needs to be taken into account to ensure that the estimated BIC value is correct. We were able to create a fast algorithm by adopting the methodology implemented in HECTOR (Bos et al., 2013). We evaluate the feasibility of the approach using the core IGS network, where most of the offsets have been accurately determined, which permit to have an external evaluation of this new outlier detection approach to be included in HECTOR. We also apply the scheme to regional networks in Iberia where such offsets are often not documented properly in order to compare the normal manual approach with the new automatic approach. Finally, we also compare the optimal approach used by HECTOR with other algorithms such as MIDAS and STARS.
Sahiner, Umit M; Yavuz, S Tolga; Gökce, Muge; Buyuktiryaki, Betul; Altan, Ilhan; Aytac, Selin; Tuncer, Murat; Tuncer, Ayfer; Sackesen, Cansin
2013-08-01
In hypersensitive reactions to native L-asparaginase, either premedication and desensitization or substitution with polyethylene glycol conjugated asparaginase (PEG-ASP) is preferred. Anaphylaxis with PEG-ASP is rare. An 8-year-old girl and a 2.5-year-old boy, both diagnosed as having acute lymphoblastic leukemia, presented with native L-asparaginase hypersensitivity and substitution with PEG-ASP was preferred. They received a premedication (methylprednisolone, hydroxyzine and ranitidine) followed by desensitization with PEG-ASP infusion. Both patients developed anaphylaxis with peg-asparaginase. These are the first reported cases of anaphylactic reaction to PEG-ASP, despite the application of both premedication and desensitization. Anaphylaxis with PEG-ASP is very rare and premedication and desensitization protocols may not prevent these hypersensitive reactions. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.
Yao, Xinglei; Yoshioka, Yasuo; Morishige, Tomohiro; Eto, Yusuke; Narimatsu, Shogo; Mizuguchi, Hiroyuki; Mukai, Yohei; Okada, Naoki; Nakagawa, Shinsaku
2010-01-01
Cancer gene therapy with adenovirus vectors (Adv) is limited to local administration because systemic administration of Adv produces a weak therapeutic effect and severe side effects. Previously, we generated a dual cancer-specific Adv system by using Adv covalently conjugated to polyethylene glycol (PEG) for transductional targeting and the telomere reverse transcriptase (TERT) promoter as a cancer-specific promoter for transcriptional targeting (PEG-Ad-TERT). We demonstrated that systemic administration of PEG-Ad-TERT showed superior antitumor effects against lung metastatic cancer with negligible side effects. Here, we investigated the therapeutic efficacy of systemic administration of PEG-Ad-TERT for the treatment of primary tumors. We first evaluated the transgene expression of PEG-Ad-TERT containing the luciferase gene (PEG-Ad-TERT/Luc) in primary tumors. Systemic administration of PEG-Ad-TERT/Luc resulted high transgene expression, similar to that observed in tumors for the conventional cytomegalovirus (CMV) promoter-driven Adv containing the luciferase gene (Ad-CMV/Luc). By comparison, transgene expression was 2500-fold lower than that of Ad-CMV/Luc in liver. We then examined the therapeutic effect of systemic administration of PEG-Ad-TERT containing the herpes simplex virus thymidine kinase (HSVtk) gene (PEG-Ad-TERT/HSVtk) for the treatment of primary tumors. We showed that PEG-Ad-TERT/HSVtk produced a notable antitumor effect against primary tumors with negligible side effects. These results demonstrated that PEG-Ad-TERT can be regarded as a prototype Adv with suitable efficacy and safety for systemic cancer gene therapy against both metastatic and primary tumors.
Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R
2016-03-15
Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Chun; Fan, Kai; Luo, Hua; Ma, Xuefeng; Liu, Riyong; Yang, Li; Hu, Chunlan; Chen, Zhenmin; Min, Zhiqiang; Wei, Dongzhi
2012-07-01
PEGylated uricase is a promising anti-gout drug, but the only commercially marketed 10kDa mPEG modified porcine-like uricase (Pegloticase) can only be used for intravenous infusion. In this study, tetrameric canine uricase variant was modified by covalent conjugation of all accessible ɛ amino sites of lysine residues with a smaller 5kDa mPEG (mPEG-UHC). The average modification degree and PEGylation homogeneity were evaluated. Approximately 9.4 5 kDa mPEG chains were coupled to each monomeric uricase and the main conjugates contained 7-11 mPEG chains per subunit. mPEG-UHC showed significantly therapeutic or preventive effect on uric acid nephropathy and acute urate arthritis based on three different animal models. The clearance rate from an intravenous injection of mPEG-UHC varied significantly between species, at 2.61 mL/h/kg for rats and 0.21 mL/h/kg for monkeys. The long elimination half-life of mPEG-UHC in non-human primate (191.48 h, intravenous injection) indicated the long-term effects in humans. Moreover, the acceptable bioavailability of mPEG-UHC after subcutaneous administration in monkeys (94.21%) suggested that subcutaneous injection may be regarded as a candidate administration route in clinical trails. Non-specific tissue distribution was observed after administration of (125)I-labeled mPEG-UHC in rats, and elimination by the kidneys into the urine is the primary excretion route. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Guodong; Yang, Zhi; Lu, Wei; Zhang, Rui; Huang, Qian; Tian, Mei; Li, Li; Liang, Dong; Li, Chun
2009-01-01
Polyethylene glycol (PEG)-coated (pegylated) gold nanoparticles (AuNPs) have been proposed as drug carriers and diagnostic contrast agents. However, the impact of particle characteristics on the biodistribution and pharmacokinetics of pegylated AuNPs is not clear. We investigated the effects of PEG molecular weight, type of anchoring ligand, and particle size on the assembly properties and colloidal stability of PEG-coated AuNPs. The pharmacokinetics and biodistribution of the most stable PEG-coated AuNPs in nude mice bearing subcutaneous A431 squamous tumors were further studied using 111In-labeled AuNPs. AuNPs coated with thioctic acid (TA)-anchored PEG exhibited higher colloidal stability in phosphate-buffered saline in the presence of dithiothreitol than did AuNPs coated with monothiol-anchored PEG. AuNPs coated with high-molecular-weight (5000 Da) PEG were more stable than AuNPs coated with low-molecular-weight (2000 Da) PEG. Of the 20-nm, 40-nm, and 80-nm AuNPs coated with TA-terminated PEG5000, the 20-nm AuNPs exhibited the lowest uptake by reticuloendothelial cells and the slowest clearance from the body. Moreover, the 20-nm AuNPs coated with TA-terminated PEG5000 showed significantly higher tumor uptake and extravasation from the tumor blood vessels than did the 40- and 80-nm AuNPs. Thus, 20-nm AuNPs coated with TA-terminated PEG5000 are promising potential drug delivery vehicles and diagnostic imaging agents. PMID:19131103
Wang, Yapei; Pitet, Louis M; Finlay, John A; Brewer, Lenora H; Cone, Gemma; Betts, Douglas E; Callow, Maureen E; Callow, James A; Wendt, Dean E; Hillmyer, Marc A; DeSimonea, Joseph M
2011-01-01
The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.
Chanpong, Atchariya; Osatakul, Seksit
2018-04-01
Functional constipation (FC) is a common gastrointestinal (GI) problem affecting children's well-being and quality of life. Although polyethylene glycol (PEG) is recommended as the first line therapy, it is not always applicable in lower socioeconomic populations. Hence, this study aimed to compare clinical courses of FC in children treated with different medications in order to identify prognostic factors related to treatment outcomes. We reviewed the medical records of patients aged ≤15 years diagnosed with FC according to the Rome IV criteria from 2007 to 2015 at the GI clinic, Songklanagarind Hospital. Baseline characteristic, medical history, and treatment outcomes were collected at first and subsequent visits. Exactly 104 patients (median age at diagnosis, 2.8 years) were diagnosed with FC. The number of follow-up visits per patient ranged from 1 to 35. The median duration of follow-up was 18.0 months (range, 6.0-84.2 months). PEG was given to 21% of patients. During the follow up period, 76% of patients experienced first recovery with a median time to recovery of 9.8 months. There were no significant differences in time until first recovery and relapse between patients who received and those who did not receive PEG ( p =0.99 and 0.06, respectively). Age >6 years, normal defecation frequency, no history of cow's milk protein allergy, and use of laxatives were associated with successful outcomes. Treatment outcomes between patients who had and never had PEG demonstrated no significant difference in our study. Hence, current practices in laxative prescriptive patterns may be effective.
Coconut coir pith lignin: A physicochemical and thermal characterization.
Asoka Panamgama, L; Peramune, P R U S K
2018-07-01
The structural and thermal features of coconut coir pith lignin, isolated by three different extraction protocols incorporating two different energy supply sources, were characterized by different analytical tools. The three different chemical extraction protocols were alkaline - 7.5% (w/v) NaOH, organosolv - 85% (v/v) formic and acetic acids at 7:3 (v/v) ratio and polyethylene glycol (PEG): water ratio at 80:20wt%. The two sources of energy were thermal or microwave. Raw lignins were modified by epichlorohydrin to enhance reactivity, and the characteristics of raw and modified lignins were comparatively analysed. Using the thermal energy source, the alkaline and organosolv processes obtained the highest and lowest lignin yields of 26.4±1.5wt% and 3.4±0.2wt%, respectively, as shown by wet chemical analysis. Specific functional group analysis by Fourier transform infrared spectra (FTIR) revealed that significantly different amounts of hydroxyl and carbonyl groups exist in alkaline, organosolv and PEG lignins. Thermogravimetric analysis (TGA) illustrated that the lowest degradation onset temperature was recorded for organosolv lignin, and the overall order was organosolv
Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo
2010-01-01
The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values.
NASA Astrophysics Data System (ADS)
Garabito, German; Cruz, João Carlos Ribeiro; Oliva, Pedro Andrés Chira; Söllner, Walter
2017-01-01
The Common Reflection Surface stack is a robust method for simulating zero-offset and common-offset sections with high accuracy from multi-coverage seismic data. For simulating common-offset sections, the Common-Reflection-Surface stack method uses a hyperbolic traveltime approximation that depends on five kinematic parameters for each selected sample point of the common-offset section to be simulated. The main challenge of this method is to find a computationally efficient data-driven optimization strategy for accurately determining the five kinematic stacking parameters on which each sample of the stacked common-offset section depends. Several authors have applied multi-step strategies to obtain the optimal parameters by combining different pre-stack data configurations. Recently, other authors used one-step data-driven strategies based on a global optimization for estimating simultaneously the five parameters from multi-midpoint and multi-offset gathers. In order to increase the computational efficiency of the global optimization process, we use in this paper a reduced form of the Common-Reflection-Surface traveltime approximation that depends on only four parameters, the so-called Common Diffraction Surface traveltime approximation. By analyzing the convergence of both objective functions and the data enhancement effect after applying the two traveltime approximations to the Marmousi synthetic dataset and a real land dataset, we conclude that the Common-Diffraction-Surface approximation is more efficient within certain aperture limits and preserves at the same time a high image accuracy. The preserved image quality is also observed in a direct comparison after applying both approximations for simulating common-offset sections on noisy pre-stack data.
Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity.
Cheng, Dong; Wen, Yangbing; Wang, Lijuan; An, Xingye; Zhu, Xuhai; Ni, Yonghao
2015-06-05
In this work, the adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals (CNC) was investigated for preparing re-dispersible dried CNC. Results showed that the re-dispersity of CNC in water can be significantly enhanced using a PEG1000 dosage of 5wt% (based on the dry weight of CNC). The elemental analysis confirmed the adsorption of PEG onto the CNC surface. Transmission electron microscopy (TEM) was used to characterize the dry powder and indicated that the irreversible agglomeration of CNC after drying was essentially eliminated based on the PEG adsorption concept. Thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) suggested that CNC crystallinity and thermal stability were not affected by the adsorption of PEG. Thus, the adsorption of PEG has great potential for producing re-dispersible powder CNC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lee, Hwankyu; Larson, Ronald G
2009-10-08
We performed molecular dynamics (MD) simulations of one or two copies of polyethylene glycol of molecular weight 550 (PEG550) and 5000 (PEG5000) daltons, conjugated to generation 3 (G3) to 5 (G5) polyamidoamine (PAMAM) dendrimers with explicit water using a coarse-grained model. We found the radii of gyration of these dendrimer-PEG molecules to be close to those measured in experiments by Hedden and Bauer (Hedden , R. C. ; Bauer , B. J. Macromolecules 2003 , 36 , 1829.). Densely grafted PEG ligands (>50% of the dendrimer surface) extend like brushes, with layer thickness in agreement with theory for starlike polymers. Two dendrimer-PEG complexes in the box drift away from each other, indicating that no aggregation is induced by either short or long PEG chains, conflicting with a recent view that the cytotoxicity of some PEGylated particles might be due to particle aggregation for long PEG lengths.
Preventing Protein Adsorption and Macrophage Uptake of Gold Nanoparticles via a Hydrophobic Shield
Larson, Timothy A.; Joshi, Pratixa P.; Sokolov, Konstantin
2012-01-01
Polyethylene glycol (PEG) surface coatings are widely used to render stealth properties to nanoparticles in biological applications. There is abundant literature on benefits of PEG coatings and their ability to reduce protein adsorption, to diminish non-specific interactions with cells, and to improve pharmacokinetics, but very little discussion of the limitations of PEG coatings. Here, we show that physiological concentrations of cysteine and cystine can displace methoxy-PEG-thiol molecules from the gold nanoparticle (GNP) surface that leads to protein adsorption and cell uptake in macrophages within 24 hours. Furthermore, we address this problem by incorporating an alkyl linker between the PEG and the thiol moieties that provides a hydrophobic shield layer between the gold surface and the hydrophilic outer PEG layer. The mPEG-alkyl-thiol coating greatly reduces protein adsorption on GNPs and their macrophage uptake. This has important implications for the design of GNP for biological systems. PMID:23009596
Cai, Huawei; Xie, Fang; Mulgaonkar, Aditi; Chen, Lihong; Sun, Xiankai; Hsieh, Jer-Tsong; Peng, Fangyu; Tian, Rong; Li, Lin; Wu, Changqiang; Ai, Hua
2018-05-22
To synthesize and evaluate the imaging potential of Bom-PEG-[ 64 Cu]CuS nanoparticles (NPs) in orothotopic prostate tumor. [ 64 Cu]CuS NPs were synthesized in aqueous solution by 64 CuCl 2 and Na 2 S reaction. Then PEG linker with or without bombesin peptide were conjugated to the surface of [ 64 Cu]CuS NPs to produce Bom-PEG-[ 64 Cu]CuS and PEG-[ 64 Cu]CuS NPs. These two kinds of NPs were used for testing specific uptake in prostate cancer cells in vitro and imaging of orthotopic prostate tumor in vivo. Bom-PEG-[ 64 Cu]CuS and PEG-[ 64 Cu]CuS NPs were successfully synthesized with core diameter of approximately 5 nm. Radioactive cellular uptake revealed that Bom-PEG-[ 64 Cu]CuS was able to specifically bind to prostate cancer cells, and the microPET-CT imaging indicated clear visualization of orthotopic prostate tumors. Radiolabeled Bom-PEG-[ 64 Cu]CuS NPs have potential as an ideal agent for orthotopic prostate tumor imaging by microPET-CT.
Valjakka, J; Hemminki, A; Teerinen, T; Takkinen, K; Rouvinen, J
2000-02-01
Recombinant anti-testosterone wild-type Fab fragment and mutant Fab fragments with high binding selectivity developed by protein engineering have been crystallized with and without ligands. Crystals of these Fab fragments were obtained by the vapour-diffusion technique at room temperature using solutions of PEG 3350 with various biological buffers and with a wide pH range. So far, five data sets have been collected from crystals of three Fab-antigen complexes and from two uncomplexed Fab fragments, with resolutions ranging from 2.10 to 3.1 A. Crystallization conditions for Fab fragments were found by using modifications of the low ionic strength PEG 3350 series. Suitable concentrations of PEG 400, MPD and glycerol solutions for use as cryoprotectants in PEG 3350 solutions have been determined. One useful observation was that PEG 3350 is able to work alone as a cryoprotectant. The screening protocol used requires a smaller amount of protein material to achieve auspicious pre-crystals than previously. Results support the claim that PEG 3350 is more suitable for the crystallization of Fab fragments than higher molecular weight PEGs.
Schiller, L R; Santa Ana, C A; Porter, J; Fordtran, J S
1997-01-01
Polyethylene glycol (PEG) has been used as a poorly absorbable marker in intestinal perfusion studies, but there is controversy about the absorbability of PEG, particularly when glucose-sodium cotransport is occurring. Total intestinal perfusion studies were done in five normal humans using three solutions containing 1 g/liter PEG 3350 and designed to produce low rates of water absorption, high rates of water absorption, or high rates of glucose-sodium cotransport. Water absorption rates were calculated by traditional nonabsorbable marker equations and by a novel balance technique in which absorption was taken as the difference between the volumes of solution infused and recovered during steady-state conditions. Effluent PEG recovery was 99 +/- 4%, 109 +/- 2%, and 104 +/- 6% of the amount infused with each solution. Water absorption rates measured by use of PEG concentrations were similar to those calculated by the balance technique (r = 0.99). The complete recovery of PEG confirms the poor absorbability of PEG 3350, and the excellent agreement between techniques validates PEG as a poorly absorbed marker, even when glucose-sodium cotransport is occurring.
Nagashima, Kazuaki; Furuta, Natsumi; Makioka, Kouki; Fujita, Yukio; Ikeda, Masaki; Ikeda, Yoshio
2017-05-15
A percutaneous endoscopic gastrostomy (PEG) is an useful intervention for feeding of amyotrophic lateral sclerosis (ALS) patients who have lost oral intake function. The aim of this study was to investigate the risk factors for early death and the survival after PEG placement. A total of 102 ALS patients who underwent PEG placement were enrolled in this study. Patients were divided into two groups; the poor prognosis group included patients who died or needed permanent mechanical ventilation within 30days after PEG placement, and the good prognosis group included patients who did not meet the criteria of the poor prognosis group. Clinical characteristics, respiratory function, and nutritional parameters were compared for the two groups to assess the correlations between clinical and laboratory variables and early death after PEG placement. Multivariate analysis between two groups revealed that higher arterial carbon dioxide pressure (PaCO 2 ) and aphagia before PEG placement were significantly associated with the poor prognosis group. Multivariate analysis for survival also revealed that higher PaCO 2 and shorter duration from onset to PEG placement were significantly associated with shorter survival after PEG placement. In conclusion, respiratory and nutritional parameters are revealed to be important prognostic factors for ALS patients who undergo PEG placement. Copyright © 2017 Elsevier B.V. All rights reserved.
Bharadwaj, Shruthi; Vishnubhotla, Ramana; Shan, Sun; Chauhan, Chinmay; Cho, Michael; Glover, Sarah C.
2011-01-01
Polyethylene glycol (PEG) has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor. PMID:21976966
Bharadwaj, Shruthi; Vishnubhotla, Ramana; Shan, Sun; Chauhan, Chinmay; Cho, Michael; Glover, Sarah C
2011-01-01
Polyethylene glycol (PEG) has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.
The Influence of Polyethylene Glycol Solution on the Dissolution Rate of Sustained Release Morphine.
Hodgman, Michael; Holland, Michael G; Englich, Ulrich; Wojcik, Susan M; Grant, William D; Leitner, Erich
2016-12-01
Whole bowel irrigation (WBI) is a management option for overdose of medications poorly adsorbed to activated charcoal, with modified release properties, or for body packers. Polyethylene glycol (PEG) is a mixture of ethylene oxide polymers of varying molecular weight. PEG with an average molecular weight of 3350 g/mol is used for WBI. PEG electrolyte lavage solution has been shown in vitro to hasten the dissolution of acetaminophen. The impact of PEG on the pharmacokinetics of extended release pharmaceuticals is unknown. Lower average molecular weight PEG mixtures are used as solvents and excipients. We sought to investigate the impact of PEG on the release of morphine from several extended release morphine formulations. An in vitro gastric model was developed. To test the validity of our model, we first investigated the previously described interaction of ethanol and Avinza®. Once demonstrated, we then investigated the effect of PEG with several extended release morphine formulations. In the validation portion of our study, we confirmed an ethanol Avinza® interaction. Subsequently, we did not observe accelerated release of morphine from Avinza® or generic extended release morphine in the presence of PEG. The use of PEG for gastric decontamination following ingestion of these extended release morphine formulations is unlikely to accelerate morphine release and aggravate intoxication.
Urinary excretion of polyethylene glycol 3350 during colonoscopy preparation.
Rothfuss, K S; Bode, J C; Stange, E F; Parlesak, A
2006-02-01
Whole gut lavage with a polyethylene glycol electrolyte solution (PEG) is a common bowel cleansing method for diagnostic and therapeutic colon interventions. Absorption of orally administered PEG from the gastrointestinal tract in healthy human beings is generally considered to be poor. In patients with inflammatory bowel disease (IBD), intestinal permeability and PEG absorption were previously reported to be higher than in normal subjects. In the current study, we investigated the absorption of PEG 3350 in patients undergoing routine gut lavage. Urine specimens were collected for 8 hours in 24 patients undergoing bowel cleansing with PEG 3350 for colonoscopy. The urinary excretion of PEG 3350, measured by size exclusion chromatography, ranged between 0.01 and 0.51 % of the ingested amount, corresponding to 5.8 and 896 mg in absolute amounts, respectively. Mean PEG excretion in patients with impaired mucosa such as inflammation or ulceration of the intestine (0.24 % +/- 0.19, n = 11) was not significantly higher (p = 0.173) compared to that in subjects with macroscopically normal intestinal mucosa (0.13 % +/- 0.13, n = 13). The results indicate that intestinal absorption of PEG 3350 is higher than previously assumed and underlies a strong inter-individual variation. Inflammatory changes of the intestine do not necessarily lead to a significantly higher permeability of PEG.
Polyethylene glycol binding alters human telomere G-quadruplex structure by conformational selection
Buscaglia, Robert; Miller, M. Clarke; Dean, William L.; Gray, Robert D.; Lane, Andrew N.; Trent, John O.; Chaires, Jonathan B.
2013-01-01
Polyethylene glycols (PEGs) are widely used to perturb the conformations of nucleic acids, including G-quadruplexes. The mechanism by which PEG alters G-quadruplex conformation is poorly understood. We describe here studies designed to determine how PEG and other co-solutes affect the conformation of the human telomeric quadruplex. Osmotic stress studies using acetonitrile and ethylene glycol show that conversion of the ‘hybrid’ conformation to an all-parallel ‘propeller’ conformation is accompanied by the release of about 17 water molecules per quadruplex and is energetically unfavorable in pure aqueous solutions. Sedimentation velocity experiments show that the propeller form is hydrodynamically larger than hybrid forms, ruling out a crowding mechanism for the conversion by PEG. PEGs do not alter water activity sufficiently to perturb quadruplex hydration by osmotic stress. PEG titration experiments are most consistent with a conformational selection mechanism in which PEG binds more strongly to the propeller conformation, and binding is coupled to the conformational transition between forms. Molecular dynamics simulations show that PEG binding to the propeller form is sterically feasible and energetically favorable. We conclude that PEG does not act by crowding and is a poor mimic of the intranuclear environment, keeping open the question of the physiologically relevant quadruplex conformation. PMID:23804761
Siano, Marco; Jarisch, Nadine; Joerger, Markus; Espeli, Vittoria
2018-06-01
Recurrent/metastatic head and neck squamous cell cancer (r/mHNSCC) patients often need a percutaneous endoscopic gastrostomy feeding tube (PEG). Among known prognostic factors, PEG could be prognostic as well. We retrospectively analyzed r/mHNSCC patients referred for systemic treatment. Kaplan-Meier and multivariate cox regression models were applied to assess prognostic impact of PEG. One hunderd and ten patients were identified, 42 had a PEG at treatment start. Median survival from start of 1st-line systemic treatment was 8 months (95%CI=6.5-12.0 months), 4.5 months (95%CI=2.5-7.0 months) for patients with PEG and 11.5 months (95%CI=7.5-14.5 months) without PEG (adjusted HR=1.98, p=0.011). Similarly, survival from first recurrence of distant metastases was lower in patients with PEG as compared to patients without (7.5 vs. 15.5 months, adjusted HR=2.60, p<0.001). Presence of PEG feeding tube has an unfavourable prognostic impact on survival in patients with r/mHNSCC. While any causality remains speculative, potential complications should be appreciated before PEG implantation. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Hookey, Lawrence C; Depew, William T; Vanner, Stephen J
2006-01-01
INTRODUCTION The effectiveness of polyethylene glycol solutions (PEG) for colon cleansing is often limited by the inability of patients to drink adequate portions of the 4 L solution. The aim of the present study was to determine whether a reduced volume of PEG combined with stimulant laxatives would be better tolerated and as or more effective than the standard dose. METHODS Patients undergoing outpatient colonoscopy were randomly assigned to receive either low-volume PEG plus sennosides (120 mg oral sennosides syrup followed by 2 L PEG) or the standard volume preparation (4 L PEG). The subjects rated the tolerability of the preparations and their symptoms. Colonoscopists were blind to the colonic cleansing preparation and graded the cleansing efficacy using a validated tool (the Ottawa scale). RESULTS The low-volume PEG plus sennosides preparation was significantly better tolerated than the standard large volume PEG (P<0.001) but was less efficacious (P=0.03). Thirty-eight per cent of patients in the large volume PEG group were unable to finish the preparation, compared with only 6% in the reduced volume group. There were no adverse events reported. CONCLUSIONS Although the low-volume PEG plus sennosides preparation was better tolerated, it was not as effective as standard large-volume PEG. However, in view of the significant difference in tolerance, further research investigating possible improvements in the reduced-volume regimen seems warranted. PMID:16482236
Nano Sponges for Drug Delivery and Medicinal Applications
NASA Technical Reports Server (NTRS)
Tour, James M.; Lucente-Schultz, Rebecca; Leonard, Ashley; Kosynkin, Dimitry V.; Price, Brandi Katherine; Hudson, Jared L.; Conyers, Jodie L., Jr.; Moore, Valerie C.; Casscells, S. Ward; Myers, Jeffrey N.;
2012-01-01
This invention is a means of delivering a drug, or payload, to cells using non-covalent associations of the payload with nano-engineered scaffolds; specifically, functionalized single-walled carbon nanotubes (SWNTs) and their derivatives where the payload is effectively sequestered by the nanotube's addends and then delivered to the site (often interior of a cell) of interest. Polyethylene glycol (PEG) and other water-soluble organic molecules have been shown to greatly enhance the solubility of SWNTs in water. PEG groups and other water-solubilizing addends can act to sequester (sponge) molecules and deliver them into cells. Using PEG that, when attached to the SWNTs, the SWNT/PEG matrix will enter cells has been demonstrated. This was visualized by the addition of fluorescein isothiocyanate (FITC) to the SWNT/PEG matrix. Control studies showed that both FITC alone and FITC/PEG did not enter the cells. These observations suggest that the FITC is highly associated with the SWNT/PEG matrix that brings the FITC into the cells, allowing visualization of SWNTs in cells. The FITC is not covalently attached, because extended dialysis in hot DMF will remove all fluorescence quickly (one week). However, prolonged dialysis in water (1-2 months) will only slowly diminish the fluorescence. This demonstrates that the SWNT/PEG matrix solubilizes the FITC by sequestering it from the surrounding water and into the more solubilizing organic environment of the SWNT/PEG matrix of this type. This can be extended for the sequestering of other molecules such as drugs with PEG and other surfactants.
Eckman, Allison M; Tsakalozou, Eleftheria; Kang, Nayon Y; Ponta, Andrei; Bae, Younsoo
2012-07-01
To test physicochemical and biological properties of PEG-poly(aspartate) [PEG-p(Asp)] block copolymer micelles entrapping doxorubicin hydrochloride (DOX) through ionic interaction. PEG-p(Asp) was synthesized from 5 kDa PEG and 20 Asp units. Carboxyl groups of p(Asp) were present as benzyl ester [PEG-p(Asp/Bz)], sodium salt [PEG-p(Asp/Na)] or free acid [PEG-p(Asp/H)]. Block copolymers and DOX were mixed at various ratios to prepare polymer micelles, which were subsequently characterized to determine particle size, drug loading and release patterns, and cytotoxicity against prostate (PC3 and DU145) and lung (A549) cancer cell lines. PEG-p(Asp/Bz), Na- and H-micelles entrapped 1.1, 56.8 and 40.6 wt.% of DOX, respectively. Na- and H-micelles (<100 nm) showed time-dependent DOX release at pH 7.4, which was accelerated at pH 5.0. Na-micelles were most stable at pH 7.4, retaining 31.8% of initial DOX for 48 h. Cytotoxicity of Na-micelles was 23.2% (A549), 28.5% (PC3) and 45.9% (DU145) more effective than free DOX. Ionic interaction appeared to entrap DOX efficiently in polymer micelles from PEG-p(Asp) block copolymers. Polymer micelles possessing counter ions (Na) of DOX in the core were the most stable, releasing drugs for prolonged time in a pH-dependent manner, and suppressing cancer cells effectively.
Silva, Adny H; Lima, Enio; Mansilla, Marcelo Vasquez; Zysler, Roberto D; Troiani, Horacio; Pisciotti, Mary Luz Mojica; Locatelli, Claudriana; Benech, Juan C; Oddone, Natalia; Zoldan, Vinícius C; Winter, Evelyn; Pasa, André A; Creczynski-Pasa, Tânia B
2016-05-01
Superparamagnetic iron oxide nanoparticles (SPIONS) were synthesized by thermal decomposition of an organometallic precursor at high temperature and coated with a bi-layer composed of oleic acid and methoxy-polyethylene glycol-phospholipid. The formulations were named SPION-PEG350 and SPION-PEG2000. Transmission electron microscopy, X-ray diffraction and magnetic measurements show that the SPIONs are near-spherical, well-crystalline, and have high saturation magnetization and susceptibility. FTIR spectroscopy identifies the presence of oleic acid and of the conjugates mPEG for each sample. In vitro biocompatibility of SPIONS was investigated using three cell lines; up to 100μg/ml SPION-PEG350 showed non-toxicity, while SPION-PEG2000 showed no signal of toxicity even up to 200μg/ml. The uptake of SPIONS was detected using magnetization measurement, confocal and atomic force microscopy. SPION-PEG2000 presented the highest internalization capacity, which should be correlated with the mPEG chain size. The in vivo results suggested that SPION-PEG2000 administration in mice triggered liver and kidney injury. The potential use of superparamagnetic iron oxide nanoparticles (SPIONS) in the clinical setting have been studied by many researchers. The authors synthesized two types of SPIONS here and investigated the physical properties and biological compatibility. The findings should provide more data on the design of SPIONS for clinical application in the future. Copyright © 2016 Elsevier Inc. All rights reserved.
Nardini, Andrea; Salleo, Sebastiano
2005-12-01
The hydraulic architecture, water relationships, and gas exchange of leaves of sunflower plants, grown under different levels of water stress, were measured. Plants were either irrigated with tap water (controls) or with PEG600 solutions with osmotic potential of -0.4 and -0.8 MPa (PEG04 and PEG08 plants, respectively). Mature leaves were measured for hydraulic resistance (R(leaf)) before and after making several cuts across minor veins, thus getting the hydraulic resistance of the venation system (R(venation)). R(leaf) was nearly the same in controls and PEG04 plants but it was reduced by about 30% in PEG08 plants. On the contrary, R(venation) was lowest in controls and increased in PEG04 and PEG08 plants as a likely result of reduction in the diameter of the veins' conduits. As a consequence, the contribution of R(venation) to the overall R(leaf) markedly increased from controls to PEG08 plants. Leaf conductance to water vapour (g(L)) was highest in controls and significantly lower in PEG04 and PEG08 plants. Moreover, g(L) was correlated to R(venation) and to leaf water potential (psi(leaf)) with highly significant linear relationships. It is concluded that water stress has an important effect on the hydraulic construction of leaves. This, in turn, might prove to be a crucial factor in plant-water relationships and gas exchange under water stress conditions.
Donahoe, Casey D.; Cohen, Thomas L.; Li, Wenlu; Nguyen, Peter K.; Fortner, John D.; Mitra, Robi D.; Elbert, Donald L.
2013-01-01
Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by Quartz Crystal Microbalance with Dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly-L-lysine-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface crosslinking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus, producing the best performing 100% PEG coating that we have studied to date. PMID:23441808
Hu, Xiao; Yang, Feifei; Liao, Yonghong; Li, Lin; Zhang, Lan
2017-11-01
This study investigated cholesterol-polyethylene glycol (PEG) comodified poly (ethyleneglycol)-poly (lactide) nanoparticles (CLS-PEG NPs) as a novel, biodegradable brain drug delivery system and included an evaluation of its in vitro and in vivo properties. To this end, coumarin-6 (C6), a fluorescent probe, was encapsulated into CLS-PEG NPs by an emulsion polymerization method. We reported that the use of CLS-PEG NPs led to a sustained drug release in vitro. Additionally, cell viability experiments confirmed their safety. The uptake and transport of CLS-PEG NPs, by bEnd.3 cells (an immortalized mouse brain endothelial cell line), was significantly higher than that of a control C6 solution. An investigation of the uptake mechanisms of different NP formulations demonstrated that cholesterol modifications may be the primary way to improve the efficiency of cellular uptake, wherein macropinocytosis may be the most important endocytic pathway in this process. An investigation of the transport mechanisms of CLS-PEG NPs also implicated macropinocytosis, energy and cholesterol in bEnd.3 cells lines. Following an intravenous (IV) administration to rats, pharmacokinetic experiments indicated that C6-loaded CLS-PEG NPs achieved sustained release for up to 12 h. In addition, IV delivery of CLS-PEG NPs appeared to significantly improve the ability of C6 to pass through the blood-brain barrier: the concentration of C6 found in the brain increased nearly 14.2-fold when C6 CLS-PEG NPs were used rather than a C6 solution. These in vitro and in vivo results strongly suggest that CLS-PEG NPs are a promising drug delivery system for targeting the brain, with low toxicity.
Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering
NASA Astrophysics Data System (ADS)
Grover, Gregory N.; Rao, Nikhil; Christman, Karen L.
2014-01-01
Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of 30 min, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in 4 min upon irradiation, allowing 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates that PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications.
Morton, Randall P; Crowder, Victoria L; Mawdsley, Robert; Ong, Esther; Izzard, Mark
2009-10-01
Chemoradiotherapy for treatment of advanced head and neck cancer (HNC) is used to achieve organ preservation without compromising survival. Because chemoradiotherapy usually impacts adversely on nutritional and functional status, feeding by percutaneous endoscopic gastrostomy (PEG) is often part of the management regimen for these patients, but the presence of a PEG tube can also be associated with reduced quality of life (QOL). This study aimed to examine the factors associated with PEG insertion and the effects of PEG use on QOL and functional outcomes in HNC patients receiving chemoradiotherapy. Survey of 36 consecutive patients treated by primary chemoradiotherapy for HNC. Patient weight, age, tumour type, details of PEG insertion, feeding regimens and treatment were noted. The survey comprised the Performance Status Scale, the Functional Measure for Swallowing, Nutritional Mode and a self-assessment of QOL. PEG insertion within 1 month of treatment was associated with smaller fall in body mass index at 12 months than PEG insertion 1 month or more after the start of the treatment (P < 0.05). Body mass index change was inversely correlated with health-related quality of life and significantly related to lower speech and swallowing function scores. Longer PEG duration correlated with poorer performance status and swallowing function (P < 0.01). Longer PEG duration also predicted poorer overall QOL (P < 0.01) and poorer swallowing (P < 0.01) and speech (P < 0.05). Nutritional mode was related to overall QOL (P < 0.01). Nutritional support for HNC patients undergoing chemoradiotherapy is an essential component of patient care. Early PEG insertion and shorter PEG duration are associated with more favourable QOL-related outcomes.
Zhou, Xiaotong; Meng, Xiangjun; Cheng, Longmei; Su, Chong; Sun, Yantong; Sun, Lingxia; Tang, Zhaohui; Fawcett, John Paul; Yang, Yan; Gu, Jingkai
2017-05-16
Polyethylene glycols (PEGs) are synthetic polymers composed of repeating ethylene oxide subunits. They display excellent biocompatibility and are widely used as pharmaceutical excipients. To fully understand the biological fate of PEGs requires accurate and sensitive analytical methods for their quantitation. Application of conventional liquid chromatography-tandem mass spectrometry (LC-MS/MS) is difficult because PEGs have polydisperse molecular weights (MWs) and tend to produce multicharged ions in-source resulting in innumerable precursor ions. As a result, multiple reaction monitoring (MRM) fails to scan all ion pairs so that information on the fate of unselected ions is missed. This Article addresses this problem by application of liquid chromatography-triple-quadrupole/time-of-flight mass spectrometry (LC-Q-TOF MS) based on the MS ALL technique. This technique performs information-independent acquisition by allowing all PEG precursor ions to enter the collision cell (Q2). In-quadrupole collision-induced dissociation (CID) in Q2 then effectively generates several fragments from all PEGs due to the high collision energy (CE). A particular PEG product ion (m/z 133.08592) was found to be common to all linear PEGs and allowed their total quantitation in rat plasma with high sensitivity, excellent linearity and reproducibility. Assay validation showed the method was linear for all linear PEGs over the concentration range 0.05-5.0 μg/mL. The assay was successfully applied to the pharmacokinetic study in rat involving intravenous administration of linear PEG 600, PEG 4000, and PEG 20000. It is anticipated the method will have wide ranging applications and stimulate the development of assays for other pharmaceutical polymers in the future.
2013-01-01
A gold nanoparticle (AuNP)-based colorimetric method was developed for the molecular weight (MW) determination of polyethylene glycol (PEG), a commonly used hydrophilic polymer. Addition of a salt solution to PEG-coated AuNP solutions helps in screening the electrostatic repulsion between nanoparticles and generating a color change of the solutions from wine red to blue in 10 min in accordance with the MW of PEG, which illustrates the different stability degrees (SDs) of the AuNPs. The SDs are calculated by the absorbance ratios of the stable to the aggregated AuNPs in the solution. The root mean square end-to-end length (〈h2〉1/2) of PEG molecules shows a linear fit to the SDs of the PEG-coated AuNPs in a range of 1.938 ± 0.156 to 10.151 ± 0.176 nm. According to the Derjaguin-Landau-Verwey-Overbeek theory, the reason for this linear relationship is that the thickness of the PEG adlayer is roughly equivalent to the 〈h2〉1/2 of the PEG molecules in solution, which determines the SDs of the AuNPs. Subsequently, the MW of the PEG can be obtained from its 〈h2〉1/2 using a mathematical relationship between 〈h2〉1/2 and MW of PEG molecule. Applying this approach, we determined the 〈h2〉1/2 and the MW of four PEG samples according to their absorbance values from the ordinary ultraviolet–visible spectrophotometric measurements. Therefore, the MW of PEG can be distinguished straightforwardly by visual inspection and determined by spectrophotometry. This novel approach is simple, rapid, and sensitive. PMID:24359120
Zhou, Teng; Zhang, Bo; Wei, Peng; Du, Yipeng; Zhou, Hejiang; Yu, Meifang; Yan, Liang; Zhang, Wendi; Nie, Guangjun; Chen, Chunying; Tu, Yaping; Wei, Taotao
2014-12-01
Recent advances in nanomedicine provide promising alternatives for cancer treatment that may improve the survival of patients with metastatic disease. The goal of the present study was to evaluate graphene oxide (GO) as a potential anti-metastatic agent. For this purpose, GO was modified with polyethylene glycol (PEG) to form PEG-modified GO (PEG-GO), which improves its aqueous stability and biocompatibility. We show here that PEG-GO exhibited no apparent effects on the viability of breast cancer cells (MDA-MB-231, MDA-MB-436, and SK-BR-3) or non-cancerous cells (MCF-10A), but inhibited cancer cell migration in vitro and in vivo. Analysis of cellular energy metabolism revealed that PEG-GO significantly impaired mitochondrial oxidative phosphorylation (OXPHOS) in breast cancer cells; however, PEG-GO showed no effect on OXPHOS in non-cancerous cells. To explore the underlying mechanisms, a SILAC (Stable Isotope Labeling by Amino acids in Cell culture) labeling strategy was used to quantify protein expression in PEG-GO-exposed breast cancer versus non-cancerous cells. The results indicated that PEG-GO selectively down-regulated PGC-1α in breast cancer cells and thus modified the expression of diverse energy generation-related proteins, which accounts for the inhibition of OXPHOS. The inhibition of OXPHOS by PEG-GO significantly reduced ATP production and impaired assembly of the F-actin cytoskeleton in breast cancer cells, which is required for the migratory and invasive phenotype of cancer cells. Taken together, these effects of PEG-GO on cancer cell metastasis may allow the development of a new approach to treat metastatic breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wali, Ramesh K.; Kunte, Dhananjay P.; Koetsier, Jennifer L.; Bissonnette, Marc; Roy, Hemant K.
2008-01-01
Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We previously reported that Snail/β-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overepressed in ~80% of human colorectal cancers (CRC), on PEG-mediated anti-proliferative and hence anti-neoplastic effects in azoxymethane (AOM)-rats and HT-29 colon cancer cells. AOM-rats were randomized to either standard diet or one with 10% PEG 3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (p<0.001). Similar PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pre-treating cells with gefitinib or stably transfecting with EGFR-shRNA and measured the effect of PEG on proliferation. In either case PEG effect was blunted suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-shRNA cells, besides having reduced membrane EGFR also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/β-catenin pathway playing the central intermediary function. PMID:18790788
Wali, Ramesh K; Kunte, Dhananjay P; Koetsier, Jennifer L; Bissonnette, Marc; Roy, Hemant K
2008-09-01
Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We reported previously that Snail/beta-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overexpressed in approximately 80% of human colorectal cancers, on PEG-mediated antiproliferative and hence antineoplastic effects in azoxymethane (AOM) rats and HT-29 colon cancer cells. AOM rats were randomized to either standard diet or one with 10% PEG-3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (P < 0.001). Similar PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pretreating cells with gefitinib or stably transfecting with EGFR-short hairpin RNA and measured the effect of PEG on proliferation. In either case, PEG effect was blunted, suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-short hairpin RNA cells, besides having reduced membrane EGFR, also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells, PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/beta-catenin pathway playing the central intermediary function.
Voskuijl, W; de Lorijn, F; Verwijs, W; Hogeman, P; Heijmans, J; Mäkel, W; Taminiau, J; Benninga, M
2004-11-01
Recently, polyethylene glycol (PEG 3350) has been suggested as a good alternative laxative to lactulose as a treatment option in paediatric constipation. However, no large randomised controlled trials exist evaluating the efficacy of either laxative. To compare PEG 3350 (Transipeg: polyethylene glycol with electrolytes) with lactulose in paediatric constipation and evaluate clinical efficacy/side effects. One hundred patients (aged 6 months-15 years) with paediatric constipation were included in an eight week double blinded, randomised, controlled trial. After faecal disimpaction, patients <6 years of age received PEG 3350 (2.95 g/sachet) or lactulose (6 g/sachet) while children > or =6 years started with 2 sachets/day. Primary outcome measures were: defecation and encopresis frequency/week and successful treatment after eight weeks. Success was defined as a defecation frequency > or =3/week and encopresis < or =1 every two weeks. Secondary outcome measures were side effects after eight weeks of treatment. A total of 91 patients (49 male) completed the study. A significant increase in defecation frequency (PEG 3350: 3 pre v 7 post treatment/week; lactulose: 3 pre v 6 post/week) and a significant decrease in encopresis frequency (PEG 3350: 10 pre v 3 post/week; lactulose: 8 pre v 3 post/week) was found in both groups (NS). However, success was significantly higher in the PEG group (56%) compared with the lactulose group (29%). PEG 3350 patients reported less abdominal pain, straining, and pain at defecation than children using lactulose. However, bad taste was reported significantly more often in the PEG group. PEG 3350 (0.26 (0.11) g/kg), compared with lactulose (0.66 (0.32) g/kg), provided a higher success rate with fewer side effects. PEG 3350 should be the laxative of first choice in childhood constipation.
Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue
2016-01-01
Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)-b-poly(ε-caprolactone) (PCL), namely PEG-b-PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG-b-PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG-b-PCL nano-micelle on cardiovascular development. The results showed that PEG-b-PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG-b-PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG-b-PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG-b-PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG-b-PCL nano-micelles, indicating that PEG-b-PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG-b-PCL nano-micelle could pose potential hazards to cardiovascular development. PMID:27980407
Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue
Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)- b -poly( ε -caprolactone) (PCL), namely PEG- b -PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG- b -PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG- b -PCL nano-micelle on cardiovascular development. The results showed that PEG- b -PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG- b -PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG- b -PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG- b -PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG- b -PCL nano-micelles, indicating that PEG- b -PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG- b -PCL nano-micelle could pose potential hazards to cardiovascular development.
Li, Ning; Ziegemeier, Daisy; Bass, Laura; Wang, Wei
2008-12-15
In this study, size exclusion high performance liquid chromatography was evaluated for its application in separation and quantitation of free polyethylene glycol (PEG) and its PEGylated-protein-conjugate (PEG-conjugate). Although the large mass of the free PEG (2-fold greater than the protein) made separation difficult, chromatographic conditions were identified enabling resolution and quantitation of the free PEG, PEG-conjugate and non-PEGylated protein with Shodex Protein KW803 and KW804 columns in series and refractive index detection. The optimum resolution of 1.7 and 2.0 was achieved for the free PEG and PEG-conjugate as well as the free PEG and non-PEGylated protein using 20mM HEPES buffer at pH 6.5. Under this condition, the plot of log(10)MW of all the pertinent analytes against retention time showed a linear relationship with a correlation coefficient of 1. Limited assay performance evaluation demonstrated that the method was linear in the concentration range of 10 to 250 microg/mL of free PEG with correlation coefficients of > or = 0.99. When free PEG in this concentration range was spiked into PEG-conjugate samples at 1mg/mL, the recovery was in the range of 78%-120%. Detection and quantitation limits were determined to be, respectively, 10 and 25 microg/mL for free PEG. The R.S.D. for intra- and inter-day precision was 0.09% or less for retention time measurements and 2.9% or less for area count measurements. Robustness testing was performed by deliberately deviating +/-0.2 pH units away from the desired pH as well as by increasing the flow rate. These deviations resulted in no significant impact on area percent distribution of all species. However, separation was found to be sensitive to high ionic strength and buffer species.
Wali, Ramesh K; Bianchi, Laura; Kupfer, Sonia; De La Cruz, Mart; Jovanovic, Borko; Weber, Christopher; Goldberg, Michael J; Rodriguez, L M; Bergan, Raymond; Rubin, David; Tull, Mary Beth; Richmond, Ellen; Parker, Beth; Khan, Seema; Roy, Hemant K
2018-01-01
Chemoprevention represents an attractive modality against colorectal cancer (CRC) although widespread clinical implementation of promising agents (e.g. aspirin/NSAIDS) have been stymied by both suboptimal efficacy and concerns over toxicity. This highlights the need for better agents. Several groups, including our own, have reported that the over-the-counter laxative polyethylene glycol (PEG) has remarkable efficacy in rodent models of colon carcinogenesis. In this study, we undertook the first randomized human trial to address the role of PEG in prevention of human colonic neoplasia. This was a double-blind, placebo-controlled, three-arm trial where eligible subjects were randomized to 8g PEG-3350 (n = 27) or 17g PEG-3350 (n = 24), or placebo (n = 24; maltodextrin) orally for a duration of six months. Our initial primary endpoint was rectal aberrant crypt foci (ACF) but this was changed during protocol period to rectal mucosal epidermal growth factor receptor (EGFR). Of the 87 patients randomized, 48 completed study primary endpoints and rectal EGFR unchanged PEG treatment. Rectal ACF had a trend suggesting potentially reduction with PEG treatment (pre-post change 1.7 in placebo versus -0.3 in PEG 8+ 17g doses, p = 0.108). Other endpoints (proliferation, apoptosis, expression of SNAIL and E-cadherin), previously noted to be modulated in rodent models, appeared unchanged with PEG treatment in this clinical trial. We conclude that PEG was generally well tolerated with the trial failing to meet primary efficacy endpoints. However, rectal ACFs demonstrated a trend (albeit statistically insignificant) for suppression with PEG. Moreover, all molecular assays including EGFR were unaltered with PEG underscoring issues with lack of translatability of biomarkers from preclinical to clinical trials. This data may provide the impetus for future clinical trials on PEG using more robust biomarkers of chemoprevention. ClinicalTrials.gov NCT00828984.
Wali, Ramesh K.; Bianchi, Laura; Kupfer, Sonia; De La Cruz, Mart; Jovanovic, Borko; Weber, Christopher; Goldberg, Michael J.; Rodriguez, L. M.; Bergan, Raymond; Rubin, David; Tull, Mary Beth; Richmond, Ellen; Parker, Beth; Khan, Seema
2018-01-01
Chemoprevention represents an attractive modality against colorectal cancer (CRC) although widespread clinical implementation of promising agents (e.g. aspirin/NSAIDS) have been stymied by both suboptimal efficacy and concerns over toxicity. This highlights the need for better agents. Several groups, including our own, have reported that the over-the-counter laxative polyethylene glycol (PEG) has remarkable efficacy in rodent models of colon carcinogenesis. In this study, we undertook the first randomized human trial to address the role of PEG in prevention of human colonic neoplasia. This was a double-blind, placebo-controlled, three-arm trial where eligible subjects were randomized to 8g PEG-3350 (n = 27) or 17g PEG-3350 (n = 24), or placebo (n = 24; maltodextrin) orally for a duration of six months. Our initial primary endpoint was rectal aberrant crypt foci (ACF) but this was changed during protocol period to rectal mucosal epidermal growth factor receptor (EGFR). Of the 87 patients randomized, 48 completed study primary endpoints and rectal EGFR unchanged PEG treatment. Rectal ACF had a trend suggesting potentially reduction with PEG treatment (pre-post change 1.7 in placebo versus -0.3 in PEG 8+ 17g doses, p = 0.108). Other endpoints (proliferation, apoptosis, expression of SNAIL and E-cadherin), previously noted to be modulated in rodent models, appeared unchanged with PEG treatment in this clinical trial. We conclude that PEG was generally well tolerated with the trial failing to meet primary efficacy endpoints. However, rectal ACFs demonstrated a trend (albeit statistically insignificant) for suppression with PEG. Moreover, all molecular assays including EGFR were unaltered with PEG underscoring issues with lack of translatability of biomarkers from preclinical to clinical trials. This data may provide the impetus for future clinical trials on PEG using more robust biomarkers of chemoprevention. Trial registration: ClinicalTrials.gov NCT00828984 PMID:29617381
Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran.
Hosseinkhani, Hossein; Tabata, Yasuhiko
2005-11-28
This study is an investigation to experimentally confirm whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of plasmid DNA in tumor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow to polyionically complex with a plasmid DNA. The cationized dextran prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have an active ester and methoxy groups at each terminal, to obtain cationized dextran with different percentages of PEG introduced. Various cationized dextrans with or without PEG introduction were mixed with a plasmid DNA of LacZ to form cationized dextran-plasmid DNA complexes. Electrophoretical examination revealed that the plasmid DNA was complexed both with the cationized dextran and PEG-introduced cationized dextran, irrespective of the PEG introduction percentage, although the higher N/P ratio was needed for plasmid DNA complexation with the latter. By complexation with the cationized dextran, the zeta potential of plasmid DNA was changed to be positive. The charge of PEG-introduced cationized dextran-plasmid DNA complexes became close to 0 mV as their percentage of PEG introduced increased, although the molecular size was about 250 nm, irrespective of the PEG introduction. When cationized dextran-plasmid DNA complexes with or without PEG introduction were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass and the subsequent US irradiation to the tumor mass percutaneously, the PEG-introduced cationized dextran-plasmid DNA complex plus US irradiation enhanced the tumor level of gene expression to a significantly high extent compared with the cationized dextran-plasmid DNA complex and free plasmid DNA with or without US irradiation. The enhanced level depended on the time period and timing of US irradiation. Fluorescent microscopic studies revealed that the localization of plasmid DNA and the gene expression were observed in the tumor tissue injected with the PEG-introduced cationized dextran-plasmid DNA complex plus the subsequent US irradiation. We conclude that complexation with the PEG-introduced cationized dextran combined with US irradiation is a promising way to target the plasmid DNA to the tumor for gene expression.
Hézode, Christophe; Alric, Laurent; Brown, Ashley; Hassanein, Tarek; Rizzetto, Mario; Buti, Maria; Bourlière, Marc; Thabut, Dominique; Molina, Esther; Rustgi, Vinod; Samuel, Didier; McPhee, Fiona; Liu, Zhaohui; Yin, Philip D; Hughes, Eric; Treitel, Michelle
2015-08-27
Treatment options for HCV genotype-4 (GT4) are limited. This Phase III study (COMMAND-4; AI444-042) evaluated the efficacy and safety of daclatasvir (DCV), a pan-genotypic HCV NS5A inhibitor, with pegylated interferon-α2a/ribavirin (PEG-IFN/RBV) in treatment-naive patients with HCV GT4 infection. Patients were randomly assigned (2:1; blinded) to treatment with DCV 60 mg (n=82) or placebo (n=42) once daily plus PEG-IFN 180 µg weekly and RBV 1,000-1,200 mg/day (weight-based) twice daily. DCV-treated patients with undetectable HCV RNA at weeks 4 and 12 (eRVR) received 24 weeks of DCV plus PEG-IFN/RBV; those without eRVR received an additional 24 weeks of PEG-IFN/RBV. All placebo-treated patients received 48 weeks of PEG-IFN/RBV. The primary end point was sustained virological response (SVR) at post-treatment week 12 (SVR12). Patients were 75% IL28B non-CC and 11% had cirrhosis. SVR rates (HCV RNA < lower limit of quantitation [LLOQ]) at post-treatment week 12 or later (imputed to include patients missing SVR12 assessments but had SVR after post-treatment week 12) were 82% (67/82) with DCV plus PEG-IFN/RBV versus 43% (18/42) with PEG-IFN/RBV (P<0.0001). In DCV recipients, SVR12 rates were comparable across subgroups. The safety and tolerability profile of DCV plus PEG-IFN/RBV was comparable to that of PEG-IFN/RBV. Discontinuations due to adverse events occurred in 4.9% of patients receiving DCV plus PEG-IFN/RBV and 7.1% of patients receiving PEG-IFN/RBV. In treatment-naive patients with HCV GT4 infection, DCV plus PEG-IFN/RBV achieved higher SVR12 rates than PEG-IFN/RBV alone. These data support DCV-based regimens for treatment of HCV GT4 infection, including all-oral combinations with other direct-acting antivirals (AI444-042; ClinicalTrials.gov NCT01448044).
Plasticization of poly(lactic acid) using different molecular weight of Poly(ethylene glycol)
NASA Astrophysics Data System (ADS)
Septevani, Athanasia Amanda; Bhakri, Samsul
2017-11-01
Poly (lactic acid) (PLA) has been known as an excellent candidate for developing the future bioplastic due to its biodegradability and competitive price. However, inherent brittleness and low thermal stability of PLA have limited its applications. Considerable studies have been developed to improve the flexibility of PLA, in which blending PLA with various plasticizers has been identified as a cost-effective way to lower glass-transition temperature (Tg) and thus improve its elongation property. In this study, PLA was modified by incorporating poly(ethylene glycol) as a plasticizer with different molecular weights (M¯w 400, 1000, and 6000, called respectively as PEG 400, PEG 1000, and PEG 6000) via a solvent-casting blend method. FTIR was used for analyzing the chemical interaction while TGA and DSC measured the thermal behavior of PLA/PEG. The results indicated that the addition of lower M¯w (PEG 400 and PEG 1000) could reduce the Tg due to the enhancement of chain mobility of PLA with PEG and so driving into a more amorphous states resulted reduction of melting temperature (Tm) compared to the neat PLA. Further, at a higher M¯w of PEG 6000, the longer chain of ethylene glycol, in contrast, resulted a gradual increase in the Tg as well as Tm where the value went back to the point of neat PLA compared to the other lower molecular weight of PLA. This was due to the decrease in polymer miscibility with the increasing of M¯w. In terms of thermal stability, the addition of PEG exhibited two step degradation behavior while the neat PLA only possessed single step degradation. The presence of PEG could act as a protective barrier layer that could hinder the permeability of the volatile compound and product during decomposition reaction and thus could eventually delay and slower the degradation process. It was observed that the addition of PEG at higher M¯w (PEG1000 and PEG 6000) exhibited a higher second degradation temperature up to 380 °C.
NASA Astrophysics Data System (ADS)
Schmidtke, Christian; Pöselt, Elmar; Ostermann, Johannes; Pietsch, Andrea; Kloust, Hauke; Tran, Huong; Schotten, Theo; Bastús, Neus G.; Eggers, Robin; Weller, Horst
2013-07-01
Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium.Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium. Electronic supplementary information (ESI) available: Images of the QDs, toxicity data and NMR spectra. See DOI: 10.1039/c3nr01520c
Bekkali, Noor L H; Hoekman, Daniël R; Liem, Olivia; Bongers, Marloes E J; van Wijk, Michiel P; Zegers, Bas; Pelleboer, Rolf A; Verwijs, Wim; Koot, Bart G P; Voropaiev, Maksym; Benninga, Marc A
2018-01-01
The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes (PEG4000). In this double-blind trial, children aged 0.5 to 16 years with constipation, defined as a defecation frequency of <3 times per week, were randomized to receive either PEG3350 + E or PEG4000. Primary outcomes were change in total sum score (TSS) at week 52 compared to baseline, and dose range determination. TSS was the sum of the severity of 5 constipation symptoms rated on a 4-point scale (0-3). Noninferiority margin was a difference in TSS of ≤1.5 based on a 95%-confidence interval [CI]. Treatment success was defined as a defecation frequency of ≥3 per week with <1 episode of fecal incontinence. Ninety-seven subjects were included, of whom 82 completed the study. Mean reduction in TSS was -3.81 (95% CI: -4.96 to -2.65) and -3.74 (95%CI: -5.08 to -2.40), for PEG3350 + E and PEG4000, respectively. Noninferiority criteria were not met (maximum difference between groups: -1.81 to 1.68). Daily sachet use was: 0 to 2 years: 0.4 to 2.3 and 0.9 to 2.1; 2 to 4 years: 0.1 to 3.5 and 1.2 to 3.2; 4 to 8 years: 1.1 to 2.8 and 0.7 to 3.8; 8 to 16 years 0.6 to 3.7 and 1.0 to 3.7, in PEG3350 + E and PEG4000, respectively. Treatment success after 52 weeks was achieved in 50% and 45% of children, respectively (P = 0.69). Rates of adverse events were similar between groups, and no drug-related serious adverse events occurred. Noninferiority regarding long-term constipation-related symptoms of PEG3350 + E compared to PEG4000 was not demonstrated. However, analysis of secondary outcomes suggests similar efficacy and safety of these agents.
Bekkali, Noor L.H.; Hoekman, Daniël R.; Liem, Olivia; Bongers, Marloes E.J.; van Wijk, Michiel P.; Zegers, Bas; Pelleboer, Rolf A.; Verwijs, Wim; Koot, Bart G.P.; Voropaiev, Maksym; Benninga, Marc A.
2018-01-01
ABSTRACT Objective: The long-term efficacy and safety of polyethylene glycol (PEG) in constipated children are unknown, and a head-to-head comparison of the different PEG formulations is lacking. We aimed to investigate noninferiority of PEG3350 with electrolytes (PEG3350 + E) compared to PEG4000 without electrolytes (PEG4000). Methods: In this double-blind trial, children aged 0.5 to 16 years with constipation, defined as a defecation frequency of <3 times per week, were randomized to receive either PEG3350 + E or PEG4000. Primary outcomes were change in total sum score (TSS) at week 52 compared to baseline, and dose range determination. TSS was the sum of the severity of 5 constipation symptoms rated on a 4-point scale (0–3). Noninferiority margin was a difference in TSS of ≤1.5 based on a 95%-confidence interval [CI]. Treatment success was defined as a defecation frequency of ≥3 per week with <1 episode of fecal incontinence. Results: Ninety-seven subjects were included, of whom 82 completed the study. Mean reduction in TSS was −3.81 (95% CI: −4.96 to −2.65) and −3.74 (95%CI: −5.08 to −2.40), for PEG3350 + E and PEG4000, respectively. Noninferiority criteria were not met (maximum difference between groups: −1.81 to 1.68). Daily sachet use was: 0 to 2 years: 0.4 to 2.3 and 0.9 to 2.1; 2 to 4 years: 0.1 to 3.5 and 1.2 to 3.2; 4 to 8 years: 1.1 to 2.8 and 0.7 to 3.8; 8 to 16 years 0.6 to 3.7 and 1.0 to 3.7, in PEG3350 + E and PEG4000, respectively. Treatment success after 52 weeks was achieved in 50% and 45% of children, respectively (P = 0.69). Rates of adverse events were similar between groups, and no drug-related serious adverse events occurred. Conclusions: Noninferiority regarding long-term constipation-related symptoms of PEG3350 + E compared to PEG4000 was not demonstrated. However, analysis of secondary outcomes suggests similar efficacy and safety of these agents. PMID:28906317
The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile
NASA Astrophysics Data System (ADS)
Pérez-Flores, P.; Wang, G.; Mitchell, T. M.; Meredith, P. G.; Nara, Y.; Sarkar, V.; Cembrano, J.
2017-11-01
The Southern Andes Volcanic Zone (SVZ) represents one of the largest undeveloped geothermal provinces in the world. Development of the geothermal potential requires a detailed understanding of fluid transport properties of its main lithologies. The permeability of SVZ rocks is altered by the presence of fracture damage zones produced by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). We have therefore measured the permeability of four representative lithologies from the volcanic basement in this area: crystalline tuff, andesitic dike, altered andesite and granodiorite. For comparative purposes, we have also measured the permeability of samples of Seljadalur basalt, an Icelandic rock with widely studied and reported hydraulic properties. Specifically, we present the results of a systematic study of the effect of fractures and fracture offsets on permeability as a function of increasing effective pressure. Baseline measurements on intact samples of SVZ rocks show that the granodiorite has a permeability (10-18 m2), two orders of magnitude higher than that of the volcanic rocks (10-20 m2). The presence of throughgoing mated macro-fractures increases permeability by between four and six orders of magnitude, with the highest permeability recorded for the crystalline tuff. Increasing fracture offset to produce unmated fractures results in large increases in permeability up to some characteristic value of offset, beyond which permeability changes only marginally. The increase in permeability with offset appears to depend on fracture roughness and aperture, and these are different for each lithology. Overall, fractured SVZ rocks with finite offsets record permeability values consistent with those commonly found in geothermal reservoirs (>10-16 m2), which potentially allow convective/advective flow to develop. Hence, our results demonstrate that the fracture damage zones developed within the SVZ produce permeable regions, especially within the transtensional NE-striking fault zones, that have major importance for geothermal energy resource potential.
Peritoneal retention of liposomes: Effects of lipid composition, PEG coating and liposome charge.
Dadashzadeh, S; Mirahmadi, N; Babaei, M H; Vali, A M
2010-12-01
In the treatment of peritoneal carcinomatosis, systemic chemotherapy is not quite effective due to the poor penetration of cytotoxic agents into the peritoneal cavity, whereas intraperitoneal administration of chemotherapeutic agents is generally accompanied by quick absorption of the free drug from the peritoneum. Local delivery of drugs with controlled-release delivery systems like liposomes could provide sustained, elevated drug levels and reduce local and systemic toxicity. In order to achieve an ameliorated liposomal formulation that results in higher peritoneal levels of the drug and retention, vesicles composed of different phospholipid compositions (distearoyl [DSPC]; dipalmitoyl [DPPC]; or dimiristoylphosphatidylcholine [DMPC]) and various charges (neutral; negative, containing distearoylphosphatidylglycerol [DSPG]; or positive, containing dioleyloxy trimethylammonium propane [DOTAP]) were prepared at two sizes of 100 and 1000nm. The effect of surface hydrophilicity was also investigated by incorporating PEG into the DSPC-containing neutral and charged liposomes. Liposomes were labeled with (99m)Tc and injected into mouse peritoneum. Mice were then sacrificed at eight different time points, and the percentage of injected radiolabel in the peritoneal cavity and the tissue distribution in terms of the percent of the injected dose/gram of tissue (%ID/g) were obtained. The ratio of the peritoneal AUC to the free label ranged from a minimum of 4.95 for DMPC/CHOL (cholesterol) 100nm vesicles to a maximum of 24.99 for DSPC/CHOL/DOTAP 1000nm (DOTAP 1000) vesicles. These last positively charged vesicles had the greatest peritoneal level; moreover, their level remained constant at approximately 25% of the injected dose from 2 to 48h. Among the conventional (i.e., without PEG) 100nm liposomes, the positively charged vesicles again showed the greatest retention. Incorporation of PEG at this size into the lipid structures augmented the peritoneal level, particularly for negatively charged liposomes. The positively charged PEGylated vesicles (DOTAP/PEG 100) had the second-greatest peritoneal level after DOTAP 1000; however, their peritoneal-to-blood AUC ratio was low (3.05). Overall, among the different liposomal formulations, the positively charged conventional liposomes (100 and 1000nm) provided greater peritoneal levels and retention. DOTAP/PEG100 may also be a more efficient formulation because this formulation can provide a high level of anticancer drug into the peritoneal cavity and also can passively target the primary tumor. Copyright © 2010 Elsevier B.V. All rights reserved.
Mazumdar, Samrat; Italiya, Kishan S; Sharma, Saurabh; Chitkara, Deepak; Mittal, Anupama
2018-05-30
The present study aims at the development of cholesterol based lipopolymeric nanoparticles for improved entrapment, better cell penetration and improved pharmacokinetics of Tamoxifen (TMX). Self-assembling cholesterol grafted lipopolymer, mPEG-b-(CB-{g-chol}-co-LA) was synthesized from poly(ethyleneglycol)-block-2-methyl-2-carboxyl-propylenecarboxylic acid-co-poly (l-lactide) [mPEG-b-(CB-{g-COOH}-co-LA)] copolymer followed by carbodiimide coupling for attaching cholesterol. Lipopolymeric nanoparticles were prepared using o/w solvent evaporation technique, which were subsequently characterized to determine its particle size, entrapment efficiency, release pattern and compared with mPEG-PLA nanoparticles. Further, in order to assess the in vitro efficacy, cytotoxicity studies, uptake, apoptosis assay and cell cycle analysis were performed in breast cancer cell lines (MCF-7 and 4T1). Finally, the pharmacokinetic profile of TMX loaded mPEG-b-(CB-{g-chol}-co-LA) lipopolymeric nanoparticles was also performed. TMX loaded lipopolymeric nanoparticles of particle size 151.25 ± 3.74 (PDI 0.123) and entrapment efficiency of 73.62 ± 3.08% were formulated. The haemolytic index, protein binding and in vitro drug release of the optimized nanoparticles were found to be comparable to that of the TMX loaded mPEG-PLA nanoparticles. Lipopolymeric nanoparticles demonstrated improved IC 50 values in breast cancer cells (22.2 μM in 4T1; 18.8 μM in MCF-7) than free TMX (27.6 μM and 23.5 μM respectively) and higher uptake efficiency. At IC 50 values, TMX loaded lipopolymeric nanoparticles induced apoptosis and cell cycle arrest (G 0 /G 1 phase) to similar extent as that of free drug. Pharmacokinetic studies indicated ∼2.5-fold increase in the half-life (t 1/2 ) (p < 0.001) and ∼2.7-fold (p < 0.001) increase in the mean residence time (MRT) of TMX following incorporation into lipopolymeric nanoparticles. Thus, mPEG-b-(CB-{g-chol}-co-LA) lipopolymeric nanoparticles offer a more promising approach for delivery of Tamoxifen in breast cancer by improving drug internalization and prolonging the mean residence time of the drug indicating possibility of dose reduction and hence bypassing the adverse effects of TMX therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Bing; Cong, Hailin; Liu, Xuesong; Ren, Yumin; Wang, Jilei; Zhang, Lixin; Tang, Jianguo; Ma, Yurong; Akasaka, Takeshi
2013-09-01
An effective microfluidic method to fabricate monodisperse polyethylene glycol (PEG) hydrogel composite microspheres with tunable dimensions and properties is reported in this paper. A T-junction microfluidic chip equipped with rounded channels and online photopolymerization system is applied for the microsphere microfabrication. The shape and size of the microspheres are well controlled by the rounded channels and PEG prepolymer/silicon oil flow rate ratios. The obtained PEG/aspirin composite microspheres exhibit a sustained release of aspirin for a wide time range; the obtained PEG/Fe3O4 nanocomposite microspheres exhibit excellent magnetic properties; and the obtained binary PEG/dye composite microspheres show the ability to synchronously load two functional components in the same peanut-shaped or Janus hydrogel particles.
NASA Astrophysics Data System (ADS)
Xu, Shunjian; Luo, Xiaorui; Xiao, Zonghu; Luo, Yongping; Zhong, Wei; Ou, Hui; Li, Yinshuai
2017-01-01
Polyethylene glycol (PEG) was employed as pore-forming agent to prepare TiO2 nanoporous film based on spin-coating a TiO2 nanoparticle mixed paste on fluorine doped tin oxide (FTO) glass. The electrochromic and optical properties of the obtained TiO2 film were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and UV-Vis spectrophotometer. The results show that the PEG in the mixed paste endows the TiO2 film with well-developed porous structure and improves the uniformity of the TiO2 film, which are helpful for the rapid intercalation and extraction of lithium ions within the TiO2 film and the strengthening of the diffuse reflection of visible light in the TiO2 film. As a result, the TiO2 film derived from the mixed paste with PEG displays higher electrochemical activity and more excellent electrochromic performances compared with the TiO2 film derived from the mixed paste without PEG. The switching times of coloration/bleaching are respectively 10.16/5.65 and 12.77/6.13 s for the TiO2 films with PEG and without PEG. The maximum value of the optical contrast of the TiO2 film with PEG is 21.2% while that of the optical contrast of the TiO2 film without PEG is 14.9%. Furthermore, the TiO2 film with PEG has better stability of the colored state than the TiO2 film without PEG.
Low-volume bowel preparation is inferior to standard 4 1 polyethylene glycol.
Haapamäki, Markku M; Lindström, Monica; Sandzén, Birger
2011-03-01
Four liters or more of orally taken polyethylene glycol solution (PEG) has proved to be an effective large-bowel cleansing method prior to colonoscopy. The problem has been the large volume of fluid and its taste, which is unacceptable to some examinees. We aimed to investigate the effectiveness of 2 l PEG combined with senna compared with 4 l PEG for bowel preparation. The design was a single-center, prospective, randomized, investigator-blinded study with parallel assignment, in the setting of the Endoscopy Unit of Umeå University Hospital. Outpatients (n = 490) scheduled for colonoscopy were enrolled. The standard-volume arm received 4 l PEG, and the low-volume arm received 36 mg senna glycosides in tablets and 2 l PEG. The cleansing result (primary endpoint) was assessed by the endoscopist using the Ottawa score. The patients rated the subjective grade of ease of taking the bowel preparation. Analysis was on an intention-to-treat basis. There were significantly more cases with poor or inadequate bowel cleansing after the low-volume alternative with senna and 2 l PEG (22/203) compared with after 4 l PEG (8/196, p = 0.027). The low-volume alternative was better tolerated by the examinees: 119/231 rated the treatment as easy to take compared with 88/238 in the 4 l PEG arm (p = 0.001). 4 l PEG treatment is better than 36 mg senna and 2 l PEG as routine colonic cleansing before colonoscopy because of fewer failures.
Hu, Jing-Bo; Kang, Xu-Qi; Liang, Jing; Wang, Xiao-Juan; Xu, Xiao-Ling; Yang, Ping; Ying, Xiao-Ying; Jiang, Sai-Ping; Du, Yong-Zhong
2017-01-01
The effective treatment for acute kidney injury (AKI) is currently limited, and care is primarily supportive. Sialic acid (SA) is main component of Sialyl Lewis x antigen on the mammalian cell surface, which participates in E-selectin binding. Therefore, dexamethasone(DXM)-loaded E-selectin-targeting sialic acid-polyethylene glycol-dexamethasone (SA-PEG-DXM/DXM) conjugate micelles are designed for ameliorating AKI. The conjugates are synthesized via the esterification reaction between PEG and SA or DXM, and can spontaneously form micelles in an aqueous solution with a 65.6 µg/mL critical micelle concentration. Free DXM is incorporated into the micelles with 6.28 ± 0.21% drug loading content. In vitro DXM release from SA-PEG-DXM/DXM micelles can be prolonged to 48h. Much more SA-PEG-DXM micelles can be internalized by lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs) in comparison to PEG-DXM micelles due to specific interaction between SA and E-selectin expressed on HUVECs, and consequently more SA-PEG-DXM micelles are accumulated in the kidney of AKI murine model. Furthermore, SA in SA-PEG-DXM conjugates can significantly ameliorate LPS-induced production of pro-inflammatory cytokines via suppressing LPS-activated Beclin-1/Atg5-Atg12-mediated autophagy to attenuate toxicity. Compared with free DXM and PEG-DXM/DXM micelles, SA-PEG-DXM/DXM micelles show better therapeutical effects, as reflected by the improved renal function, histopathological changes, pro-inflammatory cytokines, oxidative stress and expression of apoptotic related proteins.
PEGylated PEI-based biodegradable polymers as non-viral gene vectors.
Huang, Fu-Wei; Wang, Hui-Yuan; Li, Cao; Wang, Hua-Fen; Sun, Yun-Xia; Feng, Jun; Zhang, Xian-Zheng; Zhuo, Ren-Xi
2010-11-01
Novel functional biodegradable gene vectors, poly(L-succinimide)-g-polyethylenimines-g-poly(ethylene glycol) (PSI-g-PEI-g-PEGs) were synthesized by conjugating methoxy poly(ethylene glycol) (mPEG, M(w)=750 Da) to PEI segments (M(w)=800 Da) of PSI-g-PEI. The physicochemical properties of PSI-g-PEI-g-PEGs, including buffering capability, pDNA binding ability, cytotoxicity, zeta potential and the particle size of polymer/pDNA complexes, were explored. The influence of PEGylation was discussed based on a comparative study of PSI-g-PEI-g-PEGs, PSI-g-PEI and PEI25k (M(w)=25 kDa). SEM images revealed that PSI-g-PEI-g-PEG/pDNA particles have a regular shape with the diameter ranging from 70 to 170 nm. PEGylation could suppress the aggregation occurrence between complexes, resulting in a reduction of the polymer/pDNA complex size. PSI-g-PEI-g-PEGs exhibited remarkably lower cytotoxicity compared to PSI-g-PEI and PEI25k. In 293T and HeLa cells, the obtained PSI-g-PEI-g-PEGs showed very high transfection efficiency compared to PEI25k. Fluorescent confocal microscopy demonstrated that PSI-g-PEI-g-PEGs could effectively transport pGL-3 plasmids into the nuclei of HeLa cells. Taking into account the continued high transfection efficacy and decreased toxicity after PEG modification, PSI-g-PEI-g-PEGs show great potential as the non-viral vectors for gene transfection. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fahrländer, E.; Schelhaas, S.; Jacobs, A. H.; Langer, K.
2015-04-01
Modification with poly(ethylene glycol) (PEG) is a widely used method for the prolongation of plasma half-life of colloidal carrier systems such as nanoparticles prepared from human serum albumin (HSA). However, the quantification of the PEGylation extent is still challenging. Moreover, the influence of different PEG derivatives, which are commonly used for nanoparticle conjugation, has not been investigated so far. The objective of the present study is to develop a method for the quantification of PEG and to monitor the influence of diverse PEG reagents on the amount of PEG linked to the surface of HSA nanoparticles. A size exclusion chromatography method with refractive index detection was established which enabled the quantification of unreacted PEG in the supernatant. The achieved results were confirmed using a fluorescent PEG derivative, which was detected by photometry and fluorimetry. Additionally, PEGylated HSA nanoparticles were enzymatically digested and the linked amount of fluorescently active PEG was directly determined. All the analytical methods confirmed that under optimized PEGylation conditions a PEGylation efficiency of up to 0.5 mg PEG per mg nanoparticle could be achieved. Model calculations made a ‘brush’ conformation of the PEG chains on the particle surface very likely. By incubating the nanoparticles with fetal bovine serum the reduced adsorption of serum proteins on PEGylated HSA nanoparticles compared to non-PEGylated HSA nanoparticles was demonstrated using sodium dodecylsulfate polyacrylamide gel electrophoresis. Finally, the positive effect of PEGylation on plasma half-life was demonstrated in an in vivo study in mice. Compared to unmodified nanoparticles the PEGylation led to a four times larger plasma half-life.
Chen, Jing; Du, Yuzhang; Que, Wenxiu; Xing, Yonglei; Chen, Xiaofeng; Lei, Bo
2015-12-01
Crack-free organic-inorganic hybrid monoliths with controlled biomineralization activity and mechanical property have an important role for highly efficient bone tissue regeneration. Here, biomimetic and crack-free polydimethylsiloxane (PDMS)-modified bioactive glass (BG)-poly(ethylene glycol) (PEG) (PDMS-BG-PEG) hybrids monoliths were prepared by a facile sol-gel technique. Results indicate that under the assist of co-solvents, BG sol and PDMS and PEG could be hybridized at a molecular level, and effects of the PEG molecular weight on the structure, biomineralization activity, and mechanical property of the as-prepared hybrid monoliths were also investigated in detail. It is found that an addition of low molecular weight PEG can significantly prevent the formation of cracks and speed up the gelation of the hybrid monoliths, and the surface microstructure of the hybrid monoliths can be changed from the porous to the smooth as the PEG molecular weight increases. Additionally, the hybrid monoliths with low molecular weight PEG show the high formation of the biological apatite layer, while the hybrids with high molecular weight PEG exhibit negligible biomineralization ability in simulated body fluid (SBF). Furthermore, the PDMS-BG-PEG 600 hybrid monolith has significantly high compressive strength (32 ± 3 MPa) and modulus (153 ± 11 MPa), as well as good cell biocompatibility by supporting osteoblast (MC3T3-E1) attachment and proliferation. These results indicate that the as-prepared PDMS-BG-PEG hybrid monoliths may have promising applications for bone tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.
Parente, Fabrizio; Vailati, Cristian; Bargiggia, Stefano; Manes, Gianpiero; Fontana, Paola; Masci, Enzo; Arena, Monica; Spinzi, Giancarlo; Baccarin, Alessandra; Mazzoleni, Giorgia; Testoni, Pier Alberto
2015-10-01
Chronic constipation is a risk factor of inadequate bowel preparation for colonoscopy; however, no large clinical trials have been performed in this subgroup of patients. To compare bowel cleansing efficacy, tolerability and acceptability of 2-L polyethylene-glycol-citrate-simethicone (PEG-CS) plus 2-day bisacodyl (reinforced regimen) vs. 4-L PEG in patients with chronic constipation undergoing colonoscopy. Randomized, observer-blind, parallel group study. Adult outpatients undergoing colonoscopy were randomly allocated to 2-L PEG-CS/bisacodyl or 4-L PEG, taken as split regimens before colonoscopy. Quality of bowel preparation was assessed by the Ottawa Bowel Cleansing Scale (OBCS). The amount of foam/bubble interfering with colonic visualization was also measured. 400 patients were enrolled. There was no significant difference in successful cleansing (OBCS score ≤6): 80.2% in the 2-L PEG-CS/bisacodyl vs. 81.4% in the 4-L PEG group. Significantly more patients taking 2L PEG-CS/bisacodyl showed no or minimal foam/bubbles in all colonic segments (80% vs. 63%; p<0.001). 2-L PEG-CS/bisacodyl was significantly more acceptable for ease of administration (p<0.001), willingness to repeat (p<0.001) and showed better compliance (p=0.002). Split 2-L PEG-CS plus bisacodyl was not superior to split 4-L PEG for colonoscopy bowel cleansing in patients with chronic constipation; however, it performed better than the standard regimen in terms of colonic mucosa visualization, patient acceptance and compliance. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content
Li, Mingguang; Panagi, Zoi; Avgoustakis, Konstantinos; Reineke, Joshua
2012-01-01
Biodistribution of nanoparticles is dependent on their physicochemical properties (such as size, surface charge, and surface hydrophilicity). Clear and systematic understanding of nanoparticle properties’ effects on their in vivo performance is of fundamental significance in nanoparticle design, development and optimization for medical applications, and toxicity evaluation. In the present study, a physiologically based pharmacokinetic model was utilized to interpret the effects of nanoparticle properties on previously published biodistribution data. Biodistribution data for five poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulations prepared with varied content of monomethoxypoly (ethyleneglycol) (mPEG) (PLGA, PLGA-mPEG256, PLGA-mPEG153, PLGA-mPEG51, PLGA-mPEG34) were collected in mice after intravenous injection. A physiologically based pharmacokinetic model was developed and evaluated to simulate the mass-time profiles of nanoparticle distribution in tissues. In anticipation that the biodistribution of new nanoparticle formulations could be predicted from the physiologically based pharmacokinetic model, multivariate regression analysis was performed to build the relationship between nanoparticle properties (size, zeta potential, and number of PEG molecules per unit surface area) and biodistribution parameters. Based on these relationships, characterized physicochemical properties of PLGA-mPEG495 nanoparticles (a sixth formulation) were used to calculate (predict) biodistribution profiles. For all five initial formulations, the developed model adequately simulates the experimental data indicating that the model is suitable for description of PLGA-mPEG nanoparticle biodistribution. Further, the predicted biodistribution profiles of PLGA-mPEG495 were close to experimental data, reflecting properly developed property–biodistribution relationships. PMID:22419876
NASA Astrophysics Data System (ADS)
Chen, Jingqin; Wang, Xiaoping; Chen, Tongsheng
2014-02-01
A facile and green strategy is reported for the fabrication of nanosized and reduced covalently PEGylated graphene oxide (nrGO-PEG) with great biocompatibility and high near-infrared (NIR) absorbance. Covalently PEGylated nGO (nGO-PEG) was synthesized by the reaction of nGO-COOH and methoxypolyethylene glycol amine (mPEG-NH2). The neutral and purified nGO-PEG solution was then directly bathed in water at 90°C for 24 h without any additive to obtain nrGO-PEG. Covalent PEGylation not only prevented the aggregation of nGO but also dramatically promoted the reduction extent of nGO during this reduction process. The resulting single-layered nrGO-PEG sheets were approximately 50 nm in average lateral dimension and exhibited great biocompatibility and approximately 7.6-fold increment in NIR absorption. Moreover, this facile reduction process repaired the aromatic structure of GO. CCK-8 and flow cytometry (FCM) assays showed that exposure of A549 cells to 100 μg/mL of nrGO-PEG for 2 h, exhibiting 71.5% of uptake ratio, did not induce significant cytotoxicity. However, after irradiation with 808 nm laser (0.6 W/cm2) for 5 min, the cells incubated with 6 μg/mL of nrGO-PEG solution showed approximately 90% decrease of cell viability, demonstrating the high-efficiency photothermal therapy of nrGO-PEG to tumor cells in vitro. This work established nrGO-PEG as a promising photothermal agent due to its small size, great biocompatibility, high photothermal efficiency, and low cost.
Kristensen, Jakob
2006-10-27
The purpose of this research was to investigate the use of polyethylene glycol (PEG) solutions as the primary binder liquid in a 2-step agglomeration process performed in a rotary processor and characterize the resulting granules and their tableting characteristics. This was done by granulation of binary mixtures of microcrystalline cellulose (MCC) and either lactose, calcium phosphate, acetaminophen, or theophylline, in a 1:3 ratio, using a 50% (wt/wt) aqueous solution of PEG and water as the binder liquid. Formulations containing lactose were agglomerated using 5 different amounts of the PEG binder solution, giving rise to a PEG content in the range of 6% to 43% (wt/wt). The process outcome was characterized according to adhesion, yield, and water requirement, and the prepared granules were characterized according to size, size distribution, and flow properties as well as tableting properties. The agglomeration of all mixtures resulted in high yields of free-flowing agglomerates and gave rise to good reproducibility of the investigated agglomerate characteristics. The process allowed for the incorporation of 42.5% (wt/wt) PEG, which is higher than the percentage of PEG reported for other equipment. Tablets of sufficient strength could be prepared with all investigated excipients using 20% wt/wt PEG; higher PEG contents gave rise to adhesion and prolonged disintegration. In conclusion, agglomeration in a torque-controlled rotary processor using solutions of PEG as the primary binder liquid was found to be a robust process, suitable for the incorporation of high contents of PEG and/or drug compounds.
Rheiner, Steven; Reichel, Derek; Rychahou, Piotr; Izumi, Tadahide; Yang, Hsin-Sheng; Bae, Younsoo
2017-08-07
Poly(ethylene glycol)-conjugated polyethylenimine (PEG-PEI) is a widely studied cationic polymer used to develop non-viral vectors for siRNA therapy of genetic disorders including cancer. Cell lines stably expressing luciferase reporter protein typically evaluate the transfection efficacy of siRNA/PEG-PEI complexes, however recent findings revealed that PEG-PEI can reduce luciferase expression independent of siRNA. This study elucidates a cause of the false positive effect in luciferase assays by using polymer nanoassemblies (PNAs) made from PEG, PEI, poly-(l-lysine) (PLL), palmitate (PAL), and deoxycholate (DOC): PEG-PEI (2P), PEG-PEI-PAL (3P), PEG-PLL (2P'), PEG-PLL-PAL (3P'), and PEG-PEI-DOC (2PD). In vitro transfection and western blot assays of luciferase using a colorectal cancer cell line expressing luciferase (HT29/LUC) concluded that 2P and 2P' caused no luciferase expression reduction while hydrophobically modified PNAs induced a 35-50% reduction (3P'<2PD<3P). Although cell viability remained stagnant, 3P triggered cellular stress responses including increased membrane porosity and decreased ATP and cellular protein concentrations. Raman spectroscopy suggested that hydrophobic groups influence PNA conformation changes, which may have caused over-ubiquitination and degradation of luciferase in the cells. These results indicate that hydrophobically modified PEG-PEI induces cellular distress causing over-ubiquitination of the luciferase protein, producing false positive siRNA transfection in the luciferase assay. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Dongxia; Hu, Tao; Manjula, Belur N; Acharya, Seetharama A
2009-11-01
Cys-93(beta) of hemoglobin (Hb) was reversibly protected as a mixed disulfide with thiopyridine during extension arm facilitated (EAF) PEGylation and its influence on the structural and functional properties of the EAF-PEG-Hb has been investigated. Avoiding PEGylation of Cys-93(beta) in the EAF-PEG-Hb lowers the level of perturbation of heme pocket, alpha1beta2 interface, autoxidation, heme loss, and the O(2) affinity, as compared to the EAF-PEG-Hb with PEGylation of Cys-93(beta).The structural and functional advantages of reversible protection of Cys-93(beta) during EAF PEGylation of oxy-Hb has been compared with Euro PEG-Hb generated by EAF PEGylation of deoxy Hb where Cys-93(beta) is free in the final product. The alphaalpha-fumaryl cross-linking and EAF PEGylation targeted exclusively to Lys residues has been combined together for generation of second-generation EAF-PEG-Hb with lower oxygen affinity. The PEG chains engineered on Lys as well as PEGylation of Cys-93(beta) independently contribute to the stabilization of oxy conformation of Hb and hence increase the oxygen affinity of Hb. However, oxygen affinity of the EAF-PEG-alphaalpha-Hb is more sensitive to the presence of PEGylation on Cys-93(beta) than that of the EAF-PEG-Hb. The present modified EAF PEGylation platform is expected to facilitate the design of novel versions of the EAF-PEG-Hbs that can now integrate the advantages of avoiding PEGylation of Cys-93(beta).
Attar, A; Lémann, M; Ferguson, A; Halphen, M; Boutron, M C; Flourié, B; Alix, E; Salmeron, M; Guillemot, F; Chaussade, S; Ménard, A M; Moreau, J; Naudin, G; Barthet, M
1999-02-01
Polyethylene glycol (PEG) 3350 is a non-absorbable, non-metabolised osmotic agent used in lavage solutions for gut cleansing. To compare the efficacy of PEG and lactulose in chronic constipation. A total of 115 patients with chronic constipation entered a multicentre, randomised, comparative trial. They initially received two sachets containing either PEG (13 g/sachet) or lactulose (10 g/sachet) and were given an option to change the dose to one or three sachets/day, depending on response. Ninety nine patients completed the trial. After four weeks, patients in the PEG group (n=50) had a higher number of stools and a lower median daily score for straining at stool than patients in the lactulose group (n=49). Overall improvement was greater in the PEG group. Clinical tolerance was similar in the two groups, but flatus was less frequently reported in the PEG group. The mean number of liquid stools was higher in the PEG group but the difference was significant only for the first two weeks. There were no serious adverse events and no significant change in laboratory tests in either group. At the end of the study, the number of sachets used by the patients was 1.6 (0.7)/day in the PEG group and 2.1 (0.7)/day in the lactulose group. Sixty one patients completed a further two months open study of one to three sachets PEG daily; there was no loss of efficacy and no serious toxicity. Low dose PEG 3350 was more effective than lactulose and better tolerated.
PEG-rHuMGDF ameliorates thrombocytopenia in carboplatin-treated rats without inducing myelofibrosis.
Ide, Y; Harada, K; Imai, A; Yanagida, M
1999-08-01
We examined the effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) on carboplatin-induced thrombocytopenia in rats. The focus was on whether myelofibrosis is associated with the PEG-rHuMGDF treatment in this chemotherapy model. After a single injection of carboplatin, rats received subcutaneous PEG-rHuMGDF at pharmacologic doses (1,3, or 30 micrograms/kg) or a vehicle daily for 7 days. PEG-rHuMGDF at more than 3 micrograms/kg ameliorated the thrombocytopenia at day 10. Histologically, no myelofibrosis was detected in the rats treated with PEG-rHuMGDF or vehicle. Subsequently, PEG-rHuMGDF at a suprapharmacologic dose (100 micrograms/kg) was subcutaneously administered to normal and to carboplatin-treated rats daily for 7 days. Histological analysis revealed that the treatment with PEG-rHuMGDF induced myelofibrosis in the normal rats but not in the carboplatin-treated rats. Additionally, the transforming growth factor-beta 1 (TGF-beta 1) levels in the extracellular fluid and the whole extract of the bone marrow were increased to a much lesser degree in the carboplatin-treated rats compared to the normal rats. These findings suggest that PEG-rHuMGDF is effective for carboplatin-induced thrombocytopenia. Proper control of platelet counts and TGF-beta 1 levels is essential so that myelofibrosis is not induced in clinical use.
Nacharaju, Parimala; Boctor, Fouad N; Manjula, Belur N; Acharya, Seetharama A
2005-03-01
The surface decoration of red blood cells (RBCs) by polyethylene glycol (PEG) chains has been an approach developed to camouflage the blood group antigens from their antibodies. A PEGylation protocol, however, that can mask the antigens appropriately to inhibit the agglutination of RBCs with the respective antibodies is not available so far. A new approach for PEGylation of RBC membrane proteins has been designed with thiolation-mediated maleimide chemistry. The accessibility of the surface lysine residues of membrane proteins to bulky PEG reagents was increased by linking an extension arm carrying a thiol group. RBCs have been PEGylated by thiolation-mediated chemistry with maleimidophenyl-PEG (Mal-Phe-PEG) reagents of different chain lengths. Mal-Phe-PEG-5000 chains alone masked the most important antigens of the Rh system (C, c, E, e, and D) from their antibodies. The masking of the A and B antigens needed a combination of Mal-Phe-PEG-5000 and Mal-Phe-PEG-20000 chains to inhibit the agglutination of RBCs completely with anti-A or anti-B. Thiolation-mediated PEGylation of RBCs with Mal-Phe-PEG-5000 and Mal-Phe-PEG-20000 converts Group A Rh(D)+ and B Rh(D)+ RBCs into RBCs with serologic behavior comparable to Group O Rh(D)- RBCs that are considered as universal RBCs for transfusion.
Kim, Hyoung Jun; Kim, Tae Oh; Shin, Bong Chul; Woo, Jae Gon; Seo, Eun Hee; Joo, Hee Rin; Heo, Nae-Yun; Park, Jongha; Park, Seung Ha; Yang, Sung Yeon; Moon, Young Soo; Shin, Jin-Yong; Lee, Nae Young
2012-01-01
Currently, a split-dose of polyethylene glycol (PEG) is the mainstay of bowel preparation due to its tolerability, bowel-cleansing action, and safety. However, bowel preparation with PEG is suboptimal because residual fluid reduces the polyp detection rate and requires a more thorough colon inspection. The aim of our study was to demonstrate the efficacy of a sufficient dose of prokinetics on bowel cleansing together with split-dose PEG. A prospective endoscopist-blinded study was conducted. Patients were randomly allocated to two groups: prokinetic with split-dose PEG or split-dose PEG alone. A prokinetic [100 mg itopride (Itomed)], was administered twice simultaneously with each split-dose of PEG. Bowel-cleansing efficacy was measured by endoscopists using the Ottawa scale and the segmental fluidity scale score. Each participant completed a bowel preparation survey. Mean scores from the Ottawa scale, segmental fluid scale, and rate of poor preparation were compared between both groups. Patients in the prokinetics with split-dose PEG group showed significantly lower total Ottawa and segmental fluid scores compared with patients in the split-dose of PEG alone group. A sufficient dose of prokinetics with a split-dose of PEG showed efficacy in bowel cleansing for morning colonoscopy, largely due to the reduction in colonic fluid. Copyright © 2012 S. Karger AG, Basel.
Campbell, Kayleen; Craig, Duncan Q M; McNally, Tony
2008-11-03
Composites of paracetamol loaded poly(ethylene glycol) (PEG) with a naturally derived and partially synthetic layered silicate (nanoclay) were prepared using hot-melt extrusion. The extent of dispersion and distribution of the paracetamol and nanoclay in the PEG matrix was examined using a combination of field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and wide-angle X-ray diffraction (WAXD). The paracetamol polymorph was shown to be well dispersed in the PEG matrix and the nanocomposite to have a predominately intercalated and partially exfoliated morphology. The form 1 monoclinic polymorph of the paracetamol was unaltered after the melt mixing process. The crystalline behaviour of the PEG on addition of both paracetamol and nanoclay was investigated using differential scanning calorimetry (DSC) and polarised hot-stage optical microscopy. The crystalline content of PEG decreased by up to 20% when both drug and nanoclay were melt blended with PEG, but the average PEG spherulite size increased by a factor of 4. The time taken for 100% release of paracetamol from the PEG matrix and corresponding diffusion coefficients were significantly retarded on addition of low loadings of both naturally occurring and partially synthetic nanoclays. The dispersed layered silicate platelets encase the paracetamol molecules, retarding diffusion and altering the dissolution behaviour of the drug molecule in the PEG matrix.
Li, Jie; Sun, Chunyang; Tao, Wei; Cao, Ziyang; Qian, Haisheng; Yang, Xianzhu; Wang, Jun
2018-07-01
Controlling poly(ethylene glycol) (PEG) shielding/deshielding at the desired site of action exhibits great advantages for nanocarrier-based on-demand drug delivery in vivo. However, the current PEG deshielding strategies were mainly designed for anticancer drug delivery; even so, their applications are also limited by tumor heterogeneity. As a proof-of-concept, we explored a photoinduced PEG deshielding nanocarrier TK-NP Ce6&PTX to circumvent the aforementioned challenge. The TK-NP Ce6&PTX encapsulating chlorin e6 (Ce6) and paclitaxel (PTX) was self-assembled from an innovative thioketal (TK) linkage-bridged diblock copolymer of PEG with poly(d,l-lactic acid) (PEG-TK-PLA). We demonstrated that the high PEGylation of TK-NP Ce6&PTX in blood helps the nanocarrier efficiently avoid rapid clearance and consequently prolongs its circulation time. At the desired site (tumor), 660-nm red light irradiation led to ROS generation in situ, which readily cleaved the TK linkage, resulting in PEG deshielding. Such photoinduced PEG deshielding at the desired site significantly enhances the cellular uptake of the nanocarriers, achieving on-demand drug delivery and superior therapeutic efficacy. More importantly, this strategy of photoinducing PEG deshielding of nanocarriers could potentially extend to a variety of therapeutic agents beyond anticancer drugs for on-demand delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yu, Tao; Chan, Kannie W Y; Anonuevo, Abraham; Song, Xiaolei; Schuster, Benjamin S; Chattopadhyay, Sumon; Xu, Qingguo; Oskolkov, Nikita; Patel, Himatkumar; Ensign, Laura M; van Zjil, Peter C M; McMahon, Michael T; Hanes, Justin
2015-02-01
Mucus barriers lining mucosal epithelia reduce the effectiveness of nanocarrier-based mucosal drug delivery and imaging ("theranostics"). Here, we describe liposome-based mucus-penetrating particles (MPP) capable of loading hydrophilic agents, e.g., the diaCEST MRI contrast agent barbituric acid (BA). We observed that polyethylene glycol (PEG)-coated liposomes containing ≥7 mol% PEG diffused only ~10-fold slower in human cervicovaginal mucus (CVM) compared to their theoretical speeds in water. 7 mol%-PEG liposomes contained sufficient BA loading for diaCEST contrast, and provided improved vaginal distribution compared to 0 and 3mol%-PEG liposomes. However, increasing PEG content to ~12 mol% compromised BA loading and vaginal distribution, suggesting that PEG content must be optimized to maintain drug loading and stability. Non-invasive diaCEST MRI illustrated uniform vaginal coverage and longer retention of BA-loaded 7 mol%-PEG liposomes compared to unencapsulated BA. Liposomal MPP with optimized PEG content hold promise for drug delivery and imaging at mucosal surfaces. This team of authors characterized liposome-based mucus-penetrating particles (MPP) capable of loading hydrophilic agents, such as barbituric acid (a diaCEST MRI contrast agent) and concluded that liposomal MPP with optimized PEG coating enables drug delivery and imaging at mucosal surfaces. Copyright © 2015 Elsevier Inc. All rights reserved.
[Study on the stability of chicken egg yolk immunoglobulin (IgY) modified with mPEG].
Wang, Li-Ying; Ma, Mei-Hu; Huang, Qun; Shi, Xiao-Xia
2012-09-01
The objective of the present paper was to study the effect of monomethoxypolyethlene glycol (mPEG) modification on the stability of chicken IgY and compare the stability of the modification products by Fourier transform infrared spectroscopy (FTIR), CD spectrooscopy and fluorescence spectroscopy. NHS-mPEG was used to modify IgY after mPEG was activated with N-hydroxysuccinimide (NHS). The optimal reaction condition for modification was 1:10 molar rate of IgY to mPEG at pH 7, reaction for 1 h, and the product was obtained with modification rate of 20.56% and activity reservation of 87. 62%. In addition, the thermal and pH stability of IgY and mPEG-IgY was compared by spectroscopic methods. The results showed that the alpha-helix, beta-sheet, beta-turn, and random content of IgY changed from 14.5%, 42.1%, 6.2% and 37.2% to 1.6%, 55.25%, 5.8% and 37.5%, while mPEG changed from 12.9%, 42.7%, 6.3% and 38. 1% to 3.1%, 50.5%, 7.2% and 39.2%, respectively, after incubating for 120 min at 70 degrees C. For the treatment with acid-base, similarly, the structure changes of mPEG-IgY were smaller than IgY. Thus, it is indicated that IgY modified by mPEG had greater stable properties.
Baird, Jared A; Olayo-Valles, Roberto; Rinaldi, Carlos; Taylor, Lynne S
2010-01-01
Polyethylene glycol (PEG) is a hygroscopic polymer that undergoes the phenomenon of deliquescence once a critical relative humidity (RH(0)) is reached. The purpose of this study was to test the hypothesis that the deliquescence behavior of PEG will be affected by the polymer molecular weight, temperature, and the presence of additives. The deliquescence relative humidity for single component (RH(0)) and binary mixtures (RH(0,mix)) were measured using an automated gravimetric moisture analyzer at 25 and 40 degrees C. Changes in PEG crystallinity after exposure to moisture were qualitatively assessed using powder X-ray diffraction (PXRD). Optical microscopy was used to visually observe the deliquescence phenomenon. For single component systems, decreasing PEG MW and elevating the temperature resulted in a decrease in the observed RH(0). Physical mixtures of acetaminophen and anhydrous citric acid with both PEG 3350 and PEG 100,000 exhibited deliquescence (RH(0,mix)) at a relative humidity below that of either individual component. Qualitative changes in crystallinity were observed from the X-ray diffractograms for each PEG MW grade at high relative humidities, indicating that phase transformation (deliquescence) of the samples had occurred. In conclusion, it was found that the deliquescence behavior of PEG was affected by the polymer MW, temperature, and the presence of additives. This phenomenon may have important implications for the stability of PEG containing formulations.
Decorin causes autophagy in endothelial cells via Peg3
Buraschi, Simone; Neill, Thomas; Goyal, Atul; Poluzzi, Chiara; Smythies, James; Owens, Rick T.; Schaefer, Liliana; Torres, Annabel; Iozzo, Renato V.
2013-01-01
Soluble decorin affects the biology of several receptor tyrosine kinases by triggering receptor internalization and degradation. We found that decorin induced paternally expressed gene 3 (Peg3), an imprinted tumor suppressor gene, and that Peg3 relocated into autophagosomes labeled by Beclin 1 and microtubule-associated light chain 3. Decorin evoked Peg3-dependent autophagy in both microvascular and macrovascular endothelial cells leading to suppression of angiogenesis. Peg3 coimmunoprecipitated with Beclin 1 and LC3 and was required for maintaining basal levels of Beclin 1. Decorin, via Peg3, induced transcription of Beclin 1 and microtubule-associated protein 1 light chain 3 alpha genes, thereby leading to a protracted autophagic program. Mechanistically, decorin interacted with VEGF receptor 2 (VEGFR2) in a region overlapping with its natural ligand VEGFA, and VEGFR2 was required for decorin-evoked Beclin 1 and microtubule-associated protein 1 light chain 3 alpha expression as well as for Peg3 induction in endothelial cells. Moreover, decorin induced VEGFR2-dependent mitochondrial fragmentation and loss of mitochondrial membrane potential. Thus, we have unveiled a mechanism for a secreted proteoglycan in inducing Peg3, a master regulator of macroautophagy in endothelial cells. PMID:23798385
Vale, Ellen Moura; Reis, Ricardo Souza; Passamani, Lucas Zanchetta; Santa-Catarina, Claudete; Silveira, Vanildo
2018-03-01
Efficient protocols for somatic embryogenesis of papaya ( Carica papaya L.) have great potential for selecting elite hybrid genotypes. Addition of polyethylene glycol (PEG), a nonplasmolyzing osmotic agent, to a maturation medium increases the production of somatic embryos in C . papaya . To study the effects of PEG on somatic embryogenesis of C . papaya , we analyzed somatic embryo development and carbohydrate profile changes during maturation treatments with PEG (6%) or without PEG (control). PEG treatment (6%) increased the number of normal mature somatic embryos followed by somatic plantlet production. In both control and PEG treatments, pro-embryogenic differentiation to the cotyledonary stage was observed and was significantly higher with PEG treatment. Histomorphological analysis of embryonic cultures with PEG revealed meristematic centers containing small isodiametric cells with dense cytoplasm and evident nuclei. Concomitant with the increase in the differentiation of somatic embryos in PEG cultures, there was an increase in the endogenous content of sucrose and starch, which appears to be related to a rising demand for energy, a key point in the conversion of C . papaya somatic embryos. The endogenous carbohydrate profile may be a valuable parameter for developing optimized protocols for the maturation of somatic embryos in papaya.
Shimizu, Minobu; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki
2008-01-01
Cucumber (Cucumis sativus L.) seedlings form a specialized protuberance, the peg, on the transition zone between the hypocotyl and the root. When cucumber seeds germinate in a horizontal position, the seedlings develop a peg on the lower side of the transition zone. To verify the role of auxin action in peg formation, we examined the effect of the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB), on peg formation and mRNA accumulation of auxin-regulated genes. Application of PCIB to cucumber seedlings inhibited peg formation. The application of indole-3-acetic acid (IAA) competed with PCIB and induced peg formation. Furthermore, application of PCIB decreased auxin-inducible CsIAA1 mRNA and increased auxin-repressible CsGRP1 mRNA in the lower side of the transition zone. The differential accumulation of CsIAA1 and CsGRP1 mRNAs in the transition zone of cucumber seedlings grown in a horizontal position was smaller in the PCIB-treated seedlings. These results demonstrate that endogenous auxin redistributes and induces the differential expression of auxin-regulated genes, and ultimately results in the suppression or induction of peg formation in the gravistimulated transition zone of cucumber seedlings.
NASA Astrophysics Data System (ADS)
Yang, Wei; Cai, Jiaxuan; Zhang, Shuchen; Yi, Xuegang; Gao, Baoxiang
2018-01-01
To synthesize perylenbisimides (PBI) fluorescent probes that will improve the water-soluble ability and the cytocompatibility, the synthesis and properties of fluorescent water-soluble probes based on dendritic ammonium cation polyethylene glycol (PEG) substituted perylenebisimides(GPDIs) are presented. As we expected, with increased ammonium cation PEG, the aggregation of the PBI in an aqueous solution is completely suppressed by the hydrophilic ammonium cation PEG groups. And the fluorescence quantum yield increases from 25% for GPDI-1 to 62% for GPDI-2. When incubated with Hela cells for 48 h, the viabilities are 71% (for GPDI-1) and 76% (for GPDI-2). Live cell imaging shows that these probes are efficiently internalized by HeLa cells. The study of the photophysical properties indicated increasing the ammonium cation PEG generation can increase the fluorescence quantum yield. Live cell imaging shows that with the ammonium cation PEG chains of perylenebisimides has high biocompatibility. The exceptionally low cytotoxicity is ascribed to the ammonium cation PEG chains, which protect the dyes from nonspecifically interacting with the extracellular proteins. Live cell imaging shows that ammonium cations PEG chains can promote the internalization of these probes.
Antitumor activity of a folate receptor-targeted immunoglobulin G-doxorubicin conjugate
Yang, Tan; Xu, Ling; Li, Bin; Li, Weijie; Ma, Xiang; Fan, Lingling; Lee, Robert J; Xu, Chuanrui; Xiang, Guangya
2017-01-01
Development of antibody-drug conjugates (ADCs) is a promising therapeutic strategy for cancer therapy. In this study, folate was conjugated via a polyethyleneglycol (PEG) linker to immunoglobulin G (IgG), which was linked to doxorubicin (DOX), to form a novel ADC folate-PEG-IgG-DOX (FA-PEG-IgG-DOX). The FA-PEG-IgG-DOX showed high targeting efficiency in HeLa and KB cells and significantly improved the uptake and retention of DOX compared with IgG-DOX about 10-fold. Subsequently, FA-PEG-IgG-DOX was shown to have at least 8 times higher antitumor activity than IgG-DOX both in HeLa and KB cells and also induced more apoptosis in those cells than IgG-DOX. Moreover, FA-PEG-IgG-DOX had a 2 times longer circulating time than FA-IgG-DOX, but did not increase the DOX distribution in mouse hearts. Importantly, FA-PEG-IgG-DOX treatment significantly inhibited tumor growth in xenograft mice. Together, our results indicate that FA-PEG-IgG is an effective ADC carrier for delivery of chemotherapeutic agents and that conjugating tumor targeting ligands to antibodies is a promising strategy for producing ADC drugs. PMID:28408821
NASA Technical Reports Server (NTRS)
Li, Feiyue; Bainum, Peter M.
1990-01-01
The large-angle maneuvering of a Shuttle-beam-reflector spacecraft in the plane of a circular earth orbit is examined by considering the effects of the structural offset connection, the axial shortening, and the gravitational torque on the slewing motion. The offset effect is analyzed by changing the attachment point of the reflector to the beam. As the attachment point is moved away from the mass center of the reflector, the responses of the nonlinear system deviate from those of the linearized system. The axial geometric shortening effect induced by the deformation of the beam contributes to the system equations through second order terms in the modal amplitudes and rates. The gravitational torque effect is relatively small.
Simulation study of short-channel effects of tunnel field-effect transistors
NASA Astrophysics Data System (ADS)
Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Mori, Takahiro; Morita, Yukinori; Mizubayashi, Wataru; Masahara, Meishoku; Migita, Shinji; Ota, Hiroyuki; Endo, Kazuhiro; Matsukawa, Takashi
2018-04-01
Short-channel effects of tunnel field-effect transistors (FETs) are investigated in detail using simulations of a nonlocal band-to-band tunneling model. Discussion is limited to silicon. Several simulation scenarios were considered to address different effects, such as source overlap and drain offset effects. Adopting the drain offset to suppress the drain leakage current suppressed the short channel effects. The physical mechanism underlying the short-channel behavior of the tunnel FETs (TFETs) was very different from that of metal-oxide-semiconductor FETs (MOSFETs). The minimal gate lengths that do not lose on-state current by one order are shown to be 3 nm for single-gate structures and 2 nm for double gate structures, as determined from the drain offset structure.
Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation.
Davila-Rodriguez, J; Baynes, F N; Ludlow, A D; Fortier, T M; Leopardi, H; Diddams, S A; Quinlan, F
2017-04-01
We demonstrate an easy-to-manufacture 25-mm-long ultra-stable optical reference cavity for transportable photonic microwave generation systems. Employing a rigid holding geometry that is first-order insensitive to the squeezing force and a cavity geometry that improves the thermal noise limit at room temperature, we observe a laser phase noise that is nearly thermal noise limited for three frequency decades (1 Hz to 1 kHz offset) and supports 10 GHz generation with phase noise near -100 dBc/Hz at 1 Hz offset and <-173 dBc/Hz for all offsets >600 Hz. The fractional frequency stability reaches 2×10-15 at 0.1 s of averaging.
Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.
Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2016-07-01
The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. © The Author(s) 2016.
Chan, Cheng-Kuang; Chu, I-Ming
2003-01-01
A novel biomaterial: poly(sebacic anhydride-co-ethylene glycol) was synthesized by introducing poly(ethylene glycol) (PEG) into a polyanhydride system. This copolymer was synthesized using sebacic acid and PEG via melt-condensation polymerization. The crystalline behavior of these synthesized products was studied, and compared to that of polymer blends of poly(sebacic anhydride) (PSA) and PEG. The crystallinity of PSA chain segments can be significantly enhanced by increasing chain mobility via the introduction of PEG. The crystallinity of the PSA component in copolymers was substantially greater than that of blends. However, the crystalline growth of the PEG segments was totally hindered by the presence of PSA chain segments, such that no crystal for PEG component was found in these copolymers. Besides, a dynamic mechanical analysis of these materials was also performed to provide additional information concerning visco-elastic behavior for other biomedical applications, where it was found that the viscous behavior in copolymers was more significant than in neat PSA and PEG. Copyright 2002 Elsevier Science Ltd.
Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao
2018-05-01
Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.
NASA Astrophysics Data System (ADS)
Parson, L.; Murton, B.; Sauter, D.; Curewitz, D.; Okino, K.; German, C.; Leven, J.
2001-12-01
Deeptow sidescan sonar data (TOBI, 30kHz) acquired over more than 200 km of the Central Indian Ridge during RRS Charles Darwin cruise CD127 reveal an abundance of neovolcanic activity throughout both spreading segments and ridge non-transform discontinuities alike. Imagery of the previously unsurveyed northern section of the CIR immediately south of the Marie Celeste Fracture Zone confirms the presence of a shallow, magmatically inflated second order segment that is only recently rifted, with a rift floor surfaced throughout by virtually untectonised planar sheet flow units. First and second order segments exhibit a significant component of sheeted extrusives, ponded or in lake form, abutting or overstepped by hummocky and mounded pillow constructs. Non-transform discontinuities are commonly cut by fresh axial volcanic ridges oblique to both axial trend and offset. The depths of segment centers range from 2600m to more than 3700m, and segment forms include robust, hour-glass and rifted/starved end-members - but their overall extrusive pattern is strikingly invariant. Fracture Zone offsets of up to 65 kilometres are tectonically dominated, but their intersections with the axis are often mantled by multiple sheet flows rather than the relatively low proportions of sediment cover. The largest offsets are marked by outcrops of multiple, subparallel displacement surfaces, actively eroding transverse ridges, and ridge transform intersections with classic propagation/recession fabrics - each suggesting some instability in regional plate kinematics. While it is tempting to speculate that the Rodrigues hotspot appears to have a regional effect, enhancing magmatic delivery to the adjacent ridge and offset system, the apparent breadth of influence from what is assumed to be a rather feeble mantle anomaly is problematic.
A dynamic neural field model of temporal order judgments.
Hecht, Lauren N; Spencer, John P; Vecera, Shaun P
2015-12-01
Temporal ordering of events is biased, or influenced, by perceptual organization-figure-ground organization-and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target's offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (c) 2015 APA, all rights reserved).
A Stimulated Raman Scattering CMOS Pixel Using a High-Speed Charge Modulator and Lock-in Amplifier.
Lioe, De Xing; Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru
2016-04-13
A complementary metal-oxide semiconductor (CMOS) lock-in pixel to observe stimulated Raman scattering (SRS) using a high speed lateral electric field modulator (LEFM) for photo-generated charges and in-pixel readout circuits is presented. An effective SRS signal generated after the SRS process is very small and needs to be extracted from an extremely large offset due to a probing laser signal. In order to suppress the offset components while amplifying high-frequency modulated small SRS signal components, the lock-in pixel uses a high-speed LEFM for demodulating the SRS signal, resistor-capacitor low-pass filter (RC-LPF) and switched-capacitor (SC) integrator with a fully CMOS differential amplifier. AC (modulated) components remained in the RC-LPF outputs are eliminated by the phase-adjusted sampling with the SC integrator and the demodulated DC (unmodulated) components due to the SRS signal are integrated over many samples in the SC integrator. In order to suppress further the residual offset and the low frequency noise (1/f noise) components, a double modulation technique is introduced in the SRS signal measurements, where the phase of high-frequency modulated laser beam before irradiation of a specimen is modulated at an intermediate frequency and the demodulation is done at the lock-in pixel output. A prototype chip for characterizing the SRS lock-in pixel is implemented and a successful operation is demonstrated. The reduction effects of residual offset and 1/f noise components are confirmed by the measurements. A ratio of the detected small SRS to offset a signal of less than 10(-)⁵ is experimentally demonstrated, and the SRS spectrum of a Benzonitrile sample is successfully observed.
Effects of eddy currents on selective spectral editing experiments at 3T.
Oeltzschner, Georg; Snoussi, Karim; Puts, Nicolaas A; Mikkelsen, Mark; Harris, Ashley D; Pradhan, Subechhya; Tsapkini, Kyrana; Schär, Michael; Barker, Peter B; Edden, Richard A E
2018-03-01
To investigate frequency-offset effects in edited magnetic resonance spectroscopy (MRS) experiments arising from B 0 eddy currents. Macromolecule-suppressed (MM-suppressed) γ-aminobutyric acid (GABA)-edited experiments were performed at 3T. Saturation-offset series of MEGA-PRESS experiments were performed in phantoms, in order to investigate different aspects of the relationship between the effective editing frequencies and eddy currents associated with gradient pulses in the sequence. Difference integrals were quantified for each series, and the offset dependence of the integrals was analyzed to quantify the difference in frequency (Δf) between the actual vs. nominal expected saturation frequency. Saturation-offset N-acetyl-aspartate-phantom experiments show that Δf varied with voxel orientation, ranging from 10.4 Hz (unrotated) to 6.4 Hz (45° rotation about the caudal-cranial axis) and 0.4 Hz (45° rotation about left-right axis), indicating that gradient-related B 0 eddy currents vary with crusher-gradient orientation. Fixing the crusher-gradient coordinate-frame substantially reduced the orientation dependence of Δf (to ∼2 Hz). Water-suppression crusher gradients also introduced a frequency offset, with Δf = 0.6 Hz ("excitation" water suppression), compared to 10.2 Hz (no water suppression). In vivo spectra showed a negative edited "GABA" signal, suggesting Δf on the order of 10 Hz; with fixed crusher-gradient coordinate-frame, the expected positive edited "GABA" signal was observed. Eddy currents associated with pulsed field gradients may have a considerable impact on highly frequency-selective spectral-editing experiments, such as MM-suppressed GABA editing at 3T. Careful selection of crusher gradient orientation may ameliorate these effects. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:673-681. © 2017 International Society for Magnetic Resonance in Medicine.
Nakamura, Toru; Nagata, Masatoshi; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo; Kitsukawa, Takashi
2017-04-01
Animals including humans execute motor behavior to reach their goals. For this purpose, they must choose correct strategies according to environmental conditions and shape many parameters of their movements, including their serial order and timing. To investigate the neurobiology underlying such skills, we used a multi-sensor equipped, motor-driven running wheel with adjustable sequences of foothold pegs on which mice ran to obtain water reward. When the peg patterns changed from a familiar pattern to a new pattern, the mice had to learn and implement new locomotor strategies in order to receive reward. We found that the accuracy of stepping and the achievement of water reward improved with the new learning after changes in the peg-pattern, and c-Fos expression levels assayed after the first post-switch session were high in both dorsolateral striatum and motor cortex, relative to post-switch plateau levels. Combined in situ hybridization and immunohistochemistry of striatal sections demonstrated that both enkephalin-positive (indirect pathway) neurons and substance P-positive (direct pathway) neurons were recruited specifically after the pattern switches, as were interneurons expressing neuronal nitric oxide synthase. When we blocked N-methyl-D-aspartate (NMDA) receptors in the dorsolateral striatum by injecting the NMDA receptor antagonist, D-2-amino-5-phosphonopentanoic acid (AP5), we found delays in early post-switch improvement in performance. These findings suggest that the dorsolateral striatum is activated on detecting shifts in environment to adapt motor behavior to the new context via NMDA-dependent plasticity, and that this plasticity may underlie forming and breaking skills and habits as well as to behavioral difficulties in clinical disorders. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Wang, Meiping; Xie, Fangyuan; Wen, Xikai; Chen, Han; Zhang, Hai; Liu, Junjie; Zhang, He; Zou, Hao; Yu, Yuan; Chen, Yan; Sun, Zhiguo; Wang, Xinxia; Zhang, Guoqing; Yin, Chuan; Sun, Duxin; Gao, Jie; Jiang, Beige; Zhong, Yanqiang; Lu, Ying
2017-05-01
Salinomycin (SAL)-loaded PEG-ceramide nanomicelles (SCM) were prepared to target both liver cancer cells and cancer stem cells. The synergistic ratio of SAL/PEG-ceramide was evaluated to prepare SCM, and the antitumor activity of SCM was examined both in vitro and in vivo. SAL/PEG-ceramide molar ratio of 1:4 was chosen as the synergistic ratio, and SCM showed superior cytotoxic effect and increased apoptosis-inducing activity in both liver cancer cells and cancer stem cells. In vivo, SCM showed the best tumor inhibitory effect with a safety profile. Thus, PEG-ceramide nanomicelles could serve as an effective and safe therapeutic drug carrier to deliver SAL into liver cancer, opening up the avenue of using PEG-ceramide as therapeutic drug carriers.
Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates.
Lee, Hyukjin; Lee, Kang Dae; Pyo, Kyung Bo; Park, Sung Young; Lee, Haeshin
2010-03-16
We report on catechol-grafted poly(ethylene) glycol (PEG-g-catechol) for the preparation of nonfouling surfaces on versatile substrates including adhesion-resistant PTFE. PEG-g-catechol was prepared by the step-growth polymerization of PEO to which dopamine, a mussel-derived adhesive molecule, was conjugated. The immersion of substrates into an aqueous solution of PEG-g-catechol resulted in robust PEGylation on versatile surfaces of noble metals, oxides, and synthetic polymers. Surface PEGylation was unambiguously confirmed by various surface analytical tools such as ellipsometry, goniometry, infrared spectroscopy, and X-ray photoelectron spectroscopy. Contrary to existing PEG derivatives that are difficult-to-modify synthetic polymer surfaces, PEG-g-catechol can be considered to be a new class of PEGs for the facile surface PEGylation of various types of surfaces.
Electrospun polylactide/poly(ethylene glycol) hybrid fibrous scaffolds for tissue engineering.
Wang, Bei-Yu; Fu, Shao-Zhi; Ni, Pei-Yan; Peng, Jing-Rong; Zheng, Lan; Luo, Feng; Liu, Hao; Qian, Zhi-Yong
2012-02-01
The biodegradable polylactide/poly(ethylene glycol) (PLA/PEG) hybrid membranes were fabricated via electrospinning of PLA/PEG solution. Their structures and properties were investigated by scanning electron microscopy, differential scanning calorimetry, and water contact angle. In vitro hydrolytic degradation showed that PEG content influenced the degradation rate of the PLA/PEG hybrid mats. The mechanical property was measured by tensile test and the result revealed that the addition of PEG had an obvious plasticization on PLA matrix. In-vitro biocompatibility was investigated by culturing cell on the scaffolds and MTT assay. The results indicated that the cell could attach and proliferate on the membranes, so confirmed that the PLA/PEG hybrid membrane had good biocompatibility, and it could be a promising biomaterial for tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.
Polyethylene Glycol Propionaldehydes
NASA Technical Reports Server (NTRS)
Harris, Joe M.; Sedaghat-Herati, Mohammad R.; Karr, Laurel J.
1992-01-01
New class of compounds derived from polyethylene glycol (PEG's) namely, PEG-propionaldehydes, offers two important advantages over other classes of PEG aldehyde derivatives: compounds exhibit selective chemical reactivity toward amino groups and are stable in aqueous environment. PEG's and derivatives used to couple variety of other molecules, such as, to tether protein molecules to surfaces. Biotechnical and biomedical applications include partitioning of two phases in aqueous media; immobilization of such proteins as enzymes, antibodies, and antigens; modification of drugs; and preparation of protein-rejecting surfaces. In addition, surfaces coated with PEG's and derivatives used to control wetting and electroosmosis. Another potential application, coupling to aminated surfaces.
Pavlík, M; Vacek, J; Klejdus, B; Kuban, V
2007-07-25
Influence of saccharose in the presence or absence of polyethylene glycol (PEG), methyl jasmonate, and an inactivated bacterial culture of Agrobacterium tumefaciens in cultivation medium on morphology of Hypericum perforatum L. and production of hypericin and hyperforin was studied under in vitro conditions. Production of hypericin and hyperforin was influenced by the presence of different concentrations of saccharose (10-30 g L(-1)) in cultivation medium. Addition of PEG (1.25-5 g L(-1)) in the presence of saccharose (10-30 g L(-1)) increased production of hypericin and hyperforin in the H. perforatum in vitro culture. Synthesis of hypericin and hyperforin was unchanged or reduced for most of the experimental plants at higher contents of PEG (10 and 15 g L(-1)). Concentrations of hypericin and hyperforin in the H. perforatum were on the order 100 and 103 microg g(-1) of dry plant material, respectively. Production of hypericin and hyperforin was stimulated either in the presence of a chemical elicitor (methyl jasmonate) or an inactivated bacterial culture of A. tumefaciens. Morphological changes induced by the abovementioned substances were observed and described in detail. The obtained results will be applied in experimental botany and in the technology of H. perforatum cultivation for pharmaceutical applications.
Kempen, Paul J; Thakor, Avnesh S; Zavaleta, Cristina; Gambhir, Sanjiv S; Sinclair, Robert
2013-10-01
The use of nanoparticles for the diagnosis and treatment of cancer requires the complete characterization of their toxicity, including accurately locating them within biological tissues. Owing to their size, traditional light microscopy techniques are unable to resolve them. Transmission electron microscopy provides the necessary spatial resolution to image individual nanoparticles in tissue, but is severely limited by the very small analysis volume, usually on the order of tens of cubic microns. In this work, we developed a scanning transmission electron microscopy (STEM) approach to analyze large volumes of tissue for the presence of polyethylene glycol-coated Raman-active-silica-gold-nanoparticles (PEG-R-Si-Au-NPs). This approach utilizes the simultaneous bright and dark field imaging capabilities of STEM along with careful control of the image contrast settings to readily identify PEG-R-Si-Au-NPs in mouse liver tissue without the need for additional time-consuming analytical characterization. We utilized this technique to analyze 243,000 mm³ of mouse liver tissue for the presence of PEG-R-Si-Au-NPs. Nanoparticles injected into the mice intravenously via the tail vein accumulated in the liver, whereas those injected intrarectally did not, indicating that they remain in the colon and do not pass through the colon wall into the systemic circulation.
Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex.
Narmani, Asghar; Yavari, Kamal; Mohammadnejad, Javad
2017-11-01
Overexpression of folic acid receptor in various human tumors cells makes it as good candidate for targeting delivery of chemotherapeutic and radiopharmaceutical agents. In this research, FA used for functionalization of PEG modified PAMAM G4 dendrimer as a smart delivery of 5-FU and 99m Tc for the breast carcinoma in order to chemotherapeutic and imaging goals. One aim of this research was assess the FA-mediated cell viability assay of PEG-PAMAM G4-FA-5FU- 99m Tc and in vitro uptake of PEG-PAMAM G4-FA- 99m Tc as the novel nano-complex determined on C2Cl2 (normal cell) and MCF-7 (breast cancer cell) cell lines. Other main goals were studied. Morover, an investigation in to in vivo imaging and biodistribution was carried out via a novel radio tracer by which tumor accumulation and site were obviously detected. The targeted tumor images taken by tail intravenous injection demonstrated that nano-complex can be smartly used in imaging study of the clinical practices. Also, the biodistribution of this nano-complex was investigated and the organ predestination of 99m Tc labeled nano-complex (%ID/g) was ascertained. Copyright © 2017 Elsevier B.V. All rights reserved.
Kempen, Paul J.; Thakor, Avnesh S.; Zavaleta, Cristina; Gambhir, Sanjiv S.; Sinclair, Robert
2013-01-01
The use of nanoparticles for the diagnosis and treatment of cancer requires the complete characterization of their toxicity, including accurately locating them within biological tissues. Owing to their size, traditional light microscopy techniques are unable to resolve them. Transmission electron microscopy provides the necessary spatial resolution to image individual nanoparticles in tissue but is severely limited by the very small analysis volume, usually on the order of tens of cubic microns. In this work we developed a scanning transmission electron microscopy (STEM) approach to analyze large volumes of tissue for the presence of polyethylene glycol coated Raman-active-silica-gold-nanoparticles (PEG-R-Si-Au-NPs). This approach utilizes the simultaneous bright and dark field imaging capabilities of STEM along with careful control of the image contrast settings to readily identify PEG-R-Si-Au-NPs in mouse liver tissue without the need for additional time consuming analytical characterization. We utilized this technique to analyze 243,000 µm3 of mouse liver tissue for the presence of PEG-R-Si-Au-NPs. Nanoparticles injected into the mice intravenously via the tail-vein accumulated in the liver while those injected intrarectally did not, indicating that they remain in the colon and do not pass through the colon wall into the systemic circulation. PMID:23803218
Shen, Qi; Li, Wenji; Lin, Yulian; Katsumi, Hidemasa; Okada, Naoki; Sakane, Toshiyasu; Fujita, Takuya; Yamamoto, Akira
2008-12-01
The effects of polyethylene glycol 20000 (PEG 20000) on the intestinal absorption of prednisolone, methylprednisolone and quinidine, three P-glycoprotein (P-gp) substrates, across the isolated rat intestinal membranes were examined by an in-vitro diffusion chamber system. The serosal-to-mucosal (secretory) transport of these P-gp substrates was greater than their mucosal-to-serosal (absorptive) transport, indicating that their net movement across the intestinal membranes was preferentially in the secretory direction. The polarized secretory transport of these drugs was remarkably diminished and their efflux ratios decreased in the presence of PEG 20000. In addition, PEG 20000 did not affect the transport of Lucifer yellow, a non-P-gp substrate. The intestinal membrane toxicity of PEG 20000 was evaluated by measuring the release of alkaline phosphatase (ALP) and protein from the intestinal membranes. The release of ALP and protein was enhanced in the presence of 20 mM sodium deoxycholate (NaDC), a positive control, while these biological parameters did not change in the presence of 0.1-5% (w/v) PEG 20000. These findings indicated that the intestinal membrane damage caused by PEG 20000 was not a main reason for the enhanced absorptive transport of these P-gp substrates in the presence of PEG 20000. Furthermore, the transepithelial electrical resistance (TEER) of rat jejunal membranes in the presence or absence of PEG 20000 was measured by a diffusion chamber method. PEG 20000 (0.1-5.0 % w/v) did not change the TEER values of the rat jejunal membranes, indicating that the increase in the absorptive transport of these P-gp substrates might not be due to the increased transport of these P-gp substrates via a paracellular pathway caused by PEG 20000. Finally, the effect of PEG 20000 on the intestinal absorption of quinidine was examined by an in-situ closed-loop method. The intestinal absorption of quinidine was significantly enhanced in the presence of 0.1-1.0% (w/v) PEG 20000. These findings suggest that PEG 20000 might be a useful excipient to improve the intestinal absorption of quinidine, which is mainly secreted by a P-gp-mediated efflux system in the intestine.
Liu, Hao; Li, Changhua; Liu, Hewen; Liu, Shiyong
2009-04-21
We report the first example of the synthesis and pH-responsive supramolecular self-assembly of double hydrophilic ABC miktoarm star terpolymers. Well-defined ABC miktoarm star terpolymers consisting of poly(ethylene glycol), poly(tert-butyl methacrylate), and poly(2-(diethylamino)ethyl methacrylate) arms [PEG(-b-PtBMA)-b-PDEA] were synthesized via the combination of consecutive click reactions and atom transfer radical polymerization (ATRP), starting from a trifunctional core molecule, 1-azido-3-chloro-2-propanol (ACP). The click reaction of monoalkynyl-terminated PEG with an excess of ACP afforded difunctional PEG bearing a chlorine and a secondary hydroxyl moiety at the chain end, PEG113(-Cl)-OH (1). After azidation with NaN3, PEG-based macroinitiator PEG113(-N3)-Br (3) was prepared by the esterification of PEG113(-N3)-OH (2) with 2-bromoisobutyryl bromide and then employed in the ATRP of tert-butyl methacrylate (tBMA). The obtained PEG(-N3)-b-PtBMA copolymers (4) possessed an azido moiety at the diblock junction point. The preparation of PEG(-b-PtBMA)-b-PDEA miktoarm star terpolymers was then achieved via the click reaction of 4 with an excess of monoalkynyl-terminated PDEA. The obtained miktoarm star terpolymers were successfully converted into PEG(-b-PMAA)-b-PDEA, where PMAA is poly(methacrylic acid). In aqueous solution, PEG(-b-PMAA)-b-PDEA zwitterionic ABC miktoarm star terpolymers can self-assemble into three types of micellar aggregates by simply adjusting solution pH at room temperature. Above pH 8, PDEA-core micelles stabilized by PEG/ionized PMAA hybrid coronas were formed due to the insolubility of PDEA block. In the range of pH 5-7, micelles possessing polyion complex cores formed as a result of charge compensation between partially ionized PMAA and partially protonated PDEA sequences. At pH<4, hydrogen bonding interactions between fully protonated PMAA and PEG led to the formation of another type of micellar aggregates possessing hydrogen-bonded complex cores stabilized by protonated PDEA coronas. The fully reversible pH-responsive formation of three types of aggregates were characterized by 1H NMR, dynamic and static laser light scattering (LLS), and transmission electron microscopy (TEM).
Hsu, Chao-Wei; Su, Wei-Wen; Lee, Chuan-Mo; Peng, Cheng-Yuan; Chuang, Wan-Long; Kao, Jia-Horng; Chu, Heng-Cheng; Huang, Yi-Hsiang; Chien, Rong-Nan; Liaw, Yun-Fan
2018-07-01
Efficacy of sequential therapy with nucleos(t)ide analogues and interferons versus monotherapy in patients with hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) remains unexplored. We aimed to assess efficacy and safety of sequential therapy with adefovir (ADV) or entecavir (ETV) followed by peginterferon (PEG-IFN) alfa-2a in Taiwanese patients with HBeAg-positive. This randomized, placebo-controlled, double-blind trial was conducted at nine sites in Taiwan from April 2010 to October 2013. Patients (N = 280) were randomized 1:1:1 to receive placebo, ETV or ADV alone for four weeks, combined with PEG-IFN alfa-2a for two weeks, then PEG-IFN alfa-2a alone for 46 weeks. The primary efficacy end point was HBeAg seroconversion at 48 weeks post-treatment. No significant differences were observed among groups for HBeAg seroconversion (PEG-IFN alfa-2a+placebo, 36.3%; PEG-IFN alfa-2a+ETV, 29.5%; and PEG-IFN alfa-2a+ADV, 27.4%), HBeAg loss (37.4%, 32.2%, and 28.6%, respectively) or change in hepatitis B surface antigen (HBsAg) levels from baseline (-0.56 IU/mL, -0.60 IU/mL, and -0.41 IU/mL, respectively). However, hepatitis B virus DNA levels were higher with PEG-IFN alfa-2a+placebo than PEG-IFN alfa+ETV at week 64 (p = 0.0412), 76 (p = 0.0311), and 88 (p = 0.0113), and alanine aminotransferase (ALT) normalization rate was higher with PEG-IFN alfa-2a+placebo than PEG-IFN alfa-2a+ADV (p = 0.0283) or PEG-IFN alfa-2a+ETV (p = 0.0369) at week 88. Sub-analysis of results revealed an association between on-treatment HBsAg and ALT levels and efficacy 48 weeks post-treatment. Safety was comparable among treatment groups. Pre-therapy with ADV or ETV followed by PEG-IFN alfa-2a is not superior to PEG-IFN alfa-2a monotherapy in Taiwanese patients with HBeAg-positive CHB. NCT: 00922207. Copyright © 2018. Published by Elsevier B.V.
Kinetics of NO and O2 binding to a maleimide poly(ethylene glycol)-conjugated human haemoglobin
2004-01-01
The hypertensive effect observed with most cell-free haemoglobins has been proposed to result from NO scavenging. However, a newly developed PEG [poly(ethylene glycol)]-conjugated haemoglobin, MalPEG-Hb [maleimide-activated PEG-conjugated haemoglobin], is non-hypertensive with unique physicochemical properties: high O2 affinity, low co-operativity and large molecular radius. It is therefore of interest to compare the ligand-binding properties of MalPEG-Hb with unmodified cell-free HbA (stroma-free human haemoglobin). NO association rates for deoxy and oxyMalPEG-Hb and HbA were found to be identical. These results confirm the lack of correlation between hypertension and NO for a similar modified haemoglobin with high molecular radius and low p50 (pO2 at which haemoglobin is half-saturated with O2) [Rohlfs, Bruner, Chiu, Gonzales, Gonzales, Magde, Magde, Vandegriff and Winslow (1998) J. Biol. Chem. 273, 12128–12134]. The R-state O2 association kinetic constants were also the same for the two haemoglobins. However, even though the p50 of MalPEG-Hb is approx. half of that of HbA, the biphasic O2 dissociation rates measured at relatively high pO2 (150 Torr) were 2-fold higher, giving rise to a 2-fold lower R-state equilibrium association constant for MalPEG-Hb compared with HbA. Thus the O2 affinity of MalPEG-Hb is higher only at pO2 values lower than the intersection point of the O2 equilibrium curves for MalPEG-Hb and HbA. In summary, the present studies found similar rates of NO binding to HbA and MalPEG-Hb, eliminating the possibility that the lack of vasoactivity of MalPEG-Hb is simply the result of reduced molecular reactivity with NO. Alternatively, the unique O2-binding characteristics with low p50 and co-operativity suggest that the ‘R-state’ conformation of MalPEG-Hb is in a more T-state configuration and restricted from conformational change. PMID:15175010
Pegylated Interferon α Therapy in Chronic Delta Hepatitis: A One-Center Experience.
Bahcecioglu, Ibrahim Halil; Ispiroglu, Murat; Demirel, Ulvi; Yalniz, Mehmet
2015-03-01
The only established therapy for chronic viral delta hepatitis, the most severe form of viral hepatitis is treatment with pegylated-interferon α (Peg IFN α). In this study, we aimed to determine the efficacy of pegylated-interferon α 2a (Peg-IFN α 2a) and 2b (Peg IFN α 2b) in the treatment of patients infected with chronic delta hepatitis virus. The sample size was based on available patients potentially to be recruited. Data of 63 patients receiving either Peg IFN alpha 2a or Peg IFN alpha 2b were retrospectively assessed in the present cohort study performed in Turkey. Of 56 patients completed the study, 41 received Peg IFN α 2a and 15 received Peg IFN α 2b for 12 months. Patients were evaluated for biochemical and virological responses at the end of given treatment and six months after the treatment. Stage of fibrosis was found high in both groups (85.4% vs. 86.7%), while cirrhosis was higher in the group of Peg IFN α 2b (53.3% vs. 34.1%). At the end of treatment, either hepatitis delta virus RNA (HDV RNA) alone or both HDV RNA and hepatitis b virus DNA (HBV DNA) had negative results in 32% of patients. Although HDV RNA negativity was sustained in 30.3% of patients, negativity of both HDV RNA and HBV DNA was decreased to 19.6% six months after completion of the treatment. HBV DNA became positive in one third of patients with response at six months after completion of the treatment (10.7% of all patients). HDV RNA negativity at month six was found as a predictor of positive response. No significant difference was found between Peg IFN α 2a and Peg IFN α 2b for virological response rate. Treatment with Peg IFN α achieved a sustained negativity of HDV RNA in about one third of patients. Duration of Peg IFN α therapy might be prolonged to at least 24 months or more to prevent the occurrence of Hepatitis B virus (HBV) relapse encountered six months after completion of the treatment.
Lanvers-Kaminsky, Claudia; Rüffer, Andrea; Würthwein, Gudrun; Gerss, Joachim; Zucchetti, Massimo; Ballerini, Andrea; Attarbaschi, Andishe; Smisek, Petr; Nath, Christa; Lee, Samiuela; Elitzur, Sara; Zimmermann, Martin; Möricke, Anja; Schrappe, Martin; Rizzari, Carmelo; Boos, Joachim
2018-02-01
In the international AIEOP-BFM ALL 2009 trial, asparaginase (ASE) activity was monitored after each dose of pegylated Escherichia coli ASE (PEG-ASE). Two methods were used: the aspartic acid β-hydroxamate (AHA) test and medac asparaginase activity test (MAAT). As the latter method overestimates PEG-ASE activity because it calibrates using E. coli ASE, method comparison was performed using samples from the AIEOP-BFM ALL 2009 trial. PEG-ASE activities were determined using MAAT and AHA test in 2 sets of samples (first set: 630 samples and second set: 91 samples). Bland-Altman analysis was performed on ratios between MAAT and AHA tests. The mean difference between both methods, limits of agreement, and 95% confidence intervals were calculated and compared for all samples and samples grouped according to the calibration ranges of the MAAT and the AHA test. PEG-ASE activity determined using the MAAT was significantly higher than when determined using the AHA test (P < 0.001; Wilcoxon signed-rank test). Within the calibration range of the MAAT (30-600 U/L), PEG-ASE activities determined using the MAAT were on average 23% higher than PEG-ASE activities determined using the AHA test. This complies with the mean difference reported in the MAAT manual. With PEG-ASE activities >600 U/L, the discrepancies between MAAT and AHA test increased. Above the calibration range of the MAAT (>600 U/L) and the AHA test (>1000 U/L), a mean difference of 42% was determined. Because more than 70% of samples had PEG-ASE activities >600 U/L and required additional sample dilution, an overall mean difference of 37% was calculated for all samples (37% for the first and 34% for the second set). Comparison of the MAAT and AHA test for PEG-ASE activity confirmed a mean difference of 23% between MAAT and AHA test for PEG-ASE activities between 30 and 600 U/L. The discrepancy increased in samples with >600 U/L PEG-ASE activity, which will be especially relevant when evaluating high PEG-ASE activities in relation to toxicity, efficacy, and population pharmacokinetics.
Evidence of Liquid Crystal-Assisted Abiotic Ligation of Nucleic Acids
NASA Astrophysics Data System (ADS)
Fraccia, Tommaso P.; Zanchetta, Giuliano; Rimoldi, Valeria; Clark, Noel A.; Bellini, Tommaso
2015-06-01
The emergence of early life must have been marked by the appearance in the prebiotic era of complex molecular structures and systems, motivating the investigation of conditions that could not only facilitate appropriate chemical synthesis, but also provide the mechanisms of molecular selection and structural templating necessary to pilot the complexification toward specific molecular patterns. We recently proposed and demonstrated that these functions could be afforded by the spontaneous ordering of ultrashort nucleic acids oligomers into Liquid Crystal (LC) phases. In such supramolecular assemblies, duplex-forming oligomers are held in average end-to-end contact to form chemically discontinuous but physically continuous double helices. Using blunt ended duplexes, we found that LC formation could both provide molecular selection mechanisms and boost inter-oligomer ligation. This paper provides an essential extension to this notion by investigating the catalytic effects of LC ordering in duplexes with mutually interacting overhangs. Specifically, we studied the influence of LC ordering of 5'-hydroxy-3'-phosphate partially self-complementary DNA 14mers with 3'-CG sticky-ends, on the efficiency of non-enzymatic ligation reaction induced by water-soluble carbodiimide EDC as condensing agent. We investigated the ligation products in mixtures of DNA with poly-ethylene glycol (PEG) at three PEG concentrations at which the system phase separates creating DNA-rich droplets that organize into isotropic, nematic LC and columnar LC phases. We observe remarkable LC-enhanced chain lengthening, and we demonstrate that such lengthening effectively promotes and stabilizes LC domains, providing the kernel of a positive feedback cycle by which LC ordering promotes elongation, in turn stabilizing the LC ordering.
Joint channel/frequency offset estimation and correction for coherent optical FBMC/OQAM system
NASA Astrophysics Data System (ADS)
Wang, Daobin; Yuan, Lihua; Lei, Jingli; wu, Gang; Li, Suoping; Ding, Runqi; Wang, Dongye
2017-12-01
In this paper, we focus on analysis of the preamble-based joint estimation for channel and laser-frequency offset (LFO) in coherent optical filter bank multicarrier systems with offset quadrature amplitude modulation (CO-FBMC/OQAM). In order to reduce the noise impact on the estimation accuracy, we proposed an estimation method based on inter-frame averaging. This method averages the cross-correlation function of real-valued pilots within multiple FBMC frames. The laser-frequency offset is estimated according to the phase of this average. After correcting LFO, the final channel response is also acquired by averaging channel estimation results within multiple frames. The principle of the proposed method is analyzed theoretically, and the preamble structure is thoroughly designed and optimized to suppress the impact of inherent imaginary interference (IMI). The effectiveness of our method is demonstrated numerically using different fiber and LFO values. The obtained results show that the proposed method can improve transmission performance significantly.
Prabha, G; Raj, V
2016-05-01
In this work, β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated iron oxide nanoparticles (Fe3O4-β-CD-PEG-PEI) were developed as drug carriers for drug delivery applications. The 5- Fluorouracil (5-FU) was chosen as model drug molecule. The developed nanoparticles (Fe3O4-β-CD-PEG-PEI) were characterized by various techniques such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The average particles size range of 5-FU loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles were from 151 to 300nm and zeta potential value of nanoparticles were from -43mV to -20mV as measured using Malvern Zetasizer. Finally, encapsulation efficiency (EE), loading capacity (LC) and in-vitro drug release performance of 5-FU drug loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles was evaluated by UV-vis spectroscopy. In-vitro cytotoxicity tests investigated by MTT assay indicate that 5-FU loaded Fe3O4-β-CD-PEG-PEI nanoparticles were toxic to cancer cells and non-toxic to normal cells. The in-vitro release behavior of 5-FU from drug (5-FU) loaded Fe3O4-β-CD-PEG-PEI composite at different pH values and temperature was studied. It was found that 5-FU was released faster in pH 6.8 than in the acidic mediums (pH 1.2), and the released quantity was higher. Therefore, the newly prepared Fe3O4-β-CD-PEG-PEI carrier exhibits a promising potential capability for anticancer drug delivery in tumor therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Wu, Feng; Chen, Junzheng; Li, Li; Zhao, Teng; Liu, Zhen; Chen, Renjie
2013-08-01
Polypyrrole-polyethylene glycol (PPy/PEG)-modified sulfur/aligned carbon nanotubes (PPy/PEG-S/A-CNTs) were synthesized by using an in situ polymerization method. The ratio of PPy to PEG equaled 31.7:1 after polymerization, and the PEG served as a cation dopant in the polymerization and electrochemical reactions. Elemental analysis, FTIR, Raman spectroscopy, XRD, and electrochemical methods were performed to measure the physicochemical properties of the composite. Elemental analysis demonstrated that the sulfur, PPy, PEG, A-CNT, and chloride content in the synthesized material was 64.6%, 22.1%, 0.7%, 12.1%, and 0.5%, respectively. The thickness of the polymer shell was about 15-25 nm, and FTIR confirmed the successful PPy/PEG synthesis. The cathode exhibited a high initial specific capacity of 1355 mAh g(-1) , and a sulfur usage of 81.1%. The reversible capacity of 924 mAh g(-1) was obtained after 100 cycles, showing a remarkably improved cyclability compared to equivalent systems without PEG doping and without any coatings. PPy/PEG provided an effective electronically conductive network and a stable interface structure for the cathode. Rate performance of the PPy/PEG- S/A-CNT composite was more than double that of the unmodified S/A-CNTs. Remarkably, the battery could work at a very high current density of 8 A g(-1) and reached an initial capacity of 542 mAh g(-1) ; it also retained a capacity of 480 mAh g(-1) after 100 cycles. The addition of PEG as a dopant in the PPy shell contributed to this prominent rate improvement. Lithium ions and electrons were available everywhere on the surfaces of the particles, and thus could greatly improve the electrochemical reaction; PEG is a well-known solvent for lithium salts and a very good lithium-ion catcher. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Voskuijl, W; de Lorijn, F; Verwijs, W; Hogeman, P; Heijmans, J; Mäkel, W; Taminiau, J; Benninga, M
2004-01-01
Background: Recently, polyethylene glycol (PEG 3350) has been suggested as a good alternative laxative to lactulose as a treatment option in paediatric constipation. However, no large randomised controlled trials exist evaluating the efficacy of either laxative. Aims: To compare PEG 3350 (Transipeg: polyethylene glycol with electrolytes) with lactulose in paediatric constipation and evaluate clinical efficacy/side effects. Patients: One hundred patients (aged 6 months–15 years) with paediatric constipation were included in an eight week double blinded, randomised, controlled trial. Methods: After faecal disimpaction, patients <6 years of age received PEG 3350 (2.95 g/sachet) or lactulose (6 g/sachet) while children ⩾6 years started with 2 sachets/day. Primary outcome measures were: defecation and encopresis frequency/week and successful treatment after eight weeks. Success was defined as a defecation frequency ⩾3/week and encopresis ⩽1 every two weeks. Secondary outcome measures were side effects after eight weeks of treatment. Results: A total of 91 patients (49 male) completed the study. A significant increase in defecation frequency (PEG 3350: 3 pre v 7 post treatment/week; lactulose: 3 pre v 6 post/week) and a significant decrease in encopresis frequency (PEG 3350: 10 pre v 3 post/week; lactulose: 8 pre v 3 post/week) was found in both groups (NS). However, success was significantly higher in the PEG group (56%) compared with the lactulose group (29%). PEG 3350 patients reported less abdominal pain, straining, and pain at defecation than children using lactulose. However, bad taste was reported significantly more often in the PEG group. Conclusions: PEG 3350 (0.26 (0.11) g/kg), compared with lactulose (0.66 (0.32) g/kg), provided a higher success rate with fewer side effects. PEG 3350 should be the laxative of first choice in childhood constipation. PMID:15479678
Ma, Li-na; Chen, Xin-yue; Chen, Jie; Shen, Cheng-li; Wang, Jun-tao
2006-06-01
To investigate the efficacy, influencing factors and safety of PEG-INF alpha-2a (PEG-INF-2a) in the treatment of hepatitis C. Totally 89 patients with hepatitis C were included in this study and 46 patients were treated with PEG-INF-2a (180 microg or 135 microg/week) and RBV 900 mg/d, 43 patients were treated with IFNalpha-2a (5 MIU/qod) and RBV 900 mg/d. The time of treatment was 48 weeks, and all the patients were visited 24 weeks after treatment. There were no significant differences between the two groups in pretreatment HCV-RNA, HCV genotype and other clinical data. The main parameters to evaluate the efficacy were virological and biochemical responses. The side effects were intensively observed. Sustained virological response (SVR) rate in PEG-IFNalpha-2a group was significantly higher than that in IFNalpha-2a group (56.5% and 19.5% respectively, P<0.001). As the patients were divided according to HCV genotype 1 and high virus load, the SVR rate of PEG-INF alpha-2a group was higher than IFNalpha-2a group (P<0.001). However, there was no significant difference between two groups in the patients with non-genotype 1 and low viral load (P=0.664, 0.116). Similar side-effects were observed in PEG-IFNalpha-2a group and IFNalpha-2a group, but the rate of weight decline and the degree of leukocyte decrease were more significant in PEG-INF alpha-2a group than in IFNalpha-2a group (P=0.001). The efficacy of PEG-INF alpha-2a in the treatment of chronic hepatitis C is superior to that of conventional IFNalpha-2a, PEG-INF alpha-2a had good tolerance and safety profiles.
Liang, Po-Chin; Chen, Yung-Chu; Chiang, Chi-Feng; Mo, Lein-Ray; Wei, Shwu-Yuan; Hsieh, Wen-Yuan; Lin, Win-Li
2016-01-01
In this study, we developed functionalized superparamagnetic iron oxide (SPIO) nanoparticles consisting of a magnetic Fe3O4 core and a shell of aqueous stable polyethylene glycol (PEG) conjugated with doxorubicin (Dox) (SPIO-PEG-D) for tumor magnetic resonance imaging (MRI) enhancement and chemotherapy. The size of SPIO nanoparticles was ~10 nm, which was visualized by transmission electron microscope. The hysteresis curve, generated with vibrating-sample magnetometer, showed that SPIO-PEG-D was superparamagnetic with an insignificant hysteresis. The transverse relaxivity (r 2) for SPIO-PEG-D was significantly higher than the longitudinal relaxivity (r 1) (r 2/r 1 >10). The half-life of Dox in blood circulation was prolonged by conjugating Dox on the surface of SPIO with PEG to reduce its degradation. The in vitro experiment showed that SPIO-PEG-D could cause DNA crosslink more serious, resulting in a lower DNA expression and a higher cell apoptosis for HT-29 cancer cells. The Prussian blue staining study showed that the tumors treated with SPIO-PEG-D under a magnetic field had a much higher intratumoral iron density than the tumors treated with SPIO-PEG-D alone. The in vivo MRI study showed that the T2-weighted signal enhancement was stronger for the group under a magnetic field, indicating that it had a better accumulation of SPIO-PEG-D in tumor tissues. In the anticancer efficiency study for SPIO-PEG-D, the results showed that there was a significantly smaller tumor size for the group with a magnetic field than the group without. The in vivo experiments also showed that this drug delivery system combined with a local magnetic field could reduce the side effects of cardiotoxicity and hepatotoxicity. The results showed that the developed SPIO-PEG-D nanoparticles own a great potential for MRI-monitoring magnet-enhancing tumor chemotherapy.
Wiesen, Ari J; Sideridis, Kostas; Fernandes, Angelo; Hines, Jonathan; Indaram, Anant; Weinstein, Lenny; Davidoff, Samuel; Bank, Simmy
2006-12-01
PEG is a widely used method for providing nutritional support. Although pneumoperitoneum is a known finding after PEG placement, its true incidence is subject to debate. Small retrospective studies have found varied rates of free air after PEG placement. There were a total of 65 patients. To assess the true incidence of pneumoperitoneum and its clinical significance. Prospective study. Long Island Jewish Medical Center. We obtained upright and anterior-posterior chest radiographs of 65 patients within 3 hours after PEG placement. Type of PEG tube, gauge of the needle used, number of sticks, and indications were recorded. The presence of pneumoperitoneum on the initial chest film was considered to be a positive finding. After a positive result, a repeat chest film was obtained 72 hours later to determine whether there was progression or resolution of the free air. Patients enrolled in the study were also monitored clinically for evidence of peritonitis. Of the 65 patients who underwent PEG placement, 13 developed a pneumoperitoneum on the initial chest radiograph; there was complete resolution of pneumoperitoneum at 72 hours in 10 of the 13 patients. In 3 patients, the free air persisted but was of no clinical significance. The free air was quantified by measuring the height of the air column under the diaphragm and was graded with a scoring system (0, no air; 1, small; 2, moderate; 3, large). Eleven patients who underwent PEG died during the hospitalization; none of the deaths were related to the PEG placement or pneumoperitoneum. The other 54 patients were discharged to a skilled nursing facility. No patients in the study had clinical evidence of peritonitis. There were no adverse events, ie, infection or bleeding, associated with the PEG placement in any of the patients. Our data suggest that pneumoperitoneum after PEG placement is common and, in the absence of clinical symptoms, is of no clinical significance and does not warrant any further intervention.
The traveling salesman problem in surgery: economy of motion for the FLS Peg Transfer task.
Falcone, John L; Chen, Xiaotian; Hamad, Giselle G
2013-05-01
In the Peg Transfer task in the Fundamentals of Laparoscopic Surgery (FLS) curriculum, six peg objects are sequentially transferred in a bimanual fashion using laparoscopic instruments across a pegboard and back. There are over 268 trillion ways of completing this task. In the setting of many possibilities, the traveling salesman problem is one where the objective is to solve for the shortest distance traveled through a fixed number of points. The goal of this study is to apply the traveling salesman problem to find the shortest two-dimensional path length for this task. A database platform was used with permutation application output to generate all of the single-direction solutions of the FLS Peg Transfer task. A brute-force search was performed using nested Boolean operators and database equations to calculate the overall two-dimensional distances for the efficient and inefficient solutions. The solutions were found by evaluating peg object transfer distances and distances between transfers for the nondominant and dominant hands. For the 518,400 unique single-direction permutations, the mean total two-dimensional peg object travel distance was 33.3 ± 1.4 cm. The range in distances was from 30.3 to 36.5 cm. There were 1,440 (0.28 %) of 518,400 efficient solutions with the minimized peg object travel distance of 30.3 cm. There were 8 (0.0015 %) of 518,400 solutions in the final solution set that minimized the distance of peg object transfer and minimized the distance traveled between peg transfers. Peg objects moved 12.7 cm (17.4 %) less in the efficient solutions compared to the inefficient solutions. The traveling salesman problem can be applied to find efficient solutions for surgical tasks. The eight solutions to the FLS Peg Transfer task are important for any examinee taking the FLS curriculum and for certification by the American Board of Surgery.
Catauro, M; Bollino, F; Papale, F; Ferrara, C; Mustarelli, P
2015-10-01
Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol-gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol-gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO2/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. Copyright © 2015. Published by Elsevier B.V.
Kim, Y I; Fluckiger, L; Hoffman, M; Lartaud-Idjouadiene, I; Atkinson, J; Maincent, P
1997-02-01
1. The therapeutic use of nifedipine is limited by the rapidity of the onset of its action and its short biological half-life. In order to produce a form devoid of these disadvantages we made nanoparticles of nifedipine from three different polymers, poly-epsilon-caprolactone (PCL), polylactic and glycolic acid (1:1) copolymers (PLAGA), and Eudragit RL/RS (Eudragit). Nifedipine in polyethylene glycol 400 (PEG) solution was used as a control. 2. The average diameters of the nanoparticles ranged from 0.12 to 0.21 micron; the encapsulation ratio was 82% to 88%. 3. In spontaneously hypertensive rats (SHR), the initial rapid fall in systolic arterial blood pressure following oral administration of nifedipine in PEG solution (from 193 +/- 3 to 102 +/- 2 mmHg) was not seen following administration of the same dose in Eudragit nanoparticles (from 189 +/- 2 to 156 +/- 2 mmHg); with PCL and PLAGA nanoparticles the initial fall in blood pressure was significantly reduced (nadirs PCL 124 +/- 2 and PLAGA 113 +/- 2 mmHg). Ten hours following administration, blood pressure in rats administered the nifedipine/PEG preparation had returned to normal (183 +/- 3 mmHg) whereas that of animals given nifedipine in nanoparticles (PCL 170 +/- 3, PLAGA 168 +/- 2, Eudragit 160 +/- 3 mmHg) was still significantly reduced. 4. All of the nanoparticle dosage forms decreased Cmax and increased Tmax and the mean residence time (MRT) values. Relative bioavailability was significantly increased with Eudragit nanoparticles compared to the nifedipine/PEG solution. 5. There was an inverse linear correlation between the fall in blood pressure and plasma nifedipine concentration with all preparations. 6. The nanoparticle nifedipine preparations represent sustained release forms with increased bioavailability, a less pronounced initial antihypertensive effect and a long-lasting action.
Massadeh, Salam; Alaamery, Manal; Al-Qatanani, Shatha; Alarifi, Saqer; Bawazeer, Shahad; Alyafee, Yusra
2016-01-01
Background PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic). In this study, methotrexate (MTX)-loaded nanoparticles were prepared by the double emulsion method. Method Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol) as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%). Results Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.
Pang, Chengfang; Brunelli, Andrea; Zhu, Conghui; Hristozov, Danail; Liu, Ying; Semenzin, Elena; Wang, Wenwen; Tao, Wuqun; Liang, Jingnan; Marcomini, Antonio; Chen, Chunying; Zhao, Bin
2016-01-01
With the advance in material science and the need to diversify market applications, silver nanoparticles (AgNPs) are modified by different surface coatings. However, how these surface modifications influence the effects of AgNPs on human health is still largely unknown. We have evaluated the uptake, toxicity and pharmacokinetics of AgNPs coated with citrate, polyethylene glycol, polyvinyl pyrolidone and branched polyethyleneimine (Citrate AgNPs, PEG AgNPs, PVP AgNPs and BPEI AgNPs, respectively). Our results demonstrated that the toxicity of AgNPs depends on the intracellular localization that was highly dependent on the surface charge. BPEI AgNPs (ζ potential = +46.5 mV) induced the highest cytotoxicity and DNA fragmentation in Hepa1c1c7. In addition, it showed the highest damage to the nucleus of liver cells in the exposed mice, which is associated with a high accumulation in liver tissues. The PEG AgNPs (ζ potential = -16.2 mV) showed the cytotoxicity, a long blood circulation, as well as bioaccumulation in spleen (34.33 µg/g), which suggest better biocompatibility compared to the other chemically modified AgNPs. Moreover, the adsorption ability with bovine serum albumin revealed that the PEG surface of AgNPs has an optimal biological inertia and can effectively resist opsonization or non-specific binding to protein in mice. The overall results indicated that the biodistribution of AgNPs was significantly dependent on surface chemistry: BPEI AgNPs > Citrate AgNPs = PVP AgNPs > PEG AgNPs. This toxicological data could be useful in supporting the development of safe AgNPs for consumer products and drug delivery applications.
NASA Astrophysics Data System (ADS)
Besada, Lucas N.; Peruzzo, Pablo; Cortizo, Ana M.; Cortizo, M. Susana
2018-03-01
Polymersomes are polymer-based vesicles that form upon hydration of amphiphilic block copolymers and display high stability and durability, due to their mechanical and physical properties. They have hydrophilic reservoirs as well as thick hydrophobic membranes; allowing to encapsulate both water-soluble bioactive agent and hydrophobic drugs. In this study, poly ethylene glycol (PEG3350 and PEG6000) were used as hydrophilic part and poly(vinyl benzoate) (PVBz) as hydrophobic block to synthesize amphiphilic triblock copolymers (PVBz- b-PEG- b-PVBz). Different proportions of hydrophilic/hydrophobic part were assayed in order to obtain polymersomes by solvent injection method. For the synthesis of the copolymers, the initial block of PEG was derived to obtain a macroinitiator through a xanthate functional group (PEGX3 or PEGX6) and the polymerization of vinyl benzoate was carried out through reversible addition-fragmentation chain transfer polymerization (RAFT). The structure of PEGX and copolymers was confirmed by Infrared, 1H-NMR and UV-Vis spectrometry, while the average molecular weight (Mw) and polydispersity index (PI) were determined by size exclusion chromatography (SEC). The structures adopted by the copolymers in aqueous solution by self-assembly were investigated using transmission electron microscopy (TEM), dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Both techniques confirm that polymersomes were obtained for a fraction of hydrophilic block ( f) ≈ 35 ± 10%, with a diameter of 38.3 ± 0.3 nm or 22.5 ± 0.7 nm, as determined by TEM and according to the M w of the precursor block copolymer. In addition, we analyzed the possible cytotoxicity in view of its potential application as biomedical nanocarrier. The results suggest that polymersomes seem not induce cytotoxicity during the periods of time tested.
pH sensitive core-shell magnetic nanoparticles for targeted drug delivery in cancer therapy.
Lungu, Iulia Ioana; Rădulescu, Marius; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai
2016-01-01
In the last decade, nanobiotechnology has evolved rapidly with an extensive impact on biomedical area. In order to improve bioavailability and minimize adverse effects, drug delivery systems based on magnetic nanocomposites are under development mainly for cancer imaging and antitumor therapy. In this regard, pH sensitive core-shell magnetic nanoparticles (NPs) with accurate controlled size and shape are synthesized by various modern methods, such as homogeneous precipitation, coprecipitation, microemulsion or polyol approaches, high temperature and hydrothermal reactions, sol-gel reactions, aerosol÷vapor processes and sonolysis. Due to their unique combined physico-chemical and biological properties (such as higher dispensability, chemical and thermal stability, biocompatibility), pH responsive core-shell magnetic NPs are widely investigated for controlled release of cytostatic drugs into the tumor site by means of pH change: magnetite@silicon dioxide (Fe3O4@SiO2), Fe3O4@titanium dioxide (TiO2), β-thiopropionate-polyethylene glycol (PEG)-modified Fe3O4@mSiO2, Fe3O4 NPs core coated with SiO2 with an imidazole group modified PEG-polypeptide (mPEG-poly-L-Asparagine), polyacrylic acid (PAA) and folic acid (FA) coating of the iron oxide NP core, methoxy polyethylene glycol-block-polymethacrylic acid-block-polyglycerol monomethacrylate (MPEG-b-PMAA-b-PGMA) attached by a PGMA block to a Fe3O4 core, PEG-modified polyamidoamine (PAMAM) dendrimer shell with Fe3O4 core and mesoporous silica coated on Fe3O4, mostly coated with an anticancer drug. This review paper highlights the modern research directions currently employed to demonstrate the utility of the pH responsive core-shell magnetic NPs in diagnosis and treatment of oncological diseases.
Alkan, Arda; Wald, Sarah; Louage, Benoit; De Geest, Bruno G; Landfester, Katharina; Wurm, Frederik R
2017-01-10
An important and usually the only function of most surfactants in heterophase systems is stabilizing one phase in another, for example, droplets or particles in water. Surfactants with additional chemical or physical handles are promising in controlling the colloidal properties by external stimuli. The redox stimulus is an attractive feature; however, to date only a few ionic redox-responsive surfactants have been reported. Herein, the first nonionic and noncytotoxic ferrocene-containing block copolymers are prepared, carrying a hydrophilic poly(ethylene glycol) (PEG) chain and multiple ferrocenes in the hydrophobic segment. These amphiphiles were studied as redox-sensitive surfactants that destabilize particles as obtained in miniemulsion polymerization. Because of the nonionic nature of such PEG-based copolymers, they can stabilize nanoparticles even after the addition of ions, whereas particles stabilized with ionic surfactants would be destabilized by the addition of salt. The redox-active surfactants were prepared by the anionic ring-opening polymerization of ferrocenyl glycidyl ether, with PEG monomethyl ether as the macroinitiator. The resultant block copolymers with molecular weights (M n ) between 3600 and 8600 g mol -1 and narrow molecular weight distributions (M w /M n = 1.04-1.10) were investigated via 1 H nuclear magnetic resonance and diffusion ordered spectroscopy, size exclusion chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Furthermore, the block copolymers were used as building blocks for redox-responsive micelles and as redox-responsive surfactants in radical polymerization in miniemulsion to stabilize model polystyrene nanoparticles. Oxidation of iron to the ferrocenium species converted the amphiphilic block copolymers into double hydrophilic macromolecules, which led to the destabilization of the nanoparticles. This destabilization of nanoparticle dispersions may be useful for the formation of coatings and the recovery of surfactants.
Grünwald, Barbara; Vandooren, Jennifer; Locatelli, Erica; Fiten, Pierre; Opdenakker, Ghislain; Proost, Paul; Krüger, Achim; Lellouche, Jean Paul; Israel, Liron Limor; Shenkman, Louis; Comes Franchini, Mauro
2016-10-10
Specific cancer cell targeting is a pre-requisite for efficient drug delivery as well as for high-resolution imaging and still represents a major technical challenge. Tumor-associated enzyme-assisted targeting is a new concept that takes advantage of the presence of a specific activity in the tumor entity. MMP-9 is a protease found to be upregulated in virtually all malignant tumors. Consequently, we hypothesized that its presence can provide a de-shielding activity for targeted delivery of drugs by nanoparticles (NPs) in pancreatic cancer. Here, we describe synthesis and characterization of an optimized MMP-9-cleavable linker mediating specific removal of a PEG shield from a PLGA-b-PEG-based polymeric nanocarrier (Magh@PNPs-PEG-RegaCP-PEG) leading to specific uptake of the smaller PNPs with their cargo into cells. The specific MMP-9-cleavable linker was designed based on the degradation efficiency of peptides derived from the collagen type II sequence. MMP-9-dependent uptake of the Magh@PNPs-PEG-RegaCP-PEG was demonstrated in pancreatic cancer cells in vitro. Accumulation of the Magh@PNPs-PEG-RegaCP-PEG in pancreatic tissues in the clinically relevant KPC mouse model of pancreatic cancer, as a proof-of-concept, was tumor-specific and MMP-9-dependent, indicating that MMP-9 has a strong potential as a specific mediator of PNP de-shielding for tumor-specific uptake. Pre-treatment of mice with Magh@PNPs-PEG-RegaCP-PEG led to reduction of liver metastasis and drastically decreased average colony size. In conclusion, the increased tumor-specific presence and activity of MMP-9 can be exploited to deliver an MMP-9-activatable NP to pancreatic tumors specifically, effectively, and safely. Copyright © 2016 Elsevier B.V. All rights reserved.
PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration
NASA Astrophysics Data System (ADS)
Kashanian, Soheila; Rostami, Elham
2014-03-01
In this study, poly ethylene glycol 100 stearate (PEG 100-S) was used to prepare coated solid lipid nanoparticles with loading levothyroxine sodium (levo-loaded PEG 100-S-coated SLNs) by microemulsification technique. Evaluation of the release kinetic of prepared colloidal carriers was conducted. The particle size and zeta potential of levo-loaded PEG 100-S-coated SLNs have been measured to be 187.5 nm and -23.0 mV, respectively, using photon correlation spectroscopy (PCS). Drug entrapment efficiency (EE) was calculated to be 99 %. Differential scanning calorimetry indicated that the majority of drug loaded in PEG 100-S-coated SLNs were in amorphous state which could be considered desirable for drug delivery. The purpose of this study was to develop a new nanoparticle system, consisting lipid nanoparticles coated with PEG 100-S. The modification procedure led to a reduction in the zeta potential values, varying from -40.0 to -23.0 mV for the uncoated and PEG-coated SLNs, respectively. Stability results of the nanoparticles in gastric and intestinal media show that the low pH of the gastric medium is responsible for the critical aggregation and degradation of the uncoated lipid nanoparticles. PEG 100-S-coated SLNs were more stable due to their polymer coating layer which prevented aggregation of SLNs. Consequently, it is possible that the PEG surrounds the particles reducing the attachment of enzymes and further degradation of the triglyceride cores. Shape and surface morphology of particles were determined by transition electron microscopy and scanning electron microscopy that revealed spherical shape of nanoparticles. In vitro drug release of PEG 100-S-coated SLNs was characterized using diffusion cell which showed a controlled release for drug.
Curcumin-Loaded Blood-Stable Polymeric Micelles for Enhancing Therapeutic Effect on Erythroleukemia.
Gong, Feirong; Chen, Dan; Teng, Xin; Ge, Junhua; Ning, Xianfeng; Shen, Ya-Ling; Li, Jian; Wang, Shanfeng
2017-08-07
Curcumin has high potential in suppressing many types of cancer and overcoming multidrug resistance in a multifaceted manner by targeting diverse molecular targets. However, the rather low systemic bioavailability resulted from its poor solubility in water and fast metabolism/excretion in vivo has hampered its applications in cancer therapy. To increase the aqueous solubility of curcumin while retaining the stability in blood circulation, here we report curcumin-loaded copolymer micelles with excellent in vitro and in vivo stability and antitumor efficacy. The two copolymers used for comparison were methoxy-poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) and N-(tert-butoxycarbonyl)-l-phenylalanine end-capped mPEG-PCL (mPEG-PCL-Phe(Boc)). In vitro cytotoxicity evaluation against human pancreatic SW1990 cell line showed that the delivery of curcumin in mPEG-PCL-Phe(Boc) micelles to cancer cells was efficient and dosage-dependent. The pharmacokinetics in ICR mice indicated that intravenous (i.v.) administration of curcumin/mPEG-PCL-Phe(Boc) micelles could retain curcumin in plasma much better than curcumin/mPEG-PCL micelles. Biodistribution results in Sprague-Dawley rats also showed higher uptake and slower elimination of curcumin into liver, lung, kidney, and brain, and lower uptake into heart and spleen of mPEG-PCL-Phe(Boc) micelles, as compared with mPEG-PCL micelles. Further in vivo efficacy evaluation in multidrug-resistant human erythroleukemia K562/ADR xenograft model revealed that i.v. administration of curcumin-loaded mPEG-PCL-Phe(Boc) micelles significantly delayed tumor growth, which was attributed to the improved stability of curcumin in the bloodstream and increased systemic bioavailability. The mPEG-PCL-Phe(Boc) micellar system is promising in overcoming the key challenge of curcumin's to promote its applications in cancer therapy.
Emulsions and rectal formulations containing myrrh essential oil for better patient compliance.
Etman, M; Amin, M; Nada, A H; Shams-Eldin, M; Salama, O
2011-06-01
Myrrh has long been used for its circulatory, disinfectant, analgesic, antirheumatic, antidiabetic, and schistosomicidal properties. Myrrh essential oil (MEO) was extracted from the oleo-gum resin of Commiphora molmol and formulated into emulsions and suppositories to mask/avoid its bitter taste. Three oil-in-water emulsions (E1-E3) were formulated and taste was evaluated by 10 volunteers. Particle size distribution was measured and correlated with excipients and the method of preparation. Physical and chemical stability testing was carried out for the optimum formulation (E2). Seven suppository formulations were investigated (F1-F7). Suppocire AML (F1) and Suppocire CM (F2) were chosen as fatty bases, and polyethylene glycol (PEG) 1500 (F3), PEG 4000 (F4), and a PEG blend (50% PEG 6000 + 30% PEG 1500 + 20% PEG 400) (F5) were chosen as water-soluble bases. A blend of PEG 1500 and Suppocire CM was also used (F7). Camphor (5%) was added to PEG 1500 (F6). Disintegration time, release rate, DSC, fracture points, and weight uniformity were evaluated. The overall average bitterness for formulations E1, E2, and E3 was 6.44, 4.15, and 3.45, respectively. Suppositories containing Suppocire AML had the fastest disintegration time (1.5 min) with dissolution efficiency (DE) of 56.8%. F3 containing PEG 1500 had a fast disintegration time of 2.5 min and maximum DE of 93.5%. The PEG blend had satisfactory release: (DE = 90.9%). A mixed fatty and water-soluble base (F7) had a disintegration time of 5 min and low DE (33.4%). A stable MEO emulsion with acceptable taste was formulated to improve patient acceptance and compliance. F3 suppositories yielded satisfactory results, while formulations containing fatsoluble bases exhibited poor release.
Zhang, Chunmei; Wang, Liwei; Zhai, Tianliang; Wang, Xinchao; Dan, Yi; Turng, Lih-Sheng
2016-01-01
Graphene oxide (GO) was incorporated into poly(lactic acid) (PLA) as a reinforcing nanofiller to produce composite nanofibrous scaffolds using the electrospinning technique. To improve the dispersion of GO in PLA and the interfacial adhesion between the filler and matrix, GO was surface-grafted with poly(ethylene glycol) (PEG). Morphological, thermal, mechanical, and wettability properties, as well as preliminary cytocompatibility with Swiss mouse NIH 3T3 cells of PLA, PLA/GO, and PLA/GO-g-PEG electrospun nanofibers, were characterized. Results showed that the average diameter of PLA/GO-g-PEG electrospun nanofibers decreased with filler content. Both GO and GO-g-PEG improved the thermal stability of PLA, but GO-g-PEG was more effective. The water contact angle test of the nanofiber mats showed that the addition of GO in PLA did not change the surface wettability of the materials, but PLA/GO-g-PEG samples exhibited improved wettability with lower water contact angles. The tensile strength of the composite nanofiber mats was improved with the addition of GO, and it was further enhanced when GO was surface grafted with PEG. This suggested that improved interfacial adhesion between GO and PLA was achieved by grafting PEG onto the GO. The cell viability and proliferation results showed that the cytocompatibility of PLA was not compromised with the addition of GO and GO-g-PEG. With enhanced mechanical properties as well as good wettability and cytocompatibility, PLA/GO-g-PEG composite nanofibers have the potential to be used as scaffolds in tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wadhwa, Meenu; Bird, Chris; Dougall, Thomas; Rigsby, Peter; Bristow, Adrian; Thorpe, Robin
2015-01-01
We assessed the feasibility of developing a suitable international reference standard for determination of in vitro biological activity of human sequence recombinant PEG-G-CSF products with a 20 kD linear PEG linked to the N-terminal methionyl residue of G-CSF (INN Filgrastim), produced using a conjugation process and coupling chemistry similar to that employed for the lead PEGfilgrastim product. Based on initial data which showed that the current WHO 2nd international standard, IS for G-CSF (09/136) or alternatively, a PEG-G-CSF standard with a unitage traceable to the G-CSF IS may potentially serve as the IS for PEG-G-CSF products, two candidate preparations of PEG-G-CSF were formulated and lyophilized at NIBSC. These preparations were tested by 23 laboratories using in vitro bioassays in a multi-centre collaborative study. Results indicated that on the basis of parallelism, the current WHO 2nd IS for G-CSF or any of the PEG-G-CSF samples could be used as the international standard for PEG-G-CSF preparations. However, because of the variability in potency estimates seen when PEG-G-CSF preparations were compared with the current WHO 2nd IS for G-CSF, a candidate PEG-G-CSF was suitable as the WHO IS. The preparation 12/188 was judged suitable to serve as the WHO IS based on in vitro biological activity data. Therefore, the preparation coded 12/188 was established by the WHO Expert Committee on Biological Standardization (ECBS) in 2013 as the WHO 1st IS for human PEGylated G-CSF with an assigned in vitro bioactivity of 10,000 IU per ampoule. PMID:25450254
Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.
2014-01-01
Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229
NASA Technical Reports Server (NTRS)
Link, B. M.; Wagner, E. R.; Cosgrove, D. J.
2001-01-01
In young cucumber seedlings, the peg is a polar outgrowth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. The development of the peg is thought to be gravity-dependent and has become a model system for plant-gravity response. Peg development requires rapid cell expansion, a process thought to be catalyzed by alpha-expansins, and thus was a good system to identify expansins that were regulated by gravity. This study identified 7 new alpha-expansin cDNAs from cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) and examined their expression patterns. Two alpha-expansins (CsExp3 and CsExp4) were more highly expressed in the peg and the root. Earlier reports stated that pegs tend not to form in the absence of gravity, so the expression levels were compared in the pegs of seedlings grown in space (STS-95), on a clinostat, and on earth (1 g). Pegs were observed to form at high frequency on clinostat and space-grown seedlings, yet on clinostats there was more than a 4-fold reduction in the expression of CsExp3 in the pegs of seedlings grown on clinostats vs. those grown at 1 g, while the CsExp4 gene appeared to be turned off (below detection limits). There were no detectable differences in expansin gene expression levels for the pegs of seedlings grown in space or in the orbiter environmental simulator (OES) (1 g) at NASA. The microgravity environment did not affect the expression of CsExp3 or CsExp4, and the clinostat did not simulate the microgravity environment well.
Kurinomaru, Takaaki; Kuwada, Kengo; Tomita, Shunsuke; Kameda, Tomoshi; Shiraki, Kentaro
2017-07-20
Noncovalent binding of polyethylene glycol (PEG) to a protein surface is a unique protein handling technique to control protein function and stability. A diblock copolymer containing PEG and polyelectrolyte chains (PEGylated polyelectrolyte) is a promising candidate for noncovalent attachment of PEG to a protein surface because of the binding through multiple electrostatic interactions without protein denaturation. To obtain a deeper understanding of protein-polyelectrolyte interaction at the molecular level, we investigated the manner in which cationic PEGylated polyelectrolyte binds to anionic α-amylase in enzyme kinetic experiments and molecular dynamics (MD) simulations. Cationic PEG-block-poly(N,N-dimethylaminoethyl) (PEG-b-PAMA) inhibited the enzyme activity of anionic α-amylase due to binding of PAMA chains. Enzyme kinetics revealed that the inhibition of α-amylase activity by PEG-b-PAMA is noncompetitive inhibition manner. In MD simulations, the PEG-b-PAMA molecule was initially located at six different placements of the x-, y-, and z-axis ±20 Å from the center of α-amylase, which showed that the PEG-b-PAMA nonspecifically bound to the α-amylase surface, corresponding to the noncompetitive inhibition manner that stems from the polymer binding to an enzyme surface other than the active site. In addition, the enzyme activity of α-amylase in the presence of PEG-b-PAMA was not inhibited by increasing the ionic strength, consistent with the MD simulation; i.e., PEG-b-PAMA did not interact with α-amylase in high ionic strength conditions. The results reported in this paper suggest that enzyme inhibition by PEGylated polyelectrolyte can be attributed to the random electrostatic interaction between protein and polyelectrolyte.
Terrier, Benjamin; Lapidus, Nathanael; Pol, Stanislas; Serfaty, Lawrence; Ratziu, Vlad; Asselah, Tarik; Thibault, Vincent; Souberbielle, Jean-Claude; Carrat, Fabrice; Cacoub, Patrice
2015-05-14
To investigate if correction of hypovitaminosis D before initiation of Peg-interferon-alpha/ribavirin (PegIFN/RBV) therapy could improve the efficacy of PegIFN/RBV in previously null-responder patients with chronic genotype 1 or 4 hepatitis C virus (HCV) infection. Genotype 1 or 4 HCV-infected patients with null response to previous PegIFN/RBV treatment and with hypovitaminosis D (< 30 ng/mL) prospectively received cholecalciferol 100000 IU per week for 4 wk [from week -4 (W-4) to W0], followed by 100000 IU per month in combination with PegIFN/RBV for 12 mo (from W0 to W48). The primary outcome was the rate of early virological response defined by an HCV RNA < 12 IU/mL after 12 wk PegIFN/RBV treatment. A total of 32 patients were included, 19 (59%) and 13 (41%) patients were HCV genotype 1 and 4, respectively. The median baseline vitamin D level was 15 ng/mL (range: 7-28). In modified intention-to-treat analysis, 29 patients who received at least one dose of PegIFN/RBV were included in the analysis. All patients except one normalized their vitamin D serum levels. The rate of early virologic response was 0/29 (0%). The rate of HCV RNA < 12 IU/mL after 24 wk of PegIFN/RBV was 1/27 (4%). The safety profile was favorable. Addition of vitamin D to PegIFN/RBV does not improve the rate of early virologic response in previously null-responders with chronic genotype 1 or 4 HCV infection.
Assessment of PLGA-PEG-PLGA Copolymer Hydrogel for Sustained Drug Delivery in the Ear
Feng, Liang; Ward, Jonette A.; Li, S. Kevin; Tolia, Gaurav; Hao, Jinsong; Choo, Daniel I.
2014-01-01
Temperature sensitive copolymer systems were previously studied using modified diffusion cells in vitro for intratympanic injection, and the PLGA-PEG-PLGA copolymer systems were found to provide sustained drug delivery for several days. The objectives of the present study were to assess the safety of PLGA-PEG-PLGA copolymers in intratympanic injection in guinea pigs in vivo and to determine the effects of additives glycerol and poloxamer in PLGA-PEG-PLGA upon drug release in the diffusion cells in vitro for sustained inner ear drug delivery. In the experiments, the safety of PLGA-PEG-PLGA copolymers to inner ear was evaluated using auditory brainstem response (ABR). The effects of the additives upon drug release from PLGA-PEG-PLGA hydrogel were investigated in the modified Franz diffusion cells in vitro with cidofovir as the model drug. The phase transition temperatures of the PLGA-PEG-PLGA copolymers in the presence of the additives were also determined. In the ABR safety study, the PLGA-PEG-PLGA copolymer alone did not affect hearing when delivered at 0.05-mL dose but caused hearing loss after 0.1-mL injection. In the drug release study, the incorporation of the bioadhesive additive, poloxamer, in the PLGA-PEG-PLGA formulations was found to decrease the rate of drug release whereas the increase in the concentration of the humectant additive, glycerol, provided the opposite effect. In summary, the PLGA-PEG-PLGA copolymer did not show toxicity to the inner ear at the 0.05-mL dose and could provide sustained release that could be controlled by using the additives for inner ear applications. PMID:24438444
Measuring intestinal fluid transport in vitro: Gravimetric method versus non-absorbable marker.
Whittamore, Jonathan M; Genz, Janet; Grosell, Martin; Wilson, Rod W
2016-04-01
The gut sac is a long-standing, widely used in vitro preparation for studying solute and water transport, and calculation of these fluxes requires an accurate assessment of volume. This is commonly determined gravimetrically by measuring the change in mass over time. While convenient this likely under-estimates actual net water flux (Jv) due to tissue edema. We evaluated whether the popular in vivo volume marker [(14)C]-PEG 4000, offers a more representative measure of Jvin vitro. We directly compared these two methods in five teleost species (toadfish, flounder, rainbow trout, killifish and tilapia). Net fluid absorption by the toadfish intestine based on PEG was significantly higher, by almost 4-fold, compared to gravimetric measurements, compatible with the latter under-estimating Jv. Despite this, PEG proved inconsistent for all of the other species frequently resulting in calculation of net secretion, in contrast to absorption seen gravimetrically. Such poor parallelism could not be explained by the absorption of [(14)C]-PEG (typically <1%). We identified a number of factors impacting the effectiveness of PEG. One was adsorption to the surface of sample tubes. While it was possible to circumvent this using unlabelled PEG 4000, this had a deleterious effect on PEG-based Jv. We also found sequestration of PEG within the intestinal mucus. In conclusion, the short-comings associated with the accurate representation of Jv by gut sac preparations are not overcome by [(14)C]-PEG. The gravimetric method therefore remains the most reliable measure of Jv and we urge caution in the use of PEG as a volume marker. Copyright © 2016 Elsevier Inc. All rights reserved.
Loening-Baucke, Vera; Krishna, Rachana; Pashankar, Dinesh S
2004-11-01
We have recently reported the safety and efficacy of polyethylene glycol 3350 without electrolytes (PEG) for the daily treatment of constipation in older children. Because there are very few data available on the use of PEG in infants and toddlers, we evaluated the efficacy and safety of PEG for the treatment of constipation in children <2 years of age. This is a retrospective chart review of 75 constipated children <2 years of age at start of PEG therapy. PEG was started at an average dose of 1 g/kg body weight/d and parents were asked to adjust the dose to yield 1 to 2 soft painless stools/d. Data from the history and physical examination were collected initially and at short-term (
Rivas, John M; Perez, Alejandro; Hernandez, Marlow; Schneider, Alison; Castro, Fernando J
2014-01-01
AIM: To compare the bowel cleansing efficacy of same day ingestion of 4-L sulfa-free polyethylene glycol (4-L SF-PEG) vs 2-L polyethylene glycol solution with ascorbic acid (2-L PEG + Asc) in patients undergoing afternoon colonoscopy. METHODS: 206 patients (mean age 56.7 years, 61% male) undergoing outpatient screening or surveillance colonoscopies were prospectively randomized to receive either 4-L SF-PEG (n = 104) or 2-L PEG + Asc solution (n = 102). Colonoscopies were performed by two blinded endoscopists. Bowel preparation was graded using the Ottawa scale. Each participant completed a satisfaction and side effect survey. RESULTS: There was no difference in patient demographics amongst groups. 4-L SF-PEG resulted in better Ottawa scores compared to 2-L PEG + Asc, 4.2 vs 4.9 (P = 0.0186); left colon: 1.33 vs 1.57 respectively (P = 0.0224), right colon: 1.38 vs 1.63 respectively (P = 0.0097). No difference in Ottawa scores was found for the mid colon or amount of fluid. Patient satisfaction was similar for both arms but those assigned to 4-L SF-PEG reported less bloating: 23.1% vs 11.5% (P = 0.0235). Overall polyp detection, adenomatous polyp and advanced adenoma detection rates were similar between the two groups. CONCLUSION: Morning only 4-L SF-PEG provided superior cleansing with less bloating as compared to 2-L PEG + Asc bowel preparation for afternoon colonoscopy. Thus, future studies evaluating efficacy of morning only preparation for afternoon colonoscopy should use 4-L SF-PEG as the standard comparator. PMID:25132784
PEG-protein interaction induced contraction of NalD chains.
Yu, Jiyan; Chen, Weizhong; Wu, Chi; Chen, Hao
2014-01-01
In a recent attempt to crystallize a regulator of MexAB-OprM multi-drug efflux systems in Pseudomonas aeruginosa (NalD), we found that adding polyethylene glycol (PEG3350, Mw = 3,350 g/mol) into the protein solution increases the speed of NalD migration in gel electrophoresis, signaling a smaller hydrodynamic size. At first we conjectured that NalD was degraded unexpectedly by PEG; however, we found that there was no change in its molar mass by MALDI-TOF characterization. Moreover, we found that adding polyacrylic acid (PAA) into the solution mixture returned the NalD migration to its normal speed. Furthermore, our analytic ultracentrifugation and dynamic laser light scattering results directly reveal that NalD interacts with PEG so that individual NalD chains gradually shrink as more PEG chains are added in the range of 10-50 mg/mL. Size exclusion chromatography also confirms that the NalD chain shrinks in the presence of PEG. A combination of these results indicates that PEG3350 chains can complex with NalD to induce an intra-protein chain contraction, presumably via the formation of hydrogen bond between -C-O-C- on PEG and -COOH on NalD, resulting in a smaller hydrodynamic size (faster migration) and a higher apparent molar mass. Note that because the presence of PEG affects osmotic pressure, it is considered to be a precipitator of protein crystallization. Our current finding reveals that the interaction of PEG/protein may play a significant role in protein crystallization. The complexation potentially makes the protein chain segments less flexible, and consequently makes crystallization easier. Hopefully, our current results will stimulate further studies in this direction.
van Wijck, Kim; Bessems, Babs Afm; van Eijk, Hans Mh; Buurman, Wim A; Dejong, Cornelis Hc; Lenaerts, Kaatje
2012-01-01
Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both tests and demonstrates equivalent performance in the current setting.
PEG-Protein Interaction Induced Contraction of NalD Chains
Yu, Jiyan; Chen, Weizhong; Wu, Chi; Chen, Hao
2014-01-01
In a recent attempt to crystallize a regulator of MexAB-OprM multi-drug efflux systems in Pseudomonas aeruginosa (NalD), we found that adding polyethylene glycol (PEG3350, Mw = 3,350 g/mol) into the protein solution increases the speed of NalD migration in gel electrophoresis, signaling a smaller hydrodynamic size. At first we conjectured that NalD was degraded unexpectedly by PEG; however, we found that there was no change in its molar mass by MALDI-TOF characterization. Moreover, we found that adding polyacrylic acid (PAA) into the solution mixture returned the NalD migration to its normal speed. Furthermore, our analytic ultracentrifugation and dynamic laser light scattering results directly reveal that NalD interacts with PEG so that individual NalD chains gradually shrink as more PEG chains are added in the range of 10–50 mg/mL. Size exclusion chromatography also confirms that the NalD chain shrinks in the presence of PEG. A combination of these results indicates that PEG3350 chains can complex with NalD to induce an intra-protein chain contraction, presumably via the formation of hydrogen bond between –C-O-C– on PEG and –COOH on NalD, resulting in a smaller hydrodynamic size (faster migration) and a higher apparent molar mass. Note that because the presence of PEG affects osmotic pressure, it is considered to be a precipitator of protein crystallization. Our current finding reveals that the interaction of PEG/protein may play a significant role in protein crystallization. The complexation potentially makes the protein chain segments less flexible, and consequently makes crystallization easier. Hopefully, our current results will stimulate further studies in this direction. PMID:24810951
Roy, Hemant K; Kunte, Dhananjay P; Koetsier, Jennifer L; Hart, John; Kim, Young L; Liu, Yang; Bissonnette, Marc; Goldberg, Michael; Backman, Vadim; Wali, Ramesh K
2006-08-01
Polyethylene glycol (PEG) is one of the most potent chemopreventive agents against colorectal cancer; however, the mechanisms remain largely unexplored. In this study, we assessed the ability of PEG to target cyclin D1-beta-catenin-mediated hyperproliferation in the azoxymethane-treated rat model and the human colorectal cancer cell line, HT-29. Azoxymethane-treated rats were randomized to AIN-76A diet alone or supplemented with 5% PEG-8000. After 30 weeks, animals were euthanized and biopsies of aberrant crypt foci and uninvolved crypts were subjected to immunohistochemical and immunoblot analyses. PEG markedly suppressed both early and late markers of azoxymethane-induced colon carcinogenesis (fractal dimension by 80%, aberrant crypt foci by 64%, and tumors by 74%). In both azoxymethane-treated rats and HT-29 cells treated with 5% PEG-3350 for 24 hours, PEG decreased proliferation (45% and 52%, respectively) and cyclin D1 (78% and 56%, respectively). Because beta-catenin is the major regulator of cyclin D1 in colorectal cancer, we used the T-cell factor (Tcf)-TOPFLASH reporter assay to show that PEG markedly inhibited beta-catenin transcriptional activity. PEG did not alter total beta-catenin expression but rather its nuclear localization, leading us to assess E-cadherin expression (a major determinant of beta-catenin subcellular localization), which was increased by 73% and 71% in the azoxymethane-rat and HT-29 cells, respectively. We therefore investigated the effect of PEG treatment on levels of the negative regulator of E-cadherin, SNAIL, and observed a 50% and 75% decrease, respectively. In conclusion, we show, for the first time, a molecular mechanism through which PEG imparts its antiproliferative and hence profound chemopreventive effect.
Attar, A; Lemann, M; Ferguson, A; Halphen, M; Boutron, M; Flourie, B; Alix, E; Salmeron, M; Guillemot, F; Chaussade, S; Menard, A; Moreau, J; Naudin, G; Barthet, M
1999-01-01
Background—Polyethylene glycol (PEG) 3350 is a non-absorbable, non-metabolised osmotic agent used in lavage solutions for gut cleansing. Aims—To compare the efficacy of PEG and lactulose in chronic constipation. Methods—A total of 115 patients with chronic constipation entered a multicentre, randomised, comparative trial. They initially received two sachets containing either PEG (13 g/sachet) or lactulose (10 g/sachet) and were given an option to change the dose to one or three sachets/day, depending on response. Results—Ninety nine patients completed the trial. After four weeks, patients in the PEG group (n=50) had a higher number of stools and a lower median daily score for straining at stool than patients in the lactulose group (n=49). Overall improvement was greater in the PEG group. Clinical tolerance was similar in the two groups, but flatus was less frequently reported in the PEG group. The mean number of liquid stools was higher in the PEG group but the difference was significant only for the first two weeks. There were no serious adverse events and no significant change in laboratory tests in either group. At the end of the study, the number of sachets used by the patients was 1.6 (0.7)/day in the PEG group and 2.1 (0.7)/day in the lactulose group. Sixty one patients completed a further two months open study of one to three sachets PEG daily; there was no loss of efficacy and no serious toxicity. Conclusion—Low dose PEG 3350 was more effective than lactulose and better tolerated. Keywords: constipation; polyethylene glycol; lactulose; cathartics; randomised trial PMID:9895382
Zeng, Liang; Yan, Jingna; Luo, Liyong; Ma, Mengjun; Zhu, Huiqun
2017-03-28
We were employing nanotechnology to improve the targeting ability of (-)-Epigallocatechin-3-gallate (EGCG) towards MCF-7 cells, and two kinds of EGCG nanoparticles (FA-NPS-PEG and FA-PEG-NPS) were obtained, besides, their characteristics and effects on MCF-7 cells were studied. The results indicated that (i) both FA-NPS-PEG and FA-PEG-NPS have high stabilities; (ii) their particles sizes were 185.0 ± 13.5 nm and 142.7 ± 7.2 nm, respectively; (iii) their encapsulation efficiencies of EGCG were 90.36 ± 2.20% and 39.79 ± 7.54%, respectively. (iv) there was no cytotoxicity observed in EGCG, FA-NPS-PEG and FA-PEG-NPS toward MCF-7 cells over all concentrations (0~400 μg/mL) tested; (v) EGCG, FA-NPS-PEG and FA-PEG-NPS inhibited MCF-7 cells proliferation in dose-dependent manners, with the average IC 50 of 470.5 ± 33.0, 65.9 ± 0.4 and 66.6 ± 0.6 μg/mL; (vi) EGCG, FA-NPS-PEG and FA-PEG-NPS could modulated the expressions of several key regulatory proteins in PI3K-Akt pathway such as up-regulation of PTEN, p21 and Bax, and down-regulation of p-PDK1, p-AKT, CyclinD1 and Bcl-2, which gave an illustration about the mechanism by which EGCG nanoparticles inhibited MCF-7 cells proliferation. In this study, EGCG nanoparticles can significantly enhance the targeting ability and efficacy of EGCG, which is considered to an experimental foundation for further research on its activity, targeting ability and metabolism in vivo.
A dirty word or a dirty world?: Attribute framing, political affiliation, and query theory.
Hardisty, David J; Johnson, Eric J; Weber, Elke U
2010-01-01
We explored the effect of attribute framing on choice, labeling charges for environmental costs as either an earmarked tax or an offset. Eight hundred ninety-eight Americans chose between otherwise identical products or services, where one option included a surcharge for emitted carbon dioxide. The cost framing changed preferences for self-identified Republicans and Independents, but did not affect Democrats' preferences. We explain this interaction by means of query theory and show that attribute framing can change the order in which internal queries supporting one or another option are posed. The effect of attribute labeling on query order is shown to depend on the representations of either taxes or offsets held by people with different political affiliations.
High density load bearing insulation peg
Nowobilski, Jeffert J.; Owens, William J.
1985-01-01
A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.
NASA Astrophysics Data System (ADS)
Chen, Yan; Zhu, Yingying; Wang, Jinbao; Lv, Mengjiao; Zhang, Xiongjie; Gao, Junkai; Zhang, Zijun; Lei, Hao
2017-12-01
A novel shape-stabilized phase change material (PEG/TAMS), fabricated using tannic acid-templated mesoporous silica (TAMS) as a support for polyethylene glycol, was developed for thermal energy storage. The method used to synthesize TAMS was simple, cost effective, environmentally friendly, and free of surfactant. The characterization results indicated that PEG was physically absorbed to TAMS and that TAMS had no influence on the crystal structure of PEG. According to the TGA thermograms, PEG/TAMS has excellent thermal stability and can be applied over a wide temperature range. Additionally, the differential scanning calorimetry results suggested that PEG/TAMS has good thermal properties and that its fusion and solidification enthalpies reached 114.7 J/g and 102.4 J/g, respectively. The results indicated that PEG/TAMS has great potential for practical applications.
Dutta, Binita; Lahiri, Susanta; Tomar, B S
2014-02-01
The aqueous biphasic system (ABS) involving sodium malonate-polyethylene glycol (PEG) phases has been applied for the first time for separation of no-carrier-added (183)Re (T1/2=70 d) from α-particle irradiated bulk tantalum target. The various ABS conditions were applied for investigating the separation by varying pH, temperature, PEG-molecular weight, concentration of salt. The extraction pattern was hardly affected by change in pH and the molecular weight of PEG. One step separation of nca (183)Re from Ta was achieved at the optimal conditions of (i) 50% (w/w) PEG-4000-2 M sodium malonate, 40 °C and (ii) 50% (w/w) PEG-4000-3 M sodium malonate, room temperature (27 °C). © 2013 Published by Elsevier Ltd.
Ahmed, Jasim; Varshney, Sunil K; Auras, Rafael; Hwang, Sung W
2010-10-01
The melt rheology and thermal properties of polylactide (PLA)-based nanocomposite films that were prepared by solvent casting method with L-PLA, polyethylene glycol (PEG), and montmorillonite clay were studied. The neat PLA showed predominantly solid-like behavior (G' > G″) and the complex viscosity (η*) decreased systematically as the temperature increased from 184 to 196 °C. The elastic modulus (G') of PLA/clay blend showed a significant improvement in the magnitude in the melt, while clay concentration was at 6% wt or higher. At similar condition, PEG dramatically reduced dynamic modulii and complex viscosity of PLA/PEG blend as function of concentration. A nanocomposite blend of PLA/PEG/clay (74/20/6) when compared to the neat polymer and PLA/PEG blend exhibited intermediate values of elastic modulus (G') and complex viscosity (η*) with excellent flexibility. Thermal analysis of different clay loading blends indicated that the melting temperature (T(m)) and glass transition temperature (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) and the T(m) of the blends (PLA/PEG and PLA/PEG/clay) significantly, however, crystallinity increased in the similar condition. The transmission electron microscopy (TEM) image of nanocomposite films indicated good compatibility between PLA and PEG, whereas clay was not thoroughly distributed in the PLA matrix and remained as clusters. The percent crystallinity obtained by X-ray was significantly higher than that of differential scanning calorimeter (DSC) data for PLA.
Gao, Ya; Xiao, Yi; Liu, Shiyuan; Yu, Jiahui
2018-02-01
A novel pH-sensitive polymeric prodrug of camptothecin (CPT) by polymerizing γ-camptothecin-glutamate N-carboxyanhydride (Glu (CPT)-NCA) on boronate ester-linked poly (ethyleneglycol) (PEG) directly via the amine-initiated ring open polymerization (ROP) has been developed. The resulting amphiphilic prodrug (mPEG-BC-PGluCPT) could self-assemble into nanoparticles and encapsulate doxorubicin (Dox) simultaneously in aqueous solution for dual-drug delivery. The formation of polymeric prodrug micelles (mPEG-BC@PGluCPT) was confirmed by the measurements of critical aggregation concentration (CAC), particle size, and morphology observations. The mPEG-BC@PGluCPT micelles were colloidally stable in solutions for two weeks. Polymeric prodrug micelles mPEG-BC@PGluCPT and Dox-loaded micelles mPEG-BC@PGluCPT⋅Dox showed sustained drug release profiles over 48 h. As expected, drug release was accelerated by the decreasement of pH value from 7.4 to 6.0, which demonstrated pH-dependent manner of drug release. Additionally, it was found that cellular uptake of mPEG-BC@PGluCPT⋅Dox micelles on HepG2 cells was higher than that on HL-7702 cells, especially in culture medium at pH 6.0. The enhanced cellular uptake of mPEG-BC@PGluCPT⋅Dox micelles under acidic condition on HepG2 cells resulted in the higher cytotoxicity of mPEG-BC@PGluCPT⋅Dox micelles at acidic pH than that at pH 7.4.
Shan, Fang; Liu, YuJuan; Jiang, Haiying; Tong, Fei
2017-01-01
Here, we describe a bone morphogenetic protein-2 (BMP-2) nanocarrier based on glycyrrhetinic acid (GA)-poly(ethylene glycol) (PEG)-b-poly(l-lysine) (PLL). A protein nanocarrier was synthesized, characterized and evaluated as a BMP-2 delivery system. The designed nanocarrier was synthesized based on the ring-opening polymerization of amino acid N-carboxyanhydride. The final product was measured with 1H nuclear magnetic resonance. GA-PEG-b-PLL nanocarrier could combine with BMP-2 through electrostatic interaction to form polyion complex (PIC) micelles. BMP-2 could be rapidly and efficiently encapsulated through the GA-PEG-b-PLL nanocarrier under physiological conditions, exhibiting efficient encapsulation and sustained release. In addition, the GA-PEG-b-PLL-mediated BMP-2 delivery system could target the liver against hepatic diseases as it has GA-binding receptors. The anti-hepatic ischemia/reperfusion injury (anti-HI/RI) effect of BMP-2/GA-PEG-b-PLL PIC micelles was investigated in rats using free BMP-2 and BMP-2/PEG-b-PLL PIC micelles as controls, and the results showed that BMP-2/GA-PEG-b-PLL PIC micelles indicated significantly enhanced anti-HI/RI property compared to BMP-2 and BMP-2/PEG-b-PLL. All results suggested that GA-PEG-b-PLL could be used as a potential BMP-2 nanocarrier. PMID:29089759
Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; DuRoss, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav
2016-01-01
2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1−/−) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1−/− cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders. PMID:27572704
NASA Astrophysics Data System (ADS)
Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; Duross, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav
2016-08-01
2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1-/-) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1-/- cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders.
Ang, JooChuan; Ma, Dan; Lund, Reidar; Keten, Sinan; Xu, Ting
2016-10-10
3-Helix micelles (3HM) formed by self-assembly of peptide-polymer conjugate amphiphiles have shown promise as a nanocarrier platform due to their long-circulation, deep tumor penetration, selective accumulation in tumor, and ability to cross the blood-brain barrier (BBB) for glioblastoma therapy. There is a need to understand the structural contribution to the high in vivo stability and performance of 3HM. Using selective deuteration, the contrast variation technique in small-angle neutron scattering, and coarse-grained molecular dynamics simulation, we determined the spatial distribution of each component within 3HM. Our results show a slightly deformed polyethylene glycol (PEG) conformation within the micelle that is radially offset from its conjugation site toward the exterior of the micelle and a highly solvated shell. Surprisingly, ∼85 v/v % of 3HM is water, unusually higher than any micellar nanocarrier based on our knowledge. The result will provide important structural insights for future studies to uncover the molecular origin of 3HM's in vivo performance, and development of the nanocarriers.
Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie
2015-02-01
As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Targeted Therapies for Myeloma and Metastatic Bone Cancers
2010-09-01
to produce NPs for in-vivo studies compatible with the short half life of Tc99m. (Fig 6,7) Developed methods to radiolabel polymer nanoparticles...fully characterize PLA-b-PEG-Maleimide block Polymer (PLA-b-PEG-MAL) Propose: To synthesize Maleimide modified PLGA-b-PEG 2000 for NPs bone-targeted... polymer was synthesized and characterized by H-NMR. (Appendix 2) Improved lyostability of polymer nanoparticles, with and without PEG modification
Analysis of PEG oligomers in black gel inks: Discrimination and ink dating.
Sun, Qiran; Luo, Yiwen; Xiang, Ping; Yang, Xu; Shen, Min
2017-08-01
Carbon-based black gel inks are common samples in forensic practice of questioned document examination in China, but there are few analytical methods for this type of ink. In this study, a liquid chromatography-.high resolution mass spectrometry (LC-HRMS) method was established for the analysis of PEG oligomers in carbon-based black gel ink entries. The coupled instruments achieve both the identification and quantification of PEG oligomers in ink entries with reproducible results. Twenty carbon-based black gel inks, whose Raman spectra appeared identical, were analyzed using the LC-HRMS method. As a result, the twenty gel inks were classified into four groups according to the distribution of PEG oligomers. Artificially aging of PEG 400 and a gel ink showed that as PEG degraded, the relative amounts of low molecular weight PEG oligomers increased, while those of high molecular weight decreased. The degradation of PEG oligomers in a naturally aged gel ink was consistent with those in the artificially aged samples, but occurred more slowly. This study not only provided a new method for discriminating carbon-based black gel ink entries, but also offered a new approach for studying the relative ink dating of carbon-based black gel ink entries. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of PEG and mPEG-co-(PGA-co-PDL) microparticles loaded with sodium diclofenac
Tawfeek, Hesham M.
2013-01-01
The aim of this study was to synthesize and evaluate novel biodegradable polyesters namely; poly(ethylene glycol)-Poly(glycerol adipate-co-ω-pentadecalactone), PEG-PGA-co-PDL-PEG, and poly(ethylene glycol methyl ether)-Poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL-PEGme as an alternative sustained release carrier for lung delivery compared with non-PEG containing polymer PGA-co-PDL. The co-polymers were synthesized through lipase catalysis ring opening polymerization reaction and characterized using GPC, FT-IR, 1H-NMR and surface contact angle. Furthermore, microparticles containing a model hydrophilic drug, sodium diclofenac, were prepared via spray drying from a modified single emulsion and characterized for their encapsulation efficiency, geometrical particle size, zeta potential, tapped density, primary aerodynamic diameter, amorphous nature, morphology, in vitro release and the aerosolization performance. Microparticles fabricated from mPEG-co-polymer can be targeted to the lung periphery with an optimum in vitro deposition. Furthermore, a significantly higher in vitro release (p > 0.05, ANOVA/Dunnett’s) was observed with the PEG and mPEG-co-polymers compared to PGA-co-PDL. In addition, these co-polymers have a good safety profile upon testing on human bronchial epithelial, 16HBE14o- cell lines. PMID:24227959
A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent.
Xiong, Fei; Hu, Ke; Yu, Haoli; Zhou, Lijun; Song, Lina; Zhang, Yu; Shan, Xiuhong; Liu, Jianping; Gu, Ning
2017-08-01
Tumor targeting could greatly promote the performance of magnetic nanomaterials as MRI (Magnetic Resonance Imaging) agent for tumor diagnosis. Herein, we reported a novel magnetic nanoparticle modified with PLA (poly lactic acid)-PEG (polyethylene glycol)-DG (D-glucosamine) as Tumor-targeted MRI Contrast Agent. In this work, we took use of the D-glucose passive targeting on tumor cells, combining it on PLA-PEG through amide reaction, and then wrapped the PLA-PEG-DG up to the Fe 3 O 4 @OA NPs. The stability and anti phagocytosis of Fe 3 O 4 @OA@PLA-PEG-DG was tested in vitro; the MRI efficiency and toxicity was also detected in vivo. These functional magnetic nanoparticles demonstrated good biocompatibility and stability both in vitro and in vivo. Cell experiments showed that Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles exist good anti phagocytosis and high targetability. In vivo MRI images showed that the contrast effect of Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles prevailed over the commercial non tumor-targeting magnetic nanomaterials MRI agent at a relatively low dose. The DG can validly enhance the tumor-targetting effect of Fe 3 O 4 @OA@PLA-PEG nanoparticle. Maybe MRI agents with DG can hold promise as tumor-targetting development in the future.