Sample records for offshore significant wave

  1. Numerical and experimental results on the spectral wave transfer in finite depth

    NASA Astrophysics Data System (ADS)

    Benassai, Guido

    2016-04-01

    Determination of the form of the one-dimensional surface gravity wave spectrum in water of finite depth is important for many scientific and engineering applications. Spectral parameters of deep water and intermediate depth waves serve as input data for the design of all coastal structures and for the description of many coastal processes. Moreover, the wave spectra are given as an input for the response and seakeeping calculations of high speed vessels in extreme sea conditions and for reliable calculations of the amount of energy to be extracted by wave energy converters (WEC). Available data on finite depth spectral form is generally extrapolated from parametric forms applicable in deep water (e.g., JONSWAP) [Hasselmann et al., 1973; Mitsuyasu et al., 1980; Kahma, 1981; Donelan et al., 1992; Zakharov, 2005). The present paper gives a contribution in this field through the validation of the offshore energy spectra transfer from given spectral forms through the measurement of inshore wave heights and spectra. The wave spectra on deep water were recorded offshore Ponza by the Wave Measurement Network (Piscopia et al.,2002). The field regressions between the spectral parameters, fp and the nondimensional energy with the fetch length were evaluated for fetch-limited sea conditions. These regressions gave the values of the spectral parameters for the site of interest. The offshore wave spectra were transfered from the measurement station offshore Ponza to a site located offshore the Gulf of Salerno. The offshore local wave spectra so obtained were transfered on the coastline with the TMA model (Bouws et al., 1985). Finally the numerical results, in terms of significant wave heights, were compared with the wave data recorded by a meteo-oceanographic station owned by Naples Hydrographic Office on the coastline of Salerno in 9m depth. Some considerations about the wave energy to be potentially extracted by Wave Energy Converters were done and the results were discussed.

  2. Characteristics of offshore extreme wind-waves detected by surface drifters with a low-cost GPS wave sensor

    NASA Astrophysics Data System (ADS)

    Komatsu, Kosei

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the wave buoys in 2007-2008 indicated a little more frequent occurrence of freak waves comparing with Forristall's (1978) empirical formula and Naess's (1985) distribution for a narrow-band Gaussian sea.

  3. Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor

    NASA Astrophysics Data System (ADS)

    Komatsu, K.

    2009-12-01

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the wave buoys in 2007-2008 indicated a little more frequent occurrence of freak waves comparing with Forristall’s (1978) empirical formula and Naess’s (1985) distribution for a narrow-band Gaussian sea. Fig.1. Time series of the ratio of the significant wave height to the maximum wave height in 20 minutes sampling period observed by a drifting buoy with a GPS sensor

  4. Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra

    NASA Astrophysics Data System (ADS)

    Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.

    2017-02-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  5. Multiscale Climate Emulator of Multimodal Wave Spectra: MUSCLE-spectra

    NASA Astrophysics Data System (ADS)

    Rueda, A.; Hegermiller, C.; Alvarez Antolinez, J. A.; Camus, P.; Vitousek, S.; Ruggiero, P.; Barnard, P.; Erikson, L. H.; Tomas, A.; Mendez, F. J.

    2016-12-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this problem complex yet tractable using computationally-expensive numerical models. So far, the skill of statistical-downscaling models based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical-downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the Southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  6. Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic

    DTIC Science & Technology

    2015-08-01

    ER D C/ CH L TR -1 5- 11 Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic...Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic Michael F. Forte Field Research Facility...standards for offshore wind farm design and to establish a 100-year (yr) extratropical wind speed, wave height, and water level climatology for the

  7. Observations and a model of undertow over the inner continental shelf

    USGS Publications Warehouse

    Lentz, Steven J.; Fewings, Melanie; Howd, Peter; Fredericks, Janet; Hathaway, Kent

    2008-01-01

    Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth.During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.

  8. Influence of wave modelling on the prediction of fatigue for offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Veldkamp, H. F.; van der Tempel, J.

    2005-01-01

    Currently it is standard practice to use Airy linear wave theory combined with Morison's formula for the calculation of fatigue loads for offshore wind turbines. However, offshore wind turbines are typically placed in relatively shallow water depths of 5-25 m where linear wave theory has limited accuracy and where ideally waves generated with the Navier-Stokes approach should be used. This article examines the differences in fatigue for some representative offshore wind turbines that are found if first-order, second-order and fully non-linear waves are used. The offshore wind turbines near Blyth are located in an area where non-linear wave effects are common. Measurements of these waves from the OWTES project are used to compare the different wave models with the real world in spectral form. Some attention is paid to whether the shape of a higher-order wave height spectrum (modified JONSWAP) corresponds to reality for other places in the North Sea, and which values for the drag and inertia coefficients should be used. Copyright

  9. The Effect of the Leeuwin Current on Offshore Surface Gravity Waves in Southwest Western Australia

    NASA Astrophysics Data System (ADS)

    Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha

    2017-11-01

    The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore current regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by coupling the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the Coupled Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin Current (LC), a strong pole-ward flowing boundary current with a persistent eddy field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The coupled wave-current simulations were compared to wave only simulations, which represented scenarios in the absence of a background current field. Results showed that the LC and the eddy field significantly impact SWWA waves. Significant wave heights increased (decreased) when currents were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-current interaction is not properly accounted for.

  10. Modeling long period swell in Southern California: Practical boundary conditions from buoy observations and global wave model predictions

    NASA Astrophysics Data System (ADS)

    Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.

    2016-02-01

    Accurate, unbiased, high-resolution (in space and time) nearshore wave predictions are needed to drive models of beach erosion, coastal flooding, and alongshore transport of sediment, biota and pollutants. On highly sheltered shorelines, wave predictions are sensitive to the directions of onshore propagating waves, and nearshore model prediction error is often dominated by uncertainty in offshore boundary conditions. Offshore islands and shoals, and coastline curvature, create complex sheltering patterns over the 250km span of southern California (SC) shoreline. Here, regional wave model skill in SC was compared for different offshore boundary conditions created using offshore buoy observations and global wave model hindcasts (National Oceanographic and Atmospheric Administration Wave Watch 3, WW3). Spectral ray-tracing methods were used to transform incident offshore swell (0.04-0.09Hz) energy at high directional resolution (1-deg). Model skill is assessed for predictions (wave height, direction, and alongshore radiation stress) at 16 nearshore buoy sites between 2000 and 2009. Model skill using buoy-derived boundary conditions is higher than with WW3-derived boundary conditions. Buoy-driven nearshore model results are similar with various assumptions about the true offshore directional distribution (maximum entropy, Bayesian direct, and 2nd derivative smoothness). Two methods combining offshore buoy observations with WW3 predictions in the offshore boundary condition did not improve nearshore skill above buoy-only methods. A case example at Oceanside harbor shows strong sensitivity of alongshore sediment transport predictions to different offshore boundary conditions. Despite this uncertainty in alongshore transport magnitude, alongshore gradients in transport (e.g. the location of model accretion and erosion zones) are determined by the local bathymetry, and are similar for all predictions.

  11. Observations of High-frequency Internal Wave Energy Offshore of Point Loma, California

    NASA Astrophysics Data System (ADS)

    Rhee, K.; Crosby, S. C.; Fiedler, J. W.

    2016-12-01

    As coastally directed internal wave energy shoals in shallow water, the resulting bores can transport cold, dense, nutrient-rich waters shoreward, influencing local fauna and ultimately dissipating tidal energy into heat. Understanding the mechanisms, propagation, and resultant transport is crucial for determining the physical-biological interactions along our coasts. We observed significant internal wave energy offshore of Point Loma, San Diego using a thermistor chain moored in 22m depth. Temperature observations spaced 1.5m apart from 0 to 18m were sampled at 2Hz and recorded for a period of ten days during July 2016. Temperature, salinity, oxygen, and nutrient profiles were obtained at 3 stations further offshore during deployment and recovery cruises. At the time of mooring deployment, thermocline depth was 10 to 20m. During recovery we observed a significant decrease of thermocline depth, which was likely caused by surface mixing during a strong wind event. During the 10-day deployment we observed many high frequency (5 to 10 minute periods) internal waves events. In addition, we noticed rapid temperature changes (4oC in less than a minute) suggestive of internal bores; however, other events appeared to be linear, possibly indicating unbroken internal waves. Here, we examine the critical slope for linear mode-1 propagation, the correlation of these events with tidal ebb and flow, and infer how a deeper mixed layer effects internal wave propagation.

  12. Effects of Offshore Wind Turbines on Ocean Waves

    NASA Astrophysics Data System (ADS)

    Wimer, Nicholas; Churchfield, Matthew; Hamlington, Peter

    2014-11-01

    Wakes from horizontal axis wind turbines create large downstream velocity deficits, thus reducing the available energy for downstream turbines while simultaneously increasing turbulent loading. Along with this deficit, however, comes a local increase in the velocity around the turbine rotor, resulting in increased surface wind speeds. For offshore turbines, these increased speeds can result in changes to the properties of wind-induced waves at the ocean surface. In this study, the characteristics and implications of such waves are explored by coupling a wave simulation code to the Simulator for Offshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. The wave simulator and SOWFA are bi-directionally coupled using the surface wind field produced by an offshore wind farm to drive an ocean wave field, which is used to calculate a wave-dependent surface roughness that is fed back into SOWFA. The details of this combined framework are outlined. The potential for using the wave field created at offshore wind farms as an additional energy resource through the installation of on-site wave converters is discussed. Potential negative impacts of the turbine-induced wave field are also discussed, including increased oscillation of floating turbines.

  13. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    NASA Astrophysics Data System (ADS)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  14. Deposition model of a Miocene barred wave- and storm-dominated shoreface and shelf, southeastern Malay basin, offshore west Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramli, N.

    1986-01-01

    The J sandstone is an important hydrocarbon-bearing reservoir in the southeastern part of the Malay basin. The lower and upper members of the J sandstone are composed of shoreface and offshore sediments. The shoreface sequence contains depositional structures characteristic of a barred wave- and storm-dominated shoreface. Each shoreface sequence is laterally associated with a series of stacked offshore bars. Offshore bars can be subdivided into proximal and distal types. Two types of proximal offshore bars have been identified: (1) proximal bars formed largely above fair-weather wave base (inner proximal bars), and (2) proximal bars formed below fair-weather wave base (outermore » proximal bars). The inner proximal bars are closely associated with the shoreface sequence and are similar to the middle and lower shoreface. The presence of poorly sorted, polymodal, very fine to very coarse-grained sandstone beneath well-sorted crestal sandstones of inner proximal bars suggests that these offshore bars may have been deposited rapidly by storms. The crests of the inner proximal offshore bars were subsequently reworked by fair-weather processes, and the crests of the outer proximal and distal offshore bars were reworked by waning storm currents and oscillatory waves. Thick marine shales overlying offshore bars contain isolated sheet sandstones. Each sheet sandstone exhibits features that may be characteristic of distal storm shelf deposits. 15 figures, 2 tables.« less

  15. Forcing and variability of nonstationary rip currents

    USGS Publications Warehouse

    Long, Joseph W.; H.T. Özkan-Haller,

    2016-01-01

    Surface wave transformation and the resulting nearshore circulation along a section of coast with strong alongshore bathymetric gradients outside the surf zone are modeled for a consecutive 4 week time period. The modeled hydrodynamics are compared to in situ measurements of waves and currents collected during the Nearshore Canyon Experiment and indicate that for the entire range of observed conditions, the model performance is similar to other studies along this stretch of coast. Strong alongshore wave height gradients generate rip currents that are observed by remote sensing data and predicted qualitatively well by the numerical model. Previous studies at this site have used idealized scenarios to link the rip current locations to undulations in the offshore bathymetry but do not explain the dichotomy between permanent offshore bathymetric features and intermittent rip current development. Model results from the month‐long simulation are used to track the formation and location of rip currents using hourly statistics, and results show that the direction of the incoming wave energy strongly controls whether rip currents form. In particular, most of the offshore wave spectra were bimodal and we find that the ratio of energy contained in each mode dictates rip current development, and the alongshore rip current position is controlled by the incident wave period. Additionally, model simulations performed with and without updating the nearshore morphology yield no significant change in the accuracy of the predicted surf zone hydrodyanmics indicating that the large‐scale offshore features (e.g., submarine canyon) predominately control the nearshore wave‐circulation system.

  16. Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models

    USGS Publications Warehouse

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.

  17. Incident wave, infragravity wave, and non-linear low-frequency bore evolution across fringing coral reefs

    NASA Astrophysics Data System (ADS)

    Storlazzi, C. D.; Griffioen, D.; Cheriton, O. M.

    2016-12-01

    Coral reefs have been shown to significantly attenuate incident wave energy and thus provide protection for 100s of millions of people globally. To better constrain wave dynamics and wave-driven water levels over fringing coral reefs, a 4-month deployment of wave and tide gauges was conducted across two shore-normal transects on Roi-Namur Island and two transects on Kwajalein Island in the Republic of the Marshall Islands. At all locations, although incident wave (periods <25 s) heights were an order of magnitude greater than infragravity wave (periods > 250 s) heights on the outer reef flat just inshore of the zone of wave breaking, the infragravity wave heights generally equaled the incident wave heights by the middle of the reef flat and exceeded the incident wave heights on the inner reef flat by the shoreline. The infragravity waves generally were asymmetric, positively skewed, bore-like forms with incident-band waves riding the infragravity wave crest at the head of the bore; these wave packets have similar structure to high-frequency internal waves on an internal wave bore. Bore height was shown to scale with water depth, offshore wave height, and offshore wave period. For a given tidal elevation, with increasing offshore wave heights, such bores occurred more frequently on the middle reef flat, whereas they occurred less frequently on the inner reef flat. Skewed, asymmetric waves are known to drive large gradients in velocity and shear stress that can transport material onshore. Thus, a better understanding of these low-frequency, energetic bores on reef flats is critical to forecasting how coral reef-lined coasts may respond to sea-level rise and climate change.

  18. Update on GPS-Acoustics Measurements on the Continental Slope of the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.

    2017-12-01

    Land-based GPS measurements suggest the megathrust is locked offshore along the Cascadia Subduction Zone. However, land-based data alone lack geometric resolution to constrain the how the slip is distributed. GPS-Acoustic measurements can provide these constraints, but using traditional GPS-Acoustic approaches employing a ship is costly. Wave Gliders, a wave- and solar-powered, remotely-piloted sea surface platform, provide a low cost method for collecting GPS-A data. We have adapted GPS-Acoustic technology to the Wave Glider and in 2016 began annual measurements at three sites in the Cascadia Subduction Zone (CSZ). Here, we review positioning results collected during summer 2017 at two sites on the continental slope of the Cascadia Subduction Zone: One site is approximately 45 NM offshore central Oregon and the other approximately 50 NM offshore central Washington State. A third site is approximately 90 NM offshore central Oregon on the incoming Juan de Fuca plate. We will report on initial results of the GPS-A data collection and operational experiences of the missions in 2016 and 2017. Wave Glider based GPS-A measurement have the potential to significantly increase the number and frequency of measurements of strain accumulation in Cascadia Subduction Zone and elsewhere.

  19. Analysis of Earthquake Recordings Obtained from the Seafloor Earthquake Measurement System (SEMS) Instruments Deployed off the Coast of Southern California

    USGS Publications Warehouse

    Boore, D.M.; Smith, C.E.

    1999-01-01

    For more than 20 years, a program has been underway to obtain records of earthquake shaking on the seafloor at sites offshore of southern California, near oil platforms. The primary goal of the program is to obtain data that can help determine if ground motions at offshore sites are significantly different than those at onshore sites; if so, caution may be necessary in using onshore motions as the basis for the seismic design of oil platforms. We analyze data from eight earthquakes recorded at six offshore sites; these are the most important data recorded on these stations to date. Seven of the earthquakes were recorded at only one offshore station; the eighth event was recorded at two sites. The earthquakes range in magnitude from 4.7 to 6.1. Because of the scarcity of multiple recordings from any one event, most of the analysis is based on the ratio of spectra from vertical and horizontal components of motion. The results clearly show that the offshore motions have very low vertical motions compared to those from an average onshore site, particularly at short periods. Theoretical calculations find that the water layer has little effect on the horizontal components of motion but that it produces a strong spectral null on the vertical component at the resonant frequency of P waves in the water layer. The vertical-to-horizontal ratios for a few selected onshore sites underlain by relatively low shear-wave velocities are similar to the ratios from offshore sites for frequencies less than about one-half the water layer P-wave resonant frequency, suggesting that the shear-wave velocities beneath a site are more important than the water layer in determining the character of the ground motions at lower frequencies.

  20. Projected changes of the southwest Australian wave climate under two atmospheric greenhouse gas concentration pathways

    NASA Astrophysics Data System (ADS)

    Wandres, Moritz; Pattiaratchi, Charitha; Hemer, Mark A.

    2017-09-01

    Incident wave energy flux is responsible for sediment transport and coastal erosion in wave-dominated regions such as the southwestern Australian (SWA) coastal zone. To evaluate future wave climates under increased greenhouse gas concentration scenarios, past studies have forced global wave simulations with wind data sourced from global climate model (GCM) simulations. However, due to the generally coarse spatial resolution of global climate and wave simulations, the effects of changing offshore wave conditions and sea level rise on the nearshore wave climate are still relatively unknown. To address this gap of knowledge, we investigated the projected SWA offshore, shelf, and nearshore wave climate under two potential future greenhouse gas concentration trajectories (representative concentration pathways RCP4.5 and RCP8.5). This was achieved by downscaling an ensemble of global wave simulations, forced with winds from GCMs participating in the Coupled Model Inter-comparison Project (CMIP5), into two regional domains, using the Simulating WAves Nearshore (SWAN) wave model. The wave climate is modeled for a historical 20-year time slice (1986-2005) and a projected future 20-year time-slice (2081-2100) for both scenarios. Furthermore, we compare these scenarios to the effects of considering sea-level rise (SLR) alone (stationary wave climate), and to the effects of combined SLR and projected wind-wave change. Results indicated that the SWA shelf and nearshore wave climate is more sensitive to changes in offshore mean wave direction than offshore wave heights. Nearshore, wave energy flux was projected to increase by ∼10% in exposed areas and decrease by ∼10% in sheltered areas under both climate scenarios due to a change in wave directions, compared to an overall increase of 2-4% in offshore wave heights. With SLR, the annual mean wave energy flux was projected to increase by up to 20% in shallow water (< 30 m) as a result of decreased wave dissipation. In winter months, the longshore wave energy flux, which is responsible for littoral drift, is expected to increase by up to 39% (62%) under the RCP4.5 (RCP8.5) greenhouse gas concentration pathway with SLR. The study highlights the importance of using high-resolution wave simulations to evaluate future regional wave climates, since the coastal wave climate is more responsive to changes in wave direction and sea level than offshore wave heights.

  1. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data

    PubMed Central

    Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731

  2. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.

    PubMed

    Espindola, Rafael Luz; Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Gordon M.; Robertson, Amy; Jonkman, Jason

    A database of meteorological and ocean conditions is presented for use in offshore wind energy research and design. The original data are from 23 ocean sites around the USA and were obtained from the National Data Buoy Center run by the National Oceanic and Atmospheric Administration. The data are presented in a processed form that includes the variables of interest for offshore wind energy design: wind speed, significant wave height, wave peak-spectral period, wind direction and wave direction. For each site, a binning process is conducted to create conditional probability functions for each of these variables. The sites are thenmore » grouped according to geographic location and combined to create three representative sites, including a West Coast site, an East Coast site and a Gulf of Mexico site. Both the processed data and the probability distribution parameters for the individual and representative sites are being hosted on a publicly available domain by the National Renewable Energy Laboratory, with the intent of providing a standard basis of comparison for meteorological and ocean conditions for offshore wind energy research worldwide.« less

  4. What can wave energy learn from offshore oil and gas?

    PubMed

    Jefferys, E R

    2012-01-28

    This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and both are subject to wave, wind and current loads, which may be evaluated with well-validated, albeit imperfect, tools. Both types of structure can be designed, analysed and fabricated using similar tools and technologies. They fulfil very different missions and are subject to different economic and performance requirements; hence 'offshore' design tools must be used appropriately in wave energy project and system design, and 'offshore' cost data should be adapted for 'wave' applications. This article reviews the similarities and differences between the fields and highlights the differing economic environments; offshore structures are typically a small to moderate component of field development cost, while wave power devices will dominate overall system cost. The typical 'offshore' design process is summarized and issues such as reliability-based design and design of not normally manned structures are addressed. Lessons learned from poor design in the past are discussed to highlight areas where care is needed, and wave energy-specific design areas are reviewed. Opportunities for innovation and optimization in wave energy project and device design are discussed; wave energy projects must ultimately compete on a level playing field with other routes to low CO₂ energy and/or energy efficiency. This article is a personal viewpoint and not an expression of a ConocoPhillips position.

  5. Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading

    NASA Astrophysics Data System (ADS)

    Seeram, Madhuri; Manohar, Y.

    2018-06-01

    In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.

  6. Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading

    NASA Astrophysics Data System (ADS)

    Seeram, Madhuri; Manohar, Y.

    2018-02-01

    In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.

  7. Effects of proposed sediment borrow pits on nearshore wave climate and longshore sediment transport rate along Breton Island, Louisiana

    USGS Publications Warehouse

    Dalyander, Patricia (Soupy); Mickey, Rangley C.; Long, Joseph W.; Flocks, James G.

    2015-05-02

    As part of a plan to preserve bird habitat on Breton Island, the southernmost extent of the Chandeleur Islands and part of the Breton National Wildlife Refuge in Louisiana, the U.S. Fish and Wildlife Service plans to increase island elevation with sand supplied from offshore resources. Proposed sand extraction sites include areas offshore where the seafloor morphology suggests suitable quantities of sediment may be found. Two proposed locations east and south of the island, between 5.5–9 kilometers from the island in 3–6 meters of water, have been identified. Borrow pits are perturbations to shallow-water bathymetry and thus can affect the wave field in a variety of ways, including alterations in sediment transport and new erosional or accretional patterns along the beach. A scenario-based numerical modeling strategy was used to assess the effects of the proposed offshore borrow pits on the nearshore wave field. Effects were assessed over a range of wave conditions and were gaged by changes in significant wave height and wave direction inshore of the borrow sites, as well as by changes in the calculated longshore sediment transport rate. The change in magnitude of the calculated sediment transport rate with the addition of the two borrow pits was an order of magnitude less than the calculated baseline transport rate.

  8. Near-field tsunami edge waves and complex earthquake rupture

    USGS Publications Warehouse

    Geist, Eric L.

    2013-01-01

    The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.

  9. Stabilized floating platforms

    DOEpatents

    Thomas, David G.

    1976-01-01

    The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.

  10. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN through the external modification of the wave spectra at the device locations, based on a new experimentally determined Power Transfer Function established in an earlier WEC-array laboratory study. Changes in nearshore forcing conditions for each array size and configuration are compared in order to determine the scale of the far-field effects of WEC arrays and which array sizes and configurations could have the most significant impacts on coastal processes.

  11. Waves, Hydrodynamics and Sediment Transport Modeling at Grays Harbor, WA

    DTIC Science & Technology

    2010-12-01

    Grays Harbor Federal navigation project. At the same time, offshore wind and wave data were available from NDBC Buoy 46029 and CDIP Buoy 036 / NDBC...is forced by the regional ADCIRC water levels and currents, surface wind field, and offshore waves based on the CDIP Buoy 036 (NDBC 46211). Figures

  12. Characterisation of impacts on the environment of an idealised offshore wind farm foundation, under waves and the combination of waves and currents

    NASA Astrophysics Data System (ADS)

    García-Hermosa, Isabel; Abcha, Nizar; Brossard, Jérôme; Bennis, Anne-Claire; Ezersky, Alexander; Gross, Marcus; Iglesias, Gregorio; Magar, Vanesa; Miles, Jon; Mouazé, Dominique; Perret, Gaële; Pinon, Grégory; Rivier, Aurélie; Rogan, Charlie; Simmonds, David

    2015-04-01

    Offshore wind technology is currently the most widespread and advanced source of marine renewable energy. Offshore wind farms populate waters through the North Sea and the English Channel. The UK and French governments devised deadlines to achieve percentages of electricity from renewable sources by 2020, these deadlines and the direct translation of land based wind farm technology to the offshore environment resulted in the rapid expansion of the offshore wind energy. New wind farms have been designed with a larger number of masts and are moving from shallow offshore banks to deeper waters and in order to produce more power the diameters of monopoles masts are becoming larger to support larger turbines. The three-partner EU INTERREG funded project OFELIA (http://www.interreg-ofelia.eu/) aims to establish a cross-channel (between the UK and France) research collaboration to improve understanding of the environmental impacts of offshore wind farm foundations. The objective of the present study is to characterise changes in the hydrodynamics and sea bed in the vicinity of an offshore wind farm mast and in the wake area under wave and wave-current conditions corresponding to events in the French wind farm site of Courseulles-sur-mer (offshore of Lower Normandy, in the English Channel). Experiments were carried out in two laboratory facilities: a wave flume of 35 m long, 0.9 m wide and 1.2 m in depth with regular and irregular waves (García-Hermosa et al., 2014); and a wave and current flume of 17 m long, 0.5 m wide and 0.4 m depth with regular waves, currents from 180° to the waves and a mobile bed (Gunnoo et al., 2014). Flow velocity measurements were taken with an Acoustic Dopple Velocimeter (ADV) at various points around the cylinder and Particle Image Velocitmetry (PIV) techniques were applied to larger areas upstream and downstream of the cylinder. During the assessment of waves and currents' effects on the bed evolution were assessed using a laser and camera system photographing the bed (Marin & Ezersky, 2007, and Jarno-Druaux et al., 2004). Velocity fields, and flow structures around the cylinder at low KC numbers (KC~1) were characterised and parameters such as vorticity, turbulent kinetic energy and bed shear stresses derived where possible. During the experiments vortex structures with a horizontal axis were observed in the vicinity of the cylinder and the bed even at low KC. The Keulegan-Carpenter number (KC) is defined as: KC = UmT- D, where Um is the bottom orbital velocity, T the peak period and D the pile diameter. As part of the project, the findings from the experiments fed into a regional numerical modelling (Rivier et al., 2014) to improve parametrisation of the representation of the within-cell processes (local to the mast). References García-Hermosa, M. I., Brossard, J., Cohen, Z., Perret, G. (2014). Experimental characterisation of wave induced flow fields due to an offshore wind farm mast. First International Conference on Renewable Energies Offshore (RENEW) Lisbon, Portugal. November 2014. Gunnoo, H., Abcha, N., Mouazé, D., Ezersky, A., García-Hermosa, M. I. (2014). Laboratory simulation of resonance amplification of the hydrodynamic fields in the vicinity of wind farm masts. Proceedings of the First International Conference on Renewable Energies Offshore (RENEW) Lisbon, Portugal. November 2014. Jarno-Druaux, A., Brossard, J., Marin, F. (2004). Dynamical evolution of ripples in a wave channel, European Journal of Mechanics B/Fluids 23: 695-708. Marin, F. and Ezersky, A. B. (2007). Formation dynamics of sand bedforms under solitons and bound states of solitons in a wave flume used in resonant mode. European Journal of Mechanics - B/Fluids, Elsevier, 2008, 27 (3), pp.251-267. Rivier, A., Bennis, A.-C., Pinon, G., Gross, M., Magar, V. (2014). Regional numerical modelling of offshore monopile wind turbine impacts on hydrodynamics and sediment transport. Proceeding of the 1st International Conference on Renewable Energies Offshore (RENEW) Lisbon, Portugal. November 2014.

  13. Empirical parameterization of setup, swash, and runup

    USGS Publications Warehouse

    Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H.

    2006-01-01

    Using shoreline water-level time series collected during 10 dynamically diverse field experiments, an empirical parameterization for extreme runup, defined by the 2% exceedence value, has been developed for use on natural beaches over a wide range of conditions. Runup, the height of discrete water-level maxima, depends on two dynamically different processes; time-averaged wave setup and total swash excursion, each of which is parameterized separately. Setup at the shoreline was best parameterized using a dimensional form of the more common Iribarren-based setup expression that includes foreshore beach slope, offshore wave height, and deep-water wavelength. Significant swash can be decomposed into the incident and infragravity frequency bands. Incident swash is also best parameterized using a dimensional form of the Iribarren-based expression. Infragravity swash is best modeled dimensionally using offshore wave height and wavelength and shows no statistically significant linear dependence on either foreshore or surf-zone slope. On infragravity-dominated dissipative beaches, the magnitudes of both setup and swash, modeling both incident and infragravity frequency components together, are dependent only on offshore wave height and wavelength. Statistics of predicted runup averaged over all sites indicate a - 17 cm bias and an rms error of 38 cm: the mean observed runup elevation for all experiments was 144 cm. On intermediate and reflective beaches with complex foreshore topography, the use of an alongshore-averaged beach slope in practical applications of the runup parameterization may result in a relative runup error equal to 51% of the fractional variability between the measured and the averaged slope.

  14. Investigation on installation of offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bai, Yong

    2010-06-01

    Wind power has made rapid progress and should gain significance as an energy resource, given growing interest in renewable energy and clean energy. Offshore wind energy resources have attracted significant attention, as, compared with land-based wind energy resources, offshore wind energy resources are more promising candidates for development. Sea winds are generally stronger and more reliable and with improvements in technology, the sea has become a hot spot for new designs and installation methods for wind turbines. In the present paper, based on experience building offshore wind farms, recommended foundation styles have been examined. Furthermore, wave effects have been investigated. The split installation and overall installation have been illustrated. Methods appropriate when installing a small number of turbines as well as those useful when installing large numbers of turbines were analyzed. This investigation of installation methods for wind turbines should provide practical technical guidance for their installation.

  15. Verification and Validation of the Coastal Modeling System. Report 2: CMS-Wave

    DTIC Science & Technology

    2011-12-01

    Figure 44. Offshore bathymetry showing NDBC and CDIP buoy locations. ........................................ 70 Figure 45. CMS-Wave modeling domain...the four measurement stations. During the same time intervals, offshore wave information was available from a Coastal Data Information Program ( CDIP ...were conducted with a grid of 236 × 398 cells with variable cell spacing of 30 to 200 m (see Figure 28). Directional wave spectra from CDIP 036 served

  16. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    NASA Astrophysics Data System (ADS)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  17. Observations of internal bores and waves of elevation on the New England inner continental shelf during summer 2001

    NASA Astrophysics Data System (ADS)

    Pritchard, Mark; Weller, Robert A.

    2005-03-01

    During July-August 2001, oceanographic variability on the New England inner continental shelf was investigated with an emphasis on temporal scales shorter than tidal periods. Mooring and ship survey data showed that subtidal variation of inner shelf stratification was in response to regional Ekman upwelling and downwelling wind driven dynamics. High-frequency variability in the vertical structure of the water column at an offshore mooring site was linked to the baroclinic internal tide and the onshore propagation of nonlinear solitary waves of depression. Temperature, salinity, and velocity data measured at an inshore mooring detected a bottom bore that formed on the flood phase of the tide. During the ebb tide, a second bottom discontinuity and series of nonlinear internal waves of elevation (IWOE) formed when the water column became for a time under hydraulic control. A surface manifestation of these internal wave crests was also observed in aircraft remote sensing imagery. The coupling of IWOE formation to the offshore solitary waves packets was investigated through internal wave breaking criterion derived in earlier laboratory studies. Results suggested that the offshore solitons shoaled on the sloping shelf, and transformed from waves of depression to waves of elevation. The coupling of inshore bore formation to the offshore solitary waves and the possible impact of these periodic features on mixing on the inner shelf region are discussed.

  18. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-10-01

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  19. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer

    NASA Astrophysics Data System (ADS)

    Trglavcnik, Victoria; Morrow, Dean; Weber, Kela P.; Li, Ling; Robinson, Clare E.

    2018-04-01

    Analysis of water table fluctuations can provide important insight into the hydraulic properties and structure of a coastal aquifer system including the connectivity between the aquifer and ocean. This study presents an improved approach for characterizing a permeable heterogeneous coastal aquifer system through analysis of the propagation of the tidal signal, as well as offshore storm pulse signals through a coastal aquifer. Offshore storms produce high wave activity, but are not necessarily linked to significant onshore precipitation. In this study, we focused on offshore storm events during which no onshore precipitation occurred. Extensive groundwater level data collected on a sand barrier island (Sable Island, NS, Canada) show nonuniform discontinuous propagation of the tide and offshore storm pulse signals through the aquifer with isolated inland areas showing enhanced response to both oceanic forcing signals. Propagation analysis suggests that isolated inland water table fluctuations may be caused by localized leakage from a confined aquifer that is connected to the ocean offshore but within the wave setup zone. Two-dimensional groundwater flow simulations were conducted to test the leaky confined-unconfined aquifer conceptualization and to identify the effect of key parameters on tidal signal propagation in leaky confined-unconfined coastal aquifers. This study illustrates that analysis of offshore storm signal propagation, in addition to tidal signal propagation, provides a valuable and low resource approach for large-scale characterization of permeable heterogeneous coastal aquifers. Such an approach is needed for the effective management of coastal environments where water resources are threatened by human activities and the changing climate.

  20. Numerical investigation of interactions between marine atmospheric boundary layer and offshore wind farm

    NASA Astrophysics Data System (ADS)

    Lyu, Pin; Chen, Wenli; Li, Hui; Shen, Lian

    2017-11-01

    In recent studies, Yang, Meneveau & Shen (Physics of Fluids, 2014; Renewable Energy, 2014) developed a hybrid numerical framework for simulation of offshore wind farm. The framework consists of simulation of nonlinear surface waves using a high-order spectral method, large-eddy simulation of wind turbulence on a wave-surface-fitted curvilinear grid, and an actuator disk model for wind turbines. In the present study, several more precise wind turbine models, including the actuator line model, actuator disk model with rotation, and nacelle model, are introduced into the computation. Besides offshore wind turbines on fixed piles, the new computational framework has the capability to investigate the interaction among wind, waves, and floating wind turbines. In this study, onshore, offshore fixed pile, and offshore floating wind farms are compared in terms of flow field statistics and wind turbine power extraction rate. The authors gratefully acknowledge financial support from China Scholarship Council (No. 201606120186) and the Institute on the Environment of University of Minnesota.

  1. Coastal Erosion in a Coral Reef Island, Taiping Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Su, S.; Ma, G.; Liang, M.; Chu, J.

    2011-12-01

    Reef flats surrounding islands are known to dissipate much offshore wave energy, and thereby protect beaches from erosion. Taiping Island, the largest coral reef islands of the Spratly Islands in the South China Sea, has been observed the shorelines erosion on the southwest coast over past decades. It is recognized that wave and current processes across coral reefs affect reef-island development and morphology. A number of studies suggest effects of climate changes, sea-level rise and storm-intensity increase, determine the magnitude of wave energy on the reef platform and will likely intensify the erosion. The topographical change in the local region, the southwest reef flat was dredged a channel for navigation, may be a significant factor in influencing current characteristics. Numerical modeling is used to describe both hydrodynamics and sediment dynamics because there are no field measurements available around the reef flat. Field observations off the island conducted in August 2004 and November 2005 provides offshore wave characteristics of the predominant wind seasons. Numerical simulations perform the spatial and temporal variation of waves and current patterns and coastal erosion potential on the reef platform.

  2. The South Carolina Coastal Erosion Study: Wind Wave Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Demir, H.; Work, P. A.; Voulgaris, G.

    2004-12-01

    As part of the South Carolina Coastal Erosion Study (SCCES) wave and current data were collected offshore of Myrtle Beach, SC for 2 months in 2001-02. This field measurement campaign was the second of a three-part experiment series. While the overall objective of the study is to describe the processes governing the circulation, wave propagation and sediment transport along the northern South Carolina coast, this presentation focuses on the wave energy dissipation over a heterogeneous seafloor over a distance of 6 km. The data were collected between November 9, 2001 and January 17, 2002. The instruments were placed along a transect crossing a large sand shoal in an area otherwise largely deprived of sand, at depths of 8 to 12 meters. The four instruments used, in order of decreasing distance from shore, were 600 and1200 KHz RDI ADCP's, a Nortek Aquadopp and a Sontek Argonaut-XR. Bathymetry and bottom characteristics such as depth and thickness of sand layer are available through USGS's coastal relief model and side scan surveys. Wind data are supplied by a large-scale numerical wind model. Its output is compared with wind data collected at Frying Pan Shoals buoy and at an anemometer placed at Spring Maid pier after the experiment. The SWAN wave model (Booij et al. 1999) was used to model the spectral wave transformation from the offshore buoy to the inner stations and to compare the observed wave energy dissipation to the available models. There was no extreme storm event during the deployment period. The maximum significant wave height observed was 1.6 meters at the offshore wave station, and the mean wave height was 0.8 meters. The mean period was between 5 and 7 seconds most of the time. Significant wave energy dissipation (up to 40% decrease in wave energy flux) across 6 km was observed. A shift of the spectral peak and a change in the spectral shape was observed in many events, which were not generally reproduced by the model. Sand and rock bottom characteristics were modeled with different dissipation coefficients. The coefficients were optimized to give the best fit to the data. Since the dissipation process is non-linear, iterative linear regression techniques were employed. The physical meaning of the coefficients and the improvements achieved with varying bottom friction coefficients are discussed.

  3. Assessing wave climate trends in the Bay of Biscay through an intercomparison of wave hindcasts and reanalyses

    NASA Astrophysics Data System (ADS)

    Paris, F.; Lecacheux, S.; Idier, D.; Charles, E.

    2014-09-01

    The Bay of Biscay, located in the Northeast Atlantic Ocean, is exposed to energetic waves coming from the open ocean that have crucial effects on the coast. Knowledge of the wave climate and trends in this region are critical to better understand the last decade's evolution of coastal hazards and morphology and to anticipate their potential future changes. This study aims to characterize the long-term trends of the present wave climate over the second half of the twentieth century in the Bay of Biscay through a robust and homogeneous intercomparison of five-wave datasets (Corrected ERA-40 (C-ERA-40), ECMWF Reanalysis Interim (ERA-Interim), Bay Of Biscay Wave Atlas (BOBWA-10kH), ANEMOC, and Bertin and Dodet 2010)). The comparison of the quality of the datasets against offshore and nearshore measurements reveals that at offshore locations, global reanalyses slightly underestimate wave heights, while regional hindcasts overestimate wave heights, especially for the highest quantiles. At coastal locations, BOBWA-10kH is the dataset that compares the best with observations. Concerning long time-scale features, the comparison highlights that the main significant trends are similarly present in the five datasets, especially during summer for which there is an increase of significant wave heights and mean wave periods (up to +15 cm and +0.6 s over the period 1970-2001) as well as a southerly shift of wave directions (around -0.4° year-1). Over the same period, an increase of high quantiles of wave heights during the autumn season (around 3 cm year-1 for 90th quantile of significant wave heights (SWH90)) is also apparent. During winter, significant trends are much lower than during summer and autumn despite a slight increase of wave heights and periods during 1958-2001. These trends can be related to modifications in the wave-type occurrence. Finally, the trends common to the five datasets are discussed by analyzing the similarities with centennial trends issued from longer time-scale studies and exploring the various factors that could explain them.

  4. Response spectrum method for extreme wave loading with higher order components of drag force

    NASA Astrophysics Data System (ADS)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Ali, Dastan Diznab Mohammad; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-03-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  5. Formation Mechanisms for Spur and Groove Features on Fringing Reefs

    NASA Astrophysics Data System (ADS)

    Bramante, J. F.; Ashton, A. D.; Perron, J. T.

    2016-12-01

    Spur and groove systems (SAGs) are ubiquitous morphological features found on fore-reef slopes globally. SAGs consist of parallel, roughly shore-normal ridges of actively growing coral and coralline algae (spurs) separated by offshore-sloping depressions typically carpeted by a veneer of sediment (grooves). Although anecdotal observations and recent statistical analyses have reported correlations between wave exposure and the distribution of SAGs on fore-reef slopes, the physical mechanisms driving SAG formation remain poorly understood. For example, there remains significant debate regarding the importance of coral growth versus bed erosion for SAG formation. Here we investigate a hypothesis that SAG formation is controlled by feedbacks between sediment production and diffusion and coral growth. Using linear stability analysis, we find that sediment production, coral growth, and the feedbacks between them are unable to produce stable periodic structures without a sediment sink. However, if incipient grooves act as conduits for sediment transport offshore, a positive feedback can develop as the groove bed erodes through wave-driven abrasion during offshore transport. Eventually a negative feedback slows groove deepening when the groove bed is armored by sediment, and the groove bed relaxes to a sediment-veneered equilibrium profile analogous to sediment-rich shorefaces. To test this hypothesis, we apply a numerical model that incorporates coral growth and sediment production, sediment diffusion, non-linear wave-driven abrasion, and sediment advection offshore. This model produces the periodic, linear features characteristic of SAG morphology. The relative magnitude of growth, production, diffusion, abrasion, and advection rates affect periodic spacing or wavelength of the modeled SAGs. Finally, we evaluate the ability of the model to replicate geographical variability in SAG characteristics using previously published datasets and reanalysis wave data.

  6. 3D Airflow patterns over coastal foredunes: implications for aeolian sediment transport

    NASA Astrophysics Data System (ADS)

    Jackson, Derek W. T.; Cooper, Andrew G.; Baas, Andreas C. W.; Lynch, Kevin; Beyers, Meiring

    2010-05-01

    A fundamental criterion for the development of coastal sand dunes is usually highlighted as a significant onshore wind component of the local wind field. The presence of large sand dune systems on coasts where the predominant wind blows offshore is therefore difficult to explain and usually they are attributed to the past occurrence of onshore winds and, by implication, subsequent changes in climate. Recent studies have shown that offshore winds can be deflected or 'steered' by existing dunes so that their direction changes. This can occur to such an extent that a process known as 'flow reversal' can arise, whereby the initially offshore wind actually flows onshore at the beach. This process is important because it can cause sand to be blown from the beach and into the dunes, causing them to grow. This may be central in explaining the presence of extensive dunes on coasts where the dominant wind is offshore, but is also important in how dunes recover after periods of wave erosion during storms. Offshore winds have traditionally been excluded from sediment budget calculations for coastal dunes, but when they do transport sand onshore, this may have been an important oversight leading to significant underestimates of the volume of sand being transported by wind. This work investigates the controls on the processes and the mechanisms involved in deformation of the flow and resulting sediment transport at coastal foredunes in Northern Ireland. We use a combination of field measurement of wind and sediment transport coupled with state-of-the-art aerodynamic modelling using computational fluid dynamics (CFD) and 3-D sonic anemometry. Our working hypothesis is that offshore winds contribute substantially to foredune behaviour on leeside coasts. Preliminary results show strong reverse flow eddies in the seaward side of the foredunes during offshore wind events. These secondary flow reversals have been above velocity threshold and are transport capable. Using CFD modelling across a high resolution LIDAR surface of the dunes and beach we have isolated key areas of wind direction and velocity patterns which are important in aeolian transport budgets. Results are particularly important in post-storm recovery of foredunes damaged under wave action as offshore winds can initiate significant onshore transport, re-supplying the backbeach and foredune zones.

  7. Towards a mature offshore wind energy technology - guidelines from the opti-OWECS project

    NASA Astrophysics Data System (ADS)

    Kühn, M.; Bierbooms, W. A. A. M.; van Bussel, G. J. W.; Cockerill, T. T.; Harrison, R.; Ferguson, M. C.; Göransson, B.; Harland, L. A.; Vugts, J. H.; Wiecherink, R.

    1999-01-01

    The article reviews the main results of the recent European research project Opti-OWECS (Structural and Economic Optimisation of Bottom-Mounted Offshore Wind Energy Converters'), which has significantly improved the understanding of the requirements for a large-scale utilization of offshore wind energy. An integrated design approach was demonstrated for a 300 MW offshore wind farm at a demanding North Sea site. Several viable solutions were obtained and one was elaborated to include the design of all major components. Simultaneous structural and economic optimization took place during the different design stages. An offshore wind energy converter founded on a soft-soft monopile was tailored with respect to the distinct characteristics of dynamic wind and wave loading. The operation and maintenance behaviour of the wind farm was analysed by Monte Carlo simulations. With an optimized maintenance strategy and suitable hardware a high availability was achieved. Based upon the experience from the structural design, cost models for offshore wind farms were developed and linked to a European database of the offshore wind energy potential. This enabled the first consistent estimate of cost of offshore wind energy for entire European regions.

  8. Generation of multivariate near shore extreme wave conditions based on an extreme value copula for offshore boundary conditions.

    NASA Astrophysics Data System (ADS)

    Leyssen, Gert; Mercelis, Peter; De Schoesitter, Philippe; Blanckaert, Joris

    2013-04-01

    Near shore extreme wave conditions, used as input for numerical wave agitation simulations and for the dimensioning of coastal defense structures, need to be determined at a harbour entrance situated at the French North Sea coast. To obtain significant wave heights, the numerical wave model SWAN has been used. A multivariate approach was used to account for the joint probabilities. Considered variables are: wind velocity and direction, water level and significant offshore wave height and wave period. In a first step a univariate extreme value distribution has been determined for the main variables. By means of a technique based on the mean excess function, an appropriate member of the GPD is selected. An optimal threshold for peak over threshold selection is determined by maximum likelihood optimization. Next, the joint dependency structure for the primary random variables is modeled by an extreme value copula. Eventually the multivariate domain of variables was stratified in different classes, each of which representing a combination of variable quantiles with a joint probability, which are used for model simulation. The main variable is the wind velocity, as in the area of concern extreme wave conditions are wind driven. The analysis is repeated for 9 different wind directions. The secondary variable is water level. In shallow waters extreme waves will be directly affected by water depth. Hence the joint probability of occurrence for water level and wave height is of major importance for design of coastal defense structures. Wind velocity and water levels are only dependent for some wind directions (wind induced setup). Dependent directions are detected using a Kendall and Spearman test and appeared to be those with the longest fetch. For these directions, wind velocity and water level extreme value distributions are multivariately linked through a Gumbel Copula. These distributions are stratified into classes of which the frequency of occurrence can be calculated. For the remaining directions the univariate extreme wind velocity distribution is stratified, each class combined with 5 high water levels. The wave height at the model boundaries was taken into account by a regression with the extreme wind velocity at the offshore location. The regression line and the 95% confidence limits where combined with each class. Eventually the wave period is computed by a new regression with the significant wave height. This way 1103 synthetic events were selected and simulated with the SWAN wave model, each of which a frequency of occurrence is calculated for. Hence near shore significant wave heights are obtained with corresponding frequencies. The statistical distribution of the near shore wave heights is determined by sorting the model results in a descending order and accumulating the corresponding frequencies. This approach allows determination of conditional return periods. For example, for the imposed univariate design return periods of 100 years for significant wave height and 30 years for water level, the joint return period for a simultaneous exceedance of both conditions can be computed as 4000 years. Hence, this methodology allows for a probabilistic design of coastal defense structures.

  9. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

    DOE PAGES

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.; ...

    2017-10-01

    This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems through the comparison of simulated responses of select system designs to physical test data. Validation activities such as these lead to improvement of offshore wind modeling tools, which will enable the development of more innovative and cost-effective offshore wind designs. For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system weremore » validated using measurement data from a 1/50th-scale validation campaign performed at the Maritime Research Institute Netherlands offshore wave basin. Validation of the models was performed by comparing the calculated ultimate and fatigue loads for eight different wave-only and combined wind/wave test cases against the measured data, after calibration was performed using free-decay, wind-only, and wave-only tests. The results show a decent estimation of both the ultimate and fatigue loads for the simulated results, but with a fairly consistent underestimation in the tower and upwind mooring line loads that can be attributed to an underestimation of wave-excitation forces outside the linear wave-excitation region, and the presence of broadband frequency excitation in the experimental measurements from wind. Participant results showed varied agreement with the experimental measurements based on the modeling approach used. Modeling attributes that enabled better agreement included: the use of a dynamic mooring model; wave stretching, or some other hydrodynamic modeling approach that excites frequencies outside the linear wave region; nonlinear wave kinematics models; and unsteady aerodynamics models. Also, it was observed that a Morison-only hydrodynamic modeling approach could create excessive pitch excitation and resulting tower loads in some frequency bands.« less

  10. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.

    This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems through the comparison of simulated responses of select system designs to physical test data. Validation activities such as these lead to improvement of offshore wind modeling tools, which will enable the development of more innovative and cost-effective offshore wind designs. For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system weremore » validated using measurement data from a 1/50th-scale validation campaign performed at the Maritime Research Institute Netherlands offshore wave basin. Validation of the models was performed by comparing the calculated ultimate and fatigue loads for eight different wave-only and combined wind/wave test cases against the measured data, after calibration was performed using free-decay, wind-only, and wave-only tests. The results show a decent estimation of both the ultimate and fatigue loads for the simulated results, but with a fairly consistent underestimation in the tower and upwind mooring line loads that can be attributed to an underestimation of wave-excitation forces outside the linear wave-excitation region, and the presence of broadband frequency excitation in the experimental measurements from wind. Participant results showed varied agreement with the experimental measurements based on the modeling approach used. Modeling attributes that enabled better agreement included: the use of a dynamic mooring model; wave stretching, or some other hydrodynamic modeling approach that excites frequencies outside the linear wave region; nonlinear wave kinematics models; and unsteady aerodynamics models. Also, it was observed that a Morison-only hydrodynamic modeling approach could create excessive pitch excitation and resulting tower loads in some frequency bands.« less

  11. Eighteenth annual offshore technology conference. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    These sixty papers were given at a conference on offshore technology. Topics covered include friction effects of driving piles into sea beds of various compositions, wave forces on offshore platforms, stability, materials testing of various components such as plates, legs, wellheads, pipe joints, and protection of offshore platforms against ice and collision with icebergs.

  12. The South Carolina Coastal Erosion Study: Numerical modeling of circulation and sediment transport in Long Bay, SC

    NASA Astrophysics Data System (ADS)

    Warner, J. C.; Sullivan, C.; Voulgaris, G.; Work, P.; Haas, K.; Hanes, D. M.

    2004-12-01

    Long Bay, South Carolina, is a heavily populated coastal region that supports a large tourism industry. Sand resources are important for both recreation and coastal habitat. Earlier geological framework studies have identified a large sand deposit oblique to the shoreline, oriented clockwise in the offshore direction. This sand feature is ~ 10 km long, 2 km wide, and in excess of 3m thick, possibly providing a source for beach nourishment material. Objectives of this study are to describe the physical processes that control the transport of sediment in Long Bay, specifically off the coast of Myrtle Beach, South Carolina. Specifically we seek to 1) measure and model the oceanographic circulation in the region, 2) identify the processes that maintain the presence of the offshore sand feature, 3) quantify the control that the shoal exerts on the nearshore through changes in wave energy propagation, and 4) identify consequences of removal of the offshore sand feature. Both observational and numerical experiments are used to study the oceanographic circulation and transport of sediment. The observational study is described in an accompanying poster and consists of eight sites that measured tides, surface waves, currents, salinity, temperature, suspended sediment concentrations, and bed forms from October 2003 to April 2004. Numerical modeling for circulation and sediment transport in the study region uses a new version of ROMS (v2.1) that now includes transport of multiple grain sizes, coupling of sediment transport to wave bottom boundary layer models, and evolution of the bottom morphology. The SWAN model is used to compute wave propagation. Results indicate that currents in the study area are strongly influenced by both tidal motion and wind driven setup / setdown. The presence of the offshore sand feature alters the residual flows in the region. Sediment transport is more significant during periods of sustained strong winds that generate local waves. Wind direction plays a key role in determining the direction and magnitude of sediment transport.

  13. Rip Channels, Megacusps, and Shoreline Change: Measurements and Modeling

    DTIC Science & Technology

    2010-06-01

    and October 2007 with correlation coefficients (r) and slopes (m) in upper left corner. While the correlation of CDIP - and ADCP-predicted rms wave...about ±5º). In spite of this, CDIP -model- based predictions of offshore radiation stress, Syx,s, and sediment transport rates, qs, in the surf zone...73 Figure 12. Wave roses showing mean wave directions and frequencies at 15 m depth, offshore of Stilwell site, as estimated by CDIP

  14. Quantification of nearshore morphology based on video imaging

    USGS Publications Warehouse

    Alexander, P.S.; Holman, R.A.

    2004-01-01

    The Argus network is a series of video cameras with aerial views of beaches around the world. Intensity contrasts in time exposure images reveal areas of preferential breaking, which are closely tied to underlying bed morphology. This relationship was further investigated, including the effect of tidal elevation and wave height on the presence of wave breaking and its cross-shore position over sand bars. Computerized methods of objectively extracting shoreline and sand bar locations were developed, allowing the vast quantity of data generated by Argus to be more effectively examined. Once features were identified in the images, daily alongshore mean values were taken to create time series of shoreline and sand bar location, which were analyzed for annual cycles and cross-correlated with wave data to investigate environmental forcing and response. These data extraction techniques were applied to images from four of the Argus camera sites. A relationship between wave height and shoreline location was found in which increased wave heights resulted in more landward shoreline positions; given the short lag times over which this correlation was significant, and that the strong annual signal in wave height was not replicated in the shoreline time series, it is likely that this relationship is a result of set-up during periods of large waves. Wave height was also found to have an effect on sand bar location, whereby an increase in wave height resulted in offshore bar migration. This correlation was significant over much longer time lags than the relationship between wave height and shoreline location, and a strong annual signal was found in the location of almost all observed bars, indicating that the sand bars are migrating with changes in wave height. In the case of the site with multiple sand bars, the offshore bars responded more significantly to changes in wave height, whereas the innermost bar seemed to be shielded from incident wave energy by breaking over the other bars. A relationship was also found between a site's mean wave height and inner sand bar location; sites with the highest wave heights tended to have sand bars farther from shore than those with relatively low wave heights. ?? 2004 Elsevier B.V. All rights reserved.

  15. Impact of sea-level rise on cross-shore sediment transport on fetch-limited barrier reef island beaches under modal and cyclonic conditions.

    PubMed

    Baldock, T E; Golshani, A; Atkinson, A; Shimamoto, T; Wu, S; Callaghan, D P; Mumby, P J

    2015-08-15

    A one-dimensional wave model is combined with an analytical sediment transport model to investigate the likely influence of sea-level rise on net cross-shore sediment transport on fetch-limited barrier reef and lagoon island beaches. The modelling considers if changes in the nearshore wave height and wave period in the lagoon induced by different water levels over the reef flat are likely to lead to net offshore or onshore movement of sediment. The results indicate that the effects of SLR on net sediment movement are highly variable and controlled by the bathymetry of the reef and lagoon. A significant range of reef-lagoon bathymetry, and notably shallow and narrow reefs, appears to lead hydrodynamic conditions and beaches that are likely to be stable or even accrete under SLR. Loss of reef structural complexity, particularly on the reef flat, increases the chance of sediment transport away from beaches and offshore. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Comparison of Coastal Inundation in the Outer Banks during Three Recent Hurricanes

    NASA Astrophysics Data System (ADS)

    Liu, T.; Sheng, Y.

    2012-12-01

    Coastal inundation in the Outer Banks and Chesapeake Bay during several recent hurricanes - Isabel, Earl and Irene, in 2005, 2010 and 2011, respectively, have been successfully simulated using the storm surge modeling system, CH3D-SSMS, which includes coupled coastal and basin-scale storm surge and wave models. Hurricane Isabel, which made landfall at the Outer Banks area in 2005, generated high waves up to 20 m offshore and 2.5 m inside the Chesapeake Bay which significantly affected the peak surge, with wave induced set-up contributing up to about 20% of the peak surge. During Isabel, the observed wave height at Duck station (1 km offshore) reached over 6 meters at landfall time, while Earl and Irene generated relatively moderate waves, with peak wave height around 4 meters at that station but a much lower wave height before landfall. Simulations show that during Earl and Irene, wave induced set-up did not contribute as much as that during Isabel. At Duck Pier, wave effects accounted for ~36 cm or 20% of the peak surge of 1.71 m during Isabel, while waves contributed ~10 cm (10%) toward the peak surge of 1 m during Irene and even less during Earl. The maximum surge during Irene was largely caused by the strong wind, as confirmed by the model using H* wind. Inundation maps have been generated and compared based on the simulations of Isabel, Earl and Irene.

  17. Colonisation of fish and crabs of wave energy foundations and the effects of manufactured holes - a field experiment.

    PubMed

    Langhamer, Olivia; Wilhelmsson, Dan

    2009-10-01

    Several Western European countries are planning for a significant development of offshore renewable energy along the European Atlantic Ocean coast, including many thousands of wave energy devices and wind turbines. There is an increasing interest in articulating the added values of the creation of artificial hard bottom habitats through the construction of offshore renewable energy devices, for the benefit of fisheries management and conservation. The Lysekil Project is a test park for wave power located about 100 km north of Gothenburg at the Swedish west coast. A wave energy device consists of a linear wave power generator attached to a foundation on the seabed, and connected by a wire to a buoy at the surface. Our field experiment examined the function of wave energy foundations as artificial reefs. In addition, potentials for enhancing the abundance of associated fish and crustaceans through manufactured holes of the foundations were also investigated. Assemblages of mobile organisms were examined by visual censuses in July and August 2007, 3 months after deployment of the foundations. Results generally show low densities of mobile organisms, but a significantly higher abundance of fish and crabs on the foundations compared to surrounding soft bottoms. Further, while fish numbers were not influenced by increased habitat complexity (holes), it had a significantly positive effect on quantities of edible crab (Cancer pagurus), on average leading to an almost five-fold increase in densities of this species. Densities of spiny starfish (Marthasterias glacialis) were negatively affected by the presence of holes, potentially due to increased predator abundance (e.g. C. pagurus). These results suggest a species-specific response to enhanced habitat complexity.

  18. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  19. Sensitivity of a numerical wave model on wind re-analysis datasets

    NASA Astrophysics Data System (ADS)

    Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel

    2017-03-01

    Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.

  20. Coastal loading and transport of Escherichia coli at an embayed beach in Lake Michigan

    USGS Publications Warehouse

    Ge, Z.; Nevers, M.B.; Schwab, D.J.; Whitman, R.L.

    2010-01-01

    A Chicago beach in southwest Lake Michigan was revisited to determine the influence of nearshore hydrodynamic effects on the variability of Escherichia coli (E. coli) concentration in both knee-deep and offshore waters. Explanatory variables that could be used for identifying potential bacteria loading mechanisms, such as bed shear stress due to a combined wave-current boundary layer and wave runup on the beach surface, were derived from an existing wave and current database. The derived hydrodynamic variables, along with the actual observed E. coli concentrations in the submerged and foreshore sands, were expected to reveal bacteria loading through nearshore sediment resuspension and swash on the beach surface, respectively. Based on the observation that onshore waves tend to result in a more active hydrodynamic system at this embayed beach, multiple linear regression analysis of onshore-wave cases further indicated the significance of sediment resuspension and the interaction of swash with gull-droppings in explaining the variability of E. coli concentration in the knee-deep water. For cases with longshore currents, numerical simulations using the Princeton Ocean Model revealed current circulation patterns inside the embayment, which can effectively entrain bacteria from the swash zone into the central area of the embayed beach water and eventually release them out of the embayment. The embayed circulation patterns are consistent with the statistical results that identified that 1) the submerged sediment was an additional net source of E. coli to the offshore water and 2) variability of E. coli concentration in the knee-deep water contributed adversely to that in the offshore water for longshore-current cases. The embayed beach setting and the statistical and numerical methods used in the present study have wide applicability for analyzing recreational water quality at similar marine and freshwater sites. ?? 2010 American Chemical Society.

  1. Investigating Storm-Induced Total Water Levels on Complex Barred Beaches

    NASA Astrophysics Data System (ADS)

    Cohn, N.; Ruggiero, P.; Walstra, D.

    2013-12-01

    Water levels in coastal environments are not static, but rather vary from a range of factors including mean sea level, tides, storm surge, and wave runup. Cumulatively these superimposed factors determine the total water level (TWL), the extent of which has major implications for coastal erosion and inundation during periods of high energy. Storm-induced, super-elevated water levels pose a threat to low lying coastal regions, as clearly demonstrated by recent events such as Hurricanes Sandy and Katrina. For this reason, the ability to accurately predict the TWL is crucial for both emergency managers and coastal planners. While some components of TWL are well understood (e.g., tides) there is still significant uncertainty in predicting runup, a process that can be a major contributor to instantaneous TWLs. Traditionally, empirical relationships derived from observational field data have been used to estimate runup, including wave setup and both incident and infragravity swash (Stockdon et al., 2006). While these formulations have shown skill in predicting the runup extent on natural beaches, these equations consider only the most basic contributing factors - namely the mean foreshore beach slope, the offshore wave height, and offshore wave period. Not included in these empirical estimates is the role of nearshore morphology on TWLs. However, it has long been recognized that nearshore sandbars act as natural barriers to coastal erosion during storm events by dissipating wave energy far from the beach face. Nonetheless, the influence of nearshore morphology on inner surf zone processes, including wave runup, is poorly understood. Recent pioneering studies (eg., Soldini et al., 2013 and Stephens et al., 2011) have explored the role of simple nearshore features (single Gaussian bars) on swash processes. Many locations in the world, however, are characterized by more complex morphologies such as multiple barred systems. Further, in many such places, including Columbia River Littoral Cell (USA), Duck, NC (USA), Hasaki (Japan), and the Netherlands, a net offshore bar migration (NOM) cycle has been observed whereby bars migrate seaward across the surf zone and decay offshore on interannual cycles. Depending on the stage of the cycle, the number and configuration of the bars may differ widely. For example in the Columbia River Littoral Cell there are typically 2 to 4 nearshore bars. In 1999, the outermost bar crest was located in a water depth of 6.5 m (relative to MLLW) while in 2009 it was located only in 3 m of water. Such large differences in nearshore morphology clearly influence wave breaking patterns and have the potential for influencing the corresponding wave runup as well. Here we apply a numerical, short-wave averaged yet long-wave resolving, non-linear hydrodynamic model (XBeach) to investigate the role that real world (non-synthetic), complex morphologies exert on TWLs. Model simulations under moderate to extreme wave forcing conditions are being used to develop relationships between offshore wave conditions, bar configuration, and runup extent. Additionally, we are exploring how, under the same wave conditions, a particular location may be more vulnerable to flooding simply based on the stage of the NOM cycle. Comparisons with the Stockdon et al. (2006) runup equation will be made to assess traditional empirical approaches relative to model predictions.

  2. Quasi-Rayleigh waves in butt-welded thick steel plate

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin

    2015-03-01

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  3. Storm wave buoy equipped with micromechanical inertial unit: Results of development and testing

    NASA Astrophysics Data System (ADS)

    Gryazin, D. G.; Staroselcev, L. P.; Belova, O. O.; Gleb, K. A.

    2017-07-01

    The article describes the results of developing a wave buoy to measure the statistical characteristics of waves and the characteristics of directional spectra of three-dimensional waves. The device is designed for long-term measurements lasting up to a season, which can help solve problems in forecasting waves and preventing emergencies from wave impact on offshore platforms, hydraulic structures, and other marine facilities. The measuring unit involves triads of micromechanical gyroscopes, accelerometers, and a three-component magnetometer. A description of the device, results of laboratory research of its characteristics, and bench and full-scale tests are offered. It is noted that to assess the performance characteristics, comparative tests of the Storm wave buoy were conducted with a standard string wave probe installed on an offshore platform. It is shown that the characteristics and capabilities of the wave buoy make it possible to oust foreign devices from the domestic market.

  4. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayati, I.; Jonkman, J.; Robertson, A.

    2014-07-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at themore » MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.« less

  5. Effects of sea water on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes

    NASA Astrophysics Data System (ADS)

    Todoriki, Masaru; Furumura, Takashi; Maeda, Takuto

    2017-01-01

    We investigated the effects of sea water on the propagation of seismic waves using a 3-D finite-difference-method simulation of seismic wave propagation following offshore earthquakes. When using a 1-D layered structure, the simulation results showed strong S- to P-wave conversion at the sea bottom; accordingly, S-wave energy was dramatically decreased by the sea water layer. This sea water de-amplification effect had strong frequency dependence, therefore resembling a low-pass filter in which the cut-off frequency and damping coefficients were defined by the thickness of the sea water layer. The sea water also acted to elongate the duration of Rayleigh wave packet. The importance of the sea water layer in modelling offshore earthquakes was further demonstrated by a simulation using a realistic 3-D velocity structure model with and without sea water for a shallow (h = 14 km) outer-rise Nankai Trough event, the 2004 SE Off Kii Peninsula earthquake (Mw = 7.2). Synthetic seismograms generated by the model when sea water was included were in accordance with observed seismograms for long-term longer period motions, particularly those in the shape of Rayleigh waves.

  6. On the Use of Coupled Wind, Wave, and Current Fields in the Simulation of Loads on Bottom-Supported Offshore Wind Turbines during Hurricanes: March 2012 - September 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eungsoo; Manuel, Lance; Curcic, Milan

    In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of themore » changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces, and soil-structure interaction effects. A detailed framework is presented that explains how coupled inputs can be included in turbine loads studies during a hurricane. This framework can aid in future efforts aimed at developing offshore wind turbine design criteria and load cases related to hurricanes.« less

  7. Nearshore bars and the break-point hypothesis

    USGS Publications Warehouse

    Sallenger, A.H.; Howd, P.A.

    1989-01-01

    The set of hypotheses calling for bar formation at the break point was tested with field data. During two different experiments, waves were measured across the surf zone coincident with the development of a nearshore bar. We use a criterion, based on the wave height to depth ratio, to determine the offshore limit of the inner surf zone. During the first experiment, the bar became better developed and migrated offshore while remaining well within the inner surf zone. During the second experiment, the surf zone was narrower and we cannot rule out the possibility of break point processes contributing to bar development. We conclude that bars are not necessarily coupled with the break point and can become better developed and migrate offshore while being in the inner surf zone landward from initial wave breaking in the outer surf zone. ?? 1989.

  8. Lump waves and breather waves for a (3+1)-dimensional generalized Kadomtsev-Petviashvili Benjamin-Bona-Mahony equation for an offshore structure

    NASA Astrophysics Data System (ADS)

    Yin, Ying; Tian, Bo; Wu, Xiao-Yu; Yin, Hui-Min; Zhang, Chen-Rong

    2018-04-01

    In this paper, we investigate a (3+1)-dimensional generalized Kadomtsev-Petviashvili Benjamin-Bona-Mahony equation, which describes the fluid flow in the case of an offshore structure. By virtue of the Hirota method and symbolic computation, bilinear forms, the lump-wave and breather-wave solutions are derived. Propagation characteristics and interaction of lump waves and breather waves are graphically discussed. Amplitudes and locations of the lump waves, amplitudes and periods of the breather waves all vary with the wavelengths in the three spatial directions, ratio of the wave amplitude to the depth of water, or product of the depth of water and the relative wavelength along the main direction of propagation. Of the interactions between the lump waves and solitons, there exist two different cases: (i) the energy is transferred from the lump wave to the soliton; (ii) the energy is transferred from the soliton to the lump wave.

  9. Preliminary Examination of Pulse Shapes From GLAS Ocean Returns

    NASA Astrophysics Data System (ADS)

    Swift, T. P.; Minster, B.

    2003-12-01

    We have examined GLAS data collected over the Pacific ocean during the commission phase of the ICESat mission, in an area where sea state is well documented. The data used for this preliminary analysis were acquired during two passes along track 95, on March 18 and 26 of 2003, along the stretch offshore southern California. These dates were chosen for their lack of cloud cover; large (4.0 m) and small (0.7 m) significant wave heights, respectively; and the presence of waves emanating from single distant Pacific storms. Cloud cover may be investigated using MODIS images (http://acdisx.gsfc.nasa.gov/data/dataset/MODIS/), while models of significant wave heights and wave vectors for offshore California are archived by the Coastal Data Information Program (http://cdip.ucsd.edu/cdip_htmls/models.shtml). We find that the shape of deep-ocean GLAS pulse returns is diagnostic of the state of the ocean surface. A calm surface produces near-Gaussian, single-peaked shot returns. In contrast, a rough surface produces blurred shot returns which often feature multiple peaks; these peaks are typically separated by total path lengths on the order of one meter. Gaussian curves fit to rough-water returns are therefore less reliable and lead to greater measurement error; outliers in the ocean surface elevation product are mostly the result of poorly fit low-energy shot returns. Additionally, beat patterns and aliasing artifacts may arise from the sampling of deep-ocean wave trains by GLAS footprints separated by 140m. The apparent wavelength of such patterns depends not only on the wave frequency, but also on the angle between the ICESat ground track and the azimuth of the wave crests. We present a preliminary analysis of such patterns which appears to be consistent with a simple geometrical model.

  10. Natural frequency and vibration analysis of jacket type foundation for offshore wind power

    NASA Astrophysics Data System (ADS)

    Hung, Y.-C.; Chang, Y.-Y.; Chen, S.-Y.

    2017-12-01

    There are various types of foundation structure for offshore wind power, engineers may assess the condition of ocean at wind farm, and arrange the transportation, installation of each structure members, furthermore, considering the ability of manufacture steel structure as well, then make an optimum design. To design jacket offshore structure, unlike onshore cases, offshore structure also need to estimate the wave excitation effect. The aim of this paper is to study the difference of natural frequency between different kinds of structural stiffness and discuss the effect of different setting of boundary condition during analysis, besides, compare this value with the natural frequency of sea wave, in order to avoid the resonance effect. In this paper, the finite element analysis software ABAQUS is used to model and analyze the natural vibration behavior of the jacket structure.

  11. Development of jacket platform tsunami risk rating system in waters offshore North Borneo

    NASA Astrophysics Data System (ADS)

    Lee, H. E.; Liew, M. S.; Mardi, N. H.; Na, K. L.; Toloue, Iraj; Wong, S. K.

    2016-09-01

    This work details the simulation of tsunami waves generated by seaquakes in the Manila Trench and their effect on fixed oil and gas jacket platforms in waters offshore North Borneo. For this study, a four-leg living quarter jacket platform located in a water depth of 63m is modelled in SACS v5.3. Malaysia has traditionally been perceived to be safe from the hazards of earthquakes and tsunamis. Local design practices tend to neglect tsunami waves and include no such provisions. In 2004, a 9.3 M w seaquake occurred off the northwest coast of Aceh, which generated tsunami waves that caused destruction in Malaysia totalling US 25 million and 68 deaths. This event prompted an awareness of the need to study the reliability of fixed offshore platforms scattered throughout Malaysian waters. In this paper, we present a review of research on the seismicity of the Manila Trench, which is perceived to be high risk for Southeast Asia. From the tsunami numerical model TUNA-M2, we extract computer-simulated tsunami waves at prescribed grid points in the vicinity of the platforms in the region. Using wave heights as input, we simulate the tsunami using SACS v5.3 structural analysis software of offshore platforms, which is widely accepted by the industry. We employ the nonlinear solitary wave theory in our tsunami loading calculations for the platforms, and formulate a platform-specific risk quantification system. We then perform an intensive structural sensitivity analysis and derive a corresponding platform-specific risk rating model.

  12. Modelling the 2013 Typhoon Haiyan storm surge: Effect of waves, offshore winds, tide phase, and translation speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.

    2015-12-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  13. Modelling the 2013 Typhoon Haiyan Storm Surge: Effect of Waves, Offshore Winds, Tide Phase, and Translation Speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.; Villanoy, C.; Cabrera, O.

    2016-02-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  14. Rip currents and alongshore flows in single channels dredged in the surf zone

    NASA Astrophysics Data System (ADS)

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-05-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  15. Rip currents and alongshore flows in single channels dredged in the surf zone

    USGS Publications Warehouse

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  16. Challenges of Modeling Swell Propagation and Sea Waves over a Complex Bathymetry: Implication for Coastal Flood Mapping in Sitka, AK

    NASA Astrophysics Data System (ADS)

    Marjani, A.; Allahdadi, M.

    2016-02-01

    Sitka, AK is included in Region X of FEMA Flood Hazard Mapping. The scoped shoreline is located east of the Sitka Sound connecting Sitka to the Pacific waters through a semi-narrow continental shelf. Wave hindcast is a fundamental component of Coastal Flood Risk Study Process. SWAN model on an unstructured mesh was used to determine the characteristics of waves along the Sitka shoreline. This area is substantially affected by a combination of both offshore waves (swells) and waves generated by severe local winds. The bathymetry inside the Sitka Sound and the nearshore areas along the Sitka coastline is very complex and includes many abrupt deepening as a result of geological characteristics or large tidal currents. The present study provides a brief review of the steps and challenges for a reliable wave modeling over this area. The requirement for running the model in non-stationary mode in combination with the mentioned complexities initiated instabilities regarding intense refractions that cause unrealistic large values for the peak period and the wave height. Refining the computational mesh over the areas with great depth gradients as well as increasing the spectral grid resolution and decreasing time steps did not satisfactorily resolve the above issue. Choosing an appropriate CFL Limiters on Spectral Propagation Velocities in SWAN setup (which is not considered in the default settings) could properly treat this instability (See attached Figure). The model offshore boundary was prescribed using wave data obtained from the WIS buoys, while wind forcing was resulted as a combination of Sitka airport and offshore Buoy wind data. Model performance in transformation of swells from the open boundary was evaluated using two more offshore WIS buoy data. A 1D model transferred the extracted wave data from SWAN to the surfzone along each selected transect for each storm event. The the final production was runup with different recurrence periods along the shoreline.

  17. Climate-driven variations in thermal forcing across a nearshore reef system during a marine heat wave and its potential impact on coral calcification

    NASA Astrophysics Data System (ADS)

    Falter, J.; Zhang, Z.; Lowe, R.; Foster, T.; McCulloch, M. T.

    2016-02-01

    We examined the oceanic and atmospheric forces driving seasonal and spatial variability in water temperature across backreef and lagoonal habitats at Coral Bay at Ningaloo Reef, Western Australia before, during, and after a historically unprecedented marine heat wave and resulting mass bleaching event in 2010-2011. Local deviations in the mean daily temperature of nearshore reef waters from offshore values were a linear function of the combined effect of net atmospheric heating and offshore wave height and period . While intra-annual variation in local heat exchange was driven mainly by seasonal changes in short-wave radiation; intra-annual variation in local cooling was driven mostly by changes in relative humidity (r2 = 0.60) and wind speed (r2 = 0.31) which exhibited no apparent seasonality. We demonstrate good agreement between nearshore reef temperatures modeled from offshore sea surface temperatures (SST), offshore wave forcing, and local atmospheric heat fluxes with observed temperatures using a simple linear model (r2 = 0.31 to 0.69, root-mean-square error = 0.4°C to 0.9°C). Using these modeled nearshore reef temperature records, we show that during the heat wave local thermal stresses across the reef reached as high as 18-34 °C-weeks and were being both intensified and accelerated by regional climate forcing when compared with offshore waters (12.6 °C-weeks max). Measurements of coral calcification made in Coral Bay following the bleaching event appear to lack any distinct seasonality; possibly due to the long-term effects of acute thermal stress. However, similarly minimal seasonality in calcification rates had also been observed in an Acropora-dominated community at Ningaloo years before the heat wave as well as more recently in coral from regions in WA that had avoided mass bleaching. These observations, in conjunction with observations that most of the bleached communities within Coral Bay had recovered their color within 3-6 months of the bleaching event, suggest that how reef building coral respond to a severe thermal stress event can be somewhat nuanced depending on the local and regional setting.

  18. Ship Shoal as a prospective borrow site for barrier island restoration, coastal south-central Louisiana, Usa: Numerical wave modeling and field measurements of hydrodynamics and sediment transport

    USGS Publications Warehouse

    Stone, G.W.; Pepper, D.A.; Xu, Jie; Zhang, X.

    2004-01-01

    Ship Shoal, a transgressive sand body located at the 10 m isobath off south-central Louisiana, is deemed a potential sand source for restoration along the rapidly eroding Isles Dernieres barrier chain and possibly other sites in Louisiana. Through numerical wave modeling we evaluate the potential response of mining Ship Shoal on the wave field. During severe and strong storms, waves break seaward of the western flank of Ship Shoal. Therefore, removal of Ship Shoal (approximately 1.1 billion m3) causes a maximum increase of the significant wave height by 90%-100% and 40%-50% over the shoal and directly adjacent to the lee of the complex for two strong storm scenarios. During weak storms and fair weather conditions, waves do not break over Ship Shoal. The degree of increase in significant wave height due to shoal removal is considerably smaller, only 10%-20% on the west part of the shoal. Within the context of increasing nearshore wave energy levels, removal of the shoal is not significant enough to cause increased erosion along the Isles Dernieres. Wave approach direction exerts significant control on the wave climate leeward of Ship Shoal for stronger storms, but not weak storms or fairweather. Instrumentation deployed at the shoal allowed comparison of measured wave heights with numerically derived wave heights using STWAVE. Correlation coefficients are high in virtually all comparisons indicating the capability of the model to simulate wave behavior satisfactorily at the shoal. Directional waves, currents and sediment transport were measured during winter storms associated with frontal passages using three bottom-mounted arrays deployed on the seaward and landward sides of Ship Shoal (November, 1998-January, 1999). Episodic increases in wave height, mean and oscillatory current speed, shear velocity, and sediment transport rates, associated with recurrent cold front passages, were measured. Dissipation mechanisms included both breaking and bottom friction due to variable depths across the shoal crest and variable wave amplitudes during storms and fair-weather. Arctic surge fronts were associated with southerly storm waves, and southwesterly to westerly currents and sediment transport. Migrating cyclonic fronts generated northerly swell that transformed into southerly sea, and currents and sediment transport that were southeasterly overall. Waves were 36% higher and 9% longer on the seaward side of the shoal, whereas mean currents were 10% stronger landward, where they were directed onshore, in contrast to the offshore site, where seaward currents predominated. Sediment transport initiated by cold fronts was generally directed southeasterly to southwesterly at the offshore site, and southerly to westerly at the nearshore site. The data suggest that both cold fronts and the shoal, exert significant influences on regional hydrodynamics and sediment transport.

  19. Hydrodynamics of a bathymetrically complex fringing coral reef embayment: Wave climate, in situ observations, and wave prediction

    USGS Publications Warehouse

    Hoeke, R.; Storlazzi, C.; Ridd, P.

    2011-01-01

    This paper examines the relationship between offshore wave climate and nearshore waves and currents at Hanalei Bay, Hawaii, an exposed bay fringed with coral reefs. Analysis of both offshore in situ data and numerical hindcasts identify the predominance of two wave conditions: a mode associated with local trade winds and an episodic pattern associated with distant source long-period swells. Analysis of 10 months of in situ data within the bay show that current velocities are up to an order of magnitude greater during long-period swell episodes than during trade wind conditions; overall circulation patterns are also fundamentally different. The current velocities are highly correlated with incident wave heights during the swell episodes, while they are not during the modal trade wind conditions. A phase-averaged wave model was implemented with the dual purpose of evaluating application to bathymetrically complex fringing reefs and to examine the propagation of waves into the nearshore in an effort to better explain the large difference in observed circulation during the two offshore wave conditions. The prediction quality of this model was poorer for the episodic condition than for the lower-energy mode, however, it illustrated how longer-period swells are preferentially refracted into the bay and make available far more nearshore wave energy to drive currents compared to waves during modal conditions. The highly episodic circulation, the nature of which is dependent on complex refraction patterns of episodic, long-period swell has implications for flushing and sediment dynamics for incised fringing reef-lined bays that characterize many high islands at low latitudes around the world.

  20. A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters

    NASA Astrophysics Data System (ADS)

    Ren, Luchuan

    2015-04-01

    A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there exist differences in importance order in generating uncertainties of the maximum tsunami wave heights for same group parameters at different specific sites in offshore area. These results are helpful to deeply understand the relationship between the tsunami wave heights and the seismic tsunami source parameters. Keywords: Global sensitivity analysis; Tsunami wave height; Potential seismic tsunami source parameter; Morris method; Extended FAST method

  1. Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories

    NASA Astrophysics Data System (ADS)

    Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan

    2017-10-01

    Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.

  2. Breaking phase focused wave group loads on offshore wind turbine monopiles

    NASA Astrophysics Data System (ADS)

    Ghadirian, A.; Bredmose, H.; Dixen, M.

    2016-09-01

    The current method for calculating extreme wave loads on offshore wind turbine structures is based on engineering models for non-breaking regular waves. The present article has the aim of validating previously developed models at DTU, namely the OceanWave3D potential flow wave model and a coupled OceanWave3D-OpenFOAM solver, against measurements of focused wave group impacts on a monopile. The focused 2D and 3D wave groups are reproduced and the free surface elevation and the in-line forces are compared to the experimental results. In addition, the pressure distribution on the monopile is examined at the time of maximum force and discussed in terms of shape and magnitude. Relative pressure time series are also compared between the simulations and experiments and detailed pressure fields for a 2D and 3D impact are discussed in terms of impact type. In general a good match for free surface elevation, in-line force and wave-induced pressures is found.

  3. A Portable Airborne Scanning Lidar System for Ocean and Coastal Applications

    DTIC Science & Technology

    2009-06-26

    available online at http://www.ndbc.noaa.gov/) and Hs by the Coastal Data Information Program ( CDIP ) Station 100 (available online at http...storm events (Fig. 9). Significant wave height (Hs) for Novem- ber and December 2008, measured by CDIP station 043, located 2.7 km offshore of the

  4. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE PAGES

    Browning, J. R.; Jonkman, J.; Robertson, A.; ...

    2014-12-16

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50 th scalemore » in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  5. Aeroelastic impact of above-rated wave-induced structural motions on the near-wake stability of a floating offshore wind turbine rotor

    NASA Astrophysics Data System (ADS)

    Rodriguez, Steven; Jaworski, Justin

    2017-11-01

    The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.

  6. Southern California Beaches during the El Niño Winter of 2009/2010

    NASA Astrophysics Data System (ADS)

    Doria, A.; Guza, R. T.; Yates, M. L.; O'Reilly, W.

    2010-12-01

    Storms during the El Niño winter 2009/2010 produced prolonged periods of energetic waves, and severely eroded southern California beaches. Sand elevations were measured at several beaches over alongshore spans of a few km, for up to 5 years, on cross-shore transects extending from the back beach to about 8 meters depth, and spaced every 100 meters alongshore. Wave conditions were estimated using the CDIP network of directional wave buoys. At the Torrey Pines Outer Buoy, the median significant wave height for January 2010 was the largest for any month in the past 10 year record. Anomalous changes in beach sand level, characterized as the excess volume displaced relative to average-winter profiles, were extreme in both the amount of shoreline erosion and the amount of offshore accretion. Anomalous shoreline erosion volumes were almost twice as large as the second-most severe winter, with vertical deviations as large as -2.3m. Anomalous offshore accretion, in depths between 4-8m and as large as 1.5m vertical, was also exceptional. Beach widths, based on the cross-shore location of the Mean Sea Level (MSL) contour, were narrower than measured in previous winters. The accuracy of shoreline (MSL) location, predicted using an existing shoreline change equilibrium model driven with the estimated waves, will be assessed. Beach recovery, based on ongoing surveys, will also be discussed.

  7. Comparison of numerical hindcasted severe waves with Doppler radar measurements in the North Sea

    NASA Astrophysics Data System (ADS)

    Ponce de León, Sonia; Bettencourt, João H.; Dias, Frederic

    2017-01-01

    Severe sea states in the North Sea present a challenge to wave forecasting systems and a threat to offshore installations such as oil and gas platforms and offshore wind farms. Here, we study the ability of a third-generation spectral wave model to reproduce winter sea states in the North Sea. Measured and modeled time series of integral wave parameters and directional wave spectra are compared for a 12-day period in the winter of 2013-2014 when successive severe storms moved across the North Atlantic and the North Sea. Records were obtained from a Doppler radar and wave buoys. The hindcast was performed with the WAVEWATCH III model (Tolman 2014) with high spectral resolution both in frequency and direction. A good general agreement was obtained for integrated parameters, but discrepancies were found to occur in spectral shapes.

  8. Tsunami Waves Joint Inversion Using Tsunami Inundation, Tsunami Deposits Distribution and Marine-Terrestrial Sediment Signal in Tsunami Deposit

    NASA Astrophysics Data System (ADS)

    Tang, H.; WANG, J.

    2017-12-01

    Population living close to coastlines is increasing, which creates higher risks due to coastal hazards, such as the tsunami. However, the generation of a tsunami is not fully understood yet, especially for paleo-tsunami. Tsunami deposits are one of the concrete evidence in the geological record which we can apply for studying paleo-tsunami. The understanding of tsunami deposits has significantly improved over the last decades. There are many inversion models (e.g. TsuSedMod, TSUFLIND, and TSUFLIND-EnKF) to study the overland-flow characteristics based on tsunami deposits. However, none of them tries to reconstruct offshore tsunami wave characteristics (wave form, wave height, and length) based on tsunami deposits. Here we present a state-of-the-art inverse approach to reconstruct offshore tsunami wave based on the tsunami inundation data, the spatial distribution of tsunami deposits and Marine-terrestrial sediment signal in the tsunami deposits. Ensemble Kalman Filter (EnKF) Method is used for assimilating both sediment transport simulations and the field observation data. While more computationally expensive, the EnKF approach potentially provides more accurate reconstructions for tsunami waveform. In addition to the improvement of inversion results, the ensemble-based method can also quantify the uncertainties of the results. Meanwhile, joint inversion improves the resolution of tsunami waves compared with inversions using any single data type. The method will be tested by field survey data and gauge data from the 2011 Tohoku tsunami on Sendai plain area.

  9. Predicting the Mobility and Burial of Underwater Unexploded Ordnance (UXO) using the UXO Mobility Model. Field Test Report (PMRF Barking Sands, Kauai, Hawaii)

    DTIC Science & Technology

    2008-05-20

    of the demonstration; yellow stars indicate the inshore and offshore fields. ................. 39 Figure 19. Wave height (upper) and current...demonstration; yellow stars indicate the inshore and offshore fields. 40 Figure 19. Wave height (upper) and current magnitude (lower) measured...State Park to Barking Sands, are composed of material eroded from the Kokee Highlands, remnant of a shield volcano that is dissected on its western side

  10. Quasi-Rayleigh waves in butt-welded thick steel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamas, Tuncay, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Giurgiutiu, Victor, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Lin, Bin, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu

    2015-03-31

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as wellmore » as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.« less

  11. High-Resolution Measurement of Beach Morphological Response to Hurricane-Induced Wave Dynamics

    NASA Astrophysics Data System (ADS)

    Starek, M.; Slatton, K. C.; Adams, P.

    2005-12-01

    During the Atlantic hurricane season of 2004, the Florida Pan Handle, Gulf Coast region, was impacted directly by three major hurricanes within approximately a one-month time period. The short temporal span between impacts coupled with the sudden increase in wave energy delivered to the coast resulted in drastic changes to the coastal morphology. The purpose of this study was to investigate the direct effects of deep-water wave climate and energy setups induced by the hurricanes and relate those processes to the observed change in shoreline morphology. The availability of research-grade Airborne Laser Swath Mapping (ALSM) altimetry data, often referred to as Light Detection and Ranging (LiDAR) data, enabled sub-meter spatial sampling of the coastal topography. The ALSM data were acquired by the University of Florida's Geosensing Engineering and Mapping (GEM) Center. Offshore wave measurements were obtained from the NOAA NDBC buoy network for the Gulf Coast region. The ALSM data acquired shortly before and after the three major hurricane landfalls near the Phillips Inlet barrier island region of Bay County, Florida, were used to calculate changes in the shoreline position and identify regions of erosion and deposition. Time series data of offshore wave height, period, and direction were transformed, through shoaling and refraction calculations, to nearshore wave conditions which were correlated to observed changes in beach morphology. Hurricane wave conditions drove severe shoreline retreat on the west-side of the inlet (~15+ meters) but affected the east-side shoreline minimally. The eastern backside of the inlet, however, witnessed a significant volume of washover sediment.

  12. Wave and setup dynamics on steeply-sloping reefs with large bottom roughness

    NASA Astrophysics Data System (ADS)

    Buckley, M. L.; Hansen, J.; Lowe, R.

    2016-12-01

    High-resolution observations from a wave flume were used to investigate the dynamics of wave setup over a steeply-sloping fringing reef profile with the effect of bottom roughness modeled using roughness elements scaled to mimic a coral reef. Results with roughness were compared with smooth bottom runs across sixteen offshore wave and still water level conditions. The time-averaged and depth-integrated force balance was evaluated from observations collected at seventeen locations across the flume, which was found to consist of cross-shore pressure and radiation stress gradients whose sum was balanced by mean quadratic bottom stresses. We found that when radiation stress gradients were calculated from observations of the radiation stress derived from linear wave theory, both wave setdown and setup were under predicted for the majority of wave and water level conditions tested. Inaccuracies in the predicted setdown and setup were improved by including a wave roller model, which provides a correction to the kinetic energy predicted by linear wave theory for breaking waves and produces a spatial delay in the wave forcing that was consistent with the observations. The introduction of roughness had two primary effects. First, the amount of wave energy dissipated during wave breaking was reduced due to frictional wave dissipation that occurred on the reef slope offshore of the breakpoint. Second, offshore directed mean bottom stresses were generated by the interaction of the combined wave-current velocity field with the roughness elements. These two mechanisms acted counter to one another. As a result, setup on the reef flat was comparable (7% mean difference) between corresponding rough and smooth runs. These findings are used to assess prior results from numerical modelling studies of reefs, and also to discuss the broader implications for how steep slopes and large roughness influences setup dynamics for general nearshore systems.

  13. Diurnal cycle and its modulation by Madden-Julian oscillation observed around western coast of Sumatra Island: preconditioning for offshore convection by gravity waves

    NASA Astrophysics Data System (ADS)

    Yokoi, S.; Mori, S.; Katsumata, M.; Yasunaga, K.; Yoneyama, K.

    2016-12-01

    In November-December 2015, we conducted a field campaign, named Pre-YMC (Years of the Maritime Continent), in western coastal region of Sumatra Island, during which we performed weather radar observation, 3-hourly radiosonde observation, and so forth, at Research Vessel (R/V) Mirai deployed 50 km off the coast and at a coastal city, Bengkulu. It is well known that diurnal cycle of precipitation in this region is evident and characterized by an afternoon maximum in land area and offshore migration of convective systems during nighttime to reach several hundred kilometers off the coast. The purpose of this study is to examine mechanisms responsible for the offshore migration through analysis of observational data of the field campaign. In the second half of the campaign period, convectively active phase of Madden-Julian oscillation passed over this region. The above-mentioned diurnal cycle was observed only before the arrival of the active phase, while it became obscured after that. These results are consistent with previous studies. For the period when the diurnal cycle was evident, heavy precipitation over the R/V Mirai was observed at around 2200 local time (LT). Composite analyses of the radiosonde data over the R/V Mirai reveal that, before 2200 LT, temperature in lower free troposphere and upper boundary layer decreased faster than that in lower boundary layer. Comparison of composite tendencies between potential temperature and mixing ratio suggests that this temperature decrease was likely due to adiabatic cooling caused by ascent motion. Indirect evidence for the low-level ascent is also given by comparison of horizontal wind profile between the R/V Mirai and Bengkulu. We argue that this ascent was due to gravity waves which had propagated from the direction of the land, and probably provided favorable condition for convection. These results suggest that the gravity waves played significant roles in the diurnal offshore migration in this region.

  14. Guided waves in a monopile of an offshore wind turbine.

    PubMed

    Zernov, V; Fradkin, L; Mudge, P

    2011-01-01

    We study the guided waves in a structure which consists of two overlapping steel plates, with the overlapping section grouted. This geometry is often encountered in support structures of large industrial offshore constructions, such as wind turbine monopiles. It has been recognized for some time that the guided wave technology offers distinctive advantages for the ultrasonic inspections and health monitoring of structures of this extent. It is demonstrated that there exist advantageous operational regimes of ultrasonic transducers guaranteeing a good inspection range, even when the structures are totally submerged in water, which is a consideration when the wind turbines are deployed off shore. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. The Role of 2D Circulation in Sand Bar Migration

    NASA Astrophysics Data System (ADS)

    Splinter, K. D.; Holman, R. A.; Plant, N. G.; Holland, K. T.

    2006-12-01

    Models of bar dynamics typically involve moments of the cross-shore flow, with offshore movement associated with the strong offshore directed undertow and onshore migration related to wave asymmetry and skewness [Gallagher, et al., 1998]. Based on these hypotheses, models and laboratory studies have used the alongshore-mean bar position and alongshore-uniform wave conditions (a 1DH approach) to study bar response to varying wave conditions. Commonly, cases of offshore migration were reproduced with reasonable accuracy, but predictions of onshore migration were less successful. However, examination of time-exposure images of waves show that during periods of offshore migration, bars tend to be alongshore uniform and move rapidly offshore, but during onshore migration, sand bars are rarely straight, instead becoming very sinuous, violating the 1DH approach. We hypothesize that under milder wave conditions, the 2DH circulation associated with this alongshore-variable morphology is, in fact, largely responsible for increased onshore net sand transport and the resulting onshore bar movement. We extend the work of Plant et al. [in review] that relates bar position, sinuosity, and wave forcing within a dynamical feedback model. The model consists of coupled differential equations that govern the rates of change of cross-shore position and horizontal sinuosity as a function of the current cross-shore position and sinuosity and a proxy for wave forcing. Using a short data set from Duck, NC, they solve for the unknown coupling coefficients by doing a least-squares fit. They find that the coefficients for the self-interaction terms have a negative sign, indicating the overall system is stable. The coefficients of the cross-interaction terms (the effect of sinuosity on rate of change of bar position and visa versa), however, are non-zero and have opposite signs indicating the systems are coupled and stability is not affected by these terms. We expand this study, relating bar position, sinuosity, and incident wave conditions, over a one-year period of time-exposure images of Palm Beach, Australia. The resulting analysis produces clear links between bar sinuosity and the rate of change of mean bar position, suggesting a 2DH approach should be used when modeling bar migration. Gallagher, E. L., et al. (1998), Observations of sand bar evolution on a natural beach, Journal of Geophysical Research, 103, 3203-3215. Plant, N. G., et al. (in review), A dynamical attractor governs beach response to storms, Journal of Geophysical Research.

  16. Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites

    NASA Astrophysics Data System (ADS)

    Dallman, A.; Neary, V. S.

    2016-02-01

    The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.

  17. Offshore Energy Mapping for Northeast Atlantic and Mediterranean: MARINA PLATFORM project

    NASA Astrophysics Data System (ADS)

    Kallos, G.; Galanis, G.; Spyrou, C.; Kalogeri, C.; Adam, A.; Athanasiadis, P.

    2012-04-01

    Deep offshore ocean energy mapping requires detailed modeling of the wind, wave, tidal and ocean circulation estimations. It requires also detailed mapping of the associated extremes. An important issue in such work is the co-generation of energy (generation of wind, wave, tides, currents) in order to design platforms on an efficient way. For example wind and wave fields exhibit significant phase differences and therefore the produced energy from both sources together requires special analysis. The other two sources namely tides and currents have different temporal scales from the previous two. Another important issue is related to the estimation of the environmental frequencies in order to avoid structural problems. These are issues studied at the framework of the FP7 project MARINA PLATFORM. The main objective of the project is to develop deep water structures that can exploit the energy from wind, wave, tidal and ocean current energy sources. In particular, a primary goal will be the establishment of a set of equitable and transparent criteria for the evaluation of multi-purpose platforms for marine renewable energy. Using these criteria, a novel system set of design and optimisation tools will be produced addressing new platform design, component engineering, risk assessment, spatial planning, platform-related grid connection concepts, all focussed on system integration and reducing costs. The University of Athens group is in charge for estimation and mapping of wind, wave, tidal and ocean current resources, estimate available energy potential, map extreme event characteristics and provide any additional environmental parameter required.

  18. P-wave velocity structure offshore central Sumatra: implications for compressional and strike-slip faulting

    NASA Astrophysics Data System (ADS)

    Karplus, M.; Henstock, T.; McNeill, L. C.; Vermeesch, P. M. T.; Barton, P. J.

    2014-12-01

    The Sunda subduction zone features significant along-strike structural variability including changes in accretionary prism and forearc morphology. Some of these changes have been linked to changes in megathrust faulting styles, and some have been linked to other thrust and strike-slip fault systems across this obliquely convergent margin (~54-58 mm/yr convergence rate, 40-45 mm/yr subduction rate). We examine these structural changes in detail across central Sumatra, from Siberut to Nias Island, offshore Indonesia. In this area the Investigator Fracture Zone and the Wharton Fossil Ridge, features with significant topography, are being subducted, which may affect sediment thickness variation and margin morphology. We present new seismic refraction P-wave velocity models using marine seismic data collected during Sonne cruise SO198 in 2008. The experiment geometry consisted of 57 ocean bottom seismometers, 23 land seismometers, and over 10,000 air gun shots recorded along ~1750 km of profiles. About 130,000 P-wave first arrival refractions were picked, and the picks were inverted using FAST (First Arrivals Refraction Tomography) 3-D to give a velocity model, best-resolved in the top 25 km. Moho depths, crustal composition, prism geometry, slab dip, and upper and lower plate structures provide insight into the past and present tectonic processes at this plate boundary. We specifically examine the relationships between velocity structure and faulting locations/ styles. These observations have implications for strain-partitioning along the boundary. The Mentawai Fault, located west of the forearc basin in parts of Central Sumatra, has been interpreted variably as a backthrust, strike-slip, and normal fault. We integrate existing data to evaluate these hypotheses. Regional megathrust earthquake ruptures indicate plate boundary segmentation in our study area. The offshore forearc west of Siberut is almost aseismic, reflecting the locked state of the plate interface, which last ruptured in 1797. The weakly-coupled Batu segment experiences sporadic clusters of events near the forearc slope break. The Nias segment in the north ruptured in the 2005 M8.7 earthquake. We compare P-wave velocity structure to the earthquake data to examine potential links between lithospheric structure and seismogenesis.

  19. High-resolution computational algorithms for simulating offshore wind turbines and farms: Model development and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderer, Antoni; Yang, Xiaolei; Angelidis, Dionysios

    2015-10-30

    The present project involves the development of modeling and analysis design tools for assessing offshore wind turbine technologies. The computational tools developed herein are able to resolve the effects of the coupled interaction of atmospheric turbulence and ocean waves on aerodynamic performance and structural stability and reliability of offshore wind turbines and farms. Laboratory scale experiments have been carried out to derive data sets for validating the computational models.

  20. Wave climate simulation for southern region of the South China Sea

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Tangang, Fredolin; Juneng, Liew; Mustapha, Muzneena Ahmad; Husain, Mohd Lokman; Akhir, Mohd Fadzil

    2013-08-01

    This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.

  1. Mathematical model of snake-type multi-directional wave generation

    NASA Astrophysics Data System (ADS)

    Muarif; Halfiani, Vera; Rusdiana, Siti; Munzir, Said; Ramli, Marwan

    2018-01-01

    Research on extreme wave generation is one intensive research on water wave study because the fact that the occurrence of this wave in the ocean can cause serious damage to the ships and offshore structures. One method to be used to generate the wave is self-correcting. This method controls the signal on the wavemakers in a wave tank. Some studies also consider the nonlinear wave generation in a wave tank by using numerical approach. Study on wave generation is essential in the effectiveness and efficiency of offshore structure model testing before it can be operated in the ocean. Generally, there are two types of wavemakers implemented in the hydrodynamic laboratory, piston-type and flap-type. The flap-type is preferred to conduct a testing to a ship in deep water. Single flap wavemaker has been explained in many studies yet snake-type wavemaker (has more than one flap) is still a case needed to be examined. Hence, the formulation in controlling the wavemaker need to be precisely analyzed such that the given input can generate the desired wave in the space-limited wave tank. By applying the same analogy and methodhology as the previous study, this article represents multi-directional wave generation by implementing snake-type wavemakers.

  2. A Numerical Study of Sediment Dynamics during Hurricane Gustav

    NASA Astrophysics Data System (ADS)

    Zang, Z.; Xue, Z. G.; Bao, S.; Chen, Q. J.; Walker, N.; Haag, A.; Ge, Q.; Yao, Z.

    2017-12-01

    Hurricanes are capable of introducing serious sediment erosion and transport upon their landing. We employed the Coupled Ocean-Atmosphere-Wave-and-Sediment Transport Modeling system (COAWST) to explore hydro- and sediment dynamics in the northern Gulf of Mexico during Hurricane Gustav in 2008. Cohesive behavior was incorporated to estimate the influence of seabed swelling and consolidation on critical shear stress. Upon Gustav's landfall in coastal Louisiana, the maximum significant wave heights reached more than 10 m offshore and dropped quickly upon moving toward the inner shelf, where vertical mixing was prevalent. Westward alongshore currents were dominant to the east of the hurricane track, while offshore-directed currents prevailed to the west. Water with high suspended sediment concentrations was confined to the inner shelf within the surface layer while, at the bottom, high concentrations extended offshore to the 200 m isobaths. The stratification restored, although not fully, one week after the landfall. The asymmetric hurricane winds resulted in stronger hydrodynamics in the eastern sector, which gave rise to more severe erosion. Calculated suspended sediment flux (SSF) was convergent to the hurricane center and its value peaked near the south and southeast of the Mississippi River delta, reaching 70 g/m2/s. Post-hurricane deposition in coastal Louisiana was estimated up to 6.1 cm, which could be 5-40 times higher than those under normal weather conditions.

  3. Beach Erosion and Accretion: Comparison of the Seasonal Influence of Suspended- and Bedload-Sediment Transport at Grays Harbor, Washington, U. S. A.

    NASA Astrophysics Data System (ADS)

    Sherwood, C. R.; Lacy, J. R.; Ruggiero, P.; Kerr, L. A.; Gelfenbaum, G.; Wilson, D. J.

    2001-12-01

    We conducted field studies on the ebb-tidal delta near the entrance to Grays Harbor, Washington in Autumn, 1999 and Spring 2001, with the objectives of 1) providing directional wave data to validate a shoaling and refraction model for the ebb-tidal delta, and 2) measuring forcing (wave- and current-induced near-bottom velocities, accelerations, and shear stresses) and responses (bedforms, suspended-sediment profiles, and sediment fluxes) associated with intervals of beach erosion and accretion. In the Autumn experiment (October - December), tripods were deployed at shallow ( ~14-m) and deep ( ~24-m) sites on the northern, middle, and southern flanks of the ebb tidal. In the Spring experiment (May - mid-July), tripods were redeployed at four sites and a new inshore site ( ~9-m depth), and pressures, current velocities, and suspended-sediment concentrations were measured with 5-MHz acoustic Doppler velocimeters (ADVs), optical backscatterance sensors, upward-looking acoustic Doppler current profilers (ADCPs), a downward-looking pulse-coherent acoustic Doppler profiler (PCADP), and an acoustic backscatterance sensor (ABS). We also measured bedforms with profiling and imaging sonars and estimated Reynolds stresses with a pair of 10-MHz ADVs at the inshore site. Incident waves, nearshore circulation patterns, statistics of near-bottom wave- and current-induced velocities, and sediment fluxes were distinctly different in the two experiments. During the Autumn measurements, the general direction of wave approach shifted from WNW to WSW as the North Pacific weather pattern shifted from summer to winter, and we observed a large storm (offshore significant wave heights Hs of ~8 m) and a sequence of about 8 smaller events with ~4 to 5-m waves. Sediment transport was dominated by storm-induced, downwelling-favorable circulation that transported suspended sediments northward and offshore. Inferred bedload fluxes were directed shoreward, but were much smaller. In contrast, Spring wave conditions were much milder (maximum Hs of ~4 m), and waves approached mostly from the WNW. There were long periods of upwelling-favorable circulation interrupted by intervals of storm-induced northward flow. Net suspended-sediment transport was directed northward at the deeper sites and southward at the inshore sites. Near-bottom transport remained offshore at the deeper sites, but was lower, with negligible net cross-shore component at the shallow sites. The relative contribution of shoreward bedload transport was much larger. These changes in sediment transport outside the breaker zone are consistent with measured changes in beach and bar morphology.

  4. Reverberations on the watery element: A significant, tsunamigenic historical earthquake offshore the Carolina coast

    USGS Publications Warehouse

    Hough, Susan E.; Munsey, Jeffrey; Ward, Steven N.

    2013-01-01

    We investigate an early nineteenth‐century earthquake that has been previously cataloged but not previously investigated in detail or recognized as a significant event. The earthquake struck at approximately 4:30 a.m. LT on 8 January 1817 and was widely felt throughout the southeastern and mid‐Atlantic United States. Around 11:00 a.m. the same day, an eyewitness described a 12‐inch tide that rose abruptly and agitated boats on the Delaware River near Philadelphia. We show that the timing of this tide is consistent with the predicted travel time for a tsunami generated by an offshore earthquake 6–7 hours earlier. By combining constraints provided by the shaking intensity distribution and the tsunami observation, we conclude that the 1817 earthquake had a magnitude of low‐ to mid‐M 7 and a location 800–1000 km offshore of South Carolina. Our results suggest that poorly understood offshore source zones might represent a previously unrecognized hazard to the southern and mid‐Atlantic coast. Both observational and modeling results indicate that potential tsunami hazard within Delaware Bay merits consideration: the simple geometry of the bay appears to catch and focus tsunami waves. Our preferred location for the 1817 earthquake is along a diffuse northeast‐trending zone defined by instrumentally recorded and historical earthquakes. The seismotectonic framework for this region remains enigmatic.

  5. Observations and modelling of shoreline and multiple sandbar behaviour on a high-energy meso-tidal beach

    NASA Astrophysics Data System (ADS)

    Splinter, Kristen D.; Gonzalez, Maria V. G.; Oltman-Shay, Joan; Rutten, Jantien; Holman, Robert

    2018-05-01

    This contribution describes 10 years of observed sandbar and shoreline cross-shore position variability at a meso-tidal, high energy, multiple sandbar beach. To examine relationships between the temporal variability in shoreline/sandbar position with offshore wave forcing, a simple equilibrium model is applied to these data. The analysis presented in this paper shows that the equilibrium model is skilled at predicting the alongshore-averaged, time-varying position of the shoreline (R = 0.82) and the outer sandbar position (R = 0.75), suggesting that these end members of the nearshore sediment system are most strongly influenced by offshore wave forcing in a predictable, equilibrium-forced manner. The middle and inner bars are hypothesized to act as sediment transport pathways between the shoreline and the outer bar. Prediction of these more transient features by an equilibrium model was less skilful. Model coefficients reveal that these two end members (outer bar and shoreline) in the sediment system act in opposite directions to changes in the annual offshore wave forcing. During high wave events, sediment is removed from the shoreline and deposited in the nearshore sediment system with simultaneous landward retreat of the shoreline and offshore migration of the outer sandbar. While both end member features have cycles at annual and inter-annual scales, their respective equilibrium response factor differs by almost a factor of 10, with the shoreline responding around an inter-annual mean (ϕ = 1000 days) and the outer bar responding around a seasonal mean (ϕ = 170 days). The model accurately predicts shoreline response to both mild (e.g. 2004/05, 2008/09) and extreme (e.g. 2005/06, 2009/10) winter storms, as well as their summer recovery. The more mobile and dynamic outer sandbar is well-modelled during typical winters. Summer onshore sandbar migration of the outer bar in 2005 and 2006 is under-predicted as the system transitioned between a triple (winter) and double (summer) sandbar system. The changing of the number of bars present in the system is something that this simple model cannot predict. Analysis of the data suggests that this multi-bar system adjusts its cross-shore seasonal movement when there is a significant change in the sediment supply to the system (e.g., nourishment projects, severe storms).

  6. a Continuous Health Monitoring Guided Wave Fmd System for Retrofit to Existing Offshore Oilrigs

    NASA Astrophysics Data System (ADS)

    Mijarez, R.; Solis, L.; Martinez, F.

    2010-02-01

    An automatic health monitoring guided wave flood member detection (FMD) system, for retrofit to existing offshore oilrigs is presented. The system employs a microcontroller piezoelectric (PZT) based transmitter and a receiver instrumentation package composed of a PZT 40 kHz ultrasound transducer and a digital signal processor (DSP) module connected to a PC via USB for monitoring purposes. The transmitter and receiver were attached, non-intrusively, to the external wall of a steel tube; 1 m×27 cm×2 mm. Experiments performed in the laboratory have successfully identified automatically flooded tubes.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Dennis; Frame, Caitlin; Gill, Carrie

    The offshore renewable energy industry requires accurate meteorological and oceanographic (“metocean”) data for evaluating the energy potential, economic viability, and engineering requirements of offshore renewable energy projects. It is generally recognized that currently available metocean data, instrumentation, and models are not adequate to meet all of the stakeholder needs on a national scale. Conducting wind and wave resource assessments and establishing load design conditions requires both interagency collaboration as well as valuable input from experts in industry and academia. Under the Department of Energy and Department of Interior Memorandum of Understanding, the Resource Assessment and Design Condition initiative supports collaborativemore » national efforts by adding to core atmospheric and marine science knowledge relevant to offshore energy development. Such efforts include a more thorough understanding and data collection of key metocean phenomena such as wind velocity and shear; low-level jets; ocean, tidal, and current velocities; wave characteristics; geotechnical data relating to surface and subsurface characteristics; seasonal and diurnal variations; and the interaction among these conditions. Figure 1 presents a graphical representation of some metocean phenomena that can impact offshore energy systems. This document outlines the metocean observations currently available; those that are not available; and those that require additional temporal-spatial coverage, resolution, or processing for offshore energy in an effort to gather agreed-upon, needed observations.« less

  8. Short-term sandbar variability based on video imagery: Comparison between Time-Average and Time-Variance techniques

    USGS Publications Warehouse

    Guedes, R.M.C.; Calliari, L.J.; Holland, K.T.; Plant, N.G.; Pereira, P.S.; Alves, F.N.A.

    2011-01-01

    Time-exposure intensity (averaged) images are commonly used to locate the nearshore sandbar position (xb), based on the cross-shore locations of maximum pixel intensity (xi) of the bright bands in the images. It is not known, however, how the breaking patterns seen in Variance images (i.e. those created through standard deviation of pixel intensity over time) are related to the sandbar locations. We investigated the suitability of both Time-exposure and Variance images for sandbar detection within a multiple bar system on the southern coast of Brazil, and verified the relation between wave breaking patterns, observed as bands of high intensity in these images and cross-shore profiles of modeled wave energy dissipation (xD). Not only is Time-exposure maximum pixel intensity location (xi-Ti) well related to xb, but also to the maximum pixel intensity location of Variance images (xi-Va), although the latter was typically located 15m offshore of the former. In addition, xi-Va was observed to be better associated with xD even though xi-Ti is commonly assumed as maximum wave energy dissipation. Significant wave height (Hs) and water level (??) were observed to affect the two types of images in a similar way, with an increase in both Hs and ?? resulting in xi shifting offshore. This ??-induced xi variability has an opposite behavior to what is described in the literature, and is likely an indirect effect of higher waves breaking farther offshore during periods of storm surges. Multiple regression models performed on xi, Hs and ?? allowed the reduction of the residual errors between xb and xi, yielding accurate estimates with most residuals less than 10m. Additionally, it was found that the sandbar position was best estimated using xi-Ti (xi-Va) when xb was located shoreward (seaward) of its mean position, for both the first and the second bar. Although it is unknown whether this is an indirect hydrodynamic effect or is indeed related to the morphology, we found that this behavior can be explored to optimize sandbar estimation using video imagery, even in the absence of hydrodynamic data. ?? 2011 Elsevier B.V..

  9. The Seasat commercial demonstration program

    NASA Technical Reports Server (NTRS)

    Mccandless, S. W.; Miller, B. P.; Montgomery, D. R.

    1981-01-01

    The background and development of the Seasat commercial demonstration program are reviewed and the Seasat spacecraft and its sensors (altimeter, wind field scatterometer, synthetic aperture radar, and scanning multichannel microwave radiometer) are described. The satellite data distribution system allows for selected sets of data, reformatted or tailored to specific needs and geographical regions, to be available to commercial users. Products include sea level and upper atmospheric pressure, sea surface temperature, marine winds, significant wave heights, primary wave direction and period, and spectral wave data. The results of a set of retrospective case studies performed for the commercial demonstration program are described. These are in areas of application such as marine weather and ocean condition forecasting, offshore resource exploration and development, commercial fishing, and marine transportation.

  10. Analysis of Wave Fields induced by Offshore Pile Driving

    NASA Astrophysics Data System (ADS)

    Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.

    2015-12-01

    Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.

  11. Offshore remote sensing of the ocean by stereo vision systems

    NASA Astrophysics Data System (ADS)

    Gallego, Guillermo; Shih, Ping-Chang; Benetazzo, Alvise; Yezzi, Anthony; Fedele, Francesco

    2014-05-01

    In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting oberved waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss furure lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.

  12. Southern California Coastal Processes Annotated Bibliography.

    DTIC Science & Technology

    1985-12-01

    05/01/71 TITLE : Avalon Transportation Wharf CITATION : Journal of Waterways, Harbors and Coastal Engineering Division, ASCE, N. Y., Vol. 97, No. WW2 ...105, No. WW2 ; ASCE, N. Y., pp. 131-147 DESCRIPTION s Effect of various offshore structures as significant barriers to normal wave progress...California, 33 pp. DESCRIPTION Infrared satellite images are shown for each of two areas near +- the California coast, Cape Mendocino and Point

  13. 75 FR 5708 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... suspended by wave action near the bottom, and are moved by bottom currents or directly as bedload. Tidal, wind and wave forces contribute to generating bottom currents, which act in relation to the sediment... littoral zone, limit wave effects due to mounding, and keep material from reentering the navigation channel...

  14. Modes of cross-shore sediment transport on the shoreface of the Middle Atlantic Bight

    USGS Publications Warehouse

    Wright, L.D.; Boon, John D.; Kim, S.C.; List, J.H.

    1991-01-01

    The mechanisms responsible for onshore and offshore sediment fluxes across the shoreface zone seaward of the surf zone were examined in a 3-year field study. The study was conducted in the southern part of the Middle Atlantic Bight in the depth region 7–17 m using instrumented tripods supporting electromagnetic current meters, pressure sensors, suspended sediment concentration sensors, and sonar altimeters. The observations embraced fairweather, moderate energy, swell-dominated, and storm conditions. Cross-shore mean flows ranged from near zero during fairweather to > 20 cm s−1 during the storm; oscillatory flows were on the order of 10 cm s−1 during fairweather and 100 cm s−1 during the storm. Suspended sediment concentrations at about 10 cm above the bed were < 0.1 kg m−3 under fairweather conditions, 1–2 kg m−3 under moderate swell conditions, and > 5 kg m−3 during the storm.Three methods were applied to evaluate the relative importance of incident waves, long-period oscillations, mean flows and gravity in effecting shoreward or seaward sediment flux: (1) an energetics transport model was applied to instantaneous near-bottom velocity data, (2) higher moments of near-bottom flows were estimated and compared, and (3) suspended sediment fluxes were estimated directly from the instantaneous products of cross-shore velocity and suspended sediment concentration. The results show that measurable contributions were made by all four of the processes. Most significantly, mean flows were seen to dominate and cause offshore fluxes during the storm and to contribute significantly to onshore and offshore flux during fairweather and moderate energy. Incident waves were, in all cases, the major source of bed shear stress but also caused shoreward as well as seaward net sediment advection. Low-frequency effects involving wave groups and long-period waves made secondary contributions to cross-shore sediment flux. Contrary to expectations, low-frequency fluxes were just as often shoreward as seaward. Whereas cross-correlations between suspended sediment concentration and the instantaneous near-bottom current speed were high and in phase under storm conditions, they were weak and out of phase during fairweather conditions. This suggests that simple energetics models are probably inadequate for predicting fairweather transport of suspended sediment.

  15. Rarefaction Shock Wave Cutter for Offshore Oil-Gas Platform Removal Final Report CRADA No. TC02009.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn, L. A.; Barker, J.

    This was a collaborative effort between Lawrence Livermore National Security, LLC/Lawrence Livermore National Laboratory (LLNL) (formerly the University of California) and Jet Research Center, a wholly owned division of Halliburton Energy Services, Inc. to design and prototype an improved explosive cutter for cutting the support legs of offshore oil and gas platforms.

  16. Examining courses of sleep quality and sleepiness in full 2 weeks on/2 weeks off offshore day shift rotations.

    PubMed

    Riethmeister, V; Bültmann, U; De Boer, M R; Gordijn, M; Brouwer, S

    2018-05-16

    To better understand sleep quality and sleepiness problems offshore, we examined courses of sleep quality and sleepiness in full 2-weeks on/2-weeks off offshore day shift rotations by comparing pre-offshore (1 week), offshore (2 weeks) and post-offshore (1 week) work periods. A longitudinal observational study was conducted among N=42 offshore workers. Sleep quality was measured subjectively with two daily questions and objectively with actigraphy, measuring: time in bed (TIB), total sleep time (TST), sleep latency (SL) and sleep efficiency percentage (SE%). Sleepiness was measured twice a day (morning and evening) with the Karolinska Sleepiness Scale. Changes in sleep and sleepiness parameters during the pre/post and offshore work periods were investigated using (generalized) linear mixed models. In the pre-offshore work period, courses of SE% significantly decreased (p=.038). During offshore work periods, the courses of evening sleepiness scores significantly increased (p<.001) and significantly decreased during post-offshore work periods (p=.004). During offshore work periods, TIB (p<.001) and TST (p<.001) were significantly shorter, SE% was significantly higher (p=.002), perceived sleep quality was significantly lower (p<.001) and level of rest after wake was significantly worse (p<.001) than during the pre- and post-offshore work periods. Morning sleepiness was significantly higher during offshore work periods (p=.015) and evening sleepiness was significantly higher in the post-offshore work period (p=.005) compared to the other periods. No significant changes in SL were observed. Courses of sleep quality and sleepiness parameters significantly changed during full 2-weeks on/2-weeks off offshore day shift rotation periods. These changes should be considered in offshore fatigue risk management programmes.

  17. Semi-active control of monopile offshore wind turbines under multi-hazards

    NASA Astrophysics Data System (ADS)

    Sun, C.

    2018-01-01

    The present paper studies the control of monopile offshore wind turbines subjected to multi-hazards consisting of wind, wave and earthquake. A Semi-active tuned mass damper (STMD) with tunable natural frequency and damping ratio is introduced to control the dynamic response. A new fully coupled analytical model of the monopile offshore wind turbine with an STMD is established. The aerodynamic, hydrodynamic and seismic loading models are derived. Soil effects and damage are considered. The National Renewable Energy Lab monopile 5 MW baseline wind turbine model is employed to examine the performance of the STMD. A passive tuned mass damper (TMD) is utilized for comparison. Through numerical simulation, it is found that before damage occurs, the wind and wave induced response is more dominant than the earthquake induced response. With damage presence in the tower and the foundation, the nacelle and the tower response is increased dramatically and the natural frequency is decreased considerably. As a result, the passive TMD with fixed parameters becomes off-tuned and loses its effectiveness. In comparison, the STMD retuned in real-time demonstrates consistent effectiveness in controlling the dynamic response of the monopile offshore wind turbines under multi-hazards and damage with a smaller stroke.

  18. Computationally inexpensive approach for pitch control of offshore wind turbine on barge floating platform.

    PubMed

    Zuo, Shan; Song, Y D; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the "NREL offshore 5 MW baseline wind turbine" being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control.

  19. Computationally Inexpensive Approach for Pitch Control of Offshore Wind Turbine on Barge Floating Platform

    PubMed Central

    Zuo, Shan; Song, Y. D.; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the “NREL offshore 5 MW baseline wind turbine” being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control. PMID:24453834

  20. Towards a robust framework for Probabilistic Tsunami Hazard Assessment (PTHA) for local and regional tsunami in New Zealand

    NASA Astrophysics Data System (ADS)

    Mueller, Christof; Power, William; Fraser, Stuart; Wang, Xiaoming

    2013-04-01

    Probabilistic Tsunami Hazard Assessment (PTHA) is conceptually closely related to Probabilistic Seismic Hazard Assessment (PSHA). The main difference is that PTHA needs to simulate propagation of tsunami waves through the ocean and cannot rely on attenuation relationships, which makes PTHA computationally more expensive. The wave propagation process can be assumed to be linear as long as water depth is much larger than the wave amplitude of the tsunami. Beyond this limit a non-linear scheme has to be employed with significantly higher algorithmic run times. PTHA considering far-field tsunami sources typically uses unit source simulations, and relies on the linearity of the process by later scaling and combining the wave fields of individual simulations to represent the intended earthquake magnitude and rupture area. Probabilistic assessments are typically made for locations offshore but close to the coast. Inundation is calculated only for significantly contributing events (de-aggregation). For local and regional tsunami it has been demonstrated that earthquake rupture complexity has a significant effect on the tsunami amplitude distribution offshore and also on inundation. In this case PTHA has to take variable slip distributions and non-linearity into account. A unit source approach cannot easily be applied. Rupture complexity is seen as an aleatory uncertainty and can be incorporated directly into the rate calculation. We have developed a framework that manages the large number of simulations required for local PTHA. As an initial case study the effect of rupture complexity on tsunami inundation and the statistics of the distribution of wave heights have been investigated for plate-interface earthquakes in the Hawke's Bay region in New Zealand. Assessing the probability that water levels will be in excess of a certain threshold requires the calculation of empirical cumulative distribution functions (ECDF). We compare our results with traditional estimates for tsunami inundation simulations that do not consider rupture complexity. De-aggregation based on moment magnitude alone might not be appropriate, because the hazard posed by any individual event can be underestimated locally if rupture complexity is ignored.

  1. Characteristics of inertial currents observed in offshore wave records

    NASA Astrophysics Data System (ADS)

    Gemmrich, J.; Garrett, C.

    2012-04-01

    It is well known that ambient currents can change the amplitude, direction and frequency of ocean surface waves. Regions with persistent strong currents, such as the Agulhas current off the east coast of South Africa, are known as areas of extreme waves, and wave height modulations of up to 50% observed in the shallow North Sea have been linked to tidal currents. In the open ocean, inertial currents, while intermittent, are typically the most energetic currents with speeds up to 0.5 m/s, and can interact with the surface wave field to create wave modulation, though this has not previously been reported. We use long records of significant wave heights from buoy observations in the northeast Pacific and show evidence of significant modulation at frequencies that are slightly higher than the local inertial frequency. Quite apart from the relevance to surface waves, this result can provide a consistent and independent measurement, over a wide range of latitudes, of the frequency blue-shift, the strength and intermittency of ocean surface inertial currents. Near-inertial waves constitute the most energetic portion of the internal wave band and play a significant role in deep ocean mixing. So far, observational data on near-surface inertial currents has tended to come from short records that do not permit the reliable determination of the frequency blue-shift, though this is an important factor affecting the energy flux from the surface into deeper waters. Long records from routine wave height observations are widely available and could help to shed new light globally on the blue-shift and on the characteristics of inertial currents.

  2. Sea loads on ships and offshore structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faltinsen, O.

    1990-01-01

    The book introduces the theory of the structural loading on ships and offshore structures caused by wind, waves and currents, and goes on to describe the applications of this theory in terms of real structures. The main topics described are linear-wave induced motions, loads on floating structures, numerical methods for ascertaining wave induced motions and loads, viscous wave loads and damping, stationkeeping and water impact and entry. The applications of the theoretical principles are introduced with extensive use of exercises and examples. Applications covered include conventional ships, barges, high speed marine vehicles, semisubmersibles, tension leg platforms, moored or dynamic positionedmore » ships, risers, buoys, fishing nets, jacket structures and gravity platforms. One aim of the book is to provide a physical understanding through simplified mathematical models. In this way one can develop analytical tools to evaluate results from test models, full scale trials or computer simulation, and learns which parameters represent the major contributions and influences on sea loads.« less

  3. Numerical Modeling of Infragravity Wave Runup on Steep and Mildly Sloping Natural Beaches

    NASA Astrophysics Data System (ADS)

    Fiedler, J. W.; Smit, P.; Brodie, K. L.; McNinch, J.; Guza, R. T.; Gallien, T.

    2016-12-01

    We present ongoing work which aims to validate the non-hydrostatic model SWASH for wave runup and infragravity waves generated by a range of different incident wave spectra at the offshore boundary, including the effect of finite directional spread. Flume studies of wave runup are limited to normally incident (1D) sea and infragravity waves, but natural waves are directionally spread (2D), with substantially different dynamics from 1D. For example, refractive trapping (edge waves) is only possible with 2D waves, and the bound infragravity wave response to short wave groups is highly amplified for the special case of normal incidence. Selected case studies are modeled at Agate Beach, Oregon, a low slope (1:80) beach with maximum offshore wave heights greater than 7m, and Cardiff, California, a steep (1:8) beach with maximum wave heights of 2m. Peak periods ranged between 5-20 s at both sites. On both beaches, waves were measured on a transect from approximately 10m depth to the runup, using pressure sensors, current meters, and a scanning lidar. Bulk short wave quantities, wave runup, infragravity frequency spectra and energy fluxes are compared with SWASH. On the low slope beach with energetic incident waves, the observed horizontal runup excursions reach 140m ( 100s periods). Swash front velocities reached up to several m/s, causing short waves to stack up during runup drawdown. On reversal of the infragravity phase, the stacked short waves are swept onshore with the long wave front, effectively enhancing runup by phase coupling long and short waves. Statistical variability and nonlinearity in swash generation lead to time-varying runup heights. Here, we test these observations with 2D SWASH, as well as the sensitivity of modeled runup to the parameterization of bottom friction.

  4. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper

    NASA Astrophysics Data System (ADS)

    Sun, C.; Jahangiri, V.

    2018-05-01

    Offshore wind turbines suffer from excessive bi-directional vibrations due to wind-wave misalignment and vortex induced vibrations. However, most of existing research focus on unidirectional vibration attenuation which is inadequate for real applications. The present paper proposes a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the tower and nacelle dynamic response in the fore-aft and side-side directions. An analytical model of the wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades, the tower and the 3d-PTMD is modeled. Aerodynamic loading is computed using the Blade Element Momentum method where the Prandtls tip loss factor and the Glauert correction are considered. JONSWAP spectrum is adopted to generate wave data. Wave loading is computed using Morisons equation in collaboration with the strip theory. Via a numerical search approach, the design formula of the 3d-PTMD is obtained and examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine model under misaligned wind, wave and seismic loading. Dual linear tuned mass dampers (TMDs) deployed in the fore-aft and side-side directions are utilized for comparison. It is found that the 3d-PTMD with a mass ratio of 2 % can improve the mitigation of the root mean square and peak response by around 10 % when compared with the dual linear TMDs in controlling the bi-directional vibration of the offshore wind turbines under misaligned wind, wave and seismic loading.

  5. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  6. An Assessment of Wave and Wind Data for Use in Design of Tension Leg Platforms - U.S. Offshore Areas.

    DTIC Science & Technology

    1984-07-01

    level crossing rate equations first developed by Rice are commonly employed, reference 4. If one assumes that the wave height variance spectrum is...wave photo was kindly furnished by Mr. Dillard Hammett of SEDCO, Inc. : "The photo was taken in November, 1982. The location was the Ekofisk Field

  7. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  8. Observations and Simulations of the Impact of Wave-Current Interaction on Wave Direction in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Hopkins, Julia; Elgar, Steve; Raubenheimer, Britt

    2017-04-01

    Accurately characterizing the interaction of waves and currents can improve predictions of wave propagation and subsequent sediment transport in the nearshore. Along the southern shoreline of Martha's Vineyard, MA, waves propagate across strong tidal currents as they shoal, providing an ideal environment for investigating wave-current interaction. Wave directions and mean currents observed for two 1-month-long periods in 7- and 2-m water depths along 11 km of the Martha's Vineyard shoreline have strong tidal modulations. Wave directions shift by as much as 70 degrees over a tidal cycle in 7 m depth, and by as much as 25 degrees in 2 m depth. The magnitude of the tidal modulations in the wave field decreases alongshore to the west, consistent with the observed decrease in tidal currents from 2.1 to 0.2 m/s. The observations are reproduced accurately by a numerical model (SWAN and Deflt3D-FLOW) that simulates waves and currents over the observed bathymetry. Model simulations with and without wave-current interaction and tidal depth changes demonstrate that the observed tidal modulations of the wave field primarily are caused by wave-current interaction and not by tidal changes to water depths over the nearby complex shoals. Sediment transport estimates from simulated wave conditions using a range of tidal currents and offshore wave fields indicate that the modulation of the wave field at Martha's Vineyard can impact the direction of wave-induced alongshore sediment transport, sometimes driving transport opposing the direction of the offshore incident wave field. As such, the observations and model simulations suggest the importance of wave-current interaction to tidally averaged transport in mixed-energy wave-and-current nearshore environments. Supported by ASD(R&E), NSF, NOAA (Sea Grant), and ONR.

  9. Linking North Atlantic Teleconnections to Latitudinal Variability of Wave Climate Along the North American Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Provancha, C.; Adams, P. N.; Hegermiller, C.; Storlazzi, C. D.

    2015-12-01

    Shoreline change via coastal erosion and accretion is largely influenced by variations in ocean wave climate. Identifying the sources of these variations is challenging because the timing of wave energy delivery varies over multiple timescales within ocean basins. We present the results of an investigation of USACE Wave Information Studies hindcast hourly wave heights, periods, and directions along the North American Atlantic coast from 1980-2012, designed to explore links between wave climate and teleconnection patterns. Trends in median and extreme significant wave heights (SWHs) demonstrate that mean monthly SWHs increased from 1 to 5 cm/yr along the roughly 3000 km reach of study area, with changes in hurricane season waves appearing to be most influential in producing the overall trends. Distributions of SWHs categorized by North Atlantic Oscillation (NAO) phase, show that positive-period NAO SWHs are greater than negative-period NAO SWHs along the entire eastern seaboard (25°N to 45°N). The most prominent wave direction off Cape Cod, MA during positive-period NAO is approximately 105°, as compared to approximately 75° during negative-period NAO. Prominent wave directions between Cape Canaveral, FL, and Savannah, GA exhibit a similar shift but during opposite phases of the NAO. The results of this analysis suggest that the atmosphere-ocean interactions associated with contrasting NAO phases can significantly change the wave climate observed offshore along the North American Atlantic coast, altering alongshore wave energy fluxes and sediment transport patterns along the coast.

  10. Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images

    NASA Astrophysics Data System (ADS)

    Pleskachevsky, A. L.; Rosenthal, W.; Lehner, S.

    2016-09-01

    The German Bight of the North Sea is the area with highly variable sea state conditions, intensive ship traffic and with a high density of offshore installations, e.g. wind farms in use and under construction. Ship navigation and the docking on offshore constructions is impeded by significant wave heights HS > 1.3 m. For these reasons, improvements are required in recognition and forecasting of sea state HS in the range 0-3 m. Thus, this necessitates the development of new methods to determine the distribution of meteo-marine parameters from remote sensing data with an accuracy of decimetres for HS. The operationalization of these methods then allows the robust automatic processing in near real time (NRT) to support forecast agencies by providing validations for model results. A new empirical algorithm XWAVE_C (C = coastal) for estimation of significant wave height from X-band satellite-borne Synthetic Aperture Radar (SAR) data has been developed, adopted for coastal applications using TerraSAR-X (TS-X) and Tandem-X (TD-X) satellites in the German Bight and implemented into the Sea Sate Processor (SSP) for fully automatic processing for NRT services. The algorithm is based on the spectral analysis of subscenes and the model function uses integrated image spectra parameters as well as local wind information from the analyzed subscene. The algorithm is able to recognize and remove the influence of non-sea state produced signals in the Wadden Sea areas such as dry sandbars as well as nonlinear SAR image distortions produced by e.g. short wind waves and breaking waves. Also parameters of very short waves, which are not visible in SAR images and produce only unsystematic clutter, can be accurately estimated. The SSP includes XWAVE_C, a pre-filtering procedure for removing artefacts such as ships, seamarks, buoys, offshore constructions and slicks, and an additional procedure performing a check of results based on the statistics of the whole scene. The SSP allows an automatic processing of TS-X images with an error RMSE = 25 cm and Scatter Index SI = 20% for total significant wave height HS from sequences of TS-X StripMap images with a coverage of ∼30 km × 300 km across the German Bight. The SSP was tuned spatially with model data of the German Weather Service's (DWD) CWAM (Coastal WAve Model) with 900 m horizontal resolution and tuned in situ with 6 buoys located in DWD model domain in the German Bight. The collected, processed and analyzed data base for the German Bight consists of more than 60 TS-X StripMap scenes/overflights with more than 200 images since 2013 with sea state acquired in the domain HS = 0-7 m with a mean value of 1.25 m over all available scenes at buoy locations. The paper addresses the development and implementation of XWAVE_C, and presents the possibilities of SSP delivering sea state fields by reproducing local HS variations connected with local wind gusts, variable bathymetry and moving wind fronts under different weather conditions.

  11. Measurement and Analysis of Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, Tony; van Nieuwstadt, Lin; De Roo, Roger

    This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that hasmore » been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.« less

  12. Mesoscale convective system surface pressure anomalies responsible for meteotsunamis along the U.S. East Coast on June 13th, 2013

    PubMed Central

    Wertman, Christina A.; Yablonsky, Richard M.; Shen, Yang; Merrill, John; Kincaid, Christopher R.; Pockalny, Robert A.

    2014-01-01

    Two destructive high-frequency sea level oscillation events occurred on June 13th, 2013 along the U.S. East Coast. Seafloor processes can be dismissed as the sources, as no concurrent offshore earthquakes or landslides were detected. Here, we present evidence that these tsunami-like events were generated by atmospheric mesoscale convective systems (MCSs) propagating from inland to offshore. The USArray Transportable Array inland and NOAA tide gauges along the coast recorded the pressure anomalies associated with the MCSs. Once offshore, the pressure anomalies generated shallow water waves, which were amplified by the resonance between the water column and atmospheric forcing. Analysis of the tidal data reveals that these waves reflected off the continental shelf break and reached the coast, where bathymetry and coastal geometry contributed to their hazard potential. This study demonstrates that monitoring MCS pressure anomalies in the interior of the U.S. provides important observations for early warnings of MCS-generated tsunamis. PMID:25420958

  13. Gravitational, erosional and sedimentary processes on volcanic ocean islands: Insights from the submarine morphology of Madeira archipelago

    NASA Astrophysics Data System (ADS)

    Quartau, R.; Ramalho, R.; Madeira, J.; Santos, R.; Rodrigues, A.; Roque, C.; Carrara, G.; da Silveira, A. B.

    2017-12-01

    In this work we report detailed observations of high-resolution bathymetric and backscatter mosaics of Madeira archipelago covering from the nearshore to the deep sea and relate them with the physical and geological setting of the islands. Our observations reveal that the submarine flanks of the archipelago are deeply dissected by large landslide scars and that most of them have involved subaerial material. Below the shelf break, landslide chutes develop downslope forming poorly defined depositional lobes. Around the islands, a large tributary system composed of gullies and channels develop where no significant rocky/ridge outcrops are present. This system is likely formed by turbidity currents that are triggered by hyperpicnal flows in Madeira or by storm-induced offshore sediment transport on Porto Santo and Desertas islands. At the lower part of the flanks (-3000 to -4300 m), where seafloor gradients decrease to 0.5º-3º, several scour and sediment wave fields are present, with the former normally occurring upslope of the latter. Sediment waves are often associated with the depositional lobes of the landslides but also occur offshore poorly-developed tributary systems. Sediment wave fields and scours are mostly absent on areas where the tributary systems are well developed and/or are dominated by rocky outcrops. Our study suggests that scours and sediment wave fields are probably formed by turbidity currents that suffer hydraulic jumps where the seafloor gradients are significantly reduced and where the currents become unconfined. The largest scours were found in areas without upslope channel systems and independently of wave fields, although also related to unconfined turbidity currents. Our observations show that tributary systems are better developed in prominent and rainy islands such as Madeira. On low and dry islands such as Porto Santo and Desertas, these are poorly developed and unconfined turbidite currents favour the development of scours and sediment wave fields. AcknowledgmentsThis work is funded by FCT-Fundação para a Ciência e a Tecnologia through the PLATMAR project (PTDC/GEO-GEO/0051/2014)

  14. Ridge-Runnel and Swash Dynamics Field Experiment on a Steep Meso-Tidal Beach

    NASA Astrophysics Data System (ADS)

    Figlus, J.; Song, Y.-K.; Chardon-Maldonado, P.; Puleo, J. A.

    2014-12-01

    Ridge-runnel (RR) systems are morphological features that may form in the intermittently wet and dry zone of the beach immediately after storm events. Their onshore migration provides a natural way of recovery for an eroded beach but the detailed swash interactions and complex feedback mechanisms between wave dynamics, sediment transport and profile evolution are not well understood and challenging to measure in-situ. During a storm, elevated water levels and large waves can significantly erode the beach profile in a matter of hours through offshore-directed sediment transport. The beach recovery process, on the other hand, occurs over a much longer time period during less intense wave conditions. In the beginning of this 3-week field campaign at South Bethany Beach, Delaware, a Nor'easter, eroded significant portions of this steep, meso-tidal beach and formed a pronounced RR system which then evolved during the less energetic conditions after the storm. An extensive cross-shore array of sensors was installed immediately after the storm measuring near-bed velocity profiles (5 Nortek Vectrino Profilers) and horizontal velocities (6 Sontec Electromagnetic Current Meters; 1 side-looking Nortek Vectrino) suspended sediment concentrations (10 Optical Backscatter Sensors OBS-3+), and pressure fluctuations (7 GE Druck pressure transducers) in the swash zone. Dense topography surveys of the RR system were conducted twice a day during low tide conditions with a Leica RTK GPS rover system. In addition, sediment grab samples along the entire RR cross-section were collected daily. An offshore ADCP with surface wave tracking capability (Nortek 2MHz AWAC AST) measured directional wave spectra and current profiles at a water depth of approximately 6m. The RR system showed rapid onshore migration over the two tide cycles immediately after the storm, followed by a period of vertical ridge accretion of up to 3 ft at certain locations. A first look at the collected data and analysis results related to the feedback mechanisms between wave forcing and RR evolution is presented along with a discussion of difficulties encountered during the experiment.

  15. CMS-Wave: A Nearshore Spectral Wave Processes Model for Coastal Inlets and Navigation Projects

    DTIC Science & Technology

    2008-08-01

    Grays Harbor .......................................................101 Figure 84. Wind and wave data from NDBC 46029 and CDIP 036, 20-31 December...During the same time intervals, offshore wave information is available from a Coastal Data Information Program ( CDIP ) Buoy 036 (46°51.39’N, 124...size of 30 m × 30 m (Figure 83). Directional wave spectra from CDIP 036 served as the input, discretized in 30 frequency bins (0.04 to 0.33 Hz with

  16. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    Meneveau, C., and L. Shen (2014), Large-eddy simulation of offshore wind farm , Physics of Fluids, 26, 025101. Zhang, Z., Fringer, O.B., and S.R...being centimeter scale, surface mixed layer processes arising from the combined actions of tides, winds and mesoscale currents. Issues related to...the internal wave field and how it impacts the surface waves. APPROACH We are focusing on the problem of modification of the wind -wave field

  17. Fate of internal waves on a shallow shelf

    NASA Astrophysics Data System (ADS)

    Davis, Kristen; Arthur, Robert; Reid, Emma; Decarlo, Thomas; Cohen, Anne

    2017-11-01

    Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a shelf-slope region of a coral atoll in the South China Sea. The spatially-continuous view of the near-bottom temperature field provided by the DTS offers a perspective of physical processes previously available only in laboratory settings or numerical models. These processes include internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, internal ``tide pools'' (dense water left behind after the retreat of an internal wave), and internal run-down (near-bottom, offshore-directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf - whether they are transmitted into shallow waters or reflected back offshore - is mediated by local water column density and shear structure, with important implications for nearshore distributions of energy, heat, and nutrients. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for field work supported by Academia Sinica and for K.D. and E.R. from NSF.

  18. The use of remote sensing and linear wave theory to model local wave energy around Alphonse Atoll, Seychelles

    NASA Astrophysics Data System (ADS)

    Hamylton, S.

    2011-12-01

    This paper demonstrates a practical step-wise method for modelling wave energy at the landscape scale using GIS and remote sensing techniques at Alphonse Atoll, Seychelles. Inputs are a map of the benthic surface (seabed) cover, a detailed bathymetric model derived from remotely sensed Compact Airborne Spectrographic Imager (CASI) data and information on regional wave heights. Incident energy at the reef crest around the atoll perimeter is calculated as a function of its deepwater value with wave parameters (significant wave height and period) hindcast in the offshore zone using the WaveWatch III application developed by the National Oceanographic and Atmospheric Administration. Energy modifications are calculated at constant intervals as waves transform over the forereef platform along a series of reef profile transects running into the atoll centre. Factors for shoaling, refraction and frictional attenuation are calculated at each interval for given changes in bathymetry and benthic coverage type and a nominal reduction in absolute energy is incorporated at the reef crest to account for wave breaking. Overall energy estimates are derived for a period of 5 years and related to spatial patterning of reef flat surface cover (sand and seagrass patches).

  19. Observation and Simulation of Microseisms Offshore Ireland

    NASA Astrophysics Data System (ADS)

    Le Pape, Florian; Bean, Chris; Craig, David; Jousset, Philippe; Donne, Sarah; Möllhoff, Martin

    2017-04-01

    Although more and more used in seismic imagery, ocean induced ambient seismic noise is still not so well understood, particularly how the signal propagates from ocean to land. Between January and September 2016, 10 broadband Ocean Bottom Seismometers (OBSs) stations, including acoustic sensors (hydrophone), were deployed across the shelf offshore Donegal and out into the Rockall Trough. The preliminary results show spatial and temporal variability in the ocean generated seismic noise which holds information about changes in the generation source process, including meteorological information, but also in the geological structure. In addition to the collected OBS data, numerical simulations of acoustic/seismic wave propagation are also considered in order to study the spatio-temporal variation of the broadband acoustic wavefield and its connection with the measured seismic wavefield in the region. Combination of observations and simulations appears significant to better understand what control the acoustic/seismic coupling at the sea floor as well as the effect of the water column and sediments thickness on signal propagation. Ocean generated seismic ambient noise recorded at the seafloor appears to behave differently in deep and shallow water and 3D simulations of acoustic/seismic wave propagation look particularly promising for reconciling deep ocean, shelf and land seismic observations.

  20. Response of waves and coastline evolution to climate variability off the Niger Delta coast during the past 110 years

    NASA Astrophysics Data System (ADS)

    Dada, Olusegun A.; Li, Guangxue; Qiao, Lulu; Ma, Yanyan; Ding, Dong; Xu, Jishang; Li, Pin; Yang, Jichao

    2016-08-01

    River deltas, low-lying landforms that host critical economic infrastructures and diverse ecosystems as well as high concentrations of human population, are highly vulnerable to the effects of global climate change. In order to understand the wave climate, their potential changes and implication on coastline evolution for environment monitoring and sustainable management of the Niger Delta in the Gulf of Guinea, an investigation was carried out based on offshore wave statistics of an 110-year time series (1900-2010) dataset obtained from the ECMWF ERA-20C atmospheric reanalysis. Results of multivariate regression analyses indicate that interannual mean values of Hs and Tm trends tended to increase over time, especially in the western part of the delta coast, so that they are presently (1980 and 2010) up to 264 mm (300%) and 0.32 s (22%), respectively, higher than 80 years (1900-1930) ago. The maximum directions of the wave have become more westerly (southward) than southerly (westward) by up to 2° (33%) and the mean longshore sediment transport rate has increased by more than 8% over the last 80 years. The linear regression analysis for shoreline changes from 1987 to 2013 shows an erosional trend at the western part of the delta and accretional trends towards eastern part. The relationship between wave climate of the study area and atmospheric circulation using Pearson's correlation shows that the Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), East Atlantic pattern (EA) and El-Nino/Southern Oscillation (ENSO) Index explain significant proportion of the seasonal and annual wave variabilities compared to other indices. But it is most likely that the combination of these climatic indices acting together or separately constitutes a powerful and effective mechanism responsible for much of the variability of the offshore Niger Delta wave climate. The study concludes that changing wave climate off the Niger Delta has strong implications on the delta coastline changes. However, other processes (such as fluvial discharge variability due climatic variability and anthropogenic effect) may be acting concomitantly with changes in wave regime and associated littoral transport to influence shoreline evolution along the Niger Delta coast.

  1. California State Waters Map Series—Offshore of Pigeon Point, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Watt, Janet T.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.

    2015-12-15

    Seafloor habitats in the Offshore of Pigeon Point map area lie within the Shelf (continental shelf) megahabitat. Significant rocky outcrops, which support kelp-forest communities in the nearshore and rocky-reef communities in deeper water, dominate the inner shelf waters. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.

  2. Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability and sustainability

    USGS Publications Warehouse

    Shope, James B.; Storlazzi, Curt; Erikson, Li; Hegermiller, Christie

    2016-01-01

    Waves are the dominant influence on coastal morphology and ecosystem structure of tropical Pacific islands. Wave heights, periods, and directions for the 21st century were projected using near-surface wind fields from four atmosphere-ocean coupled global climate models (GCM) under representative concentration pathways (RCP) 4.5 and 8.5. GCM-derived wind fields forced the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters around 25 islands in the mid to western tropical Pacific Ocean for historical (1976–2005), mid-, and end-of-century time periods. Extreme significant wave heights decreased (~10.0%) throughout the 21st century under both climate scenarios compared to historical wave conditions and the higher radiative forcing 8.5 scenario displayed a greater and more widespread decrease in extreme significant wave heights compared to the lower forcing 4.5 scenario. An exception was for the end-of-century June–August season. Offshore of islands in the central equatorial Pacific, extreme significant wave heights displayed the largest changes from historical values. The frequency of extreme events during December–February decreased under RCP 8.5, whereas the frequency increased under RCP 4.5. Mean wave directions often rotated more than 30° clockwise at several locations during June–August, which could indicate a weakening of the trade winds’ influence on extreme wave directions and increasing dominance of Southern Ocean swell or eastern shift of storm tracks. The projected changes in extreme wave heights, directions of extreme events, and frequencies at which extreme events occur will likely result in changes to the morphology and sustainability of island nations.

  3. Edge waves excited by underwater landslides : scenarios in the sea of Marmara

    NASA Astrophysics Data System (ADS)

    Sinan Özeren, Mehmet; Postacioglu, Nazmi; Canlı, Umut; Gasperini, Luca

    2014-05-01

    In this work we quantify the travel distance of edge waves created by submarine landslide over slopes of finite length. Edge waves, if generated, can constitute severe coastal hazard because they can travel long distances along the shores. In the Sea of Marmara there are several submarine masses susceptible to slide in case of a big earthquake on the Main Marmara Fault and some damage scenarios might involve edge waves. The edge waves generated by landslide Tsunamis over slopes of infinite lenghts are recently studied by Sammarco and Renzi (Landslide tsunamis propagating along a plane beach, 2008, Journal of Fluid Mech.). However the infinite slope length assumption causes a perfect confinement of the waves over the coastal slope, thereby overestimating the edge wave damage. Because of this, in their work there is no alongshore length scale over which these waves can lose their energy. In the real worls, the off-shore limiting depth will be finite and the off-shore direction wave vector will not be completely complex, pointing to radiation damping of these edge waves. In this work we analytically quantify the amount of this damping and we estimate the travel distance of the edge waves along the shoreline as a function of the limiting depth. We examine some some scenarios in the north coast of the Sea of Marmara and the northern shelf to quantify the edge waves. Since the method does not require high-resolution numerical computing, it can be used to calculate the edge-wave related risk factor anywhere with submarine landslide risk.

  4. Offshore wind farm layout optimization

    NASA Astrophysics Data System (ADS)

    Elkinton, Christopher Neil

    Offshore wind energy technology is maturing in Europe and is poised to make a significant contribution to the U.S. energy production portfolio. Building on the knowledge the wind industry has gained to date, this dissertation investigates the influences of different site conditions on offshore wind farm micrositing---the layout of individual turbines within the boundaries of a wind farm. For offshore wind farms, these conditions include, among others, the wind and wave climates, water depths, and soil conditions at the site. An analysis tool has been developed that is capable of estimating the cost of energy (COE) from offshore wind farms. For this analysis, the COE has been divided into several modeled components: major costs (e.g. turbines, electrical interconnection, maintenance, etc.), energy production, and energy losses. By treating these component models as functions of site-dependent parameters, the analysis tool can investigate the influence of these parameters on the COE. Some parameters result in simultaneous increases of both energy and cost. In these cases, the analysis tool was used to determine the value of the parameter that yielded the lowest COE and, thus, the best balance of cost and energy. The models have been validated and generally compare favorably with existing offshore wind farm data. The analysis technique was then paired with optimization algorithms to form a tool with which to design offshore wind farm layouts for which the COE was minimized. Greedy heuristic and genetic optimization algorithms have been tuned and implemented. The use of these two algorithms in series has been shown to produce the best, most consistent solutions. The influences of site conditions on the COE have been studied further by applying the analysis and optimization tools to the initial design of a small offshore wind farm near the town of Hull, Massachusetts. The results of an initial full-site analysis and optimization were used to constrain the boundaries of the farm. A more thorough optimization highlighted the features of the area that would result in a minimized COE. The results showed reasonable layout designs and COE estimates that are consistent with existing offshore wind farms.

  5. Discussion of the paper 'Hydrates offshore Brazil'

    USGS Publications Warehouse

    Dillon, William P.

    1994-01-01

    The paper “Hydrates Offshore Brazil” by Rogerio L. Fontana and Alexandre Mussumeci presents some important information that strongly indicates the presence of gas hydrates on the southern Brazilian continental margin. However, the acoustic compressional wave velocity structure reported for the Brazilian margin sediments is highly unusual and quite puzzling. We will discuss a possible explanation related to the presence of gas hydrate and free gas in the sediments.

  6. Numerical study of breakwater failure due to tsunami-like undular bore impacts: The case of the port of Soma.

    NASA Astrophysics Data System (ADS)

    Martin-Medina, Manuel; Morichon, Denis; Abadie, Stephane; Le Roy, Sylvestre; Lemoine, Anne

    2017-04-01

    The Tohoku tsunami, that impacted the Japanese coast in 2011, caused great damages on many offshore vertical breakwaters ranging from the erosion of the rubble mound to the partial displacement or total collapse of caissons. The breakwater failure mechanisms were function of the tsunami wave types that vary along the Japanese coast according to the bathymetry features. The Iwate coast, characterized by deep water depths and steep slopes, was mainly impacted by tsunami overflow leading in particular to the failure of the world's deepest breakwater of Kamaishi. In the shallow waters of the Sendai bay, observations showed that breakwaters protecting harbor entrances were impacted by short waves train resembling to undular bore. This work aims to investigate this latter type of tsunami wave impacts that are less reported in the literature. We chose to focus on the highly damaged offshore breakwater of Soma, located in the south part of the Sendai bay. The hydrodynamics conditions during the tsunami impact are investigated using the VARANS Thetis code (Desombre et al., 2012), which allows to simulate both the free surface flow and the flow inside the rubble mound simulated by a porous medium. The model is forced at the offshore boundaries by the Funwave Boussinesq code that describes the transformation of the tsunami waves from the source to the generation of undular bores in shallow waters. The study includes the computation of forces acting on the caissons. We discuss the relevance of describing the hydrodynamics at the short wave scale to assess breakwater stability in the course of tsunami-like undular bore impact. References Desombre, J., Morichon, D., & Mory, M. (2012). SIMULTANEOUS SURFACE AND SUBSURFACE AIR AND WATER FLOWS MODELLING IN THE SWASH ZONE. Coastal Engineering Proceedings, 1(33), 56.

  7. A new approximation for pore pressure accumulation in marine sediment due to water waves

    NASA Astrophysics Data System (ADS)

    Jeng, D.-S.; Seymour, B. R.; Li, J.

    2007-01-01

    The residual mechanism of wave-induced pore water pressure accumulation in marine sediments is re-examined. An analytical approximation is derived using a linear relation for pore pressure generation in cyclic loading, and mistakes in previous solutions (Int. J. Numer. Anal. Methods Geomech. 2001; 25:885-907; J. Offshore Mech. Arctic Eng. (ASME) 1989; 111(1):1-11) are corrected. A numerical scheme is then employed to solve the case with a non-linear relation for pore pressure generation. Both analytical and numerical solutions are verified with experimental data (Laboratory and field investigation of wave-sediment interaction. Joseph H. Defrees Hydraulics Laboratory, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 1983), and provide a better prediction of pore pressure accumulation than the previous solution (J. Offshore Mech. Arctic Eng. (ASME) 1989; 111(1):1-11). The parametric study concludes that the pore pressure accumulation and use of full non-linear relation of pore pressure become more important under the following conditions: (1) large wave amplitude, (2) longer wave period, (3) shallow water, (4) shallow soil and (5) softer soils with a low consolidation coefficient. Copyright

  8. Hydrodynamic influences on acoustical and optical backscatter in a fringing reef environment

    NASA Astrophysics Data System (ADS)

    Pawlak, Geno; Moline, Mark A.; Terrill, Eric J.; Colin, Patrick L.

    2017-01-01

    Observations of hydrodynamics along with optical and acoustical water characteristics in a tropical fringing reef environment reveal a distinct signature associated with flow characteristics and tidal conditions. Flow conditions are dominated by tidal forcing with an offshore component from the reef flat during ebb. Measurements span variable wave conditions enabling identification of wave effects on optical and acoustical water properties. High-frequency acoustic backscatter (6 MHz) is strongly correlated with tidal forcing increasing with offshore directed flow and modulated by wave height, indicating dominant hydrodynamic influence. Backscatter at 300 and 1200 kHz is predominantly diurnal suggesting a biological component. Optical backscatter is closely correlated with high-frequency acoustic backscatter across the range of study conditions. Acoustic backscatter frequency dependence is used along with changes in optical properties to interpret particle-size variations. Changes across wave heights suggest shifts in particle-size distributions with increases in relative concentrations of smaller particles for larger wave conditions. Establishing a connection between the physical processes of a fringing tropical reef and the resulting acoustical and optical signals allows for interpretation and forecasting of the remote sensing response of these phenomena over larger scales.

  9. Αutomated 2D shoreline detection from coastal video imagery: an example from the island of Crete

    NASA Astrophysics Data System (ADS)

    Velegrakis, A. F.; Trygonis, V.; Vousdoukas, M. I.; Ghionis, G.; Chatzipavlis, A.; Andreadis, O.; Psarros, F.; Hasiotis, Th.

    2015-06-01

    Beaches are both sensitive and critical coastal system components as they: (i) are vulnerable to coastal erosion (due to e.g. wave regime changes and the short- and long-term sea level rise) and (ii) form valuable ecosystems and economic resources. In order to identify/understand the current and future beach morphodynamics, effective monitoring of the beach spatial characteristics (e.g. the shoreline position) at adequate spatio-temporal resolutions is required. In this contribution we present the results of a new, fully-automated detection method of the (2-D) shoreline positions using high resolution video imaging from a Greek island beach (Ammoudara, Crete). A fully-automated feature detection method was developed/used to monitor the shoreline position in geo-rectified coastal imagery obtained through a video system set to collect 10 min videos every daylight hour with a sampling rate of 5 Hz, from which snapshot, time-averaged (TIMEX) and variance images (SIGMA) were generated. The developed coastal feature detector is based on a very fast algorithm using a localised kernel that progressively grows along the SIGMA or TIMEX digital image, following the maximum backscatter intensity along the feature of interest; the detector results were found to compare very well with those obtained from a semi-automated `manual' shoreline detection procedure. The automated procedure was tested on video imagery obtained from the eastern part of Ammoudara beach in two 5-day periods, a low wave energy period (6-10 April 2014) and a high wave energy period (1 -5 November 2014). The results showed that, during the high wave energy event, there have been much higher levels of shoreline variance which, however, appeared to be similarly unevenly distributed along the shoreline as that related to the low wave energy event, Shoreline variance `hot spots' were found to be related to the presence/architecture of an offshore submerged shallow beachrock reef, found at a distance of 50-80 m from the shoreline. Hydrodynamic observations during the high wave energy period showed (a) that there is very significant wave energy attenuation by the offshore reef and (b) the generation of significant longshore and rip flows. The study results suggest that the developed methodology can provide a fast, powerful and efficient beach monitoring tool, particularly if combined with pertinent hydrodynamic observations.

  10. Offshore Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strach-Sonsalla, Mareike; Stammler, Matthias; Wenske, Jan

    In 1991, the Vindeby Offshore Wind Farm, the first offshore wind farm in the world, started feeding electricity to the grid off the coast of Lolland, Denmark. Since then, offshore wind energy has developed from this early experiment to a multibillion dollar market and an important pillar of worldwide renewable energy production. Unit sizes grew from 450 kW at Vindeby to the 7.5 MW-class offshore wind turbines (OWT ) that are currently (by October 2014) in the prototyping phase. This chapter gives an overview of the state of the art in offshore wind turbine (OWT) technology and introduces the principlesmore » of modeling and simulating an OWT. The OWT components -- including the rotor, nacelle, support structure, control system, and power electronics -- are introduced, and current technological challenges are presented. The OWT system dynamics and the environment (wind and ocean waves) are described from the perspective of OWT modelers and designers. Finally, an outlook on future technology is provided. The descriptions in this chapter are focused on a single OWT -- more precisely, a horizontal-axis wind turbine -- as a dynamic system. Offshore wind farms and wind farm effects are not described in detail in this chapter, but an introduction and further references are given.« less

  11. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    NASA Astrophysics Data System (ADS)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  12. The observed relationship between wave conditions and beach response, Ocean Beach, San Francisco, CA

    USGS Publications Warehouse

    Hansen, J.E.; Barnard, P.L.

    2009-01-01

    Understanding how sandy beaches respond to storms is critical for effective sediment management and developing successful erosion mitigation efforts. However, only limited progress has been made in relating observed beach changes to wave conditions, with one of the major limiting factors being the lack of temporally dense beach topography and nearshore wave data in most studies. This study uses temporally dense beach topographic and offshore wave data to directly link beach response and wave forcing with generally good results. Ocean Beach is an open coast high-energy sandy beach located in San Francisco, CA, USA. From April 2004 through the end of 2008, 60 three-dimensional topographic beach surveys were conducted on approximately a monthly basis, with more frequent “short-term surveys during the winters of 2005-06 and 2006-07. Shoreline position data from the short-term surveys show good correlation with offshore wave height, period, and direction averaged over several days prior to the survey (mean R*=0.54 for entire beach). There is, however, considerable alongshore variation in model performance, with R- values ranging from 0.81 to 0.19 for individual sections of the beach. After wave height, the direction of wave approach was the most important factor in determining the response of the shoreline, followed by wave period. Our results indicate that an empirical predictive model of beach response to wave conditions at Ocean Beach is possible with frequent beach mapping and wave data, and that such a model could be useful to coastal managers. 

  13. Development of a Spot-Application Tool for Rapid, High-Resolution Simulation of Wave-Driven Nearshore Hydrodynamics

    DTIC Science & Technology

    2013-09-30

    flow models, such as Delft3D, with our developed Boussinesq -type model. The vision of this project is to develop an operational tool for the...situ measurements or large-scale wave models. This information will be used to drive the offshore wave boundary condition. • Execute the Boussinesq ...model to match with the Boussinesq -type theory would be one which can simulate sheared and stratified currents due to large-scale (non-wave) forcings

  14. The Effects of Better Environmental Inputs in Estimating Sea Clutter

    DTIC Science & Technology

    1988-01-01

    3.2 A Spectral Ocean Wave Model: DWAVE 11 3.3 Limitations of DWAVE 11 4. HYBRID MODEL DEVELOPMENT 12 4.1 Overall Plan 12 4.2 High Resolution...intensive. 10 3.2 A Spectral Ocean Wave Model: DWAVE Most of the spectral ocean wave models give essentially the same type of outputs, for example, the...sea clutter estimation. A deep ocean wave model DWAVE by Offshore & Coastal Technologies, Inc. (OCTI) has been chosen because it can be run on a

  15. Wave-driven Hydrodynamics for Different Reef Geometries and Roughness Scenarios

    NASA Astrophysics Data System (ADS)

    Franklin, G. L.; Marino-Tapia, I.; Torres-Freyermuth, A.

    2013-05-01

    In fringing reef systems where a shallow lagoon is present behind the reef crest, wave breaking appears to dominate circulation, controlling numerous key processes such as the transport and dispersion of larvae, nutrients and sediments. Despite their importance, there is a need for more detailed knowledge on the hydrodynamic processes that take place within the surf zone of these systems and the effects different combinations of geometries and roughness have on them. The present study focuses on the use of two-dimensional (2DV) numerical model simulations and data obtained during a field campaign in Puerto Morelos, Quintana Roo, Mexico to better understand the detailed surf zone processes that occur over a fringing reef. The model used is Cornell Breaking Wave and Structures (COBRAS), which solves Reynolds-Averaged Navier-Stokes (RANS) equations. Reef geometries implemented in the model include a reef flat and two different reef crests. The effect of roughness on wave setup, radiation stress, mean flows, and cross-shore spectral evolution for the model results was studied using different roughness coefficients (Nikuradse) and a bathymetric profile obtained in the field using the bottom track option of an Acoustic Doppler Current Profiler. Field data were also analysed for the configuration and roughness of Puerto Morelos. Model results reveal that for all profiles wave setup increased significantly (~22%) with increasing bed roughness, in agreement with previous findings for sandy beaches.For all wave heights and periods studied, increasing roughness also affected spectral wave evolution across the reef, with a significant reduction in energy, particularly at infragravity frequencies. The presence of a reef crest in the profile resulted in differences in behaviour at infragravity frequencies. For example, preliminary results suggest that there is a shift towards higher frequencies as waves progress into the lagoon when a crest is present, something that does not appear to occur over the reef flat. Time-averaged velocities exhibited a dominant onshore flow due to waves at the surface, as is generally reported for coral reefs. Model results also suggest the presence of offshore velocities, which were slightly greater over the reef flat compared to the reef crest. Maximum offshore velocities appear to be more localised in the case of the reef flat whereas they extended over a larger area in the case of the reef crest. In all cases, increased roughness resulted in reduced velocities. These results are important since they concern processes that affect the circulation within the lagoon, which has implications in terms of the lagoon's residence time and hence heat dispersion and exposure to pollutants.

  16. Topographic coupling of surface and internal Kelvin waves. [of ocean

    NASA Technical Reports Server (NTRS)

    Chao, S.-Y.

    1980-01-01

    An analysis is presented for computing the diffraction of barotropic Kelvin waves by a localized topographical irregularity on flat-bottom ocean with an arbitrary vertical stratification. It was shown that all baroclinic Kelvin waves will be generated downstream of the bump, with the first baroclinic mode having the largest amplitude. The Poincare waves predominate in the lowest modes, and are more directionally anisotropic. It was concluded that baroclinic Poincare waves radiating offshore from the bump topography could contribute to the internal wave field in the open ocean and provide an alternative mechanism to dissipate the barotropic tides.

  17. Automatic control and monitoring equipment for cathodic protection of offshore structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, J.H.

    1979-10-01

    The preferred cathodic-protection systems for offshore structures are (1) the sacrificial-anode form for areas where the anode's weight or wave resistance is not a serious handicap and (2) a combined anode/impressed-current system that reduces the anode mass. Problems associated with controlling and monitoring the equipment are related to the anode locations, suitability of the reference electrodes, instrumentation requirements, interpretation of the measured potentials, and influence of water depth.

  18. Investigation of the relationship between hurricane waves and extreme runup

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Stockdon, H. F.

    2006-12-01

    In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.

  19. CMIP5-based global wave climate projections including the entire Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Casas-Prat, M.; Wang, X. L.; Swart, N.

    2018-03-01

    This study presents simulations of the global ocean wave climate corresponding to the surface winds and sea ice concentrations as simulated by five CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models for the historical (1979-2005) and RCP8.5 scenario future (2081-2100) periods. To tackle the numerical complexities associated with the inclusion of the North Pole, the WAVEWATCH III (WW3) wave model was used with a customized unstructured Spherical Multi-Cell grid of ∼100 km offshore and ∼50 km along coastlines. The climate model simulated wind and sea ice data, and the corresponding WW3 simulated wave data, were evaluated against reanalysis and hindcast data. The results show that all the five sets of wave simulations projected lower waves in the North Atlantic, corresponding to decreased surface wind speeds there in the warmer climate. The selected CMIP5 models also consistently projected an increase in the surface wind speed in the Southern Hemisphere (SH) mid-high latitudes, which translates in an increase in the WW3 simulated significant wave height (Hs) there. The higher waves are accompanied with increased peak wave period and increased wave age in the East Pacific and Indian Oceans, and a significant counterclockwise rotation in the mean wave direction in the Southern Oceans. The latter is caused by more intense waves from the SH traveling equatorward and developing into swells. Future wave climate in the Arctic Ocean in summer is projected to be predominantly of mixed sea states, with the climatological mean of September maximum Hs ranging mostly 3-4 m. The new waves approaching Arctic coasts will be less fetch-limited as ice retreats since a predominantly southwards mean wave direction is projected in the surrounding seas.

  20. Wave-induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-tidal Flat, Gangwha Island, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Guan-hong; Kang, KiRyong

    2018-05-01

    A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.

  1. Identifying the origin of waterbird carcasses in Lake Michigan using a neural network source tracking model

    USGS Publications Warehouse

    Kenow, Kevin P.; Ge, Zhongfu; Fara, Luke J.; Houdek, Steven C.; Lubinski, Brian R.

    2016-01-01

    Avian botulism type E is responsible for extensive waterbird mortality on the Great Lakes, yet the actual site of toxin exposure remains unclear. Beached carcasses are often used to describe the spatial aspects of botulism mortality outbreaks, but lack specificity of offshore toxin source locations. We detail methodology for developing a neural network model used for predicting waterbird carcass motions in response to wind, wave, and current forcing, in lieu of a complex analytical relationship. This empirically trained model uses current velocity, wind velocity, significant wave height, and wave peak period in Lake Michigan simulated by the Great Lakes Coastal Forecasting System. A detailed procedure is further developed to use the model for back-tracing waterbird carcasses found on beaches in various parts of Lake Michigan, which was validated using drift data for radiomarked common loon (Gavia immer) carcasses deployed at a variety of locations in northern Lake Michigan during September and October of 2013. The back-tracing model was further used on 22 non-radiomarked common loon carcasses found along the shoreline of northern Lake Michigan in October and November of 2012. The model-estimated origins of those cases pointed to some common source locations offshore that coincide with concentrations of common loons observed during aerial surveys. The neural network source tracking model provides a promising approach for identifying locations of botulinum neurotoxin type E intoxication and, in turn, contributes to developing an understanding of the dynamics of toxin production and possible trophic transfer pathways.

  2. Wave Transformation over a Fringing Coral Reef and the Importance of Low-Frequency Waves and Offshore Water Levels to Runup and Island Overtopping

    NASA Astrophysics Data System (ADS)

    Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.

    2016-02-01

    Low-lying, reef-fringed islands are susceptible to sea-level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, wave gauges and a current meter were deployed for 5 months across two shore-normal transects on Roi-Namur, an atoll island in the Republic of the Marshall Islands. These observations captured two large wave events that had maximum wave heights greater than 6 m and peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly-skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, exceeded 3.7 m at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3-hr time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along atoll and fringing reef-lined shorelines, such as island overwash. These observations lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of both extreme shoreline runup and island overwash, threatening the sustainability of these islands.

  3. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding

    NASA Astrophysics Data System (ADS)

    Cheriton, Olivia M.; Storlazzi, Curt D.; Rosenberger, Kurt J.

    2016-05-01

    Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.

  4. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding

    USGS Publications Warehouse

    Cheriton, Olivia; Storlazzi, Curt; Rosenberger, Kurt

    2016-01-01

    Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04–0.004 Hz) and very low frequency (0.004–0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.

  5. Triboelectric Charging at the Nanostructured Solid/Liquid Interface for Area-Scalable Wave Energy Conversion and Its Use in Corrosion Protection.

    PubMed

    Zhao, Xue Jiao; Zhu, Guang; Fan, You Jun; Li, Hua Yang; Wang, Zhong Lin

    2015-07-28

    We report a flexible and area-scalable energy-harvesting technique for converting kinetic wave energy. Triboelectrification as a result of direct interaction between a dynamic wave and a large-area nanostructured solid surface produces an induced current among an array of electrodes. An integration method ensures that the induced current between any pair of electrodes can be constructively added up, which enables significant enhancement in output power and realizes area-scalable integration of electrode arrays. Internal and external factors that affect the electric output are comprehensively discussed. The produced electricity not only drives small electronics but also achieves effective impressed current cathodic protection. This type of thin-film-based device is a potentially practical solution of on-site sustained power supply at either coastal or off-shore sites wherever a dynamic wave is available. Potential applications include corrosion protection, pollution degradation, water desalination, and wireless sensing for marine surveillance.

  6. California State Waters map series—Offshore of Scott Creek, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Greene, H. Gary; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Endris, Charles A.; Hartwell, Stephen R.; Kvitek, Rikk G.; Davenport, Clifton W.; Watt, Janet T.; Krigsman, Lisa M.; Ritchie, Andrew C.; Sliter, Ray W.; Finlayson, David P.; Maier, Katherine L.; Cochrane, Guy R.; Cochran, Susan A.

    2015-11-16

    Seafloor habitats in the Offshore of Scott Creek map area, which lie within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deeper water. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are the northernmost known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.

  7. California State Waters Map Series: offshore of Bolinas, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Manson, Michael W.; Sliter, Ray W.; Endris, Charles A.; Watt, Janet T.; Ross, Stephanie L.; Kvitek, Rikk G.; Phillips, Eleyne L.; Bruns, Terry R.; Chin, John L.; Cochrane, Guy R.; Cochran, Susan A.

    2015-08-05

    Seafloor habitats in the Offshore of Bolinas map area, which lies within the Shelf (continental shelf) megahabitat, range from, in the nearshore, sandy seafloor in the southeast and significant rocky outcrops that support kelp-forest communities in the northwest to, in deeper water, rocky-reef communities. Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock in the northeast supports large forests of “bull kelp,” which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of greenling and rockfish.

  8. Resolving plate structure across the seismogenic zone in Cascadia from onshore-offshore receiver function imaging

    NASA Astrophysics Data System (ADS)

    Audet, P.; Schaeffer, A. J.

    2017-12-01

    Studies of the forearc structure in the Cascadia subduction zone using teleseismic P-wave receiver function have resolved structures associated with deep fluid cycling, such as the basalt-to-eclogite reaction and fluid overpressure within the subducting oceanic crust, as well as the serpentinization of the forearc mantle wedge. Unfortunately, the updip extent of the over-pressured zone, and therefore the possible control on the transition from episodic slow slip to seismic slip, occurs offshore and is not resolved in those studies. The Cascadia Initiative (CI) has provided an opportunity to extend this work to the locked zone using teleseismic receiver functions from the deployment of a dense line of ocean-bottom seismograph stations offshore of Washington State, from the trench to the coastline. Here we calculate P-wave receiver functions using data from offshore (CI) and onshore (CAFE) broadband seismic stations. These data clearly show the various scattered phases associated with a dipping low-velocity layer that was identified in previous studies as the downgoing oceanic crust. These signals are difficult to untangle offshore because they arrive at similar times. We process receiver functions using a modified common-conversion point (CCP) stacking technique that uses a coherency filter to optimally stack images obtained from the three main scattered phases. The resulting image shows along-dip variations in the character of the seismic discontinuities associated with the top and bottom of the low-velocity layer. Combined with focal depth information of regular and low-frequency earthquakes, these variations may reflect changes in the material properties of the megathrust across the seismogenic zone in Cascadia.

  9. A probabilistic method for constructing wave time-series at inshore locations using model scenarios

    USGS Publications Warehouse

    Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.

    2014-01-01

    Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.

  10. Assessment of First- and Second-Order Wave-Excitation Load Models for Cylindrical Substructures: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Brandon; Wendt, Fabian; Robertson, Amy

    2017-03-09

    The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less

  11. Assessment of First- and Second-Order Wave-Excitation Load Models for Cylindrical Substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereyra, Brandon; Wendt, Fabian; Robertson, Amy

    2016-07-01

    The hydrodynamic loads on an offshore wind turbine's support structure present unique engineering challenges for offshore wind. Two typical approaches used for modeling these hydrodynamic loads are potential flow (PF) and strip theory (ST), the latter via Morison's equation. This study examines the first- and second-order wave-excitation surge forces on a fixed cylinder in regular waves computed by the PF and ST approaches to (1) verify their numerical implementations in HydroDyn and (2) understand when the ST approach breaks down. The numerical implementation of PF and ST in HydroDyn, a hydrodynamic time-domain solver implemented as a module in the FASTmore » wind turbine engineering tool, was verified by showing the consistency in the first- and second-order force output between the two methods across a range of wave frequencies. ST is known to be invalid at high frequencies, and this study investigates where the ST solution diverges from the PF solution. Regular waves across a range of frequencies were run in HydroDyn for a monopile substructure. As expected, the solutions for the first-order (linear) wave-excitation loads resulting from these regular waves are similar for PF and ST when the diameter of the cylinder is small compared to the length of the waves (generally when the diameter-to-wavelength ratio is less than 0.2). The same finding applies to the solutions for second-order wave-excitation loads, but for much smaller diameter-to-wavelength ratios (based on wavelengths of first-order waves).« less

  12. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society.

    PubMed

    Santo, H; Taylor, P H; Gibson, R

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  13. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    NASA Astrophysics Data System (ADS)

    Santo, H.; Taylor, P. H.; Gibson, R.

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  14. Self-organized kilometer-scale shoreline sand wave generation: Sensitivity to model and physical parameters

    NASA Astrophysics Data System (ADS)

    Idier, Déborah; Falqués, Albert; Rohmer, Jérémy; Arriaga, Jaime

    2017-09-01

    The instability mechanisms for self-organized kilometer-scale shoreline sand waves have been extensively explored by modeling. However, while the assumed bathymetric perturbation associated with the sand wave controls the feedback between morphology and waves, its effect on the instability onset has not been explored. In addition, no systematic investigation of the effect of the physical parameters has been done yet. Using a linear stability model, we investigate the effect of wave conditions, cross-shore profile, closure depth, and two perturbation shapes (P1: cross-shore bathymetric profile shift, and P2: bed level perturbation linearly decreasing offshore). For a P1 perturbation, no instability occurs below an absolute critical angle θc0≈ 40-50°. For a P2 perturbation, there is no absolute critical angle: sand waves can develop also for low-angle waves. In fact, the bathymetric perturbation shape plays a key role in low-angle wave instability: such instability only develops if the curvature of the depth contours offshore the breaking zone is larger than the shoreline one. This can occur for the P2 perturbation but not for P1. The analysis of bathymetric data suggests that both curvature configurations could exist in nature. For both perturbation types, large wave angle, small wave period, and large closure depth strongly favor instability. The cross-shore profile has almost no effect with a P1 perturbation, whereas large surf zone slope and gently sloping shoreface strongly enhance instability under low-angle waves for a P2 perturbation. Finally, predictive statistical models are set up to identify sites prone to exhibit either a critical angle close to θc0 or low-angle wave instability.

  15. Permian storm current-produced offshore bars from an ancient shelf sequence : Northwestern Karoo basin, republic of South Africa

    NASA Astrophysics Data System (ADS)

    Smith, A. M.; Zawada, P. K.

    The Ecca-Beaufort transition zone from the Karoo Basin comprises upward-coarsening sequences which are interpreted as prograding, storm-produced offshore bars. Eight facies are recognised: (A) dark-grey shale, (B) thinly interbedded siltstone and mudstone, (C) thinly interbedded siltstone and very fine-grained sandstone, (D) blue-grey coarse-grained siltstone, (E) low-angle truncated and flat-laminated sandstone, (F) wave-rippled sandstone, (G) planar cross-bedded sandstone, (H) intraformational clay-pellet conglomerate. Four sub-environments are recognised, these being: (1) the bar crest which comprises proximal tempestites, (2) the bar slope consisting of soft-sediment deformed siltstone, (3) the bar fringe/ margin which is composed of storm layers and offshore siltstones and (4) the interbar/offshore environment comprising siltstone and distal storm layers. These bars formed in response to wave and storm processes and migrated across a muddy shelf environment. The orientation of bars was probably coast-parallel to subparallel with respect to the inferred north-northwest-south-southeast coastline. These proposed, storm-produced bars acted as major depo-centres within the shelf setting of the study area. As shelf sediments are recorded from almost the entire northwestern Karoo Basin it is anticipated that bar formation was an important sedimentary factor in the deposition of the sediments now referred to as the Ecca-Beaufort transition zone.

  16. FAST Model Calibration and Validation of the OC5-DeepCwind Floating Offshore Wind System Against Wave Tank Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason

    During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less

  17. S-wave tomography of the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Hawley, W. B.; Allen, R. M.

    2017-12-01

    We present an S-wave tomographic model of the Pacific Northwestern United States using regional seismic arrays, including the amphibious Cascadia Initiative. Offshore, our model shows a rapid transition from slow velocities beneath the ridge to fast velocities under the central Juan de Fuca plate, as seen in previous studies of the region (c.f., Bell et al., 2016; Byrnes et al., 2017). Our model also shows an elongated low-velocity feature beneath the hinge of the Juan de Fuca slab, similar to that observed in a P-wave study (Hawley et al., 2016). The addition of offshore data also allows us to investigate along-strike variations in the structure of the subducting slab. Of particular note is a `gap' in the high velocity slab between 44N and 46N, beginning around 100km depth. There exist a number of explanations for this section of lower velocities, ranging from a change in minerology along strike, to a true tear in the subducting slab.

  18. Nepheloid Layers: Origin and Development In A Narrow Continental Shelf (nw Portugal)

    NASA Astrophysics Data System (ADS)

    Oliveira, A.; Vitorino, J.; Rodrigues, A.; Jouanneau, J. M.; Weber, O.; Dias, J. A.

    A general hydrographic, nephelometric and sedimentological surveying of the NW Portuguese continental shelf and slope was undertaken, under winter and spring con- ditions in order to elaborate a conceptual model of suspended sediments (nepheloid layer) dynamics. Two major situations were found: 1) Spring/Summer - with northerly winds (upwelling) and low energetic wave regime that favour the deposition of sedi- ments. The northerly winds promote offshore transport in the surface nepheloid layer (SNL) and the establishment of a seasonal thermocline allow the expansion of the SNL to the west. The SNL can reach or even cross the shelf-break (50 km from coastline). Particulate organic carbon (POC) content in this layer highlights the higher contribution of biogenic particles (average concentration of 22%); 2) Winter, with southerly winds (downwelling) and high energetic wave regime that favour mid- shelf sediments resuspension and offshore transport in the bottom nepheloid layer (BNL). In the shelf-break the BNL detached to form intermediate nepheloid layers (INL). The SNL is restricted to the inner shelf. The effect of southerly winds gener- ates shoreward Ekman transport and detains the offshore westward extension of this layer even during high river run-off periods. The POC content indicates a dominance of litogenic particles in suspension (average concentration of 8%). Over the mid- and inner-shelf the dominant resuspension mechanism is associated with surface waves (Vitorino et al., 2002). Estimates based on wave measurements at mid-shelf (86m depth) suggested that, in winter, the wave shear velocity frequently exceeds 1 cm/s, assumed as the critical shear velocity for the resuspension of the fine grained sedi- ments (34m) of the bottom cover. Storm events, such as the one observed in November 1996 easily increase the wave shear velocities over 3 cm/s, leading to the increase of the BNL thickness (20-30m) (Vitorino et al., 2002; Oliveira et al., 2002). Low-frequency currents (periods longer than about 2 days) and internal waves can also lead to the resuspension of fine bottom sediments. Shelf morphology (outer shelf re- lieves and Porto submarine canyon) and sedimentary cover can also affect both spatial and vertical development of BNL.

  19. Trends in significant wave height and surface wind speed in the China Seas between 1988 and 2011

    NASA Astrophysics Data System (ADS)

    Zheng, Chongwei; Zhang, Ren; Shi, Weilai; Li, Xin; Chen, Xuan

    2017-10-01

    Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed (WS) and significant wave height (SWH) in the China Seas over the period 1988-2011 using the Cross-Calibrated Multi-Platform (CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III (WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988-2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s-1 yr-1 and 1.52 cm yr-1, respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Niño and a significant increase in the occurrence of gale force winds in the region.

  20. The South Carolina Coastal Erosion Study: Nearshore Hydrodynamics Field Experiment

    NASA Astrophysics Data System (ADS)

    Haas, K. A.; Voulgaris, G.; Demir, H.; Work, P. A.; Hanes, D. M.

    2004-12-01

    As part of the South Carolina Coastal Erosion Study (SCCES) a nearshore field experiment was carried out for five days in December 2003 just north of Myrtle Beach, South Carolina, providing measurements of the waves, currents and morphological evolution. This experiment occurred concurrently with an extensive field campaign several kilometers offshore which included measurements of the waves and currents on and near a significant sand shoal. The purpose of the nearshore experiment was to aid in the identification of the effect of the offshore shoal on the nearshore processes. The resulting dataset will be used for verification of numerical models being used to investigate the hydrodynamics of the region. The experiment was carried out from December 10 to December 15 and consisted of measurements of the waves and currents, extensive surveys of the bathymetry every day, grab samples of the sediments, and video imagery. The hydrodynamics were measured using two Sontek Triton downward-looking Acoustic Doppler Velocimeters and two Nortek AquaDopp profilers arranged in a cross-shore line from inside the swash to several surf zone widths past the breakers. The bathymetric surveying was accomplished using both a differential GPS system and a total station. Surveying was performed each day in order to capture the morphological changes. On the last day, seven sediment samples were taken along a single cross-section to determine the sediment characteristics across the beach. Additionally, a video camera was located on a balcony of the top floor of a nearby hotel providing an excellent field of view of the entire experimental area. Digital video was captured directly onto a computer during all daylight hours and many control points were surveyed in each day to facilitate rectification of the imagery. A variety of conditions were encountered during the experiment, including two storm fronts which passed through, generating wind speeds up to 15 m/s. The first storm generated waves from the south driving a longshore current towards the north. After several relatively calm days with nearly normal incident waves the second front passed through the area with strong wind and waves approaching the shore with a large angle of incidence from the north. This drove an extremely strong longshore current in excess of 1.4 m/s and caused significant morphological changes.

  1. New Insights on the Structure of the Cascadia Subduction Zone from Amphibious Seismic Data

    NASA Astrophysics Data System (ADS)

    Janiszewski, Helen Anne

    A new onshore-offshore seismic dataset from the Cascadia subduction zone was used to characterize mantle lithosphere structure from the ridge to the volcanic arc, and plate interface structure offshore within the seismogenic zone. The Cascadia Initiative (CI) covered the Juan de Fuca plate offshore the northwest coast of the United States with an ocean bottom seismometer (OBS) array for four years; this was complemented by a simultaneous onshore seismic array. Teleseismic data recorded by this array allows the unprecedented imaging of an entire tectonic plate from its creation at the ridge through subduction initiation and back beyond the volcanic arc along the entire strike of the Cascadia subduction zone. Higher frequency active source seismic data also provides constraints on the crustal structure along the plate interface offshore. Two seismic datasets were used to image the plate interface structure along a line extending 100 km offshore central Washington. These are wide-angle reflections from ship-to-shore seismic data from the Ridge-To-Trench seismic cruise and receiver functions calculated from a densely spaced CI OBS focus array in a similar region. Active source seismic observations are consistent with reflections from the plate interface offshore indicating the presence of a P-wave velocity discontinuity. Until recently, there has been limited success in using the receiver function technique on OBS data. I avoid these traditional challenges by using OBS constructed with shielding deployed in shallow water on the continental shelf. These data have quieter horizontals and avoid water- and sediment-multiple contamination at the examined frequencies. The receiver functions are consistently modeled with a velocity structure that has a low velocity zone (LVZ) with elevated P to S-wave velocity ratios at the plate interface. A similar LVZ structure has been observed onshore and interpreted as a combination of elevated pore-fluid pressures or metasediments. This new offshore result indicates that the structure may persist updip indicating the plate interface may be weak. To focus more broadly on the entire subduction system, I calculate phase velocities from teleseismic Rayleigh waves from 20-100 s period across the entire onshore-offshore array. The shear-wave velocity model calculated from these data can provide constrains on the thermal structure of the lithosphere both prior to and during subduction of the Juan de Fuca plate. Using OBS data in this period band requires removal of tilt and compliance noise, two types of water-induced noise that affect long period data. To facilitate these corrections on large seismic arrays such as the CI, an automated quality control routine was developed for selecting noise windows for the calculation of the required transfer functions. These corrections typically involve either averaging out transient signals, which requires the assumption of stationarity of the noise over the long periods of time, or laborious hand selection of noise segments. This new method calculates transfer functions based on daily time series that exclude transient signals, but allows for the investigation of long-term variation over the course of an instrument's deployment. I interpret these new shoreline-crossing phase velocity maps in terms of the tectonics associated with the Cascadia subduction system. Major findings include that oceanic plate cooling models do not explain the velocities observed beneath the Juan de Fuca plate, that slow velocities in the forearc appear to be more prevalent in areas modeled to have experienced high slip in past Cascadia megathrust earthquakes, and along strike variations in phase velocity reflect variations in arc structure and backarc tectonics.

  2. Combined infragravity wave and sea-swell runup over fringing reefs by super typhoon Haiyan

    NASA Astrophysics Data System (ADS)

    Shimozono, Takenori; Tajima, Yoshimitsu; Kennedy, Andrew B.; Nobuoka, Hisamichi; Sasaki, Jun; Sato, Shinji

    2015-06-01

    Super typhoon Haiyan struck the Philippines on 8 November 2013, marking one of the strongest typhoons at landfall in recorded history. Extreme storm waves attacked the Pacific coast of Eastern Samar where the violent typhoon first made landfall. Our field survey confirmed that storm overwash heights of 6-14 m above mean sea level were distributed along the southeastern coast and extensive inundation occurred in some coastal villages in spite of natural protection by wide fringing reefs. A wave model based on Boussinesq-type equations is constructed to simulate wave transformation over shallow fringing reefs and validated against existing laboratory data. Wave propagation and runup on the Eastern Samar coast are then reproduced using offshore boundary conditions based on a wave hindcast. The model results suggest that extreme waves on the shore are characterized as a superposition of the infragravity wave and sea-swell components. The balance of the two components is strongly affected by the reef width and beach slope through wave breaking, frictional dissipation, reef-flat resonances, and resonant runup amplification. Therefore, flood characteristics significantly differ from site to site due to a large variation of the two topographic parameters on the hilly coast. Strong coupling of infragravity waves and sea swells produces extreme runup on steep beaches fronted by narrow reefs, whereas the infragravity waves become dominant over wide reefs and they evolve into bores on steep beaches.

  3. Tomographic Imaging of the Cascadia Subduction Zone and Juan de Fuca Plate System: Improved Methods Eliminate Artifacts and Reveal New Structures

    NASA Astrophysics Data System (ADS)

    Bodmer, M.; Toomey, D. R.; Hooft, E. E. E.; Bezada, M.; Schmandt, B.; Byrnes, J. S.

    2017-12-01

    Amphibious studies of subduction zones promise advances in understanding links between incoming plate structure, the subducting slab, and the upper mantle beneath the slab. However, joint onshore/offshore imaging is challenging due to contrasts between continental and oceanic structure. We present P-wave teleseismic tomography results for the Cascadia subduction zone (CSZ) that utilize existing western US datasets, amphibious seismic data from the Cascadia Initiative, and tomographic algorithms that permit 3D starting models, nonlinear ray tracing, and finite frequency kernels. Relative delay times show systematic onshore/offshore trends, which we attribute to structure in the upper 50 km. Shore-crossing CSZ seismic refraction models predict relative delays >1s, with equal contributions from elevation and crustal thickness. We use synthetic data to test methods of accounting for such shallow structure. Synthetic tests using only station static terms produce margin-wide, sub-slab low-velocity artifacts. Using a more realistic a priori 3D model for the upper 50 km better reproduces known input structures. To invert the observed delays, we use data-constrained starting models of the CSZ. Our preferred models utilize regional surface wave studies to construct a starting model, directly account for elevation, and use 3D nonlinear ray tracing. We image well-documented CSZ features, including the subducted slab down to 350 km, along strike slab variations below 150 km, and deep slab fragmentation. Inclusion of offshore data improves resolution of the sub-slab mantle, where we resolve localized low-velocity anomalies near the edges of the CSZ (beneath the Klamath and Olympic mountains). Our new imaging and resolution tests indicate that previously reported margin-wide, sub-slab low-velocity asthenospheric anomalies are an imaging artifact. Offshore, we observe low-velocity anomalies beneath the Gorda plate consistent with regional deformation and broad upwelling resulting from plate stagnation. At the Juan de Fuca Ridge we observe asymmetric low-velocity anomalies consistent with dynamic upwelling. Our results agree with recent offshore tomography studies using S wave data; however, differences in the recovered relative amplitudes are likely due to anisotropy, which we are exploring.

  4. A new offshore transport mechanism for shoreline-released tracer induced by transient rip currents and stratification

    NASA Astrophysics Data System (ADS)

    Kumar, Nirnimesh; Feddersen, Falk

    2017-03-01

    Offshore transport from the shoreline across the inner shelf of early-stage larvae and pathogens is poorly understood yet is critical for understanding larval fate and dilution of polluted shoreline water. With a novel coupling of a transient rip current (TRC) generating surf zone model and an ocean circulation model, we show that transient rip currents ejected onto a stratified inner shelf induce a new, previously unconsidered offshore transport pathway. For incident waves and stratification typical for Southern California in the fall, this mechanism subducts surf zone-origin tracers and transports them at least 800 m offshore at 1.2 km/d analogous to subduction at ocean fronts. This mechanism requires both TRCs and stratification. As TRCs are ubiquitous and the inner shelf is often stratified, this mechanism may have an important role in exporting early-stage larvae, pathogens, or other tracers onto the shelf.

  5. A study on the flow characteristics of a direct drive turbine for energy conversion generation by experiment and CFD

    NASA Astrophysics Data System (ADS)

    Cho, Y. J.; Zullah, M. A.; Faizal, M.; Choi, Y. D.; Lee, Y. H.

    2012-11-01

    A variety of technologies has been proposed to capture the energy from waves. Some of the more promising designs are undergoing demonstration testing at commercial scales. Due to the complexity of most offshore wave energy devices and their motion response in different sea states, physical tank tests are common practice for WEC design. Full scale tests are also necessary, but are expensive and only considered once the design has been optimized. Computational Fluid Dynamics (CFD) is now recognized as an important complement to traditional physical testing techniques in offshore engineering. Once properly calibrated and validated to the problem, CFD offers a high density of test data and results in a reasonable timescale to assist with design changes and improvements to the device. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for extraction of wave energy. Experiments and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that commercial CFD code can be applied successfully to the simulation of the wave motion in the water tank. The performance of the turbine for wave energy converter is studied continuously for a ongoing project.

  6. Nonlinear internal waves in the Gulf of Guinea: observations and modeling

    NASA Astrophysics Data System (ADS)

    Baquet, Emeric; Pichon, Annick; Raynaud, Stephane; Carton, Xavier

    2017-04-01

    Nonlinear internal waves are known hazards to offshore operations. They have been observed at different locations around the world and have been studied for a long time in Southeast Asia. However in West Africa, they are less documented. This research presents original data of currentmeters in northeastern part of the Gulf of Guinea, in the vicinity of offshore oil platforms. Nonlinear internal waves were observed. Their characteristics were determined under the assumptions of the weakly nonlinear and non-hydrostatic Korteweg-de Vries equation. Their directions of propagation were studied to determine generation zones. The monthly distribution was shown to assess seasonal variability. Their main generation mechanism was the barotropic tides over the shelf break, but other processes were at work too. The seasonal variability due to the monsoon, river discharges also played a part in the nonlinear internal wave dynamics. Since several processes, of different time and space scales, are at work, interactions between them must be investigated. Thus, a two-layered numerical model was used to reproduce nonlinear internal waves. Sensitivity experiments were made, in order to investigate the balance between nonlinearities, Coriolis and non-hydrostatic dispersions. The impact of non-uniform bathymetry and the presence of another flow in addition to the tides were also tested.

  7. Investigation on the possibility of extracting wave energy from the Texas coast

    NASA Astrophysics Data System (ADS)

    Haces-Fernandez, Francisco

    Due to the great and growing demand of energy consumption in the Texas Coast area, the generation of electricity from ocean waves is considered very important. The combination of the wave energy with offshore wind power is explored as a way to increase power output, obtain synergies, maximize the utilization of assigned marine zones and reduce variability. Previously literature has assessed the wave energy generation, combined with wind in different geographic locations such as California, Ireland and the Azores Island. In this research project, the electric power generation from ocean waves on the Texas Coast was investigated, assessing its potential from the meteorological data provided by five buoys from National Data Buoy Center of the National Oceanic and Atmospheric Administration, considering the Pelamis 750 kW Wave Energy Converter (WEC) and the Vesta V90 3 MW Wind Turbine. The power output from wave energy was calculated for the year 2006 using Matlab, and the results in several locations were considered acceptable in terms of total power output, but with a high temporal variability. To reduce its variability, wave energy was combined with wind energy, obtaining a significant reduction on the coefficient of variation on the power output. A Matlab based interface was created to calculate power output and its variability considering data from longer periods of time.

  8. Physical oceanography of the US Atlantic and eastern Gulf of Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milliman, J.D.; Imamura, E.

    The report provides a summary of the physical oceanography of the U.S. Atlantic and Eastern Gulf of Mexico and its implication to offshore oil and gas exploration and development. Topics covered in the report include: meteorology and air-sea interactions, circulation on the continental shelf, continental slope and rise circulation, Gulf Stream, Loop Current, deep-western boundary current, surface gravity-wave climatology, offshore engineering implications, implications for resource commercialization, and numerical models of pollutant dispersion.

  9. Sediment Dispersal Within Poverty Bay, Offshore of the Waipaoa River, New Zealand

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Bever, A. J.; McNinch, J. E.

    2006-12-01

    Transport processes change drastically as sediment crosses the boundary between land and sea. As such, developing conceptual or predictive models of transport and deposition for the shoreline and inner continental shelf is critical to understanding source-to-sink sedimentary systems. In shallow coastal areas, sediment dispersal results from both dilute suspensions driven by energetic waves and current shear stresses, and by gravitationally driven flows of fluid muds. The Waipaoa River, on the east coast of the North Island of New Zealand, delivers approximately 15 million tons per year of sediment to Poverty Bay, a small embayment with water depth less than about 25 m. Instruments deployed during the winter storm season of 2006 captured periods of high discharge from the Waipaoa River that were typically associated with energetic waves and winds from the southeast. During these times, instruments deployed at 9 and 14 m water depths recorded high turbidity. Currents measured in Poverty Bay were correlated with wind velocities, but also showed prolonged periods of offshore flow within the bottom boundary layer. Sediment texture throughout much of Poverty Bay is muddy, and thick deposits have occurred during the Holocene, as evidenced by sub-bottom seismics. Short-lived radioisotopes such as ^7Be have not been found on Poverty Bay sediments during our field work, though depocenters have been identified using ^7Be on the continental shelf. This may imply that muds exist there as ephemeral and spatially patchy deposits that may bypass Poverty Bay. Bypassing mechanisms may include offshore dispersal by dilute suspended sediment, and downslope transport of fluid muds. Energetic waves may resuspend sediment, which is then transported out of Poverty Bay by ambient ocean currents. Alternatively, fluid muds may form and transport material downslope and offshore to the continental shelf. Because of the high sediment loads of the Waipaoa River, these fluid muds may be formed by hyperpycnal river flows upon entering Poverty Bay. They may also be produced by frontal systems that focus newly delivered sediments, or within fluid muds confined to the thin near-bed wave boundary layer.

  10. Current-induced dissipation in spectral wave models

    NASA Astrophysics Data System (ADS)

    Rapizo, H.; Babanin, A. V.; Provis, D.; Rogers, W. E.

    2017-03-01

    Despite many recent developments of the parameterization for wave dissipation in spectral models, it is evident that when waves propagate onto strong adverse currents the rate of energy dissipation is not properly estimated. The issue of current-induced dissipation is studied through a comprehensive data set in the tidal inlet of Port Phillip Heads, Australia. The wave parameters analyzed are significantly modulated by the tidal currents. Wave height in conditions of opposing currents (ebb tide) can reach twice the offshore value, whereas during coflowing currents (flood), it can be reduced to half. The wind-wave model SWAN is able to reproduce the tide-induced modulation of waves and the results show that the variation of currents is the dominant factor in modifying the wave field. In stationary simulations, the model provides an accurate representation of wave height for slack and flood tides. During ebb tides, wave energy is highly overestimated over the opposing current jet. None of the four parameterizations for wave dissipation tested performs satisfactorily. A modification to enhance dissipation as a function of the local currents is proposed. It consists of the addition of a factor that represents current-induced wave steepening and it is scaled by the ratio of spectral energy to the threshold breaking level. The new term asymptotes to the original form as the current in the wave direction tends to zero. The proposed modification considerably improves wave height and mean period in conditions of adverse currents, whereas the good model performance in coflowing currents is unaltered.

  11. Stability of a very coarse-grained beach at Carmel, California

    USGS Publications Warehouse

    Dingler, J.R.

    1981-01-01

    Monastery Beach at Carmel, California, is a pocket beach composed of very coarse to granular sediment. In profile, the beach has a well-defined berm crest; a steep foreshore; and a gently sloping, barless offshore covered by large, long-crested oscillation ripples. Carmel Submarine Canyon heads a few hundred meters offshore of the beach, and San Jose Creek, a small ephemeral steam, ponds onshore of the central part of the berm. Wave conditions vary greatly during a year because the beach lies open to the Pacific Ocean for azimuths between 270??-322??N whence come a variety of wave types. Even with a variable wave climate, Monastery Beach has maintained a swell profile for almost three years. Aperiodic beach surveys show that the beach responds little to seasonal changes in wave climate. Four survey lines maintained the same swell profile throughout the study period. The fifth line maintained a stable profile only across the foreshore; the berm was twice artificially breached during storms to prevent upstream flooding along San Jose Creek. In comparison, Carmel Beach, a nearby beach composed of medium sand, commonly alternates between swell and storm profiles. The increased stability of Monastery Beach relative to Carmel Beach is attributed to two factors: grain size differences and location within Carmel Bay. Rebuilding proceeded very slowly along the breached part of the berm at Monastery Beach. The probable cause of such a low recovery rate is that oscillation ripples trapped the sand that was carried offshore when San Jose Creek eroded the beach. The ripples, which are active under high-energy conditions, approach dormancy under low-energy conditions. Each ripple, therefore, acts like a reservoir, retaining sand during most swell conditions. ?? 1981.

  12. Maps Showing Composition of Surficial Sediments on the Insular Shelf of Southwestern Puerto Rico

    USGS Publications Warehouse

    Shideler, Gerald L.

    1980-01-01

    The limited availability of onshore sand deposits for use in construction appears to be a future major problem in Puerto Rico (U.S. Bureau of Mines, 1972; Committee on Puerto Rico and the Sea, 1974). Consequently, the mining of offshore sand deposits as supplemental sources of construction aggregate may becom e necessary. For this reason, the U.S. Geological Survey and the Department of Natural Resources of the Commonwealth of Puerto Rico have conducted investigations of potential offshore sand deposits on the Puerto Rico insular shelf. This report provides information on the composition of surficial sediments on the southwestern Puerto Rico shelf (fig. 1), an area that may be one of the more favorable potential sites for offshore sand resources. Water depths over most of the study area are less than 22 meters (m). The sea floor is composed of live and dead patch and fringing reefs, areas of rock exposures, and sedim ent-covered areas. The adjacent coastline includes prominent embaym ents and a conspicuous rock promontory (Cabo Rojo) connected by a tombolo to the mainland of Puerto Rico. The study area is in the belt of northeast trade winds. Waves approach the coast predominantly from the southeast, resulting in a predominantly westward littoral drift along the south coast (Grove and Trumbull, 1978). Local sand movement on the southern shelf is shown by an active sand wave field south of Bah1a Sucia in which the sand wave crests have migrated toward the southwest (Grove and Trumbull, 1978). The presence of the sand wave field suggests that large volumes of sand having potential for mining are locally present in the study area.

  13. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    NASA Astrophysics Data System (ADS)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  14. Detection, location, and characterization of hydroacoustic signals using seafloor cable networks offshore Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Sugioka, H.; Suyehiro, K.; Shinohara, M.

    2009-12-01

    The hydroacoustic monitoring by the International Monitoring System (IMS) for Comprehensive Nuclear-Test-Treaty (CTBT) verification system utilize hydrophone stations and seismic stations called T-phase stations for worldwide detection. Some signals of natural origin include those from earthquakes, submarine volcanic eruptions, or whale calls. Among artificial sources there are non-nuclear explosions and air-gun shots. It is important for IMS system to detect and locate hydroacoustic events with sufficient accuracy and correctly characterize the signals and identify the source. As there are a number of seafloor cable networks operated offshore Japanese islands basically facing the Pacific Ocean for monitoring regional seismicity, the data from these stations (pressures, hydrophones and seismic sensors) may be utilized to verify and increase the capability of the IMS. We use these data to compare some selected event parameters with those by Pacific in the time period of 2004-present. These anomalous examples and also dynamite shots used for seismic crustal structure studies and other natural sources will be presented in order to help improve the IMS verification capabilities for detection, location and characterization of anomalous signals. The seafloor cable networks composed of three hydrophones and six seismometers and a temporal dense seismic array detected and located hydroacoustic events offshore Japanese island on 12th of March in 2008, which had been reported by the IMS. We detected not only the reverberated hydroacoustic waves between the sea surface and the sea bottom but also the seismic waves going through the crust associated with the events. The determined source of the seismic waves is almost coincident with the one of hydroacoustic waves, suggesting that the seismic waves are converted very close to the origin of the hydroacoustic source. We also detected very similar signals on 16th of March in 2009 to the ones associated with the event of 12th of March in 2008.

  15. Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Li-wei; Li, Xin

    2017-10-01

    Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.

  16. Hindcast Wave Information for the Great Lakes: Lake Huron. Wave Information Studies of US Coastlines

    DTIC Science & Technology

    1991-12-01

    model used in this study, DWAVE , was developed by Dr. Donald T. Resio of Offshore and Coastal Technologies, Inc. It is described in Resio and Perrie...1989) and in an unpublished contractor’s report* available from the Wave Information Study (WIS) Project Office. 17. DWAVE is a FORTRAN computer code...discrete elements. Figure 4 shows how energy is partitioned in a directional spectrum within DWAVE . As seen there, each frequency-direction increment

  17. Highly Adaptive Solid-Liquid Interfacing Triboelectric Nanogenerator for Harvesting Diverse Water Wave Energy.

    PubMed

    Zhao, Xue Jiao; Kuang, Shuang Yang; Wang, Zhong Lin; Zhu, Guang

    2018-05-22

    Harvesting water wave energy presents a significantly practical route to energy supply for self-powered wireless sensing networks. Here we report a networked integrated triboelectric nanogenerator (NI-TENG) as a highly adaptive means of harvesting energy from interfacing interactions with various types of water waves. Having an arrayed networking structure, the NI-TENG can accommodate diverse water wave motions and generate stable electric output regardless of how random the water wave is. Nanoscaled surface morphology consisting of dense nanowire arrays is the key for obtaining high electric output. A NI-TENG having an area of 100 × 70 mm 2 can produce a stable short-circuit current of 13.5 μA and corresponding electric power of 1.03 mW at a water wave height of 12 cm. This merit promises practical applications of the NI-TENG in real circumstances, where water waves are highly variable and unpredictable. After energy storage, the generated electric energy can drive wireless sensing by autonomously transmitting data at a period less than 1 min. This work proposes a viable solution for powering individual standalone nodes in a wireless sensor network. Potential applications include but are not limited to long-term environment monitoring, marine surveillance, and off-shore navigation.

  18. Final Technical Report. DeepCwind Consortium Research Program. January 15, 2010 - March 31, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagher, Habib; Viselli, Anthony; Goupee, Andrew

    This is the final technical report for the U.S. Department of Energy-funded program, DE-0002981: DeepCwind Consortium Research Program. The project objective was the partial validation of coupled models and optimization of materials for offshore wind structures. The United States has a great opportunity to harness an indigenous abundant renewable energy resource: offshore wind. In 2010, the National Renewable Energy Laboratory (NREL) estimated there to be over 4,000 GW of potential offshore wind energy found within 50 nautical miles of the US coastlines (Musial and Ram, 2010). The US Energy Information Administration reported the total annual US electric energy generation inmore » 2010 was 4,120 billion kilowatt-hours (equivalent to 470 GW) (US EIA, 2011), slightly more than 10% of the potential offshore wind resource. In addition, deep water offshore wind is the dominant US ocean energy resource available comprising 75% of the total assessed ocean energy resource as compared to wave and tidal resources (Musial, 2008). Through these assessments it is clear offshore wind can be a major contributor to US energy supplies. The caveat to capturing offshore wind along many parts of the US coast is deep water. Nearly 60%, or 2,450 GW, of the estimated US offshore wind resource is located in water depths of 60 m or more (Musial and Ram, 2010). At water depths over 60 m building fixed offshore wind turbine foundations, such as those found in Europe, is likely economically infeasible (Musial et al., 2006). Therefore floating wind turbine technology is seen as the best option for extracting a majority of the US offshore wind energy resource. Volume 1 - Test Site; Volume 2 - Coupled Models; and Volume 3 - Composite Materials« less

  19. Changes in the extreme wave heights over the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, Nadia; Soomere, Tarmo

    2017-04-01

    Storms over the Baltic Sea and northwestern Europe have a large impact on the population, offshore industry, and shipping. The understanding of extreme events in sea wave heights and their change due to the climate change and variability is critical for assessment of flooding risks and coastal protection. The BACCII Assessment of Climate Change for the Baltic Sea Basin showed that the extreme events analysis of wind waves is currently not very well addressed, as well as satellite observations of the wave heights. Here we discuss the analysis of all existing satellite altimetry data over the Baltic Sea Basin regarding extremes in the wave heights. In this talk for the first time, we present an analysis of 100-yr return periods, fitted generalized Pareto and Weibull distributions, number, and frequency of extreme events in wave heights in the Baltic Sea measured by the multi-mission satellite altimetry. The data span more than 23 years and provide an excellent spatial coverage over the Baltic Sea, allowing to study in details spatial variations and changes in extreme wave heights. The analysis is based on an application of the Initial Distribution Method, Annual Maxima method and Peak-Over-Threshold approach to satellite altimetry data, all validated in comparison with in-situ wave height measurements. Here we show that the 100-yr return periods of wave heights show significant spatial changes over the Baltic Sea indicating a decrease in the southern part of the Baltic Sea and an increase in adjacent areas, which can significantly affect coast vulnerability. Here we compare the observed shift with storm track database data and discuss a spatial correlation and possible connection between the changes in the storm tracks over the Baltic Sea and the change in the extreme wave heights.

  20. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    PubMed Central

    Taylor, P. H.; Gibson, R.

    2016-01-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958–2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different. PMID:27713662

  1. Wave Runup on a Frozen Beach Under High Energy Conditions

    NASA Astrophysics Data System (ADS)

    Didier, D.; Bernatchez, P.; Dumont, D.; Corriveau, M.

    2017-12-01

    High and mid-latitude beaches have typical morphological characteristics influenced by nearshore processes prevailing under ice conditions during cold season. Nearshore ice complexes (NIC) offer a natural coastal protection by covering beach sediments, while offshore ice-infested waters dissipate incoming waves. Climate change contributes to sea ice shrinking therefore reducing its protection against erosion and flooding. In the Estuary and Gulf of the St. Lawrence (ESL, GSL) (eastern Canada), sea ice cover undergoes an overall shrinking and simulated future projections tend toward a negligible effect on wave climate by 2100. Quantifying the effect of nearshore dynamics on frozen beaches is therefore imperative for coastal management as more wave energy at the coast is expected in the future. To measure the effect of a frozen beach on wave runup elevations, this study employs a continuous video recording of the swash motion at 4Hz. Video-derived wave runup statistics have been extracted during a tidal cycle on a frozen beach, using the Pointe-Lebel beach (ESL) as a test case. Timestack analysis was combined with offshore water levels and wave measurements. A comparison of runup under icy conditions (Dec. 30 2016) with a runup distribution during summer was made under similar high energy wave conditions. Results indicate high runup excursions potentially caused by lowered sediment permeability due to high pore-ice saturation in the swash zone, accentuating the overwash of the eroding coastline and thus the risk of flooding. With projected reduction in coastal sea ice cover and thus higher wave energy, this study suggests that episodes of degradation and weakening could influence the coastal flood risk in mid- and high-latitude cold environments.

  2. Hydrodynamic modeling of tsunamis from the Currituck landslide

    USGS Publications Warehouse

    Geist, E.L.; Lynett, P.J.; Chaytor, J.D.

    2009-01-01

    Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40-50??km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.

  3. Wave-driven fluxes through New River Inlet, NC

    NASA Astrophysics Data System (ADS)

    Wargula, A.; Raubenheimer, B.; Elgar, S.

    2012-12-01

    The importance of wave forcing to inlet circulation is examined using observations of waves, water levels, and currents collected in and near New River Inlet, NC during April and May, 2012. A boat-mounted system was used to measure current profiles along transects across the inlet mouth during three 14-hr periods, providing information on cross-inlet current structure, as well as discharge. Additionally, an array of 13 colocated pressure gages and profilers were deployed along 2 km of the inlet channel (5 to 10 m water depths) and ebb shoal channel (2 to 3 m water depths) and 19 colocated pressure gages and acoustic Doppler velocimeters were deployed across and offshore of the ebb shoal (1 to 5 m water depths) (Figure 1). The inlet is well mixed and tidal currents ranged from +/- 1.5 m/s, maximum discharge rates at peak ebb and flood were about 700 to 900 m3/s, offshore significant wave heights Hsig were 0.5 to 2.5 m, and wind speeds ranged from 0 to 14 m/s. Time-integrated residual discharge over semi-diurnal tidal cycles with similar ranges was ebb dominant during calm conditions (May 11, net out-of-inlet discharge ~ 55 m3, Hsig ~ 0.5 m, NW winds ~ 3 m/s) and flood dominant during stormier conditions (May 14, net into-inlet discharge ~ 15 m3, Hsig ~ 1.2 m, S winds ~ 6.5 m/s). Low-pass filtered in situ profiler data suggest wave-forcing affects the fluxes into and out of the inlet. The observations will be used to examine the momentum balance governing the temporal and cross-inlet (channel vs. shoal) variation of these fluxes, as well as the effect of waves on ebb and flood flow dominance. Funding provided by the Office of Naval Research and a National Security Science and Engineering Faculty Fellowship.; Figure 1: Google Earth image of New River Inlet, NC. Colors are depth contours (scale on the right, units are m relative to mean sea level) and symbols are locations of colocated current meters and pressure gages.

  4. Seismic definition of Lower Cretaceous delta, south Whale subbasin, offshore Newfoundland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasinghe, N.R.; Stokes, R.E.

    1986-05-01

    Recognition of stratigraphic traps in areas where previous prospects were structural is a trend attributable partly to the availability of new, high-quality seismic data. In the South Whale subbasin, offshore Newfoundland, Canada, such a change in exploration philosophy is presently being evaluated. Exploratory drilling offshore eastern Canada began in 1966 in the South Whale subbasin. By the end of 1973, 13 wells were drilled in this subbasin; however, lack of success discouraged further drilling. These wells evaluated large, salt-related structures, well defined by seismic data. Although an adequate reservoir was encountered in a number of these wells, faulting associated withmore » halokinesis may have resulted in petroleum migration out of the reservoir. Interpretation of recently acquired high-quality seismic data indicate a delta in the Lower Cretaceous Missisauga Formation in the study area. Seismic dip sections across the delta show a shingled progradation pattern suggesting a wave-dominated depositional environment. The delta comprises approximately 400 km/sup 2/, with closure in the eastern half. Data from wells in the area indicate that adequate source and sealing beds could be present. Furthermore, rocks of similar age in the nearby Avalon basin contain significant petroleum accumulations, the most notable being within the Hibernia oil field.« less

  5. On the dynamics of the Mouth of the Columbia River: Results from a three-dimensional fully coupled wave-current interaction model

    NASA Astrophysics Data System (ADS)

    Akan, Çiǧdem; Moghimi, Saeed; Özkan-Haller, H. Tuba; Osborne, John; Kurapov, Alexander

    2017-07-01

    Numerical simulations were performed using a 3-D ocean circulation model (ROMS) two-way coupled to a phase-averaged wave propagation model (SWAN), to expand our understanding of the dynamics of wave-current interactions at the Mouth of the Columbia River (MCR). First, model results are compared with water elevations, currents, temperature, salinity, and wave measurements obtained by the U.S. Army Corp of Engineers during the Mega-Transect Experiment in 2005. We then discuss the effects of the currents on the waves and vice versa. Results show that wave heights are intensified notably at the entrance of the mouth in the presence of the tidal currents, especially in ebb flows. We also find nonlocal modifications to the wave field because of wave focusing processes that redirect wave energy toward the inlet mouth from adjacent areas, resulting in the presence of a tidal signatures in areas where local currents are weak. The model also suggests significant wave amplification at the edge of the expanding plume in the later stages of ebb, some tens of kilometers offshore of the inlet mouth, with potential implications for navigation safety. The effect of waves on the location of the plume is also analyzed, and results suggest that the plume is shifted in the down-wave direction when wave effects are considered, and that this shift is more pronounced for larger waves, and consistent with the presence of alongshore advection terms in the salt advection equation, which are related to the Stokes velocities associated with waves.

  6. FAST Model Calibration and Validation of the OC5- DeepCwind Floating Offshore Wind System Against Wave Tank Test Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason

    During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less

  7. Mechanisms of wave‐driven water level variability on reef‐fringed coastlines

    USGS Publications Warehouse

    Buckley, Mark L.; Lowe, Ryan J.; Hansen, Jeff E; van Dongeren, Ap R.; Storlazzi, Curt

    2018-01-01

    Wave‐driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef‐fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms, which can violate assumptions in conventional models applied to open sandy coastlines. To investigate the mechanisms of wave‐driven water level variability on a reef‐fringed coastline, we performed a set of laboratory flume experiments on an along‐shore uniform bathymetric profile with and without bottom roughness. Wave setup and waves at frequencies lower than the incident sea‐swell forcing (infragravity waves) were found to be the dominant components of runup. These infragravity waves were positively correlated with offshore wave groups, signifying they were generated in the surf zone by the oscillation of the breakpoint. On the reef flat and at the shoreline, the low‐frequency waves formed a standing wave pattern with energy concentrated at the natural frequencies of the reef flat, indicating resonant amplification. Roughness elements used in the flume to mimic large reef bottom roughness reduced low frequency motions on the reef flat and reduced wave run up by 30% on average, compared to the runs over a smooth bed. These results provide insight into sea‐swell and infragravity wave transformation and wave setup dynamics on steep‐sloped coastlines, and the effect that future losses of reef bottom roughness may have on coastal flooding along reef‐fringed coasts.

  8. Fate and Contribution of Internal Wave-Forced Barnacle Settlers to Community Structure in Northern Baja California, a Year after Settlement

    NASA Astrophysics Data System (ADS)

    Lievana, A.; Ladah, L. B.; Lavin, M. F.; Filonov, A. E.; Tapia, F. J.; Leichter, J.; Valencia Gasti, J. A.

    2016-02-01

    Physical transport processes, such as nonlinear internal waves, operating within the coastal ocean of Baja California, Mexico, are diverse, variable and operate on a variety of temporal and spatial scales. Understanding the influence of nonlinear internal waves, in part responsible for the exchange of water properties between coastal and offshore environments, on the structure of intertidal communities is important for the generation of working ecological models. The relationship between the supply of ecological subsidies associated with physical transport processes that operate on relatively short spatial and temporal scales, such as the internal tide, and intertidal community structure must be understood as processes that operate on distinct spatial and temporal scales may be prone to react uniquely as the climate changes. We designed an experiment to quantify recruitment and adult survivorship of Chthamalus sp. whose settlement was associated with internal wave activity in the nearby ocean and found that the number of settlers was a robust predictor of the number of adults observed, indicating that post-settlement processes such as competition and predation are not likely to significantly affect the structure of the intertidal barnacle community resulting from internal-wave forced settlement.

  9. Implementation and modification of a three-dimensional radiation stress formulation for surf zone and rip-current applications

    USGS Publications Warehouse

    Kumar, N.; Voulgaris, G.; Warner, John C.

    2011-01-01

    Regional Ocean Modeling System (ROMS v 3.0), a three-dimensional numerical ocean model, was previously enhanced for shallow water applications by including wave-induced radiation stress forcing provided through coupling to wave propagation models (SWAN, REF/DIF). This enhancement made it suitable for surf zone applications as demonstrated using examples of obliquely incident waves on a planar beach and rip current formation in longshore bar trough morphology (Haas and Warner, 2009). In this contribution, we present an update to the coupled model which implements a wave roller model and also a modified method of the radiation stress term based on Mellor (2008, 2011a,b,in press) that includes a vertical distribution which better simulates non-conservative (i.e., wave breaking) processes and appears to be more appropriate for sigma coordinates in very shallow waters where wave breaking conditions dominate. The improvements of the modified model are shown through simulations of several cases that include: (a) obliquely incident spectral waves on a planar beach; (b) obliquely incident spectral waves on a natural barred beach (DUCK'94 experiment); (c) alongshore variable offshore wave forcing on a planar beach; (d) alongshore varying bathymetry with constant offshore wave forcing; and (e) nearshore barred morphology with rip-channels. Quantitative and qualitative comparisons to previous analytical, numerical, laboratory studies and field measurements show that the modified model replicates surf zone recirculation patterns (onshore drift at the surface and undertow at the bottom) more accurately than previous formulations based on radiation stress (Haas and Warner, 2009). The results of the model and test cases are further explored for identifying the forces operating in rip current development and the potential implication for sediment transport and rip channel development. Also, model analysis showed that rip current strength is higher when waves approach at angles of 5?? to 10?? in comparison to normally incident waves. ?? 2011 Elsevier B.V.

  10. Underwater Mapping Results for Seabotix vLBV300 Vehicle with Tritech Gemini 720i Imaging Sonar near Newport, OR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollinger, Geoffrey

    This document presents results from tests to demonstrate underwater mapping capabilities of an underwater vehicle in conditions typically found in marine renewable energy arrays. These tests were performed with a tethered Seabotix vLBV300 underwater vehicle. The vehicle is equipped with an inertial navigation system (INS) based on a Gladiator Landmark 40 IMU and Teledyne Explorer Doppler Velocity Log, as well as a Gemini 720i scanning sonar acquired from Tritech. The results presented include both indoor pool and offshore deployments. The indoor pool deployments were performed on October 7, 2016 and February 3, 2017 in Corvallis, OR. The offshore deployment wasmore » performed on April 20, 2016 off the coast of Newport, OR (44.678 degrees N, 124.109 degrees W). During the mission period, the sea state varied between 3 and 4, with an average significant wave height of 1.6 m. Data was recorded from both the INS and the sonar.« less

  11. California State Waters Map Series: offshore of Tomales Point, California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Watt, Janet Tilden; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    Potential marine benthic habitats in the Offshore of Tomales Point map area range from unconsolidated continental-shelf sediment, to rocky continental-shelf substrate, to unconsolidated estuary sediments. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species. Dynamic bedforms, such as the sand waves at the mouth of Tomales Bay, are considered potential foraging habitat for juvenile lingcod and possibly migratory fishes, as well as for forage fish such as Pacific sand lance.

  12. Great Barrier Reef, Australia

    NASA Image and Video Library

    1996-01-20

    STS072-727-085 (11-20 Jan. 1996) --- The northern third of the Great Barrier Reef stretches 650 kilometers (km) along the coast of Queensland from south of Cairns to past Princess Charlotte Bay at the base of the Cape York Peninsula. The predominant westerly waves of the ocean create shallower (lighter-colored) convex-eastward rims to coral atolls along the outer edge of the barrier reef. In contrast, islands within the lagoon show the effect of predominant southerly, more-or-less offshore winds. Arcuate clouds suggest that winds were offshore at the time the photograph was taken.

  13. Localized rapid warming of West Antarctic subsurface waters by remote winds

    NASA Astrophysics Data System (ADS)

    Spence, Paul; Holmes, Ryan M.; Hogg, Andrew Mcc.; Griffies, Stephen M.; Stewart, Kial D.; England, Matthew H.

    2017-08-01

    The highest rates of Antarctic glacial ice mass loss are occurring to the west of the Antarctica Peninsula in regions where warming of subsurface continental shelf waters is also largest. However, the physical mechanisms responsible for this warming remain unknown. Here we show how localized changes in coastal winds off East Antarctica can produce significant subsurface temperature anomalies (>2 °C) around much of the continent. We demonstrate how coastal-trapped barotropic Kelvin waves communicate the wind disturbance around the Antarctic coastline. The warming is focused on the western flank of the Antarctic Peninsula because the circulation induced by the coastal-trapped waves is intensified by the steep continental slope there, and because of the presence of pre-existing warm subsurface water offshore. The adjustment to the coastal-trapped waves shoals the subsurface isotherms and brings warm deep water upwards onto the continental shelf and closer to the coast. This result demonstrates the vulnerability of the West Antarctic region to a changing climate.

  14. The influence of sea-level rise on fringing reef sediment dynamics: field observations and numerical modeling

    USGS Publications Warehouse

    Storlazzi, Curt D.; Field, Michael E.; Elias, Edwin; Presto, M. Katherine

    2011-01-01

    While most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100, it is not clear how fluid flow and sediment transport on fringing reefs might change in response to this rapid sea-level rise. Field observations and numerical modeling suggest that an increase in water depth on the order of 0.5-1.0 m on a fringing reef flat would result in larger significant wave heights and wave-driven shear stresses, which, in turn, would result in an increase in both the size and quantity of sediment that can be resuspended from the seabed or eroded from coastal plain deposits. Greater wave- and wind-driven currents would develop on the reef flat with increasing water depth, increasing the offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest.

  15. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94

    NASA Astrophysics Data System (ADS)

    Newberger, P. A.; Allen, J. S.

    2007-08-01

    A three-dimensional primitive-equation model for application to the nearshore surf zone has been developed. This model, an extension of the Princeton Ocean Model (POM), predicts the wave-averaged circulation forced by breaking waves. All of the features of the original POM are retained in the extended model so that applications can be made to regions where breaking waves, stratification, rotation, and wind stress make significant contributions to the flow behavior. In this study we examine the effects of breaking waves and wind stress. The nearshore POM circulation model is embedded within the NearCom community model and is coupled with a wave model. This combined modeling system is applied to the nearshore surf zone off Duck, North Carolina, during the DUCK94 field experiment of October 1994. Model results are compared to observations from this experiment, and the effects of parameter choices are examined. A process study examining the effects of tidal depth variation on depth-dependent wave-averaged currents is carried out. With identical offshore wave conditions and model parameters, the strength and spatial structure of the undertow and of the alongshore current vary systematically with water depth. Some three-dimensional solutions show the development of shear instabilities of the alongshore current. Inclusion of wave-current interactions makes an appreciable difference in the characteristics of the instability.

  16. Motion performance and mooring system of a floating offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhang, Liang; Wu, Haitao

    2012-09-01

    The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.

  17. Physical linkages between an offshore canyon and surf zone morphologic change

    NASA Astrophysics Data System (ADS)

    Hansen, Jeff E.; Raubenheimer, Britt; Elgar, Steve; List, Jeffrey H.; Lippmann, Thomas C.

    2017-04-01

    The causes of surf zone morphologic changes observed along a sandy beach onshore of a submarine canyon were investigated using field observations and a numerical model (Delft3D/SWAN). Numerically simulated morphologic changes using four different sediment transport formulae reproduce the temporal and spatial patterns of net cross-shore integrated (between 0 and 6.5 m water depths) accretion and erosion observed in a ˜300 m alongshore region, a few hundred meters from the canyon head. The observations and simulations indicate that the accretion or erosion results from converging or diverging alongshore currents driven primarily by breaking waves and alongshore pressure gradients. The location of convergence or divergence depends on the direction of the offshore waves that refract over the canyon, suggesting that bathymetric features on the inner shelf can have first-order effects on short-term nearshore morphologic change.

  18. Applications of Seasat to the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.

    1977-01-01

    The NASA satellite Seasat-A (to be launched in 1978) has applications to the offshore oil, gas, and mining industries including: (1) improvements in weather and wave forecasting, (2) studies of past wind and wave statistics for planning design requirements, and (3) monitoring ice formation, breakup, and movement in arctic regions. The primary geographic areas which will be monitored by Seasat-A include: the Beaufort Sea, the Labrador Sea, the Gulf of Mexico, the U.S. east coast, West Africa, Equatorial East Pacific, the Gulf of Alaska, and the North Sea. Seasat-A instrumentation used in ocean monitoring consists of a radar altimeter, a radar scatterometer, a synthetic aperture radar, a microwave radiometer, and a visible and infrared radiometer. The future outlook of the Seasat program is planned in three phases: measurement feasibility demonstration (1978-1980), data accessibility/utility demonstration (1980-1983), and operational system demonstration (1983-1985).

  19. Sediment Transport and Infilling of a Borrow Pit on an Energetic Sandy Ebb Tidal Delta Offshore of Hilton Head Island, South Carolina

    NASA Astrophysics Data System (ADS)

    Wren, A.; Xu, K.; Ma, Y.; Sanger, D.; Van Dolah, R.

    2014-12-01

    Bottom-mounted instrumentation was deployed at two sites on an ebb tidal delta to measure hydrodynamics, sediment transport, and seabed elevation. One site ('borrow site') was 2 km offshore and used as a dredging site for beach nourishment of nearby Hilton Head Island in South Carolina, and the other site ('reference site') was 10 km offshore and not directly impacted by the dredging. In-situ time-series data were collected during two periods after the dredging: March 15 - June 12, 2012('spring') and August 18 - November 18, 2012 ('fall'). At the reference site directional wave spectra and upper water column current velocities were measured, as well as high-resolution current velocity profiles and suspended sediment concentration profiles in the Bottom Boundary Layer (BBL). Seabed elevation and small-scale seabed changes were also measured. At the borrow site seabed elevation and near-bed wave and current velocities were collected using an Acoustic Doppler Velocimeter. Throughout both deployments bottom wave orbital velocities ranged from 0 - 110 m/s at the reference site. Wave orbital velocities were much lower at the borrow site ranging from 10-20 cm/s, as wave energy was dissipated on the extensive and rough sand banks before reaching the borrow site. Suspended sediment concentrations increased throughout the BBL when orbital velocities increased to approximately 20 cm/s. Sediment grain size and critical shear stresses were similar at both sites, therefore, re-suspension due to waves was less frequent at the borrow site. However, sediment concentrations were highly correlated with the tidal cycle at both sites. Semidiurnal tidal currents were similar at the two sites, typically ranging from 0 - 50 cm/s in the BBL. Maximum currents exceeded the critical shear stress and measured suspended sediment concentrations increased during the first hours of the tidal cycle when the tide switched to flood tide. Results indicate waves contributed more to sediment mobility at the reference site, while tidal forcing was the dominant factor at the borrow site. The seabed elevation data corraborates these results as active migrating ripples of 10 cm were measured at the reference site, while changes in seabed elevation at the borrow site were more gradual with approximately 30 cm of net accretion throughout the study.

  20. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    NASA Astrophysics Data System (ADS)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present harbour protection, and installed at -10m depth (length=300 m) may produce about 2.7 GWh/y with a total costs of about 12,000,000 €, where only the 50% of the amount are the costs of the SSG device. Obviously the environmental impact of the two solutions is quite different. Aim of this study is to provide a multicriteria decision support framework to evaluate the best WEC typology and location in the perspective of the environmental cost-benefit analysis. The general environmental aspects generated by wave power projects will be described. Colonisation patterns and biofouling will be discussed with particular reference to changes of the seabed and alterations due to new substrates. In addition, impacts for fish, fishery and marine mammals will be also considered. We suggest that wave power projects should be evaluated also on the basis of their environmental impacts in the perspective of the Strategic Environmental Assessment (SEA) analysis, as implemented by the European Commission (SEA Directive 2001/42/EC). The early incorporation of the environmental aspects involved in the evaluation of wave power projects will give the opportunity for early mitigations or design modifications, most likely making wave projects more acceptable in the long run and more suitable for the marine environment.

  1. Controls of multi-modal wave conditions in a complex coastal setting

    USGS Publications Warehouse

    Hegermiller, Christie; Rueda, Ana C.; Erikson, Li H.; Barnard, Patrick L.; Antolinez, J.A.A.; Mendez, Fernando J.

    2017-01-01

    Coastal hazards emerge from the combined effect of wave conditions and sea level anomalies associated with storms or low-frequency atmosphere-ocean oscillations. Rigorous characterization of wave climate is limited by the availability of spectral wave observations, the computational cost of dynamical simulations, and the ability to link wave-generating atmospheric patterns with coastal conditions. We present a hybrid statistical-dynamical approach to simulating nearshore wave climate in complex coastal settings, demonstrated in the Southern California Bight, where waves arriving from distant, disparate locations are refracted over complex bathymetry and shadowed by offshore islands. Contributions of wave families and large-scale atmospheric drivers to nearshore wave energy flux are analyzed. Results highlight the variability of influences controlling wave conditions along neighboring coastlines. The universal method demonstrated here can be applied to complex coastal settings worldwide, facilitating analysis of the effects of climate change on nearshore wave climate.

  2. Controls of Multimodal Wave Conditions in a Complex Coastal Setting

    NASA Astrophysics Data System (ADS)

    Hegermiller, C. A.; Rueda, A.; Erikson, L. H.; Barnard, P. L.; Antolinez, J. A. A.; Mendez, F. J.

    2017-12-01

    Coastal hazards emerge from the combined effect of wave conditions and sea level anomalies associated with storms or low-frequency atmosphere-ocean oscillations. Rigorous characterization of wave climate is limited by the availability of spectral wave observations, the computational cost of dynamical simulations, and the ability to link wave-generating atmospheric patterns with coastal conditions. We present a hybrid statistical-dynamical approach to simulating nearshore wave climate in complex coastal settings, demonstrated in the Southern California Bight, where waves arriving from distant, disparate locations are refracted over complex bathymetry and shadowed by offshore islands. Contributions of wave families and large-scale atmospheric drivers to nearshore wave energy flux are analyzed. Results highlight the variability of influences controlling wave conditions along neighboring coastlines. The universal method demonstrated here can be applied to complex coastal settings worldwide, facilitating analysis of the effects of climate change on nearshore wave climate.

  3. Recent Naval Postgraduate School Publications.

    DTIC Science & Technology

    1985-09-30

    of the performance of a new storm tracking methodology Prepared for Naval Environmental Prediction Res. Facility Monterey, Calif., Naval Postgraduate...Aerospace Sci. Mtg., Jr’., 1983. Sarpkaya, T; Storm , M A ydrodynamic forces from combined wave and current flow on smooth and rough circular cylinders...Houston, Tx., May, 1982. IN Proc 1982 Offshore Technol. Conf., vol. 1, p.731-736, (1982). Sarpkaya, T; Storm , M A ydrodynamic forces from combined wave

  4. Heaving buoys, point absorbers and arrays.

    PubMed

    Falnes, Johannes; Hals, Jørgen

    2012-01-28

    Absorption of wave energy may be considered as a phenomenon of interference between incident and radiated waves generated by an oscillating object; a wave-energy converter (WEC) that displaces water. If a WEC is very small in comparison with one wavelength, it is classified as a point absorber (PA); otherwise, as a 'quasi-point absorber'. The latter may be a dipole-mode radiator, for instance an immersed body oscillating in the surge mode or pitch mode, while a PA is so small that it should preferably be a source-mode radiator, for instance a heaving semi-submerged buoy. The power take-off capacity, the WEC's maximum swept volume and preferably also its full physical volume should be reasonably matched to the wave climate. To discuss this matter, two different upper bounds for absorbed power are applied in a 'Budal diagram'. It appears that, for a single WEC unit, a power capacity of only about 0.3 MW matches well to a typical offshore wave climate, and the full physical volume has, unfortunately, to be significantly larger than the swept volume, unless phase control is used. An example of a phase-controlled PA is presented. For a sizeable wave-power plant, an array consisting of hundreds, or even thousands, of mass-produced WEC units is required.

  5. An Overview of a Decade of the Floo Project (fluxes Linking the Offshore and the Onshore): Ecological Implications of the Internal Tide on the Mexican Coastline in Temperate, Subtropical and Tropical Ecosystems

    NASA Astrophysics Data System (ADS)

    Valencia, A.; Ladah, L. B.

    2016-02-01

    High-frequency internal waves and the internal tide have been shown to have strong effects on nearshore ecology and productivity along the Mexican coastline over the past decade of the FLOO (Fluxes Linking the Offshore and the Onshore) project. I will review examples of these effects, ranging from the long term importance of internal wave supply-side ecology of invertebrate larvae to the coast and their post-settlement fate after competition and predation, to nutrient provision at small temporal and spatial scales for different species of macroalgae, to food provision for mussels and corals from various sites along the Mexican Pacific. Internal waves may also alleviate coral bleaching events in areas of strong internal tidal forcing. Temperate, subtropical and tropical sites will be discussed. Solitons, high-frequency internal waves and the internal tide have all been shown to have a stronger and faster than predicted effect on nearshore ecology and productivity, and may be more ecologically important than upwelling for transport of scalars and coastal productivity in certain areas of the Mexican Pacific. Implications of these results will be discussed and speculation of their importance in a future ocean climate will be presented.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Grace Chang; Jason Magalen

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deploymentmore » location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .« less

  7. Mid-Twenty-First-Century Changes in Global Wave Energy Flux: Single-Model, Single-Forcing and Single-Scenario Ensemble Projections

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Lemos, Gil; Dobrynin, Mikhail; Behrens, Arno; Staneva, Joanna; Miranda, Pedro

    2017-04-01

    The knowledge of ocean surface wave energy fluxes (or wave power) is of outmost relevance since wave power has a direct impact in coastal erosion, but also in sediment transport and beach nourishment, and ship, as well as in coastal and offshore infrastructures design. Changes in the global wave energy flux pattern can alter significantly the impact of waves in continental shelf and coastal areas. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit under the auspices of the COWCLIP (coordinated ocean wave climate projections) project, and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (fifth assessment report). In the present study the impact of a warmer climate in the near future global wave energy flux climate is investigated through a 4-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is reduced, leaving only room for the climate change signal. The four ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1976 to 2005. The projected changes in the global wave energy flux climate are analyzed for the 2031-2060 period.

  8. The North Atlantic Oscillation Influence on the Wave Regime in Portugal: An Extreme Wave Event Analysis

    DTIC Science & Technology

    2005-03-01

    picture at 22/00Z.............50 x Figure 24. Case 5 – wave parameters........................51 Figure 25. Evolution of energy density (arrow...equation or energy balance equation: . in nl ds F v F S S S S t ∂ + ∇ = ≡ + + ∂ r (1) where ( , ; , )F f x tθ r is the two dimensional...collected from an offshore directional Seawatch buoy, in the vicinity of Cape Silleiro, Rayo Silleiro 19 (“E1”), (Figure 3), was provided by the

  9. The effect of wind on the dispersal of a tropical small river plume

    NASA Astrophysics Data System (ADS)

    Zhao, Junpeng; Gong, Wenping; Shen, Jian

    2018-03-01

    Wanquan River is a small river located in Hainan, a tropical island in China. As the third largest river in Hainan, the river plume plays an important role in the regional terrigenous mass transport, coastal circulation, and the coral reef's ecosystem. Studies have shown that wind forcings significantly influence river plume dynamics. In this study, wind effects on the dispersal of the river plume and freshwater transport were examined numerically using a calibrated, unstructured, finite volume numerical model (FVCOM). Both wind direction and magnitude were determined to influence plume dispersal. Northeasterly (downwelling-favorable) winds drove freshwater down-shelf while southeasterly (onshore) winds drove water up-shelf (in the sense of Kelvin wave propagation), and were confined near the coast. Southwesterly (upwelling-favorable) and north-westerly (offshore) winds transport more freshwater offshore. The transport flux is decomposed into an advection, a vertical shear, and an oscillatory component. The advection flux dominates the freshwater transport in the coastal area and the vertical shear flux is dominant in the offshore area. For the upwelling-favorable wind, the freshwater transport becomes more controlled by the advection transport with an increase in wind stress, due to enhanced vertical mixing. The relative importance of wind forcing and buoyancy force was investigated. It was found that, when the Wedderburn number is larger than one, the plume was dominated by wind forcing, although the importance of wind varies in different parts of the plume. The water column stratification decreased as a whole under the prevailing southwesterly wind, with the exception of the up-shelf and offshore areas.

  10. Nearshore substrate and morphology offshore of the Elwha River, Washington

    USGS Publications Warehouse

    Warrick, J.A.; Cochrane, G.R.; Sagy, Y.; Gelfenbaum, G.

    2008-01-01

    The planned removal of two dams on the Elwha River, Washington, will likely increase river sediment flux to the coast, which may alter coastal habitats through sedimentation and turbidity. It is therefore important to characterize the current habitat conditions near the river mouth, so that future changes can be identified. Here we provide combined sonar and video mapping results of approximately 20 km2 of seafloor offshore of the Elwha River collected with the purpose to characterize nearshore substrate type and distribution prior to dam removal. These combined data suggest that the nearshore of the western delta and Freshwater Bay are dominated by coarse sediment (sand, gravel, cobble, and boulders) and bedrock outcrops; no fine-grained sediment (mud or silt) was identified within the survey limits. The substrate is generally coarser in Freshwater Bay and on the western flank of the delta, where boulders and bedrock outcrops occur, than directly offshore and east of the river mouth. High variation in substrate was observed within much of the study area, however, and distinct boulder fields, gravel beds and sand waves were observed with spatial scales of 10-100 m. Gravel beds and sand waves suggest that sediment transport is active in the study area, presumably in response to tidal currents and waves. Both historic (1912) and recent (1989-2004) distributions of Bull Kelp (Nereocystis sp.) beds were preferentially located along the boulder and bedrock substrates of Freshwater Bay. Although kelp has also been mapped in areas dominated by gravel and sand substrate, it typically has smaller canopy areas and lower temporal persistence in these regions.

  11. Development of Local Amplification Factors in the NEAM Region for Production of Regional Tsunami Hazard Maps

    NASA Astrophysics Data System (ADS)

    Harbitz, C. B.; Glimsdal, S.; Løvholt, F.; Orefice, S.; Romano, F.; Brizuela, B.; Lorito, S.; Hoechner, A.; Babeyko, A. Y.

    2016-12-01

    The standard way of estimating tsunami inundation is by applying numerical depth-averaged shallow-water run-up models. However, for a regional Probabilistic Tsunami Hazard Assessment (PTHA), applying such inundation models may be too time-consuming. A faster, yet less accurate procedure, is to relate the near-shore surface elevations at offshore points to maximum shoreline water levels by using a set of amplification factors based on the characteristics of the incident wave and the bathymetric slope. The surface elevation at the shoreline then acts as a rough approximation for the maximum inundation height or run-up height along the shoreline. An amplification-factor procedure based on a limited set of idealized broken shoreline segments has previously been applied to estimate the maximum inundation heights globally. Here, we present a study where this technique is developed further, by taking into account the local bathymetric profiles. We extract a large number of local bathymetric transects over a significant part of the North East Atlantic, the Mediterranean and connected seas (NEAM) region. For each bathymetric transect, we compute the wave amplification from an offshore control point to points close to the shoreline using a linear shallow-water model for waves of different period and polarity with a sinusoidal pulse wave as input. The amplification factors are then tabulated. We present maximum water levels from the amplification factor method, and compare these with results from conventional inundation models. Finally, we demonstrate how the amplification factor method can be convolved with PTHA results to provide regional tsunami hazard maps. This work has been supported by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE), and the TSUMAPS-NEAM Project (http://www.tsumapsneam.eu/), co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26.

  12. Development of Local Amplification Factors in the NEAM Region for Production of Regional Tsunami Hazard Maps

    NASA Astrophysics Data System (ADS)

    Glimsdal, Sylfest; Løvholt, Finn; Bonnevie Harbitz, Carl; Orefice, Simone; Romano, Fabrizio; Brizuela, Beatriz; Lorito, Stefano; Hoechner, Andreas; Babeyko, Andrey

    2017-04-01

    The standard way of estimating tsunami inundation is by applying numerical depth-averaged shallow-water run-up models. However, for a regional Probabilistic Tsunami Hazard Assessment (PTHA), applying such inundation models may be too time-consuming. A faster, yet less accurate procedure, is to relate the near-shore surface elevations at offshore points to maximum shoreline water levels by using a set of amplification factors based on the characteristics of the incident wave and the bathymetric slope. The surface elevation at the shoreline then acts as a rough approximation for the maximum inundation height or run-up height along the shoreline. An amplification-factor procedure based on a limited set of idealized broken shoreline segments has previously been applied to estimate the maximum inundation heights globally. Here, we present a study where this technique is developed further, by taking into account the local bathymetric profiles. We extract a large number of local bathymetric transects over a significant part of the North East Atlantic, the Mediterranean and connected seas (NEAM region). For each bathymetric transect, we compute the wave amplification from an offshore control point to points close to the shoreline using a linear shallow-water model for waves of different period and polarity with a sinusoidal pulse wave as input. The amplification factors are then tabulated. We present maximum water levels from the amplification factor method, and compare these with results from conventional inundation models. Finally, we demonstrate how the amplification factor method can be convolved with PTHA results to provide regional tsunami hazard maps. This work has been supported by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE), and the TSUMAPS-NEAM Project (http://www.tsumapsneam.eu/), co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26.

  13. The Fate and Impact of Internal Waves in Nearshore Ecosystems

    NASA Astrophysics Data System (ADS)

    Woodson, C. B.

    2018-01-01

    Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.

  14. The Fate and Impact of Internal Waves in Nearshore Ecosystems.

    PubMed

    Woodson, C B

    2018-01-03

    Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.

  15. Persistent shoreline shape induced from offshore geologic framework: Effects of shoreface connected ridges

    USGS Publications Warehouse

    Safak, Ilgar; List, Jeffrey; Warner, John C.; Schwab, William C.

    2017-01-01

    Mechanisms relating offshore geologic framework to shoreline evolution are determined through geologic investigations, oceanographic deployments, and numerical modeling. Analysis of shoreline positions from the past 50 years along Fire Island, New York, a 50 km long barrier island, demonstrates a persistent undulating shape along the western half of the island. The shelf offshore of these persistent undulations is characterized with shoreface-connected sand ridges (SFCR) of a similar alongshore length scale, leading to a hypothesis that the ridges control the shoreline shape through the modification of flow. To evaluate this, a hydrodynamic model was configured to start with the US East Coast and scale down to resolve the Fire Island nearshore. The model was validated using observations along western Fire Island and buoy data, and used to compute waves, currents and sediment fluxes. To isolate the influence of the SFCR on the generation of the persistent shoreline shape, simulations were performed with a linearized nearshore bathymetry to remove alongshore transport gradients associated with shoreline shape. The model accurately predicts the scale and variation of the alongshore transport that would generate the persistent shoreline undulations. In one location, however, the ridge crest connects to the nearshore and leads to an offshore-directed transport that produces a difference in the shoreline shape. This qualitatively supports the hypothesized effect of cross-shore fluxes on coastal evolution. Alongshore flows in the nearshore during a representative storm are driven by wave breaking, vortex force, advection and pressure gradient, all of which are affected by the SFCR.

  16. A behavior-oriented dynamic model for sandbar migration and 2DH evolution

    USGS Publications Warehouse

    Splinter, K.D.; Holman, R.A.; Plant, N.G.

    2011-01-01

    A nonlinear model is developed to study the time-dependent relationship between the alongshore variability of a sandbar, a(t), and alongshore-averaged sandbar position, xc(t). Sediment transport equations are derived from energetics-based formulations. A link between this continuous physical representation and a parametric form describing the migration of sandbars of constant shape is established through a simple transformation of variables. The model is driven by offshore wave conditions. The parametric equations are dynamically coupled such that changes in one term (i.e., xc) drive changes in the other (i.e., a(t)). The model is tested on 566 days of data from Palm Beach, New South Wales, Australia. Using weighted nonlinear least squares to estimate best fit model coefficients, the model explained 49% and 41% of the variance in measured xc and a(t), respectively. Comparisons against a 1-D horizontal (1DH) version of the model showed significant improvements when the 2DH terms were included (1DH and 2DH Brier skill scores were -0.12 and 0.42, respectively). Onshore bar migration was not predicted in the 1DH model, while the 2DH model correctly predicted onshore migration in the presence of 2DH morphology and allowed the bar to remain closer to shore for a given amount of breaking, providing an important hysteresis to the system. The model is consistent with observations that active bar migration occurs under breaking waves with onshore migration occurring at timescales of days to weeks and increasing 2DH morphology, while offshore migration occurs rapidly under high waves and coincides with a reduction in 2DH morphology. Copyright ?? 2011 by the American Geophysical Union.

  17. Rayleigh phase velocities in the upper mantle of the Pacific-North American plate boundary in southern California

    NASA Astrophysics Data System (ADS)

    Escobar, L.; Weeraratne, D. S.; Kohler, M. D.

    2013-05-01

    The Pacific-North America plate boundary, located in Southern California, presents an opportunity to study a unique tectonic process that has been shaping the plate tectonic setting of the western North American and Mexican Pacific margin since the Miocene. This is one of the few locations where the interaction between a migrating oceanic spreading center and a subduction zone can be studied. The rapid subduction of the Farallon plate outpaced the spreading rate of the East Pacific Rise rift system causing it to be subducted beneath southern California and northern Mexico 30 Ma years ago. The details of microplate capture, reorganization, and lithospheric deformation on both the Pacific and North American side of this boundary is not well understood, but may have important implications for fault activity, stresses, and earthquake hazard analysis both onshore and offshore. We use Rayleigh waves recorded by an array of 34 ocean bottom seismometers deployed offshore southern California for a 12 month duration from August 2010 to 2011. Our array recorded teleseismic earthquakes at distances ranging from 30° to 120° with good signal-to-noise ratios for magnitudes Mw ≥ 5.9. The events exhibit good azimuthal distribution and enable us to solve simultaneously for Rayleigh wave phase velocities and azimuthal anisotropy. Fewer events occur at NE back-azimuths due to the lack of seismicity in central North America. We consider seismic periods between 18 - 90 seconds. The inversion technique considers non-great circle path propagation by representing the arriving wave field as two interfering plane waves. This takes advantage of statistical averaging of a large number of paths that travel offshore southern California and northern Mexico allowing for improved resolution and parameterization of lateral seismic velocity variations at lithospheric and sublithospheric depths. We present phase velocity results for periods sampling mantle structure down to 150 km depth along the west coast margin. With this study, we seek to understand the strength and deformation of the Pacific oceanic lithosphere resulting from plate convergence and subduction beneath Southern California 30 Ma as well as translational stresses present today. We also test for predictions of several geodynamic models which describe the kinematic mantle flow that accompanies plate motion within this area including passive mantle drag due to Pacific plate motion and toroidal flow in the western U.S. region that may extend offshore.

  18. Marine data and its potential for coastal and offshore applications

    NASA Astrophysics Data System (ADS)

    Meyer, Elke; Weisse, Ralf

    2013-04-01

    The coastDat data set is a compilation of coastal analyses and scenarios for the future from various sources. It contains no direct measurements but results from numerical models that have been driven either by observed data in order to achieve the best possible representation of observed past conditions or by climate change scenarios for the near future. One of the key objectives for developing coastDat was to derive a consistent and mostly homogeneous database for assessing marine weather statistics and long-term changes. Here, homogeneity refers to a data set which is free from effects caused by changes in instrumentation or measurement techniques. Contrary to direct measurements which are often rare and incomplete, coastDat offers a unique combination of consistent atmospheric, oceanic, sea state and other parameters at high spatial and temporal detail, even for places and variables for which no measurements have been made. The backbones of coastDat are regional wind, wave and storm surge hindcast and scenarios mainly for the North Sea and the Baltic Sea. Furthermore hindcast simulations are available for temperature, salinity, water level, u- and v-components for the North Sea for last 60 years. We will discuss the methodology to derive these data, their quality and limitations in comparison with observations. Long-term changes in the temperature, wind, wave and storm surge climate will be discussed and potential future changes will be assessed. We will conclude with a number of coastal and offshore applications (e.g. ship design, coastal protection, oil risk modelling and marine energy use) of coastDat demonstrating some of the potentials of the data set in hazard assessment. For example data from coastDat have been used extensively for designing, planning and installation of offshore wind farms. Return periods of extreme wind speed, surge and wave heights are used by a variety of users involved in the design and construction of offshore wind parks. Moreover, planning of installation and maintenance requires the estimation of probabilities of weather windows; that is, for example the probability of an extended period with wave heights below a given threshold to enable installation and/or maintenance. Data from coastDat were frequently used in such cases as observational data are too often too short to derive reliable statistics. www.coastdat.de

  19. The coastDat data set and its potential for coastal and offshore applications

    NASA Astrophysics Data System (ADS)

    Meyer, E.; Weisse, R.

    2012-12-01

    The coastDat data set is a compilation of coastal analyses and scenarios for the future from various sources. It contains no direct measurements but results from numerical models that have been driven either by observed data in order to achieve the best possible representation of observed past conditions or by climate change scenarios for the near future. One of the key objectives for developing coastDat was to derive a consistent and mostly homogeneous database for assessing marine weather statistics and long-term changes. Here, homogeneity refers to a data set which is free from effects caused by changes in instrumentation or measurement techniques. Contrary to direct measurements which are often rare and incomplete, coastDat offers a unique combination of consistent atmospheric, oceanic, sea state and other parameters at high spatial and temporal detail, even for places and variables for which no measurements have been made. The backbones of coastDat are regional wind, wave and storm surge hindcast and scenarios mainly for the North Sea and the Baltic Sea. Furthermore hindcast simulations are available for temperature, salinity, water level, u- and v-components for the North Sea for last 60 years. We will discuss the methodology to derive these data, their quality and limitations in comparison with observations. Long-term changes in the temperature, wind, wave and storm surge climate will be discussed and potential future changes will be assessed. We will conclude with a number of coastal and offshore applications (e.g. ship design, coastal protection, oil risk modelling and marine energy use) of coastDat demonstrating some of the potentials of the data set in hazard assessment. For example data from coastDat have been used extensively for designing, planning and installation of offshore wind farms. Return periods of extreme wind speed, surge and wave heights are used by a variety of users involved in the design and construction of offshore wind parks. Moreover, planning of installation and maintenance requires the estimation of probabilities of weather windows; that is, for example the probability of an extended period with wave heights below a given threshold to enable installation and/or maintenance. Data from coastDat were frequently used in such cases as observational data are too often too short to derive reliable statistics.

  20. Dispersal of fine sediment in nearshore coastal waters

    USGS Publications Warehouse

    Warrick, Jonathan A.

    2013-01-01

    Fine sediment (silt and clay) plays an important role in the physical, ecological, and environmental conditions of coastal systems, yet little is known about the dispersal and fate of fine sediment across coastal margin settings outside of river mouths. Here I provide simple physical scaling and detailed monitoring of a beach nourishment project near Imperial Beach, California, with a high portion of fines (40% silt and clay by weight). These results provide insights into the pathways and residence times of fine sediment transport across a wave-dominated coastal margin. Monitoring of the project used physical, optical, acoustic, and remote sensing techniques to track the fine portion of the nourishment sediment. The initial transport of fine sediment from the beach was influenced strongly by longshore currents of the surf zone that were established in response to the approach angles of the waves. The mean residence time of fine sediment in the surf zone—once it was suspended—was approximately 1 hour, and rapid decreases in surf zone fine sediment concentrations along the beach resulted from mixing and offshore transport in turbid rip heads. For example, during a day with oblique wave directions and surf zone longshore currents of approximately 25 cm/s, the offshore losses of fine sediment in rips resulted in a 95% reduction in alongshore surf zone fine sediment flux within 1 km of the nourishment site. However, because of the direct placement of nourishment sediment on the beach, fine suspended-sediment concentrations in the swash zone remained elevated for several days after nourishment, while fine sediment was winnowed from the beach. Once offshore of the surf zone, fine sediment settled downward in the water column and was observed to transport along and across the inner shelf. Vertically sheared currents influenced the directions and rates of fine sediment transport on the shelf. Sedimentation of fine sediment was greatest on the seafloor directly offshore of the nourishment site. However, a mass balance of sediment suggests that the majority of the fine sediment moved far away (over 2 km) from the nourishment site or to water depths greater than 10 m, where fine sediment represents a substantial portion of the bed material. Thus, the fate of fine sediment in nearshore waters was influenced strongly by wave conditions, surf zone and rip current transport, and the vertical density and flow conditions of coastal waters.

  1. The Impact of High-Turbidity Water's Seasonal and Decadal Variations on Offshore Phytoplankton and Nutrients Dynamics around The Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Ge, J.; Torres, R.; Chen, C.; Bellerby, R. G. J.

    2017-12-01

    The Changjiang Estuary is characterized as strong river discharge into the inner shelf of the East China Sea with abundant sediment load, producing significant high-turbidity water coverage from river mouth to deep region. The growth of offshore phytoplankton is dynamically controlled by river flushed low-salinity and high-turbidity water, and salter water from inner shelf of East China Sea. During last decade, the sediment and nutrients from the Changjiang River has significantly changed, which lead to the variation of offshore phytoplankton dynamics. The variations of sediment, nutrients, and their influenced phytoplankton has been simulated through a comprehensive modeling system, which integrated a multi-scale current-wave-sediment FVCOM model and generic marine biogeochemistry and ecosystem ERSEM model through The Framework for Aquatic Biogeochemical Models (FABM). This model system has successfully revealed the seasonal and decadal variations of sediment, nutrients transport around the inner shelf of the East China Sea. The spring and autumn peaks of phytoplankton growth were correctly captured by simulation. The modeling results, as well as MODIS and GOCI remote sensing, shows a strong sediment decreasing from northern to southern region, which creates different patterns of Chlorophyll-a distribution and seasonal variations. These results indicate the high-turbidity water in northern region strongly influenced the light attenuation in the water column and limits the phytoplankton growth in this relatively higher-nutrient area, especially in the wintertime. The relatively low-turbidity southern region has significant productivity of phytoplankton, even during low-temperature winter. The phytoplankton growth increased in the northern region from 2005 to 2010, with the increase of the nutrient load during this period. Then it became a decreasing trend after 2010.

  2. Sea-floor geology and character offshore of Rocky Point, New York

    USGS Publications Warehouse

    Poppe, L.J.; McMullen, K.Y.; Ackerman, S.D.; Blackwood, D.S.; Irwin, B.J.; Schaer, J.D.; Lewit, P.G.; Doran, E.F.

    2010-01-01

    The U.S. Geological Survey (USGS), the Connecticut Department of Environmental Protection, and the National Oceanic and Atmospheric Administration (NOAA) have been working cooperatively to interpret surficial sea-floor geology along the coast of the Northeastern United States. NOAA survey H11445 in eastern Long Island Sound, offshore of Plum Island, New York, covers an area of about 12 square kilometers. Multibeam bathymetry and sidescan-sonar imagery from the survey, as well as sediment and photographic data from 13 stations occupied during a USGS verification cruise are used to delineate sea-floor features and characterize the environment. Bathymetry gradually deepens offshore to over 100 meters in a depression in the northwest part of the study area and reaches 60 meters in Plum Gut, a channel between Plum Island and Orient Point. Sand waves are present on a shoal north of Plum Island and in several smaller areas around the basin. Sand-wave asymmetry indicates that counter-clockwise net sediment transport maintains the shoal. Sand is prevalent where there is low backscatter in the sidescan-sonar imagery. Gravel and boulder areas are submerged lag deposits produced from the Harbor Hill-Orient Point-Fishers Island moraine segment and are found adjacent to the shorelines and just north of Plum Island, where high backscatter is present in the sidescan-sonar imagery.

  3. Investigating daily fatigue scores during two-week offshore day shifts.

    PubMed

    Riethmeister, Vanessa; Bültmann, Ute; Gordijn, Marijke; Brouwer, Sandra; de Boer, Michiel

    2018-09-01

    This study examined daily scores of fatigue and circadian rhythm markers over two-week offshore day shift periods. A prospective cohort study among N = 60 offshore day-shift workers working two-week offshore shifts was conducted. Offshore day shifts lasted from 07:00 - 19:00 h. Fatigue was measured objectively with pre- and post-shift scores of the 3-minute psychomotor vigilance tasks (PVT-B) parameters (reaction times, number of lapses, errors and false starts) and subjectively with pre- and post-shift Karolinska Sleepiness Scale (KSS) ratings. Evening saliva samples were collected on offshore days 2,7 and 13 to measure circadian rhythm markers such as dim-light melatonin onset times and cortisol. Generalized and linear mixed model analyses were used to examine daily fatigue scores over time. Complete data from N = 42 offshore day shift workers was analyzed. Daily parameters of objective fatigue, PVT-B scores (reaction times, average number of lapses, errors and false starts), remained stable over the course of the two-week offshore day shifts. Daily subjective post-shift fatigue scores significantly increased over the course of the two-week offshore shifts. Each day offshore was associated with an increased post-shift subjective fatigue score of 0.06 points (95%CI: .03 - .09 p < .001). No significant statistical differences in subjective pre-shift fatigue scores were found. Neither a circadian rhythm phase shift of melatonin nor an effect on the pattern and levels of evening cortisol was found. Daily parameters of objective fatigue scores remained stable over the course of the two-week offshore day shifts. Daily subjective post-shift fatigue scores significantly increased over the course of the two-week offshore shifts. No significant changes in circadian rhythm markers were found. Increased post-shift fatigue scores, especially during the last days of an offshore shift, should be considered and managed in (offshore) fatigue risk management programs and fatigue risk prediction models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water.

    PubMed

    Ge, Zhongfu; Whitman, Richard L; Nevers, Meredith B; Phanikumar, Mantha S

    2012-02-21

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s(-1)). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731-6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  5. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water

    USGS Publications Warehouse

    Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.

    2012-01-01

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s–1). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731–6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  6. Sensitivity of Rogue Waves Predictions to the Oceanic Stratification

    NASA Astrophysics Data System (ADS)

    Guo, Qiuchen; Alam, Mohammad-Reza

    2014-11-01

    Oceanic rogue waves are short-lived very large amplitude waves (a giant crest typically followed or preceded by a deep trough) that appear and disappear suddenly in the ocean causing damages to ships and offshore structures. Assuming that the state of the ocean at the present time is perfectly known, then the upcoming rogue waves can be predicted via numerically solving the equations that govern the evolution of the waves. The state of the art radar technology can now provide accurate wave height measurement over large spatial domains and when combined with advanced wave-field reconstruction techniques together render deterministic details of the current state of the ocean (i.e. surface elevation and velocity field) at any given moment of the time with a very high accuracy. The ocean water density is, however, stratified (mainly due to the salinity and temperature differences). This density stratification, with today's technology, is very difficult to be measured accurately. As a result in most predictive schemes these density variations are neglected. While the overall effect of the stratification on the average state of the ocean may not be significant, here we show that these density variations can strongly affect the prediction of oceanic rogue waves. Specifically, we consider a broadband oceanic spectrum in a two-layer density stratified fluid, and study via extensive statistical analysis the effects of strength of the stratification (difference between densities) and the depth of the thermocline on the prediction of upcoming rogue waves.

  7. Using an autonomous Wave Glider to detect seawater anomalies related to submarine groundwater discharge - engineering challenge

    NASA Astrophysics Data System (ADS)

    Leibold, P.; Brueckmann, W.; Schmidt, M.; Balushi, H. A.; Abri, O. A.

    2017-12-01

    Coastal aquifer systems are amongst the most precious and vulnerable water resources worldwide. While differing in lateral and vertical extent they commonly show a complex interaction with the marine realm. Excessive groundwater extraction can cause saltwater intrusion from the sea into the aquifers, having a strongly negative impact on the groundwater quality. While the reverse pathway, the discharge of groundwater into the sea is well understood in principle, it's mechanisms and quantities not well constrained. We will present a project that combines onshore monitoring and modeling of groundwater in the coastal plain of Salalah, Oman with an offshore autonomous robotic monitoring system, the Liquid Robotics Wave Glider. Eventually, fluxes detected by the Wave Glider system and the onshore monitoring of groundwater will be combined into a 3-D flow model of the coastal and deeper aquifers. The main tool for offshore SGD investigation project is a Wave Glider, an autonomous vehicle based on a new propulsion technology. The Wave Glider is a low-cost satellite-connected marine craft, consisting of a combination of a sea-surface and an underwater component which is propelled by the conversion of ocean wave energy into forward thrust. While the wave energy propulsion system is purely mechanical, electrical energy for onboard computers, communication and sensors is provided by photovoltaic cells. For the project the SGD Wave Glider is being equipped with dedicated sensors to measure temperature, conductivity, Radon isotope (222Rn, 220Rn) activity concentration as well as other tracers of groundwater discharge. Dedicated software using this data input will eventually allow the Wave Glider to autonomously collect information and actively adapt its search pattern to hunt for spatial and temporal anomalies. Our presentation will focus on the engineering and operational challenges ofdetecting submarine groundwater discharges with the Wave Glider system in the Bay of Salalah, Oman and solutions to overcome them.

  8. Numerical Modeling of Coastal Dredged Material Placement Study at Noyo Harbor, CA

    DTIC Science & Technology

    2013-07-01

    Information Program ( CDIP , http://cdip.ucsd.edu) Buoy 46213. NDBC Buoy 46014, located offshore Noyo Bay, collects non- directional wave spectral data...lists these NDBC, CDIP , and NOAA stations and their location information. Fig. 5: Monthly mean wave height at Buoys 46014, 46022, and 46213...primarily sand with small percentages of mixed gravel, silt and clay (Table 2). Table 1. NDBC, CDIP , and NOAA station locations Station Latitude

  9. Surf Zone Properties and On/Offshore Sediment Transport.

    DTIC Science & Technology

    1982-06-01

    and Random Waves," Proceedings, 14th Coastal Engineering Conference, 1974, pp.558-574. Levi - Civita , T., "Determination Rigoreuse des Ondes...on Beach 2-6 Classification of Normal and Storm Beach 23 Profiles by Dean 2-7 Classification of Normal and Storm Beach 24 Profiles by Author 2-8 Two ...the surface and near bottom, return flow near mid-depth before wave breaking. There were considerable laboratory evidences supporting the two -dimen

  10. An Integrative Wave Model for the Marginal Ice Zone based on a Rheological Parameterization

    DTIC Science & Technology

    2013-09-30

    climate in the present and future Arctic seas. OBJECTIVES 1. To build a comprehensive wave-ice interaction mathematical framework for a wide...group (e.g. Fox and Squire, 1994, Meylan and Squire, 1996, Bennetts and Squire, 2009) is also applicable to the case of ice floes imbedded in a frazil...environmental protection purposes: such as navigation route planning, offshore structure design in the Arctic , and coastal erosion prevention. They

  11. New OBS network deployment offshore Ireland

    NASA Astrophysics Data System (ADS)

    Le Pape, Florian; Bean, Chris; Craig, David; Jousset, Philippe; Horan, Clare; Hogg, Colin; Donne, Sarah; McCann, Hannah; Möllhoff, Martin; Kirk, Henning; Ploetz, Aline

    2016-04-01

    With the presence of the stormy NE Atlantic, Ireland is ideally located to investigate further our understanding of ocean generated microseisms and use noise correlation methods to develop seismic imaging in marine environments as well as time-lapse monitoring. In order to study the microseismic activity offshore Ireland, 10 Broad Band Ocean Bottom Seismographs (OBSs) units including hydrophones have been deployed in January 2016 across the shelf offshore Donegal and out into the Rockall Trough. This survey represents the first Broadband passive study in this part of the NE Atlantic. The instruments will be recovered in August 2016 providing 8 months worth of data to study microseisms but also the offshore seismic activity in the area. One of the main goal of the survey is to investigate the spatial and temporal distributions of dominant microseism source regions, close to the microseism sources. Additionally we will study the coupling of seismic and acoustic signals at the sea bed and its evolution in both the deep water and continental shelf areas. Furthermore, the survey also aims to investigate further the relationship between sea state conditions (e.g. wave height, period), seafloor pressure variations and seismic data recorded on both land and seafloor. Finally, the deployed OBS network is also the first ever attempt to closely monitor local offshore earthquakes in Ireland. Ireland seismicity although relatively low can reduce slope stability and poses the possibility of triggering large offshore landslides and local tsunamis.

  12. Application of a wind-wave-current coupled model in the Catalan coast (NW Mediterranean sea), for wind energy purposes

    NASA Astrophysics Data System (ADS)

    María Palomares, Ana; Navarro, Jorge; Grifoll, Manel; Pallares, Elena; Espino, Manuel

    2016-04-01

    This work shows the main results of the HAREAMAR project (including HAREMAR, ENE2012-38772-C02-01 and DARDO, ENE2012-38772-C02-02 projects), concerning the local Wind, Wave and Current simulation at St. Jordi Bay (NW Mediterranean Sea). Offshore Wind Energy has become one of the main topics within the research in Wind Energy research. Although there are quite a few models with a high level of reliability for wind simulation and prediction in onshore places, the wind prediction needs further investigations for adaptation to the Offshore emplacements, taking into account the interaction atmosphere-ocean. The main problem in these ocean areas is the lack of wind data, which neither allows for characterizing the energy potential and wind behaviour in a particular place, nor validating the forecasting models. The main objective of this work is to reduce the local prediction errors, in order to make the meteo-oceanographic hindcast and forecast more reliable. The COAWST model (Coupled-Ocean-Atmosphere-Wave Sediment Transport Model; Warner et al., 2010) system has been implemented in the region considering a set of downscaling nested meshes to obtain high-resolution outputs in the region. The adaptation to this particular area, combining the different wind, wave and ocean model domains has been far from simple, because the grid domains for the three models differ significantly. This work shows the main results of the COAWST model implementation to this particular area, including both monthly and other set of tests in different atmospheric situations, especially chosen for their particular interest. The time period considered for the validation is the whole year 2012. A comparative study between the WRF, SWAN and ROMS model outputs (without coupling), the COWAST model outputs, and a buoy measurements moored in the region was performed for this year. References Warner, J.C., Armstrong, B., He, R., and Zambon, J.B., 2010, Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system: Ocean Modeling, 35 (3), 230-244.

  13. Coupling alongshore variations in wave energy to beach morphologic change using the SWAN wave model at Ocean Beach, San Francisco, CA

    USGS Publications Warehouse

    Eshleman, Jodi L.; Barnard, Patrick L.; Erikson, Li H.; Hanes, Daniel M.

    2007-01-01

    Coastal managers have faced increasing pressure to manage their resources wisely over the last century as a result of heightened development and changing environmental forcing. It is crucial to understand seasonal changes in beach volume and shape in order to identify areas vulnerable to accelerated erosion. Shepard (1950) was among the first to quantify seasonal beach cycles. Sonu and Van Beek (1971) and Wright et al. (1985) described commonly occurring beach states. Most studies utilize widest spaced 2-D cross shore profiles or shorelines extracted from aerial photographs (e.g. Winant et al. 1975; Aubrey, 1979, Aubrey and Ross, 1985; Larson and Kraus, 1994; Jimenez et al., 1977; Lacey and Peck, 1998; Guillen et al., 1999; Norcorss et al., 2002) to analyzed systematic changes in beach evolution. But with the exception of established field stations, such as Duck, NC (Birkemeier and Mason, 1984), ans Hazaki Oceanographical Research Station (HORS) in Japan (Katoh, 1997), there are very few beach change data sets with high temporal and spatial resolutions (e.g. Dail et al., 2000; Ruggiero et al., 2005; Yates et al., in press). Comprehensive sets of nearshore morphological data and local in situ measurements outside of these field stations are very rare and virtually non-existent high-energy coasts. Studied that have attempted to relate wave statistics to beach morphology change require some knowledge of the nearshore wave climate, and have had limited success using offshore measurement (Sonu and Van Beek, 1971; Dail et al., 2000). The primary objective of this study is to qualitatively compare spatially variable nearshore wave predictions to beach change measurements in order to understand the processes responsible for a persistent erosion 'hotspot' at Ocean Beach, San Francisco, CA. Local wave measurements are used to calibrate and validate a wave model that provides nearshore wave prediction along the beach. The model is run for thousands of binned offshore wave conditions to help isolate the effects of offshore wave direction and period on nearshore wave predictions. Alongshore varying average beach change statistics are computed at specific profile locations from topographic beach surveys and lidar data. The study area is located in the San Francisco Bight in central California. Ocean Beach is a seven kilometer long north-south trending sandy coastline located just south of the entrance to the San Francisco Bay Estuary (Figure 1). It contains an erosion hotspot in the southern part of the beach which has resulted in damage to local infrastructure and is the cause of continued concern. A wide range of field data collection and numerical modeling efforts have been focused here as part of the United States Geological Survey's (USGS) San Francisco Bight Coastal Processes Study, which began in October 2003 and represents the first comprehensive study of coastal processes at the mouth of San Francisco Bay. Ocean Beach is exposed to very strong tidal flows, with measured currents often in excess of 1 m/s at the north end of the beach. Current profiler measurements indicate that current magnitudes are greater in the northern portion of the beach, while wave energy is greater in the southern portion where erosion problems are greatest (Barnard et al., 2007). The sub-aerial beach volume fluctuates seasonally over a maximum envelope of 400,000 m3 for the seven kilometer stretch (Barnard et al, 2007). The wave climate in the region is dominated by an abundance of low frequency energy (greater than 20 s period) and prevailing northwest incident wave angles. The application of a wave model to the region is further complicated by the presence of the Farallon Islands 40 kilometers west, and a massive ebb tidal delta at the mouth of San Francisco Bay (~150 km2), which creates complicated refraction patterns as wave energy moves from offshore Ocean Beach; however the cost and threat of the energetic nearshore environment have limited the temporal and spatial resolution of these measurements. Applying numerical models to predict wave and current patterns along the beach can help supplement the filed data that exists and provide opportunities to make prediction about the impacts of changing environmental forcing.

  14. Novel Atmospheric and Sea State Modeling in Ocean Energy Applications

    NASA Astrophysics Data System (ADS)

    Kallos, George; Galanis, George; Kalogeri, Christina; Larsen, Xiaoli Guo

    2013-04-01

    The rapidly increasing use of renewable energy sources poses new challenges for the research and technological community today. The integration of the, usually, highly variable wind and wave energy amounts into the general grid, the optimization of energy transition and the forecast of extreme values that could lead to instabilities and failures of the system can be listed among them. In the present work, novel methodologies based on state of the art numerical wind/wave simulation systems and advanced statistical techniques addressing such type of problems are discussed. In particular, extremely high resolution modeling systems simulating the atmospheric and sea state conditions with spatial resolution of 100 meters or less and temporal discretization of a few seconds are utilized in order to simulate in the most detailed way the combined wind-wave energy potential at offshore sites. In addition, a statistical analysis based on a variety of mean and variation measures as well as univariate and bivariate probability distributions is used for the estimation of the variability of the power potential revealing the advantages of the use of combined forms of energy by offshore platforms able to produce wind and wave power simultaneously. The estimation and prediction of extreme wind/wave conditions - a critical issue both for site assessment and infrastructure maintenance - is also studied by means of the 50-year return period over areas with increased power potential. This work has been carried out within the framework of the FP7 project MARINA Platform (http://www.marina-platform.info/index.aspx).

  15. A synopsis of X-band radar-derived results from New River Inlet, NC (May 2012): Wave transformation, bathymetry, and tidal currents

    NASA Astrophysics Data System (ADS)

    Honegger, D. A.; Haller, M. C.; Diaz Mendez, G. M.; Pittman, R.; Catalan, P. A.

    2012-12-01

    Land-based X-band marine radar observations were collected as part of the month-long DARLA-MURI / RIVET-DRI field experiment at New River Inlet, NC in May 2012. Here we present a synopsis of preliminary results utilizing microwave radar backscatter time series collected from an antenna located 400 m inside the inlet mouth and with a footprint spanning 1000 m beyond the ebb shoals. Two crucial factors in the forcing and constraining of nearshore numerical models are accurate bathymetry and offshore variability in the wave field. Image time series of radar backscatter from surface gravity waves can be utilized to infer these parameters over a large swath and during times of poor optical visibility. Presented are radar-derived wavenumber vector maps obtained from the Plant et al. (2008) algorithm and bathymetric estimates as calculated using Holman et al. (JGR, in review). We also evaluate the effects of tidal currents on the wave directions and depth inversion accuracy. In addition, shifts in the average wave breaking patterns at tidal frequencies shed light on depth- (and possibly current-) induced breaking as a function of tide level and tidal current velocity, while shifts over longer timescales imply bedform movement during the course of the experiment. Lastly, lowpass filtered radar image time series of backscatter intensity are shown to identify the structure and propagation of tidal plume fronts and multiscale ebb jets at the offshore shoal boundary.

  16. Cascadia Onshore-Offshore Site Response, Submarine Sediment Mobilization, and Earthquake Recurrence

    NASA Astrophysics Data System (ADS)

    Gomberg, J.

    2018-02-01

    Local geologic structure and topography may modify arriving seismic waves. This inherent variation in shaking, or "site response," may affect the distribution of slope failures and redistribution of submarine sediments. I used seafloor seismic data from the 2011 to 2015 Cascadia Initiative and permanent onshore seismic networks to derive estimates of site response, denoted Sn, in low- and high-frequency (0.02-1 and 1-10 Hz) passbands. For three shaking metrics (peak velocity and acceleration and energy density) Sn varies similarly throughout Cascadia and changes primarily in the direction of convergence, roughly east-west. In the two passbands, Sn patterns offshore are nearly opposite and range over an order of magnitude or more across Cascadia. Sn patterns broadly may be attributed to sediment resonance and attenuation. This and an abrupt step in the east-west trend of Sn suggest that changes in topography and structure at the edge of the continental margin significantly impact shaking. These patterns also correlate with gravity lows diagnostic of marginal basins and methane plumes channeled within shelf-bounding faults. Offshore Sn exceeds that onshore in both passbands, and the steepest slopes and shelf coincide with the relatively greatest and smallest Sn estimates at low and high frequencies, respectively; these results should be considered in submarine shaking-triggered slope stability failure studies. Significant north-south Sn variations are not apparent, but sparse sampling does not permit rejection of the hypothesis that the southerly decrease in intervals between shaking-triggered turbidites and great earthquakes inferred by Goldfinger et al. (2012, 2013, 2016) and Priest et al. (2017) is due to inherently stronger shaking southward.

  17. Shear wave velocity structure in the lithosphere and asthenosphere across the Southern California continent and Pacific plate margin using inversion of Rayleigh wave data from the ALBACORE project.

    NASA Astrophysics Data System (ADS)

    Price, A. C.; Weeraratne, D. S.; Kohler, M. D.; Rathnayaka, S.; Escobar, L., Sr.

    2015-12-01

    The North American and Pacific plate boundary is a unique example of past subduction of an oceanic spreading center which has involved oceanic plate capture and inception of a continental transform boundary that juxtaposes continental and oceanic lithosphere on a single plate. The amphibious ALBACORE seismic project (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deployed 34 ocean bottom seismometers (OBS) on 15-35 Ma seafloor and offers a unique opportunity to compare the LAB in continental and oceanic lithosphere in one seismic study. Rayleigh waves were recorded simultaneously by our offshore array and 82 CISN network land stations from 2010-2011. Here we predict phase velocities for a starting shear wave velocity model for each of 5 regions in our study area and compare to observed phase velocities from our array in a least-squares sense that produces the best fit 1-D shear wave velocity structure for each region. Preliminary results for the deep ocean (seafloor 25-32 Ma) indicates high velocities reaching 4.5 km/s at depths of 50 km associated with the lithosphere for seafloor 25-32 Ma. A negative velocity gradient is observed below this which reaches a minimum of 4.0 km/s at 160 km depth. The mid-ocean region (age 13-25 Ma) indicates a slightly lower magnitude and shallower LVZ. The Inner Borderland displays the highest lithospheric velocities offshore reaching 4.8 km/s at 40 km depth indicating underplating. The base of the LVZ in the Borderland increases sharply from 4.0 km/s to 4.5 km/s at 80-150 km depth indicating partial melt and compositional changes. The LVZ displays a very gradual positive velocity gradient in all other regions such as the deep seafloor and continent reaching 4.5 km/s at 300 km depth. The deep ocean, Borderlands, and continental region each have unique lithospheric velocities, LAB depths, and LVZ character that indicate stark differences in mantle structure that occur on a single plate as well as across the continental margin.

  18. ENSO-Related Variability in Wave Climate Drives Greater Erosion Potential on Central Pacific Atolls

    NASA Astrophysics Data System (ADS)

    Bramante, J. F.; Ashton, A. D.; Donnelly, J. P.

    2015-12-01

    The El Nino Southern Oscillation (ENSO) modulates atmospheric circulation across the equatorial Pacific over a periodic time scale of 2-7 years. Despite the importance of this climate mode in forcing storm generation and trade wind variability, its impact on the wave climate incident on central Pacific atolls has not been addressed. We used the NOAA Wavewatch III CFSR reanalysis hindcasts (1979-2007) to examine the influence of ENSO on sediment mobility and transport at Kwajalein Atoll (8.8°N, 167.7°E). We found that during El Nino event years, easterly trade winds incident on the atoll weakened by 4% compared to normal years and 17% relative to La Nina event years. Despite this decrease in wind strength, significant wave heights incident on the atoll were 3-4% greater during El Nino event years. Using machine learning to partition these waves revealed that the greater El Nino wave heights originated mainly from greater storm winds near the atoll. The southeastern shift in tropical cyclone genesis location during El Nino years forced these storm winds and contributed to the 7% and 16% increases in annual wave energy relative to normal and La Nina years, respectively. Using nested SWAN and XBeach models we determined that the additional wave energy during El Nino event years significantly increased potential sediment mobility at Kwajalein Atoll and led to greater net offshore transport on its most populous island. The larger storm waves likely deplete ocean-facing beaches and reef flats of sediment, but increase the supply of sediment to the atoll lagoon across open reef platforms that are not supporting islands. We discuss further explicit modelling of storms passing over the atoll to elucidate the confounding role of storm surge on the net erosional/depositional effects of these waves. Extrapolating our results to recent Wavewatch III forecasts leads us to conclude that climate change-linked increases in wave height and storm wave energy will increase erosion on central Pacific atolls.

  19. The Impact of Coastal Terrain on Offshore Wind and Implications for Wind Energy

    NASA Astrophysics Data System (ADS)

    Strobach, Edward Justin

    The development of offshore wind energy is moving forward as one of several options for carbon-free energy generation along the populous US east coast. Accurate assessments of the wind resource are essential and can significantly lower financing costs that have been a barrier to development. Wind resource assessment in the Mid-Atlantic region is challenging since there are no long-term measurements of winds across the rotor span. Features of the coastal and inland terrain, such as such as the Appalachian mountains and the Chesapeake Bay, are known to lead to complex mesoscale wind regimes onshore, including low-level jets (LLJs), downslope winds and sea breezes. Little is known, however, about whether or how the inland physiography impacts the winds offshore. This research is based on the first comprehensive set of offshore wind observations in the Maryland Wind Energy Area gathered during a UMBC measurement campaign. The presentation will include a case study of a strong nocturnal LLJ that persisted for several hours before undergoing a rapid breakdown and loss of energy to smaller scales. Measurements from an onshore wind profiler and radiosondes, together with North American Regional Analysis (NARR) and a high resolution Weather Research and Forecast (WRF) model simulation, are used to untangle the forcing mechanisms on synoptic, regional and local scales that led to the jet and its collapse. The results suggest that the evolution of LLJs were impacted by a downslope wind from the Appalachians that propagated offshore riding atop a shallow near-surface boundary layer across the coastal plain. Baroclinic forcing from low sea surface temperatures (SSTs) due to coastal upwelling is also discussed. Smaller scale details of the LLJ breakdown are analyzed using a wave/mean flow/turbulence interaction approach. The case study illustrates several characteristics of low-level winds offshore that are important for wind energy, including LLJs, strong wind shear, turbulence and rapid changes in the wind, so-called "ramp events". A 3-year survey based on NARR analyses is used to estimate the likelihood that similar events could occur under the same meteorological conditions.

  20. 2013 status of the Lake Ontario lower trophic levels

    USGS Publications Warehouse

    Holeck, Kristen T.; Rudstam, Lars G.; Hotaling, Christopher; McCullough, Russ D.; Lemon, Dave; Pearsall, Web; Lantry, Jana R.; Connerton, Michael J.; LaPan, Steve; Trometer, Betsy; Lantry, Brian F.; Walsh, Maureen; Weidel, Brian C.

    2014-01-01

    Phosphorus showed high variation across nearshore (10 m depth) sites but was more stable at offshore (20 m and deeper) stations. In June and July, sites at the mouth of the Niagara River and at Oak Orchard had high phosphorus concentrations (20 – 46 μg/L). Epilimnetic average April-Oct total phosphorus (TP) ranged between 6.9 and 19.9 μg/L in the nearshore and between 5.8 and 10.2 μg/L in the offshore. Average April-Oct soluble reactive phosphorus (SRP) ranged from 0.9 to 7.3 μg/L in the nearshore and 0.8 to 1.4 μg/L in the offshore. TP and SRP were significantly higher in the nearshore than in the offshore.Spring TP has declined in the longer data series (since 1981), but not since 1995. It averaged 8.4 μg/L in the nearshore and 5.0 μg/L in the offshore in 2013—below the 10 μg/L target set by the Great Lakes Water Quality Agreement of 1978 for offshore waters of Lake Ontario.Offshore summer chlorophyll-a declined significantly in both the short- (1995-2013) and long-term (1981-2013) time series at a rate of 3-4% per year. Nearshore chlorophyll-a increased after 2003 but then declined again after 2009. Epilimnetic chlorophyll-aaveraged between 0.5 and 1.3 μg/L across sites with no difference between nearshore and offshore habitats. Average seasonal Secchi disk depth ranged from 4.5 m to 10.6 m and was higher in the offshore (average 8.1 m) than nearshore stations (6.3 m). These values are indicative of oligotrophic conditions in both habitats.In 2013, Apr/May - Oct epilimnetic zooplankton size and total biomass were significantly higher in the offshore than the nearshore. However, with the exception of Limnocalanus (higher in offshore), there were no differences between habitats for any of the zooplankton groups.Most of the zooplankton biomass was in the metalimnion and hypolimnion during the day in 2013. Between 65 and 98% of zooplankton biomass was found below the thermocline throughout the year.The predatory cladoceran Cercopagis continued to be abundant in the summer, peaking at ~7 mg/m3in the offshore. Bythotrephes peaked in October (~0.7 mg/m3), but Bythotrephes biomass was at its lowest biomass in both offshore and nearshore stations since 2005.Summer nearshore zooplankton density and biomass have declined significantly since 1995 at rates of 9-10% per year. Nearshore epilimnetic zooplankton density and biomass have remained stable since 2005 at low levels relative to previous years.Summer offshore zooplankton density and biomass in the epilimnion of Lake Ontario have also declined since 1995 at rates of 10-14% per year, but those declines are marginally significant; density declined significantly in the long-term (since 1981) but has remained at a lower stable level since 2005.Bosminid and cyclopoid copepod biomass declined significantly in nearshore waters. The same pattern occurred in the offshore but declines were significant for bosminids and marginally significant for cyclopoid copepods. Daphnid biomass has also declined significantly in the nearshore.The decline in Daphnid biomass nearshore and Bythotrephes biomass offshore and nearshore is indicative of increased planktivory by alewife. Significant declines in Bosminid and cyclopoid copepod biomass is indicative of increased invertebrate predation by Cercopagis and Bythotrephes in recent years.

  1. Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakeslee, Samuel Norman; Toman, William I.; Williams, Richard B.

    The California Wave Energy Test Center (CalWave) Feasibility Study project was funded over multiple phases by the Department of Energy to perform an interdisciplinary feasibility assessment to analyze the engineering, permitting, and stakeholder requirements to establish an open water, fully energetic, grid connected, wave energy test center off the coast of California for the purposes of advancing U.S. wave energy research, development, and testing capabilities. Work under this grant included wave energy resource characterization, grid impact and interconnection requirements, port infrastructure and maritime industry capability/suitability to accommodate the industry at research, demonstration and commercial scale, and macro and micro sitingmore » considerations. CalWave Phase I performed a macro-siting and down-selection process focusing on two potential test sites in California: Humboldt Bay and Vandenberg Air Force Base. This work resulted in the Vandenberg Air Force Base site being chosen as the most favorable site based on a peer reviewed criteria matrix. CalWave Phase II focused on four siting location alternatives along the Vandenberg Air Force Base coastline and culminated with a final siting down-selection. Key outcomes from this work include completion of preliminary engineering and systems integration work, a robust turnkey cost estimate, shoreside and subsea hazards assessment, storm wave analysis, lessons learned reports from several maritime disciplines, test center benchmarking as compared to existing international test sites, analysis of existing applicable environmental literature, the completion of a preliminary regulatory, permitting and licensing roadmap, robust interaction and engagement with state and federal regulatory agency personnel and local stakeholders, and the population of a Draft Federal Energy Regulatory Commission (FERC) Preliminary Application Document (PAD). Analysis of existing offshore oil and gas infrastructure was also performed to assess the potential value and re-use scenarios of offshore platform infrastructure and associated subsea power cables and shoreside substations. The CalWave project team was well balanced and was comprised of experts from industry, academia, state and federal regulatory agencies. The result of the CalWave feasibility study finds that the CalWave Test Center has the potential to provide the most viable path to commercialization for wave energy in the United States.« less

  2. Case study of small harbor excitation under storm and tsunami conditions

    NASA Astrophysics Data System (ADS)

    Synolakis, Costas; Maravelakis, Nikos; Kalligeris, Nikos; Skanavis, Vassilios; Kanoglu, Utku; Yalciner, Ahmet; Lynett, Pat

    2016-04-01

    Simultaneous nearshore and interior-to-ports wave and current measurements for small ports are not common, and few, if any, benchmarking cases at sufficient resolution exist to help validate numerical model of intermediate waves, or even long waves. The wave conditions inside the old Venetian harbor of Chania, Greece and offshore were measured and studied from 2012 to 2015. The construction of this harbor began in the 14th century, and since then, its layout has been modified to adapt to different social and to economic conditions. It is divided into a western and an eastern basin. The eastern basin is used by recreational vessels and fishing boats throughout the year. The western basin has an exposed entrance to the north, and it is essentially functional half of the year, because of the severe overtopping and flooding that occur during the northern winter storms. Our work is motivated by the necessity to protect the monument from severe winter storm conditions and allow safe mooring and all other recreational activities that take place in the exposed western basin. Two earlier studies had proposed the construction of a low crested breakwater near the harbor entrance. The first design has been partially constructed, while the second never materialized. The main disadvantage of both studies was the lack of any wave field measurements. At the same time, second order or complimentary phenomena such as harbor resonance had not been considered. To address the lack of field data, the offshore wave climate has been monitored since October 2012 using an AWAC 600kHz instrument, deployed at 23m depth. The response of the western and eastern basins of the harbor was measured with a TWR-2050 (deployed at 5.5m depth) and an RBRDuet T.D./wave (deployed at 2m depth) pressure gauges respectively. Significant wave heights ranging up to 5.8 m with significant periods of up to 10 sec were measured. The harbor pressure gauges are now being re-deployed in other locations to collect enough information to infer the resonant modes of the basins excited during storm conditions. The deployment position of the pressure gauges is based on numerical modeling results. We have employed the fully nonlinear Boussinesq module of COULWAVE using a high resolution (2m cell size) relief model and an idealized TMA directional wave spectrum. The wave field and low frequency energy distribution in the basin are captured by both numerical modeling and field measurements. The field measurements agree well with the numerical modeling analysis, providing insight as to the causes of severe disturbance and useful information that should be considered for an effective solution to the protection of the harbor. Our measurements appear the first ever nearshore measurements of waves and currents for a 2+ year period duration in Greece. The work is also being used for validation tsunami inundation models for civil defense applications in Crete. * This work was supported by the project ASTARTE, Grant no 603839 7th FP (ENV.213.6.4.3) to the Technical University of Crete and to the Middle East Technical University.

  3. Surficial geology of the sea floor in Long Island Sound offshore of Orient Point, New York

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Danforth, W.W.; Blackwood, D.S.; Schaer, J.D.; Guberski, M.R.; Wood, D.A.; Doran, E.F.

    2011-01-01

    The U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), and the Connecticut Department of Environmental Protection (CT DEP) are working cooperatively to map and interpret features of the sea floor along the northeastern coast of the United States. This report presents multibeam bathymetry and sidescan-sonar data obtained during NOAA survey H11446, which was conducted in a 12-km2 area in Long Island Sound offshore of Orient Point, NY. In addition, sediment and photographic data from 26 stations obtained during a USGS verification cruise are presented. Overall, the sea floor slopes gently seaward, but topography is more complex in sand-wave and boulder areas, which are evident in the multibeam and sidescan-sonar data from the study area. Sand waves generally have north-south-oriented crests with 10- to 20-m wavelengths. Sand-wave asymmetry indicates eastward net sediment transport in the east and westward net sediment transport in the northern and western parts of the study area. Areas with boulders on the sea floor are typically hummocky and are part of a glacial moraine system. Boulders are typically encrusted with seaweed, sponges, and anemones as shown in the bottom photography.

  4. Sensor Measurement Strategies for Monitoring Offshore Wind and Wave Energy Devices

    NASA Astrophysics Data System (ADS)

    O'Donnell, Deirdre; Srbinovsky, Bruno; Murphy, Jimmy; Popovici, Emanuel; Pakrashi, Vikram

    2015-07-01

    While the potential of offshore wind and wave energy devices is well established and accepted, operations and maintenance issues are still not very well researched or understood. In this regard, scaled model testing has gained popularity over time for such devices at various technological readiness levels. The dynamic response of these devices are typically measured by different instruments during such scaled tests but agreed sensor choice, measurement and placement guidelines are still not in place. This paper compared the dynamic responses of some of these sensors from a scaled ocean wave testing to highlight the importance of sensor measurement strategies. The possibility of using multiple, cheaper sensors of seemingly inferior performance as opposed to the deployment of a small number of expensive and accurate sensors are also explored. An energy aware adaptive sampling theory is applied to highlight the possibility of more efficient computing when large volumes of data are available from the tested structures. Efficient sensor measurement strategies are expected to have a positive impact on the development of an device at different technological readiness levels while it is expected to be helpful in reducing operation and maintenance costs if such an approach is considered for the devices when they are in operation.

  5. 2015 status of the Lake Ontario lower trophic levels

    USGS Publications Warehouse

    Holeck, Kristen T.; Rudstam, Lars G.; Hotaling, Christopher; McCullough, Russ D.; Lemon, Dave; Pearsall, Web; Lantry, Jana; Connerton, Michael J.; LaPan, Steve; Biesinger, Zy; Lantry, Brian F.; Walsh, Maureen; Weidel, Brian C.

    2016-01-01

    Offshore spring total phosphorus (TP) in 2015 was 4.2 μ g/L, the same as in 2014; this is lower than 2001 - 2013, but there is no significant time trend 2001 - 2015. Offshore soluble reactive phosphorus (SRP) was very low in 2015; Apr/May - Oct mean values were <1 μ g/L at most sites. SRP has been stable in nearshore and offshore habitats since 1998 (range, 0.4 – 3.3 μ g/L). TP concentrations were low at both nearshore and offshore locations (range 4.2 - 8.1 μ g/L), and TP and SRP concentrations were significantly higher in the nearshore as compared to the offshore (6.8 μ g/L vs 4.8 μ g/L, TP; 1.1 μ g/L vs 0.7 μ g/L, SRP).Chlorophyll-a and Secchi depth values are indicative of oligotrophic conditions in nearshore and offshore habitats. Offshore summer chlorophyll- a declined significantly 2000 - 2015. Nearshore chlorophyll- a increased 1995 - 2004 but then declined 2005 - 2015. Epilimnetic chlorophyll-a averaged between 0.9 and 1.9 1 μg/L across sites, and offshore concentrations (1.4 1 μg/L) were significantly higher than nearshore (1.1 μg/L). Summer Secchi depth increased significantly in the offshore 2000 -2015 and showed no trend in the nearshore, 1995 - 2015. Apr/May - Oct Secchi depth ranged from 5.0 m to 13.0 m at individual sites and was higher in the offshore (9.5 m) than nearshore (6.2 m).In 2015, Apr/May - Oct epilimnetic zooplankton density, size, and biomass were not different between the offshore and the nearshore, but cyclopoid biomass was higher in the offshore (8.3 mg/m 3 vs 2.0 mg/m3) and Bythotrephes biomass was higher in the nearshore (0.17 mg/m3 vs 0.04 mg/m3).Zooplankton density and biomass peaked in September, an atypical pattern. This coincided with peaks in calanoid copepod, daphnid, and Holopedium Holopedium biomass in the nearshore has increased significantly since 1995.The predatory cladoceran Cercopagis continued to be abundant in summer in the nearshore (3.4 μ g/L) but not in the offshore (0.8 μ g/L). Bythotrephes biomass was very low (<0.3 μ g/L) in both nearshore and offshore habitats. Combined biomass of these predatory cladocerans in the offshore was the lowest recorded since 2001.Summer nearshore zooplankton density and biomass declined significantly 1995 - 2004 and then increased significantly 2005 – 2015. The decline was due to reductions in bosminids and cyclopoids and the increase was due mostly to a rebound in bosminids.Summer offshore zooplankton density and biomass increased significantly 2005 - 2015. The increase was due to an increase in bosminids and cyclopoids. In 2015, offshore summer epilimnetic zooplankton biomass was 52 mg/m3 (2005 - 2014 mean=18 mg/m3).Most zooplankton biomass was found in the metalimnion in July and in the hypolimnion in September. Cyclopoids and Limnocalanus dominated the metalimnion and Limnocalanus dominated the hypolimnion. Whole water column samples taken show a stable zooplankton biomass but changing community composition since 2010. Cyclopoids increased 2013 - 2015 and daphnids declined 2014 - 2015.

  6. Hurricane Directional Wave Spectrum Spatial Variation at Landfall

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marke, Frank D.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.

  7. Hurricane Directional Wave Spectrum Spatial Variation at Landfall

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.

    1999-01-01

    On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.

  8. Towards a quantification of ocean wave heights off the west coast of Ireland using land based seismic data

    NASA Astrophysics Data System (ADS)

    Donne, S.; Bean, C. J.; Lokmer, I.; Lambkin, K.; Creamer, C.

    2012-12-01

    Ocean gravity waves are driven by atmospheric pressure systems. Their interactions with one another and reflection off coastlines generate pressure changes at the sea floor. These pressure fluctuations are the cause of continuous background seismic noise known as microseisms. The levels of microseism activity vary as a function of the sea state and increase during periods of intensive ocean wave activity. In 2011 a seismic network was deployed along the west coast of Ireland to continuously record microseisms generated in the Atlantic Ocean, as part of the Wave Observation (WaveObs) project based in University College Dublin. This project aims to determine the characteristics of the causative ocean gravity waves through calibration of the microseism data with ocean buoy data. In initial tests we are using a Backpropagation Feed-forward Artificial Neural Network (BP ANN) to establish the underlying relationships between microseisms and ocean waves. ANNs were originally inspired by studies of the mammalian brain and nervous system and are designed to learn by example. If successful these tools could then be used to estimate ocean wave heights and wave periods using a land-based seismic network and complement current wave observations being made offshore by marine buoys. Preliminary ANN results are promising with the network successfully able to reconstruct trends in ocean wave heights and periods. Microseisms can provide significant information about oceanic processes. With a deeper understanding of how these processes work there is potential for 1) locating and tracking the evolution of the largest waves in the Atlantic and 2) reconstructing the wave climate off the west coast of Ireland using legacy seismic data on a longer time scale than is currently available using marine based observations.

  9. Review of technology for Arctic offshore oil and gas recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleummore » production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.« less

  10. Monitoring Tidal Currents with a Towed ADCP System

    DTIC Science & Technology

    2015-12-22

    these make tidal stream energy a more reliable source than other forms of ma- rine energy, such as waves and offshore wind. The place of tidal stream...big tidal range (9 m), relatively strong (2 m/s) currents, and moderate wind waves (less than 3 m in the an- nual mean), it is considered to be a...Monitoring tidal currents with a towed ADCP system Alexei Sentchev1 & Max Yaremchuk2 Received: 22 September 2015 /Accepted: 10 December 2015

  11. General Investigation of Tidal Inlets: Stability of Selected United States Tidal Inlets

    DTIC Science & Technology

    1991-09-01

    characteristics in relation to the variability of the hydr; aulic parameters. An inlet can fall into any of four "stability" classes 48 Orientation Parameter 80...nlot he ~ :Ke(: t 93. If a fairly straight coast with uniform offshore slopes and a regionally homogeneous wave climate is considered, a reasonable...expectation is LhaL the longshore transport quantities and directions are homogeneous. Given a long-term variability in wave climate , a corresponding

  12. A review on multicomponent seismology: A potential seismic application for reservoir characterization

    PubMed Central

    Farfour, Mohammed; Yoon, Wang Jung

    2015-01-01

    Searching for hydrocarbon reserves in deep subsurface is the main concern of wide community of geophysicists and geoscientists in petroleum industry. Exploration seismology has substantially contributed to finding and developing giant fields worldwide. The technology has evolved from two to three-dimensional method, and later added a fourth dimension for reservoir monitoring. Continuous depletion of many old fields and the increasing world consumption of crude oil pushed to consistently search for techniques that help recover more reserves from old fields and find alternative fields in more complex and deeper formations either on land and in offshore. In such environments, conventional seismic with the compressional (P) wave alone proved to be insufficient. Multicomponent seismology came as a solution to most limitations encountered in P-wave imaging. That is, recording different components of the seismic wave field allowed geophysicists to map complex reservoirs and extract information that could not be extracted previously. The technology demonstrated its value in many fields and gained popularity in basins worldwide. In this review study, we give an overview about multicomponent seismology, its history, data acquisition, processing and interpretation as well as the state-of the-art of its applications. Recent examples from world basins are highlighted. The study concludes that despite the success achieved in many geographical areas such as deep offshore in the Gulf of Mexico, Western Canada Sedimentary Basin (WCSB), North Sea, Offshore Brazil, China and Australia, much work remains for the technology to gain similar acceptance in other areas such as Middle East, East Asia, West Africa and North Africa. However, with the tremendous advances reported in data recording, processing and interpretation, the situation may change. PMID:27222756

  13. A review on multicomponent seismology: A potential seismic application for reservoir characterization.

    PubMed

    Farfour, Mohammed; Yoon, Wang Jung

    2016-05-01

    Searching for hydrocarbon reserves in deep subsurface is the main concern of wide community of geophysicists and geoscientists in petroleum industry. Exploration seismology has substantially contributed to finding and developing giant fields worldwide. The technology has evolved from two to three-dimensional method, and later added a fourth dimension for reservoir monitoring. Continuous depletion of many old fields and the increasing world consumption of crude oil pushed to consistently search for techniques that help recover more reserves from old fields and find alternative fields in more complex and deeper formations either on land and in offshore. In such environments, conventional seismic with the compressional (P) wave alone proved to be insufficient. Multicomponent seismology came as a solution to most limitations encountered in P-wave imaging. That is, recording different components of the seismic wave field allowed geophysicists to map complex reservoirs and extract information that could not be extracted previously. The technology demonstrated its value in many fields and gained popularity in basins worldwide. In this review study, we give an overview about multicomponent seismology, its history, data acquisition, processing and interpretation as well as the state-of the-art of its applications. Recent examples from world basins are highlighted. The study concludes that despite the success achieved in many geographical areas such as deep offshore in the Gulf of Mexico, Western Canada Sedimentary Basin (WCSB), North Sea, Offshore Brazil, China and Australia, much work remains for the technology to gain similar acceptance in other areas such as Middle East, East Asia, West Africa and North Africa. However, with the tremendous advances reported in data recording, processing and interpretation, the situation may change.

  14. Holocene sedimentation in the shallow nearshore zone off Nauset Inlet, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Aubrey, D.G.; Twichell, D.C.; Pfirman, S.L.

    1982-01-01

    Present conditions and sedimentary evolution of the shallow offshore region near Nauset Inlet on Cape Cod, Massachusetts were clarified using high-resolution seismic-reflection profiles, sidescan-sonar records, surface grab samples and current meter measurements. The study area contains three provinces: (1) a nearshore province (shallower than 18 m) with a relatively steep slope (0.6°) and a cover of medium sand; (2) a northern offshore province covered with coarse sand, gravel, and boulders, interpreted to be glacial drift; and (3) a southern offshore province with a gentle seaward-dipping slope (0.3°) and a surface sediment of coarse sand. The glacial drift exposed in the northern offshore province can be traced southward under the coarse sand province. The overlying fill is comprised of either outwash sediment derived from the Pleistocene South Channel ice lobe to the east or Holocene-aged marine sediments eroded from seacliffs to the north. Latest Holocene sediment appears to be limited to the zone shoreward of 18 m where the medium sand occurs.Near-bottom mean flows (measured over two winter months in 10 m water depth) average 6 cm sec−1 to the south. Mean flows exceeded 20 cm sec−1approx. 23% of the time. Ninety percent of the flows exceeding 20 cm sec−1were directed to the south, reflecting the dominant atmospheric forcing during these winter months. Waves had an average variance of 650 cm2 with variance exceeding 5000 cm2, 3% of the time, indicating moderate wave activity.Present processes are actively reshaping the nearshore province, which is characterized by many east to northeast-trending shore-oblique channels that do not extend seaward of the 18-m contour. Coarse sand in the floors of these channels suggests they may be erosional features, and the presence of megaripples oriented perpendicular to the channel axes indicates active transport in these channels. Megaripple orientation and the current and wave regime of the study area support a rip-current origin for these channels.

  15. Structure of the Lithosphere-Asthenosphere Boundary Onshore and Offshore the California Continental Margin from Three-Dimensional Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer indicates NW-SE fast directions below the LAB likely controlled by current Pacific plate motion. The inner Borderland indicates two layer anisotropic structure with a shallow NW-SE lithospheric fast direction that changes to NE-SW fast directions below the LAB, possibly consistent with the ancient subduction direction.

  16. Hydroelectric power from ocean waves

    NASA Astrophysics Data System (ADS)

    Raghavendran, K.

    1981-02-01

    This paper describes a system which converts the variable energy of ocean waves into a steady supply of energy in a conventional form. The system consists of a set of floats and Persian wheels located off-shore and a storage reservoir on the shore. The floats oscillate vertically as the waves pass below them and turn their respective Persian wheels which lift sea water to a height and deliver to the reservoir through an interconnecting pipeline. The head of water in the reservoir operates a hydraulic turbine which in turn works a generator to supply electricity. Due to the recurrent wave action, water is maintained at the optimum level in the reservoir to ensure continuous power supply.

  17. An operational wave forecasting system for the east coast of India

    NASA Astrophysics Data System (ADS)

    Sandhya, K. G.; Murty, P. L. N.; Deshmukh, Aditya N.; Balakrishnan Nair, T. M.; Shenoi, S. S. C.

    2018-03-01

    Demand for operational ocean state forecasting is increasing, owing to the ever-increasing marine activities in the context of blue economy. In the present study, an operational wave forecasting system for the east coast of India is proposed using unstructured Simulating WAves Nearshore model (UNSWAN). This modelling system uses very high resolution mesh near the Indian east coast and coarse resolution offshore, and thus avoids the necessity of nesting with a global wave model. The model is forced with European Centre for Medium-Range Weather Forecasts (ECMWF) winds and simulates wave parameters and wave spectra for the next 3 days. The spatial pictures of satellite data overlaid on simulated wave height show that the model is capable of simulating the significant wave heights and their gradients realistically. Spectral validation has been done using the available data to prove the reliability of the model. To further evaluate the model performance, the wave forecast for the entire year 2014 is evaluated against buoy measurements over the region at 4 waverider buoy locations. Seasonal analysis of significant wave height (Hs) at the four locations showed that the correlation between the modelled and observed was the highest (in the range 0.78-0.96) during the post-monsoon season. The variability of Hs was also the highest during this season at all locations. The error statistics showed clear seasonal and geographical location dependence. The root mean square error at Visakhapatnam was the same (0.25) for all seasons, but it was the smallest for pre-monsoon season (0.12 m and 0.17 m) for Puducherry and Gopalpur. The wind sea component showed higher variability compared to the corresponding swell component in all locations and for all seasons. The variability was picked by the model to a reasonable level in most of the cases. The results of statistical analysis show that the modelling system is suitable for use in the operational scenario.

  18. The U.S. Department of Energy's Reference Facility for Offshore Renewable Energy (RFORE): A New Platform for Research and Development (Invited)

    NASA Astrophysics Data System (ADS)

    Shaw, W. J.

    2013-12-01

    Offshore renewable energy represents a significant but essentially untapped electricity resource for the U.S. Offshore wind energy is attractive for a number of reasons, including the feasibility of using much larger and more efficient wind turbines than is possible on land. In many offshore regions near large population centers, the diurnal maximum in wind energy production is also closely matched to the diurnal maximum in electricity demand, easing the balancing of generation and load. Currently, however, the cost of offshore wind energy is not competitive with other energy sources, including terrestrial wind. Two significant contributing reasons for this are the cost of offshore wind resource assessment and fundamental gaps in knowledge of the behavior of winds and turbulence in the layer of the atmosphere spanned by the sweep of the turbine rotor. Resource assessment, a necessary step in securing financing for a wind project, is conventionally carried out on land using meteorological towers erected for a year or more. Comparable towers offshore are an order of magnitude more expensive to install. New technologies that promise to reduce these costs, such as Doppler lidars mounted on buoys, are being developed, but these need to be validated in the environment in which they will be used. There is currently no facility in the U.S. that can carry out such validations offshore. Research needs include evaluation and improvement of hub-height wind forecasts from regional forecast models in the marine boundary layer, understanding of turbulence characteristics that affect turbine loads and wind plant efficiency, and development of accurate representations of sea surface roughness and atmospheric thermodynamic stability on hub height winds. In response to these needs for validation and research, the U.S. Department of Energy is developing the Reference Facility for Offshore Renewable Energy (RFORE). The RFORE will feature a meteorological tower with wind, temperature, humidity, and turbulence sensors at nominally eight levels to a maximum measurement height of at least 100 m. In addition, remote sensing systems for atmospheric dynamic and thermodynamic profiles, sea state measurements including wave spectra, and subsurface measurements of current, temperature, and salinity profiles will be measured. Eventually, measurements from the platform are anticipated to include monitoring of marine and avian life as well as bats. All data collected at the RFORE will be archived and made available to all interested users. The RFORE is currently planned to be built on the structure of the Chesapeake Light Tower, approximately 25 km east of Virginia Beach, Virginia. This development is an active collaboration among U.S. DOE headquarters staff, the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL). NREL will design, construct, and operate the facility. PNNL will develop the research agenda, including the data archive. This presentation emphasizes the measurement capabilities of the facility in the context of research applications, user access to the data through the archive, and plans for user engagement and research management of the facility.

  19. A field study of littoral processes in Estero Bay, California

    USGS Publications Warehouse

    Dingler, J.R.; Anima, R.J.; Molzan, D.E.; Luepke, Gretchen; Peterson, C.L.

    1982-01-01

    Estero Bay, which lies on the central California coast, has rocky headlands at both ends and sandy beaches within it. The shoreline of the bay has adjusted to be in equilibrium with the predominant wave climate, which is from the northwest. Because of its present shoreline configuration, the net southward littoral transport found along much of the California coast does not occur within Estero Bay. Instead, the sand primarily moves on- and offshore with a reversing longshore component. This sand transport pattern produces a littoral cell within Estero Bay even though there is no submarine canyon in the area. The primary sand sinks for this cell appear to be the sand spit south of Morro Rock and the entrance to Morro Bay itself, although this opinion was not experimentally verified. Field work during one summer (1978) and the following winter (1979) produced baseline data on the profile of and grain-size distribution across the littoral zone. In the offshore part of the littoral zone we also studied ripple size and type, internal structure, depth of erosion, and mineralogy. Although these data, which were collected along nine transects spaced 2 km apart, are inadequate to yield transport and energy rates, they indicate a northward decrease in wave energy within Estero Bay and a mixing of the sediments in the offshore. Box core and rod height data from grid points in seven meters of water showed that on the order of a meter of erosion occurred in the central part of the bay between the two sampling periods. Offshore, the data were incomplete, but at one station, in 17 m of water, at least 20 cm of erosion occurred.

  20. Scenario analysis for techno-economic model development of U.S. offshore wind support structures

    DOE PAGES

    Damiani, Rick; Ning, Andrew; Maples, Ben; ...

    2016-09-22

    Challenging bathymetry and soil conditions of future US offshore wind power plants might promote the use of multimember, fixed-bottom structures (or 'jackets') in place of monopiles. Support structures affect costs associated with the balance of system and operation and maintenance. Understanding the link between these costs and the main environmental design drivers is crucial in the quest for a lower levelized cost of energy, and it is the main rationale for this work. Actual cost and engineering data are still scarce; hence, we evaluated a simplified engineering approach to tie key site and turbine parameters (e.g. water depth, wave height,more » tower-head mass, hub height and generator rating) to the overall support weight. A jacket-and-tower sizing tool, part of the National Renewable Energy Laboratory's system engineering software suite, was utilized to achieve mass-optimized support structures for 81 different configurations. This tool set provides preliminary sizing of all jacket components. Results showed reasonable agreement with the available industry data, and that the jacket mass is mainly driven by water depth, but hub height and tower-head mass become more influential at greater turbine ratings. A larger sensitivity of the structural mass to wave height and target eigenfrequency was observed for the deepest water conditions (>40 m). Thus, techno-economic analyses using this model should be based on accurate estimates of actual metocean conditions and turbine parameters especially for deep waters. Finally, the relationships derived from this study will inform National Renewable Energy Laboratory's offshore balance of system cost model, and they will be used to evaluate the impact of changes in technology on offshore wind lower levelized cost of energy.« less

  1. TOMO-ETNA Experiment -Etna volcano, Sicily, investigated with active and passive seismic methods

    NASA Astrophysics Data System (ADS)

    Luehr, Birger-G.; Ibanez, Jesus M.; Díaz-Moreno, Alejandro; Prudencio, Janire; Patane, Domenico; Zieger, Toni; Cocina, Ornella; Zuccarello, Luciano; Koulakov, Ivan; Roessler, Dirk; Dahm, Torsten

    2017-04-01

    The TOMO-ETNA experiment, as part of the European Union project "MEDiterranean SUpersite Volcanoes (MED-SUV)", was devised to image the crustal structure beneath Etna by using state of the art passive and active seismic methods. Activities on-land and offshore are aiming to obtain new high-resolution seismic images to improve the knowledge of crustal structures existing beneath the Etna volcano and northeast Sicily up to the Aeolian Islands. In a first phase (June 15 - July 24, 2014) at Etna volcano and surrounding areas two removable seismic networks were installed composed by 80 Short Period and 20 Broadband stations, additionally to the existing network belonging to the "Istituto Nazionale di Geofisica e Vulcanologia" (INGV). So in total air-gun shots could be recorded by 168 stations onshore plus 27 ocean bottom instruments offshore in the Tyrrhenian and Ionian Seas. Offshore activities were performed by Spanish and Italian research vessels. In a second phase the broadband seismic network remained operative until October 28, 2014, as well as offshore surveys during November 19 -27, 2014. Active seismic sources were generated by an array of air-guns mounted in the Spanish Oceanographic vessel "Sarmiento de Gamboa" with a power capacity of up to 5.200 cubic inches. In total more than 26.000 shots were fired and more than 450 local and regional earthquakes could be recorded and will be analyzed. For resolving a volcanic structure the investigation of attenuation and scattering of seismic waves is important. In contrast to existing studies that are almost exclusively based on S-wave signals emitted by local earthquakes, here air-gun signals were investigated by applying a new methodology based on the coda energy ratio defined as the ratio between the energy of the direct P-wave and the energy in a later coda window. It is based on the assumption that scattering caused by heterogeneities removes energy from direct P-waves that constitutes the earliest possible arrival to any part later in the seismic wave train. As an independent proxy of the scattering strength along the ray path, we measure the peak delay time of a direct P-wave, which is well correlated with the coda energy ratio. As a result the distribution of heterogeneities around Etna could be visualized as the projection of the observation in directions of incident rays at the stations. Increased seismic scattering could be detected in the volcano and east of it. The strong heterogeneous zone towards the east coast of Sicily supports earlier observations, and is interpreted as a potential signature of the eastward sliding volcano flank. Beside the investigation of P-wave scattering the new seismic tomography software PARTOS (Passive Active Ray Tomography Software) has been developed based on a joint inversion of active and passive seismic sources. With PARTOS real data inversion has been carried out using three different subsets: i) active data; ii) passive data; and iii) joint dataset, permitting to obtain a new tomographic approach of that region.

  2. Towers for Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kurian, V. J.; Narayanan, S. P.; Ganapathy, C.

    2010-06-01

    Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings, for better efficiency, turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate, the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today, more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines, offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases, the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore, turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

  3. Tidal-cycle changes in oscillation ripples on the inner part of an estuarine sand flat

    USGS Publications Warehouse

    Dingler, J.R.; Clifton, H.E.

    1984-01-01

    Oscillation ripples form on subaqueous sand beds when wave-generated, near-bottom water motions are strong enough to move sand grains. The threshold of grain motion is the lower bound of the regime of oscillation ripples and the onset of sheet flow is the upper bound. Based on the relation between ripple spacing and orbital diameter, three types of symmetrical ripples occur within the ripple regime. In the lower part of the ripple regime (orbital ripples), spacing is proportional to orbital diameter; in the upper part (anorbital ripples) spacing is independent of orbital diameter. Between these regions occurs a transitional region (suborbital ripples). Oscillation ripples develop on a sandy tidal flat in Willapa Bay, Washington, as a result of waves traversing the area when it is submerged. Because wave energy is usually low within the bay, the ripples are primarily orbital in type. This means that their spacing should respond in a systematic way to changes in wave conditions. During the high-water parts of some tidal cycles, ripples near the beach decrease in spacing during the latter stage of the ebb tide while ripples farther offshore do not change. Observations made over several tidal cycles show that the zone of active ripples shifts on- or offshore in response to different wave conditions. Detailed bed profiles and current measurements taken during the high-water part of spring tides show the manner in which the oscillation ripples change with changes in orbital diameter. Changes in ripple spacing at the study site could be correlated with changes in orbital diameter in the manner suggested by the criterion for orbital ripples. However, there appeared to be a lag time between a decrease in orbital diameter and the corresponding decrease in ripple spacing. Absence of change during a tidal cycle could be attributed to orbital velocities below the threshold for grain motion that negated the effects of changes in orbital diameter. Because changes in sand-flat ripples depend both upon changes in orbital diameter and upon the magnitude of the orbital velocity, exposed ripples were not necessarily produced during the preceding high tide. In fact, some ripples may have been just produced, while others, farther offshore, may have been produced an unknown number of tides earlier. Therefore, when interpreting past wave conditions over tidal flats from low-tide ripples, one must remember that wave periods have to be short enough to produce velocities greater than the threshold velocity for the orbital diameters calculated from the observed ripple spacings. ?? 1984.

  4. The exploration technology and application of sea surface wave

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2016-12-01

    In order to investigate the seismic velocity structure of the shallow sediments in the Bohai Sea of China, we conduct a shear-wave velocity inversion of the surface wave dispersion data from a survey of 12 ocean bottom seismometers (OBS) and 377 shots of a 9000 inch3 air gun. With OBS station spacing of 5 km and air gun shot spacing of 190 m, high-quality Rayleigh wave data were recorded by the OBSs within 0.4 5 km offset. Rayleigh wave phase velocity dispersion for the fundamental mode and first overtone in the frequency band of 0.9 3.0 Hz were retrieved with the phase-shift method and inverted for the shear-wave velocity structure of the shallow sediments with a damped iterative least-square algorithm. Pseudo 2-D shear-wave velocity profiles with depth to 400 m show coherent features of relatively weak lateral velocity variation. The uncertainty in shear-wave velocity structure was also estimated based on the pseudo 2-D profiles from 6 trial inversions with different initial models, which suggest a velocity uncertainty < 30 m/s for most parts of the 2-D profiles. The layered structure with little lateral variation may be attributable to the continuous sedimentary environment in the Cenozoic sedimentary basin of the Bohai Bay basin. The shear-wave velocity of 200 300 m/s in the top 100 m of the Bohai Sea floor may provide important information for offshore site response studies in earthquake engineering. Furthermore, the very low shear-wave velocity structure (200 700 m/s) down to 400 m depth could produce a significant travel time delay of 1 s in the S wave arrivals, which needs to be considered to avoid serious bias in S wave traveltime tomographic models.

  5. Comparative study of two approaches to model the offshore fish cages

    NASA Astrophysics Data System (ADS)

    Zhao, Yun-peng; Wang, Xin-xin; Decew, Jud; Tsukrov, Igor; Bai, Xiao-dong; Bi, Chun-wei

    2015-06-01

    The goal of this paper is to provide a comparative analysis of two commonly used approaches to discretize offshore fish cages: the lumped-mass approach and the finite element technique. Two case studies are chosen to compare predictions of the LMA (lumped-mass approach) and FEA (finite element analysis) based numerical modeling techniques. In both case studies, we consider several loading conditions consisting of different uniform currents and monochromatic waves. We investigate motion of the cage, its deformation, and the resultant tension in the mooring lines. Both model predictions are sufficient close to the experimental data, but for the first experiment, the DUT-FlexSim predictions are slightly more accurate than the ones provided by Aqua-FE™. According to the comparisons, both models can be successfully utilized to the design and analysis of the offshore fish cages provided that an appropriate safety factor is chosen.

  6. Crustal structure in the Falcón Basin area, northwestern Venezuela, from seismic and gravimetric evidence

    NASA Astrophysics Data System (ADS)

    Bezada, Maximiliano J.; Schmitz, Michael; Jácome, María Inés; Rodríguez, Josmat; Audemard, Franck; Izarra, Carlos; The Bolivar Active Seismic Working Group

    2008-05-01

    The Falcón Basin in northwestern Venezuela has a complex geological history driven by the interactions between the South American and Caribbean plates. Igneous intrusive bodies that outcrop along the axis of the basin have been associated with crustal thinning, and gravity modeling has shown evidence for a significantly thinned crust beneath the basin. In this study, crustal scale seismic refraction/wide-angle reflection data derived from onshore/offshore active seismic experiments are interpreted and forward-modeled to generate a P-wave velocity model for a ˜450 km long profile. The final model shows thinning of the crust beneath the Falcón Basin where depth to Moho decreases to 27 km from a value of 40 km about 100 km to the south. A deeper reflected phase on the offshore section is interpreted to be derived from the downgoing Caribbean slab. Velocity values were converted to density and the resulting gravimetric response was shown to be consistent with the regional gravity anomaly. The crustal thinning proposed here supports a rift origin for the Falcón Basin.

  7. Analysis of seafloor change at Breton Island, Gosier Shoals, and surrounding waters, 1869–2014, Breton National Wildlife Refuge, Louisiana

    USGS Publications Warehouse

    Flocks, James G.; Terrano, Joseph F.

    2016-08-01

    Characterizing bathymetric change in coastal environments is an important component in understanding shoreline evolution, especially along barrier island platforms. Bathymetric change is a function of the regional sediment budget, long-term wave and current patterns, and episodic impact from high-energy events such as storms. Human modifications may also cause changes in seafloor elevation. This study, conducted by the U.S. Geological Survey in collaboration with the U.S. Fish and Wildlife Service, evaluates bathymetric and volumetric change and sediment characteristics around Breton Island and Gosier Shoals located offshore of the Mississippi River Delta in Louisiana. This area has been affected by significant storm events such as Hurricane Katrina in 2005. Sedimentation patterns at Breton Island and offshore have also been modified by the excavation of a shipping channel north of the island. Four time periods are considered that encompass these episodes and include long-term change and short-term storm recovery: 1869–2014, 1869–1920, 1920–2014, and 2007–2014. Finally, sediment characteristics are reported in the context of seafloor elevation.

  8. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  9. Surficial geology of the sea floor in Long Island Sound offshore of Plum Island, New York

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Danforth, W.W.; Blackwood, D.S.; Schaer, J.D.; Ostapenko, A.J.; Glomb, K.A.; Doran, E.F.

    2010-01-01

    The U.S. Geological Survey (USGS), the Connecticut Department of Environmental Protection, and the National Oceanic and Atmospheric Administration (NOAA) have been working cooperatively to interpret surficial sea-floor geology along the coast of the Northeastern United States. NOAA survey H11445 in eastern Long Island Sound, offshore of Plum Island, New York, covers an area of about 12 square kilometers. Multibeam bathymetry and sidescan-sonar imagery from the survey, as well as sediment and photographic data from 13 stations occupied during a USGS verification cruise are used to delineate sea-floor features and characterize the environment. Bathymetry gradually deepens offshore to over 100 meters in a depression in the northwest part of the study area and reaches 60 meters in Plum Gut, a channel between Plum Island and Orient Point. Sand waves are present on a shoal north of Plum Island and in several smaller areas around the basin. Sand-wave asymmetry indicates that counter-clockwise net sediment transport maintains the shoal. Sand is prevalent where there is low backscatter in the sidescan-sonar imagery. Gravel and boulder areas are submerged lag deposits produced from the Harbor Hill-Orient Point-Fishers Island moraine segment and are found adjacent to the shorelines and just north of Plum Island, where high backscatter is present in the sidescan-sonar imagery.

  10. Offshore seismicity in the southeastern sea of Korea

    NASA Astrophysics Data System (ADS)

    Park, H.; Kang, T. S.

    2017-12-01

    The offshore southeastern sea area of Korea appear to have a slightly higher seismicity compared to the rest of the Korean Peninsula. According to the earthquake report by Korean Meteorological Administration (KMA), earthquakes over ML 3 has persistently occurred over once a year during the last ten years. In this study, we used 33 events in KMA catalog, which occurred in the offshore Ulsan (35.0°N-35.85°N, 129.45°E-130.75°E) from April 2007 to June 2017, as mother earthquakes. The waveform matching filter technique was used to precisely detect microearthquakes (child earthquakes) that occurred after mother earthquakes. It is the optimal linear filter for maximizing the signal-to-noise ratio in the presence of additive stochastic noise. Initially, we used the continuous seismic waveforms available from KMA and the Korea Institute of Geosciences and Mineral Resources. We added the data of F-net to increase the reliability of the results. The detected events were located by using P- and S-wave arrival times. The hypocentral depths were constrained by an iterative optimal solution technique which is proven to be effective under the poorly known structure. Focal mechanism solutions were obtained from the analysis of P-wave first-motion polarities. Seismicity patterns of microearthquakes and their focal mechanism results were analyzed to understand their seismogenic characteristics and their relationship to subsea seismotectonic structures.

  11. Dynamic characteristics and simplified numerical methods of an all-vertical-piled wharf in offshore deep water

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-qing; Sun, Xi-ping; Wang, Yuan-zhan; Yin, Ji-long; Wang, Chao-yang

    2015-10-01

    There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.

  12. Modeled and Observed Transitions Between Rip Currents and Alongshore Flows

    NASA Astrophysics Data System (ADS)

    Moulton, M.; Elgar, S.; Warner, J. C.; Raubenheimer, B.

    2014-12-01

    Predictions of rip currents, alongshore currents, and the temporal transitions between these circulation patterns are important for swimmer safety and for estimating the transport of sediments, biota, and pollutants in the nearshore. Here, field observations are combined with hydrodynamic modeling to determine the dominant processes that lead rip currents to turn on and off with changing waves, bathymetry, and tidal elevation. Waves, currents, mean sea levels, and bathymetry were measured near and within five shore-perpendicular channels (on average 2-m deep, 30-m wide) that were dredged with the propellers of a landing craft at different times on a long straight Atlantic Ocean beach near Duck, NC in summer 2012. The circulation was measured for a range of incident wave conditions and channel sizes, and included rapid transitions between strong (0.5 to 1 m/s) rip current jets flowing offshore through the channels and alongshore currents flowing across the channels with no rip currents. Meandering alongshore currents (alongshore currents combined with an offshore jet at the downstream edge of the channel) also were observed. Circulation patterns near and within idealized rip channels simulated with COAWST (a three-dimensional phase-averaged model that couples ROMS and SWAN) are compared with the observations. In addition, the model is used to investigate the hydrodynamic response to a range of wave conditions (angle, height, period) and bathymetries (channel width, depth, and length; tidal elevations; shape of sandbar or terrace). Rip current speeds are largest for the deepest perturbations, and decrease as incident wave angles become more oblique. For obliquely incident waves, the rip currents are shifted in the direction of the alongshore flow, with an increasing shift for increasing alongshore current speed or increasing bathymetric perturbation depth.

  13. Surface Waves as Major Controls on Particle Backscattering in Southern California Coastal Waters

    NASA Astrophysics Data System (ADS)

    Henderikx Freitas, F.; Fields, E.; Maritorena, S.; Siegel, D.

    2016-02-01

    Satellite observations of particle loads and optical backscattering coefficients (bbp) in the Southern California Bight (SCB) have been thought to be driven by episodic inputs from storm runoff. Here we show however that surface waves have a larger role in controlling remotely sensed bbp values than previously considered. More than 14 years of 2-km resolution SeaWiFS, MODIS and MERIS satellite imagery spectrally-merged with the Garver-Siegel-Maritorena bio-optical model were used to assess the relative importance of terrestrial runoff and surface wave forcings in determining changes in particle load in the SCB. The space-time distributions of particle backscattering at 443nm and chlorophyll concentration estimates from the model were analyzed using Empirical Orthogonal Function analysis, and patterns were compared with several environmental variables. While offshore values of bbp are tightly related to chlorophyll concentrations, as expected for productive Case-1 waters, values of bbp in a 10km band near the coast are primarily modulated by surface waves. The relationship with waves holds throughout all seasons and is most apparent around the 40m isobath, but extends offshore until about 100m in depth. Riverine inputs are associated with elevated bbp near the coast mostly during the larger El Nino events of 1997/1998 and 2005. These findings are consistent with bio-optical glider and field observations from the Santa Barbara Channel taken as part of the Santa Barbara Coastal Long-Term Ecological Research and Plumes and Blooms programs. The implication of surface waves determining bbp variability beyond the surf zone has large consequences for the life cycle of many marine organisms, as well as for the interpretation of remote sensing signals near the coast.

  14. 3D Numerical Simulation of the Wave and Current Loads on a Truss Foundation of the Offshore Wind Turbine During the Extreme Typhoon Event

    NASA Astrophysics Data System (ADS)

    Lin, C. W.; Wu, T. R.; Chuang, M. H.; Tsai, Y. L.

    2015-12-01

    The wind in Taiwan Strait is strong and stable which offers an opportunity to build offshore wind farms. However, frequently visited typhoons and strong ocean current require more attentions on the wave force and local scour around the foundation of the turbine piles. In this paper, we introduce an in-house, multi-phase CFD model, Splash3D, for solving the flow field with breaking wave, strong turbulent, and scour phenomena. Splash3D solves Navier-Stokes Equation with Large-Eddy Simulation (LES) for the fluid domain, and uses volume of fluid (VOF) with piecewise linear interface reconstruction (PLIC) method to describe the break free-surface. The waves were generated inside the computational domain by internal wave maker with a mass-source function. This function is designed to adequately simulate the wave condition under observed extreme events based on JONSWAP spectrum and dispersion relationship. Dirichlet velocity boundary condition is assigned at the upper stream boundary to induce the ocean current. At the downstream face, the sponge-layer method combined with pressure Dirichlet boundary condition is specified for dissipating waves and conducting current out of the domain. Numerical pressure gauges are uniformly set on the structure surface to obtain the force distribution on the structure. As for the local scour around the foundation, we developed Discontinuous Bi-viscous Model (DBM) for the development of the scour hole. Model validations were presented as well. The force distribution under observed irregular wave condition was extracted by the irregular-surface force extraction (ISFE) method, which provides a fast and elegant way to integrate the force acting on the surface of irregular structure. From the Simulation results, we found that the total force is mainly induced by the impinging waves, and the force from the ocean current is about 2 order of magnitude smaller than the wave force. We also found the dynamic pressure, wave height, and the projection area of the structure are the main factors to the total force. Detailed results and discussion are presented as well.

  15. Wave run-up on a high-energy dissipative beach

    USGS Publications Warehouse

    Ruggiero, P.; Holman, R.A.; Beach, R.A.

    2004-01-01

    Because of highly dissipative conditions and strong alongshore gradients in foreshore beach morphology, wave run-up data collected along the central Oregon coast during February 1996 stand in contrast to run-up data currently available in the literature. During a single data run lasting approximately 90 min, the significant vertical run-up elevation varied by a factor of 2 along the 1.6 km study site, ranging from 26 to 61% of the offshore significant wave height, and was found to be linearly dependent on the local foreshore beach slope that varied by a factor of 5. Run-up motions on this high-energy dissipative beach were dominated by infragravity (low frequency) energy with peak periods of approximately 230 s. Incident band energy levels were 2.5 to 3 orders of magnitude lower than the low-frequency spectral peaks and typically 96% of the run-up variance was in the infragravity band. A broad region of the run-up spectra exhibited an f-4 roll off, typical of saturation, extending to frequencies lower than observed in previous studies. The run-up spectra were dependent on beach slope with spectra for steeper foreshore slopes shifted toward higher frequencies than spectra for shallower foreshore slopes. At infragravity frequencies, run-up motions were coherent over alongshore length scales in excess of 1 km, significantly greater than decorrelation length scales on moderate to reflective beaches. Copyright 2004 by the American Geophysical Union.

  16. Station Keeping Results for Seabotix vLBV300 Underwater Vehicle near Newport, OR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollinger, Geoffrey

    This data set presents results testing the station keeping abilities of a tethered Seabotix vLBV300 underwater vehicle equipped with an inertial navigation system. These results are from an offshore deployment on April 20, 2016 off the coast of Newport, OR (44.678 degrees N, 124.109 degrees W). During the mission period, the sea state varied between 3 and 4, with an average significant wave height of 1.6 m. The vehicle utilizes an inertial navigation system based on a Gladiator Landmark 40 IMU coupled with a Teledyne Explorer Doppler Velocity Log to perform station keeping at a desired location and orientation.

  17. Geomorphologic Evolution of Barrier Islands along the Northern U.S. Gulf of Mexico and Implications for Engineering Design in Barrier Restoration

    DTIC Science & Technology

    2009-01-01

    Chandeleur Is- lands). Finally, Stage 3 occurs when erosion and subsidence reduce the barrier island to a subaqueous inner shelf shoal (e.g., Ship Shoal...exception is the western- most island, Cat Island, which is primarily protected from offshore waves from the incident wave sheltering of the Chandeleur and...KAHN and ROBERTS (1982) discussed the morpho- logic response of the Chandeleur barrier islands to Hurricane Frederic, a powerful storm that made

  18. Atmospheric Characterization of the US Offshore Sites and Impact on Turbine Performance (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Dhiraj; Ehrmann, Robert; Zuo, Delong

    Reliable, long term offshore atmospheric data is critical to development of the US offshore wind industry. There exists significant lack of meteorological, oceanographic, and geological data at potential US offshore sites. Assessment of wind resources at heights in the range of 25-200m is needed to understand and characterize offshore wind turbine performance. Data from the US Department of Energy owned WindSentinel buoy from two US offshore sites and one European site is analyzed. Low Level Jet (LLJ) phenomena and its potential impact on the performance of an offshore wind turbine is investigated.

  19. Assessing storm events for energy meteorology: using media and scientific reports to track a North Sea autumn storm.

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2016-04-01

    Important issues for energy meteorology are to assess meteorological conditions for normal operating conditions and extreme events for the ultimate limit state of engineering structures. For the offshore environment in northwest Europe, energy meteorology encompasses weather conditions relevant for petroleum production infrastructure and also the new field of offshore wind energy production. Autumn and winter storms are an important issue for offshore operations in the North Sea. The weather in this region is considered as challenging for extreme meteorological events as the Gulf of Mexico with its attendant hurricane risk. The rise of the Internet and proliferation of digital recording devices has placed a much greater amount of information in the public domain than was available to national meteorological agencies even 20 years ago. This contribution looks at reports of meteorology and infrastructure damage from a storm in the autumn of 2006 to trace the spatial and temporal record of meteorological events. Media reports give key information to assess the events of the storm. The storm passed over northern Europe between Oct.31-Nov. 2, 2006, and press reports from the time indicate that its most important feature was a high surge that inundated coastal areas. Sections of the Dutch and German North Sea coast were affected, and there was record flooding in Denmark and East Germany in the southern Baltic Sea. Extreme wind gusts were also reported that were strong enough to damage roofs and trees, and there was even tornado recorded near the Dutch-German border. Offshore, there were a series of damage reports from ship and platforms that were linked with sea state, and reports of rogue waves were explicitly mentioned. Many regional government authorities published summaries of geophysical information related to the storm, and these form part of a regular series of online winter storm reports that started as a public service about 15 years ago. Depending on the issuing authority, these reports include wind speed and atmospheric pressure for a number of stations. However, there is also important ancillary information that includes satellite images, weather radar pictures, sea state recordings, tide gauge records, and coastal surveys. When collated together, the literature survey gives good view of events related to the autumn storm. The key information from media reports is backed up by quantitative numbers from the scientific literature. For energy meteorology in the offshore environment, there is an outline of extreme wave events that may be important to help define the ultimate limit state of engineering structures and the return periods of extreme waves. While this contribution focusses on events from an old storm in the autumn of 2006, more severe regional storms have occurred since then, and the scientific literature indicates that these may be linked with climate warming. Literature surveys may help to fully define extreme meteorological conditions offshore and benefit different branches of the energy industry in Europe.

  20. Nonlinear interaction and wave breaking with a submerged porous structure

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Min; Sau, Amalendu; Hwang, Robert R.; Yang, W. C.

    2016-12-01

    Numerical simulations are performed to investigate interactive velocity, streamline, turbulent kinetic energy, and vorticity perturbations in the near-field of a submerged offshore porous triangular structure, as Stokes waves of different heights pass through. The wave-structure interaction and free-surface breaking for the investigated flow situations are established based on solutions of 2D Reynolds Averaged Navier-Stokes equations in a Cartesian grid in combination with K-ɛ turbulent closure and the volume of fluid methodology. The accuracy and stability of the adopted model are ascertained by extensive comparisons of computed data with the existing experimental and theoretical findings and through efficient predictions of the internal physical kinetics. Simulations unfold "clockwise" and "anticlockwise" rotation of fluid below the trough and the crest of the viscous waves, and the penetrated wave energy creates systematic flow perturbation in the porous body. The interfacial growths of the turbulent kinetic energy and the vorticity appear phenomenal, around the apex of the immersed structure, and enhanced significantly following wave breaking. Different values of porosity parameter and two non-porous cases have been examined in combination with varied incident wave height to reveal/analyze the nonlinear flow behavior in regard to local spectral amplification and phase-plane signatures. The evolution of leading harmonics of the undulating free-surface and the vertical velocity exhibits dominating roles of the first and the second modes in inducing the nonlinearity in the post-breaking near-field that penetrates well below the surface layer. The study further suggests the existence of a critical porosity that can substantially enhance the wave-shoaling and interface breaking.

  1. California State Waters Map Series: offshore of Half Moon Bay, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Johnson, Samuel Y.; Golden, Nadine E.; Hartwell, Stephen R.; Dieter, Bryan E.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Watt, Janet T.; Endris, Charles A.; Kvitek, Rikk G.; Phillips, Eleyne L.; Erdey, Mercedes D.; Chin, John L.; Bretz, Carrie K.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Half Moon Bay map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 40 kilometers south of the Golden Gate. The city of Half Moon Bay, which is situated on the east side of the Half Moon Bay embayment, is the nearest significant onshore cultural center in the map area, with a population of about 11,000. The Pillar Point Harbor at the north edge of Half Moon Bay offers a protected landing for boats and provides other marine infrastructure. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The flat coastal area, which is the most recent of numerous marine terraces, was formed by wave erosion about 105 thousand years ago. The higher elevation of this same terrace west of the Half Moon Bay Airport is caused by uplift on the Seal Cove Fault, a splay of the San Gregorio Fault Zone. Although originally incised into the rising terrain horizontally, the ancient terrace surface has been gently folded into a northwest-plunging syncline by compression related to right-lateral strike-slip movement along the San Gregorio Fault Zone. The lowest elevation coincides with the deepest part of Half Moon Bay; the terrace surface rises both to the north and to the south. Uplift in this map area has resulted in relatively shallow water depths within California’s State Waters and, thus, little accommodation space for sediment accumulation. Sediment is observed in the shelter of Half Moon Bay and on the outer half of the California’s State Waters shelf. Sediment in the area is mobile, often forming dunes and sand waves. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the Seal Cove Fault, which comes ashore in Pillar Point Harbor, has resulted in the folding and uplifting of sedimentary rocks of the Purisima Formation in the offshore. Differential erosion of these folded and faulted layers of the Purisima Formation has exposed the parallel curved-rock ridges that are visible on the seafloor from the headland at Pillar Point. During the winter, strong North Pacific storms generate large, long-period waves that shoal and break over this bedrock reef at the world-famous surfing location known as Mavericks. The Offshore of Half Moon Bay map area lies within the cold-temperate biogeographic zone that is called either the “Oregonian province” or the “northern California ecoregion.” This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, an eastern limb of the North Pacific subtropical gyre that flows from Oregon to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 365 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off central California has experienced a warming over the last 50 years that is driving an ecosystem shift away from the productive subarctic regime towards a depopulated subtropical environment. Seafloor habitats in the Offshore of Half Moon Bay map area, which lies within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deep water. Biological productivity resulting from coastal upwelling supports populations of sea birds such as Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.

  2. A system for measuring bottom profile, waves and currents in the high-energy nearshore environment

    USGS Publications Warehouse

    Sallenger, A.H.; Howard, P.C.; Fletcher, C. H.; Howd, P.A.

    1983-01-01

    A new data-acquisition system capable of measuring waves, currents and the nearshore profile in breaking waves as high as 5 m has been developed and successfully field-tested. Components of the mechanical system are a sled carrying a vertical mast, a double-drum winch placed landward of the beach, and a line that runs from one drum of the winch around three blocks, which are the corners of a right triangle, to the other drum of the winch. The sled is attached to the shore-normal side of the triangular line arrangement and is pulled offshore by one drum of the winch and onshore by the other. The profile is measured as the sled is towed along the shore-normal transect using an infrared rangefinder mounted landward of the winch and optical prisms mounted on top of the sled's mast. A pressure sensor and two-axis electromagnetic current meter are mounted on the frame of the sled. These data are encoded on the sled and telemetered to a receiving/recording station onshore. Preliminary results suggest that near-bottom offshore-flowing currents during periods of high-energy swell are important in forcing changes to the configuration of the nearshore profile. ?? 1983.

  3. Concept design and coupled dynamic response analysis on 6-MW spar-type floating offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Meng, Long; Zhou, Tao; He, Yan-ping; Zhao, Yong-sheng; Liu, Ya-dong

    2017-10-01

    Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.

  4. Effects of energy-related activities on the Atlantic Continental Shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manowitz, B

    1975-01-01

    Sixteen papers were presented and are announced separately. Coastal waters, continental shelf geology and aquatic ecosystems are studied for modelling basic data for assessment of possible environmental impacts from offshore energy development. Sediment transport and wave phenomena are modelled for understanding water pollution transport and diffusion. (PCS)

  5. NOAA TELEPHONE RECORDINGS

    Science.gov Websites

    ! Boating Safety Beach Hazards Rip Currents Hypothermia Hurricanes Thunderstorms Lightning Coastal Flooding . Mariners can now hear the latest coastal and offshore weather observations using Dial-A-Buoy. Dial-A-Buoy wind and wave measurements taken within the last hour at 65 buoy and 54 Coastal-Marine Automated

  6. Investigation of Surface Waves in Deep and Shallow Water using Coherent Radars at Grazing Incidence

    NASA Astrophysics Data System (ADS)

    Buckley, M.; Horstmann, J.; Carrasco, R.; Seemann, J.; Stresser, M.

    2016-02-01

    Coherent microwave radars operating at X-band near grazing incidence are utilized to measure the backscatter intensity and Doppler velocity from the small-scale surface roughness of the ocean. The radar backscatter is dependent on the wind and strongly modulated by the surface waves and therefore enables to retrieve the surface wind as well as surface waves. The radar measured Doppler velocities are also modulated by contributions from the wind, current and waves and allow getting additional information on these parameters. In addition coherent marine radars allow to observe breaking waves, which lead to a increase in radar backscatter as well as a strong change of the Doppler speed.Within this presentation we will introduce and validate new methods to measure spectral wave properties such as wave directions, periods and significant wave height from coherent marine radars. The methods have been applied in deep and shallow water and validated to measurements of directional wave riders as well as an Acoustic Wave and Current Profiler. These comparisons show an overall excellent performance of coherent radars for the retrieval of spectral wave properties (e.g. Hs rms of 0.2 m). Furthermore, new methodologies will be presented that enable to observe and quantify wave breaking in deep water as well as in the littoral zone. The above mentioned methods have been applied to investigate the influence of Offshore Wind Farms (OWF) on the wave field with respect to the spectral properties as well as the amount of wave breaking. We will present the results obtained during a cruise in May 2015 within and around the OWF Dantysk in the German Bight of the North Sea, which consist of eighty 3.5 MW wind turbines. In addition we will present our initial results on the investigation of wave dissipation in the littoral zone at the coast of the island Sylt using marine radars, pressure gauges as well as directional wave riders.

  7. Final Report Feasibility Study for the California Wave Energy Test Center (CalWavesm) - Volume #2 - Appendices #16-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooher, Brendan; Toman, William I.; Davy, Doug M.

    The California Wave Energy Test Center (CalWave) Feasibility Study project was funded over multiple phases by the Department of Energy to perform an interdisciplinary feasibility assessment to analyze the engineering, permitting, and stakeholder requirements to establish an open water, fully energetic, grid connected, wave energy test center off the coast of California for the purposes of advancing U.S. wave energy research, development, and testing capabilities. Work under this grant included wave energy resource characterization, grid impact and interconnection requirements, port infrastructure and maritime industry capability/suitability to accommodate the industry at research, demonstration and commercial scale, and macro and micro sitingmore » considerations. CalWave Phase I performed a macro-siting and down-selection process focusing on two potential test sites in California: Humboldt Bay and Vandenberg Air Force Base. This work resulted in the Vandenberg Air Force Base site being chosen as the most favorable site based on a peer reviewed criteria matrix. CalWave Phase II focused on four siting location alternatives along the Vandenberg Air Force Base coastline and culminated with a final siting down-selection. Key outcomes from this work include completion of preliminary engineering and systems integration work, a robust turnkey cost estimate, shoreside and subsea hazards assessment, storm wave analysis, lessons learned reports from several maritime disciplines, test center benchmarking as compared to existing international test sites, analysis of existing applicable environmental literature, the completion of a preliminary regulatory, permitting and licensing roadmap, robust interaction and engagement with state and federal regulatory agency personnel and local stakeholders, and the population of a Draft Federal Energy Regulatory Commission (FERC) Preliminary Application Document (PAD). Analysis of existing offshore oil and gas infrastructure was also performed to assess the potential value and re-use scenarios of offshore platform infrastructure and associated subsea power cables and shoreside substations. The CalWave project team was well balanced and was comprised of experts from industry, academia, state and federal regulatory agencies. The result of the CalWave feasibility study finds that the CalWave Test Center has the potential to provide the most viable path to commercialization for wave energy in the United States.« less

  8. Fragmented coastal boundary layer induced by gap winds

    NASA Astrophysics Data System (ADS)

    Caldeira, Rui M. A.; Iglesias, Isabel; Sala, Iria; Vieira, Rui R.; Bastos, Luísa

    2015-04-01

    The oceanic impact of offshore-localized winds in the NW Iberian Peninsula was studied. Satellite and in situ observations showed the formation of plumes protruding offshore from the coast. To study the dynamics of such episodes tee Coupled-Ocean-Atmosphere-Wave- Sediment Transport Modeling System (COAWST) was used to reproduce the coastal conditions of the nortwestern Iberian Peninsula, allowing the concurrent representation of local winds, waves, currents, and rivers runoff. The use of coupled models is of outmost importance in order to accurately study the impact of the local winds on the coastal currents. The NW Iberian Peninsula has prominent capes, promontories and submarine canyons, which produce persistent hydrodynamic features. Thus far, the scientific literature shows that the western Iberian rivers produce a recurrent combined plume often denominated as the Western Iberian Buoyant Plume (WIBP) which increases the stratification of the water column and produces a vertical retention mechanism that keeps the biological material inshore. The WIBP extends northward along the coast (over the inner-shelf), and forms a front with the warmer and more saline surface (offshore) waters. However during episodes of strong offshore winds this coastal boundary layer is broken interrupting the WIBP. Coastal orography allows the formation of down-valley winds that produce coastal jets, promoting the offshore transport of pollutants, larvae and sediments. Acknowledgments: Acknowledgments: Numerical model solutions were calculated at CIIMARs HPC unit, acquired and maintained by FCT pluriannual funds (PesTC/Mar/LA0015/2013), and RAIA (0313-RAIA-1-E) and RAIA.co (0520-RAIACO-1-E) projects. The NICC (POCTI/CTA/49563/2002) project provided databases for this work. Rui Caldeira was supported by funds from the ECORISK project (NORTE-07-0124-FEDER-000054), co-financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). RAIA.co and RAIA tec (0688-RAIATEC-1-P) projects provided postdoctoral funds for Isabel Iglesias. The RAIA Coastal Observatory has been funded by the Programa Operativo de Cooperación Transfronteriza España-Portugal (POCTEP 2007-2013).

  9. Amphibious Shear Velocity Structure of the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2017-12-01

    The amphibious Cascadia Initiative crosses the coastline of the Cascadia subduction zone (CSZ) deploying seismometers from the Juan de Fuca ridge offshore to beyond the volcanic arc onshore. This allows unprecedented seismic imaging of the CSZ, enabling examination of both the evolution of the Juan de Fuca plate prior to and during subduction as well as the along strike variability of the subduction system. Here we present new results from an amphibious shear velocity model for the crust and upper mantle across the Cascadia subduction zone. The primary data used in this inversion are surface-wave phase velocities derived from ambient-noise Rayleigh-wave data in the 10 - 20 s period band, and teleseismic earthquake Rayleigh wave phase velocities in the 20 - 160 s period band. Phase velocity maps from these data reflect major tectonic structures including the transition from oceanic to continental lithosphere, Juan de Fuca lithosphere that is faster than observations in the Pacific for oceanic crust of its age, slow velocities associated with the accretionary prism, the front of the fast subducting slab, and the Cascades volcanic arc which is associated with slower velocities in the south than in the north. Crustal structures are constrained by receiver functions in the offshore forearc and onshore regions, and by active source constraints on the Juan de Fuca plate prior to subduction. The shear-wave velocities are interpreted in their relationships to temperature, presence of melt or hydrous alteration, and compositional variation of the CSZ.

  10. The Halekulani Sand Channel and Makua Shelf sediment deposits: Are they a sand resource for replenishing Waikiki's beaches?

    USGS Publications Warehouse

    Hampton, M.A.; Fletcher, C. H.; Barry, J.H.; Lemmo, S.J.; ,

    2000-01-01

    The Halekulani Sand Channel and the Makua Shelf off the south shore of Oahu contain at least 1.3 million m3 of sediment that is a possible resource for nourishing degraded sections of Waikiki Beach. A sidescan sonar survey indicates continuous sediment cover within the channel and on the shelf, and samples from the top and bottom of vibracores from the channel and shelf contain from 29% to 77% of grains between 0 to 2.5 phi (1 to 0.177 mm), the size range of four samples from Waikiki Beach. Compositional analyses indicate high variability, but the vibracore samples normally have relatively high Halimeda content compared to beach sand samples. Laboratory tests show a positive correlation of abrasion with Halimeda content, suggesting that the offshore sediment would abrade more than beach sediment under nearshore wave action. The common gray color of the offshore sediment can be aesthetically undesirable for sand on popular tourist beaches such as Waikiki; however, visual observation of native beach sand indicates that a significant component of gray color is endemic to many Hawaiian beaches. The gray color was removed in the laboratory by soaking in heated hydrogen peroxide. The geological properties of the offshore sediment indicate potential as a resource for beach nourishment, but industrial treatment might be necessary to remove excess fine and coarse grains, and possibly the gray color. Further, the abrasion potential might have to be considered in calculating beach sand losses over time.

  11. Foundations for offshore wind turbines.

    PubMed

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  12. Studying onshore-offshore fault linkages and landslides in Icy Bay and Taan Fjord to assess geohazards in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    McCall, N.; Walton, M. A. L.; Gulick, S. P. S.; Haeussler, P. J.; Reece, R.; Saustrup, S.

    2016-12-01

    In southeast Alaska, the plate boundary where the Yakutat microplate collides with North America has produced large historical earthquakes (i.e., the Mw 8+ 1899 sequence). Despite the seismic potential, the possible source fault systems for these earthquakes have not been imaged with modern methods in Icy Bay. The offshore Pamplona Zone and its eastward onshore extension, the Malaspina Fault, may have played a role in the September 1899 earthquakes. Onshore and offshore mapping indicates that these structures likely connect offshore in Icy Bay. In August 2016 we collected high-resolution (300-1200 Hz) seismic reflection and multibeam bathymetry data to search for evidence of such faults beneath Icy Bay and Taan Fiord. If the Malaspina Fault is found to link with the Pamplona Zone, a rupture could trigger a tsunami impacting the populated regions in southeast Alaska. More recently, on October 17th 2015, nearby Taan Fjord experienced one of the largest non-volcanic landslides recorded in North America. Approximately 200 million metric tons spilled into Taan Fjord creating a tsunami with waves reaching 150m onshore. Using the new data, we are capable of imaging landslide and tsunami deposits in high-resolution. These data give new constraints for onshore-offshore fault systems, giving us new insights into the earthquake and tsunami hazard in southeast Alaska.

  13. Gravitational, erosional and depositional processes on volcanic ocean islands: Insights from the submarine morphology of Madeira Archipelago

    NASA Astrophysics Data System (ADS)

    Quartau, Rui; Ramalho, Ricardo S.; Madeira, José; Santos, Rúben; Rodrigues, Aurora; Roque, Cristina; Carrara, Gabriela; Brum da Silveira, António

    2018-01-01

    The submarine flanks of volcanic ocean islands are shaped by a variety of physical processes. Whilst volcanic constructional processes are relatively well understood, the gravitational, erosional and depositional processes that lead to the establishment of large submarine tributary systems are still poorly comprehended. Until recently, few studies have offered a comprehensive source-to-sink approach, linking subaerial morphology with near-shore shelf, slope and far-field abyssal features. In particular, few studies have addressed how different aspects of the subaerial part of the system (island height, climate, volcanic activity, wave regime, etc.) may influence submarine flank morphologies. We use multibeam bathymetric and backscatter mosaics of an entire archipelago - Madeira - to investigate the development of their submarine flanks. Crucially, this dataset extends from the nearshore to the deep sea, allowing a solid correlation between submarine morphologies with the physical and geological setting of the islands. In this study we also established a comparison with other island settings, which allowed us to further explore the wider implications of the observations. The submarine flanks of the Madeira Archipelago are deeply dissected by large landslides, most of which also affected the subaerial edifices. Below the shelf break, landslide chutes extend downslope forming poorly defined depositional lobes. Around the islands, a large tributary system composed of gullies and channels has formed where no significant rocky/ridge outcrops are present. In Madeira Island these were likely generated by turbidity currents that originated as hyperpycnal flows, whilst on Porto Santo and Desertas their origin is attributed to storm-induced offshore sediment transport. At the lower part of the flanks (-3000 to -4300 m), where seafloor gradients decrease to 0.5°-3°, several scour and sediment wave fields are present, with the former normally occurring upslope of the latter. Sediment waves are often associated with the depositional lobes of the landslides but also occur offshore poorly-developed tributary systems. Sediment wave fields and scours are mostly absent in areas where the tributary systems are well developed and/or are dominated by rocky outcrops. This suggests that scours and sediment wave fields are probably generated by turbidity currents, which experience hydraulic jumps where seafloor gradients are significantly reduced and where the currents become unconfined. The largest scours were found in areas without upslope channel systems and where wave fields are absent, and are also interpreted to have formed from unconfined turbidity currents. Our observations show that tributary systems are better developed in taller and rainy islands such as Madeira. On low-lying and dry islands such as Porto Santo and Desertas, tributary systems are poorly developed with unconfined turbidite currents favouring the development of scours and sediment wave fields. These observations provide a more comprehensive understanding of which factors control the gravitational, erosional, and depositional features shaping the submarine flanks of volcanic ocean islands.

  14. Beach recovery capabilities after El Niño 2015–2016 at Ensenada Beach, Northern Baja California

    NASA Astrophysics Data System (ADS)

    Ruiz de Alegría-Arzaburu, Amaia; Vidal-Ruiz, Jesús Adrián

    2018-06-01

    This study investigates the recovery capabilities of a single-barred beach in the Pacific Mexican coast before and after the 2015-2016 El Niño winter. Concurrent hydrodynamic and morphological data collected over a 3-year period (August 2014-2017) were analysed to determine the subaerial-subtidal volumetric exchange and cross-shore subtidal sandbar migrations, in relation to the incident wave forcing. The beach presented a seasonal seaward and landward sandbar migration cycle. The sandbar migrated offshore during the energetic waves between November and February, and onshore during the milder wave period in spring, until welding to the subaerial beach around May. The transfer of sediment towards the subaerial section continued over the summer, reaching a complete recovery by September/October. Prior to El Niño, the subaerial beach successfully recovered by the end of summer 2015 through the landward sandbar migration process. The 2015-2016 energetic winter waves caused a subaerial volume loss of 140 m3 m-1 (from October 2015 to March 2016), more than twice the amount eroded in the other winters, and the sandbar moved further offshore and to deeper depths (3-4 m) than the winter before. In addition, the energetic 2015-2016 winter waves lasted for 2 months longer than in other years, making the 2016 spring shorter. Consequently, during the onshore migration, the sandbar was unable of reaching shallow depths, and a large portion of sand remained in the subtidal beach. The subaerial beach recovered 60 and 65% of the loss in the 2016 and 2017 summers, respectively. It is concluded that the landward migration process of the sandbar during the spring is critical to ensure a full subaerial beach recovery over the mild wave period in summer. The recovery capabilities of the subaerial beach will depend on the cross-shore distance and depth where the sandbar is located, and on the duration of mild wave conditions required for the sandbar to migrate onshore.

  15. Beach recovery capabilities after El Niño 2015-2016 at Ensenada Beach, Northern Baja California

    NASA Astrophysics Data System (ADS)

    Ruiz de Alegría-Arzaburu, Amaia; Vidal-Ruiz, Jesús Adrián

    2018-05-01

    This study investigates the recovery capabilities of a single-barred beach in the Pacific Mexican coast before and after the 2015-2016 El Niño winter. Concurrent hydrodynamic and morphological data collected over a 3-year period (August 2014-2017) were analysed to determine the subaerial-subtidal volumetric exchange and cross-shore subtidal sandbar migrations, in relation to the incident wave forcing. The beach presented a seasonal seaward and landward sandbar migration cycle. The sandbar migrated offshore during the energetic waves between November and February, and onshore during the milder wave period in spring, until welding to the subaerial beach around May. The transfer of sediment towards the subaerial section continued over the summer, reaching a complete recovery by September/October. Prior to El Niño, the subaerial beach successfully recovered by the end of summer 2015 through the landward sandbar migration process. The 2015-2016 energetic winter waves caused a subaerial volume loss of 140 m3 m-1 (from October 2015 to March 2016), more than twice the amount eroded in the other winters, and the sandbar moved further offshore and to deeper depths (3-4 m) than the winter before. In addition, the energetic 2015-2016 winter waves lasted for 2 months longer than in other years, making the 2016 spring shorter. Consequently, during the onshore migration, the sandbar was unable of reaching shallow depths, and a large portion of sand remained in the subtidal beach. The subaerial beach recovered 60 and 65% of the loss in the 2016 and 2017 summers, respectively. It is concluded that the landward migration process of the sandbar during the spring is critical to ensure a full subaerial beach recovery over the mild wave period in summer. The recovery capabilities of the subaerial beach will depend on the cross-shore distance and depth where the sandbar is located, and on the duration of mild wave conditions required for the sandbar to migrate onshore.

  16. Physical and Biological Controls on the Carbonate Chemistry of Coral Reef Waters: Effects of Metabolism, Wave Forcing, Sea Level, and Geomorphology

    PubMed Central

    Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin; McCulloch, Malcolm

    2013-01-01

    We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO2, pH, and aragonite saturation state (Ωar) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO2, pH, and Ωar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO2. PMID:23326411

  17. Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology.

    PubMed

    Falter, James L; Lowe, Ryan J; Zhang, Zhenlin; McCulloch, Malcolm

    2013-01-01

    We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2), pH, and aragonite saturation state (Ω(ar)) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2), pH, and Ω(ar) are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO(2) relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2) in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2).

  18. GPS-Acoustic Seafloor Geodesy using a Wave Glider

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.

    2013-12-01

    The conventional approach to implement the GPS-Acoustic technique uses a ship or buoy for the interface between GPS and Acoustics. The high cost and limited availability of ships restricts occupations to infrequent campaign-style measurements. A new approach to address this problem uses a remote controlled, wave-powered sea surface vehicle, the Wave Glider. The Wave Glider uses sea-surface wave action for forward propulsion with both upward and downward motions producing forward thrust. It uses solar energy for power with solar panels charging the onboard 660 W-h battery for near continuous operation. It uses Iridium for communication providing command and control from shore plus status and user data via the satellite link. Given both the sea-surface wave action and solar energy are renewable, the vehicle can operate for extended periods (months) remotely. The vehicle can be launched from a small boat and can travel at ~ 1 kt to locations offshore. We have adapted a Wave Glider for seafloor geodesy by adding a dual frequency GPS receiver embedded in an Inertial Navigation Unit, a second GPS antenna/receiver to align the INU, and a high precision acoustic ranging system. We will report results of initial testing of the system conducted at SIO. In 2014, the new approach will be used for seafloor geodetic measurements of plate motion in the Cascadia Subduction Zone. The project is for a three-year effort to measure plate motion at three sites along an East-West profile at latitude 44.6 N, offshore Newport Oregon. One site will be located on the incoming plate to measure the present day convergence between the Juan de Fuca and North American plates and two additional sites will be located on the continental slope of NA to measure the elastic deformation due to stick-slip behavior on the mega-thrust fault. These new seafloor data will constrain existing models of slip behavior that presently are poorly constrained by land geodetic data 100 km from the deformation front.

  19. Rogue wave variational modelling through the interaction of two solitary waves

    NASA Astrophysics Data System (ADS)

    Gidel, Floriane; Bokhove, Onno

    2016-04-01

    The extreme and unexpected characteristics of Rogue waves have made them legendary for centuries. It is only on the 1st of January 1995 that these mariners' tales started to raise scientist's curiosity, when such a wave was recorded in the North Sea; a sudden wall of water hit the Draupner offshore platform, more than twice higher than the other waves, providing evidence of the existence of rogue or freak waves. Since then, studies have shown that these surface gravity waves of high amplitude (at least twice the height of the other sea waves [Dyste et al., 2008]) appear in non-linear dispersive water motion [Drazin and Johnson, 1989], at any depth, and have caused a lot of damage in recent years [Nikolkina and Didenkulova, 2011 ]. So far, most of the studies have tried to determine their probability of occurrence, but no conclusion has been achieved yet, which means that we are currently unenable to predict or avoid these monster waves. An accurate mathematical and numerical water-wave model would enable simulation and observation of this external forcing on boats and offshore structures and hence reduce their threat. In this work, we aim to model rogue waves through a soliton splash generated by the interaction of two solitons coming from different channels at a specific angle. Kodama indeed showed that one way to produce extreme waves is through the intersection of two solitary waves, or one solitary wave and its oblique reflection on a vertical wall [Yeh, Li and Kodama, 2010 ]. While he modelled Mach reflection from Kadomtsev-Petviashvili (KP) theory, we aim to model rogue waves from the three-dimensional potential flow equations and/or their asymptotic equivalent described by Benney and Luke [Benney and Luke, 1964]. These theories have the advantage to allow wave propagation in several directions, which is not the case with KP equations. The initial solitary waves are generated by removing a sluice gate in each channel. The equations are derived through a variational approach, based on Luke's variational principle [Luke, 1967], and its dynamical equivalent from Miles [Miles, 1977], that describe incompressible and inviscid potential flows with free surface, through the variations of the Lagrangian. This Lagrangian, obtained from Bernouilli's equations, can be expressed in a Hamiltonian form, for which robust time integrators have been derived [Gagarina et al., 2015]. A Galerkin finite element method is then used to solve the system numerically, and we aim to compare our simulations to exact solutions of the KP-equation.

  20. Time lapse survey plan on the first offshore methane hydrate production test in 2013 around the eastern Nankai Trough area by multi-component OBC seismic tool

    NASA Astrophysics Data System (ADS)

    Inamori, T.; Hayashi, T.; Asakawa, E.; Takahashi, H.; Saeki, T.

    2011-12-01

    We are planning to conduct the multi-component ocean bottom cable (hereafter OBC) seismic survey to monitor the methane hydrate dissociation zone at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, Japan, in 2013. We conducted the first OBC survey in the methane hydrate concentrated zone around the eastern Nankai Trough area in 2006 by RSCS which we developed. We obtained to the good image of methane hydrate bearing layer by P-P section as similar as the conventional surface seismic survey. However, we could not obtain the good image from P-S section compared with P-P section. On the other hand, we studied the sonic velocity distribution at the Mallik 2nd production test before and after in 2007, by the sonic tool data. We could clearly delineate the decrease of S-wave velocity, however, we could not detect the decrease of P-wave velocity because of the presence of the dissociated methane gas from methane hydrate. From these reason we guess the S-wave data is more proper to delineate the condition of the methane hydrate zone at the methane hydrate production tests than P-wave data. We are now developing the new OBC system, which we call Deep-sea Seismic System (hereafter DSS). The sensor of the DSS will install three accelerometers and one hydrophone. A feasibility study to detect the methane hydrate dissociation with the DSS was carried out and we found that the methane hydrate dissociation could be detected with the DSS depending on the zone of the dissociation. And the baseline survey will be held at the 1st offshore methane hydrate production test site in summer 2012. Two monitoring surveys are planned after the methane hydrate production test in 2013. We believe that we will get the good images to delineate the methane hydrate dissociated zone from this time lapse survey. The Authors would like to thank METI, MH21 consortium and JOGMEC for permissions to publish this paper.

  1. On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast

    DOE PAGES

    Archer, Cristina L.; Colle, Brian A.; Veron, Dana L.; ...

    2016-07-18

    The marine boundary layer of the northeastern U.S. is studied with focus on wind speed, atmospheric stability, and turbulent kinetic energy (TKE), the three most relevant properties in the context of offshore wind power development. Two long-term observational data sets are analyzed. The first one consists of multilevel meteorological variables measured up to 60 m during 2003–2011 at the offshore Cape Wind tower, located near the center of the Nantucket Sound. The second data set comes from the 2013–2014 IMPOWR campaign (Improving the Modeling and Prediction of Offshore Wind Resources), in which wind and wave data were collected with newmore » instruments on the Cape Wind platform, in addition to meteorological data measured during 19 flight missions offshore of New York, Connecticut, Rhode Island, and Massachusetts. It is found that, in this region: (1) the offshore wind resource is remarkable, with monthly average wind speeds at 60 m exceeding 7 m s -1 all year round, highest winds in winter (10.1 m s -1) and lowest in summer (7.1 m s -1), and a distinct diurnal modulation, especially in summer; (2) the marine boundary layer is predominantly unstable (61% unstable vs. 21% neutral vs. 18% stable), meaning that mixing is strong, heat fluxes are positive, and the wind speed profile is often nonlogarithmic (~40% of the time); and (3) the shape of the wind speed profile (log versus nonlog) is an effective qualitative proxy for atmospheric stability, whereas TKE alone is not.« less

  2. On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Cristina L.; Colle, Brian A.; Veron, Dana L.

    The marine boundary layer of the northeastern U.S. is studied with focus on wind speed, atmospheric stability, and turbulent kinetic energy (TKE), the three most relevant properties in the context of offshore wind power development. Two long-term observational data sets are analyzed. The first one consists of multilevel meteorological variables measured up to 60 m during 2003–2011 at the offshore Cape Wind tower, located near the center of the Nantucket Sound. The second data set comes from the 2013–2014 IMPOWR campaign (Improving the Modeling and Prediction of Offshore Wind Resources), in which wind and wave data were collected with newmore » instruments on the Cape Wind platform, in addition to meteorological data measured during 19 flight missions offshore of New York, Connecticut, Rhode Island, and Massachusetts. It is found that, in this region: (1) the offshore wind resource is remarkable, with monthly average wind speeds at 60 m exceeding 7 m s -1 all year round, highest winds in winter (10.1 m s -1) and lowest in summer (7.1 m s -1), and a distinct diurnal modulation, especially in summer; (2) the marine boundary layer is predominantly unstable (61% unstable vs. 21% neutral vs. 18% stable), meaning that mixing is strong, heat fluxes are positive, and the wind speed profile is often nonlogarithmic (~40% of the time); and (3) the shape of the wind speed profile (log versus nonlog) is an effective qualitative proxy for atmospheric stability, whereas TKE alone is not.« less

  3. Meteotsunamis in the Great Lakes and Investigation into the May 27, 2012 Event on Lake Erie

    NASA Astrophysics Data System (ADS)

    Anderson, E. J.; Bechle, A.; Wu, C. H.; Schwab, D. J.; Mann, G.

    2016-02-01

    Meteotsunami events have been documented in several countries around the world in the coastal ocean, semi-enclosed basins, and in the Great Lakes. In particular, investigations in the Great Lakes have raised the issue of dangers posed by enclosed basins due to the reflection and interaction of meteotsunami waves, in which the destructive waves can arrive several hours after the atmospheric disturbance has passed. This disassociation in time and space between the atmospheric disturbance and resultant meteotsunami wave can pose a significant threat to the public. In a recent event on May 27, 2012, atmospheric conditions gave rise to two convective systems that generated a series of waves in the meteotsunami band on Lake Erie. The resulting waves swept three swimmers a half-mile offshore, inundated a marina, and may have led to a capsized boat along the southern shoreline. Examination of the observed conditions shows that these events occurred at a time between the arrivals of these two storm systems when atmospheric conditions were relatively calm but water level displacements were at their greatest. In this work, we attempt to explain the processes that led to these conditions through a combination of atmospheric and hydrodynamic modeling and an analysis of the observed radial velocities associated with the meteotsunami-inducing front. Results from a high-resolution atmospheric model and hydrodynamic model reveal that the formation of these destructive waves resulted from a combination of wave reflection, focusing, and edge waves that impacted the southern shore of Lake Erie. This event illustrates the unique danger posed by temporal lags between the inducing atmospheric conditions and resulting dangerous nearshore wave conditions.

  4. [Medical Emergency Preparedness in offshore wind farms : New challenges in the german north and baltic seas].

    PubMed

    Stuhr, M; Dethleff, D; Weinrich, N; Nielsen, M; Hory, D; Kowald, B; Seide, K; Kerner, T; Nau, C; Jürgens, C

    2016-05-01

    Offshore windfarms are constructed in the German North and Baltic Seas. The off-coast remoteness of the windfarms, particular environmental conditions, limitations in offshore structure access, working in heights and depths, and the vast extent of the offshore windfarms cause significant challenges for offshore rescue. Emergency response systems comparable to onshore procedures are not fully established yet. Further, rescue from offshore windfarms is not part of the duty of the German Maritime Search and Rescue Organization or SAR-Services due to statute and mandate reasons. Scientific recommendations or guidelines for rescue from offshore windfarms are not available yet. The present article reflects the current state of medical care and rescue from German offshore windfarms and related questions. The extended therapy-free interval until arrival of the rescue helicopter requires advanced first-aid measures as well as improved first-aider qualification. Rescue helicopters need to be equipped with a winch system in order to dispose rescue personnel on the wind turbines, and to hoist-up patients. For redundancy reasons and for conducting rendezvous procedures, adequate sea-bound rescue units need to be provided. In the light of experiences from the offshore oil and gas industry and first offshore wind analyses, the availability of professional medical personnel in offshore windfarms seems advisible. Operational air medical rescue services and specific offshore emergency reaction teams have established a powerful rescue chain. Besides the present development of medical standards, more studies are necessary in order to place the rescue chain on a long-term, evidence-based groundwork. A central medical offshore registry may help to make a significant contribution at this point.

  5. Influence of natural inshore and offshore thermal regimes on egg development and time of hatch in American lobsters, Homarus americanus.

    PubMed

    Goldstein, Jason S; Watson, Winsor H

    2015-02-01

    Some egg-bearing (ovigerous) American lobsters (Homarus americanus) make seasonal inshore-to-offshore movements, subjecting their eggs to different thermal regimes than those of eggs carried by lobsters that do not make these movements. Our goal was to determine if differences in thermal regimes influence the rate of egg development and the subsequent time of hatch. We subjected ovigerous lobsters to typical inshore or offshore water temperatures from September to August in the laboratory (n=8 inshore and 8 offshore, each year) and in the field (n=8 each, inshore and offshore), over 2 successive years. Although the rate of egg development did not differ significantly between treatments in the fall (P∼0.570), eggs exposed to inshore thermal regimes developed faster in the spring (P<0.001). "Inshore" eggs hatched about 30 days earlier (mean=26 June) than "offshore" eggs (mean=27 July), and their time of development from the onset of eyespot to hatch was significantly shorter (inshore=287±11 days vs. offshore: 311.5±7.5 days, P=0.034). Associated growing degree-days (GDD) did not differ significantly between inshore and offshore thermal treatments (P=0.061). However, eggs retained by lobsters exposed to offshore thermal regimes accumulated more GDD in the winter than did eggs carried by inshore lobsters, while eggs exposed to inshore temperatures acquired them more rapidly in the spring. Results suggest that seasonal movements of ovigerous lobsters influence the time and location of hatching, and thus the transport and recruitment of larvae to coastal and offshore locations. © 2015 Marine Biological Laboratory.

  6. Coastal processes of the Elwha River delta: Chapter 5 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Warrick, Jonathan A.; Stevens, Andrew W.; Miller, Ian M.; Gelfenbaum, Guy; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    To understand the effects of increased sediment supply from dam removal on marine habitats around the Elwha River delta, a basic understanding of the region’s coastal processes is necessary. This chapter provides a summary of the physical setting of the coast near the Elwha River delta, for the purpose of synthesizing the processes that move and disperse sediment discharged by the river. One fundamental property of this coastal setting is the difference between currents in the surfzone with those in the coastal waters offshore of the surfzone. Surfzone currents are largely dictated by the direction and size of waves, and the waves that attack the Elwha River delta predominantly come from Pacific Ocean swell from the west. This establishes surfzone currents and littoral sediment transport that are eastward along much of the delta. Offshore of the surfzone the currents are largely influenced by tidal circulation and the physical constraint to flow provided by the delta’s headland. During both ebbing and flooding tides, the flow separates from the coast at the tip of the delta’s headland, and this produces eddies on the downstream side of the headland. Immediately offshore of the Elwha River mouth, this creates a situation in which the coastal currents are directed toward the east much more frequently than toward the west. This suggests that Elwha River sediment will be more likely to move toward the east in the coastal system.

  7. Observations and modeling of surf zone transverse finger bars at the Gold Coast, Australia

    NASA Astrophysics Data System (ADS)

    Ribas, F.; Doeschate, A. ten; de Swart, H. E.; Ruessink, B. G.; Calvete, D.

    2014-08-01

    The occurrence and characteristics of transverse finger bars at Surfers Paradise (Gold Coast, Australia) have been quantified with 4 years of time-exposure video images. These bars are attached to the inner terrace and have an oblique orientation with respect to the coastline. They are observed during 24 % of the study period, in patches up to 15 bars, with an average lifetime of 5 days and a mean wavelength of 32 m. The bars are observed during obliquely incident waves of intermediate heights. Bar crests typically point toward the incoming wave direction, i.e., they are up-current oriented. The most frequent beach state when bars are present (43 % of the time) is a rhythmic low-tide terrace and an undulating outer bar. A morphodynamic model, which describes the feedback between waves, currents, and bed evolution, has been applied to study the mechanisms for finger bar formation. Realistic positive feedback leading to the formation of the observed bars only occurs if the sediment resuspension due to roller-induced turbulence is included. This causes the depth-averaged sediment concentration to decrease in the seaward direction, enhancing the convergence of sediment transport in the offshore-directed flow perturbations that occur over the up-current bars. The longshore current strength also plays an important role; the offshore root-mean-square wave height and angle must be larger than some critical values (0.5 m and 20∘, respectively, at 18-m depth). Model-data comparison indicates that the modeled bar shape characteristics (up-current orientation) and the wave conditions leading to the bar formation agree with data, while the modeled wavelengths and migration rates are larger than the observed ones. The discrepancies might be because in the model we neglect the influence of the large-scale beach configuration.

  8. Shoreline-crossing shear-velocity structure of the Juan de Fuca plate and Cascadia subduction zone from surface waves and receiver functions

    NASA Astrophysics Data System (ADS)

    Janiszewski, Helen; Gaherty, James; Abers, Geoffrey; Gao, Haiying

    2017-04-01

    The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.

  9. Shoreline-Crossing Shear-Velocity Structure of the Juan de Fuca Plate and Cascadia Subduction Zone from Surface Waves and Receiver Functions

    NASA Astrophysics Data System (ADS)

    Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.

    2016-12-01

    The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.

  10. Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina

    USGS Publications Warehouse

    Warner, John C.; Armstrong, Brandy N.; Sylvester, Charlene S.; Voulgaris, George; Nelson, Tim; Schwab, William C.; Denny, Jane F.

    2012-01-01

    Long Bay is a sediment-starved, arcuate embayment located along the US East Coast connecting both South and North Carolina. In this region the rates and pathways of sediment transport are important because they determine the availability of sediments for beach nourishment, seafloor habitat, and navigation. The impact of storms on sediment transport magnitude and direction were investigated during the period October 2003–April 2004 using bottom mounted flow meters, acoustic backscatter sensors and rotary sonars deployed at eight sites offshore of Myrtle Beach, SC, to measure currents, water levels, surface waves, salinity, temperature, suspended sediment concentrations, and bedform morphology. Measurements identify that sediment mobility is caused by waves and wind driven currents from three predominant types of storm patterns that pass through this region: (1) cold fronts, (2) warm fronts and (3) low-pressure storms. The passage of a cold front is accompanied by a rapid change in wind direction from primarily northeastward to southwestward. The passage of a warm front is accompanied by an opposite change in wind direction from mainly southwestward to northeastward. Low-pressure systems passing offshore are accompanied by a change in wind direction from southwestward to southeastward as the offshore storm moves from south to north.During the passage of cold fronts more sediment is transported when winds are northeastward and directed onshore than when the winds are directed offshore, creating a net sediment flux to the north–east. Likewise, even though the warm front has an opposite wind pattern, net sediment flux is typically to the north–east due to the larger fetch when the winds are northeastward and directed onshore. During the passage of low-pressure systems strong winds, waves, and currents to the south are sustained creating a net sediment flux southwestward. During the 3-month deployment a total of 8 cold fronts, 10 warm fronts, and 10 low-pressure systems drove a net sediment flux southwestward. Analysis of a 12-year data record from a local buoy shows an average of 41 cold fronts, 32 warm fronts, and 26 low-pressure systems per year. The culmination of these events would yield a cumulative net inner-continental shelf transport to the south–west, a trend that is further verified by sediment textural analysis and bedform morphology on the inner-continental shelf.

  11. Spatial variability of sediment transport processes over intra‐ and subtidal timescales within a fringing coral reef system

    USGS Publications Warehouse

    Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Winter, Gundula; Storlazzi, Curt D.; Cuttler, Michael V. W.

    2018-01-01

    Sediment produced on fringing coral reefs that is transported along the bed or in suspension affects ecological reef communities as well as the morphological development of the reef, lagoon, and adjacent shoreline. This study quantified the physical process contribution and relative importance of incident waves, infragravity waves, and mean currents to the spatial and temporal variability of sediment in suspension. Estimates of bed shear stresses demonstrate that incident waves are the key driver of the SSC variability spatially (reef flat, lagoon, and channels) but cannot not fully describe the SSC variability alone. The comparatively small but statistically significant contribution to the bed shear stress by infragravity waves and currents, along with the spatial availability of sediment of a suitable size and volume, is also important. Although intra‐tidal variability in SSC occurs in the different reef zones, the majority of the variability occurs over longer slowly varying (subtidal) time scales, which is related to the arrival of large incident waves at a reef location. The predominant flow pathway, which can transport suspended sediment, consists of cross‐reef flow across the reef flat that diverges in the lagoon and returns offshore through channels. This pathway is primarily due to subtidal variations in wave‐driven flows, but can also be driven alongshore by wind stresses when the incident waves are small. Higher frequency (intra‐tidal) current variability also occur due to both tidal flows, as well as variations in the water depth that influence wave transmission across the reef and wave‐driven currents.

  12. The present triumphs and future problems with wave soldering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianco, P.T.

    1993-10-01

    Nearly 40 years of experience with wave soldering have resulted in processes that routinely produce several thousand, defect-free solder joints per minute. However, the climate of electronics manufacturing has changed significantly over the past 10 to 15 years. Environmental restrictions as well as the high quality of products made offshore has placed new demands and challenges on the electronics industry, right down to the assembly process. The impact on wave soldering by environmental regulations and a need for more cost-competitive manufacturing processes has become a serious issue in terms of the economical well-being of the industry. In order to obtainmore » a clearer understanding of the situation, however, it is first most appropriate and necessary to examine the technology of wave soldering. Historically, wave soldering was developed as a refinement of the dip and drag soldering processes with the objective of reducing or eliminating many of the associated defects often present in these earlier processes. Wave soldering reduces the area of contact between the circuit board and the solder. This characteristic, coupled with the agitation generated in the solder, allows flux and its volatile by-products to readily escape from under the board, decreasing the number of skips, unfilled holes, and solder joint voids. The reduced contact area also lessens the potential for thermal damage to the circuit board laminate. Control of the wave profile at the exit point of the circuit board lessens the likelihood of icicles and bridges forming on the solder joints; this latitude is not available in the dip soldering process.« less

  13. An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Hong, Sinpyo; Lee, Inwon; Park, Seong Hyeon; Lee, Cheolmin; Chun, Ho-Hwan; Lim, Hee Chang

    2015-09-01

    An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG), mooring line spring constant, and fair-lead location on the turbine's motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT), the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.

  14. Barrier Island Restoration for Storm Damage Reduction: Willapa Bay, Washington, USA

    DTIC Science & Technology

    2010-07-01

    Harbor Coastal Data Information Program ( CDIP ) 036 buoy located 13 miles northwest of the Entrance are utilized to specify the offshore wave boundary...condition. For the case of the March 3, 1999 storm, there is a gap in the CDIP buoy data; therefore the spectra from the National Data Buoy Center

  15. 30 CFR 250.905 - How do I get approval for the installation, modification, or repair of my platform?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...., cathodic protection systems; jacket design; pile foundations; drilling, production, and pipeline risers and... design or analysis of the platform. Examples of relevant data include information on waves, wind, current...

  16. The global reach of the 26 December 2004 Sumatra tsunami.

    PubMed

    Titov, Vasily; Rabinovich, Alexander B; Mofjeld, Harold O; Thomson, Richard E; González, Frank I

    2005-09-23

    Numerical model simulations, combined with tide-gauge and satellite altimetry data, reveal that wave amplitudes, directionality, and global propagation patterns of the 26 December 2004 Sumatra tsunami were primarily determined by the orientation and intensity of the offshore seismic line source and subsequently by the trapping effect of mid-ocean ridge topographic waveguides.

  17. A Model for On-Offshore Sediment Transport in the Surfzone.

    DTIC Science & Technology

    1982-12-01

    34 Journal of Waterway Port, Coastal and Ocean Engineering, American Society of Civil Engineers, vol 108, no. WW2 , pp 163-179. Short, A. D. (1978) "Wave...PWO, Mayport FL; Utilities Engr Off. Rota Spain NAVTECHTRACEN SCE. Pensacola FL NAVWPNCEN Code 2636 China Lake; Code 3803 China Lake, CA NAVWPNSTA

  18. Electroactive polymers for gaining sea power

    NASA Astrophysics Data System (ADS)

    Scherber, Benedikt; Grauer, Matthias; Köllnberger, Andreas

    2013-04-01

    Target of this article will be the energy harvesting with dielectric elastomers for wave energy conversion. The main goal of this article is to introduce a new developed material profile enabling a specific amount of energy, making the harvesting process competitive against other existing offshore generation technologies. Electroactive polymers offer the chance to start with small wave energy converters to gain experiences and carry out a similar development as wind energy. Meanwhile there is a consortium being formed in Germany to develop such materials and processes for future products in this new business area. In order to demonstrate the applicability of the technological advancements, a scale demonstrator of a wave energy generator will be developed as well.

  19. Persistent differences between coastal and offshore kelp forest communities in a warming Gulf of Maine

    PubMed Central

    Lamb, Robert W.

    2018-01-01

    Kelp forests provide important ecosystem services, yet coastal kelp communities are increasingly altered by anthropogenic impacts. Kelp forests in remote, offshore locations may provide an informative contrast due to reduced impacts from local stressors. We tested the hypothesis that shallow kelp assemblages (12–15 m depth) and associated fish and benthic communities in the coastal southwest Gulf of Maine (GOM) differed significantly from sites on Cashes Ledge, 145 km offshore by sampling five coastal and three offshore sites at 43.0 +/- 0.07° N latitude. Offshore sites on Cashes Ledge supported the greatest density (47.8 plants m2) and standing crop biomass (5.5 kg m2 fresh weight) of the foundation species Saccharina latissima kelp at this depth in the Western North Atlantic. Offshore densities of S. latissima were over 150 times greater than at coastal sites, with similar but lower magnitude trends for congeneric S. digitata. Despite these differences, S. latissima underwent a significant 36.2% decrease between 1987 and 2015 on Cashes Ledge, concurrent with a rapid warming of the GOM and invasion by the kelp-encrusting bryozoan Membranipora membranacea. In contrast to kelp, the invasive red alga Dasysiphonia japonica was significantly more abundant at coastal sites, suggesting light or dispersal limitation offshore. Spatial differences in fish abundance mirrored those of kelp, as the average biomass of all fish on Cashes Ledge was 305 times greater than at the coastal sites. Remote video censuses of cod (Gadus morhua), cunner (Tautaogolabrus adspersus), and pollock (Pollachius virens) corroborated these findings. Understory benthic communities also differed between regions, with greater abundance of sessile invertebrates offshore. Populations of kelp-consuming sea urchins Stronglyocentrotus droebachiensis, were virtually absent from Cashes Ledge while small urchins were abundant onshore, suggesting recruitment limitation offshore. Despite widespread warming of the GOM since 1987, extraordinary spatial differences in the abundance of primary producers (kelp), consumers (cod) and benthic communities between coastal and offshore sites have persisted. The shallow kelp forest communities offshore on Cashes Ledge represent an oasis of unusually high kelp and fish abundance in the region, and as such, comprise a persistent abundance hotspot that is functionally significant for sustained biological productivity of offshore regions of the Gulf of Maine. PMID:29298307

  20. Persistent differences between coastal and offshore kelp forest communities in a warming Gulf of Maine.

    PubMed

    Witman, Jon D; Lamb, Robert W

    2018-01-01

    Kelp forests provide important ecosystem services, yet coastal kelp communities are increasingly altered by anthropogenic impacts. Kelp forests in remote, offshore locations may provide an informative contrast due to reduced impacts from local stressors. We tested the hypothesis that shallow kelp assemblages (12-15 m depth) and associated fish and benthic communities in the coastal southwest Gulf of Maine (GOM) differed significantly from sites on Cashes Ledge, 145 km offshore by sampling five coastal and three offshore sites at 43.0 +/- 0.07° N latitude. Offshore sites on Cashes Ledge supported the greatest density (47.8 plants m2) and standing crop biomass (5.5 kg m2 fresh weight) of the foundation species Saccharina latissima kelp at this depth in the Western North Atlantic. Offshore densities of S. latissima were over 150 times greater than at coastal sites, with similar but lower magnitude trends for congeneric S. digitata. Despite these differences, S. latissima underwent a significant 36.2% decrease between 1987 and 2015 on Cashes Ledge, concurrent with a rapid warming of the GOM and invasion by the kelp-encrusting bryozoan Membranipora membranacea. In contrast to kelp, the invasive red alga Dasysiphonia japonica was significantly more abundant at coastal sites, suggesting light or dispersal limitation offshore. Spatial differences in fish abundance mirrored those of kelp, as the average biomass of all fish on Cashes Ledge was 305 times greater than at the coastal sites. Remote video censuses of cod (Gadus morhua), cunner (Tautaogolabrus adspersus), and pollock (Pollachius virens) corroborated these findings. Understory benthic communities also differed between regions, with greater abundance of sessile invertebrates offshore. Populations of kelp-consuming sea urchins Stronglyocentrotus droebachiensis, were virtually absent from Cashes Ledge while small urchins were abundant onshore, suggesting recruitment limitation offshore. Despite widespread warming of the GOM since 1987, extraordinary spatial differences in the abundance of primary producers (kelp), consumers (cod) and benthic communities between coastal and offshore sites have persisted. The shallow kelp forest communities offshore on Cashes Ledge represent an oasis of unusually high kelp and fish abundance in the region, and as such, comprise a persistent abundance hotspot that is functionally significant for sustained biological productivity of offshore regions of the Gulf of Maine.

  1. Tracking the critical offshore conditions leading to marine inundation via active learning of full-process based models

    NASA Astrophysics Data System (ADS)

    Rohmer, Jeremy; Idier, Deborah; Bulteau, Thomas; Paris, François

    2016-04-01

    From a risk management perspective, it can be of high interest to identify the critical set of offshore conditions that lead to inundation on key assets for the studied territory (e.g., assembly points, evacuation routes, hospitals, etc.). This inverse approach of risk assessment (Idier et al., NHESS, 2013) can be of primary importance either for the estimation of the coastal flood hazard return period or for constraining the early warning networks based on hydro-meteorological forecast or observations. However, full-process based models for coastal flooding simulation have very large computational time cost (typically of several hours), which often limits the analysis to a few scenarios. Recently, it has been shown that meta-modelling approaches can efficiently handle this difficulty (e.g., Rohmer & Idier, NHESS, 2012). Yet, the full-process based models are expected to present strong non-linearities (non-regularities) or shocks (discontinuities), i.e. dynamics controlled by thresholds. For instance, in case of coastal defense, the dynamics is characterized first by a linear behavior of the waterline position (increase with increasing offshore conditions), as long as there is no overtopping, and then by a very strong increase (as soon as the offshore conditions are energetic enough to lead to wave overtopping, and then overflow). Such behavior might make the training phase of the meta-model very tedious. In the present study, we propose to explore the feasibility of active learning techniques, aka semi-supervised machine learning, to track the set of critical conditions with a reduced number of long-running simulations. The basic idea relies on identifying the simulation scenarios which should both reduce the meta-model error and improve the prediction of the critical contour of interest. To overcome the afore-described difficulty related to non-regularity, we rely on Support Vector Machines, which have shown very high performance for structural reliability assessment. The developments are done on a cross-shore case, using the process-based SWASH model. The related computational time is 10 hours for a single run. The dynamic forcing conditions are parametrized by several factors (storm surge S, significant wave height Hs, dephasing between tide and surge, etc.). In particular, we validated the approach with respect to a reference set of 400 long-running simulations in the domain of (S ; Hs). Our tests showed that the tracking of the critical contour can be achieved with a reasonable number of long-running simulations of a few tens.

  2. Preliminary assessments of the occurrence and effects of utilization of sand and aggregate resources of the Louisiana inner shelf

    USGS Publications Warehouse

    Suter, J.R.; Mossa, J.; Penland, S.

    1989-01-01

    Louisiana is experiencing the most critical coastal erosion and land loss problem in the United States. Shoreline erosion rates exceed 6 m/yr in more than 80% of the Louisiana coastal zone and can be up to 50 m/yr in areas impacted by hurricanes. The barrier islands have decreased in area by some 40% since 1880. Land loss from coastal marshlands and ridgelands from both natural and human-induced processes is estimated to exceed 100 km2/yr. In response, a two-phase plan has been established, calling for barrier-island restoration and beach nourishment, both requiring large amounts of sand. The plan will be cost-effective only if sand can be found offshore in sufficient quantities close to project sites. To locate such deposits, the Louisiana Geological Survey is conducting an inventory of nearshore sand resources on the Louisiana continental shelf. Exploration for offshore sand deposits is conducted in two phases, with high-resolution seismic reflection profiling to locate potential sand bodies followed by vibracoring to confirm seismic intepretations and obtain samples for textural characterization. As part of the initial stages of the program, reconnaissance high-resolution seismic investigations of three areas of the continental shelf representing different stages in the evolutionary sequence of barrier shorelines were carried out. The Timbalier Islands, flanking barriers of the eroding Caminada-Moreau headland, contain potential sand resources associated with buried tidal and distributary channels. The Chandeleur Islands, a barrier-island arc, have potential offshore sands in the form of truncated spit and tidal inlet deposits, submerged beach ridges, and distributary channels. Trinity Shoal, an inner shelf shoal, is an offshore feature containing up to 2 ?? 109 m3 of material, most of which is probably fine sand. These reconnaissance surveys have demonstrated the occurrence of sand resources on the Louisiana continental shelf. Utilization of such deposits for island restoration or beach nourishment raises the question of potential adverse effects on the shoreline due to alteration of the inner shelf bathymetry by removing material or deposition of spoil in the process of dredging. Wave refraction analysis models provide a means by which hypothetical wave energy distribution can be determined and possible changes due to resource utilization assessed. A preliminary assessment of the consequences of using sand from Ship Shoal, a large shore-parallel feature, as borrow material for beach nourishment was conducted. Initial results indicate that the shoal serves to attenuate storm waves, and removal of this feature would result in increased erosion and overwash on the adjacent Isles Dernieres barrier-island shoreline. These findings illustrate the need to determine optimum dredging configurations if environmentally deleterious effects of utilization of offshore and aggregate resources are to be minimized. ?? 1989.

  3. Differential impact of monsoon and large amplitude internal waves on coral reef development in the Andaman Sea.

    PubMed

    Wall, Marlene; Schmidt, Gertraud Maria; Janjang, Pornpan; Khokiattiwong, Somkiat; Richter, Claudio

    2012-01-01

    The Andaman Sea and other macrotidal semi-enclosed tropical seas feature large amplitude internal waves (LAIW). Although LAIW induce strong fluctuations i.e. of temperature, pH, and nutrients, their influence on reef development is so far unknown. A better-known source of disturbance is the monsoon affecting corals due to turbulent mixing and sedimentation. Because in the Andaman Sea both, LAIW and monsoon, act from the same westerly direction their relative contribution to reef development is difficult to discern. Here, we explore the framework development in a number of offshore island locations subjected to differential LAIW- and SW-monsoon impact to address this open question. Cumulative negative temperature anomalies - a proxy for LAIW impact - explained a higher percentage of the variability in coral reef framework height, than sedimentation rates which resulted mainly from the monsoon. Temperature anomalies and sediment grain size provided the best correlation with framework height suggesting that so far neglected subsurface processes (LAIW) play a significant role in shaping coral reefs.

  4. Challenge for the accurate CMT estimation of the offshore earthquakes using ocean bottom pressure gauges as seismometers

    NASA Astrophysics Data System (ADS)

    Kubota, T.; Saito, T.; Suzuki, W.; Hino, R.

    2017-12-01

    When an earthquake occurs in offshore region, ocean bottom pressure gauges (OBP) observe the low-frequency (> 400s) pressure change due to tsunami and also high-frequency (< 200 s) pressure change due to seismic waves (e.g. Filloux 1983; Matsumoto et al. 2012). When the period of the seafloor motion is sufficiently long (> 20 s), the relation between seafloor dynamic pressure change p and seafloor vertical acceleration az is approximately given as p=ρ0h0az (ρ0: seawater density, h0: sea depth) (e.g., Bolshakova et al. 2011; Matsumoto et al.,2012; Saito and Tsushima, 2016, JGR; Saito, 2017, GJI). Based on this relation, it is expected that OBP can be used as vertical accelerometers. If we use OBP deployed in offshore region as seismometer, the station coverage is improved and then the accuracy of the earthquake location is also improved. In this study, we analyzed seismograms together with seafloor dynamic pressure change records to estimate the CMT of the interplate earthquakes occurred at off the coast of Tohoku on 9 March, 2011 (Mw 7.3 and 6.5) (Kubota et al., 2017, EPSL), and discussed the estimation accuracy of the centroid horizontal location. When the dynamic pressure change recorded by OBP is used in addition to the seismograms, the horizontal location of CMT was reliably constrained. The centroid was located in the center of the rupture area estimated by the tsunami inversion analysis (Kubota et al., 2017). These CMTs had reverse-fault mechanisms consistent with the interplate earthquakes and well reproduces the dynamic pressure signals in the OBP records. Meanwhile, when we used only the inland seismometers, the centroids were estimated to be outside the rupture area. This study proved that the dynamic pressure change in OBP records are available as seismic-wave records, which greatly helped to investigate the source process of offshore earthquakes far from the coast.

  5. Challenge for the accurate CMT estimation of the offshore earthquakes using ocean bottom pressure gauges as seismometers

    NASA Astrophysics Data System (ADS)

    Kubota, T.; Saito, T.; Suzuki, W.; Hino, R.

    2016-12-01

    When an earthquake occurs in offshore region, ocean bottom pressure gauges (OBP) observe the low-frequency (> 400s) pressure change due to tsunami and also high-frequency (< 200 s) pressure change due to seismic waves (e.g. Filloux 1983; Matsumoto et al. 2012). When the period of the seafloor motion is sufficiently long (> 20 s), the relation between seafloor dynamic pressure change p and seafloor vertical acceleration az is approximately given as p=ρ0h0az (ρ0: seawater density, h0: sea depth) (e.g., Bolshakova et al. 2011; Matsumoto et al.,2012; Saito and Tsushima, 2016, JGR; Saito, 2017, GJI). Based on this relation, it is expected that OBP can be used as vertical accelerometers. If we use OBP deployed in offshore region as seismometer, the station coverage is improved and then the accuracy of the earthquake location is also improved. In this study, we analyzed seismograms together with seafloor dynamic pressure change records to estimate the CMT of the interplate earthquakes occurred at off the coast of Tohoku on 9 March, 2011 (Mw 7.3 and 6.5) (Kubota et al., 2017, EPSL), and discussed the estimation accuracy of the centroid horizontal location. When the dynamic pressure change recorded by OBP is used in addition to the seismograms, the horizontal location of CMT was reliably constrained. The centroid was located in the center of the rupture area estimated by the tsunami inversion analysis (Kubota et al., 2017). These CMTs had reverse-fault mechanisms consistent with the interplate earthquakes and well reproduces the dynamic pressure signals in the OBP records. Meanwhile, when we used only the inland seismometers, the centroids were estimated to be outside the rupture area. This study proved that the dynamic pressure change in OBP records are available as seismic-wave records, which greatly helped to investigate the source process of offshore earthquakes far from the coast.

  6. Offshore Wind Energy Resource Assessment for Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa Moreira, Paula; Scott, George N.; Musial, Walter D.

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined.more » Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.« less

  7. Application of ERTS-A data to the protection and management of New Jersey's coastal environment

    NASA Technical Reports Server (NTRS)

    Yunghans, R. S. (Principal Investigator); Feinberg, E. B.; Wobber, F. J. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Apparent sewage sludge disposal by barge has been detected approximately 12 miles offshore in an area with an approximate radius of 2.5 nautical miles. Verification is underway to determine whether this dumping is within one of the approved dump sites in the Bight. Analysis of all available historical and routine meteorological data in correlation with the observed phenomenon is necessary before final conclusions can be reached with respect to the effects of currents on the disposal of dumped wastes. Four effluent plumes emanating from the shoreline just south of Sandy Hook were observed and are moving in a southerly direction. Another plume is evident north of Barnegat Inlet and is moving almost directly offshore. This suggests that the more northerly plumes are under the influence of the tidal regime around New York Harbor much more than are the plumes further south along the New Jersey coast. Of further interest are what appear to be an internal wave phenomena approximately 75 miles east of the New Jersey coast. This same sort of phenomena has been observed repetitively off the coast of Oregon.

  8. A surface wave reflector in Southwestern Japan

    NASA Astrophysics Data System (ADS)

    Mak, S.; Koketsu, K.; Miyake, H.; Obara, K.; Sekine, S.

    2009-12-01

    Surface waves at short periods (<35s) are affected severely by heterogeneities in the crust and the uppermost mantle. When the scale of heterogeneity is sufficiently large, its effect can be studied in a deterministic way using conventional concepts of reflection and refraction. A well-known example is surface wave refraction at continental margin. We present a case study to investigate the composition of surface wave coda in a deterministic approach. A long duration of surface wave coda with a predominant period of 20s is observed during various strong earthquakes around Japan. The coda shows an unambiguous propagation direction, implying a deterministic nature. Beamforming and particle motion analysis suggest that the surface wave later arrivals could be explained by Love wave reflections by a point reflector located at offshore southeast to Kyushu. The reflection demonstrates a seemingly incidence-independent favorable azimuth in emitting strength. In additional to beamforming, we use a new regional crustal velocity model to perform a grid-search ray-tracing with the assumption of point reflector to further constrain to location of coda generation. Because strong velocity anomalies exist near the zone of interest, we decide to use a network shortest-path ray-tracing method, instead of analytical methods like shooting and bending, to avoid the problems like convergence, shadow zone, and smooth model assumption. Two geological features are found to be related to the formation of the coda. The primary one is the intersection between the Kyushu-Palau Ridge and the Nankai Trough at offshore southeast to Kyushu (hereafter referred as "KPR-NT"), which may act as a point reflector. There is a strong Love wave phase velocity anomaly at KPR-NT but not other parts of the ridge, implying that topography is irrelevant. Rayleigh wave phase velocity does not experience a strong anomaly there, which is consistent to the absence of Rayleigh wave reflections implied by the observed particle motions. The secondary one is a low phase velocity (<2km/s for T=20s) at the accretionary wedge of the Nankai Trough due to the thick sediment. Such a long and narrow low velocity zone, with its southwest tip at KPR-NT, is a potential wave-guide to channel waves towards KPR-NT. The longer duration of deterministic later arrivals than the direct arrival is partially explained by multi-pathing due to the wave-guide. The surface wave coda is observable for earthquakes whose propagation path does not include the accretionary wedge, implying that the wedge is an enhancer but not indispensable of the formation of the observed coda.

  9. Finescale turbulence and seabed scouring around pneumatophores in a wave-exposed mangrove forest

    NASA Astrophysics Data System (ADS)

    Mullarney, J. C.; Norris, B. K.; Henderson, S. M.; Bryan, K. R.

    2015-12-01

    Coastal mangroves provide a barrier between the coast and lower energy intertidal environments. The presence of mangrove roots (pneumatophores) alters local hydrodynamics by slowing currents, dissipating waves, enhancing within-canopy turbulence, and introducing significant spatial variability to the flow, particularly on the stem scale. To date, limited measurements exist within pneumatophore regions owing to the difficulties of measuring on sufficiently small scales. Hence, little is known about the turbulence controlling sediment transport within these regions. We report unique field observations near the seaward edge of a mangrove forest in the Mekong Delta, Vietnam. This forest is exposed to moderate wave energy (maximum heights of around 1 m), with waves observed to propagate and break up to 100 m inside the forest. Our measurements focus on a rapidly prograding area with a relatively sandy substrate and a gentle topographic slope. We resolved millimeter-scale turbulent flows within and above the pneumatophore canopy. Precise measurements of vegetation densities as a function of height were obtained using photogrammetry techniques. The dissipation rate of turbulent kinetic energy was enhanced at the canopy edge (ɛ ~ 10-4 W/kg), and decreased with distance into the forest (ɛ ~ 10-5 W/kg), although rates remained elevated above values measured on the tidal flat immediately offshore of the mangroves (ɛ ~ 10-6 W/kg). The dependence of turbulence on vegetation characteristics and on the stage of the tidal cycle is explored. The hydrodynamic measurements are then linked with changes in bathymetric features noted after a large wave event. Finer mud sediments were deposited outside the forest on the intertidal mudflat, whereas sandy sediments in the fringe region were significant scoured around regions of dense pneumatophores, and sediment mounds developed in the gaps between pneumatophores.

  10. Reconstruction of the sea surface elevation from the analysis of the data collected by a wave radar system

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele

    2016-04-01

    X-band radar system is able to provide information about direction and intensity of the sea surface currents and dominant waves in a range of few kilometers from the observation point (up to 3 nautical miles). This capability, together with their flexibility and low cost, makes these devices useful tools for the sea monitoring either coastal or off-shore area. The data collected from wave radar system can be analyzed by using the inversion strategy presented in [1,2] to obtain the estimation of the following sea parameters: peak wave direction; peak period; peak wavelength; significant wave height; sea surface current and bathymetry. The estimation of the significant wave height represents a limitation of the wave radar system because of the radar backscatter is not directly related to the sea surface elevation. In fact, in the last period, substantial research has been carried out to estimate significant wave height from radar images either with or without calibration using in-situ measurements. In this work, we will present two alternative approaches for the reconstruction of the sea surface elevation from wave radar images. In particular, the first approach is based on the basis of an approximated version of the modulation transfer function (MTF) tuned from a series of numerical simulation, following the line of[3]. The second approach is based on the inversion of radar images using a direct regularised least square technique. Assuming a linearised model for the tilt modulation, the sea elevation has been reconstructed as a least square fitting of the radar imaging data[4]. References [1]F. Serafino, C. Lugni, and F. Soldovieri, "A novel strategy for the surface current determination from marine X-band radar data," IEEE Geosci.Remote Sens. Lett., vol. 7, no. 2, pp. 231-235, Apr. 2010. [2]Ludeno, G., Brandini, C., Lugni, C., Arturi, D., Natale, A., Soldovieri, F., Serafino, F. (2014). Remocean System for the Detection of the Reflected Waves from the Costa Concordia Ship Wreck. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7). [3]Nieto Borge, J., Rodriguez, G.R., Hessner, K., González, P.I., (2004). Inversion of Marine Radar Images for Surface Wave Analysis. J. Atmos. Oceanic Technol. 21, 1291-1300. [4] Fucile, F., Ludeno, G., Serafino, F.,Bulian, G., Soldovieri, F., Lugni, C. "Some challenges in recovering wave features from a wave radar system". Paper submitted to the International Ocean and Polar Engineering Conference, ISOPE, Rhodes 2016

  11. Equilibrium Beach Profiles on the East and West U.S. Coasts

    NASA Astrophysics Data System (ADS)

    Ludka, B. C.; Guza, R. T.; McNinch, J. E.; O'Reilly, W.

    2012-12-01

    Beach elevation change observations from the United States west and east coasts are used to identify statistically the dominant cross-shore patterns in sand level fluctuations, and these changes are related to equilibrium beach profile concepts. Three to seven years of observations at four beaches in Southern California include monthly surveys of the subaerial (near MSL) beach, and quarterly surveys from the backbeach to about 8m depth. At Duck, North Carolina, observations include 31 years of monthly surveys from the dunes to about 8m depth. On the Southern California beaches, the dominant seasonal pattern is subaerial erosion in winter and accretion in summer. Seasonal fluctuations of 3m in shoreline vertical sand levels, and 50m in subaerial beach width, are not uncommon. The sand eroded from the shoreline in winter is stored in an offshore sand bar and returns to the beach face in summer. Wave conditions in Southern California also vary seasonally, with energetic waves arriving from the north in winter, and lower energy, longer period southerly swell arriving in summer. A spectral refraction model, initialized with a regional network of directional wave buoys, is used to estimate hourly wave conditions, in 10m water depth. Using an equilibrium hypothesis, that the shoreline (defined as the cross-shore location of the MSL contour) change rate depends on the wave energy and the wave energy disequilibrium, Yates (2009) modeled the time-varying shoreline location at several Southern California beaches with significant skill. The four free model parameters were calibrated to fit observations. Following Yates (2009), we extend the equilibrium shoreline model to include the horizontal displacement of other elevation contours. At the Southern California sites, the modeled contour translation depends on the incident wave energy, the present contour configuration, and observation-based estimates of the contour behavior (based on EOF spatial amplitudes). At Duck, seasonal variations of the wave field (measured immediately offshore) are large, but shoreline changes (usually <30cm) are smaller than in Southern California. Maximum vertical variations occur just seaward of the shoreline and the nearshore bathymetry is often barred. Plant (1999) show that bar crest position at Duck has equilibrium-like behavior. We will present the results of equilibrium shoreline and profile modeling at Duck. At both sites, we diagnose sources (e.g. grain size and incident waves) of the sometimes strong observed alongshore variations in sand level change patterns. Funding was provided by the US Army Corps of Engineers and the California Department of Boating and Waterways. REFERENCES Plant, N. G., R. A. Holman, M. H. Freilich, and W. A. Birkemeier (1999), A simple model for interannual sandbar behavior, J. Geophys. Res., 104(C7), 15,755-15,776. Yates, M. L., R. T. Guza, and W. C. O'Reilly (2009), Equilibrium shoreline response: Observations and modeling, J. Geophys. Res., 114, C09014.

  12. Reprint of Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2018-06-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  13. Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2017-05-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  14. Statistics for long irregular wave run-up on a plane beach from direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Didenkulova, Ira; Senichev, Dmitry; Dutykh, Denys

    2017-04-01

    Very often for global and transoceanic events, due to the initial wave transformation, refraction, diffraction and multiple reflections from coastal topography and underwater bathymetry, the tsunami approaches the beach as a very long wave train, which can be considered as an irregular wave field. The prediction of possible flooding and properties of the water flow on the coast in this case should be done statistically taking into account the formation of extreme (rogue) tsunami wave on a beach. When it comes to tsunami run-up on a beach, the most used mathematical model is the nonlinear shallow water model. For a beach of constant slope, the nonlinear shallow water equations have rigorous analytical solution, which substantially simplifies the mathematical formulation. In (Didenkulova et al. 2011) we used this solution to study statistical characteristics of the vertical displacement of the moving shoreline and its horizontal velocity. The influence of the wave nonlinearity was approached by considering modifications of probability distribution of the moving shoreline and its horizontal velocity for waves of different amplitudes. It was shown that wave nonlinearity did not affect the probability distribution of the velocity of the moving shoreline, while the vertical displacement of the moving shoreline was affected substantially demonstrating the longer duration of coastal floods with an increase in the wave nonlinearity. However, this analysis did not take into account the actual transformation of irregular wave field offshore to oscillations of the moving shoreline on a slopping beach. In this study we would like to cover this gap by means of extensive numerical simulations. The modeling is performed in the framework of nonlinear shallow water equations, which are solved using a modern shock-capturing finite volume method. Although the shallow water model does not pursue the wave breaking and bore formation in a general sense (including the water surface overturning), it allows shock-wave formation and propagation with the speed given by Rankine-Hugoniot jump conditions, which to some extent approximates wave breaking. The scheme is second order accurate thanks to the UNO2 special reconstruction. It was described and validated in (Dutykh et al. 2011a) and has already been successfully used to simulate wave run-up on random beaches (Dutykh et al. 2011b). For simplicity the incident wave field offshore is taken Gaussian in the present study, however, this distribution can be easily changed in the numerical code. Similar to (Didenkulova et al. 2011), in order to study influence of wave nonlinearity during wave propagation to the coast we consider waves of different amplitudes and the corresponding modifications of statistics of the moving shoreline. We also consider wave fields with a different bandwidth, so that we can see the influence of the bandwidth of the incoming wave field on statistics of wave run-up on a beach. In order to validate the numerical results we use the available experimental data of irregular wave run-up on a beach (Denissenko et al. 2011; 2013). For this in our simulations we use the corresponding bathymetry set-up: the flat part of the flume with a water depth of 3.5 m is matched with the beach of constant slope 1:6. The significant wave heights Hs are chosen according to (Denissenko et al. 2013) and are equal to 0.1m, 0.2m, 0.3m, 0.4m and 0.5m, while the bandwidth is selected as 0.1, 0.4 and 0.8, which allows comparison of the behavior of wide-band and narrow-band wave fields on the beach. The characteristic wave period is 20s, as in (Denissenko et al. 2013) that provides long wave condition. All time records contain several weeks of simulations that provides significant amount of data for extreme value statistics. [1] P. Denissenko, I. Didenkulova, E. Pelinovsky, J. Pearson. Influence of the nonlinearity on statistical characteristics of long wave runup. Nonlinear Processes in Geophysics 18, 967-975 (2011). [2] P. Denissenko, I. Didenkulova, A. Rodin, M. Listak, E. Pelinovsky. Experimental statistics of long wave runup on a plane beach. Journal of Coastal Research 65, 195-200 (2013). [3] I. Didenkulova, E. Pelinovsky, A. Sergeeva. Statistical characteristics of long waves nearshore. Coastal Engineering 58, 94-102 (2011). [4] D. Dutykh, T. Katsaounis, D. Mitsotakis. Finite volume schemes for dispersive wave propagation and runup. J. Comput. Phys. 230 (8), 3035-3061 (2011a). [5] D. Dutykh, C. Labart, D. Mitsotakis. Long wave run-up on random beaches. Phys. Rev. Lett. 107, 184504 (2011b).

  15. Moment tensor inversion of the 2016 southeast offshore Mie earthquake in the Tonankai region using a three-dimensional velocity structure model: effects of the accretionary prism and subducting oceanic plate

    NASA Astrophysics Data System (ADS)

    Takemura, Shunsuke; Kimura, Takeshi; Saito, Tatsuhiko; Kubo, Hisahiko; Shiomi, Katsuhiko

    2018-03-01

    The southeast offshore Mie earthquake occurred on April 1, 2016 near the rupture area of the 1944 Tonankai earthquake, where seismicity around the interface of the Philippine Sea plate had been very low until this earthquake. Since this earthquake occurred outside of seismic arrays, the focal mechanism and depth were not precisely constrained using a one-dimensional velocity model, as in a conventional approach. We conducted a moment tensor inversion of this earthquake by using a three-dimensional velocity structure model. Before the analysis of observed data, we investigated the effects of offshore heterogeneous structures such as the seawater, accretionary prism, and subducting oceanic plate by using synthetic seismograms in a full three-dimensional model and simpler models. The accretionary prism and subducting oceanic plate play important roles in the moment tensor inversion for offshore earthquakes in the subduction zone. Particularly, the accretionary prism, which controls the excitation and propagation of long-period surface waves around the offshore region, provides better estimations of the centroid depths and focal mechanisms of earthquakes around the Nankai subduction zone. The result of moment tensor inversion for the 2016 southeast offshore Mie earthquake revealed low-angle thrust faulting with a moment magnitude of 5.6. According to geophysical surveys in the Nankai Trough, our results suggest that the rupture of this earthquake occurred on the interface of the Philippine Sea plate, rather than on a mega-splay fault. Detailed comparisons of first-motion polarizations provided additional constraints of the rupture that occurred on the interface of the Philippine Sea plate.

  16. A simple model for the spatially-variable coastal response to hurricanes

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H.; Holman, R.A.; Howd, P.A.

    2007-01-01

    The vulnerability of a beach to extreme coastal change during a hurricane can be estimated by comparing the relative elevations of storm-induced water levels to those of the dune or berm. A simple model that defines the coastal response based on these elevations was used to hindcast the potential impact regime along a 50-km stretch of the North Carolina coast to the landfalls of Hurricane Bonnie on August 27, 1998, and Hurricane Floyd on September 16, 1999. Maximum total water levels at the shoreline were calculated as the sum of modeled storm surge, astronomical tide, and wave runup, estimated from offshore wave conditions and the local beach slope using an empirical parameterization. Storm surge and wave runup each accounted for ∼ 48% of the signal (the remaining 4% is attributed to astronomical tides), indicating that wave-driven process are a significant contributor to hurricane-induced water levels. Expected water levels and lidar-derived measures of pre-storm dune and berm elevation were used to predict the spatially-varying storm-impact regime: swash, collision, or overwash. Predictions were compared to the observed response quantified using a lidar topography survey collected following hurricane landfall. The storm-averaged mean accuracy of the model in predicting the observed impact regime was 55.4%, a significant improvement over the 33.3% accuracy associated with random chance. Model sensitivity varied between regimes and was highest within the overwash regime where the accuracies were 84.2% and 89.7% for Hurricanes Bonnie and Floyd, respectively. The model not only allows for prediction of the general coastal response to storms, but also provides a framework for examining the longshore-variable magnitudes of observed coastal change. For Hurricane Bonnie, shoreline and beach volume changes within locations that experienced overwash or dune erosion were two times greater than locations where wave runup was confined to the foreshore (swash regime). During Hurricane Floyd, this pattern became more pronounced as magnitudes of change were four times greater within the overwash regime than in the swash regime. Comparisons of pre-storm topography to a calm weather survey collected one year after Hurricane Floyd's landfall show long-term beach volume loss at overwash locations. Here, the volume of sand eroded from the beach was balanced by the volume of overwash deposits, indicating that the majority of the sand removed from the beach was transported landward across the island rather than being transported offshore. In overwash locations, sand was removed from the nearshore system and unavailable for later beach recovery, resulting in a more permanent response than observed within the other regimes. These results support the predictive capabilities of the storm scaling model and illustrate that the impact regimes provide a framework for explaining the longshore-variable coastal response to hurricanes.

  17. Responses of two marine top predators to an offshore wind farm.

    PubMed

    Vallejo, Gillian C; Grellier, Kate; Nelson, Emily J; McGregor, Ross M; Canning, Sarah J; Caryl, Fiona M; McLean, Nancy

    2017-11-01

    Quantifying the likely effects of offshore wind farms on wildlife is fundamental before permission for development can be granted by any Determining Authority. The effects on marine top predators from displacement from important habitat are key concerns during offshore wind farm construction and operation. In this respect, we present evidence for no significant displacement from a UK offshore wind farm for two broadly distributed species of conservation concern: common guillemot ( Uria aalge ) and harbor porpoise ( Phocoena phocoena ). Data were collected during boat-based line transect surveys across a 360 km 2 study area that included the Robin Rigg offshore wind farm. Surveys were conducted over 10 years across the preconstruction, construction, and operational phases of the development. Changes in guillemot and harbor porpoise abundance and distribution in response to offshore wind farm construction and operation were estimated using generalized mixed models to test for evidence of displacement. Both common guillemot and harbor porpoise were present across the Robin Rigg study area throughout all three development phases. There was a significant reduction in relative harbor porpoise abundance both within and surrounding the Robin Rigg offshore wind farm during construction, but no significant difference was detected between the preconstruction and operational phases. Relative common guillemot abundance remained similar within the Robin Rigg offshore wind farm across all development phases. Offshore wind farms have the potential to negatively affect wildlife, but further evidence regarding the magnitude of effect is needed. The empirical data presented here for two marine top predators provide a valuable addition to the evidence base, allowing future decision making to be improved by reducing the uncertainty of displacement effects and increasing the accuracy of impact assessments.

  18. Seismic excitation by space shuttles

    USGS Publications Warehouse

    Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.

    1992-01-01

    Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were simultaneously hit by the space shuttle shock waves. The proximity of the natural periods of the high rise buildings and the modal periods of the Los Angeles basin enabled efficient energy transfer from shock wave to seismic wave. ?? 1992 Springer-Verlag.

  19. Work, eat and sleep: towards a healthy ageing at work program offshore.

    PubMed

    Riethmeister, Vanessa; Brouwer, Sandra; van der Klink, Jac; Bültmann, Ute

    2016-02-09

    Health management tools need to be developed to foster healthy ageing at work and sustain employability of ageing work-forces. The objectives of this study were to 1) perform a needs assessment to identify the needs of offshore workers in the Dutch Continental Shelf with regard to healthy ageing at work and 2) to define suitable program objectives for a future healthy ageing at work program in the offshore working population. A mixed methods design was used applying an intervention mapping procedure. Qualitative data were gathered in N = 19 semi-structured interviews and six focus-group sessions (N = 49). Qualitative data were used to develop a questionnaire, which was administered among N = 450 offshore workers. Subgroup analyses were performed to investigate age-related differences relating to health status and work-related factors. The importance of good working environments, food, as well as sleep/fatigue management was identified by the qualitative data analysis. A total of 260 offshore workers completed the questionnaire. Significant differences in work ability were found between offshore workers aged <45 and 45-54 years (mean 8.63 vs. 8.19; p = 0.005) and offshore workers aged <45 and >55 years (mean 8.63 vs. 8.22; p = 0.028). Offshore workers had a high BMI (M = 27.06, SD = 3.67), with 46 % classified as overweight (BMI 25-30) and 21 % classified as obese (BMI >30). A significant difference in BMI was found between offshore workers aged <45 and ≥55 years (mean 26.3 vs. 28.6; p <0.001). In total, 73 % of offshore workers reported prolonged fatigue. A significant difference in fatigue scores was found between offshore workers aged <45 and ≥55 years (mean 36.0 vs. 37.6; p = 0.024). Further, a "dip" was reported by 41 % of offshore workers. Dips were mainly experienced at day 10 or 11 (60 %), with 45 % experiencing the dip both as physical and mental fatigue, whereas 39 % experienced the dip as only mental fatigue. Both qualitative and quantitative analyses identified work, food and sleep/fatigue management as most important program objectives for a healthy ageing at work and sustainable employability program offshore. Future studies should investigate possible causes of dip occurrences and high fatigue scores to identify suitable interventions.

  20. Improvements of the offshore earthquake locations in the Earthquake Early Warning System

    NASA Astrophysics Data System (ADS)

    Chen, Ta-Yi; Hsu, Hsin-Chih

    2017-04-01

    Since 2014 the Earthworm Based Earthquake Alarm Reporting (eBEAR) system has been operated and been used to issue warnings to schools. In 2015 the system started to provide warnings to the public in Taiwan via television and the cell phone. Online performance of the eBEAR system indicated that the average reporting times afforded by the system are approximately 15 and 28 s for inland and offshore earthquakes, respectively. The eBEAR system in average can provide more warning time than the current EEW system (3.2 s and 5.5 s for inland and offshore earthquakes, respectively). However, offshore earthquakes were usually located poorly because only P-wave arrivals were used in the eBEAR system. Additionally, in the early stage of the earthquake early warning system, only fewer stations are available. The poor station coverage may be a reason to answer why offshore earthquakes are difficult to locate accurately. In the Geiger's inversion procedure of earthquake location, we need to put an initial hypocenter and origin time into the location program. For the initial hypocenter, we defined some test locations on the offshore area instead of using the average of locations from triggered stations. We performed 20 programs concurrently running the Geiger's method with different pre-defined initial position to locate earthquakes. We assume that if the program with the pre-defined initial position is close to the true earthquake location, during the iteration procedure of the Geiger's method the processing time of this program should be less than others. The results show that using pre-defined locations for trial-hypocenter in the inversion procedure is able to improve the accurate of offshore earthquakes. Especially for EEW system, in the initial stage of the EEW system, only use 3 or 5 stations to locate earthquakes may lead to bad results because of poor station coverage. In this study, the pre-defined trial-locations provide a feasible way to improve the estimations of earthquake locations in EEW system.

  1. An innovative early warning system for floods and operational risks in harbours

    NASA Astrophysics Data System (ADS)

    Smets, Steven; Bolle, Annelies; Mollaert, Justine; Buitrago, Saul; Gruwez, Vincent

    2016-04-01

    Early Warning Systems (EWS) are nowadays becoming fairly standard in river flood forecasting or in large scale hydrometeorological predictions. For complex coastal morphodynamic problems or in the vicinity of complex coastal structures, such as harbours, EWS are much less used because they are both technically and computationally still very challenging. To advance beyond the state-of-the-art, the EU FP7 project Risc-KIT (www.risc-kit.eu) is developing prototype EWS which address specifically these topics. This paper describes the prototype EWS which IMDC has developed for the case study site of the harbour of Zeebrugge. The harbour of Zeebrugge is the largest industrial seaport on the coast of Belgium, extending more than 3 km into the sea. Two long breakwaters provide shelter for the inner quays and docks for regular conditions and frequent storms. Extreme storms surges and waves can however still enter the harbour and create risks for the harbour operations and infrastructure. The prediction of the effects of storm surges and waves inside harbours are typically very complex and challenging, due to the need of different types of numerical models for representing all different physical processes. In general, waves inside harbours are a combination of locally wind generated waves and offshore wave penetration at the port entrance. During extreme conditions, the waves could overtop the quays and breakwaters and flood the port facilities. Outside a prediction environment, the conditions inside the harbour could be assessed by superimposing processes. The assessment can be carried out by using a combination of a spectral wave model (i.e. SWAN) for the wind generated waves and a Boussinesq type wave model (i.e. Mike 21 BW) for the wave penetration from offshore. Finally, a 2D hydrodynamic model (i.e. TELEMAC) can be used to simulate the overland flooding inside the port facilities. To reproduce these processes in an EWS environment, an additional challenge is to cope with the limitations of the calculation engines. This is especially true with the Boussinesq model. A model train is proposed that integrates processed based modelling, for wind generated waves, with an intelligent simplification of the Boussinesq model for the wave penetration effects. These wave conditions together with the extreme water levels (including storm surge) can then be used to simulate the overtopping/overflow behaviour for the quays. Finally, the hydrodynamic model TELEMAC is run for the inundation forecast inside the port facilities. The complete model train was integrated into the Deltares Delft FEWS software to showcase the potential for real time operations.

  2. An XCP User’s Guide and Reference Manual

    DTIC Science & Technology

    1993-08-01

    Sanford, and J. R. Haustein , 1985: Observing hurricane-driven waves and currents, Proc. 17th Annual Offshore Technology Conference, OTC 4934, 331-339...of Washington, Seattle, IWA, 164 pp. I 3 TR 9309 A3 I I Sanford, T. B., P. G. Black, J. R. Haustein , J. W. Feeney, G. Z. Forristall, and J. F. Price

  3. The upper mantle shear wave velocity structure of East Africa derived from Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    O'Donnell, J.; Nyblade, A.; Adams, A. N.; Weeraratne, D. S.; Mulibo, G.; Tugume, F.

    2012-12-01

    An expanded model of the three-dimensional shear wave velocity structure of the upper mantle beneath East Africa has been developed using data from the latest phases of the AfricaArray East African Seismic Experiment in conjunction with data from preceding studies. The combined dataset consists of 331 events recorded on a total of 95 seismic stations spanning Kenya, Uganda, Tanzania, Zambia and Malawi. In this latest study, 149 events were used to determine fundamental mode Rayleigh wave phase velocities at periods ranging from 20 to 182 seconds using the two-plane-wave method. These were subsequently combined with the similarly processed published measurements and inverted for an updated upper mantle three-dimensional shear wave velocity model. Newly imaged features include a substantial fast anomaly in eastern Zambia that may have exerted a controlling influence on the evolution of the Western Rift Branch. Furthermore, there is a suggestion that the Eastern Rift Branch trends southeastward offshore eastern Tanzania.

  4. An Asymptotic and Stochastic Theory for the Effects of Surface Gravity Waves on Currents and Infragravity Waves

    NASA Astrophysics Data System (ADS)

    McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.

    2004-12-01

    Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some preliminary solutions using it. McWilliams, J.C., J.M. Restrepo, & E.M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 511, 135-178. Sullivan, P.P., J.C. McWilliams, & W.K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. J. Fluid Mech. 507, 143-174.

  5. Model Simulations of Waves in Hurricane Juan

    NASA Astrophysics Data System (ADS)

    Perrie, W.; Toulany, B.; Padilla-Hernandez, R.; Hu, Y.; Smith, P.; Zhang, W.; Zou, Q.; Ren, X.

    2004-05-01

    Hurricane Juan made landfall at 0300 UTC near Halifax Nova Scotia. This was a category 2 hurricane with winds of 44 m/s, the largest storm to pass over these coastal areas in several decades. Associated high ocean waves were experienced in coastal waters, from Peggy's Cove to Sheet Harbour, growing to epic proportions on the Scotian Shelf, and exceeding the 100-year return wave based on the present climatology. As part of the GoMOOS program (Gulf of Maine Ocean Observing System, www.gomoos.org), winds from the USA Navy COAMPS (Coupled Ocean Atmosphere Model Prediction System) were used to evaluate and compare three widely-used third generation numerical wave models, SWAN, WAM and WaveWatch-III (hereafter WW3) for accuracy, with in situ measurements. Model comparisons consist of a set of composite model systems, respectively nesting WAM, WW3 and SWAN in WAM and WW3. We report results from the intermediate-resolution grid for Hurricane Juan. Wave measurements were made using four operational deep-water buoys (C44258, C44142, C44137, 44005), by a conventional directional wave rider (DWR) moored offshore from Lunenburg Bay, and also by two acoustic Doppler current profiler (ADCP) located (1) near an oil rig on Sable Island Bank, in relatively shallow water, and (2) near the outer boundary of Lunenburg Bay. We discuss the reliability of DWR wave data compared to ADCP wave data. We show that all models provide reliable hindcasts for significant wave height (Hs) and for peak period (Tp) for Juan, although a clear under-estimation of Hs at the peak of the storm is evident, compared to observations. A feature in the COAMPS storm simulation is that the storm track appears to be slightly to the east of that of Quikscat scatterometer data. Comparisons between models and 2-dimensional wave spectra are presented. Preliminary results suggest that the recently released upgrade to the WW3 model shows slightly enhanced skill compared to the other models.

  6. ON PREDICTING INFRAGRAVITY ENERGY IN THE SURF ZONE.

    USGS Publications Warehouse

    Sallenger,, Asbury H.; Holman, Robert A.; Edge, Billy L.

    1985-01-01

    Flow data were obtained in the surf zone across a barred profile during a storm. RMS cross-shore velocities due to waves in the intragravity band (wave periods greater than 20 s) had maxima in excess of 0. 5 m/s over the bar crest. For comparison to measured spectra, synthetic spectra of cross-shore flow were computed using measured nearshore profiles. The structure, in the infragravity band, of these synthetic spectra corresponded reasonably well with the structure of the measured spectra. Total variances of measured cross-shore flow within the infragravity band were nondimensionalized by dividing by total infragravity variances of synthetic spectra. These nondimensional variances were independent of distance offshore and increased with the square of the breaker height. Thus, cross-shore flow due to infragravity waves can be estimated with knowledge of the nearshore profile and incident wave conditions. Refs.

  7. Tropical Cyclone-Driven Sediment Dynamics Over the Australian North West Shelf

    NASA Astrophysics Data System (ADS)

    Dufois, François; Lowe, Ryan J.; Branson, Paul; Fearns, Peter

    2017-12-01

    Owing to their strong forcing at the air-sea interface, tropical cyclones are a major driver of hydrodynamics and sediment dynamics of continental shelves, strongly impacting marine habitats and offshore industries. Despite the North West Shelf of Australia being one of the most frequently impacted tropical cyclone regions worldwide, there is limited knowledge of how tropical cyclones influence the sediment dynamics of this shelf region, including the significance of these episodic extreme events to the normal background conditions that occur. Using an extensive 2 year data set of the in situ sediment dynamics and 14 yearlong calibrated satellite ocean-color data set, we demonstrate that alongshore propagating cyclones are responsible for simultaneously generating both strong wave-induced sediment resuspension events and significant southwestward subtidal currents. Over the 2 year study period, two particular cyclones (Iggy and Narelle) dominated the sediment fluxes resulting in a residual southwestward sediment transport over the southern part of the shelf. By analyzing results from a long-term (37 year) wind and wave hindcast, our results suggest that at least 16 tropical cyclones had a strong potential to contribute to that southwestward sediment pathway in a similar way to Iggy and Narelle.

  8. Extreme sea storm in the Mediterranean Sea. Trends during the 2nd half of the 20th century.

    NASA Astrophysics Data System (ADS)

    Pino, C.; Lionello, P.; Galati, M. B.

    2009-04-01

    Extreme sea storm in the Mediterranean Sea. Trends during the 2nd half of the 20th century Piero Lionello, University of Salento, piero.lionello@unisalento.it Maria Barbara Galati, University of Salento, mariabarbara.galati@unisalento.it Cosimo Pino, University of Salento, pino@le.infn.it The analysis of extreme Significant Wave Height (SWH) values and their trend is crucial for planning and managing coastal defences and off-shore activities. The analysis provided by this study covers a 44-year long period (1958-2001). First the WW3 (Wave Watch 3) model forced with the REMO-Hipocas regional model wind fields has been used for the hindcast of extreme SWH values over the Mediterranean basin with a 0.25 deg lat-lon resolution. Subsequently, the model results have been processed with an ad hoc software to detect storms. GEV analysis has been perfomed and a set of indicators for extreme SWH have been computed, using the Mann Kendall test for assessing statistical significance of trends for different parameter such as the number of extreme events, their duration and their intensity. Results suggest a transition towards weaker extremes and a milder climate over most of the Mediterranean Sea.

  9. Optimizing spectral wave estimates with adjoint-based sensitivity maps

    NASA Astrophysics Data System (ADS)

    Orzech, Mark; Veeramony, Jay; Flampouris, Stylianos

    2014-04-01

    A discrete numerical adjoint has recently been developed for the stochastic wave model SWAN. In the present study, this adjoint code is used to construct spectral sensitivity maps for two nearshore domains. The maps display the correlations of spectral energy levels throughout the domain with the observed energy levels at a selected location or region of interest (LOI/ROI), providing a full spectrum of values at all locations in the domain. We investigate the effectiveness of sensitivity maps based on significant wave height ( H s ) in determining alternate offshore instrument deployment sites when a chosen nearshore location or region is inaccessible. Wave and bathymetry datasets are employed from one shallower, small-scale domain (Duck, NC) and one deeper, larger-scale domain (San Diego, CA). The effects of seasonal changes in wave climate, errors in bathymetry, and multiple assimilation points on sensitivity map shapes and model performance are investigated. Model accuracy is evaluated by comparing spectral statistics as well as with an RMS skill score, which estimates a mean model-data error across all spectral bins. Results indicate that data assimilation from identified high-sensitivity alternate locations consistently improves model performance at nearshore LOIs, while assimilation from low-sensitivity locations results in lesser or no improvement. Use of sub-sampled or alongshore-averaged bathymetry has a domain-specific effect on model performance when assimilating from a high-sensitivity alternate location. When multiple alternate assimilation locations are used from areas of lower sensitivity, model performance may be worse than with a single, high-sensitivity assimilation point.

  10. Crustal and upper mantle S-wave velocity structures across the Taiwan Strait from ambient seismic noise and teleseismic Rayleigh wave analyses

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.

    2013-12-01

    Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.

  11. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    NASA Astrophysics Data System (ADS)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the largest potential changes in wave height. The SNL-SWAN model simulations for various WEC devices provide the basis for a solid model understanding, giving the confidence necessary for future WEC evaluations.

  12. A Cause and A Solution for the Underprediction of Extreme Wave Events in the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Ellenson, A. N.; Ozkan-Haller, H. T.; Thomson, J.; Brown, A. C.; Haller, M. C.

    2016-12-01

    Along the coastlines of Washington and Oregon, at least one 10 m wave height event occurs every year, and the strongest storms produce wave heights of 14-15 m. Extremely high wave heights can cause severe damage to coastal infrastructure and pose hazards to stakeholders along the coast. A system which can accurately predict such sea states is important for quantifying risk and aiding in preparation for extreme wave events. This study explores how to optimize forecast model performance for extreme wave events by utilizing different physics packages or wind input in four model configurations. The different wind input products consist of a reanalyzed Global Forecasting System (GFS) wind input and a Climate Forecast System Reanalysis (CFSR) from the National Center of Environmental Prediction (NCEP). The physics packages are the Tolman-Chalikov (1996) ST2 physics package and the Ardhuin et al (2009) ST4 physics package associated with version 4.18 of WaveWatch III. A hindcast was previously performed to assess the wave character along the Pacific Northwest Coastline for wave energy applications. Inspection of hindcast model results showed that the operational model, which consisted of ST2 physics and GFS wind, underpredicted events where wave height exceeded six meters.The under-prediction is most severe for cases with the combined conditions of a distant cyclone and a strong coastal jet. Three such cases were re-analyzed with the four model configurations. Model output is compared with observations at NDBC buoy 46050, offshore of Newport, OR. The model configuration consisting of ST4 physics package and CFSR wind input performs best as compared with the original model, reducing significant wave height underprediction from 1.25 m to approximately 0.67 m and mean wave direction error from 30 degrees to 17 degrees for wave heights greater than 6 m. Spectral analysis shows that the ST4-CFSR model configuration best resolves southerly wave energy, and all model configurations tend to overestimate northerly wave energy. This directional distinction is important when attempting to identify which atmospheric feature has induced the extreme wave energy.

  13. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  14. Effects of wave energy converters on the surrounding soft-bottom macrofauna (west coast of Sweden).

    PubMed

    Langhamer, O

    2010-06-01

    Offshore wave energy conversion is expected to develop, thus contributing to an increase in submerged constructions on the seabed. An essential concern related to the deployment of wave energy converters (WECs) is their possible impact on the surrounding soft-bottom habitats. In this study, the macrofaunal assemblages in the seabed around the wave energy converters in the Lysekil research site on the Swedish west coast and a neighbouring reference site were examined yearly during a period of 5 years (2004-2008). Macrobenthic communities living in the WECs' surrounding seabed were mainly composed by organisms typical for the area and depth off the Swedish west coast. At both sites the number of individuals, number of species and biodiversity were low, and were mostly small, juvenile organisms. The species assemblages during the first years of sampling were significantly different between the Lysekil research site and the nearby reference site with higher species abundance in the research site. The high contribution to dissimilarities was mostly due to polychaetes. Sparse macrofaunal densities can be explained by strong hydrodynamic forces and/or earlier trawling. WECs may alter the surrounding seabed with an accumulation of organic matter inside the research area. This indicates that the deployment of WECs in the Lysekil research site tends to have rather minor direct ecological impacts on the surrounding benthic community relative to the natural high variances.

  15. Fault Slip Distribution of the 2016 Fukushima Earthquake Estimated from Tsunami Waveforms

    NASA Astrophysics Data System (ADS)

    Gusman, Aditya Riadi; Satake, Kenji; Shinohara, Masanao; Sakai, Shin'ichi; Tanioka, Yuichiro

    2017-08-01

    The 2016 Fukushima normal-faulting earthquake (Mjma 7.4) occurred 40 km off the coast of Fukushima within the upper crust. The earthquake generated a moderate tsunami which was recorded by coastal tide gauges and offshore pressure gauges. First, the sensitivity of tsunami waveforms to fault dimensions and depths was examined and the best size and depth were determined. Tsunami waveforms computed based on four available focal mechanisms showed that a simple fault striking northeast-southwest and dipping southeast (strike = 45°, dip = 41°, rake = -95°) yielded the best fit to the observed waveforms. This fault geometry was then used in a tsunami waveform inversion to estimate the fault slip distribution. A large slip of 3.5 m was located near the surface and the major slip region covered an area of 20 km × 20 km. The seismic moment, calculated assuming a rigidity of 2.7 × 1010 N/m2 was 3.70 × 1019 Nm, equivalent to Mw = 7.0. This is slightly larger than the moments from the moment tensor solutions (Mw 6.9). Large secondary tsunami peaks arrived approximately an hour after clear initial peaks were recorded by the offshore pressure gauges and the Sendai and Ofunato tide gauges. Our tsunami propagation model suggests that the large secondary tsunami signals were from tsunami waves reflected off the Fukushima coast. A rather large tsunami amplitude of 75 cm at Kuji, about 300 km north of the source, was comparable to those recorded at stations located much closer to the epicenter, such as Soma and Onahama. Tsunami simulations and ray tracing for both real and artificial bathymetry indicate that a significant portion of the tsunami wave was refracted to the coast located around Kuji and Miyako due to bathymetry effects.

  16. Provenance of Holocene calcareous beach-dune sediments, Western Eyre Peninsula, Great Australian Bight, Australia

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Bone, Yvonne

    2017-07-01

    Much of western Eyre Peninsula adjacent to the Great Australian Bight is veneered with siliceous and calcareous Quaternary aeolian dunes. The lengthy coastline adjacent to this cool-water carbonate factory is a series of Precambrian crystalline bedrock-Pleistocene aeolianite headlands that separate many long, sweeping, Holocene carbonate sand beaches and their backbeach dunes. Incessant SW waves, rolling swells, and onshore winds have resulted in > 350 km of semi-continuous calcareous strandline aeolian sands. The sediment is composed of quartz grains, Cenozoic limestone clasts, and relict particles (extraclasts) but the deposits are overwhelmingly dominated by contemporaneous biofragments from offshore. These skeletal grains are, in order of relative abundance, molluscs > benthic foraminifers > coralline algae > bryozoans, and echinoids. Benthic foraminifers are mostly small (especially rotaliids and miliolids) but the large relict symbiont-bearing protistMarginopora vertebralis, which grew in the latter stages of MIS 2, is present locally. There are no significant onshore-offshore trends within individual beach-dune complexes. There is, however, a prominent spatial partitioning, with extraclast-rich sediments in the north and biofragment-rich deposits in the south. This areal trend is interpreted to result from more active seafloor carbonate production in the south, an area of conspicuous seasonal nutrient upwelling and profound nektic and benthic biological productivity. The overall system is strikingly similar to Holocene and Pleistocene aeolianites along the inboard margin of the Lacepede Shelf and Bonney Coast some 500 km to the southeast, implying a potential universality to the nature of cool-water carbonate aeolianite deposition. The composition of these cool-water aeolianites is more multifaceted than those formed on warm-water, shallow flat-topped platforms, largely because of the comparatively deep, temperate shelf, the high-energy wave and swell climate impacting the shoreline, and thus the different geohistory during sea level change.

  17. The influence of El Niño-Southern Oscillation (ENSO) cycles on wave-driven sea-floor sediment mobility along the central California continental margin

    USGS Publications Warehouse

    Storlazzi, Curt D.; Reid, Jane A.

    2010-01-01

    Ocean surface waves are the dominant temporally and spatially variable process influencing sea floor sediment resuspension along most continental shelves. Wave-induced sediment mobility on the continental shelf and upper continental slope off central California for different phases of El Niño-Southern Oscillation (ENSO) events was modeled using monthly statistics derived from more than 14 years of concurrent hourly oceanographic and meteorologic data as boundary input for the Delft SWAN wave model, gridded sea floor grain-size data from the usSEABED database, and regional bathymetry. Differences as small as 0.5 m in wave height, 1 s in wave period, and 10° in wave direction, in conjunction with the spatially heterogeneous unconsolidated sea-floor sedimentary cover, result in significant changes in the predicted mobility of continental shelf surficial sediment in the study area. El Niño events result in more frequent mobilization on the inner shelf in the summer and winter than during La Niña events and on the outer shelf and upper slope in the winter months, while La Niña events result in more frequent mobilization on the mid-shelf during spring and summer months than during El Niño events. The timing and patterns of seabed mobility are addressed in context of geologic and biologic processes. By understanding the spatial and temporal variability in the disturbance of the sea floor, scientists can better interpret sedimentary patterns and ecosystem structure, while providing managers and planners an understanding of natural impacts when considering the permitting of offshore activities that disturb the sea floor such as trawling, dredging, and the emplacement of sea-floor engineering structures.

  18. Effects of obliquely opposing and following currents on wave propagation in a new 3D wave-current basin

    NASA Astrophysics Data System (ADS)

    Lieske, Mike; Schlurmann, Torsten

    2016-04-01

    INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common 3D wave analysis method, the Bayesian Directional Spectrum method (BDM). BDM was presented by Hashimoto et al. (1988). Lastly, identification of the wave-current interaction, the results from experiment with simultaneous waves and currents are compared with results for only-currents and only-waves in order to identify and exemplify the significance of nonlinear interaction processes. RESULTS The first results of the wave-current interaction show, as expected, a reduction in the wave height in the direction of flow and an increase in wave heights against the flow with unidirectional monochromatic waves. The superposition of current and orbital velocities cannot be conducted linearly. Furthermore, the results show a current domination for low wave periods and wave domination for larger wave periods. The criterion of a current or wave domination will be presented in the presentation. ACKNOWLEDGEMENT The support of the KFKI research project "Seegangsbelastungen (Seele)" (Contract No. 03KIS107) by the German "Federal Ministry of Education and Research (BMBF)" is gratefully acknowledged.

  19. Seismic waves triggering slow slip event on the pressure gauge records in the Hikurangi subducting margin

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Wallace, L. M.; Henrys, S. A.; Kaneko, Y.; Webb, S. C.; Muramoto, T.; Ohta, K.; Mochizuki, K.; Suzuki, S.; Kido, M.; Hino, R.

    2017-12-01

    The two M7-class earthquakes struck in New Zealand in 2016. One is the M7.1 Te Araroa earthquake on 1st September, and the other is the M7.8 Kaikoura earthquake on 14th November. The M7.1 earthquake struck offshore, following a sequence of the Hikurangi slow slip event on the northern Hikurangi Margin. The M7.8 Kaikoura earthquake has triggered a shallow slow slip event of northern Hikurangi subduction margin. We present seismic and tsunami waves radiated from two large earthquakes of M7.8 Kaikoura and M7.1 Te Araroa earthquakes in 2016 using a network of absolute pressure gauges (APG) deployed at the Hikurangi subduction margin offshore New Zealand. We deployed 5 APG on the accretionary wedge at the northen part of the Hikurangi margnin in June 2016 at the northern part of Hikurangi subducting margin, and were recovered in June 2015. The pressure gauge recorded data continuously for one year, with a logging interval of 1 or 2 s. Our processing of the APG data to identify seismic is a band pass filter with a range of 10-100 s is applied for seismic signals. We observed seismic waves radiated from both the M7.8 Kaikoura and M7.1 Te Araroa earthquakes. The pressure fluctuation more than 20 hPa from the arrivals of seismic waves was observed on two both earthquakes. It should be noted that marine pressure records are nearly equivalent to vertical acceleration measurements [Webb, 1998]. Specifically, on the M7.8 Kaikoura earthquake, the characteristic seismic signals with large amplitude more than 20 hPa lasting more than 300 s was observed on the all of four APGs. The long duration seismic waves with relatively large amplitude observed after the 7.8 Kaikoura earthquake would dynamically trigger the Hikurangi slow slip event; the dynamic triggering and characteristic seismic waves in the accretionary wedge has been predicted from a wave-field modeling using a 3D velocity model with a low-velocity sedimentary basin [Wallace et al., 2017].

  20. Influence of Wave Energetics on Nearshore Storms and Adjacent Shoreline Morphology

    NASA Astrophysics Data System (ADS)

    Wadman, H. M.; McNinch, J. E.; Hanson, J.

    2008-12-01

    Large-scale climatic forcings (such as NAO and ENSO) are known to induce fluctuations in regional storm frequency and intensity. Morphology-based studies have traditionally focused on individual storms and their influence on the nearshore coastal wave regime and shoreline response. Few studies have attempted to link long-term observed changes in shoreline position, beach, and nearshore morphology with large-scale climatic forcings that influence regional storm patterns. In order to predict the response of coastlines to future sea level rise and climate change, we need to understand how changes in the frequency of storms affecting nearshore regions (nearshore storms) may influence trends in shoreline position and nearshore morphology. Nearly 30 years of wave data (deep and shallow) collected off of Duck, NC are examined for trends in storm frequency and/or intensity. Changes in shoreline position and shoreface elevation, as observed from monthly beach transects over the same period, are also investigated in light of the observed trends in hydrodynamic forcings. Our preliminary analysis was unable to identify any consistent linear trends (increases or decreases) in frequency or intensity over the ~30-year time period in either the offshore wave heights or the nearshore storm record. These data might suggest that previous observations of recent increases in storm intensity and frequency, speculated to be due to climate change, might be spatially limited. Future analyses will partition the contributions from individual wind sea and swell events in order to better identify long-term trends in wave energetics from the various wave generation regions in the Atlantic. At this location, offshore wave height and the nearshore storm record are dominated by seasonal fluctuations and a strong interdecadal- to decadal periodicity. Previous research in Duck, NC has suggested that changes in shoreline position and shoreface elevations are related both to seasonal trends as well as "storm groupiness". Our analyses support these findings, but also identify interdecadal- to decadal trends in the nearshore morphology. Despite these fluctuations, the overall position of the shoreline and elevation of the shoreface shows little net change over the 30 years investigated. We hypothesize that the interdecadal- to decadal periodicity in the morphology is driven largely by the influences of large-scale climatic forcings on the nearshore wave regime as reflected in the storm record. We also explore the relationship between morphological periodicity, storm and wave height periodicity, and climatic fluctuations.

  1. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  2. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  3. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics

    NASA Astrophysics Data System (ADS)

    El Koussaifi, R.; Tikan, A.; Toffoli, A.; Randoux, S.; Suret, P.; Onorato, M.

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  4. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics.

    PubMed

    El Koussaifi, R; Tikan, A; Toffoli, A; Randoux, S; Suret, P; Onorato, M

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  5. Characteristics of microseisms in South China

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Xue, M.; Pan, M.

    2017-12-01

    Microseisms are generated by coupling ocean waves and the solid earth, and their main frequencies and sources vary in different regions of the world. We use continuous waveforms from three arrays along the southern coast of China to study the types and sources of microseisms in South China. Using cross-correlation functions and a three-component F-K analysis, we found that the main type of microseisms in this area propagates as surface waves, arriving mainly from the east and southeast. We also found that the surface waves have different characteristics: the Rayleigh waves and Love waves have diverse sources, are frequency dependent and have no obvious seasonal changes. In the 0.2-0.25 Hz frequency band, the Rayleigh and Love waves at the W01, W02 and ST arrays show the influences of common microseisms sources from Taiwan and the Luzon Strait. However, in the 0.27-0.5 Hz frequency band, the energy of the microseisms tends to be governed by the offshore sources near the stations. In addition, the Love waves have broader back azimuths than those of the Rayleigh waves, which may due to the energy transfer between Rayleigh and Love waves in the thick sediment layers.

  6. Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes

    PubMed Central

    2016-01-01

    Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events recorded, yet critically important field data related to the landslide motion and tsunami evolution remain lacking. Landslide-generated tsunami source and propagation scenarios are physically modelled in a three-dimensional tsunami wave basin. A unique pneumatic landslide tsunami generator was deployed to simulate landslides with varying geometry and kinematics. The landslides were generated on a planar hill slope and divergent convex conical hill slope to study lateral hill slope effects on the wave characteristics. The leading wave crest amplitude generated on a planar hill slope is larger on average than the leading wave crest generated on a convex conical hill slope, whereas the leading wave trough and second wave crest amplitudes are smaller. Between 1% and 24% of the landslide kinetic energy is transferred into the wave train. Cobble landslides transfer on average 43% more kinetic energy into the wave train than corresponding gravel landslides. Predictive equations for the offshore propagating wave amplitudes, periods, celerities and lengths generated by landslides on planar and divergent convex conical hill slopes are derived, which allow an initial rapid tsunami hazard assessment. PMID:27274697

  7. Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes.

    PubMed

    McFall, Brian C; Fritz, Hermann M

    2016-04-01

    Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events recorded, yet critically important field data related to the landslide motion and tsunami evolution remain lacking. Landslide-generated tsunami source and propagation scenarios are physically modelled in a three-dimensional tsunami wave basin. A unique pneumatic landslide tsunami generator was deployed to simulate landslides with varying geometry and kinematics. The landslides were generated on a planar hill slope and divergent convex conical hill slope to study lateral hill slope effects on the wave characteristics. The leading wave crest amplitude generated on a planar hill slope is larger on average than the leading wave crest generated on a convex conical hill slope, whereas the leading wave trough and second wave crest amplitudes are smaller. Between 1% and 24% of the landslide kinetic energy is transferred into the wave train. Cobble landslides transfer on average 43% more kinetic energy into the wave train than corresponding gravel landslides. Predictive equations for the offshore propagating wave amplitudes, periods, celerities and lengths generated by landslides on planar and divergent convex conical hill slopes are derived, which allow an initial rapid tsunami hazard assessment.

  8. Rogue run-up events at the North Sea coast

    NASA Astrophysics Data System (ADS)

    Didenkulova, Ira; Blossier, Brice; Daly, Christopher; Herbst, Gabriel; Senichev, Dmitry; Winter, Christian

    2015-04-01

    On the 1st of January, 1995, the Statoil-operated "Draupner" platform located in the North Sea recorded the so-called "New Year wave". Since then, rogue waves have been the topic of active scientific discussions and investigations. Waves of extreme height appearing randomly at the sea surface have been measured in both deep and shallow waters and have been involved in a number of ship accidents. Nowadays rogue waves are frequently recorded all over the world with several different instruments (range finders installed on offshore platforms, deployed buoys, radars including SAR, etc.). Rogue wave also occur at the coast, where they appear as either sudden flooding of coastal areas or high splashes over steep banks or sea walls. These waves are especially dangerous for beach users and lead regularly to human injuries and fatalities. Despite numerous reports of human accidents, coastal rogue waves have not yet been recorded experimentally. In this paper we discuss the recording of rogue wave events at German North Sea coasts by using high-resolution beach cameras. The recorded rogue waves are observed during different tide levels and different weather conditions. Possible mechanisms of their generation are discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterndorff, M.J.; O`Brien, P.

    ROLF (Retrievable Offshore Loading Facility) has been proposed as an alternative offshore oil export tanker loading system for the North Sea. The system consists of a flexible riser ascending from the seabed in a lazy wave configuration to the bow of a dynamically positioned tanker. In order to supplant and support the numerical analyses performed to design the system, an extensive model test program was carried out in a 3D offshore basin at scale 1:50. A model riser with properties equivalent to the properties of the oil filled prototype riser installed in seawater was tested in several combinations of wavesmore » and current. During the tests the forces at the bow of the tanker and at the pipeline end manifold were measured together with the motions of the tanker and the riser. The riser motions were measured by means of a video based 3D motion monitoring system. Of special importance was accurate determination of the minimum bending radius for the riser. This was derived based on the measured riser motions. The results of the model tests were compared to numerical analyses by an MCS proprietary riser analysis program.« less

  10. The Great Chilean Tsunamis of 2010, 2014 and 2015 on the Coast and Offshore of Mexico: Comparative Features Based on Open-Ocean Energy Parameterization

    NASA Astrophysics Data System (ADS)

    Rabinovich, A.; Zaytsev, O.; Thomson, R.

    2016-12-01

    The three recent great earthquakes offshore of Chile on 27 February 2010 (Maule, Mw 8.8), 1 April 2014 (Iquique, Mw 8.2) and 16 September 2015 (Illapel, Mw 8.3) generated major trans-oceanic tsunamis that spread throughout the entire Pacific Ocean and were measured by numerous coastal tide gauges and open-ocean DART stations. Statistical and spectral analyses of the tsunami waves from the three events recorded on the Pacific coast of Mexico enabled us to compare the events and to identify coastal "hot spots", regions with maximum tsunami risk. Based on joint spectral analyses of tsunamis and background noise, we have developed a method for reconstructing the "true" tsunami spectra in the deep ocean. The "reconstructed" open-ocean tsunami spectra are in excellent agreement with the actual tsunami spectra evaluated from direct analysis of the DART records offshore of Mexico. We have further used the spectral estimates to parameterize the energy of the three Chilean tsunamis based on the total open-ocean tsunami energy and frequency content of the individual events.

  11. CMS-Wave Model: Part 3: Grid Nesting and Application Example for Rhode Island South Shore Regional Sediment Management Study

    DTIC Science & Technology

    2010-07-01

    CDIP 154 (NDBC 44097) in 48-m water depth. Figure 5 shows the extent of the regional bathymetry grid and five nested child grids covering the...directional spectra from the nearest offshore buoy ( CDIP 154). The water level along the ocean boundary is from the Le Provost database. In the

  12. The Effects of Random and Nonlinear Waves on Coastal and Offshore Structures

    DTIC Science & Technology

    1987-07-01

    Barik and Paramasivam [2]. Dao and Penzien [3]. Leonard, et al. (4). and Tuali and Hudspeth [8). For a real sea state, the super- position of linear...34 Ocean Engng., Vol. 10, No. 5, 1983, p 303 312. [2] Barik , K. C. and V. Paramasivam, "Response Analysis of Offehore Struc- tures," J. Waterways Port

  13. How a good understanding of the physical oceanography of your offshore renewables site can drive down project costs.

    NASA Astrophysics Data System (ADS)

    Royle, J.

    2016-02-01

    For an offshore renewables plant to be viable it must be safe and cost effective to build and maintain (i.e. the conditions mustn't be too harsh to excessively impede operations at the site), it must also have an energetic enough resource to make the project attractive to investors. In order to strike the correct balance between cost and resource reliable datasets describing the meteorological and oceanographic (metocean) environment needs to be collected, analysed and its findings correctly applied . This presentation will use three real world examples from Iberdrola`s portfolio of offshore windfarms in Europe to demonstrate the economic benefits of good quality metocean data and robust analysis. The three examples are: 1) Moving from traditional frequency domain persistence statistics to time domain installation schedules driven by reliable metocean data reduces uncertainty and allows the developer to have better handle on weather risk during contract negotiations. 2) By comparing the planned installation schedules from a well validated metocean dataset with a coarser low cost unvalidated metocean dataset we can show that each Euro invested in the quality of metocean data can reduce the uncertainty in installation schedules by four Euros. 3) Careful consideration of co-varying wave and tidal parameters can justify lower cost designs, such as lower platform levels leading to shorter and cheaper offshore wind turbine foundations. By considering the above examples we will prove the case for investing in analysis of well validated metocean models as a basis for sound financial planning of offshore renewables installations.

  14. Refine of Regional Ocean Tide Model Using GPS Data

    NASA Astrophysics Data System (ADS)

    Wang, F.; Zhang, P.; Sun, Z.; Jiang, Z.; Zhang, Q.

    2018-04-01

    Due to lack of regional data constraints, all global ocean tide models are not accuracy enough in offshore areas around China, also the displacements predicted by different models are not consistency. The ocean tide loading effects have become a major source of error in the high precision GPS positioning. It is important for high precision GPS applications to build an appropriate regional ocean tide model. We first process the four offshore GPS tracking station's observation data which located in Guangdong province of China by using PPP aproach to get the time series. Then use the spectral inversion method to acquire eigenvalues of the Ocean Tidal Loading. We get the estimated value of not only 12hour period tide wave (M2, S2, N2, K2) but also 24hour period tide wave (O1, K1, P1, Q1) which has not been got in presious studies. The contrast test shows that GPS estimation value of M2, K1 is consistent with the result of five famous glocal ocean load tide models, but S2, N2, K2, O1, P1, Q1 is obviously larger.

  15. The tsunami phenomenon

    NASA Astrophysics Data System (ADS)

    Röbke, B. R.; Vött, A.

    2017-12-01

    With human activity increasingly concentrating on coasts, tsunamis (from Japanese tsu = harbour, nami = wave) are a major natural hazard to today's society. Stimulated by disastrous tsunami impacts in recent years, for instance in south-east Asia (2004) or in Japan (2011), tsunami science has significantly flourished, which has brought great advances in hazard assessment and mitigation plans. Based on tsunami research of the last decades, this paper provides a thorough treatise on the tsunami phenomenon from a geoscientific point of view. Starting with the wave features, tsunamis are introduced as long shallow water waves or wave trains crossing entire oceans without major energy loss. At the coast, tsunamis typically show wave shoaling, funnelling and resonance effects as well as a significant run-up and backflow. Tsunami waves are caused by a sudden displacement of the water column due to a number of various trigger mechanisms. Such are earthquakes as the main trigger, submarine and subaerial mass wastings, volcanic activity, atmospheric disturbances (meteotsunamis) and cosmic impacts, as is demonstrated by giving corresponding examples from the past. Tsunamis are known to have a significant sedimentary and geomorphological off- and onshore response. So-called tsunamites form allochthonous high-energy deposits that are left at the coast during tsunami landfall. Tsunami deposits show typical sedimentary features, as basal erosional unconformities, fining-upward and -landward, a high content of marine fossils, rip-up clasts from underlying units and mud caps, all reflecting the hydrodynamic processes during inundation. The on- and offshore behaviour of tsunamis and related sedimentary processes can be simulated using hydro- and morphodynamic numerical models. The paper provides an overview of the basic tsunami modelling techniques, including discretisation, guidelines for appropriate temporal and spatial resolution as well as the nesting method. Furthermore, the Boussinesq approximation-a simplification of the three-dimensional Navier-Stokes equations-is presented as a basic theory behind numerical tsunami models, which adequately reflects the non-linear, dispersive wave behaviour of tsunamis. The fully non-linear Boussinesq equations allow the simulation of tsunamis e.g. in the form of N-waves. Based on the various subtopics presented, recommendations for future multidisciplinary tsunami research are made. It is especially discussed how the combination of sedimentary and geomorphological tsunami field traces and numerical modelling techniques can contribute to derive locally relevant tsunami sources and to improve the assessment of tsunami hazards considering the individual pre-/history and physiogeographical setting of a specific region.

  16. An-integrated seismic approach to de-risk hydrocarbon accumulation for Pliocene deep marine slope channels, offshore West Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Othman, Adel A. A.; Bakr, Ali; Maher, Ali

    2017-12-01

    The Nile Delta basin is a hydrocarbon rich province that has hydrocarbon accumulations generated from biogenic and thermogenic source rocks and trapped in a clastic channel reservoirs ranging in age from Pliocene to Early Cretaceous. Currently, the offshore Nile Delta is the most active exploration and development province in Egypt. The main challenge of the studied area is that we have only one well in a channel system exceeds fifteen km length, where seismic reservoir characterization is used to de-risk development scenarios for the field by discriminating between gas sand, water sand and shale. Extracting the gas-charged geobody from the seismic data is magnificent input for 3D reservoir static modelling. Seismic data, being non-stationary in nature, have varying frequency content in time. Spectral decomposition analysis unravels the seismic signal into its initial constituent frequencies. Frequency decomposition of a seismic signal aims to characterize the time-dependent frequency response of subsurface rocks and reservoirs for imaging and mapping of bed thickness, geologic discontinuities and channel connectivity. Inversion feasibility study using crossplot between P-wave impedance (Ip) and S-wave impedance (Is) which derived from well logs (P-wave velocity, S-wave velocity and density) is applied to investigate which inversion type would be sufficient enough to discriminate between gas sand, water sand and shale. Integration between spectral analysis, inversion results and Ip vs. Is crossplot cutoffs help to generate 3D lithofacies cubes, which used to extract gas sand and water sand geobodies, which is extremely wonderful for constructing facies depositional static model in area with unknown facies distribution and sand connectivity. Therefore de-risking hydrocarbon accumulation and GIIP estimation for the field became more confident for drilling new development wells.

  17. Analysis of unsteady flow over Offshore Wind Turbine in combination with different types of foundations

    NASA Astrophysics Data System (ADS)

    Alesbe, Israa; Abdel-Maksoud, Moustafa; Aljabair, Sattar

    2017-06-01

    Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)— panMARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.

  18. Comparison of Oceanic and Continental Lithosphere, Asthenosphere, and the LAB Through Shear Velocity Inversion of Rayleigh Wave Data from the ALBACORE Amphibious Array in Southern California

    NASA Astrophysics Data System (ADS)

    Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.

  19. 2014 status of the Lake Ontario lower trophic levels

    USGS Publications Warehouse

    Holeck, Kristen T.; Rudstam, Lars G.; Hotaling, Christopher; McCullough, Russ D.; Lemon, Dave; Pearsall, Web; Lantry, Jana; Connerton, Michael J.; LaPan, Steve; Biesinger, Zy; Lantry, Brian F.; Walsh, Maureen; Weidel, Brian C.

    2015-01-01

    Soluble reactive phosphorus (SRP) concentrations have been stable in nearshore and offshore habitats since 1998 (0.4 – 3.3 μg/L). SRP concentrations were low in 2014; Apr/May – Oct mean values were <1 μg/L at most sites. Spring TP concentrations at individual sites exceeded 10 μg/L on occasion, but spring means were below the 10 μg/L target set by the Great Lakes Water Quality Agreement of 1978 for offshore waters of Lake Ontario. TP concentrations were low at both nearshore and offshore locations; Apr/May – Oct mean values from individual sites ranged from 4.6 – 9.1 μg/L. Spring TP has declined significantly in the longer data series (since 1981), but not since 1995 indicating stable nutrient loading into Lake Ontario for nearly two decades. It averaged 7.8 μg/L in the nearshore and 5.6 μg/L in the offshore in 2014.Chlorophyll-a and secchi depth values are indicative of oligotrophic conditions in nearshore and offshore habitats. Offshore summer chlorophyll-a declined significantly in both the short- (2000-2014) and long-term (1981-2014) time series at a rate of 4-6% per year. Nearshore chlorophyll-a increased after 2003 but then declined again after 2009. Epilimnetic chlorophyll-a averaged between 0.6 and 1.6 μg/L across sites with no difference between nearshore and offshore habitats. Apr/May – Oct Secchi depth ranged from 4.0 m to 10.8 m at individual sites and was higher in the offshore (average 9.1 m) than nearshore (5.9 m).In 2014, Apr/May – Oct epilimnetic zooplankton density, size, and biomass were not different between the offshore and the nearshore, and there were no differences in epilimnetic biomass between offshore and nearshore areas for any of the zooplankton groups.Zooplankton density and biomass peaked in September, an atypical pattern. This coincided with peaks in calanoid copepod, daphnid, and Holopedium biomass. Holopedium biomass in the nearshore increased significantly since 1995.The predatory cladoceran Cercopagis continued to be abundant in the summer, peaking at ~10 mg/m3in the offshore. Bythotrephes biomass was at its lowest level since 2005 in both offshore and nearshore habitats.Summer nearshore zooplankton density and biomass have declined significantly since 1995 at rates of 9-10% per year but have remained stable since 2005. However, bosminids and daphnids increased in 2013 and 2014.Summer offshore zooplankton density and biomass declined significantly in the long-term (since 1981), but remained at a lower stable level 2000 – 2014. A positive change point in 2013 is due to increases in bosminids, cyclopoid copepods, and daphnids.The observed decline in zooplankton biomass may be due in part to redistribution of zooplankton throughout the water column. Most of the zooplankton biomass was in the metalimnion and hypolimnion during the stratified period in 2014. By October, the bulk of the biomass was in the epilimnion.

  20. Numerical simulation of the solitary wave interacting with an elastic structure using MPS-FEM coupled method

    NASA Astrophysics Data System (ADS)

    Rao, Chengping; Zhang, Youlin; Wan, Decheng

    2017-12-01

    Fluid-Structure Interaction (FSI) caused by fluid impacting onto a flexible structure commonly occurs in naval architecture and ocean engineering. Research on the problem of wave-structure interaction is important to ensure the safety of offshore structures. This paper presents the Moving Particle Semi-implicit and Finite Element Coupled Method (MPS-FEM) to simulate FSI problems. The Moving Particle Semi-implicit (MPS) method is used to calculate the fluid domain, while the Finite Element Method (FEM) is used to address the structure domain. The scheme for the coupling of MPS and FEM is introduced first. Then, numerical validation and convergent study are performed to verify the accuracy of the solver for solitary wave generation and FSI problems. The interaction between the solitary wave and an elastic structure is investigated by using the MPS-FEM coupled method.

  1. Frictional wave dissipation on a remarkably rough reef

    NASA Astrophysics Data System (ADS)

    Monismith, Stephen G.; Rogers, Justin S.; Koweek, David; Dunbar, Robert B.

    2015-05-01

    We present a week of observations of wave dissipation on the south forereef of Palmyra Atoll. Using wave measurements made in 6.2 m and 11.2 m of water offshore of the surf zone, we computed energy fluxes and near-bottom velocity. Equating the divergence of the shoreward energy flux to its dissipation by bottom friction and parameterizating dissipation in terms of the root-mean-square velocity cubed, we find that the wave friction factor, fw, for this reef is 1.80 ± 0.07, nearly an order of magnitude larger than values previously found for reefs. We attribute this remarkably high value of fw to the complex canopy structure of the reef, which we believe may be characteristic of healthy reefs. This suggests that healthy reefs with high coral cover may provide greater coastal protection than do degraded reefs with low coral cover.

  2. Offshore safety case approach and formal safety assessment of ships.

    PubMed

    Wang, J

    2002-01-01

    Tragic marine and offshore accidents have caused serious consequences including loss of lives, loss of property, and damage of the environment. A proactive, risk-based "goal setting" regime is introduced to the marine and offshore industries to increase the level of safety. To maximize marine and offshore safety, risks need to be modeled and safety-based decisions need to be made in a logical and confident way. Risk modeling and decision-making tools need to be developed and applied in a practical environment. This paper describes both the offshore safety case approach and formal safety assessment of ships in detail with particular reference to the design aspects. The current practices and the latest development in safety assessment in both the marine and offshore industries are described. The relationship between the offshore safety case approach and formal ship safety assessment is described and discussed. Three examples are used to demonstrate both the offshore safety case approach and formal ship safety assessment. The study of risk criteria in marine and offshore safety assessment is carried out. The recommendations on further work required are given. This paper gives safety engineers in the marine and offshore industries an overview of the offshore safety case approach and formal ship safety assessment. The significance of moving toward a risk-based "goal setting" regime is given.

  3. Determination of current loads of floating platform for special purposes

    NASA Astrophysics Data System (ADS)

    Ma, Guang-ying; Yao, Yun-long; Zhao, Chen-yao

    2017-08-01

    This article studied a new floating offshore platform for special purposes, which was assembled by standard floating modules. The environmental load calculation of the platform is an important part of the research of the ocean platform, which has always been paid attention to by engineers. In addition to wave loads, the wind loads and current loads are also important environmental factors that affect the dynamic response of the offshore platform. The current loads on the bottom structure should not be ignored. By Fluent software, the hydrostatic conditions and external current loads of the platform were calculated in this paper. The coefficient which is independent of the current velocity, namely, current force coefficient, can be fitted through current loads, which can be used for the consequent hydrodynamic and mooring analyses.

  4. Offshore Wind Initiatives at the U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Coastal and Great Lakes states account for nearly 80% of U.S. electricity demand, and the winds off the shores of these coastal load centers have a technical resource potential twice as large as the nation’s current electricity use. With the costs of offshore wind energy falling globally and the first U.S. offshore wind farm installed off the coast of Block Island, Rhode Island in 2016, offshore wind has the potential to contribute significantly to a clean, affordable, and secure national energy mix. To support the development of a world-class offshore wind industry, the U.S. Department of Energy has been supportingmore » a broad portfolio of offshore wind research, development, and demonstration projects since 2011 and released a new National Offshore Wind Strategy jointly with the U.S. Department of the Interior in 2016.« less

  5. Work and health: A comparison between Norwegian onshore and offshore employees.

    PubMed

    Bjerkan, Anne Mette

    2011-01-01

    The effect of work-related variables on self reported health complaints were examined among Norwegian onshore and offshore oil workers. Differences in work and health perceptions were also examined as part of the paper. Employees working onshore and offshore in the maintenance and modification division of a large contractor company took part in the study (N=414, response rate 47.1%). The design of the study was a cross-sectional survey. A questionnaire was distributed to onshore personnel while at work - in cooperation with the personnel safety representative - and sent to the home addresses of the offshore personnel. Offshore workers perceived significantly more hazards associated with the work and experienced less control over the work pace compared to onshore workers. Onshore workers experienced significantly more pressure at work and their work tasks as more repetitive. Differences in health perceptions were identified in terms of job type in the onshore and offshore groups respectively. Different work-related factors influenced the self-reported health complaints among onshore and offshore workers. Workers in different work environments and in different job types encounter different type of threats to employee health, indicating that job type must be taken into account when studying the relationship between work-related factors and employee health.

  6. Records of continental slope sediment flow morphodynamic responses to gradient and active faulting from integrated AUV and ROV data, offshore Palos Verdes, southern California Borderland

    USGS Publications Warehouse

    Maier, Katherine L.; Brothers, Daniel; Paull, Charles K.; McGann, Mary; Caress, David W.; Conrad, James E.

    2016-01-01

    Variations in seabed gradient are widely acknowledged to influence deep-water deposition, but are often difficult to measure in sufficient detail from both modern and ancient examples. On the continental slope offshore Los Angeles, California, autonomous underwater vehicle, remotely operated vehicle, and shipboard methods were used to collect a dense grid of high-resolution multibeam bathymetry, chirp sub-bottom profiles, and targeted sediment core samples that demonstrate the influence of seafloor gradient on sediment accumulation, depositional environment, grain size of deposits, and seafloor morphology. In this setting, restraining and releasing bends along the active right-lateral Palos Verdes Fault create and maintain variations in seafloor gradient. Holocene down-slope flows appear to have been generated by slope failure, primarily on the uppermost slope (~ 100–200 m water depth). Turbidity currents created a low relief (< 10 m) channel, up-slope migrating sediment waves (λ = ~ 100 m, h ≤ 2 m), and a series of depocenters that have accumulated up to 4 m of Holocene sediment. Sediment waves increase in wavelength and decrease in wave height with decreasing gradient. Integrated analysis of high-resolution datasets provides quantification of morphodynamic sensitivity to seafloor gradients acting throughout deep-water depositional systems. These results help to bridge gaps in scale between existing deep-sea and experimental datasets and may provide constraints for future numerical modeling studies.

  7. A Delay Vector Variance based Marker for an Output-Only Assessment of Structural Changes in Tension Leg Platforms

    NASA Astrophysics Data System (ADS)

    Jaksic, V.; Wright, C.; Mandic, D. P.; Murphy, J.; Pakrashi, V.

    2015-07-01

    Although aspects of power generation of many offshore renewable devices are well understood, their dynamic responses under high wind and wave conditions are still to be investigated to a great detail. Output only statistical markers are important for these offshore devices, since access to the device is limited and information about the exposure conditions and the true behaviour of the devices are generally partial, limited, and vague or even absent. The markers can summarise and characterise the behaviour of these devices from their dynamic response available as time series data. The behaviour may be linear or nonlinear and consequently a marker that can track the changes in structural situations can be quite important. These markers can then be helpful in assessing the current condition of the structure and can indicate possible intervention, monitoring or assessment. This paper considers a Delay Vector Variance based marker for changes in a tension leg platform tested in an ocean wave basin for structural changes brought about by single column dampers. The approach is based on dynamic outputs of the device alone and is based on the estimation of the nonlinearity of the output signal. The advantages of the selected marker and its response with changing structural properties are discussed. The marker is observed to be important for monitoring the as- deployed structural condition and is sensitive to changes in such conditions. Influence of exposure conditions of wave loading is also discussed in this study based only on experimental data.

  8. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests

    NASA Astrophysics Data System (ADS)

    Stewart, Gordon; Muskulus, Michael

    2016-09-01

    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  9. A Survey of WEC Reliability, Survival and Design Practices

    DOE PAGES

    Coe, Ryan G.; Yu, Yi-Hsiang; van Rij, Jennifer

    2017-12-21

    A wave energy converter must be designed to survive and function efficiently, often in highly energetic ocean environments. This represents a challenging engineering problem, comprising systematic failure mode analysis, environmental characterization, modeling, experimental testing, fatigue and extreme response analysis. While, when compared with other ocean systems such as ships and offshore platforms, there is relatively little experience in wave energy converter design, a great deal of recent work has been done within these various areas. Here, this article summarizes the general stages and workflow for wave energy converter design, relying on supporting articles to provide insight. By surveying published workmore » on wave energy converter survival and design response analyses, this paper seeks to provide the reader with an understanding of the different components of this process and the range of methodologies that can be brought to bear. In this way, the reader is provided with a large set of tools to perform design response analyses on wave energy converters.« less

  10. A Survey of WEC Reliability, Survival and Design Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Ryan G.; Yu, Yi-Hsiang; van Rij, Jennifer

    A wave energy converter must be designed to survive and function efficiently, often in highly energetic ocean environments. This represents a challenging engineering problem, comprising systematic failure mode analysis, environmental characterization, modeling, experimental testing, fatigue and extreme response analysis. While, when compared with other ocean systems such as ships and offshore platforms, there is relatively little experience in wave energy converter design, a great deal of recent work has been done within these various areas. Here, this article summarizes the general stages and workflow for wave energy converter design, relying on supporting articles to provide insight. By surveying published workmore » on wave energy converter survival and design response analyses, this paper seeks to provide the reader with an understanding of the different components of this process and the range of methodologies that can be brought to bear. In this way, the reader is provided with a large set of tools to perform design response analyses on wave energy converters.« less

  11. Time evolution of surface chlorophyll patterns from cross-spectrum analysis of satellite color images

    NASA Technical Reports Server (NTRS)

    Denman, Kenneth L.; Abbott, Mark R.

    1988-01-01

    The rate of decorrelation of surface chlorophyll patterns as a function of the time separation between pairs of images was determined from two sequences of CZCS images of the Pacific Ocean area adjacent to Vancouver Island, Canada; cloud-free subareas were selected that were common to several images separated in time by 1-17 days. Image pairs were subjected to two-dimensional autospectrum and cross-spectrum analysis in an array processor, and squared coherence estimates found for several wave bands were plotted against time separation, in analogy with a time-lagged cross correlation function. It was found that, for wavelengths of 50-150 km, significant coherence was lost after 7-10 days, while for wavelengths of 25-50 km, significant coherence was lost after only 5-7 days. In both cases, offshore regions maintained coherence longer than coastal regions.

  12. Coastal nutrification and coral health at Porto Seguro reefs, Brazil

    NASA Astrophysics Data System (ADS)

    Costa, O.; Attrill, M.; Nimmo, M.

    2003-04-01

    Human activities have substantially increased the natural flux of nutrients to coastal systems worldwide. In Brazilian reefs, all major stresses (sedimentation, overfishing, tourism-related activities and nutrification) are human induced. To assess nutrification levels in Brazilian coastal reefs, measurements of the distribution patterns of nutrients and chlorophyll concentrations were conducted in three nearshore and offshore reefs with distinct nutrient inputs along the south coast of Bahia State. Seawater and porewater samples were analysed for soluble reactive phosphorus, total oxidised nitrogen and reactive silica. Benthic surveys were performed at all sites to investigate the relationships between benthic community composition and nutrient and chlorophyll concentrations. Sampling was undertaken in dry and rainy seasons. Results of both seawater and porewater nutrient measurements revealed the occurrence of consistent spatial and temporal patterns. An inshore-offshore gradient reflects the occurrence of land-based point sources, with significant amount of nutrients being delivered by human activities on the coast (untreated sewage and groundwater seepage). Another spatial gradient is related to distance from a localized source of pollution (an urban settlement without sewerage treatment) with two nearshore reefs presenting distinct nutrient and chlorophyll concentrations. Seasonal variations suggest that submarine groundwater discharge (SGD) is the primary source of nutrients for the coastal reefs during rainy season. The data also suggests that the SGD effect is not restricted to nearshore reefs, and may be an important factor controlling the differences between landward and seaward sides on the offshore reef. Benthic community assessment revealed that turf alga is the dominant group in all studied reefs and that zoanthids are the organisms most adapted to take advantage of nutrient increase in coastal areas. At nearshore reefs, there was a negative correlation between zoanthids and algal abundance and a positive correlation with the amount of available space for settlement. On the offshore reef, correlation of algal cover with both zoanthids and available space were negative, suggesting that hard substrate may be the primary limiting factor for algal settlement and growth in the nearshore reefs. Highly variable physical disturbances (like wave energy and low tide exposure) between landward and seaward reef sides appear to be the factors controlling algal distribution in the offshore reef. Highly spatial variability in coral cover ultimately reflects the patchy distribution of stony corals over the reefs.

  13. Storm-driven sediment transport in Massachusetts Bay

    USGS Publications Warehouse

    Warner, J.C.; Butman, B.; Dalyander, P.S.

    2008-01-01

    Massachusetts Bay is a semi-enclosed embayment in the western Gulf of Maine about 50 km wide and 100 km long. Bottom sediment resuspension is controlled predominately by storm-induced surface waves and transport by the tidal- and wind-driven circulation. Because the Bay is open to the northeast, winds from the northeast ('Northeasters') generate the largest surface waves and are thus the most effective in resuspending sediments. The three-dimensional oceanographic circulation model Regional Ocean Modeling System (ROMS) is used to explore the resuspension, transport, and deposition of sediment caused by Northeasters. The model transports multiple sediment classes and tracks the evolution of a multilevel sediment bed. The surficial sediment characteristics of the bed are coupled to one of several bottom-boundary layer modules that calculate enhanced bottom roughness due to wave-current interaction. The wave field is calculated from the model Simulating WAves Nearshore (SWAN). Two idealized simulations were carried out to explore the effects of Northeasters on the transport and fate of sediments. In one simulation, an initially spatially uniform bed of mixed sediments exposed to a series of Northeasters evolved to a pattern similar to the existing surficial sediment distribution. A second set of simulations explored sediment-transport pathways caused by storms with winds from the northeast quadrant by simulating release of sediment at selected locations. Storms with winds from the north cause transport southward along the western shore of Massachusetts Bay, while storms with winds from the east and southeast drive northerly nearshore flow. The simulations show that Northeasters can effectively transport sediments from Boston Harbor and the area offshore of the harbor to the southeast into Cape Cod Bay and offshore into Stellwagen Basin. This transport pattern is consistent with Boston Harbor as the source of silver found in the surficial sediments of Cape Cod Bay and Stellwagen Basin.

  14. Occurrence of 1 ka-old corals on an uplifted reef terrace in west Luzon, Philippines: Implications for a prehistoric extreme wave event in the South China Sea region

    NASA Astrophysics Data System (ADS)

    Ramos, Noelynna T.; Maxwell, Kathrine V.; Tsutsumi, Hiroyuki; Chou, Yu-Chen; Duan, Fucai; Shen, Chuan-Chou; Satake, Kenji

    2017-12-01

    Recent 230Th dating of fossil corals in west Luzon has provided new insights on the emergence of late Quaternary marine terraces that fringe west Luzon Island facing the Manila Trench. Apart from regional sea level changes, accumulated uplift from aseismic and seismic processes may have influenced the emergence of sea level indicators such as coral terraces and notches. Varied elevations of middle-to-late Holocene coral terraces along the west Luzon coasts reveal the differential uplift that is probably associated with the movement of local onland faults or upper-plate structures across the Manila Trench forearc basin. In Badoc Island, offshore west of Luzon mainland, we found notably young fossil corals, dated at 945.1 ± 4.6 years BP and 903.1 ± 3.9 years BP, on top of a 5-m-high reef platform. To constrain the mechanism of emergence or emplacement of these fossil corals, we use field geomorphic data and wave inundation models to constrain an extreme wave event that affected west Luzon about 1000 years ago. Our preliminary tectonic and tsunami models show that a megathrust rupture will likely lead to subsidence of a large part of the west Luzon coast, while permanent coastal uplift is attributed to an offshore upper-plate rupture in the northern Manila Trench forearc region. The modeled source fault ruptures and tsunami lead to a maximum wave height of more than 3 m and inundation distance as far as 2 km along the coasts of western and northern Luzon. While emplacement of coral boulders by an unusually strong typhoon is also likely, modeled storm surge heights along west Luzon do not exceed 2 m even with Typhoon Haiyan characteristics. Whether tsunami or unusually strong typhoon, the occurrence of a prehistoric extreme wave event in west Luzon remains an important issue in future studies of coastal hazards in the South China Sea region.

  15. Velocity models and images using full waveform inversion and reverse time migration for the offshore permafrost in the Canadian shelf of Beaufort Sea, Arctic

    NASA Astrophysics Data System (ADS)

    Kang, S. G.; Hong, J. K.; Jin, Y. K.; Kim, S.; Kim, Y. G.; Dallimore, S.; Riedel, M.; Shin, C.

    2015-12-01

    During Expedition ARA05C (from Aug 26 to Sep 19, 2014) on the Korean icebreaker RV ARAON, the multi-channel seismic (MCS) data were acquired on the outer shelf and slope of the Canadian Beaufort Sea to investigate distribution and internal geological structures of the offshore ice-bonded permafrost and gas hydrates, totaling 998 km L-km with 19,962 shots. The MCS data were recorded using a 1500 m long solid-type streamer with 120 channels. Shot and group spacing were 50 m and 12.5 m, respectively. Most MCS survey lines were designed perpendicular and parallel to the strike of the shelf break. Ice-bonded permafrost or ice-bearing sediments are widely distributed under the Beaufort Sea shelf, which have formed during periods of lower sea level when portions of the shelf less than ~100m water depth were an emergent coastal plain exposed to very cold surface. The seismic P-wave velocity is an important geophysical parameter for identifying the distribution of ice-bonded permafrost with high velocity in this area. Recently, full waveform inversion (FWI) and reverse time migration (RTM) are commonly used to delineate detailed seismic velocity information and seismic image of geological structures. FWI is a data fitting procedure based on wave field modeling and numerical analysis to extract quantitative geophysical parameters such as P-, S-wave velocities and density from seismic data. RTM based on 2-way wave equation is a useful technique to construct accurate seismic image with amplitude preserving of field data. In this study, we suggest two-dimensional P-wave velocity model (Figure.1) using the FWI algorithm to delineate the top and bottom boundaries of ice-bonded permafrost in the Canadian shelf of Beaufort Sea. In addition, we construct amplitude preserving migrated seismic image using RTM to interpret the geological history involved with the evolution of permafrost.

  16. Change in morphology and modern sediment thickness on the inner continental shelf offshore of Fire Island, New York between 2011 and 2014: Analysis of hurricane impact

    USGS Publications Warehouse

    Schwab, William C.; Baldwin, Wayne E.; Warner, John C.; List, Jeffrey; Denny, Jane F.; Liste Munoz, Maria; Safak, Ilgar

    2017-01-01

    Seafloor mapping investigations conducted on the lower shoreface and inner continental shelf offshore of Fire Island, New York in 2011 and 2014, the period encompassing the impacts of Hurricanes Irene and Sandy, provide an unprecedented perspective regarding regional inner continental shelf sediment dynamics during large storm events. Analyses of these studies demonstrate that storm-induced erosion and sediment transport occurred throughout the study area in water depths up to 30 m. Acoustic backscatter patterns were observed to move from ~1 m to 450 m with a mean of 20 m and movement tended to decrease with increasing water depth. These patterns indicate that both of the primary inner continental shelf sedimentary features in the study area, linear sorted bedforms offshore of eastern Fire Island and shoreface-attached sand ridges offshore of central and western Fire island, migrated alongshore to the southwest. The migration of the sorted bedforms represents the modification of an active ravinement surface and is thought to have liberated a significant volume of sediment. Comparison of isopach maps of sediment thickness show that the volume of modern sediment composing the lower shoreface and shoreface-attached sand ridges decreased by ~2.8 × 106 m3 across the ~73 km2 of common seafloor mapped in both surveys. However, a similar analysis for the relatively calmer 15-yr period prior to 2011 revealed significant accretion. This allows speculation that the shoreface-attached sand ridges are maintained over decadal timescales via sediment supplied through erosion of Pleistocene outwash and lower Holocene transgressive channel-fill deposits exposed on the inner continental shelf, but that the sand ridges also periodically erode and move to the southwest during large storm events. Analyses show that significant storminduced erosion and sediment transport occurs far seaward of the 5 to 9 m depth of closure assumed for Fire Island, where it is thought that an onshore-directed sediment flux from the inner continental shelf to the littoral system is required to balance the coastal sediment budget. It is also thought that the morphology of the shoreface-attached sand ridges controls the persistent shape of the adjacent shoreline through modification of incident waves. Thus, we suggest that the sediment dynamics of the inner continental shelf and both storminduced and anthropogenic modification of the field of shoreface-attached sand ridges be considered in future coastal resiliency planning.

  17. Rapid inundation estimates at harbor scale using tsunami wave heights offshore simulation and Green's law approach

    NASA Astrophysics Data System (ADS)

    Gailler, Audrey; Hébert, Hélène; Loevenbruck, Anne

    2013-04-01

    Improvements in the availability of sea-level observations and advances in numerical modeling techniques are increasing the potential for tsunami warnings to be based on numerical model forecasts. Numerical tsunami propagation and inundation models are well developed and have now reached an impressive level of accuracy, especially in locations such as harbors where the tsunami waves are mostly amplified. In the framework of tsunami warning under real-time operational conditions, the main obstacle for the routine use of such numerical simulations remains the slowness of the numerical computation, which is strengthened when detailed grids are required for the precise modeling of the coastline response on the scale of an individual harbor. In fact, when facing the problem of the interaction of the tsunami wavefield with a shoreline, any numerical simulation must be performed over an increasingly fine grid, which in turn mandates a reduced time step, and the use of a fully non-linear code. Such calculations become then prohibitively time-consuming, which is clearly unacceptable in the framework of real-time warning. Thus only tsunami offshore propagation modeling tools using a single sparse bathymetric computation grid are presently included within the French Tsunami Warning Center (CENALT), providing rapid estimation of tsunami wave heights in high seas, and tsunami warning maps at western Mediterranean and NE Atlantic basins scale. We present here a preliminary work that performs quick estimates of the inundation at individual harbors from these deep wave heights simulations. The method involves an empirical correction relation derived from Green's law, expressing conservation of wave energy flux to extend the gridded wave field into the harbor with respect to the nearby deep-water grid node. The main limitation of this method is that its application to a given coastal area would require a large database of previous observations, in order to define the empirical parameters of the correction equation. As no such data (i.e., historical tide gage records of significant tsunamis) are available for the western Mediterranean and NE Atlantic basins, a set of synthetic mareograms is calculated for both fake and well-known historical tsunamigenic earthquakes in the area. This synthetic dataset is obtained through accurate numerical tsunami propagation and inundation modeling by using several nested bathymetric grids characterized by a coarse resolution over deep water regions and an increasingly fine resolution close to the shores (down to a grid cell size of 3m in some Mediterranean harbors). This synthetic dataset is then used to approximate the empirical parameters of the correction equation. Results of inundation estimates in several french Mediterranean harbors obtained with the fast "Green's law - derived" method are presented and compared with values given by time-consuming nested grids simulations.

  18. United States Offshoring of Information Technology: An Empirical Investigation of Factors Inhibiting Sub-Saharan Africa

    ERIC Educational Resources Information Center

    Omoregie, Harry O.

    2012-01-01

    In the last decade, the global information technology offshoring (ITO) and business process outsourcing (BPO) services have grown significantly, especially in Asia. The increased demand for offshore services in Asia has presented a difficult problem for U.S. organizations because countries such as India are now experiencing saturation of labor…

  19. Active-source 3-D tomography near Nias and Batu Islands, offshore central Sumatra

    NASA Astrophysics Data System (ADS)

    Karplus, M.; Henstock, T.; McNeill, L. C.; Vermeesch, P. M.; Hall, T. R.; Harmon, N.; Barton, P. J.

    2013-12-01

    Wide-angle reflection and refraction tomography constrain 3-D lithospheric P-wave velocity structure beneath the central Sumatra subduction zone from Nias Island to Siberut, offshore Indonesia at the southern boundary of the 2005 megathrust earthquake rupture. This area includes the earthquake segment boundary near the Batu Islands where the Investigator Fracture Zone is subducted beneath the Eurasian plate. We report along- and across-strike variations in structure of the downgoing slab and overriding plate. Seismic wide-angle data were collected during cruise SO198-1 in May-June 2008. Air gun shots were recorded by 47 temporary ocean bottom seismometers (OBS) deployed in a roughly 200 km by 190 km area, 10 three-component long-term OBS (with differential pressure gauge), and 52 land stations. First arrival refraction modeling using ray tracing and least squares inversion has yielded a lithospheric P-wave velocity model, best-resolved in the top 25 km. We observe velocities of ~4.5-6 km/s within the accretionary prism, which varies by several km in its depth extent. The forearc basin is underlain by high velocities of ~7-8 km/s as shallow as 8 km depth. This high velocity region is likely older forearc oceanic crust, as seen in Cascadia and near Simeulue, offshore Sumatra. The top of the subducting slab ranges in depth from ~10 km near the trench to ~20 km beneath the prism. The top of the slab dips approximately 4-4.5° towards the NE between the trench and the prism. Earthquake hypocenters show the slab dip steepens significantly NE of the forearc basin. We compare our velocity models with models derived from other regions to the north and south along-strike in the Sumatra Subduction Zone, including the 2004-2005 segment boundary at Simeulue. Multi-channel seismic reflection data show that fault structures and reflectivity change considerably along- and across-strike in the central Sumatra subduction zone. Furthermore, regional earthquake locations indicate rupture segmentation along the plate boundary. The Nias segment in the north ruptured in the 2005 M8.7 earthquake. The weakly-coupled Batu segment experiences sporadic clusters of events near the break in the forearc slope. The offshore forearc west of Siberut is characterized by almost aseismic behavior, reflecting the locked state of the plate interface, which hasn't ruptured since the 1797 M8.6-8.8 earthquake. The subducting Investigator Fracture Zone is believed to act as a barrier for propagation of slip during large ruptures. We compare our velocity model with reflection data and rupture segments to characterize differences in the lower plate, upper plate, and plate boundary properties.

  20. Freak Waves In The Ocean A~é­ We Need Continuous Measurements!

    NASA Astrophysics Data System (ADS)

    Liu, P.; Teng, C.; Mori, N.

    Freak waves, sometimes also known as rogue waves, are a particular kind of ocean waves that displays a singular, unexpected, and unusually high wave profile with an extraordinarily large and steep trough or crest. The existence of freak waves has be- come widely accepted while it always poses severe hazard to the navy fleets, merchant marines, offshore structures, and virtually all oceanic ventures. Multitudes of seagoing vessels and mariners have encountered freak waves over the years, many had resulted in disasters. The emerging interest in freak waves and the quest to grasp an understand- ing of the phenomenon have inspired numerous theoretical conjectures in recent years. But the practical void of actual field observation on freak waves renders even the well- developed theories remain unverified. Furthermore, the present wave measurement systems, which have been in practice for the last 5 decades, are not at all designed to capture freak waves. We wish therefore to propose and petition to all oceanic scientist and engineers to consider undertaking an unprecedented but technologically feasible practice of making continuous and uninterrupted wave measurements. As freak waves can happen anywhere in the ocean and at anytime, the continuous and uninterrupted measurements at a fixed station would certainly be warranted to document the occur- rence of freak waves, if present, and thus lead to basic realizations of the underlying driving mechanisms.

  1. Wave trapping and flow around an irregular near circular island in a stratified sea

    NASA Astrophysics Data System (ADS)

    Dyke, Phil

    2005-12-01

    Wave trapping and induced flow around an island is examined. The exactly circular island solutions are reprised and the solutions extended, and shown to apply to a stratified sea. The homogeneous solutions are then used to deduce the wave trapping and flow around a near circular island. It turns out that the cotidal pattern for a perfectly circular island is relatively immune to variations in geometry and radially dependent depth variations. This helps explain the similarity in the behaviour of the tides around various islands (the Pribilof Islands near Alaska, Oahu in Hawaii, Cook Island off north west Australia, Bermuda off the eastern coast of the USA, and Bear Island in the Norwegian Sea). The dominant steady drift and its rate of decay off-shore is also calculated.

  2. Does littoral sand bypass the head of Mugu Submarine Canyon? - a modeling study

    USGS Publications Warehouse

    Xu, Jingping; Elias, Edwin; Kinsman, Nicole; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    A newly developed sand-tracer code for the process-based model Delft3D (Deltares, The Netherlands) was used to simulate the littoral transport near the head of the Mugu Submarine Canyon in California, USA. For westerly swells, which account for more than 90% of the wave conditions in the region, the sand tracers in the downcoast littoral drift were unable to bypass the canyon head. A flow convergence near the upcoast rim of the canyon intercepts the tracers and moves them either offshore onto the shelf just west of the canyon rim (low wave height conditions) or into the canyon head (storm wave conditions). This finding supports the notion that Mugu Canyon is the true terminus of the Santa Barbara Littoral Cell.

  3. Influence of San Gabriel submarine canyon on narrow-shelf sediment dynamics, southern California

    USGS Publications Warehouse

    Karl, Herman A.

    1980-01-01

    A conceptual model attributes the PTC to modification of shelf circulation patterns by San Gabriel Canyon. Surface waves diverge over the canyon head resulting in differential wave set up at the shore face. This forces back turbid nearshore water for a distance of a few kilometers toward the canyon. At some point on the shelf, seaward nearshore flow overlaps offshore currents generated or modified by internal waves focused onto the shelf by the canyon and/or turbulent eddies produced by flow separation in currents moving across the canyon axis. At times, these subtle processes overprint tidal and wind-driven currents and thereby create the PTC. The model suggests that canyons heading several kilometers from shore can have a regulatory effect on narrow-shelf sediment dynamics.

  4. Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia

    NASA Astrophysics Data System (ADS)

    Bashir, Yasir; Ghosh, Deva Prasad; Sum, Chow Weng

    2018-04-01

    Small-scale geological discontinuities are not easy to detect and image in seismic data, as these features represent themselves as diffracted rather than reflected waves. However, the combined reflected and diffracted image contains full wave information and is of great value to an interpreter, for instance enabling the identification of faults, fractures, and surfaces in built-up carbonate. Although diffraction imaging has a resolution below the typical seismic wavelength, if the wavelength is much smaller than the width of the discontinuity then interference effects can be ignored, as they would not play a role in generating the seismic diffractions. In this paper, by means of synthetic examples and real data, the potential of diffraction separation for high-resolution seismic imaging is revealed and choosing the best method for preserving diffraction are discussed. We illustrate the accuracy of separating diffractions using the plane-wave destruction (PWD) and dip frequency filtering (DFF) techniques on data from the Sarawak Basin, a carbonate field. PWD is able to preserve the diffraction more intelligently than DFF, which is proven in the results by the model and real data. The final results illustrate the effectiveness of diffraction separation and possible imaging for high-resolution seismic data of small but significant geological features.

  5. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    PubMed

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Testing the robustness of optimal access vessel fleet selection for operation and maintenance of offshore wind farms

    DOE PAGES

    Sperstad, Iver Bakken; Stålhane, Magnus; Dinwoodie, Iain; ...

    2017-09-23

    Optimising the operation and maintenance (O&M) and logistics strategy of offshore wind farms implies the decision problem of selecting the vessel fleet for O&M. Different strategic decision support tools can be applied to this problem, but much uncertainty remains regarding both input data and modelling assumptions. Our paper aims to investigate and ultimately reduce this uncertainty by comparing four simulation tools, one mathematical optimisation tool and one analytic spreadsheet-based tool applied to select the O&M access vessel fleet that minimizes the total O&M cost of a reference wind farm. The comparison shows that the tools generally agree on the optimalmore » vessel fleet, but only partially agree on the relative ranking of the different vessel fleets in terms of total O&M cost. The robustness of the vessel fleet selection to various input data assumptions was tested, and the ranking was found to be particularly sensitive to the vessels' limiting significant wave height for turbine access. Also the parameter with the greatest discrepancy between the tools, implies that accurate quantification and modelling of this parameter is crucial. The ranking is moderately sensitive to turbine failure rates and vessel day rates but less sensitive to electricity price and vessel transit speed.« less

  7. Testing the robustness of optimal access vessel fleet selection for operation and maintenance of offshore wind farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperstad, Iver Bakken; Stålhane, Magnus; Dinwoodie, Iain

    Optimising the operation and maintenance (O&M) and logistics strategy of offshore wind farms implies the decision problem of selecting the vessel fleet for O&M. Different strategic decision support tools can be applied to this problem, but much uncertainty remains regarding both input data and modelling assumptions. Our paper aims to investigate and ultimately reduce this uncertainty by comparing four simulation tools, one mathematical optimisation tool and one analytic spreadsheet-based tool applied to select the O&M access vessel fleet that minimizes the total O&M cost of a reference wind farm. The comparison shows that the tools generally agree on the optimalmore » vessel fleet, but only partially agree on the relative ranking of the different vessel fleets in terms of total O&M cost. The robustness of the vessel fleet selection to various input data assumptions was tested, and the ranking was found to be particularly sensitive to the vessels' limiting significant wave height for turbine access. Also the parameter with the greatest discrepancy between the tools, implies that accurate quantification and modelling of this parameter is crucial. The ranking is moderately sensitive to turbine failure rates and vessel day rates but less sensitive to electricity price and vessel transit speed.« less

  8. Preliminary investigation of the hazard faced by Western Australia from tsunami generated along the Sunda Arc

    NASA Astrophysics Data System (ADS)

    Burbidge, D.; Cummins, P. R.

    2005-12-01

    Since the Boxing Day tsunami various countries surrounding the Indian Ocean have been investigating the potential hazard from trans-Indian Ocean tsunami generated along the Sunda Arc, south of Indonesia. This study presents some preliminary estimates of the tsunami hazard faced by Western Australia from tsunami generated along the Arc. To estimate the hazard, a suite of tsunami spaced evenly along the subduction zone to the south of Indonesia were numerically modelled. Offshore wave heights from tsunami generated in this region are significantly higher along northwestern part of the Western Australian coast from Exmouth to the Kimberly than they are along the rest of the coast south of Exmouth. Due to the offshore bathymetry, the area around Onslow in particular may face a higher tsunami than other areas the West Australian coast. Earthquakes between Java and Timor are likely to produce the greatest hazard to northwest WA. Earthquakes off Sumatra are likely the main source of tsunami hazard to locations south of Exmouth, however the hazard here is likely to be lower than that along the north western part of the West Australian coast. Tsunami generated by other sources (eg large intra-plate events, volcanoes, landslides and asteroids) could threaten other parts of the coast.

  9. Effects of climate change on wave height at the coast

    NASA Astrophysics Data System (ADS)

    Wolf, J.

    2003-04-01

    To make progress towards the ultimate objective of predicting coastal vulnerability to climate change, we need to predict the probability of extreme values of sea level and wave height, and their likely variation with changing climate. There is evidence of changes in sea level and wave height on various time-scales. For example, the North Atlantic Oscillation appears to be responsible for increasing wave height in the North Atlantic over recent decades. The impact of changes in wave height in the North Atlantic at the coastline in the North Sea, the Hebrides/Malin Shelf and the English Channel will be quite different. Three different, and contrasting areas are examined The effect of changing sea levels, due to global warming and changes in tides and surge height and frequency, is combined with increases in offshore wave height. Coastal wave modelling, using the WAM and SWAN wave models, provides a useful tool for examining the possible impacts of climate change at the coast. This study is part of a Tyndall Centre project which is examining the vulnerability of the UK coast to changing wave climate and sea level. These changes are likely to be especially important in low-lying areas with coastal wetlands such as the north Norfolk coast, which has been selected as a detailed case study area. In this area there are offshore shallow banks and extensive inter-tidal areas. There are transitions from upper marsh to freshwater grazing marshes, sand dunes, shingle beaches, mudflats and sandflats. Many internationally important and varied habitats are threatened by rising sea levels and changes in storminess due to potential climate change effects. Likely changes in overtopping of coastal embankments, inundation of intertidal areas, sediment transport and coastal erosion are examined. Changes in low water level may be important as well as high water. The second area of study is Christchurch Bay in the English Channel. The English Channel is exposed to swell from the North Atlantic and a moderate tidal range. The coastline is quite developed with popular beaches. There are defended and undefended stretches of coastline. The waves reaching the coastline are modulated by the strong tidal streams in the Solent and shoal areas like Shingles Bank. The Sea of the Hebrides is an area important for fishing and tourism, but is the part of the UK exposed to the most severe waves, being most directly connected with the North Atlantic. The UK’s first wave power plant is in operation on Islay. Sea level changes are likely to be relatively unimportant but changes in wave climate could have a direct impact on local economic activity.

  10. Study of crustal structure and stretch mechanism of central continental shelf of northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cao, J.; Xia, S.; Sun, J.; Wan, K.; Xu, H.

    2017-12-01

    Known as a significant region to study tectonic relationship between South China block and South China Sea (SCS) block and the evolution of rifted basin in continental margin, the continental shelf of northern SCS documents the evolution from continental splitting to seafloor spreading of SCS. To investigate crustal structure of central continental shelf in northern SCS, two wide-angle onshore-offshore seismic experiments and coincident multi-channel seismic (MCS) profiles were carried out across the onshore-offshore transitional zone in northern SCS, 2010 and 2012. A total of 34 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure models of central continental shelf in northern SCS was constructed from onshore to offshore, and the stretching factors along the P-wave velocity models were calculated. The models reveal that South China block is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The littoral fault zone is composed of several parallel, high-angle, normal faults that mainly trend northeast to northeast-to-east and dip to the southeast with a large displacement, and the fault is divided into several segments separated by the northwest-trending faults. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. The results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one during late Mesozoic and Cenozoic.

  11. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barahona, B.; Jonkman, J.; Damiani, R.

    2014-12-01

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshoremore » Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.« less

  12. Cohesive Sedimentary Processes on River-Dominated Deltas: New Perspectives from the Mississippi River Delta Front, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Bentley, S. J.; Keller, G. P.; Obelcz, J.; Maloney, J. M.; Xu, K.; Georgiou, I. Y.; Miner, M. D.

    2016-12-01

    On river deltas dominated by proximal sediment accumulation (Mississippi, Huang He, others), the delta front region is commonly dominated by rapid accumulation of cohesive fluvial sediments, and mass-wasting processes that remobilize recently deposited sediments. Mass transport is preconditioned in sediments by high water content, biogenic gas production, over steepening, and is commonly triggered by strong wave loading and other processes. This understanding is based on extensive field studies in the 1970's and 80's. Recent studies of the Mississippi River Delta Front are yielding new perspectives on these processes, in a time of anthropogenically reduced sediment loads, rising sea level, and catastrophic deltaic land loss. We have synthesized many industry data sets collected since ca. 1980, and conducted new pilot field and modeling studies of sedimentary and morphodynamic processes. These efforts have yielded several key findings that diverge from historical understanding of this dynamic setting. First, delta distributary mouths have ceased seaward progradation, ending patterns that have been documented since the 18th century. Second, despite reduced sediment supply, offshore mass transport continues, yielding vertical displacements at rates of 1 m/y. This displacement is apparently forced by wave loading from storm events of near-annual return period, rather than major hurricanes that have been the focus of most previous studies. Third, core analysis indicates that this vertical displacement is occurring along failure planes >3 m in the seabed, rather than in more recently deposited sediments closer to the sediment-water interface. These seabed morphodynamics have the potential to destabilize both nearshore navigation infrastructure, and seabed hydrocarbon infrastructure offshore. As well, these findings raise more questions regarding the future seabed evolution offshore of major river deltas, in response to anthropogenic and climatic forcing.

  13. Modeling Plankton Aggregation and Transport by Nonlinear Internal Waves Propagating Onshore.

    NASA Astrophysics Data System (ADS)

    Garwood, J. C.; Musgrave, R. C.; Franks, P. J. S.

    2016-02-01

    Many coastal benthic species have planktonic larval forms. These larvae must return to suitable adult habitat to allow recruitment to the breeding population. To a large extent these larvae are at the mercy of the ambient currents. However, simple vertical swimming behaviors may significantly enhance onshore or offshore transport of these organisms in certain coastal flows. Here we use models to investigate the interaction of nonlinear internal waves (NLIW) and swimming behaviors in determining plankton aggregation and cross-shelf transport. In a 2D, non-hydrostatic MITgcm with particle tracking, NLIW are generated and propagate onshore into a region of sloping bottom topography. Lagrangian and swimming particles representing plankton are introduced in the flow field to quantify transport and dispersion. Characteristics of the environment (bottom slope and stratification), as well as of the particles (source, depth, and swimming vs. passive) were varied to identify scenarios that would maximize transport or accumulation. Our results will be used to design experiments using swarms of autonomous buoyancy-controlled drifters to quantify transport and accumulation in the field.

  14. Research on the influence of helical strakes on dynamic response of floating wind turbine platform

    NASA Astrophysics Data System (ADS)

    Ding, Qin-wei; Li, Chun

    2017-04-01

    The stability of platform structure is the paramount guarantee of the safe operation of the offshore floating wind turbine. The NREL 5MW floating wind turbine is established based on the OC3-Hywind Spar Buoy platform with the supplement of helical strakes for the purpose to analyze the impact of helical strakes on the dynamic response of the floating wind turbine Spar platform. The dynamic response of floating wind turbine Spar platform under wind, wave and current loading from the impact of number, height and pitch ratio of the helical strakes is analysed by the radiation and diffraction theory, the finite element method and orthogonal design method. The result reveals that the helical strakes can effectively inhibit the dynamic response of the platform but enlarge the wave exciting force; the best parameter combination is two pieces of helical strakes with the height of 15% D ( D is the diameter of the platform) and the pitch ratio of 5; the height of the helical strake and its pitch ratio have significant influence on pitch response.

  15. Pattern-formation under acoustic driving forces

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  16. Evaluation of the physical process controlling beach changes adjacent to nearshore dredge pits

    USGS Publications Warehouse

    Benedet, L.; List, J.H.

    2008-01-01

    Numerical modeling of a beach nourishment project is conducted to enable a detailed evaluation of the processes associated with the effects of nearshore dredge pits on nourishment evolution and formation of erosion hot spots. A process-based numerical model, Delft3D, is used for this purpose. The analysis is based on the modification of existing bathymetry to simulate "what if" scenarios with/without the bathymetric features of interest. Borrow pits dredged about 30??years ago to provide sand for the nourishment project have a significant influence on project performance and formation of erosional hot spots. It was found that the main processes controlling beach response to these offshore bathymetric features were feedbacks between wave forces (roller force or alongshore component of the radiation stress), pressure gradients due to differentials in wave set-up/set-down and bed shear stress. Modeling results also indicated that backfilling of selected borrow sites showed a net positive effect within the beach fill limits and caused a reduction in the magnitude of hot spot erosion. ?? 2008 Elsevier B.V. All rights reserved.

  17. Extreme Sea Conditions in Shallow Water: Estimation based on in-situ measurements

    NASA Astrophysics Data System (ADS)

    Le Crom, Izan; Saulnier, Jean-Baptiste

    2013-04-01

    The design of marine renewable energy devices and components is based, among others, on the assessment of the environmental extreme conditions (winds, currents, waves, and water level) that must be combined together in order to evaluate the maximal loads on a floating/fixed structure, and on the anchoring system over a determined return period. Measuring devices are generally deployed at sea over relatively short durations (a few months to a few years), typically when describing water free surface elevation, and extrapolation methods based on hindcast data (and therefore on wave simulation models) have to be used. How to combine, in a realistic way, the action of the different loads (winds and waves for instance) and which correlation of return periods should be used are highly topical issues. However, the assessment of the extreme condition itself remains a not-fully-solved, crucial, and sensitive task. Above all in shallow water, extreme wave height, Hmax, is the most significant contribution in the dimensioning process of EMR devices. As a case study, existing methodologies for deep water have been applied to SEMREV, the French marine energy test site. The interest of this study, especially at this location, goes beyond the simple application to SEMREV's WEC and floating wind turbines deployment as it could also be extended to the Banc de Guérande offshore wind farm that are planned close by. More generally to pipes and communication cables as it is a redundant problematic. The paper will first present the existing measurements (wave and wind on site), the prediction chain that has been developed via wave models, the extrapolation methods applied to hindcast data, and will try to formulate recommendations for improving this assessment in shallow water.

  18. Detailed Characterization of Nearshore Processes During NCEX

    NASA Astrophysics Data System (ADS)

    Holland, K.; Kaihatu, J. M.; Plant, N.

    2004-12-01

    Recent technology advances have allowed the coupling of remote sensing methods with advanced wave and circulation models to yield detailed characterizations of nearshore processes. This methodology was demonstrated as part of the Nearshore Canyon EXperiment (NCEX) in La Jolla, CA during Fall 2003. An array of high-resolution, color digital cameras was installed to monitor an alongshore distance of nearly 2 km out to depths of 25 m. This digital imagery was analyzed over the three-month period through an automated process to produce hourly estimates of wave period, wave direction, breaker height, shoreline position, sandbar location, and bathymetry at numerous locations during daylight hours. Interesting wave propagation patterns in the vicinity of the canyons were observed. In addition, directional wave spectra and swash / surf flow velocities were estimated using more computationally intensive methods. These measurements were used to provide forcing and boundary conditions for the Delft3D wave and circulation model, giving additional estimates of nearshore processes such as dissipation and rip currents. An optimal approach for coupling these remotely sensed observations to the numerical model was selected to yield accurate, but also timely characterizations. This involved assimilation of directional spectral estimates near the offshore boundary to mimic forcing conditions achieved under traditional approaches involving nested domains. Measurements of breaker heights and flow speeds were also used to adaptively tune model parameters to provide enhanced accuracy. Comparisons of model predictions and video observations show significant correlation. As compared to nesting within larger-scale and coarser resolution models, the advantages of providing boundary conditions data using remote sensing is much improved resolution and fidelity. For example, rip current development was both modeled and observed. These results indicate that this approach to data-model coupling is tenable and may be useful in near-real-time characterizations required by many applied scenarios.

  19. The impact of floods and storms on the acoustic reflectivity of the inner continental shelf: A modeling assessment

    USGS Publications Warehouse

    Pratson, Lincoln F.; Hutton, E.W.H.; Kettner, A.J.; Syvitski, J.P.M.; Hill, P.S.; George, D.A.; Milligan, T.G.

    2007-01-01

    Flood deposition and storm reworking of sediments on the inner shelf can change the mixture of grain sizes on the seabed and thus its porosity, bulk density, bulk compressional velocity and reflectivity. Whether these changes are significant enough to be detectable by repeat sub-bottom sonar surveys, however, is uncertain. Here the question is addressed through numerical modeling. Episodic flooding of a large versus small river over the course of a century are modeled with HYDROTREND using the drainage basin characteristics of the Po and Pescara Rivers (respectively). A similarly long stochastic record of storms offshore of both rivers is simulated from the statistics of a long-term mooring recording of waves in the western Adriatic Sea. These time series are then input to the stratigraphic model SEDFLUX2D, which simulates flood deposition and storm reworking on the inner shelf beyond the river mouths. Finally, annual changes in seabed reflectivity across these shelf regions are computed from bulk densities output by SEDFLUX2D and compressional sound speeds computed from mean seafloor grain size using the analytical model of Buckingham [1997. Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. Journal of the Acoustical Society of America 102, 2579-2596; 1998. Theory of compressional and shear waves in fluidlike marine sediments. Journal of the Acoustical Society of America 103, 288-299; 2000. Wave propagation, stress relaxation, and grain-tograin shearing in saturated, unconsolidated marine sediments. Journal of the Acoustical Society of America 108, 2796-2815]. The modeling predicts reflectivities that change from 9 dB for muds farther offshore, values that agree with reflectivity measurements for these sediment types. On local scales of ???100 m, however, maximum changes in reflectivity are <0.5 dB. So are most annual changes in reflectivity over all water depths modeled (i.e., 0-35 m). Given that signal differences need to be ???2-3 dB to be resolved, the results suggest that grain-size induced changes in reflectivity caused by floods and storms will rarely be detectable by most current sub-bottom sonars. ?? 2006 Elsevier Ltd. All rights reserved.

  20. Observations and analyses of an intense waves-in-ice event in the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Marko, John R.

    2003-09-01

    Ice draft, ice velocity, ice concentration, and current profile data gathered at an array of eight continental shelf monitoring sites east of Sakhalin Island were analyzed in conjunction with regional meteorological data to document and explain intense wave occurrences several hundred kilometers inside the Sea of Okhotsk ice pack. The studied event was associated with the 19-21 March 1998 passage of an intense cyclone, which produced waves with amplitudes in excess of 1 m at the most offshore monitoring location. The relatively monochromatic character of the waves allowed extraction of wave intensity time series from ice draft time series data. Spatial and temporal variations in these data were used to establish directions and speeds of wave energy propagation for comparisons with an earlier interpretation [, 1988] of an Antarctic intense waves-in-ice event. It was concluded that although both events are compatible with a two-stage process in which initially slowly advancing wave activity increases subsequent ice cover wave transmissivity, the first stage of the Sea of Okhotsk event was not explicable in terms of the static stress-induced changes in the waves-in-ice dispersion relationship proposed by Liu and Mollo-Christensen. An alternative explanation is offered that eschews the linkage between wave group velocities and the observed slow rates of wave energy propagation and attributes the subsequent transition to more normal wave propagation behavior to ice pack divergence.

  1. The onshore influence of offshore fresh groundwater

    NASA Astrophysics Data System (ADS)

    Knight, Andrew C.; Werner, Adrian D.; Morgan, Leanne K.

    2018-06-01

    Freshwater contained within the submarine extensions of coastal aquifers is increasingly proposed as a freshwater source for coastal communities. However, the extent to which offshore freshwater supports onshore pumping is currently unknown on a global scale. This study provides the first attempt to examine the likely prevalence of situations where offshore freshwater influences onshore salinities, considering various sites from around the world. The groundwater conditions in twenty-seven confined and semi-confined coastal aquifers with plausible connections to inferred or observed offshore freshwater are explored. The investigation uses available onshore salinities and groundwater levels, and offshore salinity knowledge, in combination with analytical modelling, to develop simplified conceptual models of the study sites. Seven different conceptual models are proposed based on the freshwater-saltwater extent and insights gained from analytical modelling. We consider both present-day and pre-development conditions in assessing potential modern contributions to offshore fresh groundwater. Conceptual models also include interpretations of whether offshore freshwater is a significant factor influencing onshore salinities and well pumping sustainability. The results indicate that onshore water levels have declined between pre-development and present-day conditions in fourteen of the fifteen regions for which pre-development data are available. Estimates of the associated steady-state freshwater extents show the potential for considerable offshore fresh groundwater losses accompanying these declines. Both present-day and pre-development heads are insufficient to account for the observed offshore freshwater in all cases where adequate data exist. This suggests that paleo-freshwater and/or aquifer heterogeneities contribute significantly to offshore freshwater extent. Present-day heads indicate that active seawater intrusion (SWI) will eventually impact onshore pumping wells at fourteen of the twenty-seven sites, while passive SWI is expected onshore in an additional ten regions. Albeit the number of field sites is limited, there is sufficient evidence to indicate that when offshore freshwater has an onshore linkage, it is being mined either passively or actively by onshore use. Thus, offshore freshwater should be assessed in coastal water balances presuming that it serves as an existing freshwater input, rather than as a new potential freshwater resource.

  2. Floating Ocean Platform

    DTIC Science & Technology

    2003-08-15

    floating structures create novel habitats for subtidal epibiota?, MARINE ECOLOGY -PROGRESS SERIES, 43-52 Mar. Ecol.- Prog. Ser., 2002 Vegueria, SFJ Godoy... ECOLOGICAL APPLICATIONS, 350-366 Ecol. Appl., 2000 Niedzwecki, JM van de Lindt, JW Gage, JH Teigen, PS, Design estimates of surface wave interaction with...The ecological effects beyond the offshore platform, Coastal Zone: Proceedings of the Symposium on Coastal and Ocean Management, v 2, n pt2, 1989, p

  3. Accommodation space in a high-wave-energy inner-shelf during the Holocene marine transgression: Correlation of onshore and offshore inner-shelf deposits (0–12 ka) in the Columbia River littoral cell system, Washington and Oregon, USA

    USGS Publications Warehouse

    Peterson, C. D.; Twichell, D. C.; Roberts, M. C.; Vanderburgh, S.; Hostetler, Steven W.

    2016-01-01

    The Columbia River Littoral Cell (CRLC), a high-wave-energy littoral system, extends 160 km alongshore, generally north of the large Columbia River, and 10–15 km in across-shelf distance from paleo-beach backshores to about 50 m present water depths. Onshore drill holes (19 in number and 5–35 m in subsurface depth) and offshore vibracores (33 in number and 1–5 m in subsurface depth) constrain inner-shelf sand grain sizes (sample means 0.13–0.25 mm) and heavy mineral source indicators (> 90% Holocene Columbia River sand) of the inner-shelf facies (≥ 90% fine sand). Stratigraphic correlation of the transgressive ravinement surface in onshore drill holes and in offshore seismic reflection profiles provide age constraints (0–12 ka) on post-ravinement inner-shelf deposits, using paleo-sea level curves and radiocarbon dates. Post-ravinement deposit thickness (1–50 m) and long-term sedimentation rates (0.4–4.4 m ka− 1) are positively correlated to the cross-shelf gradients (0.36–0.63%) of the transgressive ravinement surface. The total post-ravinement fill volume of fine littoral sand (2.48 × 1010 m3) in the inner-shelf represents about 2.07 × 106 m3 year− 1 fine sand accumulation rate during the last 12 ka, or about one third of the estimated middle- to late-Holocene Columbia River bedload or sand discharge (5–6 × 106 m3 year− 1) to the littoral zone. The fine sand accumulation in the inner-shelf represents post-ravinement accommodation space resulting from 1) geometry and depth of the transgressive ravinement surface, 2) post-ravinement sea-level rise, and 3) fine sand dispersal in the inner-shelf by combined high-wave-energy and geostrophic flow/down-welling drift currents during major winter storms.

  4. Inner-shelf circulation and sediment dynamics on a series of shoreface connected ridges offshore of Fire Island, NY

    USGS Publications Warehouse

    Warner, John C.; List, Jeffrey H.; Schwab, William C.; Voulgaris, George; Armstrong, Brandy N.; Marshall, N

    2014-01-01

    Locations along the inner-continental shelf offshore of Fire Island, NY, are characterized by a series of shoreface connected ridges (SFCRs). These sand ridges have approximate dimensions of 10 km in length, 3 km spacing, up to ~8 m ridge to trough relief, and are oriented obliquely at approximately 30 degrees clockwise from the coastline. Stability analysis from previous studies explains how sand ridges such as these could be formed and maintained by storm-driven flows directed alongshore with a key maintenance mechanism of offshore deflected flows over ridge crests and onshore in the troughs. We examine these processes both with a limited set of idealized numerical simulations and analysis of observational data. Model results confirm that along-shore flows over the SFCRs exhibit offshore veering of currents over the ridge crests and onshore-directed flows in the troughs, and demonstrate the opposite circulation pattern for a reverse wind. To further investigate these maintenance processes, oceanographic instruments were deployed at seven sites on the SFCRs offshore of Fire Island to measure water levels, ocean currents, waves, suspended-sediment concentrations, and bottom stresses from January to April 2012. Data analysis reveals that during storms with winds from the northeast the processes of offshore deflection of currents over ridge crests and onshore in the troughs were observed, and during storm events with winds from the southwest a reverse flow pattern over the ridges occurred. Computations of suspended-sediment fluxes identify periods that are consistent with SFCR maintenance mechanisms. Alongshore winds from the northeast drove fluxes offshore on the ridge crest and onshore in the trough that would tend to promote ridge maintenance. However, alongshore winds from the southwest drove opposite circulations. The wind fields are related to different storm types that occur in the region (low pressure systems, cold fronts, and warm fronts). From the limited data set we identify that low pressure systems drive sediment fluxes that tend to promote stability and maintain the SFCRs, while cold front type storms appear to drive circulations that are in the opposite sense and may not be a supporting mechanism for ridge maintenance.

  5. The OMEGA system for marine bioenergy, wastewater treatment, environmental enhancement, and aquaculture

    NASA Astrophysics Data System (ADS)

    Trent, J. D.

    2013-12-01

    OMEGA is an acronym for Offshore Membrane Enclosure for Growing Algae. The OMEGA system consists of photobioreactors (PBRs) made of flexible, inexpensive clear plastic tubes attached to floating docks, anchored offshore in naturally or artificially protected bays [1]. The system uses domestic wastewater and CO2 from coastal facilities to provide water, nutrients, and carbon for algae cultivation [2]. The surrounding seawater maintains the temperature inside the PBRs and prevents the cultivated (freshwater) algae from becoming invasive species in the marine environment (i.e., if a PBR module accidentally leaks, the freshwater algae that grow in wastewater cannot survive in the marine environment). The salt gradient between seawater and wastewater is used for forward osmosis (FO) to concentrate nutrients and facilitate algae harvesting [3]. Both the algae and FO clean the wastewater, removing nutrients as well as pharmaceuticals and personal-care products [4]. The offshore infrastructure provides a large surface area for solar-photovoltaic arrays and access to offshore wind or wave generators. The infrastructure can also support shellfish, finfish, or seaweed aquaculture. The economics of the OMEGA system are supported by a combination of biofuels production, wastewater treatment, alternative energy generation, and aquaculture. By using wastewater and operating offshore from coastal cities, OMEGA can be located close to wastewater and CO2 sources and it can avoid competing with agriculture for water, fertilizer, and land [5]. By combining biofuels production with wastewater treatment and aquaculture, the OMEGA system provides both products and services, which increase its economic feasibility. While the offshore location has engineering challenges and concerns about the impact and control of biofouling [6], large OMEGA structure will be floating marine habitats and will create protected 'no-fishing' zones that could increase local biodiversity and fishery productivity. Potential test sites for the next phase of OMEGA (1-hectare integrated system) will be discussed.

  6. Taking ownership of safety. What are the active ingredients of safety coaching and how do they impact safety outcomes in critical offshore working environments?

    PubMed

    Krauesslar, Victoria; Avery, Rachel E; Passmore, Jonathan

    2015-01-01

    Safety coaching interventions have become a common feature in the safety critical offshore working environments of the North Sea. Whilst the beneficial impact of coaching as an organizational tool has been evidenced, there remains a question specifically over the use of safety coaching and its impact on behavioural change and producing safe working practices. A series of 24 semi-structured interviews were conducted with three groups of experts in the offshore industry: safety coaches, offshore managers and HSE directors. Using a thematic analysis approach, several significant themes were identified across the three expert groups including connecting with and creating safety ownership in the individual, personal significance and humanisation, ingraining safety and assessing and measuring a safety coach's competence. Results suggest clear utility of safety coaching when applied by safety coaches with appropriate coach training and understanding of safety issues in an offshore environment. The current work has found that the use of safety coaching in the safety critical offshore oil and gas industry is a powerful tool in managing and promoting a culture of safety and care.

  7. Estimating the Economic Potential of Offshore Wind in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, P.; Musial, W.; Smith, A.

    The potential for cost reduction and market deployment for offshore wind varies considerably within the United States. This analysis estimates the future economic viability of offshore wind at more than 7,000 sites under a variety of electric sector and cost reduction scenarios. Identifying the economic potential of offshore wind at a high geospatial resolution can capture the significant variation in local offshore resource quality, costs, and revenue potential. In estimating economic potential, this article applies a method initially developed in Brown et al. (2015) to offshore wind and estimates the sensitivity of results under a variety of most likely electricmore » sector scenarios. For the purposes of this analysis, a theoretical framework is developed introducing a novel offshore resource classification system that is analogous to established resource classifications from the oil and gas sector. Analyzing economic potential within this framework can help establish a refined understanding across industries of the technology and site-specific risks and opportunities associated with future offshore wind development. The results of this analysis are intended to inform the development of the U.S. Department of Energy's offshore wind strategy.« less

  8. Suspended sand transport in surf zones

    NASA Astrophysics Data System (ADS)

    Kobayashi, Nobuhisa; Zhao, Haoyu; Tega, Yukiko

    2005-12-01

    Three tests were conducted in a wave flume to investigate time-averaged suspended sediment transport processes under irregular breaking waves on equilibrium beaches consisting of fine sand. Free surface elevations were measured at ten locations for each test. Velocities and concentrations were measured in the vicinity of the bottom at 94 elevations along 17 vertical lines. The relations among the three turbulent velocity variances are found to be similar to those for the boundary layer flow. The vertical variation of the mean velocity, which causes offshore transport, is fitted by a parabolic profile fairly well. The vertical variation of the mean concentration ? is fitted by the exponential and power-form distributions equally well. The ratio between the concentration standard deviation σC and the mean ? varies little vertically. The correlation coefficient γUC between the horizontal velocity and concentration, which results in onshore transport, is of the order of 0.1 and decreases upward linearly. The offshore and onshore transport rates of suspended sediment are estimated and expressed in terms of the suspended sediment volume ? per unit area. A time-averaged numerical model is developed to predict ? as well as the mean and standard deviation of the free surface elevation and horizontal velocity. The bottom slope effect on the wave energy dissipation rate DB due to wave breaking is included in the model. The computation can be made well above the still water shoreline with no numerical difficulty. Reflected waves from the shoreline are estimated from the wave energy flux remaining at the shoreline. The numerical model is in agreement with the statistical data except that the undertow current is difficult to predict accurately. The measured turbulent velocities are found to be more related to the turbulent velocity estimated from the energy dissipation rate Df due to bottom friction. The suspended sediment volume ? expressed in terms of DB and Df can be predicted only within a factor of about 2. The roller effect represented by the roller volume flux does not necessarily improve the agreement for the three tests.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    Spatial variability of sea states is an important consideration when performing wave resource assessments and wave resource characterization studies for wave energy converter (WEC) test sites and commercial WEC deployments. This report examines the spatial variation of sea states offshore of Humboldt Bay, CA, using the wave model SWAN . The effect of depth and shoaling on bulk wave parameters is well resolved using the model SWAN with a 200 m grid. At this site, the degree of spatial variation of these bulk wave parameters, with shoaling generally perpendicular to the depth contours, is found to depend on the season.more » The variation in wave height , for example, was higher in the summer due to the wind and wave sheltering from the protruding land on the coastline north of the model domain. Ho wever, the spatial variation within an area of a potential Tier 1 WEC test site at 45 m depth and 1 square nautical mile is almost negligible; at most about 0.1 m in both winter and summer. The six wave characterization parameters recommended by the IEC 6 2600 - 101 TS were compared at several points along a line perpendicular to shore from the WEC test site . As expected, these parameters varied based on depth , but showed very similar seasonal trends.« less

  10. The Occurrence of Tidal Hybrid Kelvin-Edge Waves in the Global Ocean

    NASA Astrophysics Data System (ADS)

    Kaur, H.; Buijsman, M. C.; Yankovsky, A. E.; Zhang, T.; Jeon, C. H.

    2017-12-01

    This study presents the analysis of hybrid Kelvin-edge waves on the continental shelves in a global ocean model. Our objective is to find areas where the transition occurs from Kelvin waves to hybrid Kelvin-edge waves. The change in continental shelf width may convert a Kelvin wave into a hybrid Kelvin-edge wave. In this process the group velocity reaches a minimum and tidal energy is radiated on and/or offshore [Zhang 2016]. We extract M2 SSH (Sea Surface Height) and velocity from the Hybrid Coordinate Ocean Model (HYCOM) and calculate barotropic energy fluxes. We analyze these three areas: the Bay of Biscay, the Amazon Shelf and North West Africa. In these three regions, the continental shelf widens in the propagation direction and the alongshore flux changes its direction towards the coast. A transect is taken at different points in these areas to compute the dispersion relations of the waves on the continental shelf. In model simulations, we change the bathymetry of the Bay of Biscay to study the behavior of the hybrid Kelvin-edge waves. BibliographyZhang, T., and A. E Yankovsky. (2016), On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves, J. Geophys. Res. Oceans, 121, 3058-3074, doi:10.1002/2015JC011617.

  11. Identification and classification of very low frequency waves on a coral reef flat

    USGS Publications Warehouse

    Gawehn, Matthijs; van Dongeran, Ap; van Rooijen, Arnold; Storlazzi, Curt; Cheriton, Olivia; Reniers, Ad

    2016-01-01

    Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (∼0.5–6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  12. Identification and classification of very low frequency waves on a coral reef flat

    NASA Astrophysics Data System (ADS)

    Gawehn, Matthijs; van Dongeren, Ap; van Rooijen, Arnold; Storlazzi, Curt D.; Cheriton, Olivia M.; Reniers, Ad

    2016-10-01

    Very low frequency (VLF, 0.001-0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (˜0.5-6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  13. Evaluating potentials for future generation off-shore wind-power outside Norway

    NASA Astrophysics Data System (ADS)

    Benestad, R. E.; Haugen, J.; Haakenstad, H.

    2012-12-01

    With todays critical need of renewable energy sources, it is naturally to look towards wind power. With the long coast of Norway, there is a large potential for wind farms offshore Norway. Although there are more challenges with offshore wind energy installations compared to wind farms on land, the offshore wind is generally higher, and there is also higher persistence of wind speed values in the power generating classes. I planning offshore wind farms, there is a need of evaluation of the wind resources, the wind climatology and possible future changes. In this aspect, we use data from regional climate model runs performed in the European ENSEMBLE-project (van der Linden and J.F.B. Mitchell, 2009). In spite of increased reliability in RCMs in the recent years, the simulations still suffer from systematic model errors, therefore the data has to be corrected before using them in wind resource analyses. In correcting the wind speeds from the RCMs, we will use wind speeds from a Norwegian high resolution wind- and wave- archive, NORA10 (Reistad et al 2010), to do quantile mapping (Themeβl et. al. 2012). The quantile mapping is performed individually for each regional simulation driven by ERA40-reanalysis from the ENSEMBLE-project corrected against NORA10. The same calibration is then used to the belonging regional climate scenario. The calibration is done for each grid cell in the domain and for each day of the year centered in a +/-15 day window to make an empirical cumulative density function for each day of the year. The quantile mapping of the scenarios provide us with a new wind speed data set for the future, more correct compared to the raw ENSEMBLE scenarios. References: Reistad M., Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik and J-R Bidlo, 2010, A high-resolution hindcast of wind and waves for The North Sea, The Norwegian Sea and The Barents Sea. J. Geophys. Res., 116. doi:10.1029/2010JC006402. Themessl M. J., A. Gobiet and A. Leuprecht, 2012, Empirical-statistical downscaling and error correction of regional climate models and its imipact on the climate change signal. Climatic Change 112: 449-468, DOI 10.1007/s10584-011-0224-4. Van der Linden P. and J.F.B. Mitchell, 2009, ENSEMBLES: Climate Change and its Impacts_ Summary and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK.

  14. An evaluation of Seasat-A data in relation to optimum track ship weather routing and site specific forecasting for the offshore oil industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, C.; Johnson, R.G.; Thomson, J.C.

    1981-07-01

    The usefulness of Seasat-A SASS and altimeter measurements is reviewed. Five oceanic areas were selected: the Gulf of Alaska, central and western north Atlantic, eastern north Pacific, southern Indian Ocean, and the North Sea. Both Seasat-aided and conventional analyses were used in offshore hindcast and optimum ship routing situations. Where conventional observations are relatively dense, Seasat wind and wave data have greater impact in determining the shape of major map features than in positioning the features. In data sparse areas, Seasat data permit greater definition of surface features as well as their precise location. The use of Seasat data inmore » optimum ship routing is quantified by means of comparative studies in the Gulf of Alaska.« less

  15. Terminology Guideline for Classifying Offshore Wind Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Musial, Walt

    The purpose of this guideline is to establish a clear and consistent vocabulary for conveying offshore wind resource potential and to interpret this vocabulary in terms that are familiar to the oil and gas (O&G) industry. This involves clarifying and refining existing definitions of offshore wind energy resource classes. The terminology developed in this guideline represents one of several possible sets of vocabulary that may differ with respect to their purpose, data availability, and comprehensiveness. It was customized to correspond with established offshore wind practices and existing renewable energy industry terminology (e.g. DOE 2013, Brown et al. 2015) while conformingmore » to established fossil resource classification as best as possible. The developers of the guideline recognize the fundamental differences that exist between fossil and renewable energy resources with respect to availability, accessibility, lifetime, and quality. Any quantitative comparison between fossil and renewable energy resources, including offshore wind, is therefore limited. For instance, O&G resources are finite and there may be significant uncertainty associated with the amount of the resource. In contrast, aboveground renewable resources, such as offshore wind, do not generally deplete over time but can vary significantly subhourly, daily, seasonally, and annually. The intent of this guideline is to make these differences transparent and develop an offshore wind resource classification that conforms to established fossil resource classifications where possible. This guideline also provides methods to quantitatively compare certain offshore wind energy resources to O&G resource classes for specific applications. Finally, this guideline identifies areas where analogies to established O&G terminology may be inappropriate or subject to misinterpretation.« less

  16. Fatigue 󈨛. Volume 3,

    DTIC Science & Technology

    1987-06-01

    Corrosion and Cathodic Protection 1169 on Crack Growth in Offshore Platform Steels in Sea Water - EINAR BARDAL The Influence of Crack Conditions on...PROTECTION ON CRACK GROWTH IN OFFSHORE PLATFORM STEELS IN SEA WATER: EINAR BARDAL* Corrosion fatigue of steel for offshore platforms has been studied at...surfaces (6). When results from experiments with natural sea water are compared with corresponding results obtained in synthetic sea water, no significant

  17. Regional variation in fish predation intensity: a historical perspective in the Gulf of Maine.

    PubMed

    Witman, Jon D; Sebens, Kenneth P

    1992-06-01

    Regional variation in the intensity of fish predation on tethered brittle stars and crabs was measured at 30-33 m depths in the rocky subtidal zone at seven sites representing coastal and offshore regions of the Gulf of Maine, USA. Analysis of covariance comparing the slopes of brittle star survivorship curves followed by multiple comparisons tests revealed five groupings of sites, with significantly greater predation rates in the two offshore than in the three coastal groups. Brittle stars tethered at the three offshore sites were consumed primarily by cod, Gadus morhua, with 60-100% prey mortality occuring in 2.5 h. In striking contrast, only 6-28% of brittle star prey was consumed in the same amount of time at the four coastal sites, which were dominated by cunner, Tautogolabrus adspersus. In several coastal trials, a majority of brittle star prey remained after 24 h. The pattern of higher predation offshore held for rock crabs as well with only 2.7% of tethered crabs consumed (n=36) at coastal sites versus 57.8% of crabs (n=64) consumed at offshore sites. Another important predatory fish, the wolffish, Anarhichas lupus, consumed more tethered crabs than brittle stars. Videos and time-lapse movies indicated that cod and wolffish were significantly more abundant at offshore than at coastal sites. Three hundred years of fishing pressure in New England has severely depleted stocks of at least one important benthic predator, the cod, in coastal waters. We speculate that this human-induced predator removal has lowered predation pressure on crabs and other large mobile epibenthos in deep coastal communities. Transect data indicate that coastal sites with few cod support significantly higher densities of crabs than offshore sites with abundant cod.

  18. A multi-decadal wind-wave hindcast for the North Sea 1949-2014: coastDat2

    NASA Astrophysics Data System (ADS)

    Groll, Nikolaus; Weisse, Ralf

    2017-12-01

    Long and consistent wave data are important for analysing wave climate variability and change. Moreover, such wave data are also needed in coastal and offshore design and for addressing safety-related issues at sea. Using the third-generation spectral wave model WAM a multi-decadal wind-wave hindcast for the North Sea covering the period 1949-2014 was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis. In particular, comparisons of hindcast data with in situ and satellite observations show on average a reasonable agreement, while a tendency towards overestimation of the highest waves could be inferred. Despite these limitations, the wave hindcast still provides useful data for assessing wave climate variability and change as well as for risk analysis, in particular when conservative estimates are needed. Hindcast data are stored at the World Data Center for Climate (WDCC) and can be freely accessed using the doi:10.1594/WDCC/coastDat-2_WAM-North_Sea Groll and Weisse(2016) or via the coastDat web-page http://www.coastdat.de.

  19. Underwater MASW to evaluate stiffness of water-bottom sediments

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.; Sonnichsen, G.V.; Hunter, J.A.; Good, R.L.; Burns, R.A.; Christian, H.

    2005-01-01

    The multichannel analysis of surface waves (MASW) is initially intended as a land survey method to investigate the near-surface materials for their elastic properties. The acquired data are first analyzed for dispersion characteristics and, from these the shear-wave velocity is estimated using an inversion technique. Land applications show the potential of the MASW method to map 2D bedrock surface, zones of low strength, Poisson's ratio, voids, as well as to generate shear-wave profiles for various othe geotechnical problems. An overview is given of several underwater applications of the MASW method to characterize stiffness distribution of water-bottom sediments. The first application details the survey under shallow-water (1-6 m) in the Fraser River (Canada). The second application is an innovative experimental marine seismic survey in the North Atlantic Ocean near oil fields in Grand Bank offshore Newfoundland.

  20. A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian

    2016-09-01

    Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.

  1. Uncertainty Analysis of OC5-DeepCwind Floating Semisubmersible Offshore Wind Test Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N

    This paper examines how to assess the uncertainty levels for test measurements of the Offshore Code Comparison, Continued, with Correlation (OC5)-DeepCwind floating offshore wind system, examined within the OC5 project. The goal of the OC5 project was to validate the accuracy of ultimate and fatigue load estimates from a numerical model of the floating semisubmersible using data measured during scaled tank testing of the system under wind and wave loading. The examination of uncertainty was done after the test, and it was found that the limited amount of data available did not allow for an acceptable uncertainty assessment. Therefore, thismore » paper instead qualitatively examines the sources of uncertainty associated with this test to start a discussion of how to assess uncertainty for these types of experiments and to summarize what should be done during future testing to acquire the information needed for a proper uncertainty assessment. Foremost, future validation campaigns should initiate numerical modeling before testing to guide the test campaign, which should include a rigorous assessment of uncertainty, and perform validation during testing to ensure that the tests address all of the validation needs.« less

  2. Uncertainty Analysis of OC5-DeepCwind Floating Semisubmersible Offshore Wind Test Campaign: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Amy N

    This paper examines how to assess the uncertainty levels for test measurements of the Offshore Code Comparison, Continued, with Correlation (OC5)-DeepCwind floating offshore wind system, examined within the OC5 project. The goal of the OC5 project was to validate the accuracy of ultimate and fatigue load estimates from a numerical model of the floating semisubmersible using data measured during scaled tank testing of the system under wind and wave loading. The examination of uncertainty was done after the test, and it was found that the limited amount of data available did not allow for an acceptable uncertainty assessment. Therefore, thismore » paper instead qualitatively examines the sources of uncertainty associated with this test to start a discussion of how to assess uncertainty for these types of experiments and to summarize what should be done during future testing to acquire the information needed for a proper uncertainty assessment. Foremost, future validation campaigns should initiate numerical modeling before testing to guide the test campaign, which should include a rigorous assessment of uncertainty, and perform validation during testing to ensure that the tests address all of the validation needs.« less

  3. GPS water level measurements for Indonesia's Tsunami Early Warning System

    NASA Astrophysics Data System (ADS)

    Schöne, T.; Pandoe, W.; Mudita, I.; Roemer, S.; Illigner, J.; Zech, C.; Galas, R.

    2011-03-01

    On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  4. Wave attenuation in the shallows of San Francisco Bay

    USGS Publications Warehouse

    Lacy, Jessica R.; MacVean, Lissa J.

    2016-01-01

    Waves propagating over broad, gently-sloped shallows decrease in height due to frictional dissipation at the bed. We quantified wave-height evolution across 7 km of mudflat in San Pablo Bay (northern San Francisco Bay), an environment where tidal mixing prevents the formation of fluid mud. Wave height was measured along a cross shore transect (elevation range−2mto+0.45mMLLW) in winter 2011 and summer 2012. Wave height decreased more than 50% across the transect. The exponential decay coefficient λ was inversely related to depth squared (λ=6×10−4h−2). The physical roughness length scale kb, estimated from near-bed turbulence measurements, was 3.5×10−3 m in winter and 1.1×10−2 m in summer. Estimated wave friction factor fw determined from wave-height data suggests that bottom friction dominates dissipation at high Rew but not at low Rew. Predictions of near-shore wave height based on offshore wave height and a rough formulation for fw were quite accurate, with errors about half as great as those based on the smooth formulation for fw. Researchers often assume that the wave boundary layer is smooth for settings with fine-grained sediments. At this site, use of a smooth fw results in an underestimate of wave shear stress by a factor of 2 for typical waves and as much as 5 for more energetic waves. It also inadequately captures the effectiveness of the mudflats in protecting the shoreline through wave attenuation.

  5. Wave Attenuation on Muddy Bottoms Offshore Cassino Beach

    DTIC Science & Technology

    2006-10-01

    D.Sc Principal Investigator Laboratory for the Dynamics of Cohesive Sediments Federal University of Rio de Janeiro Rio de Janeiro , Brazil...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Federal University of Rio de Janeiro ,Laboratory for the...Dynamics of Cohesive Sediments, Rio de Janeiro , Brazil, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES

  6. Wave Attenuation on Muddy Bottoms - A Multidisciplinary Field Study Offshore Cassino Beach, Southern Brazil

    DTIC Science & Technology

    2005-09-30

    Rio de Janeiro Ocean Engineering Program / COPPE CP 68508 - Centro de Tecnologia - C203 21945-970 Rio de Janeiro , Brazil Phone/fax...NAME(S) AND ADDRESS(ES) Federal University of Rio de Janeiro ,Ocean Engineering Program / COPPE, CP 68508 - Centro de Tecnologia - C203,21945-970 Rio ...activities of the project: From Brazilian Institutions: 1- Federal University of Rio de Janeiro (UFRJ) / Laboratory for

  7. Discussion of "Hydrates off Brazil" by Rogerio L. Fontana and Alexandre Mussumeci

    USGS Publications Warehouse

    Dillon, William P.

    1994-01-01

    The paper "Hydrates Offshore Brazil" by Rogerio L. Fontana and Alexandre Mussumeci presents some important information that strongly indicates the presence of gas hydrates on the southern Brazilian continental margin. However, the acoustic compressional wave velocity structure reported for the Brazilian margin sediments is highly unusual and quite puzzling. We will discuss a possible explanation related to the presence of gas hydrate and free gas in sediements.

  8. Potential RSM Projects: West Maui Region, Maui, Hawaii

    DTIC Science & Technology

    2016-02-01

    County; University of Hawaii, Sea Grant; Sea Engineering, Inc.; Maui Nui Marine Resource Council; Coral Reef Alliance; The Nature Conservancy; Henningson...transported offshore onto the reef . Impacts of the transport of sand onto the reef include, but are not limited to, covering (smothering) of coral and...resuspended into the water column by waves and currents should be studied. The residence time of these sediments on reefs in the West Maui Region

  9. A Seakeeping Performance and Affordability Tradeoff Study for the Coast Guard Offshore Patrol Cutter

    DTIC Science & Technology

    2016-06-01

    Index Polar Plot for Sea State 4, All Headings Are Relative to the Wave Motion and Velocity is Given in Meters per Second...40 Figure 15. Probability and Cumulative Density Functions of Annual Sea State Occurrences in the Open Ocean, North Pacific...criteria at a given sea state. Probability distribution functions are available that describe the likelihood that an operational area will experience

  10. Validation of a FAST model of the Statoil-Hywind Demo floating wind turbine

    DOE PAGES

    Driscoll, Frederick; Jonkman, Jason; Robertson, Amy; ...

    2016-10-13

    To assess the accuracy of the National Renewable Energy Laboratory's (NREL's) FAST simulation tool for modeling the coupled response of floating offshore wind turbines under realistic open-ocean conditions, NREL developed a FAST model of the Statoil Hywind Demo floating offshore wind turbine, and validated simulation results against field measurements. Field data were provided by Statoil, which conducted a comprehensive test measurement campaign of its demonstration system, a 2.3-MW Siemens turbine mounted on a spar substructure deployed about 10 km off the island of Karmoy in Norway. A top-down approach was used to develop the FAST model, starting with modeling themore » blades and working down to the mooring system. Design data provided by Siemens and Statoil were used to specify the structural, aerodynamic, and dynamic properties. Measured wind speeds and wave spectra were used to develop the wind and wave conditions used in the model. The overall system performance and behavior were validated for eight sets of field measurements that span a wide range of operating conditions. The simulated controller response accurately reproduced the measured blade pitch and power. In conclusion, the structural and blade loads and spectra of platform motion agree well with the measured data.« less

  11. Late Quaternary uplift rate across the Shimokita peninsula, northeastern Japan forearc

    NASA Astrophysics Data System (ADS)

    Matsu'Ura, T.

    2009-12-01

    I estimated the late Quaternary uplift rate across the northeastern Japan forearc (Shimokita peninsula) by using the height distribution of MIS 5.5 marine terraces as determined from tephra and cryptotephra stratigraphy. The heights of inner-margins (shoreline angles) of the MIS 5.5 marine terrace surface were previously reported to be 43-45 m and 30 m around Shiriyazaki and Gamanosawa, respectively. These heights decrease westward and are possibly due to a west-dipping offshore fault. But in some places, the heights of terrace inner-margins are probably overestimated by thick sediments. I found the MIS 5.5 wave-cut platform which is overlain by gravels and loess deposits containing a basal Toya tephra horizon (MIS 5.4) at Shiriyazaki by boring. The MIS 5.5 wave-cut platform (paleo sea level) is about 25 m above sea level, nearly half of the reported height of the terrace inner-margin. My result shows that the late Quaternary uplift rate across the Shimokita peninsula should be reconsidered. Further studies are also required whether or not the intra-plate (offshore) fault is a factor of the forearc uplifting at the peninsula. This research project has been conducted under the research contract with Nuclear and Industrial Safety Agency (NISA).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developedmore » to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.« less

  13. The 2004 Sumatra tsunami in the southeastern Pacific: Coastal and offshore measurements and numerical modeling

    NASA Astrophysics Data System (ADS)

    Moore, C. W.; Eble, M. C.; Rabinovich, A.; Titov, V. V.

    2016-12-01

    The Mw = 9.3 megathrust earthquake of December 26, 2004 off the coast of Sumatra generated a catastrophic tsunami that crossed the Indian Ocean and was widespread in the Pacific and Atlantic oceans being recorded by a great number of coastal tide gauges located in 15-25 thousand kilometers from the source area. The data from these instruments throughout the world oceans enabled estimates of various statistical parameters and energy decay of this event. However, only very few open-ocean records of this tsunami had been obtained. A unique high-resolution record of this tsunami from DART 32401 located offshore of northern Chile, combined with the South American mainland tide gauge measurements and the data from three island stations (San Felix, Juan Fernandez and Easter) enabled us to examine far-field characteristics of the event in the southeastern Pacific and to compare the results of global numerical simulations with observations. The maximum wave height measured at DART 32401 was only 1.8 cm but the signal was very clear and reliable. Despite their small heights, the waves demonstrated consistent spatial and temporal structure and good agreement with DART 46405/NeMO records in the NE Pacific. The travel time from the source area to DART 32401 was 25h 55min in good agreement with the computed travel time (25h 45min) and consistent with the times obtained from the nearby coastal tide gauges. This agreement was much better than it followed from the direct travel time estimation based classical kinematic theory that gave the travel time approximately 1.5 hrs shorter than observed. The later actual arrival of the 2004 tsunami waves corresponds to the most energetically economic path along the mid-ocean ridge wave-guides, which is distinctly reproduced by the numerical model. Also, the numerical model described well the frequency content, amplitudes and general structure of the observed waves at this DART and the three island stations. Maximum wave heights in this region were identified at Arica (72 cm) and Callao (65 cm). The open-ocean and coastal records indicate that the 2004 tsunami wave energy occupied the period band of 6 min to 3.7 hrs with the main energy concentrated at periods of 30 to 70 min and peak values at 40 min.

  14. Evaluation of Tsunami Run-Up on Coastal Areas at Regional Scale

    NASA Astrophysics Data System (ADS)

    González, M.; Aniel-Quiroga, Í.; Gutiérrez, O.

    2017-12-01

    Tsunami hazard assessment is tackled by means of numerical simulations, giving as a result, the areas flooded by tsunami wave inland. To get this, some input data is required, i.e., the high resolution topobathymetry of the study area, the earthquake focal mechanism parameters, etc. The computational cost of these kinds of simulations are still excessive. An important restriction for the elaboration of large scale maps at National or regional scale is the reconstruction of high resolution topobathymetry on the coastal zone. An alternative and traditional method consists of the application of empirical-analytical formulations to calculate run-up at several coastal profiles (i.e. Synolakis, 1987), combined with numerical simulations offshore without including coastal inundation. In this case, the numerical simulations are faster but some limitations are added as the coastal bathymetric profiles are very simply idealized. In this work, we present a complementary methodology based on a hybrid numerical model, formed by 2 models that were coupled ad hoc for this work: a non-linear shallow water equations model (NLSWE) for the offshore part of the propagation and a Volume of Fluid model (VOF) for the areas near the coast and inland, applying each numerical scheme where they better reproduce the tsunami wave. The run-up of a tsunami scenario is obtained by applying the coupled model to an ad-hoc numerical flume. To design this methodology, hundreds of worldwide topobathymetric profiles have been parameterized, using 5 parameters (2 depths and 3 slopes). In addition, tsunami waves have been also parameterized by their height and period. As an application of the numerical flume methodology, the coastal parameterized profiles and tsunami waves have been combined to build a populated database of run-up calculations. The combination was tackled by means of numerical simulations in the numerical flume The result is a tsunami run-up database that considers real profiles shape, realistic tsunami waves, and optimized numerical simulations. This database allows the calculation of the run-up of any new tsunami wave by interpolation on the database, in a short period of time, based on the tsunami wave characteristics provided as an output of the NLSWE model along the coast at a large scale domain (regional or National scale).

  15. Wave ensemble forecast in the Western Mediterranean Sea, application to an early warning system.

    NASA Astrophysics Data System (ADS)

    Pallares, Elena; Hernandez, Hector; Moré, Jordi; Espino, Manuel; Sairouni, Abdel

    2015-04-01

    The Western Mediterranean Sea is a highly heterogeneous and variable area, as is reflected on the wind field, the current field, and the waves, mainly in the first kilometers offshore. As a result of this variability, the wave forecast in these regions is quite complicated to perform, usually with some accuracy problems during energetic storm events. Moreover, is in these areas where most of the economic activities take part, including fisheries, sailing, tourism, coastal management and offshore renewal energy platforms. In order to introduce an indicator of the probability of occurrence of the different sea states and give more detailed information of the forecast to the end users, an ensemble wave forecast system is considered. The ensemble prediction systems have already been used in the last decades for the meteorological forecast; to deal with the uncertainties of the initial conditions and the different parametrizations used in the models, which may introduce some errors in the forecast, a bunch of different perturbed meteorological simulations are considered as possible future scenarios and compared with the deterministic forecast. In the present work, the SWAN wave model (v41.01) has been implemented for the Western Mediterranean sea, forced with wind fields produced by the deterministic Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS). The wind fields includes a deterministic forecast (also named control), between 11 and 21 ensemble members, and some intelligent member obtained from the ensemble, as the mean of all the members. Four buoys located in the study area, moored in coastal waters, have been used to validate the results. The outputs include all the time series, with a forecast horizon of 8 days and represented in spaghetti diagrams, the spread of the system and the probability at different thresholds. The main goal of this exercise is to be able to determine the degree of the uncertainty of the wave forecast, meaningful between the 5th and the 8th day of the prediction. The information obtained is then included in an early warning system, designed in the framework of the European project iCoast (ECHO/SUB/2013/661009) with the aim of set alarms in coastal areas depending on the wave conditions, the sea level, the flooding and the run up in the coast.

  16. Integrated Land- and Underwater-Based Sensors for a Subduction Zone Earthquake Early Warning System

    NASA Astrophysics Data System (ADS)

    Pirenne, B.; Rosenberger, A.; Rogers, G. C.; Henton, J.; Lu, Y.; Moore, T.

    2016-12-01

    Ocean Networks Canada (ONC — oceannetworks.ca/ ) operates cabled ocean observatories off the coast of British Columbia (BC) to support research and operational oceanography. Recently, ONC has been funded by the Province of BC to deliver an earthquake early warning (EEW) system that integrates offshore and land-based sensors to deliver alerts of incoming ground shaking from the Cascadia Subduction Zone. ONC's cabled seismic network has the unique advantage of being located offshore on either side of the surface expression of the subduction zone. The proximity of ONC's sensors to the fault can result in faster, more effective warnings, which translates into more lives saved, injuries avoided and more ability for mitigative actions to take place.ONC delivers near real-time data from various instrument types simultaneously, providing distinct advantages to seismic monitoring and earthquake early warning. The EEW system consists of a network of sensors, located on the ocean floor and on land, that detect and analyze the initial p-wave of an earthquake as well as the crustal deformation on land during the earthquake sequence. Once the p-wave is detected and characterized, software systems correlate the data streams of the various sensors and deliver alerts to clients through a Common Alerting Protocol-compliant data package. This presentation will focus on the development of the earthquake early warning capacity at ONC. It will describe the seismic sensors and their distribution, the p-wave detection algorithms selected and the overall architecture of the system. It will further overview the plan to achieve operational readiness at project completion.

  17. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan

    USGS Publications Warehouse

    Nevers, Meredith B.; Whitman, Richard L.

    2005-01-01

    Predictive modeling for Escherichia coli concentrations at effluent-dominated beaches may be a favorable alternative to current, routinely criticized monitoring standards. The ability to model numerous beaches simultaneously and provide real-time data decreases cost and effort associated with beach monitoring. In 2004, five Lake Michigan beaches and the nearby Little Calumet River outfall were monitored for E. coli 7 days a week; on nine occasions, samples were analyzed for coliphage to indicate a sewage source. Ambient lake, river, and weather conditions were measured or obtained from independent monitoring sources. Positive tests for coliphage analysis indicated sewage was present in the river and on bathing beaches following heavy rainfall. Models were developed separately for days with prevailing onshore and offshore winds due to the strong influence of wind direction in determining the river's impact on the beaches. Using regression modeling, it was determined that during onshore winds, E. coli   could be adequately predicted using wave height, lake chlorophyll and turbidity, and river turbidity (R2=0.635, N=94); model performance decreased for offshore winds using wave height, wave period, and precipitation (R2=0.320, N=124). Variation was better explained at individual beaches. Overall, the models only failed to predict E. coli levels above the EPA closure limit (235 CFU/100 ml) on five of eleven occasions, indicating that the model is a more reliable alternative to the monitoring approach employed at most recreational beaches.

  18. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion

    USGS Publications Warehouse

    Pecher, I.A.; Minshull, T.A.; Singh, S.C.; von Huene, Roland E.

    1996-01-01

    Much of our knowledge of the worldwide distribution of submarine gas hydrates comes from seismic observations of Bottom Simulating Reflectors (BSRs). Full waveform inversion has proven to be a reliable technique for studying the fine structure of BSRs using the compressional wave velocity. We applied a non-linear full waveform inversion technique to a BSR at a location offshore Peru. We first determined the large-scale features of seismic velocity variations using a statistical inversion technique to maximise coherent energy along travel-time curves. These velocities were used for a starting velocity model for the full waveform inversion, which yielded a detailed velocity/depth model in the vicinity of the BSR. We found that the data are best fit by a model in which the BSR consists of a thin, low-velocity layer. The compressional wave velocity drops from 2.15 km/s down to an average of 1.70 km/s in an 18m thick interval, with a minimum velocity of 1.62 km/s in a 6 m interval. The resulting compressional wave velocity was used to estimate gas content in the sediments. Our results suggest that the low velocity layer is a 6-18 m thick zone containing a few percent of free gas in the pore space. The presence of the BSR coincides with a region of vertical uplift. Therefore, we suggest that gas at this BSR is formed by a dissociation of hydrates at the base of the hydrate stability zone due to uplift and subsequently a decrease in pressure.

  19. Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin

    2017-04-01

    Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the continental margin offshore SW Taiwan. This observation could be linked to the presence of numerous volcanic outcrops in the shallow marine sediments is the OT area. By comparing the 1-D velocity shear-wave profile with the previous studies, we found that the low Vs area could be associated with a sedimentary layer filled with gas in the OT and the creeping area along the continental margin. The Vs range estimated from our study also shows a good agreement with the velocity profile obtained based on the OBS seismic refraction experiment, suggesting that this method could be a more economical and effective way for the acquisition of the Vs parameters.

  20. Onshore–offshore gradient in metacommunity turnover emerges only over macroevolutionary time-scales

    PubMed Central

    Tomašových, Adam; Dominici, Stefano; Zuschin, Martin; Merle, Didier

    2014-01-01

    Invertebrate lineages tend to originate and become extinct at a higher rate in onshore than in offshore habitats over long temporal durations (more than 10 Myr), but it remains unclear whether this pattern scales down to durations of stages (less than 5 Myr) or even sequences (less than 0.5 Myr). We assess whether onshore–offshore gradients in long-term turnover between the tropical Eocene and the warm-temperate Plio-Pleistocene can be extrapolated from gradients in short-term turnover, using abundances of molluscan species from bulk samples in the northeast Atlantic Province. We find that temporal turnover of metacommunities does not significantly decline with depth over short durations (less than 5 Myr), but significantly declines with depth between the Eocene and Plio-Pleistocene (approx. 50 Myr). This decline is determined by a higher onshore extinction of Eocene genera and families, by a higher onshore variability in abundances of genera and families, and by an onshore expansion of genera and families that were frequent offshore in the Eocene. Onshore–offshore decline in turnover thus emerges only over long temporal durations. We suggest that this emergence is triggered by abrupt and spatially extensive climatic or oceanographic perturbations that occurred between the Eocene and Plio-Pleistocene. Plio-Pleistocene metacommunities show a high proportion of bathymetric generalists, in contrast to Eocene metacommunities. Accordingly, the net cooling and weaker thermal gradients may have allowed offshore specialists to expand into onshore habitats and maintain their presence in offshore habitats. PMID:25297863

  1. California State Waters Map Series: Drakes Bay and vicinity, California

    USGS Publications Warehouse

    Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik N.; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.

    2015-01-01

    Sediment transport in the map area largely is controlled by surface waves and tidal currents in the nearshore and, at depths greater than 20 to 30 m, by tidal and subtidal currents. In the map area, nearshore littoral drift of sand and coarse sediment is to the south, owing to the dominant west-northwest swell direction, and scour from large waves and tidal currents removes and redistributes sediment over large areas of the inner shelf. Tidal currents are particularly strong over the shelf in the map area, and they dominate the current regime in the nearshore. Further offshore, bottom currents generally flow to the northwest, distributing finer grained sediment accordingly.

  2. Determination of Shear Wave Velocity in Offshore Terengganu for Ground Response Analysis

    NASA Astrophysics Data System (ADS)

    Mazlina, M.; Liew, M. S.; Adnan, A.; Harahap, I. S. H.; Hamid, N. A.

    2018-04-01

    Amount of vibration received in any location can be analysed by conducting ground response analysis. Even though there are three different methods available in this analysis, One Dimensional ground response analysis method has been widely used. Shear wave velocity is one of the key parameters in this analysis. A lot of correlations have been formulated to determine shear wave velocity with cone penetration test. In this study, correlations developed for Quaternary geological age have been selected. Six equations have been adopted comprise of all soil and soil type dependent correlations. Two platforms sites consist of clay and combination of clay and sand have been analysed. Shear velocity to be used in ground response analysis has been obtained. Results have been illustrated in graphs where shear velocity for each case has been plotted. In avoiding under or over predicting of shear wave velocity, the average of all soil and soil type dependent results will be used as final Vs value.

  3. Reduction in predicted survival times in cold water due to wind and waves.

    PubMed

    Power, Jonathan; Simões Ré, António; Barwood, Martin; Tikuisis, Peter; Tipton, Michael

    2015-07-01

    Recent marine accidents have called into question the level of protection provided by immersion suits in real (harsh) life situations. Two immersion suit studies, one dry and the other with 500 mL of water underneath the suit, were conducted in cold water with 10-12 males in each to test body heat loss under three environmental conditions: calm, as mandated for immersion suit certification, and two combinations of wind plus waves to simulate conditions typically found offshore. In both studies mean skin heat loss was higher in wind and waves vs. calm; deep body temperature and oxygen consumption were not different. Mean survival time predictions exceeded 36 h for all conditions in the first study but were markedly less in the second in both calm and wind and waves. Immersion suit protection and consequential predicted survival times under realistic environmental conditions and with leakage are reduced relative to calm conditions. Copyright © 2015. Published by Elsevier Ltd.

  4. Dynamic Performance Investigation of A Spar-Type Floating Wind Turbine Under Different Sea Conditions

    NASA Astrophysics Data System (ADS)

    Wang, Han; Hu, Zhi-qiang; Meng, Xiang-yin

    2018-06-01

    Both numerical calculation and model test are important techniques to study and forecast the dynamic responses of the floating offshore wind turbine (FOWT). However, both the methods have their own limitations at present. In this study, the dynamic responses of a 5 MW OC3 spar-type floating wind turbine designed for a water depth of 200 m are numerically investigated and validated by a 1:50 scaled model test. Moreover, the discrepancies between the numerical calculations and model tests are obtained and discussed. According to the discussions, it is found that the surge and pitch are coupled with the mooring tensions, but the heave is independent of them. Surge and pitch are mainly induced by wave under wind wave conditions. Wind and current will induce the low-frequency average responses, while wave will induce the fluctuation ranges of the responses. In addition, wave will induce the wavefrequency responses but wind and current will restrain the ranges of the responses.

  5. Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-sheng; She, Xiao-he; He, Yan-ping; Yang, Jian-min; Peng, Tao; Kou, Yu-feng

    2018-04-01

    Deep-water regions often have winds favorable for offshore wind turbines, and floating turbines currently show the greatest potential to exploit such winds. This work established proper scaling laws for model tests, which were then implemented in the construction of a model wind turbine with optimally designed blades. The aerodynamic, hydrodynamic, and elastic characteristics of the proposed new multi-column tension-leg-type floating wind turbine (WindStar TLP system) were explored in the wave tank testing of a 1:50 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Tests were conducted under conditions of still water, white noise waves, irregular waves, and combined wind, wave, and current loads. The results established the natural periods of the motion, damping, motion response amplitude operators, and tendon tensions of the WindStar TLP system under different environmental conditions, and thus could serve as a reference for further research. Key words: floating wind turbine, model test, WindStar TLP, dynamic response

  6. A method for determining average beach slope and beach slope variability for U.S. sandy coastlines

    USGS Publications Warehouse

    Doran, Kara S.; Long, Joseph W.; Overbeck, Jacquelyn R.

    2015-01-01

    The U.S. Geological Survey (USGS) National Assessment of Hurricane-Induced Coastal Erosion Hazards compares measurements of beach morphology with storm-induced total water levels to produce forecasts of coastal change for storms impacting the Gulf of Mexico and Atlantic coastlines of the United States. The wave-induced water level component (wave setup and swash) is estimated by using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon and others (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. For instance, seasonal and storm-induced changes in beach slope can lead to differences on the order of 1 meter (m) in wave-induced water level elevation, making accurate specification of this parameter and its associated uncertainty essential to skillful forecasts of coastal change. A method for calculating spatially and temporally averaged beach slopes is presented here along with a method for determining total uncertainty for each 200-m alongshore section of coastline.

  7. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael M. McCall; William M. Bishop; Marcus Krekel

    2005-05-31

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly whenmore » located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. Operating costs of a salt cavern terminal are lower than tank based terminals because ''boil off'' is eliminated and maintenance costs of caverns are lower than LNG tanks. Phase II included the development of offshore mooring designs, wave tank tests, high pressure LNG pump field tests, heat exchanger field tests, and development of a model offshore LNG facility and cavern design. Engineers designed a model facility, prepared equipment lists, and confirmed capital and operating costs. In addition, vendors quoted fabrication and installation costs, confirming that an offshore salt cavern based LNG terminal would have lower capital and operating costs than a similarly sized offshore tank based terminal. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or purposeful damage, and much more acceptable to the community. More than thirty industry participants provided cost sharing, technical expertise, and guidance in the conduct and evaluation of the field tests, facility design and operating and cost estimates. Their close participation has accelerated the industry's acceptance of the conclusions of this research. The industry participants also developed and submitted several alternative designs for offshore mooring and for high pressure LNG heat exchangers in addition to those that were field tested in this project. HNG Storage, a developer, owner, and operator of natural gas storage facilities, and a participant in the DOE research has announced they will lead the development of the first offshore salt cavern based LNG import facility. Which will be called the Freedom LNG Terminal. It will be located offshore Louisiana, and is expected to be jointly developed with other members of the research group yet to be named. An offshore port license application is scheduled to be filed by fourth quarter 2005 and the terminal could be operational by 2009. This terminal allows the large volume importation of LNG without disrupting coastal port operations by being offshore, out of sight of land.« less

  8. Intrawave sand suspension in the shoaling and surf zone of a field-scale laboratory beach

    NASA Astrophysics Data System (ADS)

    Brinkkemper, J. A.; de Bakker, A. T. M.; Ruessink, B. G.

    2017-01-01

    Short-wave sand transport in morphodynamic models is often based solely on the near-bed wave-orbital motion, thereby neglecting the effect of ripple-induced and surface-induced turbulence on sand transport processes. Here sand stirring was studied using measurements of the wave-orbital motion, turbulence, ripple characteristics, and sand concentration collected on a field-scale laboratory beach under conditions ranging from irregular nonbreaking waves above vortex ripples to plunging waves and bores above subdued bed forms. Turbulence and sand concentration were analyzed as individual events and in a wave phase-averaged sense. The fraction of turbulence events related to suspension events is relatively high (˜50%), especially beneath plunging waves. Beneath nonbreaking waves with vortex ripples, the sand concentration close to the bed peaks right after the maximum positive wave-orbital motion and shows a marked phase lag in the vertical, although the peak in concentration at higher elevations does not shift to beyond the positive to negative flow reversal. Under plunging waves, concentration peaks beneath the wavefront without any notable phase lags in the vertical. In the inner-surf zone (bores), the sand concentration remains phase coupled to positive wave-orbital motion, but the concentration decreases with distance toward the shoreline. On the whole, our observations demonstrate that the wave-driven suspended load transport is onshore and largest beneath plunging waves, while it is small and can also be offshore beneath shoaling waves. To accurately predict wave-driven sand transport in morphodynamic models, the effect of surface-induced turbulence beneath plunging waves should thus be included.

  9. A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015-2030

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Stehly, Tyler

    The potential for cost reduction and economic viability for offshore wind varies considerably within the United States. This analysis models the cost impact of a range of offshore wind locational cost variables across more than 7,000 potential coastal sites in the United States' offshore wind resource area. It also assesses the impact of over 50 technology innovations on potential future costs between 2015 and 2027 (Commercial Operation Date) for both fixed-bottom and floating wind systems. Comparing these costs to an initial assessment of local avoided generating costs, this analysis provides a framework for estimating the economic potential for offshore wind.more » Analyzing economic potential within this framework can help establish a refined understanding across industries of the technology and site-specific risks and opportunities associated with future offshore wind development. The findings from the original report indicate that under the modeled scenario, offshore wind can be expected to achieve significant cost reductions and may approach economic viability in some parts of the United States within the next 15 years.« less

  10. Evaluation of offshore stocking of Lake Trout in Lake Ontario

    USGS Publications Warehouse

    Lantry, B.F.; O'Gorman, R.; Strang, T.G.; Lantry, J.R.; Connerton, M.J.; Schanger, T.

    2011-01-01

    Restoration stocking of hatchery-reared lake trout Salvelinus namaycush has occurred in Lake Ontario since 1973. In U.S. waters, fish stocked through 1990 survived well and built a large adult population. Survival of yearlings stocked from shore declined during 1990–1995, and adult numbers fell during 1998–2005. Offshore stocking of lake trout was initiated in the late 1990s in response to its successful mitigation of predation losses to double-crested cormorants Phalacrocorax auritus and the results of earlier studies that suggested it would enhance survival in some cases. The current study was designed to test the relative effectiveness of three stocking methods at a time when poststocking survival for lake trout was quite low and losses due to fish predators was a suspected factor. The stocking methods tested during 2000–2002 included May offshore, May onshore, and June onshore. Visual observations during nearshore stockings and hydroacoustic observations of offshore stockings indicated that release methods were not a direct cause of fish mortality. Experimental stockings were replicated for 3 years at one site in the southwest and for 2 years at one site in the southeast. Offshore releases used a landing craft to transport hatchery trucks from 3 to 6 km offshore out to 55–60-m-deep water. For the southwest site, offshore stocking significantly enhanced poststocking survival. Among the three methods, survival ratios were 1.74 : 1.00 : 1.02 (May offshore : May onshore : June onshore). Although not statistically significant owing to the small samples, the trends were similar for the southeast site, with survival ratios of 1.67 : 1.00 : 0.72. Consistent trends across years and sites indicated that offshore stocking of yearling lake trout during 2000–2002 provided nearly a twofold enhancement in survival; however, this increase does not appear to be great enough to achieve the 12-fold enhancement necessary to return population abundance to restoration targets.

  11. California State Waters Map Series: offshore of Coal Oil Point, California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Dieter, Bryan E.; Conrad, James E.; Lorenson, T.D.; Krigsman, Lisa M.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Finlayson, David P.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Leifer, Ira; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Hostettler, Frances D.; Peters, Kenneth E.; Kvenvolden, Keith A.; Rosenbauer, Robert J.; Fong, Grace; Johnson, Samuel Y.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Coal Oil Point map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.0 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The cities of Goleta and Isla Vista, the main population centers in the map area, are in the western part of a contiguous urban area that extends eastward through Santa Barbara to Carpinteria. This urban area is on the south flank of the east-west-trending Santa Ynez Mountains, on coalescing alluvial fans and uplifted marine terraces underlain by folded and faulted Miocene bedrock. In the map area, the relatively low-relief, elevated coastal bajada narrows from about 2.5 km wide in the east to less than 500 m wide in the west. Several beaches line the actively utilized coastal zone, including Isla Vista County Park beach, Coal Oil Point Reserve, and Goleta Beach County Park. The beaches are subject to erosion each winter during storm-wave attack, and then they undergo gradual recovery or accretion during the more gentle wave climate of the late spring, summer, and fall months. The Offshore of Coal Oil Point map area lies in the central part of the Santa Barbara littoral cell, which is characterized by littoral drift to the east-southeast. Longshore drift rates have been reported to range from about 160,000 to 800,000 tons/yr, averaging 400,000 tons/yr. Sediment supply to the western and central parts of the littoral cell, including the map area, is largely from relatively small transverse coastal watersheds. Within the map area, these coastal watersheds include (from east to west) Las Llagas Canyon, Gato Canyon, Las Varas Canyon, Dos Pueblos Canyon, Eagle Canyon, Tecolote Canyon, Winchester Canyon, Ellwood Canyon, Glen Annie Canyon, and San Jose Creek. The Santa Ynez and Santa Maria Rivers, the mouths of which are about 100 to 140 km northwest of the map area, are not significant sediment sources because Point Conception and Point Arguello provide obstacles to downcoast sediment transport and also because much of their sediment load is trapped in dams. The Ventura and Santa Clara Rivers, the mouths of which are about 45 to 55 km southeast of the map area, are much larger sediment sources. Still farther east, eastward-moving sediment in the littoral cell is trapped by Hueneme and Mugu Canyons and then transported to the deep-water Santa Monica Basin. The offshore part of the map area consists of a relatively flat and shallow continental shelf, which dips gently seaward (about 0.8° to 1.0°) so that water depths at the shelf break, roughly coincident with the California’s State Waters limit, are about 90 m. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and northwest by Point Conception and from the south and southwest by offshore islands and banks. The shelf is underlain by variable amounts of upper Quaternary marine and fluvial sediments deposited as sea level fluctuated in the late Pleistocene. The large (130 km2) Goleta landslide complex lies along the shelf break in the southern part of the map area. This compound slump complex may have been initiated more than 200,000 years ago, but it also includes three recent failures that may have been generated between 8,000 to 10,000 years ago. A local, 5- to 10-m-high tsunami may have been generated from these failure events. The map area has had a long history of hydrocarbon development, which began in 1928 with discovery of the Ellwood oil field. Subsequent discoveries in the offshore include South Ellwood offshore oil field, Coal Oil Point oil field, and Naples oil and gas field. Development of South Ellwood offshore field began in 1966 from platform “Holly,” the last platform to be installed in California’s State Waters. The area also is known for “the world’s most spectacular marine hydrocarbon seeps,” and large tar seeps are exposed on beaches east of the mouth of Goleta Slough. Offshore seeps adjacent to South Ellwood oil field release about 40 tons per day of methane and about 19 tons per day of ethane, propane, butane, and higher hydrocarbons. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Coal Oil Point map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats, which lie primarily within the Shelf (continental shelf) but also partly within the Flank (basin flank or continental slope) megahabitats, range from soft, unconsolidated sediment to hard sedimentary bedrock. This heterogeneous seafloor provides promising habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms.

  12. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2014-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  13. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  14. Global climate change implications for coastal and offshore oil and gas development

    USGS Publications Warehouse

    Burkett, V.

    2011-01-01

    The discussion and debate about climate change and oil and gas resource development has generally focused on how fossil fuel use affects the Earth's climate. This paper explores how the changing climate is likely to affect oil and gas operations in low-lying coastal areas and the outer continental shelf. Oil and gas production in these regions comprises a large sector of the economies of many energy producing nations. Six key climate change drivers in coastal and marine regions are characterized with respect to oil and gas development: changes in carbon dioxide levels and ocean acidity, air and water temperature, precipitation patterns, the rate of sea level rise, storm intensity, and wave regime. These key drivers have the potential to independently and cumulatively affect coastal and offshore oil and gas exploration, production, and transportation, and several impacts of climate change have already been observed in North America. ?? 2011.

  15. Floating Offshore WTG Integrated Load Analysis & Optimization Employing a Tuned Mass Damper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Tsouroukdissian, Arturo; Lackner, Matt; Cross-Whiter, John

    2015-09-25

    Floating offshore wind turbines (FOWTs) present complex design challenges due to the coupled dynamics of the platform motion, mooring system, and turbine control systems, in response to wind and wave loading. This can lead to higher extreme and fatigue loads than a comparable fixed bottom or onshore system. Previous research[1] has shown the potential to reduced extreme and fatigue loads on FOWT using tuned mass dampers (TMD) for structural control. This project aims to reduce maximum loads using passive TMDs located at the tower top during extreme storm events, when grid supplied power for other controls systems may not bemore » available. The Alstom Haliade 6MW wind turbine is modelled on the Glosten Pelastar tension-leg platform (TLP). The primary objectives of this project are to provide a preliminary assessment of the load reduction potential of passive TMDs on real wind turbine and TLP designs.« less

  16. The influence of ice on southern Lake Michigan coastal erosion

    USGS Publications Warehouse

    Barnes, P.W.; Kempema, E.W.; Reimnitz, E.; McCormick, M.

    1994-01-01

    Coastal ice does not protect the coast but enhances erosion by displacing severe winter wave energy from the beach to the shoreface and by entraining and transporting sediment alongshore and offshore. Three aspects of winter ice in Lake Michigan were studied over a 3-year period and found to have an important influence on coastal sediment dynamics and the coastal sediment budget: (1) the influence of coastal ice on shoreface morphology, (2) the transport of littoral sediments by ice, and (3) the formation of anchor and underwater ice as a frequent and important event entraining and transporting sediment. The nearshore ice complex contains a sediment load (0.2 - 1.2 t/m of coast) that is roughly equivalent to the average amount of sand eroded from the coastal bluffs and to the amount of sand ice- rafted offshore to the deep lake basin each year. -from Authors

  17. Bathymetric Changes Shaped by Longshore Currents on a Natural Beach

    NASA Astrophysics Data System (ADS)

    Reilly, W. L.; Slinn, D.; Plant, N.

    2004-12-01

    The goal of the project is to simulate beach morphology on time scales of hours to days. Our approach is to develop finite difference solutions from a coupled modeling system consisting of existing nearshore circulation, wave, and sediment flux models. We initialize the model with bathymetry from a dense data set north of the pier at the Field Research Facility (FRF) in Duck, NC. We integrate the model system forward in time and compare the results of the hind-cast of the beach evolution with the field observations. The model domain extends 1000 meters in the alongshore direction and 500 meters in the cross-shore direction with 5 meter grid spacing. The bathymetry is interpolated and filtered from CRAB transects. A second-degree exponential smoothing method is used to return the cross-shore beach profile near the edges of the modeled domain back to the mean alongshore profile, because the circulation model implements periodic boundary conditions in the alongshore direction. The offshore wave height and direction are taken from the 8-meter bipod at the FRF and input to the wave-model, SWAN (Spectral Wave Nearshore), with a Gaussian-shaped frequency spectrum and a directional spreading of 5 degrees. A constant depth induced wave breaking parameter of 0.73 is used. The resulting calculated wave induced force per unit surface area (gradient of the radiation stress) output from SWAN is used to drive the currents in the circulation model. The circulation model is based on the free-surface non-linear shallow water equations and uses the fourth order compact scheme to calculate spatial derivatives and a third order Adams-Bashforth time discretization scheme. Free slip, symmetry boundary conditions are applied at both the shoreline and offshore boundaries. The time averaged sediment flux is calculated at each location after one hour of circulation. The sediment flux model is based on the approach of Bagnold and includes approximations for both bed-load and suspended load. The bathymetry is then updated by computing the divergence of the time averaged sediment fluxes. The process is then repeated using the updated bathymetry in both SWAN and the circulation model. The cycle continues for a simulation of 10 hours. The results of bathymetric change vary for different time-dependent wave conditions and initial bathymetric profiles. Typical results indicate that for wave heights on the order of one meter, shoreline advancement and sandbar evolution is observed on the order of tens of centimeters.

  18. Seasonal and spatial variations of macro- and megabenthic community characteristics in two sections of the East China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Li, Xinzheng; Ma, Lin; Dong, Dong; Kou, Qi; Sui, Jixing; Gan, Zhibin; Wang, Hongfa

    2017-09-01

    In spring and summer 2011, the macro- and megabenthic fauna in two sections of the East China Sea were investigated using an Agassiz net trawl to detect the seasonal and spatial variations of benthic community characteristics and the relation to environmental variables. The total number of species increased slightly from spring (131 species) to summer (133) whereas the percentage of Mollusca decreased significantly. The index of relative importance (IRI) indicated that the top five important species changed completely from spring to summer. Species number, abundance and biomass in summer were significantly higher than in spring, but no significant difference was observed among areas (coastal, transitional and oceanic areas, divided basically from inshore to offshore). Species richness ( d), diversity ( H') and evenness ( J') showed no significant seasonal or spatial variations. Cluster analysis and nMDS ordination identified three benthic communities from inshore to offshore, corresponding to the three areas. Analysis of Similarity (ANOSIM) indicated the overall significant difference in community structure between seasons and among areas. K-dominance curves revealed the high intrinsic diversity in the offshore area. Canonical correspondence analysis showed that the coastal community was positively correlated to total nitrogen and total organic carbon in spring, but negatively in summer; oceanic community was positively correlated to total nitrogen and total organic carbon in both seasons. Species such as Coelorhynchus multispinulosus, Neobythites sivicola, Lepidotrigla alata, Solenocera melantho, Parapenaeus fissuroides, Oratosquilla gonypetes and Spiropagurus spiriger occurred exclusively in the offshore oceanic area and their presence may reflect the influence of the offshore Kuroshio Current.

  19. Development of Decision Analysis Specifically for Arctic Offshore Drilling Islands.

    DTIC Science & Technology

    1985-12-01

    the decision analysis method will - give tradeoffs between costs and design wave height, production and depth • :of water for an oil platform , etc...optimizing the type of platform that is best suited for a particular site has become an extremely difficult decision. Over fifty- one different types of...drilling and production platforms have been identified for the Arctic environment, with new concepts being developed - every year, Boslov et al (198j

  20. On the Holocene evolution of the Ayeyawady megadelta

    NASA Astrophysics Data System (ADS)

    Giosan, Liviu; Naing, Thet; Tun, Myo Min; Clift, Peter D.; Filip, Florin; Constantinescu, Stefan; Khonde, Nitesh; Blusztajn, Jerzy; Buylaert, Jan-Pieter; Stevens, Thomas; Thwin, Swe

    2018-06-01

    The Ayeyawady delta is the last Asian megadelta whose evolution has remained essentially unexplored so far. Unlike most other deltas across the world, the Ayeyawady has not yet been affected by dam construction, providing a unique view on largely natural deltaic processes benefiting from abundant sediment loads affected by tectonics and monsoon hydroclimate. To alleviate the information gap and provide a baseline for future work, here we provide a first model for the Holocene development of this megadelta based on drill core sediments collected in 2016 and 2017, dated with radiocarbon and optically stimulated luminescence, together with a reevaluation of published maps, charts and scientific literature. Altogether, these data indicate that Ayeyawady is a mud-dominated delta with tidal and wave influences. The sediment-rich Ayeyawady River built meander belt alluvial ridges with avulsive characters. A more advanced coast in the western half of the delta (i.e., the Pathein lobe) was probably favored by the more western location of the early course of the river. Radiogenic isotopic fingerprinting of the sediment suggests that the Pathein lobe coast does not receive significant sediment from neighboring rivers. However, the eastern region of the delta (i.e., Yangon lobe) is offset inland and extends east into the mudflats of the Sittaung estuary. Wave-built beach ridge construction during the late Holocene, similar to several other deltas across the Indian monsoon domain, suggests a common climatic control on monsoonal delta morphodynamics through variability in discharge, changes in wave climate or both. Correlation of the delta morphological and stratigraphic architecture information on land with the shelf bathymetry, as well as its tectonic, sedimentary and hydrodynamic characteristics, provides insight on the peculiar growth style of the Ayeyawady delta. The offset between the western Pathein lobe and the eastern deltaic coast appears to be driven by tectonic-hydrodynamic feedbacks as the extensionally lowered shelf block of the Gulf of Mottama amplifies tidal currents relative to the western part of the shelf. This situation probably activates a perennial shear front between the two regions that acts as a leaky energy fence. Just as importantly, the strong currents in the Gulf of Mottama act as an offshore-directed tidal pump that helps build the deep mid-shelf Mottama clinoform with mixed sediments from the Ayeyawady, Sittaung and Thanlwin rivers. The highly energetic tidal, wind and wave regime of the northern Andaman Sea thus exports most sediment offshore despite the large load of the Ayeyawady River.

Top