Filonova, A A; Seregin, V A
2014-01-01
For obtaining the integral information about the current radiation situation in the sea offshore waters of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management "SevRAO" in the Andreeva Bay and in the settle Gremikha with a purpose of a comprehensive assessment of its condition there was performed radiation-ecological monitoring of the adjacent sea offshore waters of the TWSF. It was shown that in the territory of industrial sites of the TWSF as a result of industrial activity there are localized areas of pollution by man-made radionuclides. As a result of leaching of radionuclides by tidal stream, snowmelt and rainwater radioactive contamination extends beyond the territory of the sanitary protection zone and to the coastal sea offshore waters. To confirm the coastal pollution of the sea offshore waters the levels of mobility of 90Sr and 137Cs in environmental chains and bond strength of them with the soil and benthal deposits were clarified by determining with the method of detection of the forms of the presence of radionuclides in these media. There was established a high mobility of 137Cs and 90Sr in soils and benthal deposits (desorption coefficient (Kd) of 137Cs and 90Sr (in soils - 0.56 and 0.98), in the sediments - 0.82). The migration of radionuclides in environmental chains can lead to the contamination of the environment, including the sea offshore waters.
Impact of ERTS-1 images on management of New Jersey's coastal zone
NASA Technical Reports Server (NTRS)
Feinberg, E. B.; Yunghans, R. S.; Stitt, J. A.; Mairs, R. L.
1974-01-01
The thrust of New Jersey's ERTS investigation is development of procedures for operational use of ERTS-1 data by the Department of Environmental Protection in the management of the State's coastal zone. Four major areas of concern were investigated: detection of land use changes in the coastal zone; monitoring of offshore waste disposal; siting of ocean outfalls; and allocation of funds for shore protection. ERTS imagery was not useful for shore protection purposes; it was of limited practical value in the evaluation of offshore waste disposal and ocean outfall siting. However, ERTS imagery shows great promise for operational detection of land use changes in the coastal zone. Some constraints for practical change detection have been identified.
Waste management practices in the Gulf of Suez - Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghzaly, S.M.; Binegar, J.S.
1996-12-31
The Gulf of Suez Petroleum Company (GUPCO) is the largest offshore oil producing company in Egypt. GUPCO currently produces 400,000 BOPD from over 350 wells supported by 87 offshore producing platforms. As a leader of the Egyptian petroleum industry, GUPCO established within its strategies and goals a separate category covering safety, health and Protection of the environment. This step was recognized and emphasized the importance of GUPCO`s role in protecting the Egyptian environment while producing oil and natural gas. This paper discusses the existing waste management practices of the Gulf of Suez Petroleum Company which were put into place tomore » protect the Egyptian environment in the Gulf of Suez-Egypt and GUPCO`s associated operations.« less
A Review on overboard CEOR discharged produced water treatment and remediation
NASA Astrophysics Data System (ADS)
Rawindran, H.; Krishnan, S.; Sinnathambi, C. M.
2017-06-01
Produced water is a waste by-product generated during oil and gas recovery operations. It contains the mixture of organic and inorganic compounds. Produced water management is a challenge faced by the petroleum practitioners worldwide. Build-up of chemical wastes from produced water causes huge footprint, which results in high CapEx and OpEx. Different technologies are practiced by various practitioners to treat the produced waste water. However, the constituents removed by each technology and the degree of organic compound removal has to be considered to identify the potential and effective treatment technologies for offshore industrial applications. Current produced water technologies and their successful applications have advantages and disadvantages and can be ranked on the basis of several factors, such as their discharge limit into water bodies, reinjection in producing well, or for any miscellaneous beneficial use. This paper attempts to provide a review of existing physical and chemical treatment technologies used for management of produced water. Based on our analysis, suitable methods will be recommended for offshore waste water treatment technologies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? 250.248 Section 250.248 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHEL...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? 250.217 Section 250.217 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans...
30 CFR 250.1304 - How will MMS require unitization?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS require unitization? 250.1304 Section 250.1304 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... proposed unit area is necessary to prevent waste, conserve natural resources of the OCS, or protect...
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER...., service bases and mud company docks). (1) Indicate whether the onshore support facilities are existing, to... wastes not specifically addressed in the relevant National Pollution Discharge Elimination System (NPDES...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER...., service bases and mud company docks). (1) Indicate whether the onshore support facilities are existing, to... wastes not specifically addressed in the relevant National Pollution Discharge Elimination System (NPDES...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER...., service bases and mud company docks). (1) Indicate whether the onshore support facilities are existing, to... wastes not specifically addressed in the relevant National Pollution Discharge Elimination System (NPDES...
Code of Federal Regulations, 2013 CFR
2013-07-01
... OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... activities (e.g., service bases and mud company docks). (1) Indicate whether the onshore support facilities... relevant National Pollution Discharge Elimination System (NPDES) permit. (d) Waste disposal. A description...
Code of Federal Regulations, 2014 CFR
2014-07-01
... OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... activities (e.g., service bases and mud company docks). (1) Indicate whether the onshore support facilities... relevant National Pollution Discharge Elimination System (NPDES) permit. (d) Waste disposal. A description...
Code of Federal Regulations, 2012 CFR
2012-07-01
... OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... activities (e.g., service bases and mud company docks). (1) Indicate whether the onshore support facilities... relevant National Pollution Discharge Elimination System (NPDES) permit. (d) Waste disposal. A description...
Comparative management of offshore posidonia residues: composting vs. energy recovery.
Cocozza, Claudio; Parente, Angelo; Zaccone, Claudio; Mininni, Carlo; Santamaria, Pietro; Miano, Teodoro
2011-01-01
Residues of the marine plant posidonia (Posidonia oceanica, PO) beached in tourist zones represent a great environmental, economical, social and hygienic problem in the Mediterranean Basin, in general, and in the Apulia Region in particular, because of the great disturb to the bathers and population, and the high costs that the administrations have to bear for their removal and disposal. In the present paper, Authors determined the heating values of leaves and fibres of PO, the main offshore residues found on beaches, and, meantime, composted those residues with mowing and olive pruning wood. The final composts were characterized for pH, electrical conductivity, elemental composition, dynamic respiration index, phytotoxicity, fluorescence and infrared spectroscopic fingerprints. The aim of the paper was to investigate the composting and energy recovery of PO leaves and fibres in order to suggest alternative solutions to the landfill when offshore residues have to be removed from recreational beaches. The fibrous portion of PO residues showed heating values close to those of other biofuels, thus suggesting a possible utilization as source of energy. At the same time, compost obtained from both PO wastes showed high quality features on condition that the electrical conductivity and Na content are lowered by a correct management of wetting during the composting. Copyright © 2010 Elsevier Ltd. All rights reserved.
46 CFR 11.470 - Officer endorsements as offshore installation manager.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Officer endorsements as offshore installation manager... Officer endorsements as offshore installation manager. (a) Officer endorsements as offshore installation manager (OIM) include: (1) OIM Unrestricted; (2) OIM Surface Units on Location; (3) OIM Surface Units...
NASA Astrophysics Data System (ADS)
Yoshimura, K.; Sakashita, S.; Okubo, S.; Yamane, K.
2006-12-01
Radioactive Waste Management Funding and Research Center of Japan has recently conducted a program to develop an electromagnetic (EM) technology for investigating the subsurface to the depths of 1,000m below the seafloor in the near-shore environment. Potential applications include structural studies for geological disposal of radioactive wastes. The system includes both natural field by magnetotellurics and controlled source EM data was collected to evaluate the feasibility of the methods and instrumentation. The shallow water environment is challenging because of high water currents and wave motion effects contaminating the data. We demonstrate the performance test of the new type of instrument, and the field experiment that was carried out in the Monterey Bay of California, USA, in 2003 and 2004. In this paper we describe the instrumentation developed, shows some examples from field trial and finally provide some inversion results using collected and simulated data. The system consists of EM transmitter deployed on the beach in combination with a series of offshore based multicomponent receivers. Field data collected near Monterey California revealed some of the challenges associated with this type of system. Collected data showed the influence of wave and cultural noise as well. In site of these difficulties we were able to accumulate a sufficient quantity of good quality records to interpret results. We show 2-D inversion results which image the "Navy Fault zone" which strikes NW-SE offshore Monterey bay in water depths of 10 to 40m.
Food waste conversion options in Singapore: environmental impacts based on an LCA perspective.
Khoo, Hsien H; Lim, Teik Z; Tan, Reginald B H
2010-02-15
Proper management and recycling of huge volumes of food waste is one of the challenges faced by Singapore. Semakau island - the only offshore landfill of the nation - only accepts inert, inorganic solid waste and therefore a large bulk of food waste is directed to incinerators. A remaining small percent is sent for recycling via anaerobic digestion (AD), followed by composting of the digestate material. This article investigates the environmental performance of four food waste conversion scenarios - based on a life cycle assessment perspective - taking into account air emissions, useful energy from the incinerators and AD process, as well as carbon dioxide mitigation from the compost products derived from the digestate material and a proposed aerobic composting system. The life cycle impact results were generated for global warming, acidification, eutrophication, photochemical oxidation and energy use. The total normalized results showed that a small-scale proposed aerobic composting system is more environmentally favorable than incinerators, but less ideal compared to the AD process. By making full use of the AD's Recycling Phase II process alone, the Singapore Green Plan's 2012 aim to increase the recycling of food waste to 30% can easily be achieved, along with reduced global warming impacts.
Design for perception management system on offshore reef based on integrated management
NASA Astrophysics Data System (ADS)
Peng, Li; Qiankun, Wang
2017-06-01
According to an analysis of actual monitoring demands using integrated management and information technology, a quad monitoring system is proposed to provide intelligent perception of offshore reefs, including indoor building environments, architectural structures, and facilities and perimeter integrity. This will strengthen the ability to analyse and evaluate offshore reef operation and health, promoting efficiency in decision making.
Application of ERTS-1 data to the protection and management of New Jersey's coastal environment
NASA Technical Reports Server (NTRS)
Yunghans, R. S. (Principal Investigator); Feinberg, E. B.; Mairs, R. L.; Wobber, F. J.; Martin, K. R.; Pettinger, L. R.; Macomber, R. T.
1973-01-01
The author has identified the following significant results. Analysis of ERTS-1 imagery and complementary aircraft overflights has led to the development of seventeen information products that are being utilized within the Department of Environmental Protection as new sources of information for coastal zone management. Problem areas of significance to the State, and in which product development has contributed to date, have been identified as: the environmental effects of offshore waste disposal, the placement of ocean outfalls, the better understanding of littoral processes for shore protection, the delineation of the coastal ecozones, and determination of the flushing characteristics of the State's estuaries. Of equal importance has been the development of a capability within the State to use and understand remote sensor-derived information.
77 FR 17491 - National Offshore Safety Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... from the Mobile Offshore Drilling Unit Guidance Policy, Notice of Availability, request for comments... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0091] National Offshore Safety... Management; Notice of Federal Advisory Committee Meetings. SUMMARY: The National Offshore Safety Advisory...
Operational management of offshore energy assets
NASA Astrophysics Data System (ADS)
Kolios, A. J.; Martinez Luengo, M.
2016-02-01
Energy assets and especially those deployed offshore are subject to a variety of harsh operational and environmental conditions which lead to deterioration of their performance and structural capacity over time. The aim of reduction of CAPEX in new installations shifts focus to operational management to monitor and assess performance of critical assets ensuring their fitness for service throughout their service life and also to provide appropriate and effective information towards requalification or other end of life scenarios, optimizing the OPEX. Over the last decades, the offshore oil & gas industry has developed and applied various approaches in operational management of assets through Structural Health and Condition Monitoring (SHM/CM) systems which can be, at a certain level, transferable to offshore renewable installations. This paper aims to highlight the key differences between offshore oil & gas and renewable energy assets from a structural integrity and reliability perspective, provide a comprehensive overview of different approaches that are available and applicable, and distinguish the benefits of such systems in the efficient operation of offshore energy assets.
Wynn, Jeff; Roberts, William
2009-01-01
Raw sewage and industrial waste have been dumped into sensitive estuaries, bays, and sounds for centuries. The full extents of the resulting sludge deposits are largely unknown, because they move in response to tidal and long‐shore currents, and because they are often buried by younger inert sediments. USGS field and laboratory measurements of toxic mine waste and organic effluent samples suggest that anthropogenic wastes typically contain finely‐divided metal and metal‐sulfide particles. The anoxic environment provided by anthropogenic wastes promotes the growth of anaerobic bacteria, creating a self‐reducing environment. We suggest that the finely‐divided metal and metal‐sulfide particles are the products of bacterial reduction and precipitation. The fine‐grained metallic precipitates are ideal targets for a surface‐effect electrochemical detection methodology called Induced Polarization (IP). A USGS‐patented (1998/2001) marine IP streamer technology has recently been commercialized and used to map “black smoker” sulfide deposits and their disseminated halos in the Bismarck Sea (2005), and titanium‐sand deposits offshore of South Africa (2007). The marine induced polarization system can do this mapping in three dimensions, more rapidly (it is towed at 3 knots), and with far higher resolution that land‐based measurements or vibracoring. Laboratory‐scale studies at the USGS suggest that anthropogenic wastes may display a specific multi‐frequency IP spectral signature that may be applicable to waste‐deposit mapping.
Holdway, Douglas A
2002-03-01
A review of the acute and chronic effects of produced formation water (PFW), drilling fluids (muds) including oil-based cutting muds, water-based cutting muds, ester-based cutting muds and chemical additives, and crude oils associated with offshore oil and gas production was undertaken in relation to both temperate and tropical marine ecological processes. The main environmental effects are summarized, often in tabular form. Generally, the temporal and spatial scales of these studies, along with the large levels of inherent variation in natural environments, have precluded our ability to predict the potential long-term environmental impacts of the offshore oil and gas production industry. A series of critical questions regarding the environmental effects of the offshore oil and gas production industry that still remain unanswered are provided for future consideration.
Boundary Spanning in Offshored Information Systems Development Projects
ERIC Educational Resources Information Center
Krishnan, Poornima
2010-01-01
Recent growth in offshore outsourcing of information systems (IS) services is accompanied by managing the offshore projects successfully. Much of the project failures can be attributed to geographic and organizational boundaries which create differences in culture, language, work patterns, and decision making processes among the offshore project…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Carpinteria Offshore Field Redevelopment Project--Developmental Drilling Into the Carpinteria Offshore Field Oil and Gas Reserves... Lands Commission (CSLC) intend to jointly review a proposal to develop offshore oil and gas resources...
46 CFR 15.520 - Mobile offshore drilling units (MODUs).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Mobile offshore drilling units (MODUs). 15.520 Section... MANNING REQUIREMENTS Manning Requirements; Inspected Vessels § 15.520 Mobile offshore drilling units... endorsement on an MMC as offshore installation manager (OIM), barge supervisor (BS), or ballast control...
30 CFR 285.116 - Requests for information on the state of the offshore renewable energy industry.
Code of Federal Regulations, 2010 CFR
2010-07-01
... offshore renewable energy industry. 285.116 Section 285.116 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER... the state of the offshore renewable energy industry, including the identification of potential...
30 CFR 285.116 - Requests for information on the state of the offshore renewable energy industry.
Code of Federal Regulations, 2011 CFR
2011-07-01
... offshore renewable energy industry. 285.116 Section 285.116 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES... information on the state of the offshore renewable energy industry. (a) The Director may, from time to time...
30 CFR 585.116 - Requests for information on the state of the offshore renewable energy industry.
Code of Federal Regulations, 2012 CFR
2012-07-01
... offshore renewable energy industry. 585.116 Section 585.116 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON... offshore renewable energy industry. (a) The Director may, from time to time, and at his discretion, solicit...
30 CFR 585.116 - Requests for information on the state of the offshore renewable energy industry.
Code of Federal Regulations, 2013 CFR
2013-07-01
... offshore renewable energy industry. 585.116 Section 585.116 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON... offshore renewable energy industry. (a) The Director may, from time to time, and at his discretion, solicit...
30 CFR 585.116 - Requests for information on the state of the offshore renewable energy industry.
Code of Federal Regulations, 2014 CFR
2014-07-01
... offshore renewable energy industry. 585.116 Section 585.116 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON... offshore renewable energy industry. (a) The Director may, from time to time, and at his discretion, solicit...
The fate and management of high mercury-containing lamps from high technology industry.
Chang, T C; You, S J; Yu, B S; Kong, H W
2007-03-22
This study investigated the fate and management of high mercury-contained lamps, such as cold cathode fluorescent lamps (CCFLs), ultraviolet lamps (UV lamps), and super high pressure mercury lamps (SHPs), from high technology industries in Taiwan, using material flow analysis (MFA) method. Several organizations, such as Taiwan Environmental Protection Administration, Taiwan External Trade Development Council, the light sources manufactories, mercury-containing lamps importer, high technology industrial user, and waste mercury-containing lamps treatment facilities were interviewed in this study. According to this survey, the total mercury contained in CCFLs, UV lamps, and SHPs produced in Taiwan or imported from other countries was 886kg in year 2004. Among the various lamps containing mercury, 57kg mercury was exported as primary CCFLs, 7kg mercury was wasted as defective CCFLs, and 820kg mercury was used in the high technology industries, including 463kg mercury contained in exported industrial products using CCFLs as components. On the contrary, only 59kg of mercury was exported, including 57kg in CCFLs and 2kg in UV lamps. It reveals that 364kg mercury was consumed in Taiwan during year 2004. In addition, 140kg of the 364kg mercury contained in lamps used by high technology industry was well treated through industrial waste treatment system. Among the waste mercury from high technology industry, 80kg (57%), 53kg (38%), and 7kg (5%) of mercury were through domestic treatment, offshore treatment, and emission in air, respectively. Unfortunately, 224kg waste mercury was not suitable treated, including 199kg mercury contained in CCFL, which is a component of monitor for personal computer and liquid crystal display television, and 25kg non-treated mercury. Thus, how to recover the mercury from the waste monitors is an important challenge of zero wastage policy in Taiwan.
46 CFR 126.480 - Safety Management Certificate.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Safety Management Certificate. 126.480 Section 126.480 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS INSPECTION AND CERTIFICATION Inspection for Certification § 126.480 Safety Management Certificate. (a) All offshore supply vessels of 500 gross tons or over to...
Application of ERTS-1 data to the protection and management of New Jersey's coastal environment
NASA Technical Reports Server (NTRS)
Yunghans, R. S. (Principal Investigator); Feinberg, E. B.; Stitt, J. A.; Mairs, R. L.; Wobber, F. J.; Macomber, R. T.; Stanczuk, D. T.; Thibult, D.
1974-01-01
The author has identified the following significant results. Quasi-operational information products for coastal zone management have been prepared using ERTS-1 imagery and collateral aerial photography. These products were applied to the practical regulation, protection, and management of New Jersey's coastal environment. Procedures were developed for the operational use of ERTS-1 data products within New Jersey's Department of Environmental Protection. Successful analysis and product preparation for operational needs centered on four major coastal resource problem areas: (1) detection of environmental changes in coastal areas, (2) siting of ocean outfalls, (3) monitoring of offshore waste disposal, and (4) calculation of recession rates along the Atlantic Shore. The utility and monetary benefits derived from ERTS and aircraft imagery for each problem area have been determined. The NJDEP estimates the possibility of $620,000 yearly savings through the use of an operational ERTS system and a one-time savings of $2.8 million on current or planned projects if a truly operational ERTS type satellite were available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hathcock, Charles Dean
This floodplain assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands.” In this action, DOE is proposing to collect soil investigation samples and remove contaminated soil within and around selected solid waste management units (SWMUs)more » near and within the 100-year floodplain (hereafter “floodplain”) in north Ancho Canyon at Los Alamos National Laboratory (LANL). The work is being performed to comply with corrective action requirements under the 2016 Compliance Order on Consent.« less
NASA Technical Reports Server (NTRS)
Dyer, M. K.; Little, D. G.; Hoard, E. G.; Taylor, A. C.; Campbell, R.
1972-01-01
An approach that might be used for determining the applicability of NASA management techniques to benefit almost any type of down-to-earth enterprise is presented. A study was made to determine the following: (1) the practicality of adopting NASA contractual quality management techniques to the U.S. Geological Survey Outer Continental Shelf lease management function; (2) the applicability of failure mode effects analysis to the drilling, production, and delivery systems in use offshore; (3) the impact on industrial offshore operations and onshore management operations required to apply recommended NASA techniques; and (4) the probable changes required in laws or regulations in order to implement recommendations. Several management activities that have been applied to space programs are identified, and their institution for improved management of offshore and onshore oil and gas operations is recommended.
30 CFR 250.417 - What must I provide if I plan to use a mobile offshore drilling unit (MODU)?
Code of Federal Regulations, 2010 CFR
2010-07-01
... offshore drilling unit (MODU)? 250.417 Section 250.417 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and... a mobile offshore drilling unit (MODU)? If you plan to use a MODU, you must provide: (a) Fitness...
1980-11-01
facility common to all facilities as well as a separate municipal waste treatment plant . The crude refinery and petrochemicals plant produces high...offshore: refinery L M H I power plant I L L M I industrial complex I L L L I II Extensive use of sub-sea production systems I M H I up to 5,000 ft. I... petrochemicals factory or a refinery acting as the core around which an in- dustrial complex is built. The type of core industry selected would depend
30 CFR 285.825 - When must I assess my facilities?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 285.825 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE... Safety Management, Inspections, and Facility Assessments for Activities Conducted Under SAPs, COPs and... Offshore Platforms—Working Stress Design (incorporated by reference, as specified in § 285.115). (b) You...
30 CFR 585.115 - Documents incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 585.115 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... authorized BOEM official. (d) You may inspect these documents at the Bureau of Ocean Energy Management, 381... Fixed Offshore Platforms—Working Stress Design; Twenty-first Edition, December 2000; Errata and...
30 CFR 585.115 - Documents incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 585.115 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... authorized BOEM official. (d) You may inspect these documents at the Bureau of Ocean Energy Management, 381... Fixed Offshore Platforms—Working Stress Design; Twenty-first Edition, December 2000; Errata and...
30 CFR 585.115 - Documents incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 585.115 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... authorized BOEM official. (d) You may inspect these documents at the Bureau of Ocean Energy Management, 381... Fixed Offshore Platforms—Working Stress Design; Twenty-first Edition, December 2000; Errata and...
Application of ERTS-A data to the protection and management of New Jersey's coastal environment
NASA Technical Reports Server (NTRS)
Yunghans, R. S. (Principal Investigator); Feinberg, E. B.; Wobber, F. J. (Principal Investigator)
1972-01-01
The author has identified the following significant results. Apparent sewage sludge disposal by barge has been detected approximately 12 miles offshore in an area with an approximate radius of 2.5 nautical miles. Verification is underway to determine whether this dumping is within one of the approved dump sites in the Bight. Analysis of all available historical and routine meteorological data in correlation with the observed phenomenon is necessary before final conclusions can be reached with respect to the effects of currents on the disposal of dumped wastes. Four effluent plumes emanating from the shoreline just south of Sandy Hook were observed and are moving in a southerly direction. Another plume is evident north of Barnegat Inlet and is moving almost directly offshore. This suggests that the more northerly plumes are under the influence of the tidal regime around New York Harbor much more than are the plumes further south along the New Jersey coast. Of further interest are what appear to be an internal wave phenomena approximately 75 miles east of the New Jersey coast. This same sort of phenomena has been observed repetitively off the coast of Oregon.
76 FR 2254 - Notice of Arrival on the Outer Continental Shelf
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... of arrival for floating facilities, mobile offshore drilling units (MODUs), and vessels planning to... Ship Security Certificate. MMS Minerals Management Service. MODU Mobile Offshore Drilling Unit. NAICS... rule outlines the procedures that owners or operators of floating facilities, mobile offshore drilling...
30 CFR 250.417 - What must I provide if I plan to use a mobile offshore drilling unit (MODU)?
Code of Federal Regulations, 2011 CFR
2011-07-01
... offshore drilling unit (MODU)? 250.417 Section 250.417 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... must I provide if I plan to use a mobile offshore drilling unit (MODU)? If you plan to use a MODU, you...
Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G
2011-10-01
Life cycle assessment is increasingly used to assess the environmental performance of fossil energy systems. Two of the dominant emissions of offshore oil and gas production to the marine environment are the discharge of produced water and drilling waste. Although environmental impacts of produced water are predominantly due to chemical stressors, a major concern regarding drilling waste discharge is the potential physical impact due to particles. At present, impact indicators for particulate emissions are not yet available in life cycle assessment. Here, we develop characterization factors for 2 distinct impacts of particulate emissions: an increased turbidity zone in the water column and physical burial of benthic communities. The characterization factor for turbidity is developed analogous to characterization factors for toxic impacts, and ranges from 1.4 PAF (potentially affected fraction) · m(3) /d/kg(p) (kilogram particulate) to 7.0 x 10³ [corrected] for drilling mud particles discharged from the rig. The characterization factor for burial describes the volume of sediment that is impacted by particle deposition on the seafloor and equals 2.0 × 10(-1) PAF · m(3) /d/kg(p) for cutting particles. This characterization factor is quantified on the basis of initial deposition layer characteristics, such as height and surface area, the initial benthic response, and the recovery rate. We assessed the relevance of including particulate emissions in an impact assessment of offshore oil and gas production. Accordingly, the total impact on the water column and on the sediment was quantified based on emission data of produced water and drilling waste for all oil and gas fields on the Norwegian continental shelf in 2008. Our results show that cutting particles contribute substantially to the total impact of offshore oil and gas production on marine sediments, with a relative contribution of 55% and 31% on the regional and global scale, respectively. In contrast, the contribution of particulate emissions to the total impact on the marine water column is of minor importance. We conclude that particles are an important stressor in marine ecosystems, particularly for marine sediment, and particulate emissions should therefore be included in a (life cycle) impact assessment of offshore oil and gas production. Copyright © 2011 SETAC.
50 CFR 648.95 - Offshore Fishery Program in the SFMA.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Offshore Fishery Program in the SFMA. 648.95 Section 648.95 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE NORTHEASTERN UNITED STATES Management...
30 CFR 585.825 - When must I assess my facilities?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 585.825 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... Safety Management, Inspections, and Facility Assessments for Activities Conducted Under SAPs, COPs and... Offshore Platforms—Working Stress Design (as incorporated by reference in § 585.115). (b) You must initiate...
30 CFR 585.825 - When must I assess my facilities?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 585.825 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... Safety Management, Inspections, and Facility Assessments for Activities Conducted Under SAPs, COPs and... Offshore Platforms—Working Stress Design (as incorporated by reference in § 585.115). (b) You must initiate...
30 CFR 585.825 - When must I assess my facilities?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 585.825 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... Safety Management, Inspections, and Facility Assessments for Activities Conducted Under SAPs, COPs and... Offshore Platforms—Working Stress Design (as incorporated by reference in § 585.115). (b) You must initiate...
Code of Federal Regulations, 2014 CFR
2014-07-01
... BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE OUTER... Delineation, Testing, or Mining Plan, the bond amount shall be adjusted, if appropriate, to cover the... three areas: (1) The Gulf of Mexico and the area offshore the Atlantic Ocean; (2) The area offshore the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE OUTER... Delineation, Testing, or Mining Plan, the bond amount shall be adjusted, if appropriate, to cover the... three areas: (1) The Gulf of Mexico and the area offshore the Atlantic Ocean; (2) The area offshore the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OPERATIONS IN THE OUTER... Delineation, Testing, or Mining Plan, the bond amount shall be adjusted, if appropriate, to cover the... three areas: (1) The Gulf of Mexico and the area offshore the Atlantic Ocean; (2) The area offshore the...
78 FR 12037 - Announcement of the American Petroleum Institute's Standards Activities
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... Execution, 1st Edition Standard 2CCU, Offshore Cargo Container Design, Manufacturing and Inspection, 1st... Integrity Management of Fixed Offshore Structures, 1st Edition Recommended Practice 2SM, Design, Manufacture... Offshore Production Platforms, 8th Edition Specification 14F, Design and Installation of Electrical Systems...
Work, eat and sleep: towards a healthy ageing at work program offshore.
Riethmeister, Vanessa; Brouwer, Sandra; van der Klink, Jac; Bültmann, Ute
2016-02-09
Health management tools need to be developed to foster healthy ageing at work and sustain employability of ageing work-forces. The objectives of this study were to 1) perform a needs assessment to identify the needs of offshore workers in the Dutch Continental Shelf with regard to healthy ageing at work and 2) to define suitable program objectives for a future healthy ageing at work program in the offshore working population. A mixed methods design was used applying an intervention mapping procedure. Qualitative data were gathered in N = 19 semi-structured interviews and six focus-group sessions (N = 49). Qualitative data were used to develop a questionnaire, which was administered among N = 450 offshore workers. Subgroup analyses were performed to investigate age-related differences relating to health status and work-related factors. The importance of good working environments, food, as well as sleep/fatigue management was identified by the qualitative data analysis. A total of 260 offshore workers completed the questionnaire. Significant differences in work ability were found between offshore workers aged <45 and 45-54 years (mean 8.63 vs. 8.19; p = 0.005) and offshore workers aged <45 and >55 years (mean 8.63 vs. 8.22; p = 0.028). Offshore workers had a high BMI (M = 27.06, SD = 3.67), with 46 % classified as overweight (BMI 25-30) and 21 % classified as obese (BMI >30). A significant difference in BMI was found between offshore workers aged <45 and ≥55 years (mean 26.3 vs. 28.6; p <0.001). In total, 73 % of offshore workers reported prolonged fatigue. A significant difference in fatigue scores was found between offshore workers aged <45 and ≥55 years (mean 36.0 vs. 37.6; p = 0.024). Further, a "dip" was reported by 41 % of offshore workers. Dips were mainly experienced at day 10 or 11 (60 %), with 45 % experiencing the dip both as physical and mental fatigue, whereas 39 % experienced the dip as only mental fatigue. Both qualitative and quantitative analyses identified work, food and sleep/fatigue management as most important program objectives for a healthy ageing at work and sustainable employability program offshore. Future studies should investigate possible causes of dip occurrences and high fatigue scores to identify suitable interventions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...
Investigating daily fatigue scores during two-week offshore day shifts.
Riethmeister, Vanessa; Bültmann, Ute; Gordijn, Marijke; Brouwer, Sandra; de Boer, Michiel
2018-09-01
This study examined daily scores of fatigue and circadian rhythm markers over two-week offshore day shift periods. A prospective cohort study among N = 60 offshore day-shift workers working two-week offshore shifts was conducted. Offshore day shifts lasted from 07:00 - 19:00 h. Fatigue was measured objectively with pre- and post-shift scores of the 3-minute psychomotor vigilance tasks (PVT-B) parameters (reaction times, number of lapses, errors and false starts) and subjectively with pre- and post-shift Karolinska Sleepiness Scale (KSS) ratings. Evening saliva samples were collected on offshore days 2,7 and 13 to measure circadian rhythm markers such as dim-light melatonin onset times and cortisol. Generalized and linear mixed model analyses were used to examine daily fatigue scores over time. Complete data from N = 42 offshore day shift workers was analyzed. Daily parameters of objective fatigue, PVT-B scores (reaction times, average number of lapses, errors and false starts), remained stable over the course of the two-week offshore day shifts. Daily subjective post-shift fatigue scores significantly increased over the course of the two-week offshore shifts. Each day offshore was associated with an increased post-shift subjective fatigue score of 0.06 points (95%CI: .03 - .09 p < .001). No significant statistical differences in subjective pre-shift fatigue scores were found. Neither a circadian rhythm phase shift of melatonin nor an effect on the pattern and levels of evening cortisol was found. Daily parameters of objective fatigue scores remained stable over the course of the two-week offshore day shifts. Daily subjective post-shift fatigue scores significantly increased over the course of the two-week offshore shifts. No significant changes in circadian rhythm markers were found. Increased post-shift fatigue scores, especially during the last days of an offshore shift, should be considered and managed in (offshore) fatigue risk management programs and fatigue risk prediction models. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Gilman; Maurer, Ben; Feinberg, Luke
2016-09-01
The U.S. Department of Energy, through its Wind Energy Technologies Office, and U.S. Department of the Interior, through its Bureau of Ocean Energy Management, have jointly produced this updated national strategy to facilitate the responsible development of offshore wind energy in the United States.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [Docket No. BOEM-2013-0050..., Request for Interest AGENCY: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Public Notice of... demonstration facility offshore Coos Bay, Oregon. The project is designed to generate 30 megawatts (MW) of...
Quantitative CMMI Assessment for Offshoring through the Analysis of Project Management Repositories
NASA Astrophysics Data System (ADS)
Sunetnanta, Thanwadee; Nobprapai, Ni-On; Gotel, Olly
The nature of distributed teams and the existence of multiple sites in offshore software development projects pose a challenging setting for software process improvement. Often, the improvement and appraisal of software processes is achieved through a turnkey solution where best practices are imposed or transferred from a company’s headquarters to its offshore units. In so doing, successful project health checks and monitoring for quality on software processes requires strong project management skills, well-built onshore-offshore coordination, and often needs regular onsite visits by software process improvement consultants from the headquarters’ team. This paper focuses on software process improvement as guided by the Capability Maturity Model Integration (CMMI) and proposes a model to evaluate the status of such improvement efforts in the context of distributed multi-site projects without some of this overhead. The paper discusses the application of quantitative CMMI assessment through the collection and analysis of project data gathered directly from project repositories to facilitate CMMI implementation and reduce the cost of such implementation for offshore-outsourced software development projects. We exemplify this approach to quantitative CMMI assessment through the analysis of project management data and discuss the future directions of this work in progress.
Submarine slope failures along the convergent continental margin of the Middle America Trench
NASA Astrophysics Data System (ADS)
Harders, Rieka; Ranero, CéSar R.; Weinrebe, Wilhelm; Behrmann, Jan H.
2011-06-01
We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ˜1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but well-defined horst and graben topography. Off El Salvador slope failure is least developed and mainly occurs in the uppermost continental slope at canyon walls. Off Guatemala mass wasting is abundant and possibly related to normal faulting across the slope. Collapse in the wake of subducting ocean plate topography is a likely failure trigger of slumps. Rapid oversteepening above subducting relief may trigger translational slides in the middle Nicaraguan upper Costa Rican slope. Earthquake shaking may be a trigger, but we interpret that slope failure rate is lower than recurrence time of large earthquakes in the region. Generally, our analysis indicates that the importance of mass wasting processes in the evolution of margins dominated by subduction erosion and its role in sediment dynamics may have been previously underestimated.
International trends and issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, C
The nineteen (19) position statements in this paper represent Mr. Curtis` best efforts to capture Greenpeace`s views on ocean disposal or dumping of wastes and other harmful substances, including offshore oil and gas platforms. These statements, though, have not been formally approved as Greenpeace policies, although a number of them have appeared in Greenpeace documents or public statements. For this document, {open_quotes}dumping{close_quotes} refers to any deliberate disposal at sea of wastes or other matter, consistent with the London Convention.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Floodplains. 257.3-1 Section 257.3-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... coastal waters, including flood-prone areas of offshore islands, which are inundated by the base flood. (3...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Floodplains. 257.3-1 Section 257.3-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... coastal waters, including flood-prone areas of offshore islands, which are inundated by the base flood. (3...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Floodplains. 257.3-1 Section 257.3-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... coastal waters, including flood-prone areas of offshore islands, which are inundated by the base flood. (3...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Floodplains. 257.3-1 Section 257.3-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... coastal waters, including flood-prone areas of offshore islands, which are inundated by the base flood. (3...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Floodplains. 257.3-1 Section 257.3-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... coastal waters, including flood-prone areas of offshore islands, which are inundated by the base flood. (3...
Applications of remote-sensing technology to environmental problems of Delaware and Delaware Bay
NASA Technical Reports Server (NTRS)
Bartlett, D.; Klemas, V.; Philpot, W.; Rogers, R.
1975-01-01
Digital processing of multispectral LANDSAT data was used to develop a computerized model for predicting oil slick movement within the Delaware Bay. LANDSAT imagery was also used to monitor offshore waste disposal sites for mapping of wetlands, and charting of tidal currents.
30 CFR 250.1301 - What are the requirements for unitization?
Code of Federal Regulations, 2011 CFR
2011-07-01
... delineated and productive reservoir if unitized operations are necessary to: (1) Prevent waste; (2) Conserve... more reservoirs and the initiation of actual development drilling or production operations and that..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...
Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; ...
2013-09-19
Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies bymore » developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.« less
Application of ERTS-1 data to the protection and management of New Jersey's coastal environment
NASA Technical Reports Server (NTRS)
Yunghans, R. S.; Feinberg, E. B.; Wobber, F. J.; Mairs, R. L. (Principal Investigator); Garofalo, D.; Thibault, D. A.; Amato, R. V.; Pettinger, L. R.
1973-01-01
The author has identified the following significant results. This catalogue was prepared as a part of the joint ERTS-1 New Jersey coastal mapping experiment. First look analysis of ERTS-1 images indicates that numerous coastal oceanographic patterns can be mapped on a sequential basis using ERTS-1 images. Analysis of imagery indicates a predominant southwesterly drift of dumped wasted in the surface waters. Initial analysis of imagery indicates that the effects of tidal flushing of New York harbor extend as far south as Long Branch, New Jersey. Analysis of imagery from 3 September, 1972, indicates a wide band of turbid water extending several miles offshore around Barnegat Inlet. First look analysis of imagery from 10 October, 1972, illustrates the increased reflectance of turbid waters within the bays, sounds, and thoroughfares behind the barrier islands in the southern New Jersey shore area. The estuarine waters emanating from both Brigantine and Absecon Inlets are very turbid relative to the waters further offshore and to the north and south. The tidal prism appears to be quite large but the movement of water once outside the inlets is not very rapid. The waters are not moving away from the coastline but rather along the coast.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... Company; Docket No. CP11-544- 000, TC Offshore LLC] Notice of Application for Abandonment by Sale and... permission and approval to abandon by sale to TC Offshore LLC (TCO) certain onshore facilities located in..., Manager, Certificates, TC Offshore LLC, 717 Texas Street, Suite 2400, Houston, Texas, 77002-2761, phone...
Krauesslar, Victoria; Avery, Rachel E; Passmore, Jonathan
2015-01-01
Safety coaching interventions have become a common feature in the safety critical offshore working environments of the North Sea. Whilst the beneficial impact of coaching as an organizational tool has been evidenced, there remains a question specifically over the use of safety coaching and its impact on behavioural change and producing safe working practices. A series of 24 semi-structured interviews were conducted with three groups of experts in the offshore industry: safety coaches, offshore managers and HSE directors. Using a thematic analysis approach, several significant themes were identified across the three expert groups including connecting with and creating safety ownership in the individual, personal significance and humanisation, ingraining safety and assessing and measuring a safety coach's competence. Results suggest clear utility of safety coaching when applied by safety coaches with appropriate coach training and understanding of safety issues in an offshore environment. The current work has found that the use of safety coaching in the safety critical offshore oil and gas industry is a powerful tool in managing and promoting a culture of safety and care.
Fair shares: a preliminary framework and case analyzing the ethics of offshoring.
Gordon, Cameron; Zimmerman, Alan
2010-06-01
Much has been written about the offshoring phenomenon from an economic efficiency perspective. Most authors have attempted to measure the net economic effects of the strategy and many purport to show that "in the long run" that benefits will outweigh the costs. There is also a relatively large literature on implementation which describes the best way to manage the offshoring process. But what is the morality of offshoring? What is its "rightness" or "wrongness?" Little analysis of the ethics of offshoring has been completed thus far. This paper develops a preliminary framework for analyzing the ethics of offshoring and then applies this framework to basic case study of offshoring in the U.S. The paper following discusses the definition of offshoring; shifts to the basic philosophical grounding of the ethical concepts; develops a template for conducting an ethics analysis of offshoring; applies this template using basic data for offshoring in the United States; and conducts a preliminary ethical analysis of the phenomenon in that country, using a form of utilitarianism as an analytical baseline. The paper concludes with suggestions for further research.
A Process to Establish the Common Functions Performed by a Multi-Role Vessel
2010-09-01
25 5.9 EPF – Environmental Protection Functions...Functions WFO Offshore Warfighting Functions EPF Environmental Protection Functions EPF .1 Waste Treatment Functions DSTO-TR-2473 16 HSF...Mission Command Function CFV Vessel Command Function EPF Environmental Protection Functions HSF Hotel Services Functions HVAC HVAC Functions
A Crew Exposure Study. Volume I. Offshore.
1982-03-15
in Percutaneous Penetra- tion in Man - Pesticides ," Archives of Environmental Health, Vol. 23, pp 208-211, 1971. 20. Bartek, M. J., et al., "Skin...OTO FI RCABNEISOS UT iA- 0 - . . -- • G. DISCHARGING OF HAZARDOUS WASTES FROM PLATFORMS 1. Middleditch, Brian S., Basile , Brenda, and Chang, Evelyn S
30 CFR 250.1301 - What are the requirements for unitization?
Code of Federal Regulations, 2010 CFR
2010-07-01
... delineated and productive reservoir if unitized operations are necessary to: (1) Prevent waste; (2) Conserve... more reservoirs and the initiation of actual development drilling or production operations and that... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Unitization § 250.1301 What are...
Risk management in the North sea offshore industry: History, status and challenges
NASA Astrophysics Data System (ADS)
Smith, E. J.
1995-10-01
There have been major changes in the UK and Norwegian offshore safety regimes in the last decade. On the basis of accumulated experience (including some major accidents), there has been a move away from a rigid, prescriptive approach to setting safety standards; it is now recognised that a more flexible, "goal-setting" approach is more suited to achieving cost-effective solutions to offshore safety. In order to adapt to this approach, offshore operators are increasingly using Quantitative Risk Assessment (QRA) techniques as part of their risk management programmes. Structured risk assessment can be used at all stages of a project life-cycle. In the design stages (concept and detailed design), these techniques are valuable tools in ensuring that money is wisely spent on safety-related systems. In the operational stage, QRA can aid the development of procedures. High quality Safety Management Systems (SMSs), covering issues such as training, inspection, and emergency planning, are crucial to maintain "asdesigned" levels of safety and reliability. Audits of SMSs should be carried out all through the operational phase to ensure that risky conditions do not accumulate.
Walter.Musial@nrel.gov | 303-384-6956 Walt is a principal engineer and the manager of Offshore Wind at NREL , where he has worked since 1988. In 2003, he initiated the offshore wind energy research program at NREL
30 CFR 553.62 - What are the designated applicant's notification obligations regarding a claim?
Code of Federal Regulations, 2014 CFR
2014-07-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Claims for Oil-Spill Removal Costs and Damages § 553.62 What are the designated applicant's notification...
30 CFR 253.62 - What are the designated applicant's notification obligations regarding a claim?
Code of Federal Regulations, 2011 CFR
2011-07-01
... MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Claims for Oil-Spill Removal Costs and Damages § 253.62 What are the...
30 CFR 553.62 - What are the designated applicant's notification obligations regarding a claim?
Code of Federal Regulations, 2013 CFR
2013-07-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Claims for Oil-Spill Removal Costs and Damages § 553.62 What are the designated applicant's notification...
30 CFR 553.62 - What are the designated applicant's notification obligations regarding a claim?
Code of Federal Regulations, 2012 CFR
2012-07-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Claims for Oil-Spill Removal Costs and Damages § 553.62 What are the designated applicant's notification...
Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.
2011-01-01
The Geospatial Characteristics Geopdf of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, military areas, marine protected areas, cultural resources, locations of submerged cables, and shipping routes. The map should be useful to coastal resource managers and others interested in the administrative and political boundaries of Florida's coastal and offshore region. In particular, as oil and gas explorations continue to expand, the map may be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will find that they have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers.
Interior Department Suggests Improvements for Offshore Arctic Oil and Gas Drilling
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-03-01
Shell's "difficulties" during its 2012 program to drill offshore oil and natural gas exploration wells in the Alaskan Arctic Ocean "have raised serious questions regarding its ability to operate safely and responsibly in the challenging and unpredictable conditions offshore Alaska," according to the report "Review of Shell's 2012 Alaska Offshore Oil and Gas Exploration Program," issued by the U.S. Department of the Interior (DOI) on 8 March. Noting the company's lack of adequate preparation for drilling in the Arctic, its failure to deploy a specialized Arctic Containment System, and the grounding of the Kulluk drilling rig near Kodiak Island last December, the report recommends that Shell develop a comprehensive and integrated plan describing its future drilling program and related operations and that it commission a third-party audit of its management systems, including its safety and environmental management systems program.
Application of ERTS-1 data to the protection and management of New Jersey's coastal environment
NASA Technical Reports Server (NTRS)
Yunghans, R. S.; Feinberg, E. B.; Wobber, F. J.; Mairs, R. L. (Principal Investigator); Macomber, R. T.; Stanczuk, D.; Stitt, J. A.
1974-01-01
The author has identified the following significant results. Rapid access to ERTS data was provided by NASA GSFC for the February 26, 1974 overpass of the New Jersey test site. Forty-seven hours following the overpass computer-compatible tapes were ready for processing at EarthSat. The finished product was ready just 60 hours following the overpass and delivered to the New Jersey Department of Environmental Protection. This operational demonstration has been successful in convincing NJDEP as to the worth of ERTS as an operational monitoring and enforcement tool of significant value to the State. An erosion/ accretion severity index has been developed for the New Jersey shore case study area. Computerized analysis techniques have been used for monitoring offshore waste disposal dumping locations, drift vectors, and dispersion rates in the New York Bight area. A computer shade print of the area was used to identify intensity levels of acid waste. A Litton intensity slice print was made to provide graphic presentation of dispersion characteristics and the dump extent. Continued monitoring will lead to the recommendation and justification of permanent dumping sites which pose no threat to water quality in nearshore environments.
Application of ERTS-1-data to the protection and management of New Jersey's coastal environment
NASA Technical Reports Server (NTRS)
Yunghans, R. S.; Feinberg, E. B.; Mairs, R. L. (Principal Investigator); Woodward, D.; Thibault, D. A.; Macomber, R. T.
1973-01-01
The author has identified the following significant results. New Jersey's planned, regionalized network of sewage disposal facilities has been plotted on an ERTS-1 mosaic and circulation parameters for each of the planned outfall locations have been analyzed using the ERTS-1 imagery and comparative aircraft photography. Work is continuing on the circulation and dispersion of barge-dumped wastes in the New York Bight area. One of the largest remote sensing experiments ever attempted in this country was completed on April 7, 1973 during the ERTS-1 overpass. The test area included the northern portion of New Jersey and the Raritan Bay - New York Harbor area. Three NASA aircraft, two helicopters, nine surface vessels, 40 ground team personnel, and numerous oceanographic, radiometric, and meteorological equipment were deployed in an effort to characterize the surface and near-surface circulation dynamics in this 600 square mile area, during an entire tidal cycle. The analyses of these data in concert with all previous ERTS-1 overpasses will provide information that can lead to a better and more rational use of the nearshore marine environment. The data will be utilized to plan future outfall locations, regulating offshore disposal of wastes, etc.
Towards sustainability in offshore oil and gas operations
NASA Astrophysics Data System (ADS)
Khan, M. Ibrahim
Human activities are causing irreversible damage to the natural world and threaten our ability to sustain future generations. According to Millennium Ecosystem Assessment of 2005, sixty percent of world pristine habitats are destroyed or disturbed and species extinction rate is 100-1000 times higher than the normal background rate. One of the main reasons of these problems is the use of unsustainable technology. In this dissertation, the essential features of the modern technology development are discussed and a new single-parameter screening criterion is proposed. This criterion will allow the development of truly sustainable technologies. Previously developed technologies, particularly the ones developed after the industrial revolution, are evaluated based on the new criterion. The root cause for unsustainability of these technologies especially in the energy sector is discussed. The proposed criterion is applied to the petroleum sector. Petroleum hydrocarbons are considered to be the lifeblood of the modern society. Petroleum industry that took off from the golden era of 1930's never ceased to dominate all aspects of our society. Until now, there is no suitable alternative to fossil fuel and all trends indicate continued dominance of the petroleum industry in the foreseeable future. Even though petroleum operations have been based on solid scientific excellence and engineering marvels; only recently it has been discovered that many of the practices are not environmentally sustainable. Practically all activities of hydrocarbon operations are accompanied by undesirable discharges of liquid, solid, and gaseous wastes, which have enormous impacts on the environment. Consequently, reducing environmental impact is the most pressing issue today and many environmentalist groups are calling for curtailing petroleum operations altogether. There is clearly a need to develop a new management approach in hydrocarbon operations. This approach will have to be environmentally acceptable, economically profitable and socially responsible. This dissertation discusses the framework of true 'sustainability' for practically all aspects oil and gas operations and nature-based resource operations. Sustainability of existing offshore oil and gas operations techniques are analyzed and new nature-based technologies are proposed. Also evaluated are the fate and effect, environmental impact, risk factors, and the green supply chain in the case of seismic, drilling, production and decommissioning of oil operations. It is demonstrated with detailed examples that using the new approach will be economically more beneficial than the conventional approach, even in the short-term. The dissertation also examines the present status of petroleum operations with respect to waste generation, improper resource management, and the usage of toxic compounds in the overall lifecycle. To achieve true sustainability, some innovative models and technologies are presented. They include achievement of zero emissions, zero waste of resources, zero waste in activities, zero use of toxics, and zero waste in product life-cycle. This dissertation also discusses the environmental and technological problems of the petroleum sector and provides guidelines to achieve overall sustainability in oil company activities. Finally, this dissertation shows that inherent sustainability can be achieved by the involvement of community participation. The new screening tool proposed in this dissertation provides proper guidelines to achieve true sustainability in the technology development and other resource development operations.
Riethmeister, V; Bültmann, U; De Boer, M R; Gordijn, M; Brouwer, S
2018-05-16
To better understand sleep quality and sleepiness problems offshore, we examined courses of sleep quality and sleepiness in full 2-weeks on/2-weeks off offshore day shift rotations by comparing pre-offshore (1 week), offshore (2 weeks) and post-offshore (1 week) work periods. A longitudinal observational study was conducted among N=42 offshore workers. Sleep quality was measured subjectively with two daily questions and objectively with actigraphy, measuring: time in bed (TIB), total sleep time (TST), sleep latency (SL) and sleep efficiency percentage (SE%). Sleepiness was measured twice a day (morning and evening) with the Karolinska Sleepiness Scale. Changes in sleep and sleepiness parameters during the pre/post and offshore work periods were investigated using (generalized) linear mixed models. In the pre-offshore work period, courses of SE% significantly decreased (p=.038). During offshore work periods, the courses of evening sleepiness scores significantly increased (p<.001) and significantly decreased during post-offshore work periods (p=.004). During offshore work periods, TIB (p<.001) and TST (p<.001) were significantly shorter, SE% was significantly higher (p=.002), perceived sleep quality was significantly lower (p<.001) and level of rest after wake was significantly worse (p<.001) than during the pre- and post-offshore work periods. Morning sleepiness was significantly higher during offshore work periods (p=.015) and evening sleepiness was significantly higher in the post-offshore work period (p=.005) compared to the other periods. No significant changes in SL were observed. Courses of sleep quality and sleepiness parameters significantly changed during full 2-weeks on/2-weeks off offshore day shift rotation periods. These changes should be considered in offshore fatigue risk management programmes.
Waste production and regional growth of marine activities an econometric model.
Bramati, Maria Caterina
2016-11-15
Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Research of Cemented Paste Backfill in Offshore Environments
NASA Astrophysics Data System (ADS)
Wang, Kun; Yang, Peng; Lyu, Wensheng; Lin, Zhixiang
2018-01-01
To promote comprehensive utilization of mine waste tailings and control ground pressure, filling mine stopes with cement paste backfill (CPB) is becoming the most widely used and applicable method in contemporary underground mining. However, many urgent new problems have arisen during the exploitation in offshore mines owing to the complex geohydrology conditions. A series of rheological, settling and mechanical tests were carried out to study the influences of bittern ions on CPB properties in offshore mining. The results showed that: (1) the bittern ion compositions and concentrations of backfill water sampled in mine filling station were similar to seawater. Backfill water mixed CPB slurry with its higher viscosity coefficient was adverse to pipeline gravity transporting; (2) Bleeding rate of backfill water mixed slurry was lower than that prepared with tap water at each cement-tailings ratio; (3) The UCS values of backfill water mixed samples were higher at early curing ages (3d, 7d) and then became lower after longer curing time at 14d and 28d. Therefore, for mine production practice, the offshore environments can have adverse effects on the pipeline gravity transporting and have positive effects on stope dewatering process and early-age strength growth.
Preliminary interpretation of high resolution 3D seismic data from offshore Mt. Etna, Italy
NASA Astrophysics Data System (ADS)
Gross, F.; Krastel, S.; Chiocci, F. L.; Ridente, D.; Cukur, D.; Bialas, J.; Papenberg, C. A.; Crutchley, G.; Koch, S.
2013-12-01
In order to gain knowledge about subsurface structures and its correlation to seafloor expressions, a hydro-acoustic dataset was collected during RV Meteor Cruise M86/2 (December 2011/January 2012) in Messina Straits and offshore Mt. Etna. Especially offshore Mt. Etna, the data reveals an obvious connection between subsurface structures and previously known morphological features at the sea floor. Therefore a high resolution 3D seismic dataset was acquired between Riposto Ridge and Catania Canyon close to the shore of eastern Sicily. The study area is characterized by a major structural high, which hosts several ridge-like features at the seafloor. These features are connected to a SW-NE trending fault system. The ridges are bended in their NE-SW direction and host major escarpments at the seafloor. Furthermore they are located directly next to a massive amphitheater structure offshore Mt. Etna with slope gradients of up to 35°, which is interpreted as remnants of a massive submarine mass wasting event off Sicily. The new 3D seismic dataset allows an in depth analysis of the ongoing deformation of the east flank of Mt. Etna.
Code of Federal Regulations, 2011 CFR
2011-07-01
... BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 253.24 When I...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 553.28 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.28 What...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false [Reserved] 253.44 Section 253.44 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR Information § 253.44 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 553.28 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.28 What...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 553.28 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.28 What...
30 CFR 253.45 - Where do I send my OSFR evidence?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Oil Spill Financial Responsibility Program, 1201 Elmwood Park Boulevard, New Orleans, Louisiana 70123. ... Section 253.45 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR Information...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false [Reserved] 553.44 Section 553.44 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR Information § 553.44 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false [Reserved] 553.44 Section 553.44 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR Information § 553.44 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false [Reserved] 553.44 Section 553.44 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR Information § 553.44 [Reserved] ...
Drill cuttings mount formation study
NASA Astrophysics Data System (ADS)
Teh, Su Yean; Koh, Hock Lye
2014-07-01
Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.
Pivel, María Alejandra Gómez; Dal Sasso Freitas, Carla Maria
2010-08-01
Numerical models that predict the fate of drilling discharges at sea constitute a valuable tool for both the oil industry and regulatory agencies. In order to provide reliable estimates, models must be validated through the comparison of predictions with field or laboratory observations. In this paper, we used the Offshore Operators Committee Model to simulate the discharges from two wells drilled at Campos Basin, offshore SE Brazil, and compared the results with field observations obtained 3 months after drilling. The comparison showed that the model provided reasonable predictions, considering that data about currents were reconstructed and theoretical data were used to characterize the classes of solids. The model proved to be a valuable tool to determine the degree of potential impact associated to drilling activities. However, since the accuracy of the model is directly dependent on the quality of input data, different possible scenarios should be considered when used for forecast modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Tony; Keyser, David; Tegen, Suzanne
Construction of the first offshore wind power plant in the United States began in 2015, off the coast of Rhode Island, using fixed platform structures that are appropriate for shallow seafloors, like those located off the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to be anchored to the deeper seafloor if deployed in Hawaiian waters. To analyze the employment and economic potential for floating offshore wind off Hawaii's coasts, the Bureau of Ocean Energy Management commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical deployment scenarios for Hawaii:more » 400 MW of offshore wind by 2050 and 800 MW of offshore wind by 2050. The results of this analysis can be used to better understand the general scale of economic opportunities that could result from offshore wind development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
Offshore Europe 95 - which will be held September 5-8, 1995, in Aberdeen, Scotland - was designed to generate interest across the oil and gas industry and to be relevant to everyone from CEOs to trainee engineers. While the European offshore oil and gas industry has had some remarkable success in reducing its costs, it faces difficult and growing challenges, and Offshore Eurpoe is the perfect opportunity for companies to learn from each other how to successfully face these hurdles. Sessions will be held on every aspect of the oil and gas industry and are organized under eight technical categories:more » drilling; exploration; management and economics; development and abandonment; well intervention; health, safety, and environment; production; and reservoir management. Much greater operating effectiveness and striking technological advances have enabled us to maintain reserves, prolong the lives of mature producing fields, and continue the pace of new development.« less
WIND Toolkit Offshore Summary Dataset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, Caroline; Musial, Walt; Scott, George
This dataset contains summary statistics for offshore wind resources for the continental United States derived from the Wind Integration National Datatset (WIND) Toolkit. These data are available in two formats: GDB - Compressed geodatabases containing statistical summaries aligned with lease blocks (aliquots) stored in a GIS format. These data are partitioned into Pacific, Atlantic, and Gulf resource regions. HDF5 - Statistical summaries of all points in the offshore Pacific, Atlantic, and Gulf offshore regions. These data are located on the original WIND Toolkit grid and have not been reassigned or downsampled to lease blocks. These data were developed under contractmore » by NREL for the Bureau of Oceanic Energy Management (BOEM).« less
Application of ERTS-1 data to the protection and management of New Jersey's coastal environment
NASA Technical Reports Server (NTRS)
Yunghans, R. S. (Principal Investigator); Feinberg, E. B.; Stitt, J. A.; Mairs, R. L.; Macomber, R. T.; Stanczuk, D.; Wobber, F. J.
1974-01-01
The author has identified the following significant results. The principal thrust of this ERTS-1 experiment is to develop quasi-operational information products from analysis of ERTS-1 imagery and collateral aerial photography and to apply these products to the practical regulation, protection, and management of New Jersey's coastal environment. Incorporated into this goal is the development of procedures for the operational use of ERTS-1 data products within New Jersey's Department of Environmental Protection. Analysis and product preparation for operational needs has centered on four major coastal resource problem areas: detection of land use changes in the coastal zone; siting of ocean outfalls; monitoring of offshore waste disposal; and calculation of recession rates along the Atlantic Shore. The relative utility and estimated monetary benefits derived from ERTS and aircraft imagery for each problem area have been determined. Of equal importance is the development to a capability within the State to use and understand remote sensor-derived information, and the application of this information to meet the requirements of current and anticipated coastal zone legislation.
77 FR 37321 - Safety Zone, Barrel Recovery, Lake Superior; Duluth, MN
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... 1625-AA00 Safety Zone, Barrel Recovery, Lake Superior; Duluth, MN AGENCY: Coast Guard, DHS. ACTION... suspected to contain munitions waste materials which were dumped in the 1960's in a portion of Lake Superior... offshore in a portion of Lake Superior approximately 50 years ago. C. Discussion of the Final Rule The...
Mokhtari, Kambiz; Ren, Jun; Roberts, Charles; Wang, Jin
2011-08-30
Ports and offshore terminals are critical infrastructure resources and play key roles in the transportation of goods and people. With more than 80 percent of international trade by volume being carried out by sea, ports and offshore terminals are vital for seaborne trade and international commerce. Furthermore in today's uncertain and complex environment there is a need to analyse the participated risk factors in order to prioritise protective measures in these critically logistics infrastructures. As a result of this study is carried out to support the risk assessment phase of the proposed Risk Management (RM) framework used for the purpose of sea ports and offshore terminals operations and management (PTOM). This has been fulfilled by integration of a generic bow-tie based risk analysis framework into the risk assessment phase as a backbone of the phase. For this reason Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) are used to analyse the risk factors associated within the PTOM. This process will eventually help the port professionals and port risk managers to investigate the identified risk factors more in detail. In order to deal with vagueness of the data Fuzzy Set Theory (FST) and possibility approach are used to overcome the disadvantages of the conventional probability based approaches. Copyright © 2011 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE... approval of a Delineation, Testing, or Mining Plan, the bond amount shall be adjusted, if appropriate, to... there are three areas: (1) The Gulf of Mexico and the area offshore the Atlantic Ocean; (2) The area...
30 CFR 285.105 - What are my responsibilities under this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
...? 285.105 Section 285.105 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... including marine trash and debris into the offshore environment. (b) Submit requests, applications, plans...
30 CFR 253.11 - Who must demonstrate OSFR?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who must demonstrate OSFR? 253.11 Section 253.11 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of OSFR § 253.11 Who must...
Issues that Drive Waste Management Technology Development for Space Missions
NASA Technical Reports Server (NTRS)
Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai
2005-01-01
Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.
30 CFR 250.132 - What must I do when MMS conducts an inspection?
Code of Federal Regulations, 2010 CFR
2010-07-01
...? 250.132 Section 250.132 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF General Inspection of Operations... refueling facilities for any helicopters we use to regulate offshore operations. (b) You must make the...
Managing Offshore Branch Campuses: An Analytical Framework for Institutional Strategies
ERIC Educational Resources Information Center
Shams, Farshid; Huisman, Jeroen
2012-01-01
The aim of this article is to develop a framework that encapsulates the key managerial complexities of running offshore branch campuses. In the transnational higher education (TNHE) literature, several managerial ramifications and impediments have been addressed by scholars and practitioners. However, the strands of the literature are highly…
78 FR 16529 - Notice of Determination of No Competitive Interest, Offshore Virginia
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
... Determination of No Competitive Interest, Offshore Virginia AGENCY: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of Determination of No Competitive Interest (DNCI) for a Proposed Outer... that there is no competitive interest in the area requested by the Commonwealth of Virginia, Department...
30 CFR 553.11 - Who must demonstrate OSFR?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Who must demonstrate OSFR? 553.11 Section 553.11 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of OSFR § 553.11 Who must...
30 CFR 553.10 - What facilities does this part cover?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What facilities does this part cover? 553.10 Section 553.10 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of OSFR § 553.10...
30 CFR 553.40 - What OSFR evidence must I submit to BOEM?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What OSFR evidence must I submit to BOEM? 553.40 Section 553.40 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR...
30 CFR 553.15 - What are my general OSFR compliance responsibilities?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What are my general OSFR compliance responsibilities? 553.15 Section 553.15 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of...
30 CFR 253.40 - What OSFR evidence must I submit to MMS?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What OSFR evidence must I submit to MMS? 253.40 Section 253.40 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR Information...
30 CFR 553.40 - What OSFR evidence must I submit to BOEM?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What OSFR evidence must I submit to BOEM? 553.40 Section 553.40 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR...
30 CFR 553.10 - What facilities does this part cover?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What facilities does this part cover? 553.10 Section 553.10 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of OSFR § 553.10...
30 CFR 553.32 - Are there alternative methods to demonstrate OSFR?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Are there alternative methods to demonstrate OSFR? 553.32 Section 553.32 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR...
30 CFR 553.15 - What are my general OSFR compliance responsibilities?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What are my general OSFR compliance responsibilities? 553.15 Section 553.15 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of...
30 CFR 553.15 - What are my general OSFR compliance responsibilities?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What are my general OSFR compliance responsibilities? 553.15 Section 553.15 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of...
30 CFR 253.15 - What are my general OSFR compliance responsibilities?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are my general OSFR compliance responsibilities? 253.15 Section 253.15 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of OSFR § 253...
30 CFR 553.32 - Are there alternative methods to demonstrate OSFR?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Are there alternative methods to demonstrate OSFR? 553.32 Section 553.32 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR...
30 CFR 553.11 - Who must demonstrate OSFR?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Who must demonstrate OSFR? 553.11 Section 553.11 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of OSFR § 553.11 Who must...
30 CFR 553.11 - Who must demonstrate OSFR?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Who must demonstrate OSFR? 553.11 Section 553.11 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of OSFR § 553.11 Who must...
30 CFR 253.32 - Are there alternative methods to demonstrate OSFR?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Are there alternative methods to demonstrate OSFR? 253.32 Section 253.32 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 253.32...
30 CFR 553.32 - Are there alternative methods to demonstrate OSFR?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Are there alternative methods to demonstrate OSFR? 553.32 Section 553.32 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR...
30 CFR 253.32 - Are there alternative methods to demonstrate OSFR?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Are there alternative methods to demonstrate OSFR? 253.32 Section 253.32 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES...
30 CFR 553.10 - What facilities does this part cover?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What facilities does this part cover? 553.10 Section 553.10 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of OSFR § 553.10...
30 CFR 254.9 - Authority for information collection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 254.9 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL-SPILL... this information collection is “30 CFR part 254, Oil Spill Response Requirements for Facilities Located... offshore facility is prepared to respond to an oil spill. MMS uses the information to verify compliance...
30 CFR 553.40 - What OSFR evidence must I submit to BOEM?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What OSFR evidence must I submit to BOEM? 553.40 Section 553.40 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR...
Solid Waste Management Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-26
The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.
The ARGO Project: assessing NA-TECH risks on off-shore oil platforms
NASA Astrophysics Data System (ADS)
Capuano, Paolo; Basco, Anna; Di Ruocco, Angela; Esposito, Simona; Fusco, Giannetta; Garcia-Aristizabal, Alexander; Mercogliano, Paola; Salzano, Ernesto; Solaro, Giuseppe; Teofilo, Gianvito; Scandone, Paolo; Gasparini, Paolo
2017-04-01
ARGO (Analysis of natural and anthropogenic risks on off-shore oil platforms) is a 2 years project, funded by the DGS-UNMIG (Directorate General for Safety of Mining and Energy Activities - National Mining Office for Hydrocarbons and Georesources) of Italian Ministry of Economic Development. The project, coordinated by AMRA (Center for the Analysis and Monitoring of Environmental Risk), aims at providing technical support for the analysis of natural and anthropogenic risks on offshore oil platforms. In order to achieve this challenging objective, ARGO brings together climate experts, risk management experts, seismologists, geologists, chemical engineers, earth and coastal observation experts. ARGO has developed methodologies for the probabilistic analysis of industrial accidents triggered by natural events (NA-TECH) on offshore oil platforms in the Italian seas, including extreme events related to climate changes. Furthermore the environmental effect of offshore activities has been investigated, including: changes on seismicity and on the evolution of coastal areas close to offshore platforms. Then a probabilistic multi-risk framework has been developed for the analysis of NA-TECH events on offshore installations for hydrocarbon extraction.
New Approaches for Responsible Management of Offshore Springs in Semi-arid Regions
NASA Astrophysics Data System (ADS)
Shaban, Amin; de Jong, Carmen; Al-Sulaimani, Zaher
2017-04-01
In arid and semi-arid regions, such as the Mediterranean and Gulf Region where water is scarce water demand has been exacerbated and become a major environmental challenge. Presently there is massive pressure to develop new water sources to alleviate existing water stress. In the quest for more freshwater even groundwater discharge into the sea in the form of "off-shore freshwater springs" (or submarine groundwater discharge) has been contemplated as a potential source of unconventional water in coastal zones. Offshore-springs are derived from aquifers with complex geological controls mainly in the form of faults and karst conduits. Representing a border-line discipline, they have been poorly studied with only few submarine groundwater monitoring sites existing worldwide. Recently, innovative techniques have been developed enabling springs to be detected via remote sensing such as airborne surveys or satellite images. "Thermal Anomalies" can be clearly identified as evidence for groundwater discharge into the marine environment. A diversity of groundwater routes along which off-shore springs are fed from land sources can be recognized and near-shore and offshore springs differentiated and classified according to their geometry. This is well pronounced along the coast of Lebanon and offshore of Oman. Offshore springs play an important role in the marine ecosystem as natural sources of mercury, metals, nutrients, dissolved carbon species and in cooling or warming ocean water. However, they are extremely sensitive to variations in qualitative and quantitative water inputs triggered by climate change and anthropogenic impacts especially in their recharge zones. Pollutants such as sewage, detergents, heavy metals or herbicides that negatively affect water quality of offshore springs can transit the groundwater rapidly. Recently these springs have also been severely affected by uncontrolled water abstraction from land aquifers. In Bahrain, overpumping combined with burial under land reclamation rubble has caused the disappearance of offshore springs inducing a drastic decline in the pearl oyster population. Climate change related precipitation decrease and temperature increase is likely to further decrease groundwater and surface water recharge, increase irrigation and domestic water demand, increase water extraction from aquifers and in turn decrease water availability for offshore springs.. Thus in future, continuous monitoring of water quantity and quality as well as new remote sensing approach in addition to observations by citizens such as fishermen and tourist guides are becoming essential to ensure responsible management of offshore freshwater springs.
40 CFR 273.33 - Waste management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...
40 CFR 273.13 - Waste management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...
Code of Federal Regulations, 2010 CFR
2010-07-01
... quantities of drilling fluids and chemical products (see § 250.243(b) and (d)) you will transport from the... liquid wastes (see § 250.248(a)) you will transport from the facilities you will use to conduct your proposed development and production activities. (e) Vicinity map. A map showing the location of your...
Code of Federal Regulations, 2010 CFR
2010-07-01
... the transportation method and quantities of drilling fluids and chemical products (see § 250.213(b... description of the composition, quantities, and destination(s) of solid and liquid wastes (see § 250.217(a)) you will transport from your drilling unit. (e) Vicinity map. A map showing the location of your...
Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil
2003-12-01
Due to the hydrophobic nature of synthetic based fluids (SBFs), drilling cuttings are not very dispersive in the water column and settle down close to the disposal site. Arsenic and copper are two important toxic heavy metals, among others, found in the drilling waste. In this article, the concentrations of heavy metals are determined using a steady state "aquivalence-based" fate model in a probabilistic mode. Monte Carlo simulations are employed to determine pore water concentrations. A hypothetical case study is used to determine the water quality impacts for two discharge options: 4% and 10% attached SBFs, which correspond to the best available technology option and the current discharge practice in the U.S. offshore. The exposure concentration (CE) is a predicted environmental concentration, which is adjusted for exposure probability and bioavailable fraction of heavy metals. The response of the ecosystem (RE) is defined by developing an empirical distribution function of predicted no-effect concentration. The pollutants' pore water concentrations within the radius of 750 m are estimated and cumulative distributions of risk quotient (RQ=CE/RE) are developed to determine the probability of RQ greater than 1.
Mapping the Sea Floor of the Historic Area Remediation Site (HARS) Offshore of New York City
Butman, Bradford
2002-01-01
The area offshore of New York City has been used for the disposal of dredged material for over a century. The area has also been used for the disposal of other materials such as acid waste, industrial waste, municipal sewage sludge, cellar dirt, and wood. Between 1976 and 1995, the New York Bight Dredged Material Disposal Site, also known as the Mud Dump Site (MDS), received on average about 6 million cubic yards of dredged material annually. In September 1997 the MDS was closed as a disposal site, and it and the surrounding area were designated as the Historic Area Remediation Site (HARS). The sea floor of the HARS, approximately 9 square nautical miles in area, currently is being remediated by placing a minimum 1-m-thick cap of clean dredged material on top of the surficial sediments that are contaminated from previous disposal of dredged and other materials. The U.S. Geological Survey (USGS) is working cooperatively with the U.S. Army Corps of Engineers (USACE) to map the sea floor geology of the HARS and changes in the characteristics of the surficial sediments over time.
Meng, Qingmin
2016-09-15
Marine ecosystems are home to a host of numerous species ranging from tiny planktonic organisms, fishes, and birds, to large mammals such as the whales, manatees, and seals. However, human activities such as offshore oil and gas operations increasingly threaten marine and coastal ecosystems, for which there has been little exploration into the spatial and temporal risks of offshore oil operations. Using the Gulf of Mexico, one of the world's hottest spots of offshore oil and gas mining, as the study area, we propose a spatiotemporal approach that integrates spatial statistics and geostatistics in a geographic information system environment to provide insight to environmental management and decision making for oil and gas operators, coastal communities, local governments, and the federal government. We use the records from 1995 to 2015 of twelve types of hazards caused by offshore oil and gas operations, and analyze them spatially over a five year period. The spatial clusters of these hazards are analyzed and mapped using Getis-Ord Gi and local Moran's I statistics. We then design a spatial correlation coefficient matrix for multivariate spatial correlation, which is the ratio of the cross variogram of two types of hazards to the product of the variograms of the two hazards, showing a primary understanding of the degrees of spatial correlation among the twelve types hazards. To the best of our knowledge, it is the first application of spatiotemporal analysis methods to environmental hazards caused by offshore oil and gas operations; the proposed methods can be applied to other regions for the management and monitoring of environmental hazards caused by offshore oil operations. Copyright © 2016 Elsevier B.V. All rights reserved.
Healthcare waste management: current practices in selected healthcare facilities, Botswana.
Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew
2008-01-01
Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.
DOT National Transportation Integrated Search
2008-04-01
The SCRIM (Steel Catenary Riser Integrity Management) Joint Industry Project was an industry-sponsored initiative, managed and delivered by MCS, to develop industry guidelines for the integrity management of offshore risers. The original scope of the...
33 CFR 96.340 - Safety Management Certificate: what is it and when is it needed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... if it is a tanker, bulk freight vessel, freight vessel, or a self-propelled mobile offshore drilling... vessel, or a self-propelled mobile offshore drilling unit of 500 gross tons or more, when engaged on... audit; (2) A satisfactory intermediate verification audit requested by the vessel's responsible person...
30 CFR 253.51 - What are the penalties for not complying with this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What are the penalties for not complying with this part? 253.51 Section 253.51 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES...
30 CFR 253.20 - What methods may I use to demonstrate OSFR?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What methods may I use to demonstrate OSFR? 253.20 Section 253.20 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for...
30 CFR 253.51 - What are the penalties for not complying with this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are the penalties for not complying with this part? 253.51 Section 253.51 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Revocation and Penalties § 253...
30 CFR 253.42 - How can I amend my list of COFs?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How can I amend my list of COFs? 253.42 Section 253.42 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR Information § 253.42 How...
30 CFR 553.60 - To whom may I present a claim?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false To whom may I present a claim? 553.60 Section 553.60 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Claims for Oil-Spill Removal Costs and Damages...
30 CFR 553.42 - How can I amend my list of COFs?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How can I amend my list of COFs? 553.42 Section 553.42 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR Information...
30 CFR 553.20 - What methods may I use to demonstrate OSFR?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What methods may I use to demonstrate OSFR? 553.20 Section 553.20 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.20...
30 CFR 253.23 - What information must I submit to support my net worth demonstration?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What information must I submit to support my net worth demonstration? 253.23 Section 253.23 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for...
30 CFR 253.20 - What methods may I use to demonstrate OSFR?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What methods may I use to demonstrate OSFR? 253.20 Section 253.20 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 253.20...
30 CFR 553.1 - What is the purpose of this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 553.1 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES General § 553.1 What is the purpose of this part...) under Title I of the Oil Pollution Act of 1990 (OPA), as amended, 33 U.S.C. 2701 et seq. ...
30 CFR 553.23 - What information must I submit to support my net worth demonstration?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What information must I submit to support my net worth demonstration? 553.23 Section 553.23 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for...
30 CFR 253.60 - To whom may I present a claim?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false To whom may I present a claim? 253.60 Section 253.60 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Claims for Oil-Spill...
30 CFR 253.50 - How can MMS refuse or invalidate my OSFR evidence?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How can MMS refuse or invalidate my OSFR evidence? 253.50 Section 253.50 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES...
30 CFR 553.1 - What is the purpose of this part?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 553.1 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES General § 553.1 What is the purpose of this part...) under Title I of the Oil Pollution Act of 1990 (OPA), as amended, 33 U.S.C. 2701 et seq. ...
30 CFR 253.43 - When is my OSFR demonstration or the amendment to my OSFR demonstration effective?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When is my OSFR demonstration or the amendment to my OSFR demonstration effective? 253.43 Section 253.43 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES...
30 CFR 253.21 - How can I use self-insurance as OSFR evidence?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How can I use self-insurance as OSFR evidence? 253.21 Section 253.21 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for...
30 CFR 253.29 - How can I use insurance as OSFR evidence?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How can I use insurance as OSFR evidence? 253.29 Section 253.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for...
30 CFR 553.42 - How can I amend my list of COFs?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How can I amend my list of COFs? 553.42 Section 553.42 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR Information...
30 CFR 253.30 - How can I use an indemnity as OSFR evidence?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How can I use an indemnity as OSFR evidence? 253.30 Section 253.30 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for...
30 CFR 553.23 - What information must I submit to support my net worth demonstration?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What information must I submit to support my net worth demonstration? 553.23 Section 553.23 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for...
30 CFR 553.29 - How can I use insurance as OSFR evidence?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How can I use insurance as OSFR evidence? 553.29 Section 553.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.29...
30 CFR 553.50 - How can BOEM refuse or invalidate my OSFR evidence?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How can BOEM refuse or invalidate my OSFR evidence? 553.50 Section 553.50 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Revocation and Penalties § 553...
30 CFR 553.50 - How can BOEM refuse or invalidate my OSFR evidence?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How can BOEM refuse or invalidate my OSFR evidence? 553.50 Section 553.50 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Revocation and Penalties § 553...
30 CFR 553.29 - How can I use insurance as OSFR evidence?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How can I use insurance as OSFR evidence? 553.29 Section 553.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.29...
30 CFR 553.20 - What methods may I use to demonstrate OSFR?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What methods may I use to demonstrate OSFR? 553.20 Section 553.20 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.20...
30 CFR 553.50 - How can BOEM refuse or invalidate my OSFR evidence?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How can BOEM refuse or invalidate my OSFR evidence? 553.50 Section 553.50 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Revocation and Penalties § 553...
30 CFR 253.50 - How can MMS refuse or invalidate my OSFR evidence?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How can MMS refuse or invalidate my OSFR evidence? 253.50 Section 253.50 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Revocation and Penalties § 253.50 How...
30 CFR 553.20 - What methods may I use to demonstrate OSFR?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What methods may I use to demonstrate OSFR? 553.20 Section 553.20 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.20...
30 CFR 553.29 - How can I use insurance as OSFR evidence?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How can I use insurance as OSFR evidence? 553.29 Section 553.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.29...
30 CFR 253.30 - How can I use an indemnity as OSFR evidence?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How can I use an indemnity as OSFR evidence? 253.30 Section 253.30 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 253.30...
30 CFR 253.60 - To whom may I present a claim?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false To whom may I present a claim? 253.60 Section 253.60 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Claims for Oil-Spill Removal Costs and Damages § 253.60 To...
30 CFR 553.42 - How can I amend my list of COFs?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How can I amend my list of COFs? 553.42 Section 553.42 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR Information...
30 CFR 553.60 - To whom may I present a claim?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false To whom may I present a claim? 553.60 Section 553.60 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Claims for Oil-Spill Removal Costs and Damages...
30 CFR 553.60 - To whom may I present a claim?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false To whom may I present a claim? 553.60 Section 553.60 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Claims for Oil-Spill Removal Costs and Damages...
30 CFR 553.23 - What information must I submit to support my net worth demonstration?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What information must I submit to support my net worth demonstration? 553.23 Section 553.23 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for...
30 CFR 553.1 - What is the purpose of this part?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 553.1 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES General § 553.1 What is the purpose of this part...) under Title I of the Oil Pollution Act of 1990 (OPA), as amended, 33 U.S.C. 2701 et seq. ...
30 CFR 253.21 - How can I use self-insurance as OSFR evidence?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How can I use self-insurance as OSFR evidence? 253.21 Section 253.21 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 253.21...
Waste Generation Overview, Course 23263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Lewis Edward
This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identifymore » the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.« less
Poppe, L.J.; McMullen, K.Y.; Ackerman, S.D.; Schaer, J.D.; Wright, D.B.
2012-01-01
Gridded multibeam bathymetry covers approximately 10.4 square kilometers of sea floor in the vicinity of Cross Rip Channel in Nantucket Sound, offshore southeastern Massachusetts. Although originally collected for charting purposes during National Oceanic and Atmospheric Administration hydrographic survey H12007, these acoustic data, and the sea-floor sediment sampling and bottom photography stations subsequently occupied to verify them, show the composition and terrain of the seabed and provide information on sediment transport and benthic habitat. This report is part of an expanding series of cooperative studies by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, and Massachusetts Office of Coastal Zone Management that provide a fundamental framework for research and resource-management activities (for example, windfarms, pipelines, and dredging) along the inner continental shelf offshore of Massachusetts.
Public concerns and behaviours towards solid waste management in Italy.
Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F
2010-12-01
A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.
Understanding the role of waste prevention in local waste management: A literature review.
Zacho, Kristina O; Mosgaard, Mette A
2016-10-01
Local waste management has so far been characterised by end-of-pipe solutions, landfilling, incineration, and recycling. End-of-pipe solutions build on a different mind-set than life cycle-based approaches, and for this reason, local waste managers are reluctant to consider strategies for waste prevention. To accelerate the transition of waste and resource management towards a more integrated management, waste prevention needs to play a larger role in the local waste management. In this review article, we collect knowledge from the scientific community on waste prevention of relevance to local waste management. We analyse the trends in the waste prevention literature by organising the literature into four categories. The results indicate an increasing interest in waste prevention, but not much literature specifically concerns the integration of prevention into the local waste management. However, evidence from the literature can inform local waste management on the prevention potential; the environmental and social effects of prevention; how individuals in households can be motivated to reduce waste; and how the effects of prevention measures can be monitored. Nevertheless, knowledge is still lacking on local waste prevention, especially regarding the methods for monitoring and how local waste management systems can be designed to encourage waste reduction in the households. We end the article with recommendations for future research. The literature review can be useful for both practitioners in the waste sector and for academics seeking an overview of previous research on waste prevention. © The Author(s) 2016.
Global capacity, potentials and trends of solid waste research and management.
Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan
2017-09-01
In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.
40 CFR 60.2620 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
40 CFR 60.2620 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2014 CFR
2014-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2014-10-01 2014-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2013 CFR
2013-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2013-10-01 2013-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2012 CFR
2012-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2012-10-01 2012-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2010 CFR
2010-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2010-10-01 2010-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
33 CFR 96.330 - Document of Compliance certificate: what is it and when is it needed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... freight vessel, freight vessel, or a self-propelled mobile offshore drilling unit of 500 gross tons or... 12 passengers or a tanker, bulk freight vessel, freight vessel, or a self-propelled mobile offshore... by an authorized organization acting on behalf of the U.S. through a safety management verification...
30 CFR 553.30 - How can I use an indemnity as OSFR evidence?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How can I use an indemnity as OSFR evidence? 553.30 Section 553.30 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.30...
30 CFR 553.31 - How can I use a surety bond as OSFR evidence?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How can I use a surety bond as OSFR evidence? 553.31 Section 553.31 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.31...
30 CFR 553.51 - What are the penalties for not complying with this part?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What are the penalties for not complying with this part? 553.51 Section 553.51 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Revocation and Penalties § 553...
30 CFR 553.21 - How can I use self-insurance as OSFR evidence?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How can I use self-insurance as OSFR evidence? 553.21 Section 553.21 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.21...
30 CFR 253.22 - How do I apply to use self-insurance as OSFR evidence?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How do I apply to use self-insurance as OSFR evidence? 253.22 Section 253.22 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES...
30 CFR 553.22 - How do I apply to use self-insurance as OSFR evidence?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How do I apply to use self-insurance as OSFR evidence? 553.22 Section 553.22 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What is the authority for collecting Oil Spill... MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES General § 553.5 What is the authority for collecting Oil Spill Financial Responsibility (OSFR) information...
30 CFR 553.22 - How do I apply to use self-insurance as OSFR evidence?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How do I apply to use self-insurance as OSFR evidence? 553.22 Section 553.22 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR...
30 CFR 553.21 - How can I use self-insurance as OSFR evidence?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How can I use self-insurance as OSFR evidence? 553.21 Section 553.21 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.21...
30 CFR 553.51 - What are the penalties for not complying with this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What are the penalties for not complying with this part? 553.51 Section 553.51 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Revocation and Penalties § 553...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What is the authority for collecting Oil Spill... MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES General § 553.5 What is the authority for collecting Oil Spill Financial Responsibility (OSFR) information...
30 CFR 253.12 - May I ask MMS for a determination of whether I must demonstrate OSFR?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false May I ask MMS for a determination of whether I must demonstrate OSFR? 253.12 Section 253.12 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and...
30 CFR 553.51 - What are the penalties for not complying with this part?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What are the penalties for not complying with this part? 553.51 Section 553.51 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Revocation and Penalties § 553...
30 CFR 553.43 - When is my OSFR demonstration or the amendment to my OSFR demonstration effective?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false When is my OSFR demonstration or the amendment to my OSFR demonstration effective? 553.43 Section 553.43 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES...
30 CFR 553.31 - How can I use a surety bond as OSFR evidence?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How can I use a surety bond as OSFR evidence? 553.31 Section 553.31 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.31...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What is the authority for collecting Oil Spill... MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES General § 253.5 What is the authority for collecting Oil Spill Financial...
30 CFR 553.22 - How do I apply to use self-insurance as OSFR evidence?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How do I apply to use self-insurance as OSFR evidence? 553.22 Section 553.22 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR...
30 CFR 553.12 - May I ask BOEM for a determination of whether I must demonstrate OSFR?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false May I ask BOEM for a determination of whether I must demonstrate OSFR? 553.12 Section 553.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What is the authority for collecting Oil Spill... MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES General § 553.5 What is the authority for collecting Oil Spill Financial Responsibility (OSFR) information...
30 CFR 553.12 - May I ask BOEM for a determination of whether I must demonstrate OSFR?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false May I ask BOEM for a determination of whether I must demonstrate OSFR? 553.12 Section 553.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability...
30 CFR 553.43 - When is my OSFR demonstration or the amendment to my OSFR demonstration effective?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false When is my OSFR demonstration or the amendment to my OSFR demonstration effective? 553.43 Section 553.43 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES...
30 CFR 553.21 - How can I use self-insurance as OSFR evidence?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How can I use self-insurance as OSFR evidence? 553.21 Section 553.21 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.21...
30 CFR 553.30 - How can I use an indemnity as OSFR evidence?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How can I use an indemnity as OSFR evidence? 553.30 Section 553.30 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.30...
30 CFR 553.30 - How can I use an indemnity as OSFR evidence?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How can I use an indemnity as OSFR evidence? 553.30 Section 553.30 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.30...
30 CFR 553.12 - May I ask BOEM for a determination of whether I must demonstrate OSFR?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false May I ask BOEM for a determination of whether I must demonstrate OSFR? 553.12 Section 553.12 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability...
30 CFR 253.31 - How can I use a surety bond as OSFR evidence?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How can I use a surety bond as OSFR evidence? 253.31 Section 253.31 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for...
30 CFR 553.31 - How can I use a surety bond as OSFR evidence?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How can I use a surety bond as OSFR evidence? 553.31 Section 553.31 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Methods for Demonstrating OSFR § 553.31...
30 CFR 553.43 - When is my OSFR demonstration or the amendment to my OSFR demonstration effective?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false When is my OSFR demonstration or the amendment to my OSFR demonstration effective? 553.43 Section 553.43 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES...
Addo, Henry O; Dun-Dery, Elvis J; Afoakwa, Eugenia; Elizabeth, Addai; Ellen, Amposah; Rebecca, Mwinfaug
2017-07-03
Domestic waste generation has contributed significantly to hampering national waste management efforts. It poses serious threat to national development and requires proper treatment and management within and outside households. The problem of improper waste management has always been a challenge in Ghana, compelling several national surveys to report on the practice of waste management. However, little is known about how much waste is generated and managed within households and there is a serious dearth of information for national policy and planning. This paper seeks to document the handling and practice of waste management, including collection, storage, transportation and disposal along with the types and amount of waste generated by Households and their related health outcome. The study was a descriptive cross-sectional study and used a multi-stage sampling technique to sample 700 households. The study was planned and implemented from January to May 2015. It involved the use of structured questionnaires in the data collection over the period. Factors such as demographic characteristics, amount of waste generated, types of waste bins used within households, waste recycling, cost of disposing waste, and distance to dumpsite were all assessed. The paper shows that each surveyed household generated 0.002 t of waste per day, of which 29% are both organic and inorganic. Though more than half of the respondents (53.6%) had positive attitude towards waste management, only 29.1% practiced waste management. The study reveals that there is no proper management of domestic waste except in few households that segregate waste. The study identified several elements as determinants of waste management practice. Female respondents were less likely to practice waste management (AOR 0.45; 95% Cl 0.29, 0.79), household size also determined respondents practice (AOR 0.26; Cl 0.09, 0.77). Practice of recycling (AOR 0.03; Cl 0.02, 0.08), distance to dumpsite (AOR 0.45; Cl 0.20, 0.99), were all significant predictors of waste management practice. Cholera which is a hygiene related disease was three times more likely to determine households' waste management practice (AOR 3.22; Cl 1.33, 7.84). Considering the low waste management practice among households, there is the need for improved policy and enhanced education on proper waste management practice among households.
NASA Astrophysics Data System (ADS)
Vezzulli, Luigi; Moreno, Mariapaola; Marin, Valentina; Pezzati, Elisabetta; Bartoli, Marco; Fabiano, Mauro
2008-06-01
A variety of pelagic and benthic parameters were measured at an aquaculture farm used for the fattening of Atlantic bluefin tuna ( Thunnus thynnus) which is located at an exposed site (700 m from the coast, average bottom depth of 45 m and average current speed of 6 cm s -1) in the Mediterranean Sea. The objective was to test whether modern off-shore tuna fattening industries can exert a sustainable organic waste impact on the receiving environment as has been reported for the offshore culture of more traditional Mediterranean species such as sparids. In the water column, the concentration of phytopigments, organic matter, heterotrophic bacteria and the taxonomic abundance of mesozooplankton (at the species level) were assessed. In the sediment, we assessed the concentration of reduced sulphur pools, phytopigments, organic matter, heterotrophic bacteria and the taxonomic abundance of meiofauna (at the taxa level) and nematodes (at the genus level). For most parameters, we found no substantial differences between farm and control sites. Deviations of farm values from control values, when they occurred, were small and did not indicate any significant impact on either the pelagic and benthic environment. Deviations were more apparent in the benthic compartment where lower redox potential values, higher bacterial production rates and a change in nematode genus composition pointed out to early changes in the sediment's metabolism. In addition, indigenous potential pathogenic bacteria showed higher concentration at the fish farm stations and were a warning of an undesirable event that may become established following aquaculture practice in oligotrophic environments. The overall data from this study provide extensive experimental evidence to support the sustainability of modern offshore farming technology in minimizing the hypertrophic-dystrophic risks associated with the rapidly-expanding tuna-fattening industry in the Mediterranean Sea.
Paul, J H; Rose, J B; Jiang, S; Kellogg, C; Shinn, E A
1995-01-01
Sewage waste disposal facilities in the Florida Keys include septic tanks and individual package plants in place of municipal collection facilities in most locations. In Key Largo, both facilities discharge into the extremely porous Key Largo limestone. To determine whether there was potential contamination of the subsurface aquifer and nearby coastal surface waters by such waste disposal practices, we examined the presence of microbial indicators commonly found in sewage (fecal coliforms, Clostridium perfringens, and enterococci) and aquatic microbial parameters (viral direct counts, bacterial direct counts, chlorophyll a, and marine vibriophage) in injection well effluent, monitoring wells that followed a transect from onshore to offshore, and surface waters above these wells in two separate locations in Key Largo in August 1993 and March 1994. Effluent and waters from onshore shallow monitoring wells (1.8- to 3.7-m depth) contained two or all three of the fecal indicators in all three samples taken, whereas deeper wells (10.7- to 12.2-m depth) at these same sites contained few or none. The presence of fecal indicators was found in two of five nearshore wells (i.e., those that were < or = 1.8 miles [< or = 2.9 km] from shore), whereas offshore wells (> or = 2.1 to 5.7 miles [< or = 3.4 to 9.2 km] from shore) showed little sign of contamination. Indicators were also found in surface waters in a canal in Key Largo and in offshore surface waters in March but not in August. Collectively, these results suggest that fecal contamination of the shallow onshore aquifer, parts of the nearshore aquifer, and certain surface waters has occurred.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7793943
40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...
40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...
40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...
40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, M.; Une, H.
In Japan, the waste management practice is carried out in accordance with the Waste Disposal Law of 1970. The first rule of infectious waste management was regulated in 1992, and infectious wastes are defined as the waste materials generated in medical institutions as a result of medical care or research which contain pathogens that have the potential to transmit infectious diseases. Revised criteria for infectious waste management were promulgated by the Ministry of Environment in 2004. Infectious waste materials are divided into three categories: the form of waste; the place of waste generation; the kind of infectious diseases. A reductionmore » of infectious waste is expected. We introduce a summary of the revised regulation of infectious waste management in this article.« less
40 CFR 273.52 - Waste management.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...
40 CFR 273.52 - Waste management.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...
40 CFR 273.52 - Waste management.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...
40 CFR 273.52 - Waste management.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...
40 CFR 273.52 - Waste management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...
Ribić, Bojan; Voća, Neven; Ilakovac, Branka
2017-02-01
Improvement of the current waste management is one of the main challenges for most municipalities in Croatia, mainly due to legal obligations set in different European Union (EU) directives regarding waste management, such as reduction of waste generation and landfilling, or increase of separately collected waste and recycling rates. This paper highlights the current waste management in the city of Zagreb by analyzing the waste generation, collection, and disposal scenario along with the regulatory and institutional framework. Since the present waste management system mainly depends upon landfilling, with the rate of separate waste collection and recycling far from being adequate, it is necessary to introduce a new system that will take into account the current situation in the city as well as the obligations imposed by the EU. Namely, in the coming years, the Waste Framework and Landfill Directives of the European Union will be a significant driver of change in waste management practices and governance of the city of Zagreb. At present, the yearly separate waste collection makes somewhat less than 5 kg per capita of various waste fractions, i.e., far below the average value for the (28) capital cities of the EU, which is 108 kg per capita. This is possible to achieve only by better and sustainable planning of future activities and facilities, taking into account of environmental, economic, and social aspects of waste management. This means that the city of Zagreb not only will have to invest in new infrastructure to meet the targets, but also will have to enhance public awareness in diverting this waste at the household level. The solution for the new waste management proposed in this paper will certainly be a way of implementing circular economy approach to current waste management practice in the city of Zagreb. Municipal waste management in the developing countries in the EU (new eastern EU members) is often characterized by its limited utilization of recycling activities, inadequate management of nonindustrial hazardous waste, and inadequate landfill disposal. Many cities in Eastern Europe and Zagreb as well are facing serious problems in managing municipal wastes due to the existing solid waste management system that is found to be highly inefficient. The proposed scenario for city of Zagreb in the paper is an innovative upgrading of municipal waste management based on the waste management hierarchy and circular economy approach.
40 CFR 60.2625 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no...
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
NASA Technical Reports Server (NTRS)
Campbell, R.; Dyer, M. K.; Hoard, E. G.; Little, D. G.; Taylor, A. C.
1972-01-01
Constructive recommendations are suggested for pollution problems from offshore energy resources industries on outer continental shelf. Technical management techniques for pollution identification and control offer possible applications to space engineering and management.
Structural health and prognostics management for offshore wind turbines :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Daniel; Resor, Brian Ray; White, Jonathan Randall
2012-12-01
Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of amore » full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blades torsional stiffness due to the disbond, which also resulted in changes in the blades local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.« less
Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.
Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri
2011-01-01
The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.
Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia
Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri
2011-01-01
The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559
Alternative approaches for better municipal solid waste management in Mumbai, India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathi, Sarika
2006-07-01
Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads andmore » in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.« less
Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, P.H.
The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.
E-waste Management and Refurbishment Prediction (EMARP) Model for Refurbishment Industries.
Resmi, N G; Fasila, K A
2017-10-01
This paper proposes a novel algorithm for establishing a standard methodology to manage and refurbish e-waste called E-waste Management And Refurbishment Prediction (EMARP), which can be adapted by refurbishing industries in order to improve their performance. Waste management, particularly, e-waste management is a serious issue nowadays. Computerization has been into waste management in different ways. Much of the computerization has happened in planning the waste collection, recycling and disposal process and also managing documents and reports related to waste management. This paper proposes a computerized model to make predictions for e-waste refurbishment. All possibilities for reusing the common components among the collected e-waste samples are predicted, thus minimizing the wastage. Simulation of the model has been done to analyse the accuracy in the predictions made by the system. The model can be scaled to accommodate the real-world scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.
Progress and challenges to the global waste management system.
Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn
2014-09-01
Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.
Perturbation of seafloor bacterial community structure by drilling waste discharge.
Nguyen, Tan T; Cochrane, Sabine K J; Landfald, Bjarne
2018-04-01
Offshore drilling operations result in the generation of drill cuttings and localized smothering of the benthic habitats. This study explores bacterial community changes in the in the upper layers of the seafloor resulting from an exploratory drilling operation at 1400m water depth on the Barents Sea continental slope. Significant restructurings of the sediment microbiota were restricted to the sampling sites notably affected by the drilling waste discharge, i.e. at 30m and 50m distances from the drilling location, and to the upper 2cm of the seafloor. Three bacterial groups, the orders Clostridiales and Desulfuromonadales and the class Mollicutes, were almost exclusively confined to the upper two centimeters at 30m distance, thereby corroborating an observed increase in anaerobicity inflicted by the drilling waste deposition. The potential of these phylogenetic groups as microbial bioindicators of the spatial extent and persistence of drilling waste discharge should be further explored. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asase, Mizpah; Yanful, Ernest K.; Mensah, Moses
2009-10-15
Integrated waste management has been accepted as a sustainable approach to solid waste management in any region. It can be applied in both developed and developing countries. The difference is the approach taken to develop the integrated waste management system. This review looks at the integrated waste management system operating in the city of London, Ontario-Canada and how lessons can be drawn from the system's development and operation that will help implement a sustainable waste management system in the city of Kumasi, Ghana. The waste management system in London is designed such that all waste generated in the city ismore » handled and disposed of appropriately. The responsibility of each sector handling waste is clearly defined and monitored. All major services are provided and delivered by a combination of public and private sector forces. The sustainability of the waste management in the city of London is attributed to the continuous improvement strategy framework adopted by the city based on the principles of integrated waste management. It is perceived that adopting a strategic framework based on the principles of integrated waste management with a strong political and social will, can transform the current waste management in Kumasi and other cities in developing countries in the bid for finding lasting solutions to the problems that have plagued the waste management system in these cities.« less
Modelling the nitrogen loadings from large yellow croaker (Larimichthys crocea) cage aquaculture.
Cai, Huiwen; Ross, Lindsay G; Telfer, Trevor C; Wu, Changwen; Zhu, Aiyi; Zhao, Sheng; Xu, Meiying
2016-04-01
Large yellow croaker (LYC) cage farming is a rapidly developing industry in the coastal areas of the East China Sea. However, little is known about the environmental nutrient loadings resulting from the current aquaculture practices for this species. In this study, a nitrogenous waste model was developed for LYC based on thermal growth and bioenergetic theories. The growth model produced a good fit with the measured data of the growth trajectory of the fish. The total, dissolved and particulate nitrogen outputs were estimated to be 133, 51 and 82 kg N tonne(-1) of fish production, respectively, with daily dissolved and particulate nitrogen outputs varying from 69 to 104 and 106 to 181 mg N fish(-1), respectively, during the 2012 operational cycle. Greater than 80 % of the nitrogen input from feed was predicted to be lost to the environment, resulting in low nitrogen retention (<20 %) in the fish tissues. Ammonia contributed the greatest proportion (>85 %) of the dissolved nitrogen generated from cage farming. This nitrogen loading assessment model is the first to address nitrogenous output from LYC farming and could be a valuable tool to examine the effects of management and feeding practices on waste from cage farming. The application of this model could help improve the scientific understanding of offshore fish farming systems. Furthermore, the model predicts that a 63 % reduction in nitrogenous waste production could be achieved by switching from the use of trash fish for feed to the use of pelleted feed.
NASA Astrophysics Data System (ADS)
Affandy, Nur Azizah; Isnaini, Enik; Laksono, Arif Budi
2017-06-01
Waste management becomes a serious issue in Indonesia. Significantly, waste production in Lamongan Regency is increasing in linear with the growth of population and current people activities, creating a gap between waste production and waste management. It is a critical problem that should be solved immediately. As a reaction to the issue, the Government of Lamongan Regency has enacted a new policy regarding waste management through a program named Lamongan Green and Clean (LGC). From the collected data, it showed that the "wet waste" or "organic waste" was approximately 63% of total domestic waste. With such condition, it can be predicted that the trashes will decompose quite quickly. From the observation, it was discovered that the generated waste was approximately 0.25 kg/person/day. Meanwhile, the number of population in Tumenggungan Village, Lamongan (data obtained from Monograph in Lamongan district, 2012) was 4651 people. Thus, it can be estimated the total waste in Lamongan was approximately 0.25 kg/person/day x 4651 characters = 930 kg/day. Within 3RWB Model, several stages have to be conducted. In the planning stage, the promotion of self-awareness among the communities in selecting and managing waste due to their interest in a potential benefit, is done. It indicated that community's awareness of waste management waste grew significantly. Meanwhile in socialization stage, each village staff, environmental expert, and policymaker should bear significant role in disseminating the awareness among the people. In the implementation phase, waste management with 3RWB model is promoted by applying it among of the community, starting from selection, waste management, until recycled products sale through the waste bank. In evaluation stage, the village managers, environmental expert, and waste managers are expected to regularly supervise and evaluate the whole activity of the waste management.
Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.W.
1993-12-01
US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less
Healthcare waste management research: A structured analysis and review (2005-2014).
Thakur, Vikas; Ramesh, A
2015-10-01
The importance of healthcare waste management in preserving the environment and protecting the public cannot be denied. Past research has dealt with various issues in healthcare waste management and disposal, which spreads over various journals, pipeline research disciplines and research communities. Hence, this article analyses this scattered knowledge in a systematic manner, considering the period between January 2005 and July 2014. The purpose of this study is to: (i) identify the trends in healthcare waste management literature regarding journals published; (ii) main topics of research in healthcare waste management; (iii) methodologies used in healthcare waste management research; (iv) areas most frequently researched by researchers; and (v) determine the scope of future research in healthcare waste management. To this end, the authors conducted a systematic review of 176 articles on healthcare waste management taken from the following eight esteemed journals: International Journal of Environmental Health Research, International Journal of Healthcare Quality Assurance, Journal of Environmental Management, Journal of Hazardous Material, Journal of Material Cycles and Waste Management, Resources, Conservations and Recycling, Waste Management, and Waste Management & Research. The authors have applied both quantitative and qualitative approaches for analysis, and results will be useful in the following ways: (i) results will show importance of healthcare waste management in healthcare operations; (ii) findings will give a comparative view of the various publications; (c) study will shed light on future research areas. © The Author(s) 2015.
Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy
EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
Disaster waste management: a review article.
Brown, Charlotte; Milke, Mark; Seville, Erica
2011-06-01
Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Disaster waste management: A review article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Charlotte, E-mail: charlotte.brown@pg.canterbury.ac.nz; Milke, Mark, E-mail: mark.milke@canterbury.ac.nz; Seville, Erica, E-mail: erica.seville@canterbury.ac.nz
2011-06-15
Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.;more » however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.« less
Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Nicholas; Adams, Lynne; Wong, Pierre
2013-07-01
Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators formore » all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)« less
50 CFR 665.422 - Management area.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Management area. 665.422 Section 665.422 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... Management area. The Mariana coral reef management area consists of the U.S. EEZ around Guam and the offshore...
50 CFR 665.422 - Management area.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Management area. 665.422 Section 665.422 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... Management area. The Mariana coral reef management area consists of the U.S. EEZ around Guam and the offshore...
50 CFR 665.422 - Management area.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Management area. 665.422 Section 665.422 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... Management area. The Mariana coral reef management area consists of the U.S. EEZ around Guam and the offshore...
50 CFR 665.422 - Management area.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Management area. 665.422 Section 665.422 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... Management area. The Mariana coral reef management area consists of the U.S. EEZ around Guam and the offshore...
50 CFR 665.422 - Management area.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Management area. 665.422 Section 665.422 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... Management area. The Mariana coral reef management area consists of the U.S. EEZ around Guam and the offshore...
NASA Astrophysics Data System (ADS)
Conze, R.; Krysiak, F.; Wallrabe-Adams, H.; Graham, C. C.
2004-12-01
During August/September 2004, the Arctic Coring Expedition (ACEX) was used to trial a new Offshore Drilling Information System (OffshoreDIS). ACEX was the first Mission Specific Platform (MSP) expedition of the Integrated Ocean Drilling Programme (IODP), funded by the European Consortium for Ocean Research Drilling (ECORD). The British Geological Survey in conjunction with the University of Bremen and the European Petrophysics Consortium were the ECORD Science Operator (ESO) for ACEX. IODP MSP expeditions have very similar data management requirements and operate in similar working environments to the lake drilling projects conducted by the International Continental Scientific Drilling Program (ICDP), for example, the GLAD800, which has very restricted space on board and operates in difficult conditions. Both organizations require data capture and management systems that are mobile, flexible and that can be deployed quickly on small- to medium-sized drilling platforms for the initial gathering of data, and that can also be deployed onshore in laboratories where the bulk of the scientific work is conducted. ESO, therefore, decided that an adapted version of the existing Drilling Information System (DIS) used by ICDP projects would satisfy its requirements. Based on the existing DIS, an OffshoreDIS has been developed for MSP expeditions. The underlying data model is compatible with IODP(JANUS), the Bremen Core Repository, WDC-MARE/PANGAEA and the LacCore in Minneapolis. According to the specific expedition platform configuration and on-board workflow requirements for the Arctic, this data model, data pumps and user interfaces were adapted for the ACEX-OffshoreDIS. On the drill ship Vidar Viking the cores were catalogued and petrophysically logged using a GeoTek Multi-Sensor Core Logger System, while further initial measurements, lithological descriptions and biostratigraphic investigations were undertaken on the Oden, which provided laboratory facilities for the expedition. Onboard samples were registered in a corresponding sample archive on both vessels. The ACEX-OffshoreDIS used a local area network covering the two ships of the three icebreaker fleet by wireless LAN between the ships and partly wired LAN on the ships. A DIS-server was installed on each ship. These were synchronized by database replication and linked to a total of 10 client systems and label printers across both ships. The ACEX-OffshoreDIS will also be used for the scientific measurement and analysis phase of the expedition during the post-field operations `shore-party' in November 2004 at the Bremen Core Repository (BCR). The data management system employed in the Arctic will be reconfigured and deployed at the BCR. In addition, an eXtended DIS (XDIS) Web interface will be available. This will allow controlled sample distribution (core curation, sub-sampling) as well as sharing of data (registration, upload and download) with other laboratories which will be undertaking additional sampling and analyses. The OffshoreDIS data management system will be of long-term benefit to both IODP and ICDP, being deployed in forthcoming MSP offshore projects, ICDP lake projects and joint IODP-ICDP projects such as the New Jersey Coastal Plain Drilling Project.
76 FR 31305 - Pacific Whiting; Advisory Panel and Joint Management Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-31
... experienced in the harvesting, processing, marketing, management, conservation, or research of the offshore... Whiting; Advisory Panel and Joint Management Committee AGENCY: National Oceanic and Atmospheric.... SUMMARY: NMFS solicits nominations for the Advisory Panel (AP) and the Joint Management Committee (JMC) on...
30 CFR 253.41 - What terms must I include in my OSFR evidence?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What terms must I include in my OSFR evidence? 253.41 Section 253.41 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Requirements for Submitting OSFR Information § 253.41 What terms must I include in my...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, Grover J.
In 2010, the University of Rhode Island (URI) secured $2,000,000 from the Rhode Island Office of Energy Resources (OER) to support research studies for the identification of preferred sites for offshore renewable energy development in Rhode Island’s offshore waters. This research will provide the Rhode Island Coastal Resources Management Council (CRMC) with sound technical information to assist in the siting of wind turbines in Rhode Island’s offshore waters. CRMC is the state agency with jurisdiction over development, preservation and restoration of Rhode Island’s coasts out to the three-mile limit, and is the state’s authority for federal consistency. With technical supportmore » from URI, CRMC is currently leading the implementation of the Rhode Island Ocean Special Area Management Plan (Ocean SAMP) with the purpose of developing policies and standards to guide the development of offshore renewable energy. The justification behind renewable energy development in Rhode Island includes diversifying the energy sources supplying electricity consumed in the state, stabilizing long-term energy prices, enhancing environmental quality – including the reduction of air pollutants and greenhouse gas emissions – reducing the state’s reliance on fossil fuels, and creating jobs in Rhode Island in the renewable energy sector.« less
Health-care waste management in India.
Patil, A D; Shekdar, A V
2001-10-01
Health-care waste management in India is receiving greater attention due to recent regulations (the Biomedical Wastes (Management & Handling) Rules, 1998). The prevailing situation is analysed covering various issues like quantities and proportion of different constituents of wastes, handling, treatment and disposal methods in various health-care units (HCUs). The waste generation rate ranges between 0.5 and 2.0 kg bed-1 day-1. It is estimated that annually about 0.33 million tonnes of waste are generated in India. The solid waste from the hospitals consists of bandages, linen and other infectious waste (30-35%), plastics (7-10%), disposable syringes (0.3-0.5%), glass (3-5%) and other general wastes including food (40-45%). In general, the wastes are collected in a mixed form, transported and disposed of along with municipal solid wastes. At many places, authorities are failing to install appropriate systems for a variety of reasons, such as non-availability of appropriate technologies, inadequate financial resources and absence of professional training on waste management. Hazards associated with health-care waste management and shortcomings in the existing system are identified. The rules for management and handling of biomedical wastes are summarised, giving the categories of different wastes, suggested storage containers including colour-coding and treatment options. Existing and proposed systems of health-care waste management are described. A waste-management plan for health-care establishments is also proposed, which includes institutional arrangements, appropriate technologies, operational plans, financial management and the drawing up of appropriate staff training programmes.
Longe, Ezechiel O
2012-06-01
A survey of healthcare waste management practices and their implications for health and the environment was carried out. The study assessed waste management practices in 20 healthcare facilities ranging in capacity from 40 to 600 beds in Ikorodu and metropolitan Lagos, Lagos State, Nigeria. The prevailing healthcare waste management status was analysed. Management issues on quantities and proportion of different constituents of waste, segregation, collection, handling, transportation, treatment and disposal methods were assessed. The waste generation averaged 0.631 kg bed(-1) day(-1) over the survey area. The waste stream from the healthcare facilities consisted of general waste (59.0%), infectious waste (29.7%), sharps and pathological (8.9%), chemical (1.45%) and others (0.95%). Sharps/pathological waste includes disposable syringes. In general, the waste materials were collected in a mixed form, transported and disposed of along with municipal solid waste with attendant risks to health and safety. Most facilities lacked appropriate treatment systems for a variety of reasons that included inadequate funding and little or no priority for healthcare waste management as well as a lack of professionally competent waste managers among healthcare providers. Hazards associated with healthcare waste management and shortcomings in the existing system were identified.
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...
40 CFR 60.2620 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for..., 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for... Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
NASA Astrophysics Data System (ADS)
Lipsky, A.
2016-12-01
In August 2015 construction commenced on the Block Island Wind Farm, the first offshore wind energy project in the U.S. This pilot-scale offshore energy project, located 18 miles offshore of the Rhode Island mainland, was sited through a comprehensive ocean planning process. As the project progressed into design and construction, our team utilized potent ecosystem based management approaches to great advantage to address the human and resource interactions that existed in the project area. These practices have included designing and executing collaborative long-term monitoring ventures to fill key science gaps and reconcile fisheries concerns, establishing effective industry to industry engagement, and developing durable multi-sector agreements. This presentation will describe the specific EBM approaches used after the planning process was completed to bring the project to construction; highlighting where key aspects of the National Ocean Policy goals and principles have been successfully applied.
NASA Astrophysics Data System (ADS)
Lipsky, A.
2016-02-01
In August 2015 construction commenced on the Block Island Wind Farm, the first offshore wind energy project in the U.S. This pilot-scale offshore energy project, located 18 miles offshore of the Rhode Island mainland, was sited through a comprehensive ocean planning process. As the project progressed into design and construction, our team utilized potent ecosystem based management approaches to great advantage to address the human and resource interactions that existed in the project area. These practices have included designing and executing collaborative long-term monitoring ventures to fill key science gaps and reconcile fisheries concerns, establishing effective industry to industry engagement, and developing durable multi-sector agreements. This presentation will describe the specific EBM approaches used after the planning process was completed to bring the project to construction; highlighting where key aspects of the National Ocean Policy goals and principles have been successfully applied.
Current status of waste management in Botswana: A mini-review.
Mmereki, Daniel
2018-05-01
Effective waste management practices are not all about legislative solutions, but a combination of the environmental, social, technical, technically skilled human resources, financial and technological resources, resource recycling, environmental pollution awareness programmes and public participation. As a result of insufficient resources, municipal solid waste (MSW) in transition and developing countries like Botswana remains a challenge, and it is often not yet given highest priority. In Botswana, the environment, public health and other socio-economic aspects are threatened by waste management practices due to inadequate implementation and enforcement mechanisms of waste management policy. This mini-review paper describes the panorama of waste management practices in Botswana and provides information to competent authorities responsible for waste management and to researchers to develop and implement an effective waste management system. Waste management practices in Botswana are affected by: lack of effective implementation of national waste policy, fragmented tasks and overlapping mandates among relevant institutions; lack of clear guidelines on the responsibilities of the generators and public authorities and on the associated economic incentives; and lack of consistent and comprehensive solid waste management policies; lack of intent by decision-makers to prepare national waste management plans and systems, and design and implement an integrated sustainable municipal solid waste management system. Due to these challenges, there are concerns over the growing trend of the illegal dumping of waste, creating mini dumping sites all over the country, and such actions jeopardize the efforts of lobbying investors and tourism business. Recommendations for concerted efforts are made to support decision makers to re-organize a sustainable waste management system, and this paper provides a reference to other emerging economies in the region and the world.
Four essays on offshore wind power potential, development, regulatory framework, and integration
NASA Astrophysics Data System (ADS)
Dhanju, Amardeep
Offshore wind power is an energy resource whose potential in the US has been recognized only recently. There is now growing interest among the coastal states to harness the resource, particularly in states adjacent to the Mid-Atlantic Bight where the shallow continental shelf allows installation of wind turbines using the existing foundation technology. But the promise of bountiful clean energy from offshore wind could be delayed or forestalled due to policy and regulatory challenges. This dissertation is an effort to identify and address some of the important challenges. Focusing on Delaware as a case study it calculates the extent of the wind resource; considers one means to facilitate resource development---the establishment of statewide and regional public power authorities; analyzes possible regulatory frameworks to manage the resource in state-controlled waters; and assesses the use of distributed storage to manage intermittent output from wind turbines. In order to cover a diversity of topics, this research uses a multi-paper format with four essays forming the body of work. The first essay lays out an accessible methodology to calculate offshore wind resource potential using publicly available data, and uses this methodology to access wind resources off Delaware. The assessment suggests a wind resource approximately four times the average electrical load in Delaware. The second essay examines the potential role of a power authority, a quasi-public institution, in lowering the cost of capital, reducing financial risk of developing and operating a wind farm, and enhancing regional collaboration on resource development and management issues. The analysis suggests that a power authority can lower the cost of offshore wind power by as much as 1/3, thereby preserving the ability to pursue cost-competitive development even if the current federal incentives are removed. The third essay addresses the existing regulatory void in state-controlled waters of Delaware. It outlines a regulatory framework touching on key elements such as the leasing system, length of tenure, and financial terms for allocating property rights. In addition, the framework also provides recommendations on environmental assessment that would be required prior to lease issuance. The fourth essay analyzes offshore wind power integration using electric thermal storage in housing units. It presents a model of wind generation, heating load and wind driven thermal storage to assess the potential of storage to buffer wind intermittency. The analysis suggests that thermal load matches the seasonal excess of offshore wind during winter months, and that electric thermal storage could provide significant temporal, spatial, and cost advantages for balancing output from offshore wind generation, while also converting a major residential load (space heating) now met by fossil fuels to low carbon energy resources. Together, the four essays provide new analyses of policy, regulatory, and system integration issues that could impede resource development, and also analyze and recommend strategies to manage these issues.
Project Manager Performance and the Decision to Backsource the Project Management Office
ERIC Educational Resources Information Center
Lively, William R.
2014-01-01
This paper reviews a management decision of an Information Technology Outsource (ITO) provider to backshore the management oversight of its Project Management Office (PMO) after only one year of offshore operations. Governance is a term used in project management to refer to management oversight. The review is a quantitative analysis of existing…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon... hazardous waste management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude... and recordkeeping requirements. 40 CFR Part 261 Environmental protection, Hazardous waste, Solid waste...
Monitoring strategies for drill cutting discharge in the vicinity of cold-water coral ecosystems.
Purser, Autun; Thomsen, Laurenz
2012-11-01
Cold-water coral reefs represent some of the most biodiverse and biomass rich ecosystems in the marine environment. Despite this, ecosystem functioning is still poorly understood and the susceptibility of key species to anthropogenic activities and pollutants is unknown. In European waters, cold-water corals are often found in greatest abundance on the continental margin, often in regions rich in hydrocarbon reserves. In this viewpoint paper we discuss some of the current strategies employed in predicting and minimizing exposure of cold-water coral reef ecosystems on the Norwegian margin to waste materials produced during offshore drilling operations by the oil and gas industry. In the light of recent in situ and experimental research conducted with the key reef species Lophelia pertusa, we present some possible improvements to these strategies which may be utilized by industry and managers to further reduce the likelihood of exposure. We further highlight important outstanding research questions in this field. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hazardous and toxic waste management in Botswana: practices and challenges.
Mmereki, Daniel; Li, Baizhan; Meng, Liu
2014-12-01
Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.
Waste management outlook for mountain regions: Sources and solutions.
Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia
2017-09-01
Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
National information network and database system of hazardous waste management in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Hongchang
1996-12-31
Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry,more » and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.« less
Status of waste tyres and management practice in Botswana.
Mmereki, Daniel; Machola, Bontle; Mokokwe, Kentlafetse
2017-02-22
Waste tyres (WTs) are becoming a significant environmental, economical and technological challenge due to their high contents of combustible composition and potential for valuable materials and energy resources. Fewer studies in developing and even developed countries have been carried out to assess the challenges regarding waste tyres management, and suggested the best alternative solutions for managing this waste stream. While developed countries made progress in waste tyres management needs by implementing more efficient innovative recovery and recycling methods, and restrictive regulations regarding the management of used tyres, in many developing countries the management of waste tyres has not received adequate interest, and the processing, treatment and disposal of waste tyre is still nascent. In recent years, worldwide, several methods for managing used tyres, including other principal alternatives for managing end-of-life tyres defined in the 4Rs, reduction, re-use, recovery and recycling have been adopted and applied to minimize serious threats to both the natural environment environment and human. The paper attempted to establish stakeholders' action that has the responsibility in waste tyre management in Botswana. This study also analyzed important aspects on waste tyres management in Botswana. A synthesis of approaches was employed in the present investigation to determine the factors influencing effective performance of waste tyres management practice in Botswana. Data for the present study was obtained using relevant published literature, scientific journals, other third sector sources, academic sources, and research derived from governments and other agencies and field observations. Group discussions with the participants and semi-structured interviews with professionals were carried out. The outcomes of this investigation are a wide-range outline concerning the participants that are important in waste tyres management, and a set of aspects affecting the management of waste tyres. The information provided by this study is very critical for reviewing and updating the methods and tools to update waste tyres data and trends to improve waste tyres management efficiency, suggesting innovative methods of recovering and recycling this waste stream in Botswana.
Hazardous Waste: Learn the Basics of Hazardous Waste
... to set up a framework for the proper management of hazardous waste. Need More Information on Hazardous Waste? The RCRA Orientation Manual provides ... facility management standards, specific provisions governing hazardous waste management units ... information on the final steps in EPA’s hazardous waste ...
Maier, Katherine L.; Paull, Charles K.; Brothers, Daniel; Caress, David W.; McGann, Mary; Lundsten, Eve M.; Anderson, Krystle; Gwiazda, Roberto
2017-01-01
We provide an extensive high‐resolution geophysical, sediment core, and radiocarbon dataset to address late Pleistocene and Holocene fault activity of the San Gregorio fault zone (SGFZ), offshore central California. The SGFZ occurs primarily offshore in the San Andreas fault system and has been accommodating dextral strike‐slip motion between the Pacific and North American plates since the mid‐Miocene. Our study focuses on the SGFZ where it has been mapped through the continental slope north of Monterey Canyon. From 2009 to 2015, the Monterey Bay Aquarium Research Institute collected high‐resolution multibeam bathymetry and chirp sub‐bottom profiles using an autonomous underwater vehicle (AUV). Targeted samples were collected using a remotely operated vehicle (ROV) to provide radiocarbon age constraints. We integrate the high‐resolution geophysical data with radiocarbon dates to reveal Pleistocene seismic horizons vertically offset less than 5 m on nearly vertical faults. These faults are buried by continuous reflections deposited after ∼17.5 ka and likely following erosion during the last sea‐level lowstand ∼21 ka, bracketing the age of faulting to ∼32–21 ka. Clearly faulted horizons are only detected in a small area where mass wasting exhumed older strata to within ∼25 m of the seafloor. The lack of clearly faulted Holocene deposits and possible highly distributed faulting in the study area are consistent with previous interpretations that late Pleistocene and Holocene activity along the SGFZ may decrease to the south. This study illustrates the complexity of the SGFZ, offshore central California, and demonstrates the utility of very high‐resolution data from combined AUV (geophysical)–ROV (seabed sampling) surveys in offshore studies of fault activity.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... have questions on viewing the docket, call Renee V. Wright, Program Manager, Docket Operations..., located just offshore of Mar Vista Restaurant in Longboat Key at position 27[deg]26'13'' N, 82[deg]40'45..., located on the Gulf of Mexico just offshore of Sand Bar Restaurant in Anna Maria at position 27[deg]31'35...
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
40 CFR 62.14590 - What should I include in my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... in my waste management plan? A waste management plan must include consideration of the reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or metals; or the... waste management measures already in place, the costs of additional measures, the emissions reductions...
E-waste management in India: A mini-review.
Awasthi, Abhishek Kumar; Wang, Mengmeng; Wang, Zhishi; Awasthi, Mrigendra Kumar; Li, Jinhui
2018-05-01
Environmental deterioration and health risk due to improper e-waste management has become a serious issue in India. The major portion of e-waste reaches an unorganized e-waste recycling sector and is then treated by using crude methods. This review article presents a brief highlight on e-waste management status, legislation, and technology uses in India. The present e-waste management needs to be more focused on environmentally sound management, by more active support from all the participants involved in the e-waste flow chain in India.
76 FR 543 - New England Fishery Management Council; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... England Fishery Management Council, 50 Water Street, Mill 2, Newburyport, MA 01950; telephone: (978) 465... representative will present an outline of their project--a networked sensor system array proposed for offshore...
Clinical laboratory waste management in Shiraz, Iran.
Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John
2012-06-01
Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must my waste management plan be... Before December 1, 2008 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your...
40 CFR 60.2625 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no later than the date specified in table 1 of this...
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speer, Bethany; Keyser, David; Tegen, Suzanne
Construction of the first offshore wind farm in the United States began in 2015, using fixed platform structures that are appropriate for shallow seafloors, like those located off of the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to anchor to the deeper seafloor if deployed off of the West Coast. To analyze the employment and economic potential for floating offshore wind along the West Coast, the Bureau of Ocean Energy Management (BOEM) has commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical, large-scale deployment scenarios for California: 16more » GW of offshore wind by 2050 (Scenario A) and 10 GW of offshore wind by 2050 (Scenario B). The results of this analysis can be used to better understand the general scales of economic opportunities that could result from offshore wind development. Results show total state gross domestic product (GDP) impacts of $16.2 billion in Scenario B or $39.7 billion in Scenario A for construction; and $3.5 billion in Scenario B or $7.9 billion in Scenario A for the operations phases.« less
Globalization of environmental regulations for offshore E & P operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon, B.E.
1995-12-31
One of the enduring legacies of the Rio Environmental Summit of 1992 (United Nations Conference on Environment and Development, UNCED) is Agenda 21 (Chapter 17 - Protection of the Oceans), which among other things called for the assessment of the need for a global authority to regulate offshore Exploration & Production (E&P) discharges, emissions and safety. Despite advice to the contrary from the International Maritime Organization (IMO), interest is building within the European community for the standardization of regulations for offshore E&P activities. Several international of regulations for offshore E&P activities. Several international frameworks or forums have been mentioned asmore » possible candidates. These include the United Nations Convention on the Law of the Sea, 1982 (UNCLOS); London Convention 1972 (LC 1972) and the International Convention for the Prevention of Pollution from Ships, 1973, as modified by the Protocol of 1978 (MARPOL) 73/78. International offshore oil and gas operators operate within requirements of regional conventions under the United Nations Environmental Program`s (UNEP) - Regional Seas Program. Domestic offshore operations are undertaken under the auspices of the U.S. Environmental Protection Agency and Minerals Management Service.« less
Tribal Waste Management Program
The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.
Management of construction and demolition wastes as secondary building resources
NASA Astrophysics Data System (ADS)
Manukhina, Lyubov; Ivanova, Irina
2017-10-01
The article analyzes the methods of management of construction and demolition wastes. The authors developed suggestions for improving the management system of the turnover of construction and demolition wastes. Today the issue of improving the management of construction and demolition wastes is of the same importance as problems of protecting the life-support field from pollution and of preserving biological and land resources. The authors educed the prospective directions and methods for improving the management of the turnover processes for construction and demolition wastes, including the evaluation of potential of wastes as secondary raw materials and the formation of a centralized waste management system.
40 CFR 273.13 - Waste management.
Code of Federal Regulations, 2013 CFR
2013-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.13 - Waste management.
Code of Federal Regulations, 2012 CFR
2012-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.33 - Waste management.
Code of Federal Regulations, 2013 CFR
2013-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.33 - Waste management.
Code of Federal Regulations, 2012 CFR
2012-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.13 - Waste management.
Code of Federal Regulations, 2011 CFR
2011-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.13 - Waste management.
Code of Federal Regulations, 2014 CFR
2014-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.33 - Waste management.
Code of Federal Regulations, 2014 CFR
2014-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.33 - Waste management.
Code of Federal Regulations, 2011 CFR
2011-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
Optimised management of orphan wastes in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doudou, Slimane; McTeer, Jennifer; Wickham, Stephen
2013-07-01
Orphan wastes have properties preventing them from being managed according to existing or currently planned management routes, or lack characterisation so that their management is uncertain. The identification of new management opportunities for orphan wastes could realise significant benefits by reducing the number of processing facilities required, reducing waste volumes, reducing hazard or leading to the development of centres of excellence for the processing of certain types of orphan wastes. Information on the characteristics of orphan waste existing at nuclear licensed sites across the UK has been collated and a database developed to act as a repository for the informationmore » gathered. The database provides a capability to analyse the data and to explore possible treatment technologies for each orphan waste type. Thirty five distinct orphan waste types have been defined and possible treatment options considered. Treatment technologies (including chemical, high temperature, immobilisation and physical technologies) that could be applied to one or more of the generic orphan waste streams have been identified. Wiring diagrams have been used to highlight the waste treatment / lifecycle management options that are available for each of the generic orphan groups as well as identifying areas for further research and development. This work has identified the potential for optimising the management of orphan wastes in a number of areas, and many potential opportunities were identified. Such opportunities could be investigated by waste managers at waste producing nuclear sites, to facilitate the development of new management routes for orphan wastes. (authors)« less
Hazardous healthcare waste management in the Kingdom of Bahrain.
Mohamed, L F; Ebrahim, S A; Al-Thukair, A A
2009-08-01
Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.
Hazardous healthcare waste management in the Kingdom of Bahrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, L.F.; Ebrahim, S.A.; Al-Thukair, A.A.
2009-08-15
Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this studymore » along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.« less
Waste Generation Overview Refresher, Course 21464
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Lewis Edward
This course, Waste Generation Overview Refresher (COURSE 21464), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to- grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL.
[Management of hazardous waste in a hospital].
Neveu C, Alejandra; Matus C, Patricia
2007-07-01
An inadequate management of hospital waste, that have toxic, infectious and chemical wastes, is a risk factor for humans and environment. To identify, quantify and assess the risk associated to the management of hospital residues. A cross sectional assessment of the generation of hazardous waste from a hospital, between June and August 2005, was performed. The environmental risk associated to the management of non-radioactive hospital waste was assessed and the main problems related to solid waste were identified. The rate of generation of hazardous non-radioactive waste was 1.35 tons per months or 0.7 kg/bed/day. Twenty five percent of hazardous liquid waste were drained directly to the sewage system. The drug preparation unit of the pharmacy had the higher environmental risk associated to the generation of hazardous waste. The internal transport of hazardous waste had a high risk due to the lack of trip planning. The lack of training of personnel dealing with these waste was another risk factor. Considering that an adequate management of hospital waste should minimize risks for patients, the hospital that was evaluated lacks an integral management system for its waste.
40 CFR 60.2755 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... waste management plan? You must submit the waste management plan no later than the date specified in... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On...
40 CFR 62.14715 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...
40 CFR 62.14715 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...
40 CFR 60.2755 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... waste management plan? You must submit the waste management plan no later than the date specified in... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On...
40 CFR 62.14715 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...
40 CFR 62.14715 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...
40 CFR 62.14715 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ...
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What is a waste management plan? 62...
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must my waste management plan be... POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious Waste Incinerators Constructed On Or Before December 1, 2008 Waste Management Plan § 62.14432 When must my waste management plan be completed...
Waste Management Information System (WMIS) User Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. E. Broz
2008-12-22
This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.
Environmental impact of aquaculture and countermeasures to aquaculture pollution in China.
Cao, Ling; Wang, Weimin; Yang, Yi; Yang, Chengtai; Yuan, Zonghui; Xiong, Shanbo; Diana, James
2007-11-01
Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compound in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of ever-increasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. China is the world's largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites' conditions and financial status as well as by weighing the advantages and disadvantages of each system. Strategies and perspectives for sustainable aquaculture development are proposed, with the emphasis on environmental protection. Negative effects of waste from aquaculture to aquatic environment are increasingly recognized, though they were just a small proportion to land-based pollutants. Properly planned use of aquaculture waste alleviates water pollution problems and not only conserves valuable water resources but also takes advantage of the nutrients contained in effluent. It is highly demanding to develop sustainable aquaculture which keeps stocking density and pollution loadings under environmental capacity. The traditional procedures for aquaculture waste treatment, mainly based on physical and chemical means, should be overcome by more site-specific approaches, taking into account the characteristics and resistibility of the aquatic environment. Further research needs to improve or optimize the current methods of wastewater treatment and reuse. Proposed new treatment technology should evaluate their feasibility at a larger scale for practical application.
Hospital waste management in developing countries: A mini review.
Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong
2017-06-01
Health care activities can generate different kinds of hazardous wastes. Mismanagement of these wastes can result in environmental and occupational health risks. Developing countries are resource-constrained when it comes to safe management of hospital wastes. This study summarizes the main issues faced in hospital waste management in developing countries. A review of the existing literature suggests that regulations and legislations focusing on hospital waste management are recent accomplishments in many of these countries. Implementation of these rules varies from one hospital to another. Moreover, wide variations exist in waste generation rates within as well as across these countries. This is mainly attributable to a lack of an agreement on the definitions and the methodology among the researchers to measure such wastes. Furthermore, hospitals in these countries suffer from poor waste segregation, collection, storage, transportation and disposal practices, which can lead to occupational and environmental risks. Knowledge and awareness regarding proper waste management remain low in the absence of training for hospital staff. Moreover, hospital sanitary workers, and scavengers, operate without the provision of safety equipment or immunization. Unsegregated waste is illegally recycled, leading to further safety risks. Overall, hospital waste management in developing countries faces several challenges. Sustainable waste management practices can go a long way in reducing the harmful effects of hospital wastes.
NASA Astrophysics Data System (ADS)
Ng, L. S.; Tan, L. W.; Seow, T. W.
2017-11-01
The effectiveness of the implementation of construction waste reduction through 3R reflects the sustainability in construction waste management. Weak implementation of construction waste reduction through 3R among contractors will lead to unsustainable construction waste management. Increase in construction waste on landfills is critical especially on islands where land is very limited for solid waste disposal. This aim of this paper is to investigate current practice of construction waste reduction through 3R practice among contractors in Penang, Malaysia. The findings reported herein is based on feedbacks from 143 construction contractors of grade CIDB G7, G6 and G5 in Penang and experts from Penang Local Authority, CIDB in Penang and its Headquarters, National Solid Waste Management Department, and Headquarters of Solid Waste and Public Cleansing Management Corporation. Interviews and questionnaire surveys have been found that 3R practice is not mandatory in construction waste management in Penang. Only 39.8% construction contractors practiced 3R in managing their waste. Therefore, 3R practices should be emphasized in construction industry. Reducing wastes through 3R practices in construction industry is a way forward towards sustainable construction waste management especially in expanding the lifetime of landfill.
Solid waste management in Thailand: an overview and case study (Tha Khon Yang sub-district).
Yukalang, Nachalida; Clarke, Beverley Dawn; Ross, Kirstin Elizabeth
2017-09-26
Due to rapid urbanization, solid waste management (SWM) has become a significant issue in several developing countries including Thailand. Policies implemented by the Central Thai Government to manage SWM issues have had only limited success. This article reviews current municipal waste management plans in Thailand and examines municipal waste management at the local level, with focus on the Tha Khon Yang sub-district surrounding Mahasarakham University in Mahasarakham Province. Within two decades this area has been converted from a rural to an urban landscape featuring accommodation for over 45,000 university students and a range of business facilities. This development and influx of people has outpaced the government's ability to manage municipal solid waste (MSW). There are significant opportunities to improve local infrastructure and operational capacity; but there are few mechanisms to provide and distribute information to improve community participation in waste management. Many community-based waste management projects, such as waste recycling banks, the 3Rs (reduce, reuse and recycle), and waste-to-biogas projects have been abandoned. Additionally, waste from Tha Kon Yang and its surrounding areas has been transferred to unsanitary landfills; there is also haphazard dumping and uncontrolled burning of waste, which exacerbate current pollution issues.
WHO collaboration in hazardous waste management in the Western Pacific Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Hisashi
Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects ofmore » WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.« less
Lipp, Erin K.; Griffin, Dale W.
2004-01-01
Traditional fecal indicator bacteria are often subject to a high degree of die-off and dilution in tropical marine waters, particularly in offshore areas such as coral reefs. Furthermore, these microbes are often not associated with human waste, and their presence may not be indicative of health risk. To address the offshore extent of wastewater contamination in the Florida Keys reef tract, we assayed coral surfaces for the presence of human-specific enteric viruses. The overlying water column and surface mucopolysaccharide (mucus) layers from scleractinian corals were sampled from three stations along a nearshore-to-offshore transect beginning at Long Key in the middle Florida Keys, USA. Samples were assayed for standard bacterial water quality indicators (fecal coliform bacteria and enterococci) and for human enteroviruses by direct reverse transcriptase-polymerase chain reaction (RT-PCR). The concentration of the bacterial indicators was greatest at the nearshore station in both the water column and corals, and decreased with distance from shore; no indicator bacteria were detected at the offshore station. Whereas human enteroviruses were not detected in any of the water column samples, they were detected in 50–80% of coral mucus samples at each station. These data provide evidence that human sewage is impacting the reef tract up to ~6.5 km from shore in the middle Florida Keys and that coral mucus is an efficient trap for viral markers associated with anthropogenic pollution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.
1995-03-01
This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance.more » Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.« less
A model to minimize joint total costs for industrial waste producers and waste management companies.
Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto
2004-12-01
The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.
Integrated management of hazardous waste generated from community sources in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yodnane, P.; Spaeder, D.J.
A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less
A total quality management approach to healthcare waste management in Namazi Hospital, Iran.
Askarian, Mehrdad; Heidarpoor, Peigham; Assadian, Ojan
2010-11-01
Healthcare waste comprises all wastes generated at healthcare facilities, medical research centers and laboratories. Although 75-90% of these wastes are classified as household waste posing no potential risk, 10-25% are deemed to be hazardous, representing a potential threat to healthcare workers, patients, the environment and even the general population, if not disposed of appropriately. If hazardous and non-hazardous waste is mixed and not segregated prior to disposal, costs will increase substantially. Medical waste management is a worldwide issue. In Iran, the majority of problems are associated with an exponential growth in the healthcare sector together with low- or non-compliance with guidelines and recommendations. The aim of this study was to reduce the amounts of infectious waste by clear definition and segregation of waste at the production site in Namazi Hospital in Shiraz, Iran. Namazi Hospital was selected as a study site with an aim to achieving a significant decrease in infectious waste and implementing a total quality management (TQM) method. Infectious and non-infectious waste was weighed at 29 admission wards over a 1-month period. Before the introduction of the new guidelines and the new waste management concept, weight of total waste was 6.67 kg per occupied bed per day (kg/occupied bed/day), of which 73% was infectious and 27% non-infectious waste. After intervention, total waste was reduced to 5.92 kg/occupied bed/day, of which infectious waste represented 61% and non-infectious waste 30%. The implementation of a new waste management concept achieved a 26% reduction in infectious waste. A structured waste management concept together with clear definitions and staff training will result in waste reduction, consequently leading to decreased expenditure in healthcare settings. Copyright © 2010 Elsevier Ltd. All rights reserved.
40 CFR 60.2755 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Recordkeeping and Reporting § 60.2755 When must I submit my waste management plan? You must submit the waste management plan...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
...-2011-0392; FRL-9476-6] RIN 2050-AE81 Hazardous and Solid Waste Management System: Identification and... Protection Agency (Agency or EPA) in conjunction with the proposed rule: Hazardous and Solid Waste Management...-0392. (4) Mail: Send two copies of your comments to Hazardous and Solid Waste Management System...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit...
Arsenic: a roadblock to potential animal waste management solutions.
Nachman, Keeve E; Graham, Jay P; Price, Lance B; Silbergeld, Ellen K
2005-09-01
The localization and intensification of the poultry industry over the past 50 years have incidentally created a largely ignored environmental management crisis. As a result of these changes in poultry production, concentrated animal feeding operations (CAFOs) produce far more waste than can be managed by land disposal within the regions where it is produced. As a result, alternative waste management practices are currently being implemented, including incineration and pelletization of waste. However, organic arsenicals used in poultry feed are converted to inorganic arsenicals in poultry waste, limiting the feasibility of waste management alternatives. The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management.
40 CFR 62.14431 - What must my waste management plan include?
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste management plan must identify both the feasibility of, and the approach for, separating certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from incinerated waste. The waste management plan you develop may address, but is not limited to, paper...
40 CFR 62.14431 - What must my waste management plan include?
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste management plan must identify both the feasibility of, and the approach for, separating certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from incinerated waste. The waste management plan you develop may address, but is not limited to, paper...
Floating Offshore Wind in Oregon: Potential for Jobs and Economic Impacts from Two Future Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Tony; Keyser, David; Tegen, Suzanne
Construction of the first offshore wind power plant in the United States began in 2015, off the coast of Rhode Island, using fixed platform structures that are appropriate for shallow seafloors, like those located off of the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to anchor to the deeper seafloor if deployed off of the West Coast. To analyze the employment and economic potential for floating offshore wind along the West Coast, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical,more » large-scale deployment scenarios for Oregon: 5,500 megawatts (MW) of offshore wind deployment in Oregon by 2050 (Scenario A), and 2,900 MW of offshore wind by 2050 (Scenario B). These levels of deployment could power approximately 1,600,000 homes (Scenario A) or 870,000 homes (Scenario B). Offshore wind would contribute to economic development in Oregon in the near future, and more substantially in the long term, especially if equipment and labor are sourced from within the state. According to the analysis, over the 2020-2050 period, Oregon floating offshore wind facilities could support 65,000-97,000 job-years and add $6.8 billion-$9.9 billion to the state GDP (Scenario A).« less
Implementation of SAP Waste Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frost, M.L.; LaBorde, C.M.; Nichols, C.D.
2008-07-01
The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less
NASA Astrophysics Data System (ADS)
Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.
2018-03-01
Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barariu, Gheorghe
2013-07-01
The design criteria and constraints for the development of the management strategy for radioactive waste generated from operating and decommissioning of CANDU Nuclear Units from Cernavoda NPP in Romania, present many specific aspects. The main characteristics of CANDU type waste are its high concentrations of tritium and radiocarbon. Also, the existing management strategy for radioactive waste at Cernavoda NPP provides no treatment or conditioning for radioactive waste disposal. These characteristics embodied a challenging effort, in order to select a proper strategy for radioactive waste management at present, when Romania is an EU member and a signatory country of the Jointmore » Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The helping of advanced countries in radioactive waste management, directly or into the frame of the international organizations, like IAEA, become solve the aforementioned challenges at adequate level. (authors)« less
A mathematical model for municipal solid waste management - A case study in Hong Kong.
Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H
2016-12-01
With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kumar, Ramesh; Shaikh, Babar Tasneem; Somrongthong, Ratana; Chapman, Robert S
2015-01-01
Background and Objective: Infectious waste management practices among health care workers in the tertiary care hospitals have been questionable. The study intended to identify issues that impede a proper infectious waste management. Methods: Besides direct observation, in-depths interviews were conducted with the hospital administrators and senior management involved in healthcare waste management during March 2014. We looked at the processes related to segregation, collection, storage and disposal of hospital waste, and identified variety of issues in all the steps. Results: Serious gaps and deficiencies were observed related to segregation, collection, storage and disposal of the hospital wastes, hence proving to be hazardous to the patients as well as the visitors. Poor safety, insufficient budget, lack of trainings, weak monitoring and supervision, and poor coordination has eventually resulted in improper waste management in the tertiary hospitals of Rawalpindi. Conclusion: Study has concluded that the poor resources and lack of healthcare worker’s training in infectious waste results in poor waste management at hospitals. PMID:26430405
Towards Sustainable Ambon Bay: Evaluation of Solid Waste Management in Ambon City
NASA Astrophysics Data System (ADS)
Maryati, S.; Miharja, M.; Iscahyono, A. F.; Arsallia, S.; Humaira, AN S.
2017-07-01
Ambon Bay is a strategic area in the context of regional economic development, however it also faced environmental problems due to economic development and the growth of population. One of the environmental problems in the Ambon Bay is the growing solid waste which in turn lowers the quality of the water. The purpose of this study is to evaluate solid waste management in the Ambon City and propose recommendation in order to reduce solid waste in the Ambon Bay. The analytical method used is descriptive analysis by comparing a number of criteria based on the concept of solid waste management in coastal region with the current conditions of solid waste management in Ambon City. Criteria for waste management are divided into generation, storage, collection, transport, transfer and disposal. From the results of analysis, it can be concluded that the components of solid waste management at transport, transfer, and disposal level are generally still adequate, but solid waste management at source, storage and collection level have to be improved.
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60.2899 Section 60.2899 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...
Thirty-year solid waste generation forecast for facilities at SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less
Developing an automated risk management tool to minimize bird and bat mortality at wind facilities.
Robinson Willmott, Julia; Forcey, Greg M; Hooton, Lauren A
2015-11-01
A scarcity of baseline data is a significant barrier to understanding and mitigating potential impacts of offshore development on birds and bats. Difficult and sometimes unpredictable conditions coupled with high expense make gathering such data a challenge. The Acoustic and Thermographic Offshore Monitoring (ATOM) system combines thermal imaging with acoustic and ultrasound sensors to continuously monitor bird and bat abundance, flight height, direction, and speed. ATOM's development and potential capabilities are discussed, and illustrated using onshore and offshore test data obtained over 16 months in the eastern USA. Offshore deployment demonstrated birds tending to fly into winds and activity declining sharply in winds >10 km h(-1). Passerines showed distinct seasonal changes in flight bearing and flew higher than non-passerines. ATOM data could be used to automatically shut down wind turbines to minimize collision mortality while simultaneously providing information for modeling activity in relation to weather and season.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL... of Ocean Energy Management. (c) OCS means the Outer Continental Shelf, as that term is defined in 43... on the Secretary's behalf. (e) BOEM means Bureau of Ocean Energy Management. (f) Coastal zone means...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL... of Ocean Energy Management. (c) OCS means the Outer Continental Shelf, as that term is defined in 43... on the Secretary's behalf. (e) BOEM means Bureau of Ocean Energy Management. (f) Coastal zone means...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL... of Ocean Energy Management. (c) OCS means the Outer Continental Shelf, as that term is defined in 43... on the Secretary's behalf. (e) BOEM means Bureau of Ocean Energy Management. (f) Coastal zone means...
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Jorgensen, G. K.
1975-01-01
The function of the waste management system was to control the disposition of solid and liquid wastes and waste stowage gases. The waste management system consisting of a urine subsystem and a fecal subsystem is described in detail and its overall performance is evaluated. Recommendations for improvement are given.
Solid waste management in the hospitality industry: a review.
Pirani, Sanaa I; Arafat, Hassan A
2014-12-15
Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved. Copyright © 2014 Elsevier Ltd. All rights reserved.
Solid waste management challenges for cities in developing countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abarca Guerrero, Lilliana, E-mail: l.abarca.guerrero@tue.nl; Maas, Ger, E-mail: g.j.maas@tue.nl; Hogland, William, E-mail: william.hogland@lnu.se
2013-01-15
Highlights: Black-Right-Pointing-Pointer Stakeholders. Black-Right-Pointing-Pointer Factors affecting performance waste management systems. Black-Right-Pointing-Pointer Questionnaire as Annex for waste management baseline assessment. - Abstract: Solid waste management is a challenge for the cities' authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publicationsmore » from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders' action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems' failure. The information provided is very useful when planning, changing or implementing waste management systems in cities.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Environmental and Safety Management, Inspections, and Facility Assessments for Activities Conducted Under SAPs, COPs and GAPs Maintenance and...
Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.
Greening MSW management systems by saving footprint: The contribution of the waste transportation.
Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G
2018-08-01
Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Integrated Waste Tracking System - A Flexible Waste Management Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert Stephen
2001-02-01
The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less
Medical Waste Management in Community Health Centers.
Tabrizi, Jafar Sadegh; Rezapour, Ramin; Saadati, Mohammad; Seifi, Samira; Amini, Behnam; Varmazyar, Farahnaz
2018-02-01
Non-standard management of medical waste leads to irreparable side effects. This issue is of double importance in health care centers in a city which are the most extensive system for providing Primary Health Care (PHC) across Iran cities. This study investigated the medical waste management standards observation in Tabriz community health care centers, northwestern Iran. In this triangulated cross-sectional study (qualitative-quantitative), data collecting tool was a valid checklist of waste management process developed based on Iranian medical waste management standards. The data were collected in 2015 through process observation and interviews with the health center's staff. The average rate of waste management standards observance in Tabriz community health centers, Tabriz, Iran was 29.8%. This case was 22.8% in dimension of management and training, 27.3% in separating and collecting, 31.2% in transport and temporary storage, and 42.9% in sterilization and disposal. Lack of principal separation of wastes, inappropriate collecting and disposal cycle of waste and disregarding safety tips (fertilizer device performance monitoring, microbial cultures and so on) were among the observed defects in health care centers supported by quantitative data. Medical waste management was not in a desirable situation in Tabriz community health centers. The expansion of community health centers in different regions and non-observance of standards could predispose to incidence the risks resulted from medical wastes. So it is necessary to adopt appropriate policies to promote waste management situation.
Frequent Questions About Universal Waste
Frequent questions such as Who is affected by the universal waste regulations? What is “mercury-containing equipment”? How are waste batteries managed under universal waste? How are waste pesticides managed under universal waste?
Electronic waste management approaches: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiddee, Peeranart; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095; Naidu, Ravi, E-mail: ravi.naidu@crccare.com
2013-05-15
Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present inmore » e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.« less
Towards the effective plastic waste management in Bangladesh: a review.
Mourshed, Monjur; Masud, Mahadi Hasan; Rashid, Fazlur; Joardder, Mohammad Uzzal Hossain
2017-12-01
The plastic-derived product, nowadays, becomes an indispensable commodity for different purposes. A huge amount of used plastic causes environmental hazards that turn in danger for marine life, reduces the fertility of soil, and contamination of ground water. Management of this enormous plastic waste is challenging in particular for developing countries like Bangladesh. Lack of facilities, infrastructure development, and insufficient budget for waste management are some of the prime causes of improper plastic management in Bangladesh. In this study, the route of plastic waste production and current plastic waste management system in Bangladesh have been reviewed extensively. It emerges that no technical and improved methods are adapted in the plastic management system. A set of the sustainable plastic management system has been proposed along with the challenges that would emerge during the implementation these strategies. Successful execution of the proposed systems would enhance the quality of plastic waste management in Bangladesh and offers enormous energy from waste.
77 FR 59879 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... Federal Register, the EPA is codifying and incorporating by reference the State's hazardous waste program...
77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...
77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...
75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...
77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... Mexico: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental... entitled ``Approved State Hazardous Waste Management Programs,'' New Mexico's authorized hazardous waste... of the State regulations that are authorized and that the EPA will enforce under the Solid Waste...
Municipal solid waste development phases: Evidence from EU27.
Vujić, Goran; Gonzalez-Roof, Alvaro; Stanisavljević, Nemanja; Ragossnig, Arne M
2015-12-01
Many countries in the European Union (EU) have very developed waste management systems. Some of its members have managed to reduce their landfilled waste to values close to zero during the last decade. Thus, European Union legislation is very stringent regarding waste management for their members and candidate countries, too. This raises the following questions: Is it possible for developing and developed countries to comply with the European Union waste legislation, and under what conditions? How did waste management develop in relation to the economic development in the countries of the European Union? The correlation between waste management practices and economic development was analysed for 27 of the European Union Member States for the time period between 1995 and 2007. In addition, a regression analysis was performed to estimate landfilling of waste in relation to gross domestic product for every country. The results showed a strong correlation between the waste management variables and the gross domestic product of the EU27 members. The definition of the municipal solid waste management development phases followed a closer analysis of the relation between gross domestic product and landfilled waste. The municipal solid waste management phases are characterised by high landfilling rates at low gross domestic product levels, and landfilling rates near zero at high gross domestic product levels. Hence the results emphasize the importance of wider understanding of what is required for developing countries to comply with the European Union initiatives, and highlight the importance of allowing developing countries to make their own paths of waste management development. © The Author(s) 2015.
Risk analysis for U.S. offshore wind farms: the need for an integrated approach.
Staid, Andrea; Guikema, Seth D
2015-04-01
Wind power is becoming an increasingly important part of the global energy portfolio, and there is growing interest in developing offshore wind farms in the United States to better utilize this resource. Wind farms have certain environmental benefits, notably near-zero emissions of greenhouse gases, particulates, and other contaminants of concern. However, there are significant challenges ahead in achieving large-scale integration of wind power in the United States, particularly offshore wind. Environmental impacts from wind farms are a concern, and these are subject to a number of on-going studies focused on risks to the environment. However, once a wind farm is built, the farm itself will face a number of risks from a variety of hazards, and managing these risks is critical to the ultimate achievement of long-term reductions in pollutant emissions from clean energy sources such as wind. No integrated framework currently exists for assessing risks to offshore wind farms in the United States, which poses a challenge for wind farm risk management. In this "Perspective", we provide an overview of the risks faced by an offshore wind farm, argue that an integrated framework is needed, and give a preliminary starting point for such a framework to illustrate what it might look like. This is not a final framework; substantial work remains. Our intention here is to highlight the research need in this area in the hope of spurring additional research about the risks to wind farms to complement the substantial amount of on-going research on the risks from wind farms. © 2015 Society for Risk Analysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... of the waste generation and management information for saccharin and its salts, which demonstrate... partnership with the States, biennially collects information regarding the generation, management, and final... Based on the Available Toxicological Information and Waste Generation and Management Information for...
77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental..., Division of Solid Waste Management, 5th Floor, L & C Tower, 401 Church Street, Nashville, Tennessee 37243... RCRA hazardous waste management program. We granted authorization for changes to Tennessee's program on...
Oak Ridge Reservation Waste Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.W.
1995-02-01
This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.
40 CFR 60.2060 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...
40 CFR 60.2060 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...
40 CFR 60.2060 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...
Usapein, Parnuwat; Chavalparit, Orathai
2014-06-01
Sustainable waste management was introduced more than ten years ago, but it has not yet been applied to the Thai petrochemical industry. Therefore, under the philosophy of sustainable waste management, this research aims to apply the reduce, reuse, and recycle (3R) concept at the petrochemical factory level to achieve a more sustainable industrial solid waste management system. Three olefin plants in Thailand were surveyed for the case study. The sources and types of waste and existing waste management options were identified. The results indicate that there are four sources of waste generation: (1) production, (2) maintenance, (3) waste treatment, and (4) waste packaging, which correspond to 45.18%, 36.71%, 9.73%, and 8.37% of the waste generated, respectively. From the survey, 59 different types of industrial wastes were generated from the different factory activities. The proposed 3R options could reduce the amount of landfill waste to 79.01% of the amount produced during the survey period; this reduction would occur over a period of 2 years and would result in reduced disposal costs and reduced consumption of natural resources. This study could be used as an example of an improved waste management system in the petrochemical industry. © The Author(s) 2014.
The radioactive waste management policy and practice in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucerka, M.
1996-12-31
In recent period, the new Czech Atomic Law is in the final stage of preparation, and the author expects that Parliament of the Czech Republic will approve it in the first half of the year 1996. Partly the law deals with new distribution of responsibilities among bodies involved in utilization of nuclear energy and ionizing radiation, the state and local authorities. The new provisions include also radioactive waste management activities. These provisions clarify the relations between radioactive waste generators and state, and define explicitly duties of waste generators. One of the most important duties is to cover all expenses formore » radioactive waste management now and in the future, including radioactive waste disposal and decommissioning of nuclear facilities. The law establishes radioactive waste management and decommissioning funds and the new, on waste generators independent radioactive waste management organization, controlled by state, to ensure the safety of inhabitants and the environment, and a optimization of expenses. Parallel to the preparation of the law, the Ministry of Industry and Trade prepares drafts of a statute of the radioactive waste management organization and its control board, and of the methodology and rules of management the radioactive waste fund. First drafts of these documents are expected to be complete in January 1996. The paper will describe recent practice and policy of the radioactive waste management including uranium mining and milling tailings, amounts of waste and its activities, economical background, and safety. A special attention will be paid to description of expected changes in connection with the new Atomic Law and expected steps and time schedule of reorganization of the radioactive waste management structure in the Czech Republic.« less
About the Managing and Transforming Waste Streams Tool
The Managing and Transforming Waste Streams Tool was developed by a team of zero waste consultants and solid waste program managers making informed observations from hands-on work in communities, with contributions from EPA.
76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...
40 CFR 60.55c - Waste management plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... plan. The owner or operator of an affected facility shall prepare a waste management plan. The waste management plan shall identify both the feasibility and the approach to separate certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from...
40 CFR 60.55c - Waste management plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... plan. The owner or operator of an affected facility shall prepare a waste management plan. The waste management plan shall identify both the feasibility and the approach to separate certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from...
Nuclear waste management. Semiannual progress report, October 1982-March 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikalla, T.D.; Powell, J.A.
1983-06-01
This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.
Biomedical waste management in Ayurveda hospitals - current practices & future prospectives.
Rajan, Renju; Robin, Delvin T; M, Vandanarani
2018-03-16
Biomedical waste management is an integral part of traditional and contemporary system of health care. The paper focuses on the identification and classification of biomedical wastes in Ayurvedic hospitals, current practices of its management in Ayurveda hospitals and its future prospective. Databases like PubMed (1975-2017 Feb), Scopus (1960-2017), AYUSH Portal, DOAJ, DHARA and Google scholar were searched. We used the medical subject headings 'biomedical waste' and 'health care waste' for identification and classification. The terms 'biomedical waste management', 'health care waste management' alone and combined with 'Ayurveda' or 'Ayurvedic' for current practices and recent advances in the treatment of these wastes were used. We made a humble attempt to categorize the biomedical wastes from Ayurvedic hospitals as the available data about its grouping is very scarce. Proper biomedical waste management is the mainstay of hospital cleanliness, hospital hygiene and maintenance activities. Current disposal techniques adopted for Ayurveda biomedical wastes are - sewage/drains, incineration and land fill. But these methods are having some merits as well as demerits. Our review has identified a number of interesting areas for future research such as the logical application of bioremediation techniques in biomedical waste management and the usage of effective micro-organisms and solar energy in waste disposal. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.
Rules and management of biomedical waste at Vivekananda Polyclinic: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Saurabh; Boojh, Ram; Mishra, Ajai
Hospitals and other healthcare establishments have a 'duty of care' for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedicalmore » waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state-of-the-art facilities and on-going training in order to develop a model biomedical waste management system in the Polyclinic. There is also a need to create awareness among all other stakeholders about the importance of biomedical waste management and related regulations. Furthermore, healthcare waste management should go beyond data compilation, enforcement of regulations, and acquisition of better equipment. It should be supported through appropriate education, training, and the commitment of the healthcare staff and management and healthcare managers within an effective policy and legislative framework.« less
Rules and management of biomedical waste at Vivekananda Polyclinic: a case study.
Gupta, Saurabh; Boojh, Ram; Mishra, Ajai; Chandra, Hem
2009-02-01
Hospitals and other healthcare establishments have a "duty of care" for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedical waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state-of-the-art facilities and on-going training in order to develop a model biomedical waste management system in the Polyclinic. There is also a need to create awareness among all other stakeholders about the importance of biomedical waste management and related regulations. Furthermore, healthcare waste management should go beyond data compilation, enforcement of regulations, and acquisition of better equipment. It should be supported through appropriate education, training, and the commitment of the healthcare staff and management and healthcare managers within an effective policy and legislative framework.
The effect of food waste disposers on municipal waste and wastewater management.
Marashlian, Natasha; El-Fadel, Mutasem
2005-02-01
This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
...; Correction of Federal Authorization of the State's Hazardous Waste Management Program AGENCY: Environmental... to the State of Oregon's federally authorized RCRA hazardous waste management program. On January 7... changes the State of Oregon made to its federally authorized RCRA Hazardous Waste Management Program...
75 FR 918 - Oregon: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-07
... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... hazardous waste management program under the Resource Conservation and Recovery Act, as amended (RCRA). On... has decided that the revisions to the Oregon hazardous waste management program satisfy all of the...
Laboratory Waste Management. A Guidebook.
ERIC Educational Resources Information Center
American Chemical Society, Washington, DC.
A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
... Small Business Size Standards: Administrative and Support, Waste Management and Remediation Services... Standards: Administrative and Support, Waste Management and Remediation Services AGENCY: U.S. Small Business...) Sector 56, Administrative and Support, Waste Management and Remediation Services. As part of its ongoing...
Building Staff Competencies and Selecting Communications Methods for Waste Management Programs.
ERIC Educational Resources Information Center
Richardson, John G.
The Waste Management Institute provided in-service training to interested County Extension agents in North Carolina to enable them to provide leadership in developing and delivering a comprehensive county-level waste management program. Training included technical, economic, environmental, social, and legal aspects of waste management presented in…
46 CFR 107.415 - Safety Management Certificate.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Safety Management Certificate. 107.415 Section 107.415 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Certificates Under International Convention for Safety of Life at Sea, 1974 § 107.415 Safety Management Certificate. (a)...
NASA Astrophysics Data System (ADS)
Thompson, W. T.; Stinton, L. H.
1980-04-01
Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zorpas, Antonis A., E-mail: antonis.zorpas@ouc.ac.cy; Lasaridi, Katia, E-mail: klasaridi@hua.gr; Voukkali, Irene
Highlights: • Waste framework directive has set clear waste prevention procedures. • Household Compositional analysis. • Waste management plans. • Zero waste approach. • Waste generation. - Abstract: Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impactmore » on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes.« less
Schroeder, Donna M.; Love, Milton S.
2004-01-01
To aid legislators, resource managers, and the general public, this paper summarizes and clarifies some of the issues and options that the federal government and the state of California face in decommissioning offshore oil and gas production platforms, particularly as these relate to platform ecology. Both local marine ecology and political climate play a role in decommissioning offshore oil production platforms. Compared to the relatively supportive political climate in the Gulf of Mexico for “rigs-to-reefs” programs, conflicting social values among stakeholders in Southern California increases the need for understanding ecological impacts of various decommissioning alternatives (which range from total removal to allowing some or all of platform structure to remain in the ocean). Additional scientific needs in the decommissioning process include further assessment of platform habitat quality, estimation of regional impacts of decommissioning alternatives to marine populations, and determination of biological effects of any residual contaminants. The principal management need is a ranking of environmental priorities (e.g. species-of-interest and marine habitats). Because considerable numbers of economically important species reside near oil platforms, National Oceanic and Atmospheric Administration Fisheries should consider the consequences of decommissioning alternatives in their overall management plans. Management strategies could include designating reefed platforms as marine protected areas. The overarching conclusion from both ecological and political perspectives is that decommissioning decisions should be made on a case-by-case basis.
Onshore and offshore geologic map of the Coal Oil Point area, southern California
Dartnell, Pete; Conrad, James E.; Stanley, Richard G.; Guy R. Cochrane, Guy R.
2011-01-01
Geologic maps that span the shoreline and include both onshore and offshore areas are potentially valuable tools that can lead to a more in depth understanding of coastal environments. Such maps can contribute to the understanding of shoreline change, geologic hazards, both offshore and along-shore sediment and pollutant transport. They are also useful in assessing geologic and biologic resources. Several intermediate-scale (1:100,000) geologic maps that include both onshore and offshore areas (herein called onshore-offshore geologic maps) have been produced of areas along the California coast (see Saucedo and others, 2003; Kennedy and others, 2007; Kennedy and Tan, 2008), but few large-scale (1:24,000) maps have been produced that can address local coastal issues. A cooperative project between Federal and State agencies and universities has produced an onshore-offshore geologic map at 1:24,000 scale of the Coal Oil Point area and part of the Santa Barbara Channel, southern California (fig. 1). As part of the project, the U.S. Geological Survey (USGS) and the California Geological Survey (CGS) hosted a workshop (May 2nd and 3rd, 2007) for producers and users of coastal map products (see list of participants) to develop a consensus on the content and format of onshore-offshore geologic maps (and accompanying GIS files) so that they have relevance for coastal-zone management. The USGS and CGS are working to develop coastal maps that combine geospatial information from offshore and onshore and serve as an important tool for addressing a broad range of coastal-zone management issues. The workshop was divided into sessions for presentations and discussion of bathymetry and topography, geology, and habitat products and needs of end users. During the workshop, participants reviewed existing maps and discussed their merits and shortcomings. This report addresses a number of items discussed in the workshop and details the onshore and offshore geologic map of the Coal Oil Point area. Results from this report directly address issues raised in the California Ocean Protection Act (COPA) Five Year Strategic Plan. For example, one of the guiding principles of the COPA five-year strategic plan is to 'Recognize the interconnectedness of the land and the sea, supporting sustainable uses of the coast and ensuring the health of ecosystems.' Results from this USGS report directly connect the land and sea with the creation of both a seamless onshore and offshore digital terrain model (DTM) and geologic map. One of the priority goals (and objectives) of the COPA plan is to 'monitor and map the ocean environment to provide data about conditions and trends.' Maps within this report provide land and sea geologic information for mapping and monitoring nearshore sediment processes, pollution transport, and sea-level rise and fall.
Implementation of spatial smart waste management system in malaysia
NASA Astrophysics Data System (ADS)
Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.
2016-06-01
One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.
Identifying potential environmental impacts of waste handling strategies in textile industry.
Yacout, Dalia M M; Hassouna, M S
2016-08-01
Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.
30 CFR 285.825 - When must I assess my facilities?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 285.825 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT... CONTINENTAL SHELF Environmental and Safety Management, Inspections, and Facility Assessments for Activities... and Constructing Fixed Offshore Platforms—Working Stress Design (incorporated by reference, as...
30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?
Code of Federal Regulations, 2011 CFR
2011-07-01
... installation for the Regional Supervisor's approval. You must include a project management timeline, Gantt... MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR...
Environmental evaluation of municipal waste prevention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentil, Emmanuel C.; Gallo, Daniele; Christensen, Thomas H., E-mail: thho@env.dtu.dk
Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail,more » beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.« less
Developing Tribal Integrated Waste Management Plans
An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.
Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona
2015-08-20
Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana.
Solid industrial wastes and their management in Asegra (Granada, Spain)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casares, M.L.; Ulierte, N.; Mataran, A.
ASEGRA is an industrial area in Granada (Spain) with important waste management problems. In order to properly manage and control waste production in industry, one must know the quantity, type, and composition of industrial wastes, as well as the management practices of the companies involved. In our study, questionnaires were used to collect data regarding methods of waste management used in 170 of the 230 businesses in the area of study. The majority of these companies in ASEGRA are small or medium-size, and belong to the service sector, transport, and distribution. This was naturally a conditioning factor in both themore » type and management of the wastes generated. It was observed that paper and cardboard, plastic, wood, and metals were the most common types of waste, mainly generated from packaging (49% of the total volume), as well as material used in containers and for wrapping products. Serious problems were observed in the management of these wastes. In most cases they were disposed of by dumping, and very rarely did businesses resort to reuse, recycling or valorization. Smaller companies encountered greater difficulties when it came to effective waste management. The most frequent solution for the disposal of wastes in the area was dumping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaelen, Gunter van; Verheyen, Annick
2007-07-01
The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissani, M; Fischer, R; Kidd, S
2006-04-03
The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less
Resource Management, Coexistence, and Balance--The Fundamentals of Teaching Waste Management.
ERIC Educational Resources Information Center
Donovan, Connie
1998-01-01
Argues for the need for courses in waste management in departments other than civil engineering. Points out that although waste management is a business administration function, it is best performed from an environmental management perspective. (DDR)
Alternative Fuels Data Center: Seattle's Waste Haulers are Going Green
-hauling companies in the Puget Sound region, Waste Management and CleanScapes, were the first two private revolution in Washington's waste-hauling industry. Eager to win the Seattle contract, both Waste Management per year of greenhouse gas emissions reductions. Waste Management continues to rise to the challenge
40 CFR 267.101 - What must I do to address corrective action for solid waste management units?
Code of Federal Regulations, 2012 CFR
2012-07-01
... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...
40 CFR 267.101 - What must I do to address corrective action for solid waste management units?
Code of Federal Regulations, 2014 CFR
2014-07-01
... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...
40 CFR 267.101 - What must I do to address corrective action for solid waste management units?
Code of Federal Regulations, 2013 CFR
2013-07-01
... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...
40 CFR 267.101 - What must I do to address corrective action for solid waste management units?
Code of Federal Regulations, 2011 CFR
2011-07-01
... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...
40 CFR 267.101 - What must I do to address corrective action for solid waste management units?
Code of Federal Regulations, 2010 CFR
2010-07-01
... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...
The paper is an update on U.S. research to develop tools and information for evaluating integrated solid waste management strategies. In the past, waste management systems consisted primarily of waste collection and disposal at a local landfill. Today's municipal solid waste ma...
Sugiyama, Daisuke; Hattori, Takatoshi
2013-01-01
In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management.
Sugiyama, Daisuke; Hattori, Takatoshi
2013-01-01
In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management. PMID:22719047
Tribal Waste Journal: What Is an Integrated Waste Management Plan (Issue 7)
Integrated Waste Management Plans (IWMPs) may offer tribes an efficient and cost-effective way to reduce open dumping, effectively manage solid waste, and protect human health and the environment for this generation and the next.
40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...
40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...
40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...
40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...
40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...
NASA Astrophysics Data System (ADS)
Midor, Katarzyna; Jąderko, Karolina
2017-11-01
The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What is a waste management plan? 62.14580 Section 62.14580 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A...
76 FR 6564 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... implement the RCRA hazardous waste management program. We granted authorization for changes to their program..., 06/ 62-730.185(1) F.A.C. Universal Waste Management. 29/07. State Initiated Changes to the 62-730.210...
40 CFR 60.3012 - What should I include in my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... management plan? 60.3012 Section 60.3012 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3012 What should I include in my waste management plan? A...
An overview of the sustainability of solid waste management at military installations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borglin, S.; Shore, J.; Worden, H.
2009-08-15
Sustainable municipal solid waste management at military solutions necessitates a combined approach that includes waste reduction, alternative disposal techniques, and increased recycling. Military installations are unique because they often represent large employers in the region in which they are located, thereby making any practices they employ impact overall waste management strategies of the region. Solutions for waste sustainability will be dependent on operational directives and base location, availability of resources such as water and energy, and size of population. Presented in this paper are descriptions of available waste strategies that can be used to support sustainable waste management. Results presentedmore » indicate source reduction and recycling to be the most sustainable solutions. However, new waste-to-energy plants and composting have potential to improve on these well proven techniques and allow military installations to achieve sustainable waste management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less
Achillas, Charisios; Moussiopoulos, Nicolas; Karagiannidis, Avraam; Banias, Georgias; Perkoulidis, George
2013-02-01
Problems in waste management have become more and more complex during recent decades. The increasing volumes of waste produced and social environmental consciousness present prominent drivers for environmental managers towards the achievement of a sustainable waste management scheme. However, in practice, there are many factors and influences - often mutually conflicting - criteria for finding solutions in real-life applications. This paper presents a review of the literature on multi-criteria decision aiding in waste management problems for all reported waste streams. Despite limitations, which are clearly stated, most of the work published in this field is reviewed. The present review aims to provide environmental managers and decision-makers with a thorough list of practical applications of the multi-criteria decision analysis techniques that are used to solve real-life waste management problems, as well as the criteria that are mostly employed in such applications according to the nature of the problem under study. Moreover, the paper explores the advantages and disadvantages of using multi-criteria decision analysis techniques in waste management problems in comparison to other available alternatives.
Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong; Ashraf, Uzma
2017-04-01
Proper management of healthcare waste is a critical concern in many countries of the world. Rapid urbanization and population growth rates pose serious challenges to healthcare waste management infrastructure in such countries. This study was aimed at assessing the situation of hospital waste management in a major city of Pakistan. Simple random sampling was used to select 12 government and private hospitals in the city. Field visits, physical measurements, and questionnaire survey method were used for data collection. Information was obtained regarding hospital waste generation, segregation, collection, storage, transportation, and disposal. Data envelopment analysis (DEA) was used to classify the hospitals on the basis of their relative waste management efficiencies. The weighted average total waste generation at the surveyed hospitals was discovered to be 1.53 kg/patient/day of which 75.15% consisted of general waste and the remaining consisted of biomedical waste. Of the total waste, 24.54% came from the public hospital and the remaining came from the private hospitals. DEA showed that seven of the surveyed hospitals had scale or pure technical inefficiencies in their waste management activities. The public hospital was relatively less efficient than most of the private hospitals in these activities. Results of the questionnaire survey showed that none of the surveyed hospitals was carrying out waste management in strict compliance with government regulations. Moreover, hospital staff at all the surveyed hospitals had low level of knowledge regarding safe hospital waste management practices. The current situation should be rectified in order to avoid environmental and epidemiological risks.
Ding, Zhikun; Yi, Guizhen; Tam, Vivian W Y; Huang, Tengyue
2016-05-01
A huge amount of construction waste has been generated from increasingly higher number of construction activities than in the past, which has significant negative impacts on the environment if they are not properly managed. Therefore, effective construction waste management is of primary importance for future sustainable development. Based on the theory of planned behaviors, this paper develops a system dynamic model of construction waste reduction management at the construction phase to simulate the environmental benefits of construction waste reduction management. The application of the proposed model is shown using a case study in Shenzhen, China. Vensim is applied to simulate and analyze the model. The simulation results indicate that source reduction is an effective waste reduction measure which can reduce 27.05% of the total waste generation. Sorting behaviors are a premise for improving the construction waste recycling and reuse rates which account for 15.49% of the total waste generated. The environmental benefits of source reduction outweigh those of sorting behaviors. Therefore, to achieve better environmental performance of the construction waste reduction management, attention should be paid to source reduction such as low waste technologies and on-site management performance. In the meantime, sorting behaviors encouragement such as improving stakeholders' waste awareness, refining regulations, strengthening government supervision and controlling illegal dumping should be emphasized. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study of waste management towards sustainable green campus in Universitas Gadjah Mada
NASA Astrophysics Data System (ADS)
Setyowati, Mega; Kusumawanto, Arif; Prasetya, Agus
2018-05-01
Waste management is a part of the green campus achievement program. Universitas Gadjah Mada has a Standard Operating Procedure for managing produced waste. Waste produced by each building or work unit is temporarily accommodated in the waste depot before dumped into the landfill. This research aims to study the waste management system in UGM, in accordance with the concept of a green campus. The concept of green campus to improve the efficiency of waste management needs to be supported by various parties. The success of the green campus program relies on an integrated approach, a sustainable implementation that involves stakeholders of the university. In actualizing the concept of a green campus, the university has its own waste processing system. The organic produced waste is processed into compost, while plastic waste is converted into alternative fuel. Overall, the waste management system that UGM owns is ineffective and inefficient, it was proved by the fact that there is still much waste dumped into the landfill. UGM provides a laboratory that is specialized to process waste that is produced by UGM. It is planned to be able to reduce the amount of waste that is dumped into the landfill. According to the results, vermicomposting technology, the manufacture of liquid fertilizer from leachate, and the manufacture of the composite from a mixture of leaves and paper were offered as solutions.
Sapkota, Binaya; Gupta, Gopal Kumar; Mainali, Dhiraj
2014-09-26
Healthcare waste is produced from various therapeutic procedures performed in hospitals, such as chemotherapy, dialysis, surgery, delivery, resection of gangrenous organs, autopsy, biopsy, injections, etc. These result in the production of non-hazardous waste (75-95%) and hazardous waste (10-25%), such as sharps, infectious, chemical, pharmaceutical, radioactive waste, and pressurized containers (e.g., inhaler cans). Improper healthcare waste management may lead to the transmission of hepatitis B, Staphylococcus aureus and Pseudomonas aeruginosa. This evaluation of waste management practices was carried out at gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards at Government of Nepal Civil Service Hospital, Kathmandu from February 12 to October 15, 2013, with the permission from healthcare waste management committee at the hospital. The Individualized Rapid Assessment tool (IRAT), developed by the United Nations Development Program Global Environment Facility project, was used to collect pre-interventional and post-interventional performance scores concerning waste management. The healthcare waste management committee was formed of representing various departments. The study included responses from focal nurses and physicians from the gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards, and waste handlers during the study period. Data included average scores from 40 responders. Scores were based on compliance with the IRAT. The waste management policy and standard operating procedure were developed after interventions, and they were consistent with the national and international laws and regulations. The committee developed a plan for recycling or waste minimization. Health professionals, such as doctors, nurses and waste handlers, were trained on waste management practices. The programs included segregation, collection, handling, transportation, treatment and disposal of waste, as well as occupational health and safety issues. The committee developed a plan for treatment and disposal of chemical and pharmaceutical waste. Pretest and posttest evaluation scores were 26% and 86% respectively. During the pre-intervention period, the hospital had no HCWM Committee, policy, standard operating procedure or proper color coding system for waste segregation, collection, transportation and storage and the specific well-trained waste handlers. Doctors, nurses and waste handlers were trained on HCWM practices, after interventions. Significant improvements were observed between the pre- and post-intervention periods.
Health care waste management practice in a hospital.
Paudel, R; Pradhan, B
2010-10-01
Health-care waste is a by-product of health care. Its poor management exposes health-care workers, waste handlers and the community to infections, toxic effects and injuries including damage of the environment. It also creates opportunities for the collection of disposable medical equipment, its re-sale and potential re-use without sterilization, which causes an important burden of disease worldwide. The purpose of this study was to find out health care waste management practice in hospital. A cross-sectional study was conducted in Narayani Sub-Regional Hospital, Birgunj from May to October 2006 using both qualitative and quantitative methods. Study population was four different departments of the hospital (Medical/Paediatric, Surgical/Ortho, Gynae/Obstetric and Emergency), Medical Superintendent, In-charges of four different departments and all sweepers. Data was collected using interview, group discussion, observation and measurement by weight and volume. Total health-care waste generated was 128.4 kg per day while 0.8 kg per patient per day. The composition of health care waste was found to be 96.8 kg (75.4%) general waste, 24.1 kg (8.8%) hazardous waste and 7.5 kg (5.8%) sharps per day by weight. Health staffs and sweepers were not practicing the waste segregation. Occupational health and safety was not given due attention. Majority of the sweepers were unaware of waste management and need of safety measures to protect their own health. Health care waste management practice in the hospital was unsatisfactory because of the lack of waste management plan and carelessness of patients, visitors and staffs. Therefore the hospital should develop the waste management plan and strictly follow the National Health Care Waste Management Guideline.
SEMINAR PUBLICATION: ORGANIC AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES
The organic chemicals contained in wastes processed during waste management operations can volatilize into the atmosphere and cause toxic or carcinogenic effects or contribute to ozone formation. Because air emissions from waste management operations pose a threat to human health...
Offshore Vessel Traffic Management (OVTM) Study : Volume II. Technical Analyses.
DOT National Transportation Integrated Search
1978-08-01
The objectives of the study were: (1) to analyze the causes of tanker and other vessel casualties that could potentially result in oil pollution, and (2) to evaluate various alternative vessel traffic management systems and techniques for the prevent...
Offshore Vessel Traffic Management (OVTM) Study : Volume III. Appendixes.
DOT National Transportation Integrated Search
1978-08-01
The objectives of the study were: (1) to analyze the causes of tanker and other vessel casualties that could potentially result in oil pollution, and (2) to evaluate various alternative vessel traffic management systems and techniques for the prevent...
Offshore Vessel Traffic Management (OVTM) Study : Volume I. Executive Summary.
DOT National Transportation Integrated Search
1978-08-01
The objectives of the study were: (1) to analyze the causes of tanker and other vessel casualties that could potentially result in oil pollution, and (2) to evaluate various alternative vessel traffic management systems and techniques for the prevent...
30 CFR 254.41 - Training your response personnel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 254.41 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... the spill-response management team, including the spill-response coordinator and alternates, receives... strategies, and the operational and logistical requirements of response equipment; (2) Spill reporting...
Municipal waste management in Sicily: practices and challenges.
Messineo, Antonio; Panno, Domenico
2008-01-01
There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.
Capability maturity models for offshore organisational management.
Strutt, J E; Sharp, J V; Terry, E; Miles, R
2006-12-01
The goal setting regime imposed by the UK safety regulator has important implications for an organisation's ability to manage health and safety related risks. Existing approaches to safety assurance based on risk analysis and formal safety assessments are increasingly considered unlikely to create the step change improvement in safety to which the offshore industry aspires and alternative approaches are being considered. One approach, which addresses the important issue of organisational behaviour and which can be applied at a very early stage of design, is the capability maturity model (CMM). The paper describes the development of a design safety capability maturity model, outlining the key processes considered necessary to safety achievement, definition of maturity levels and scoring methods. The paper discusses how CMM is related to regulatory mechanisms and risk based decision making together with the potential of CMM to environmental risk management.
Comparison of infectious waste management in European hospitals.
Mühlich, M; Scherrer, M; Daschner, F D
2003-12-01
A research project sponsored by the EC-LIFE programme was conducted to compare waste management in five different European hospitals. A comparison of the regulations governing current waste management revealed different strategies for defining infectious hospital waste. The differences in the infrastructure were examined and the consequences for waste segregation and disposal were discussed under economic and ecological aspects. In this context the definition of infectious waste is very important.
RCRA Sustainable Materials Management Information
This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia
Food waste and the food-energy-water nexus: A review of food waste management alternatives.
Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James
2018-04-01
Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohout, E.F.; Folga, S.; Mueller, C.
1996-03-01
This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less
40 CFR 60.2625 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste...
Yu, Yongqiang; Zhang, Wen
2016-04-01
Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.
Ryan-Fogarty, Yvonne; Becker, Genevieve; Moles, Richard; O'Regan, Bernadette
2017-03-01
Food waste in hospitals is of major concern for two reasons: one, healthcare needs to move toward preventative and demand led models for sustainability and two, food system sustainability needs to seek preventative measures such as diet adaptation and waste prevention. The impact of breast-milk substitute use on health services are well established in literature in terms of healthcare implications, cost and resourcing, however as a food demand and waste management issue little has been published to date. This paper presents the use of a desk based backcasting method to analyse food waste prevention, mitigation and management options within the Irish Maternity Service. Best practice in healthcare provision and waste management regulations are used to frame solutions. Strategic problem orientation revealed that 61% of the volume of ready to use breast-milk substitutes purchased by maternity services remains unconsumed and ends up as waste. Thirteen viable strategies to prevent and manage this waste were identified. Significant opportunities exist to prevent waste and also decrease food demand leading to both positive health and environmental outcomes. Backcasting methods display great promise in delivering food waste management strategies in healthcare settings, especially where evidenced best practice policies exist to inform solution forming processes. In terms of food waste prevention and management, difficulties arise in distinguishing between demand reduction, waste prevention and waste reduction measures under the current Waste Management Hierarchy definitions. Ultimately demand reduction at source requires prioritisation, a strategy which is complimentary to health policy on infant feeding. Copyright © 2016 Elsevier Ltd. All rights reserved.
ANALYSIS OF THE POTENTIAL EFFECTS OF TOXICS ON MUNICIPAL SOLID WASTE MANAGEMENT OPTIONS
Many alternative waste management practices and strategies are available to manage the large quantities of MSW generated every year. hese management alternatives include recycling, composting, waste-to-fuel/energy recovery, and landfilling. n choosing the best possible management...
ERIC Educational Resources Information Center
Association of Physical Plant Administrators of Universities and Colleges, Washington, DC.
In response to a request from the Wisconsin Department of Natural Resources, Region V of the United States Environmental Protection Agency (EPA) sponsored a workshop on waste management in universities and colleges. It consisted of four sessions: (1) managing general university waste and regulatory concerns; (2) chemical waste management; (3)…
[Assessment of medical waste management in a Palestinian hospital].
Al-Khatib, I A; Khatib, R A
2006-01-01
We studied medical waste management in a Palestinian hospital in the West Bank and the role of municipality in this management. In general, "good management practices" were inadequate; there was insufficient separation between hazardous and non-hazardous wastes, an absence of necessary rules and regulations for the collection of wastes from the hospital wards and the on-site transport to a temporary storage location inside and outside the hospital and inadequate waste treatment and disposal of hospital wastes along with municipal garbage. Moreover, training of personnel was lacking and protective equipment and measures for staff were not available. No special landfills for hazardous wastes were found within the municipality.
77 FR 65351 - Missouri: Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
...: Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA... Jackson-Johnson, Environmental Protection Agency, Waste Enforcement & Materials Management Branch, 11201... its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA proposes to...
Godfrey, Linda; Scott, Dianne; Trois, Cristina
2013-03-01
Empirical research shows that good waste management practice in South Africa is not always under the volitional control of those tasked with its implementation. While intention to act may exist, external factors, within the distal and proximal context, create barriers to waste behaviour. In addition, these barriers differ for respondents in municipalities, private industry and private waste companies. The main barriers to implementing good waste management practice experienced by respondents in municipalities included insufficient funding for waste management and resultant lack of resources; insufficient waste knowledge; political interference in decision-making; a slow decision-making process; lack of perceived authority to act by waste staff; and a low priority afforded to waste. Barriers experienced by respondents in private industry included insufficient funding for waste and the resultant lack of resources; insufficient waste knowledge; and government bureaucracy. Whereas, barriers experienced in private waste companies included increasing costs; government bureaucracy; global markets; and availability of waste for recycling. The results suggest that respondents in public and private waste organizations are subject to different structural forces that shape, enable and constrain waste behaviour.
O'Hara, Charles J.; Oldale, Robert N.
1980-01-01
This report presents results of marine studies conducted by the U.S. Geological Survey (USGS) during the summers of 1975 and 1976 in eastern Rhode Island Sound and Vineyard Sound (fig. 1) located off the southeastern coast of Massachusetts. The study was made in cooperation with the Massachusetts Department of Public Works and the New England Division of the U.S. Army Corps of Engineers. It covered an area of the Atlantic Inner Continental Shelf between latitude 41 deg 12' and 41 deg 33'N, and between longitude 70 deg 37' and 71 deg 15'W (see index map). Major objectives included assessment of sand and gravel resources, environmental impact evaluation both of offshore mining of these resources and of offshore disposal of solid waste and dredge spoil material, identification and mapping of the offshore geology, and determination of the geologic history of this part of the Inner Shelf. A total of 670 kilometers (km) of closely spaced high-resolution seismic-reflection profiles, 224 km of side-scan sonar data, and 16 cores totaling 90 meters (m) of recovered sediment, were collected during the investigation. This report is companion to geologic maps published for Cape Cod Bay (Oldale and O'Hara, 1975) and Buzzards Bay, Mass. (Robb and Oldale, 1977).
Offshore industry: management of health hazards in the upstream petroleum industry.
Niven, Karen; McLeod, Ron
2009-08-01
Upstream oil and gas operations involve a range of activities, including exploration and drilling, conventional oil and gas production, extraction and processing of 'tar sands', heavy oil processing and pipeline operations. Firstly, to outline the nature of health risks in the offshore oil and gas industry to date. Secondly, to outline the commercial, technical and social challenges that could influence the future context of health management in the industry. Thirdly, to speculate how the health function within the industry needs to respond to these challenges. A review of the published literature was supplemented with industry subject matter and expert opinion. There was a relatively light peer-reviewed published literature base in an industry which is perceived as having changed little over three decades, so far as offshore health hazards for physical, chemical, biological hazards are concerned. Recent focus has been on musculoskeletal disorders and stress. The relative stability of the knowledge base regarding health hazards offshore may change as more innovative methods are employed to develop hydrocarbon resources in more 'difficult' environments. Society's willingness to accept risk is changing. Addressing potential health risks should be done much earlier in the planning process of major projects. This may reveal a skills gap in health professionals as a consequence of needing to employ more anticipatory tools, such as modelling exposure estimations and the skills and willingness to engage effectively with engineers and other HSSE professionals.
NASA Astrophysics Data System (ADS)
Darnell, M. Z.
2016-02-01
Female blue crabs undertake a critical spawning migration seaward, migrating from low-salinity mating habitat to high-salinity waters of the lower estuaries and coastal ocean, where larval survival is highest. This migration occurs primarily through ebb tide transport, driven by an endogenous circatidal rhythm in vertical swimming that is modulated by behavioral responses to environmental cues. Blue crabs are typically considered an estuarine species and fisheries are managed on a state-by-state basis. Yet recent evidence from state and regional fishery independent survey programs suggests that the spawning migration can take females substantial distances offshore (>150 km), and that offshore waters are important spawning grounds for female blue crabs in the Gulf of Mexico. This is especially true in areas where freshwater inflow is high, resulting in low estuarine and coastal salinities. In low-salinity, high-inflow areas (e.g., Louisiana), spawning occurs further offshore while in high-salinity, low-inflow areas (e.g., South Texas), spawning takes place primarily within the estuary. Regional patterns in spawning locations both inshore and offshore are driven by interactions between behavioral mechanisms and local oceanographic conditions during the spawning migration. These environmentally driven differences in spawning locations have implications for larval survival and population connectivity, and emphasize the need for interjurisdictional assessment and management of the blue crab spawning stock.
Al-Khatib, Issam A; Monou, Maria; Mosleh, Salem A; Al-Subu, Mohammed M; Kassinos, Despo
2010-05-01
This study investigated the dental waste management practices and safety measures implemented by dentists in the Nablus district, Palestine. A comprehensive survey was conducted for 97 of the 134 dental clinics to assess the current situation. Focus was placed on hazardous waste produced by clinics and the handling, storage, treatment and disposal measures taken. Mercury, found in dental amalgam, is one of the most problematic hazardous waste. The findings revealed that there is no proper separation of dental waste by classification as demanded by the World Health Organization. Furthermore, medical waste is often mixed with general waste during production, collection and disposal. The final disposal of waste ends up in open dumping sites sometimes close to communities where the waste is burned. Correct management and safety procedures that could be effectively implemented in developing countries were examined. It was concluded that cooperation between dental associations, government-related ministries and authorities needs to be established, to enhance dental waste management and provide training and capacity building programs for all professionals in the medical waste management field.
Solid waste management in Abuja, Nigeria.
Imam, A; Mohammed, B; Wilson, D C; Cheeseman, C R
2008-01-01
The new city of Abuja provided an opportunity to avoid some of the environmental problems associated with other major cities in Africa. The current status of solid waste management in Abuja has been reviewed and recommendations for improvements are made. The existing solid waste management system is affected by unfavourable economic, institutional, legislative, technical and operational constraints. A reliable waste collection service is needed and waste collection vehicles need to be appropriate to local conditions. More vehicles are required to cope with increasing waste generation. Wastes need to be sorted at source as much as possible, to reduce the amount requiring disposal. Co-operation among communities, the informal sector, the formal waste collectors and the authorities is necessary if recycling rates are to increase. Markets for recycled materials need to be encouraged. Despite recent improvements in the operation of the existing dumpsite, a properly sited engineered landfill should be constructed with operation contracted to the private sector. Wastes dumped along roads, underneath bridges, in culverts and in drainage channels need to be cleared. Small-scale waste composting plants could promote employment, income generation and poverty alleviation. Enforcement of waste management legislation and a proper policy and planning framework for waste management are required. Unauthorized use of land must be controlled by enforcing relevant clauses in development guidelines. Accurate population data is necessary so that waste management systems and infrastructure can be properly planned. Funding and affordability remain major constraints and challenges.
Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén
2014-09-01
As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.