Science.gov

Sample records for ohio coals final

  1. Ohio Coal Testing and Development Facility - Construction and operation. Final report

    SciTech Connect

    Ferris, D.D.

    1996-03-01

    On June 14, 1987, the Ohio Coal Development Office (OCDO) executed a grant agreement with ICF Kaiser Engineers (ICF Kaiser) for the planning and design (Phase I) of a Demonstration Advanced Technology Coal Preparation Facility. Subsequently, on December 1, 1990, OCDO executed a grant agreement with the American Electric Power Service Corporation (AEPSC) through its subsidiary, the Ohio Power Company, for the final design and construction (Phase II), testing and operation (Phase III), and marketing and future operation (Phase IV) of the facility. These phases were subcontracted to ICF Kaiser. AEPSC co-sponsored the project and donated a site at the Central Ohio Coal Company`s Unionville Coal Preparation Plant for locating the test plant. Central Ohio Coal supplied coal handling services, waste-product disposal, and water. The Ohio Power Company provided project oversight, electric power, and the test coals. The test results from the operation of the 30 tph advanced coal cleaning plant demonstrated that combining conventional physical coal cleaning with emerging advanced physical coal cleaning technologies was a cost-effective method to reduce sulfur emissions of Ohio coals. The following is a summary of the key findings of this project.

  2. Ohio Coal Research Consortium fourth year final summary report, September 1, 1993--August 31, 1994

    SciTech Connect

    1995-05-01

    As a part of its efforts to improve the use of high-sulfur Ohio coal within environmental limits, the Ohio Coal Development Office, an entity within the Ohio Department of Development (OCDO/ODOD), in late 1988 established a consortium of four Ohio universities. The purpose of the Ohio Coal Research Consortium is to conduct a multi-year fundamental research program focused on (1) the enhancement or development of dry sorption processes for the economical removal of high levels of SO{sub 2} and other pollutants and (2) an increased understanding of methods for reduction in air toxics emissions from combustion gases produced by burning high-sulfur Ohio coal. This report contains summaries of twelve studies in these areas.

  3. Ohio Coal Research Consortium fifth year final reports summary, September 1, 1994--February 29, 1996

    SciTech Connect

    1996-12-01

    As part of its efforts to improve the use of high-sulfur Ohio coal within environmental limits, the Ohio Coal Development Office, an entity within the Ohio Department of Development (OCDO/ODOD), in late 1988 established a consortium of four Ohio universities. The purpose of the Ohio Coal Research Consortium is to conduct a multi-year fundamental research programs focused on: (1) the enhancement or development of dry sorption processes for the economical removal of high levels of SO{sub 2} and other pollutants, and (2) an increased understanding of methods for reduction in air toxics emissions from combustion gases produced by burning high-sulfur Ohio coal. This report contains summaries of eleven studies in these areas.

  4. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    SciTech Connect

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S.

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  5. Sulfur release from Ohio coals and sorbent kinetics in pulverized coal flames. Final report

    SciTech Connect

    Essenhigh, R.

    1992-08-01

    In this report we describe the results of investigations into the structure of combustion and sulfur release profiles from coal burning in One-Dimensional P.C. flames using a furnace of unique design for the measurements. Selected measurements were also-carried out in a special high-intensity furnace also of unique design. The formal project work started in late Fall 1989, with unfunded preliminary work in the months prior to that. The process of limestone injection into the flame to control sulfur oxides emissions is a long-standing concept that has been given particular formulation in the LIMB process, and studies of such systems provide bases for commercial system economics. Problems with LIMB and related systems indicated need for better understanding of, jointly, the sulfur release from the coal and the sorbent behavior by the limestone. The investigations as reported in Vol. 1 of this Report used 14 different coals under a range of different initial and operating conditions, and the resulting measurements have provided a database of major proportions, as tabulated in the attached Volumes 2, 3, 4, 5, 6, and 7 of this report. This database consists of sets of measurements totalling about 45,000 entries for all independent and dependent parameters involved. The independent parameters included: coal type (analysis), firing rate, stoichiometry (fuel/air ratio), and sorbent content of the

  6. Extraction of potential pollutants from Ohio coal by synergistic use of supercritical fluids. Final report

    SciTech Connect

    Lee, S.

    1990-08-03

    A synergistic supercritical extraction process was developed and its feasibility demonstrated using a semi-batch extraction process unit. The process was found to be effective in selectively cleaning organic sulfur from Ohio coals. Optimal case involved a mixture of CO{sub 2}, H{sub 2}O, and CH{sub 3}OH, and the removal of organic sulfur ranged from 35 to 55%. Combined with pyrite and mineral matter removal by gravity, the resulting coals would have 20--30% increased heating values and SO{sub 2} emissions would be down to 1.2--1.5 pounds per million Btu, thus meeting compliance requirements. Estimated cleaning cost including pyrite removal is $25 to 45 per ton. The most important cost factor is the operation at high pressures.

  7. Final report on agglomerate column flotation for cleaning and desulfurization of Ohio coal fines

    SciTech Connect

    Attia, Y.A.; El Zeky, M.; Yu, Mulong . Dept. of Materials Science and Engineering)

    1990-08-30

    The objective of this research program was investigate the feasibility of cleaning and desulfurization of Ohio coal by an agglomerate column flotation process, which integrates selective flocculation with conventional column flotation. It was concluded earlier on in the program that the conventional design of flotation column was not particularly efficient for pyrite rejection. A novel design for flotation column system was conceived and a prototype unit was manufactured and tested in the laboratory. Several design and operational parameters for the column and the agglomerate flotation process were briefly investigated to define proper design and working conditions for a satisfactory performance. The novel design was compared with conventional design of flotation column through laboratory tests and through published results. The role of selective flocculation of coal including selective depression of pyrite has been identified and tested with both novel and conventional design of flotation columns. The results of these brief investigations, which are summarized in this report, suggest that: (1) excellent performance ca n be obtained with agglomerate column flotation using the new design. For example, a raw coal containing 3.16% total sulfur, 2.11% pyritic sulfur, and 17% ash can be cleaned to 1.91 % ash, 0.42% pyritic sulfur, 1.32% total sulfur, while maintaining a projected Btu/coal recovery of 86% (mmmf basis). This is equivalent to 89% ash removal and 81% pyritic sulfur (58% total sulfur) rejection. (2) The novel design of flotation column is superior to conventional design particularly for pyrite rejection.

  8. Testing of pyrite flotation techniques on selected Ohio coals: Final report

    SciTech Connect

    Arnold, B.J.; Torak, E.R.

    1989-05-01

    The project was conceived to demonstrate the combining of conventional physical coal cleaning with emerging advanced physical coal cleaning technologies in a cost-effective manner. The objectives of the program were to demonstrate that conventional coal cleaning followed by advanced coal cleaning of a crushed mid-gravity portion of the run-of-mine coal would produce a clean coal, suitable for use as a thermal coal, having a lower ash content and a lower sulfur dioxide emission potential than a coal cleaned only be current conventional cleaning technologies. As part of this program a number of advanced flotation techniques were tested to determine the feasibility of including them in the design of their Advanced Coal Preparation Facility. The program consisted of testing the Pittsburgh seam, the Middle Kittanning seam, and the Meigs Creek seam coals in the pilot flotation circuit at EPRI's Coal Quality Development Center (CQDC) in Homer City, Pennsylvania. This report contains all the data from OCDO's pilot flotation test program at the CQDC and the test data from the Middle Kittanning and Meigs Creek reverse flotation tests. 13 figs., 40 tabs.

  9. Testing of pyrite flotation techniques on selected Ohio coals: Final report

    SciTech Connect

    Arnold, B. J.; Torak, E. R.

    1989-05-01

    The project was conceived to demonstrate the combining of conventional physical coal cleaning with emerging advanced physical coal cleaning technologies in a cost-effective manner. The objectives of the program were to demonstrate that conventional coal cleaning followed by advanced coal cleaning of a crushed mid-gravity portion of the run-of-mine coal would produce a clean coal, suitable for use as a thermal coal, having a lower ash content and a lower sulfur dioxide emission potential than a coal cleaned only be current conventional cleaning technologies. As part of this program a number of advanced flotation techniques were tested to determine the feasibility of including them in the design of their Advanced Coal Preparation Facility. The program consisted of testing the Pittsburgh seam, the Middle Kittanning seam, and the Meigs Creek seam coals in the pilot flotation circuit at EPRI's Coal Quality Development Center (CQDC) in Homer City, Pennsylvania. This report contains all the data from OCDO's pilot flotation test program at the CQDC and the test data from the Middle Kittanning and Meigs Creek reverse flotation tests. 13 figs., 40 tabs.

  10. Ohio's high-sulfur coal. [Monograph

    SciTech Connect

    Not Available

    1982-01-01

    Representatives of eight organizations with diverse backgrounds respond to the question of whether Ohio should increase or decrease the use of coal. Despite some concerns, there appears to be general agreement among the organizations that Ohio's coal should be used at an increasing rate. Technology may resolve, in the near future, some of the concerns caused by the high-sulfur content of Ohio coal. Regulations at both the federal and state level will continue to be discussed and debated. Research will be needed to address the continued concerns of health effects and environmental consequences such as long-range climatic change and acid rain.

  11. Control of toxic metallic emissions formed during the combustion of Ohio coals. Final report, September 1, 1993--August 31, 1994

    SciTech Connect

    Biswas, P.; Owens, T.M.; Wu, Chang-Yu

    1995-02-01

    The objective of the project was to characterize metallic emissions from representative coals and develop strategies for their control. Though metallic emissions from coal combustors have been extensively studied, more studies need to be performed to better characterize the interaction of various species which is required for the selection and design of sorbents for effective control of these emissions. Some coals are rich in sulfur, and utilities using these coals will have to use some form of Flue Gas Desulfurization (FGD). A technique for FGD is the use of calcium based sorbents, and the degree of metals capture of these sorbents under different conditions will be researched. The objective of the first year of the study was to understand the evolution of metallic aerosol size distributions and the capture characteristics of various sorbents. Also, the metallic emissions resulting from the combustion of two seams of Ohio coals were to be characterized. Studies on the evolution of the metallic aerosol size distributions have been completed and the use of silicon and calcium based sorbents for capture of lead species has been examined. Co-injection of metallic compounds along with organometallic silicon indicated a high degree of capture of lead in a certain temperature regime. Preliminary results with calcium based sorbents also indicate capture of metallic species. To gain a further understanding of the capture processes, in situ optical diagnostic studies were performed in collaboration with researchers at the National Institute of Standards and Technology. Spectroscopic studies (laser induced fluorescence coupled with particle scattering) were performed to help understand the mechanisms of metallic species capture.

  12. Modernization of Ohio's coal reserves, Phase 1

    SciTech Connect

    Carlton, R.W.

    1991-09-27

    The objectives of this project were to determine state-level totals of the estimated economic resource, minable reserve base, and recoverable coal in Ohio, allocated to specified ranges of sulfur and heat content. In addition, resources and reserves were to be categorized by mining methods (surface and underground). Land use and environmental restrictions, needed to determine remaining minable reserves, were to be delineated and percentages of restricted coal calculated. In context of a Phase 1, one-year project, the objectives of this project were to update Ohio's coal reserves and resources for as many counties as time allowed, and to deplete production tonnages to January 1, 1991, on the remaining coal-producing counties. For the depleted counties, only estimated economic resources were required or possible with the data available. 24 refs., 9 figs., 3 tabs.

  13. Field study for disposal of solid wastes from Advanced Coal Processes: Ohio LIMB Site Assessment. Final report, April 1986--November 1994

    SciTech Connect

    Weinberg, A.; Coel, B.J.; Butler, R.D.

    1994-10-01

    New air pollution regulations will require cleaner, more efficient processes for converting coal to electricity, producing solid byproducts or wastes that differ from conventional pulverized-coal combustion ash. Large scale landfill test cells containing byproducts were built at 3 sites and are to be monitored over at least 3 years. This report presents results of a 3-y field test at an ash disposal site in northern Ohio; the field test used ash from a combined lime injection-multistage burner (LIMB) retrofit at the Ohio Edison Edgewater plant. The landfill test cells used LIMB ash wetted only to control dusting in one cell, and LIMB ash wetted to optimize compaction density in the other cell. Both test cells had adequate load-bearing strength for landfill stability but had continuing dimensional instability. Heaving and expansion did not affect the landfill stability but probably contributed to greater permeability to infiltrating water. Leachate migration occurred from the base, but effects on downgradient groundwater were limited to increased chloride concentration in one well. Compressive strength of landfilled ash was adequate to support equipment, although permeability was higher and strength was lower than anticipated. Average moisture content has increased to about 90% (dry weight basis). Significant water infiltration has occurred; the model suggests that as much as 20% of the incident rainfall will pass through and exit as leachate. However, impacts on shallow ground water is minimal. Results of this field study suggest that LIMB ash from combustion of moderate to high sulfur coals will perform acceptably if engineering controls are used to condition and compact the materials, reduce water influx to the landfill, and minimize leachate production. Handling of the ash did not pose serious problems during cell construction; steaming and heat buildup were moderate.

  14. Coal repository. Final report

    SciTech Connect

    Not Available

    1983-11-01

    The Coal Repository Project was initiated in 1980 by the Department of Energy/Pittsburgh Energy Technology Center to provide a centralized system for the collection of well characterized coal samples, and distribution to organizations involved in the chemical beneficiation of coal and related research. TRW Energy Development Group, together with its subcontractor Commercial Testing and Engineering Company, established the Coal Repository at the TRW Capistrano Chemical Facility, which is the location of the DOE-owned Multi-Use Fuel and Energy Processes Test Plant (MEP). Twenty tons each of three coals (Illinois No. 6, Kentucky No. 11 (West), and Pittsburgh No. 8 (from an Ohio mine)) were collected, characterized, and stored under a nitrogen atmosphere. Ten tons of each coal are 3/8-inch x 0, five tons of each are 14-mesh x 0, and five tons of each are 100-mesh x 0. Although TRW was within budget and on schedule, Department of Energy funding priorities in this area were altered such that the project was terminated prior to completion of the original scope of work. 9 figures, 3 tables.

  15. Development of pilot plant for the production of vapor grown carbon fiber from Ohio coal. Final report, July 1997 to July 2000

    SciTech Connect

    Alig, Robert; Burton, David; Kennel, Elliot; Lake, Max

    2000-11-30

    The objective of this project was to develop, build, and operate a pilot-scale plant for the production of Pyrograf-III™ carbon nanofiber from Ohio high-sulfur coal. The fiber production scale-up program was conducted in three phases. In Phase I, the design parameters were developed using a single reactor system, for a process where sulfur bearing coal replaced hydrogen sulfide as the sulfur source. Optimization trials for different reactor tube dimensions were conducted and compared to theoretical predictions for temperature and flow conditions in the reactor as a function of the reactor dimensions. The process was also refined to optimize intrinsic and surface properties of the carbon fiber. Methods of separating fiber from coal ash and de-bulking the fiber were also developed and demonstrated. Under Phase I, a considerable body of knowledge was developed that yielded valuable data bearing on the design of fiber production and handling equipment. The Phase I effort was comprised of complementary programs sponsored by the Ohio Coal Development Office (OCDO), the U.S. Department of Energy (DOE), the Delphi Chassis Division of General Motors Corporation, and the U.S. Department of Commerce (DOC). In Phase II, equipment was designed based upon the body of knowledge developed under Phase I. The pilot plant equipment was designed to have a production capacity up to 100,000 pounds of fiber per year based on a process (PR-11) that generates a fiber diameter of 200 nm and a model indicating energy throughput as the rate-limiting variable. As the program progressed, it become evident that the near-term customers required a fiber with a much smaller diameter, PR-24 grade, to achieve the required performance in the end product. In order to meet the needs of the initial customer base, modifications were made to the pilot plant reactors to produce the smaller diameter fiber. This change in the intrinsic properties of the fiber caused the production capacity to be cut to a

  16. Overview of surface-water quality in Ohio's coal regions

    USGS Publications Warehouse

    Westover, Susan; Eberle, Michael

    1987-01-01

    This report is designed to provide the nontechnical audience with some of the results of an 'Assessment of Water Quality in Streams Draining Coal-Producing Areas in Ohio,' by Christine L. Pfaff and others (published by the U.S. Geological Survey in 1981). The purpose of the assessment was to document the occurrence of certain chemical constituents in streams in Ohio's coal region and determine to what extent the presence of these constituents was related to mining. Ohio's most productive coal seams are associated with the Allegheny and Monongahela Formation of Pennsylvanian age. These coals were mined by underground methods very early in Ohio's history. Underground mining continues in the state today; however, surface mining now produces significantly more coal. Acid mine drainage from unreclaimed surface and underground mines has affected surface-water quality in Ohio for many years, and recently has led to establishment of reclamation programs by State and Federal agencies. In their assessment of Ohio's coal region, Pfaff and others sampled 150 sites in small watersheds underlain by the Allegheny and the Monogahela Formations. Each site represented only one of four land-use types (active-mine, unmined, abandoned-mine, or reclaimed). Statistical analysis of data from the unmined, abandoned-mine, and reclaimed sites showed that there were significant differences in pH, specific conductance, alkalinity, and concentrations of sulfate and aluminum among abandoned-mine and unmined sites. Reclaimed sites had average pH values and aluminum concentrations similar to those unmined sites. Average specific conductance and sulfate concentrations were about the same for reclaimed abandoned-mine sites, but were significantly lower at unmined sites; specific conductance and sulfate concentration, in fact, proved to be reliable indicators of basins that had been disturbed by mining. Alkalinity was significantly different for all three land uses, the highest values being found at

  17. Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report

    SciTech Connect

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L.

    1989-08-28

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  18. Music in Ohio Schools. Final Report.

    ERIC Educational Resources Information Center

    Clay, Thomas

    To determine facts and opinions concerning the status of music in all Ohio schools (public and private), questionnaires were sent to the 4,389 K-12 teachers listed in the 1981 Ohio Music Education Association (OMEA) Directory and survey instruments were mailed to superintendents of each of Ohio's 614 school districts. Approximately 47.5% of the…

  19. Hydrology of Area 7, Eastern Coal Province, Ohio

    USGS Publications Warehouse

    Engelke, Morris J.; Roth, D.K.; ,

    1981-01-01

    The U.S. Geological Survey established 24 study areas in Eastern Appalachian Coal Province to appraise the hydrology and water resources from Alabama to Pennsylvania. Chemical, physical, biological, and streamflow data were collected from 138 synoptic sites in Area 7, eastern Ohio. The data are evaluated and presented in this report. Area 7 lies within the drainage basins of Muskingum Rivers and Duck and Willis Creeks in eastern Ohio. Walhounding, Tuscarawas, and Little Muskingum, and Muskingum Rivers and Wills and Duck Creeks are the major streams draining the study area. In Ohio, surface and subsurface coal mining has altered the environment. In areas where land has been reclaimed, the environmental stress expected to be temporary. Hydrologic problems related to coal mining are erosion and sedimentation which degrade water-quality. Based on available sediment data, suspended sediment concentration were highest in abandoned mine areas, followed by currently mined and reclaimed areas, and lowest in unmined areas. Low pH, high specific conductance, high concentrations of iron, sulfate and manganese, increased sediment yields, discoloration of streambeds, limited aquatic vegetation and animal life typify streams draining areas with abandoned mines. In abandoned mine areas, the specific conductance of water ranged from 800 to 2,300 micromhos; pH ranged from 2.8 to 5.8; dissolved-iron concentrations ranged from 1,000 to 85,000 micrograms per liter; dissolved-sulfate concentrations ranged from 14 to 1,200 milligrams per liter and dissolved-manganese concentration commonly exceeded 2,000 micrograms per liter. Red and yellow coloration on the streambeds were precipitates from the hydrolysis of iron, manganese, and sulfate minerals carried into the stream channel by increased sediment erosion from abandoned coal mines. Trace metal concentrations (arsenic, cadmium, chromium, cobalt, copper, lead, mercury, selenium, and zinc) were generally low. Degradation of fish habitat

  20. Creating power, technology and products: the role of coal gasification in Ohio's economy and energy future

    SciTech Connect

    2007-12-15

    The study examines how coal gasification (CG) combined with Carbon Capture and Sequestration (CCS) technology could play a role in Ohio's economy and energy future - particularly in Northeast Ohio, a major center of manufacturing in the U.S. This working paper focuses primarily on opportunities for gasification projects to augment Ohio's economy. It examines economic activity factors related to coal gasification and how the location of a number of key support industries in Ohio could provide the state with a competitive advantage in this area. The study focuses on a polygeneration facility that would supply electricity and some other products as an example of the type of gasification facility that could, if a sufficient number of similar facilities were located in the area, serve as the stimulus for a new or expanded industry cluster. Although not further discussed in this paper, any Ohio gasification facility would be in close proximity to oil and gas fields that can serve as sites for sequestering the carbon dioxide separated out from the coal-gasification process. The potential economic impact of locating a polygeneration gasifier in Northeast Ohio is large. A significant portion of the inputs required for one $1.1+ billion facility can be supplied either within northeastern Ohio or from elsewhere in the state. Operation of the facility is estimated to increase annual statewide personal income by $39 million and Ohio output by $161 million. The Northeast Ohio region will account for 98 percent of the operational benefits. The report suggests several possible steps to convert this research to an action plan to build support for, and interest in, a coal-gasification industry cluster in Northeast Ohio. Outreach should focus on engaging industry leaders, foundations, and state and regional economic development leaders. 16 tabs., 3 apps.

  1. The Other Half Speaks: Reminiscences of Coal Town Women, 1900-1950, Athens County, Ohio.

    ERIC Educational Resources Information Center

    Horn, Helen, Ed.; Good, Roger, Ed.

    These materials are intended to accompany a videotape, that incorporates stories from 15 women who lived in the coal producing towns of Athens County, Ohio during the first half of the 20th century. Discussion questions, a list of resource volunteers, and background information on mining and Athens County coal towns are included. (DB)

  2. Coal reserves of the Pittsburgh (No.8) bed in Belmont County, Ohio

    USGS Publications Warehouse

    Berryhill, Henry L.

    1955-01-01

    Remaining coal reserves totaling 1,929 million tons have been appraised in the Pittsburgh (No. 8) coal bed in Belmont County, Ohio. Of these, 508 million tons are classified as measured and 1,421 million tons are classified as indicated. All the coal has less than 1,000 feet of overburden, and most of it is of high volatile A bituminous rank. This estimate is based on field work by the United States Geological Survey, supplemented by data from the fries of the Ohio Geological Survey and from mine and drill-hole records provided by mining companies.

  3. Some environments of Late Pennsylvanian coal deposition, upper Ohio Valley, eastern Ohio, northern West Virginia and western Pennsylvania, USA

    SciTech Connect

    Cross, A.T.

    1998-12-31

    Diverse environments of accumulation are identified for coals and associated rocks in mines and outcrops in the upper Ohio River Valley. Some Kittanning coals are associated with thick fireclay or plastic underclay and locally, with thick deposits of evenly-laminated, dark bayfill sediments of marine or brackish origin. Freeport coals show some of the same characters. At that time, the region appears to have been one of marginally interdigitating marine and freshwater alluvial deposits with great irregularity of dimensions of prograding distributary delta lobes and intervening bays and estuaries. Conemaugh strata at mines near West Point and East Liverpool, and at roadcuts near Steubenville and Weirton are exceedingly variable locally above the Brush Creek limestone and marine shale sequences; below this they are less variable and contain commercial coals. The earliest of the red or variegated red/green shales and calcareous mudstones and other paleosols of the Conemaugh Formation first appear in this zone (Mahoning) and become predominant above the Brush Creek. Regional variation is demonstrated by comparing river bluff sections near Weirton with open-pit mine sections to the northwest. Oxidized mudstones of distal delta plains, delta plain coals and interlobate bayfill mudstones of these sections are penecontemporaneous. Lower Monongahela strata, including the important Pittsburgh coalbed, demonstrate a regional shift from lacustrine gray shales, limestones, commercial coals and alluvial sandstones westward and southward to calcareous shales, fewer sandstones and thin coals, to red/green oxidized calcareous to non-calcareous shales with occasional coaly zones. Channel-fills of various environmental origins are identified by plant and animal fossils associated with the several environments of deposition. In the classic Linton vertebrate site near Yellow Creek, sapropelic (canneloid) coal accumulation preceded the deposition of the thick Upper Freeport humic coal

  4. Solar heating system installed at Troy, Ohio. Final report

    SciTech Connect

    1980-09-01

    This document is the Final Report of the Solar Energy System located at Troy-Miami County Public Library, Troy, Ohio. The completed system is composed of tree basic subsystems: the collector system consisting of 3264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which includes a 5000-gallon insulated steel tank; and the distribution and control system which includes piping, pumping and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and is, therefore, a retrofit system. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  5. Distribution of trace elements in coal from the Powhatan No. 6 mine, Ohio

    USGS Publications Warehouse

    Palmer, C.A.; Filby, R.H.

    1984-01-01

    Size and density separates of low-temperature-ashed coal from the Powhatan No. 6 mine, Ohio, have been used to determine the mode of occurrence of 28 minor and trace elements in coal. The size distribution of the major minerals has been determined, and correlations of trace elements with major minerals have been made. The role of minor minerals in the mode of occurrence of trace elements is also discussed. Instrumental-neutron-activation analysis was used to determine elemental concentrations, and X-ray diffraction and scanning electron microscopy were used for mineral identification. ?? 1984.

  6. The Ohio Schools Pest Management Survey: A Final Report.

    ERIC Educational Resources Information Center

    2001

    In 2001, the Environmental Studies Senior Capstone Seminar class at Denison University helped the state of Ohio work to prevent harmful pesticide use in schools. In cooperation with Ohio State University's Integrated Pest Management (IPM) in Schools Program, Denison conducted a statewide survey of school districts to determine current pest…

  7. From in situ coal to the final coal product: A case study of the Danville Coal Member (Indiana)

    USGS Publications Warehouse

    Mastalerz, Maria; Padgett, P.L.

    1999-01-01

    A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in

  8. Characterization of selected Ohio coals to predict their conversion behavior relative to 104 North American Coals. [Factors correlating with liquefaction behavior

    SciTech Connect

    Whitacre, T. P.; Hunt, T. J.; Kneller, W. A.

    1982-02-01

    Twenty-six coal samples from Ohio were collected as washed and seam samples, and lithobodies within the seams. Characterization of these samples included determination of % maceral, % anti R/sub max/, LTA, chlorine content and proximate/ultimate and qualitative mineral analyses. These data were compared to data from a similar project by Yarzab, R.F., et al., 1980 completed at Pennsylvania State University using tetralin as the hydrogen donor solvent. The characteristics of these coals were correlated with liquefaction conversion and other data accrued on 104 North American coals by statistical analyses. Utilizing percent carbon, sulfur, volatile matter, reflectance, vitrinite and total reactive macerals, Q-mode cluster analysis demonstrated that Ohio coals are more similar to the coals of the Interior province than to those of the Appalachian province. Linear multiple regression analysis for the 104 North American coals provided a prediction equation for conversion (R = .96). The predicted conversion values for the samples range from 58.8 to 79.6%, with the Lower Kittanning (No. 5) and the Middle Kittanning (No. 6) coal seams showing the highest predicted percent conversion (respectively, 73.4 and 72.2%). The moderately low FSI values for the No. 5 and No. 6 coals (respectively, 2.5 and 3) and their moderately high alkaline earth content (respectively, 0.69 and 0.74%) suggest that these coals possess the best overall properties for conversion. Stepwise regression has indicated that the most important coal characteristics affecting conversion are, in decreasing order of importance: % volatile matter, % vitrinite and % total sulfur. Conversion processes can be expected to produce higher yields with Ohio coals due to the presence of such mineral catalysts as pyrite and kaolinite. It is believed that the presence of these disposable catalysts increases the marketability of Ohio coals.

  9. Hydrology of area 4, Eastern Coal Province, Pennsylvania, Ohio, and West Virginia

    USGS Publications Warehouse

    Roth, Donald K.; Engelke, Morris J.; ,

    1981-01-01

    Area 4 (one of the 24 hydrologic areas defining the Eastern Coal Province) is located at the northern end of the Eastern Coal Province in eastern Ohio, northern West Virginia, and western Pennsylvania. It is part of the upper Ohio River basin, which includes the Beaver, Mahoning, and Shenango Rivers. The area is underlain by rocks of the Pottsville, Allegheny, Conemaugh, Monongahela Groups (or Formations) and Dunkard Group. Area 4 has a temperate climate with an annual average rainfall of 38 to 42 inches, most of its area is covered by forest. The soils have a high erosion potential where the vegetation cover is removed. In response to Public Law 95-87, 132 sites were added to the existing surface-water data-collection network in area 4. At these added sites, collected data includes discharge, water quality, sediment, and biology. The data are available from computer storage through the National Water Data Exchange (NAWDEX) or the published annual Water Resources Data reports for Ohio, Pennsylvania, and West Virginia. Hydrologic problems related to mining are: (1) Erosion and increased sedimentation, and (2) degradation of water quality. Erosion and sedimentation are associated chiefly with surface mining. Sediment yields increase drastically when vegetation is removed from the highly erosive soils. Degradation of water quality can be caused by acid-mine drainage from underground and surface mining. More than half the acid-mine drainage effluent in area 4 comes from underground mines. The rest seeps from abandoned surface mines. Usually in reclaimed surface mines the overburden is replaced in such a short time after the coal is taken out that oxidation of acid-forming minerals, commonly pyrite or marcasite, is not complete or is neutralized by the buffering action of calcareous minerals in the soils. (USGS)

  10. Assessment of water quality in streams draining coal-producing areas in Ohio

    USGS Publications Warehouse

    Pfaff, C.L.; Helsel, D.R.; Johnson, D.P.; Angelo, C.G.

    1981-01-01

    Water quality in the coal-producing areas of eastern Ohio was studied in a two-phase investigation between May 1975 and August 1976. Results of phase one, a reconnaissance of water quality at 150 sites, indicated that acid mine drainage generally occurred where abandoned drift or strip mines were located, whereas areas characterized by reclaimed or active strip mines showed few instances of acid drainage. Phase two was a detailed study of four small basins: One contained abandoned drift mines; the second, abandoned strip mines; the third, reclaimed strip mines; the last, active strip mines. Results of phase two were similar to those of phase one. (USGS)

  11. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.

    2010-01-01

    This report contains a simplified provisional correlation chart that was compiled from both published and unpublished data in order to fill a need to visualize the currently accepted stratigraphic relations between Appalachian basin formations, coal beds and coal zones, and key stratigraphic units in the northern, central, and southern Appalachian basin coal regions of Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania. Appalachian basin coal beds and coal zones were deposited in a variety of geologic settings throughout the Lower, Middle, and Upper Pennsylvanian and Pennsylvanian formations were defined on the presence or absence of economic coal beds and coarse-grained sandstones that often are local or regionally discontinuous. The correlation chart illustrates how stratigraphic units (especially coal beds and coal zones) and their boundaries can differ between States and regions.

  12. Project Emerge, Dayton, Ohio. 1972-73 Final Evaluation Report.

    ERIC Educational Resources Information Center

    Dayton City School District, OH.

    Project Emerge, funded under Title VIII of the 1965 Elementary Secondary Education Act, is located in the Model Cities Area, a black-inhabited west side section of Dayton, Ohio. The target school student population is 2,300 of which 20 percent come from families with low incomes. Project Emerge's major objectives are to reduce the dropout rate in…

  13. CONSULT-I Reading. Ohio Project. Final Report.

    ERIC Educational Resources Information Center

    Newman, Anabel; And Others

    A study examined the effectiveness of the 1991-1992 implementation of the CONSULT-I(R) program (which uses artificial intelligence with statistical pattern recognition in constructing a diagnosis and recommending treatment of reading difficulties) at five cities in Ohio (Akron, Cincinnati, Cleveland, Columbus, and Toledo). A total of 30 teachers…

  14. Slagging retrofit pulsed coal combustor: Final report

    SciTech Connect

    Not Available

    1987-01-01

    A concept for a novel form of slagging retrofit pulsed coal combustor was tested in the laboratory. The combustor is based on controlled use of a form of high pressure amplitude combustion instability. The approach adopted was to resolve, in single pulse experiments, the basic technical issues arising in the development of the combustor. In a cold flow device, the issues of coal spatial distribution were addressed and a combustor and solids disperser configuration was developed to give uniform coal distribution in the combustor. Single pulse ignition experiments were conducted to determine the pressure rise in combustor, pressure rise-decay times, and coal conversion a function of various operating variables. Coal injection, flame propagation, and blowdown times leading to potential combustor size reduction of three times over steady flow combustors were demonstrated. The results give high pressure exhaust leading to potentially improved downstream heat transfer and reduced boiler size. Finally, zero-, one-, and two-dimensional mathematical models were developed in support of the experiments and also to provide design capability. 11 refs., 43 figs.

  15. Gate road development at Southern Ohio Coal Company-Meigs Division

    SciTech Connect

    Kidder, N.L.; Latham, J.W. III

    1996-12-31

    Southern Ohio Coal Company`s (SOCCo) Meigs Division, a part of American Electric Power`s Fuel Supply Division, is located in the southeastern Ohio counties of Meigs and Vinton, and consists of two large underground mines and a central coal preparation plant. The division began mining the 54-inch Clarion 4A seam in the early 1970`s, with three underground mines, which first used conventional mining, but changed to continuous mining after only a few years. Longwall mining began in 1978 at the Meigs No. 2 Mine. In 1989, Meigs No. 1 and Raccoon No. 3 Mines were interconnected underground, with the combined mine being named Meigs No. 31. A longwall was installed in Meigs No. 31 in September 1989. The Meigs Division operated three longwalls until 1993, but then reduced to two longwalls (one at each mine) and five continuous miner sections, which are used solely to develop main entries and gateroads for the longwalls. Longwall panel size has steadily increased through the years, growing from the initial 500 ft. wide by 5000 ft. long panels to the present panels which range from 900 to 1100 ft. wide by 10,000 to 13,000 ft. long.

  16. Hydrology of area 8, eastern Coal Province, West Virginia and Ohio

    USGS Publications Warehouse

    Friel, E.A.; Ehlke, T.A.; Hobba, W.A.; Ward, S.M.; Schultz, R.A.

    1987-01-01

    The hydrology of Area 8 in the Ohio River basin in northwestern West Virginia and southeastern Ohio, is influenced by geology and geologic structure. Rocks underlying the area consist of alternating beds of sandstone, siltstone, shale, limestone, and mudstone. Minable coal is contained within the Pennsylvania and Permian rocks. Coal production in 1980 totaled 6.7 million tons from underground mines and one million tons from surface mines. There is a wide range of soil types (29 soil associations) in five land-resource areas. Precipitation averages about 41 inches annually and is greatest at higher altitudes along the eastern boundary of the area. Average annual runoff ranges from 13 to 29 inches per year. The principal land uses are forest and agriculture. Estimated water use during 1980 was 1,170 million gallons per day. Surface-water quality ranges from excellent to poor. The highest iron, manganese and sulfate concentrations were present in mined areas. Well yields range from less than 1 to 350 gallons per minute. Groundwater from the Mississippian rocks contain lesser amounts of dissolved solids than water from the Lower Pennsylvanian rocks. Water high in chloride content is present in some valley areas. (USGS)

  17. Statistical relationship between pyrite grain size distribution and pyritic sulfur reduction in Ohio coal

    USGS Publications Warehouse

    Mazumdar, M.; Carlton, R.W.; Irdi, G.A.

    1988-01-01

    This paper presents a statistical relationship between the pyrite particle size distribution and the potential amount of pyritic sulfur reduction achieved by specific-gravity-based separation. This relationship is obtained from data on 26 Ohio coal samples crushed to 14 ?? 28 mesh. In this paper a prediction equation is developed that considers the complete statistical distribution of all the pyrite particle sizes in the coal sample. Assuming that pyrite particles occurring in coal have a lognormal distribution, the information about the particle size distribution can be encapsulated in terms of two parameters only, the mean and the standard deviation of the logarithms of the grain diameters. When the pyritic sulfur reductions of the 26 coal samples are related to these two parameters, a very satisfactory regression equation (R2 = 0.91) results. This equation shows that information on both these parameters is needed for an accurate prediction of potential sulfur reduction, and that the mean and the standard deviation interact negatively insofar as their influence on pyritic sulfur reduction is concerned. ?? 1988.

  18. Final Report of the Advanced Coal Technology Work Group

    EPA Pesticide Factsheets

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  19. TOXIC SUBSTANCES FROM COAL COMBUSTION--A COMPREHENSIVE ASSESSMENT, PHASE II: ELEMENT MODES OF OCCURRENCE FOR THE OHIO 5/6/7, WYODAK AND NORTH DAKOTA COAL SAMPLES

    SciTech Connect

    Allan Kolker; Stanley J. Mroczkowski; Curtis A. Palmer; Kristen O. Dennen; Robert B. Finkelman; John H. Bullock Jr.

    2002-05-30

    This study reports on the second phase (Phase II) of USGS research activities in support of DOE contract DE-AC22-95PC95101 ''Toxic Substances From Coal Combustion--A Comprehensive Assessment'', funded under DOE Interagency Agreement DE-AI22-95PC95145. The purpose of the study was to provide a quantitative and semi-quantitative characterization of the modes of occurrence of trace elements in coal samples investigated under Phase II, including (1) Ohio 5/6/7, an Ohio bituminous coal sample blended from the No.5, No.6, and No.7 beds; (2) North Dakota, a lignite sample from the Falkirk Mine, Underwood, ND, and (3) Wyodak, a sub-bituminous coal sample from the Cordero Mine, Gillette, WY. Samples from these coal beds were selected for their range in rank and commercial applicability. Results of this research provide basic information on the distribution of elements in Phase II coal samples, information needed for development of a commercial predictive model for trace-element behavior during coal combustion.

  20. Determining the Heat Exchange Capacity of Underground Coal Mines in Ohio

    NASA Astrophysics Data System (ADS)

    Richardson, J. J.; Lopez, D. A.; Leftwich, T. E.; Wolfe, M. E.; Angle, M. P.; Fugitt, F. L.

    2013-12-01

    Conventionally, Ground Source Heat Pumps (GSHP) exploit either saturated bedrock/soils or large surface water bodies as the heat source/sink for the heating and cooling systems. In areas with flooded mines or large subsurface water bodies, it is possible to utilize the water within the voids as the heat source/sink in GSHPs. Utilizing the water within subsurface voids a heat exchanger instead of the traditional saturated bedrock/soils has the potential to be more efficient in heating and cooling applications. The water within the void space is a better thermal conductor than bedrock and soils. Additionally, it is possible that, in a saturated void the heat can be carried away from the exchange site at a greater rate, improving the potential for thermal exchange. This study is focused on characterizing the potential overall heat exchange capacity for flooded mine sites within Ohio. To achieve the overall potential exchange capacity, possible maximum and minimum mine water residence times, effective mine volumes, groundwater recharge rates, maximum and minimum possible linear groundwater velocity, groundwater flow direction, and average ambient mine temperatures were calculated using GIS software and groundwater recharge data from the United States Geological Survey, and characteristics of physical parameters for the mines from the Ohio Geological Survey. The potential linear mine water velocities were calculated by creating a theoretical cross sectional area in the direction of estimated groundwater flow with a respective length of the mine in the direction of groundwater flow and width of the coal bed thickness. It was assumed that all of water entering the mine void exited the through the cross sectional area. By dividing the volume of water entering the mine per year by the cross sectional area, the linear groundwater velocities were estimated. By using the specific heat of water at the estimated temperatures and the volumes of water within the mines, possible

  1. Hydrothermally treated coals for pulverized coal injection. Final technical report

    SciTech Connect

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-10-01

    This project investigated the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coalfield and the Usibelli Coal Mine, Alaska, were used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times of 10, 60 and 120 minutes. Products were characterized to determine their suitability for pulverized coal injection. Characterization included proximate and ultimate analyses, vitrinite reflectance and TGA reactivity. A literature survey was also conducted.

  2. Assessment of water quality in streams draining coal-producing areas in Ohio

    USGS Publications Warehouse

    Pfaff, C.L.; Helsel, D.R.; Johnson, D.P.; Angelo, C.G.

    1981-01-01

    Quality of water in 150 sites in the coal-producing areas of eastern Ohio was studied in a two-phase investigation between May 1975 and August 1976. Results of phase one, a reconnaissance to determine the occurrence of certain inorganic and organic constituents and to relate their occurrence to coal mining, indicated that acid mine drainage generally occurred where abandoned drift or abandoned strip mines were located. Streams affected by such mines contained concentrations of dissolved sulfate and iron greater than 250 milligrams per liter and 5,000 micrograms per liter, respectively, and exhibited pH values less than 4.5. Areas characterized by reclaimed or active strip mines showed few instances of acid drainage (pH values were generally greater than 7.0). Iron concentrations in these regions generally were less than 500 micrograms per liter, with dissolved-sulfate concentrations ranging from 22 to 7,100 milligrams per liter.Phase two was a detailed study of four small basins sampled during the first phase and found to represent different types of mining. The objective was to determine whether water-quality degradation within the basins was due to coal mining. Flows from two basins, one containing abandoned drift mines and the other abandoned strip mines, became increasingly acidic (pH values less than 4.5) downstream, and had high iron and dissolved sulfate concentrations (above 5,000 micrograms per liter and 250 milligrams per liter, respectively). Sources of acidity were tributaries that drained directly from the mines. The other two basins, one containing reclaimed strip mines and the other active strip mines, exhibited no acidic drainage; streams in both basins had pH values greater than 7.0 and iron concentrations below 500 micrograms per liter. Presence of active surface mining seemed to have little effect on dissolved sulfate concentrations, as only streams in the reclaimed basin had high concentrations (usually over 2,000 milligrams per liter).

  3. Landslide remediation on Ohio State Route 83 using clean coal combustion by-products

    SciTech Connect

    Payette, R.; Chen, X.Y.; Wolfe, W.; Beeghly, J.

    1995-12-31

    In the present work, a flue gas desulfurization (FGD) by-product was used to reconstruct the failed portion of a highway embankment. The construction process and the stability of the repaired embankment are examined. State Route 83 in Cumberland, Ohio has been damaged by a slow moving slide which has forced the Ohio Department of Transportation to repair the roadway several times. In the most recent repair FGD by-products obtained from American Electric Power`s Tidd PFBC plant were used to construct a wall through the failure plane to prevent further slippage. In order to evaluate the utility of using coal combustion by-products in this type of highway project the site was divided into three test sections. In the first repair section, natural soil removed form the slide area was recompacted and replaced according to standard ODOT construction practices. In the second section the natural soil was field mixed with the Tidd PFBC ash in approximately equal proportions. The third section was all Tidd ash. The three test sections were capped by a layer of compacted Tidd ash or crushed stone to provide a wearing surface to allow ODOT to open the roadway before applying a permanent asphalt surface. Measurement of slope movement as well as water levels and quality have begun at the site in order to evaluate long term project performance. The completion of this project should lead to increased acceptance of FGD materials in construction projects. Monetary savings will be realized in avoiding some of the disposal costs for the waste, as well as in the reduced reliance on alternative engineering materials.

  4. Superfund Record of Decision (EPA Region 5): New Lyme, Ashtabula County, Ohio, September 1985. Final report

    SciTech Connect

    Not Available

    1985-09-27

    The New Lyme Landfill is located near State Route 11 on Dodgeville Road in Ashtabula County, approximately 20 miles south of the City of Ashtabula, Ohio. The landfill occupies about 40 acres of a 100-acre tract. Operations began at the site in 1969, and were initially managed by two farmers. In 1971, the landfill was licensed by the State of Ohio and operations were taken over by a licensed landfill operator. According to documentation, the New Lyme Landfill received household, industrial, commercial, and institutional wastes and construction and demolition debris. However, numerous violations of the license occurred, including: open dumping; improper spreading and compacting of wastes; no State approval for disposal of certain industrial wastes; and excavation of trenches into the shale bedrock. In August 1978, the landfill was closed by the Ashtabula County Health Department. Documents indicate that wastes at the New Lyme Landfill site included: coal tar distillates, asbestos, coal tar, resins and resin tar, paint sludge, oils, paint lacquer thinner, peroxide, corrosive liquids, acetone, xylene, toluene, kerosene, naptha, benzene, linseed oil, mineral oil, fuel oil, chlorinated solvents, 2,4-D, and laboratory chemicals. The selected remedial action is included.

  5. Pelletization of fine coals. Final report

    SciTech Connect

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  6. Coal Manpower Projections: 1980. Final Report.

    ERIC Educational Resources Information Center

    Clague, Ewan

    The National Petroleum Council has projected a 1980 bituminous coal production of 910 million tons. On that basis, the study estimates the manpower which will be required to produce that volume of coal. On the assumption of a productivity increase of two percent per year from 1974 onwards, the 1980 coal output will require a work force of…

  7. Comprehensive report to Congress Clean Coal Technology Program: Prototype commercial coal/oil co-processing plant: A project proposed by Ohio Ontario Clean Fuels, Inc

    SciTech Connect

    Not Available

    1987-10-01

    The Ohio Ontario Clean Fuels, Inc., project will demonstrate a technology that produces clean liquid fuels from high-sulfur, high-nitrogen, Ohio bituminous coal, and poor-quality petroleum residuum. This project is intended to demonstrate the technical, environmental, and economic advantages of co-processing coal and residuum oil versus the utilization of these resources separately. The prototype commercial plant for this demonstration will produce approximately 7250 barrels per day (BPD) of middle distillate and 4,500 BPD of naphtha for a total liquid fuel production of 11,750 BPD. Other fuel products include approximately 340 BPD of propane, 190 BPD of butane, and 185 tons per day (TPD) of flaked bottoms. Other products also include 57 TPD of sulfur and 14 TPD of ammonia. The main feed materials for this facility will be 800 TPD of high-sulfur Ohio No. 5/6 coal and 8675 BPD of Cold Lake heavy crude oil. The demonstration will be conducted at the partially utilized site of a currently active steel distribution facility. This site is serviced by oil and gas pipelines and other important utilities. Milestone schedule is presented for the project which extends for eighty-six months.

  8. Origin of epigenetic calcite in coal from Antarctica and Ohio based on isotope compositions of oxygen, carbon and strontium

    USGS Publications Warehouse

    Faure, G.; Botoman, G.

    1984-01-01

    Isotopic compositions of oxygen, carbon and strontium of calcite cleats in coal seams of southern Victoria Land, Antarctica, and Tuscarawas County, Ohio, contain a record of the conditions a the time of their formation. The Antarctic calcites (?? 18O(SMOW) = +9.14 to +11.82%0) were deposited from waters enriched in 16O whose isotopic composition was consistent with that of meteoric precipitation at low temperature and high latitude. The carbon of the calcite cleats (?? 13C(PDB) = -15.6 to -16.9%0) was derived in part from the coal (?? 13C(PDB) = -23.5 to -26.7%0) as carbon dioxide and by oxidation of methane or other hydrocarbon gases. The strontium ( 87Sr 86Sr = 0.71318-0.72392) originated primarily from altered feldspar grains in the sandstones of the Beacon Supergroup. Calcite cleats in the Kittaning No. 6 coal seam of Ohio (?? 18O(SMOW) = +26.04 to +27.79%0) were deposited from waters that had previously exchanged oxygen, possibly with marine carbonate at depth. The carbon (?? 13C(PDB) = 0.9 to +2.4%0) is enriched in 13C even though that cleats were deposited in coal that is highly enriched in 12C and apparently originated from marine carbonates. Strontium in the cleats ( Sr 87 0.71182-0.71260) is not of marine origin but contains varying amounts of radiogenic 87Sr presumably derived from detrital Rb-bearing minerals in the adjacent sedimentary rocks. The results of this study suggest that calcite cleats in coal of southern Victoria Land, Antarctica, were deposited after the start of glaciation in Cenozoic time and that those in Ohio precipitated from formation waters derived from the underlying marine carbonate rocks, probably in the recent geologic past. ?? 1984.

  9. Coal-based synthetic asphalt. Final report

    SciTech Connect

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.

    1986-02-01

    The objective of the work was to investigate in the laboratory the technical and economic aspects of the production of a synthetic asphalt from U.S. bituminous and subbituminous coals. Bench-scale autoclave hydrogenation experiments were used to produce coal-based asphalt cements from Illinois No. 6 bituminous coal and a Wyoming subbituminous coal. A factorially designed experiment showed that VTS of coal-based asphalts was insensitive to process conditions. Hydrated lime treatment lowered VTS slightly, but the polymer additive was required to achieve specification VTS values. Age hardening was primarily due to oxidation with a minor contribution from volatiles loss. Marshall stability testing shhowed the coal-based compacted mixes to have excellent resistance to plastic flow. Immersion compression testing showed high stability and retained strengths.

  10. Investigation of coal structure. Final report

    SciTech Connect

    Nishioka, Masaharu

    1994-03-01

    A better understanding of coal structure is the first step toward more effective utilization of the most abundant hydrocarbon resource. Detailed characterization of coal structure is very difficult, even with today`s highly developed analytical techniques. This is primarily due to the amorphous nature of these high-molecular-weight mixtures. Coal has a polymeric character and has been popularly represented as a three-dimensional cross-linked network. There is, however, little or no information which positively verifies this model. The principal objective of this research was to further investigate the physical structure of coal and to determine the extent to which coal molecules may be covalently cross-linked and/or physically associated. Two common characterization methods, swellability and extractability, were used. A technique modifying the conventional swelling procedure was established to better determine network or associated model conformation. A new method for evaluating coal swelling involving laser scattering has also been developed. The charge-transfer interaction is relatively strong in high-volatile bituminous coal. Soaking in the presence of electron donors and acceptors proved effective for solubilizing the coal, but temperatures in excess of 200 C were required. More than 70 wt% of the coal was readily extracted with pyridine after soaking. Associative/dissociative equilibria of coal molecules were observed during soaking. From these results, the associated model has gained credibility over the network model as the representative structure of coal. Significant portions of coal molecules are unquestionably physically associated, but the overall extent is not known at this time.

  11. Utilization of low grade coal. Final report

    SciTech Connect

    Wells, C.E.

    1981-12-01

    Purpose was to construct and use a pilot furnace that could utilize low-grade coal (steam coal and coal fines) in place of oil or natural gas. This pilot furnace was tested on a 66-inch Raymond H.S. Roller Mill at the No. 1 plant of the James River Limestone Co. Results indicate that the commercial use is feasible; drying costs average $0.36 per ton with coal vs $0.80 per ton on annual basis when oil fired. Results are applicable to limestone manufacturers producing dry pulverized products. (DLC)

  12. Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report

    SciTech Connect

    1981-01-01

    This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

  13. Biological upgrading of coal liquids. Final report

    SciTech Connect

    1995-02-01

    A large number of bacterial enrichments have been developed for their ability to utilize nitrogen and sulfur in coal liquids and the model compound naphtha. These bacteria include the original aerobic bacteria isolated from natural sources which utilize heteroatom compounds in the presence of rich media, aerobic nitrogen-utilizing bacteria and denitrifying bacteria. The most promising isolates include Mix M, a mixture of aerobic bacteria; ER15, a pyridine-utilizing isolate; ERI6, an aniline-utilizing isolate and a sewage sludge isolate. Culture optimization experiments have led to these bacteria being able to remove up to 40 percent of the sulfur and nitrogen in naphtha and coal liquids in batch culture. Continuous culture experiments showed that the coal liquid is too toxic to the bacteria to be fed without dilution or extraction. Thus either semi-batch operation must be employed with continuous gas sparging into a batch of liquid, or acid extracted coal liquid must be employed in continuous reactor studies with continuous liquid flow. Isolate EN-1, a chemical waste isolate, removed 27 percent of the sulfur and 19 percent of the nitrogen in fed batch experiments. Isolate ERI5 removed 28 percent of the nitrogen in coal liquid in 10 days in fed batch culture. The sewage sludge isolate removed 22.5 percent of the sulfur and 6.5 percent of the nitrogen from extracted coal liquid in continuous culture, and Mix M removed 17.5 percent of the nitrogen from medium containing extracted coal liquid. An economic evaluation has been prepared for the removal of nitrogen heteroatom compounds from Wilsonville coal liquid using acid extraction followed by fermentation. Similar technology can be developed for sulfur removal. The evaluation indicates that the nitrogen heteroatom compounds can be removed for $0.09/lb of coal liquid treated.

  14. Specifications for medical examinations of underground coal miners. Final rule.

    PubMed

    2012-09-13

    This final rule modifies the Department of Health and Human Services (HHS) regulations for medical examinations of underground coal miners. Existing regulations established specifications for providing, interpreting, classifying, and submitting film-based roentgenograms (now commonly called chest radiographs or X-rays) of underground coal miners. The revised standards modify the requirements to permit the use of film-based radiography systems and add a parallel set of standards permitting the use of digital radiography systems. An additional amendment requires coal mine operators to provide the National Institute for Occupational Safety and Health (NIOSH) with employee rosters to assist the Coal Workers' Health Surveillance Program in improving participation by miners.

  15. Advanced physical fine coal cleaning: Final report

    SciTech Connect

    Not Available

    1987-12-01

    The contract objective was to demonstrate Advanced Energy Dynamics, Inc., (AED) Ultrafine Coal (UFC) electrostatic physical fine coal cleaning process as capable of: producing clean coal products of no greater than 2% ash; significantly reducing the pyritic sulfur content below that achievable with state-of-the-art coal cleaning; recovering over 80% of the available energy content in the run-of-mine coal; producing product and refuse with surface moisture below 30%. Originally the demonstration was to be of a Charger/Disc System at the Electric Power Research Institute (EPRI) Coal Quality Development Center (CQDC) at Homer City, Pennsylvania. As a result of the combination of Charger/Disc System scale-up problems and parallel development of an improved Vertical-Belt Separator, DOE issued a contract modification to perform additional laboratory testing and optimization of the UFC Vertical-Belt Separator System at AED. These comparative test results, safety analyses and an economic analysis are discussed in this report. 29 refs., 25 figs., 41 tabs.

  16. Coal combustion aerothermochemistry research. Final report

    SciTech Connect

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  17. A drowned lycopsid forest above the Mahoning coal (Conemaugh Group, Upper Pennsylvanian) in eastern Ohio, U.S.A

    USGS Publications Warehouse

    DiMichele, W.A.; Eble, C.F.; Chaney, D.S.

    1996-01-01

    Over 800 mud-filled casts of upright lycopsid tree stumps have been documented immediately above the Mahoning coal in an active underground mine located in northwestern Jefferson County, Ohio. The coal body originated as a pod-shaped peat body of ??? 60 km2. Trees are rooted at several levels within a thin (15-40 cm) bone coal directly above the banded coal; they extend upward up to 15 cm into overlying, flat-bedded, carbonaceous mudstones that coarsen up. From a maximum basal diameter of 1.2 m, stumps taper upward to diameters no less than 0.3 m. Within single-entry transects, < 6 m wide that total 2585 m in length, stumps are randomly distributed. The trees are identified as lepidodendrids on the basis of gross morphology, external stem patterns, and attached stigmarian root systems, and provisionally as Lepidophloios or Lepidodendron by associated palynology of the enclosing matrix. Palynological analyses of incremental seam samples indicate an initial dominance of lycopsid spores with lepidodendracean affinities (Lycospora granulata from Lepidophloios hallii), replaced upwards by tree-fern spores, with a reoccurrence of lepidodendracean spores in the upper benches; spores of Sigillaria (Crassispora) are abundant only at the base of the coal. Petrographic analyses indicate a parallel trend from vitrinite-rich to inertinite- and liptinite-rich upward in the coal body. All data indicate that the peat represented by the Mahoning coal was drowned slowly. During the earliest stages of inundation, a lycopsid forest was re-established, only to be subsequently drowned.

  18. Coal surface structure and thermodynamics. Final report

    SciTech Connect

    Larsen, J.W.; Wernett, P.C.; Glass, A.S.; Quay, D.; Roberts, J.

    1994-05-01

    Coals surfaces were studied using static surface adsorption measurements, low angle x-ray scattering (LAXS), inverse gas chromatography (IGC) and a new {sup 13}C NMR relaxation technique. A comparison of surface areas determined by hydrocarbon gas adsorption and LAXS led to the twin conclusions that the hydrocarbons had to diffuse through the solid to reach isolated pores and that the coal pores do not form interconnected networks, but are largely isolated. This conclusion was confirmed when IGC data for small hydrocarbons showed no discontinuities in their size dependence as usually observed with porous solids. IGC is capable of providing adsorption thermodynamics of gases on coal surfaces. The interactions of non-polar molecules and coal surfaces are directly proportioned to the gas molecular polarizability. For bases, the adsorption enthalpy is equal to the polarizability interaction plus the heat of hydrogen bond formation with phenol. Amphoteric molecules have more complex interactions. Mineral matter can have highly specific effects on surface interactions, but with most of the molecules studied is not an important factor.

  19. Geologic setting and water quality of selected basins in the active coal-mining areas of Ohio, 1987-88

    USGS Publications Warehouse

    Sedam, A.C.

    1991-01-01

    This report presents hydrologic data from selected drainage basins in the active coal-mining areas of Ohio from July 1987 through October 1988. The study area is mostly within the unglaciated part of eastern Ohio along the western edge of the Appalachian Plateaus physiographic province. The 1987-88 work is the second phase of a 7-year study to assess baseline water quality in Ohio's coal region. The data collection network consisted of 41 long-term surface-water sites in 21 basins. The sites were measured and sampled twice yearly at low flow. In addition, six individual basins (three each year) selected for a more detailed representation of surface-water and ground-water quality. In 1987, the Sandy Creek, Middle Tuscarawas River and Sugar Creek, and Lower Tuscarawas River basins were chosen. In 1988, the Short and Wheeling Creeks, Upper Wills Creek, and Upper Raccoon Creek basins were chosen. Because of their proximity to the glaciated region and outwash drainage, the basins studied intensively in 1987 contain more shallow productive aquifers than do the basins studied in detail for 1988, in which shallow ground-water sources are very localized. Chemical analyses for 202 surface-water and 24 ground-water samples are presented. For field measurements made at surface-water sites, the specific conductance ranged from 295 to 3150 ? S/cm (microsiemens per centimeter at 25 degrees Celsius). For pH, the range was 2.8 to 8.6. Alkalinity ranged from 5 to 305 mg/L (milligrams per liter) as CaCO3.

  20. Treatment of coal gasification wastewaters: Final report

    SciTech Connect

    Donaldson, T.L.; Lee, D.D.; Singh, S.P.N.

    1987-03-01

    A bench-scale fluidized-bed bioreactor was operated for over 4 months to characterize the biooxidation of major organic pollutants in coal gasification wastewater obtained from the Morgantown Energy Technology Center. Monohydric phenol was degraded first, followed by more complex phenolics, including polycyclic aromatic hydrocarbons (PAHs). Organic components were assayed by methylene chloride extraction followed by gas chromatography. Genetic capability for degradation of naphthalene by the biofilm was identified by gene probe analysis. Further studies were conducted to determine if the existing biofilm could be enhanced for naphthalene degradation by supplemental inoculation with a microbial culture having good naphthalene-degrading capabilities. The biofilm response was monitored using gene probe techniques. An assessment of wastewater treatment technologies for coal conversion wastewaters was initiated. A bibliography was compiled, arrangements were initiated to collaborate with other investigators doing wastewater treatability studies, and a site visit was made to the Great Plains plant. 201 refs., 3 figs., 5 tabs.

  1. Specifications for medical examinations of coal miners. Interim final rule.

    PubMed

    2014-08-04

    With this action, the Department of Health and Human Services (HHS), in accordance with a final rule recently published by the Department of Labor's Mine Safety and Health Administration (MSHA), is amending its regulations to establish standards for the approval of facilities that conduct spirometry examinations and to require that all coal mine operators submit a plan for the provision of spirometry and X-ray examinations to all surface and underground coal miners.

  2. Coal pyrolysis for utility use: Final report

    SciTech Connect

    McKinsey, R.; Luebke, C.P.; Thelen, H.J.; ya Nsakala, N.; Riegel, H.

    1987-07-01

    EPRI undertook an extensive research effort to evaluate the viability of coal pyrolysis products for utility use. The objectives of the studies were to evaluate the combustion and storage characteristics of pyrolysis char and to evaluate the upgrading potential of pyrolysis liquid products (tar). To achieve these objectives, it was necessary to produce sufficient quantities of the char and tar in a process unit large enough to produce commercially representative products. For both technical and availability reasons, EPRI selected the Lurgi-Ruhrgas (L-R) process for the production run (under subcontract to Bechtel Group, Inc. RP2505-2). Several contractors were to do the liquid upgrading. Two contractors were selected to use alternative processes for upgrading the L-R heavy tar: Lummus-Crest, Inc. (RP2505-5), using its LC-fining technology, and Veba Oel (RP2505-6), using its Combi-Cracking process. (The Combi-Cracking process also simultaneously hydrotreats the coal-tar-derived distillates.) Universal Oil Products, Inc. (UOP) was selected to hydrotreat the light and middle oils from the L-R process (RP2505-7), as well as the distillable material produced by Lummus. Unfortunately, none of these contractors received the anticipated products. The light oil was in the form of a light oil-water emulsion and the middle oil had been blended with the solids-laden heavy oil during L-R operation. Combustion Engineering, Inc. carried out a two-phase program to evaluate the combustion characteristics of pyrolysis char (RP2505-4).

  3. Effects of surface coal-mine reclamation on stream quality in a small watershed near Nelsonville, southeastern Ohio

    USGS Publications Warehouse

    Hindall, S.M.

    1984-01-01

    Abandoned surface coal mines in southeastern Ohio have caused degradation of the area's water resources. A study began in 1981 to determine the effects of abandoned-mine reclamation on water quality in the 'Yost tract' near Nelsonville, Ohio. Data on streamflow, water quality, and sedimentation were collected in Yost Run before, during, and after reclamation of the Yost tract. Results of the study indicate that there has been very little change in the chemical quality of Yost Run 10 months after reclamation; pH remains low, about 3.2-4.1, whereas specific conductance continues to be high, about 1,000 to 2,600 micromhos per centimeter (at 25?) Concentrations of sulfate and dissolved iron also show no appreciable change, remaining about 550 to 1,800 milligrams per liter and 1,300 to 17,000 micrograms per liter, respectively. The suspended-sediment yield for Yost Run is 2,830 tons per square mile per year. The results of the study reflect water-quality conditions for a 10-month period after reclamation, but do not necessarily indicate that the reclamation will prove to be unsuccessful. A longer period of data collection is likely to be needed to measure trends in water quality that may occur as a result of the reclamation.

  4. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    EPA Science Inventory

    EPA announced the availability of the final report,Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  5. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    EPA Science Inventory

    EPA announced the availability of the final report,Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  6. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  7. Pilot Plant Program for the AED Advanced Coal Cleaning System. Phase II. Interim final report

    SciTech Connect

    Not Available

    1980-08-01

    Advanced Energy Dynamics, Inc. (AED), has developed a proprietary coal cleaning process which employs a combination of ionization and electrostatic separation to remove both sulfur and ash from dry pulverized coal. The Ohio Department of Energy sponsored the first part of a program to evaluate, develop, and demonstrate the process in a continuous-flow pilot plant. Various coals used by Ohio electric utilities were characterized and classified, and sulfur reduction, ash reduction and Btu recovery were measured. Sulfur removal in various coals ranged from 33 to 68% (on a Btu basis). Ash removal ranged from 17 to 59% (on a Btu basis). Ash removal of particles greater than 53 microns ranged from 46 to 88%. Btu recovery ranged from 90 to 97%. These results, especially the large percentage removal of ash particles greater than 53 microns, suggest that the AED system can contribute materially to improved boiler performance and availability. The study indicated the following potential areas for commercial utilization of the AED process: installation between the pulverizer and boiler of conventional coal-fired power utilities; reclamation of fine coal refuse; dry coal cleaning to supplement, and, if necessary, to take the place of conventional coal cleaning; upgrading coal used in: (1) coal-oil mixtures, (2) gasification and liquefaction processes designed to handle pulverized coal; and (3) blast furnaces for making steel, as a fuel supplement to the coke. Partial cleaning of coking coal blends during preheating may also prove economically attractive. Numerous other industrial processes which use pulverized coal such as the production of activated carbon and direct reduction of iron ore may also benefit from the use of AED coal cleaning.

  8. Early load mandibular hybrid prosthesis using the Ohio State University acrylic frame requiring no final impression.

    PubMed

    Turkyilmaz, I; Suarez, J C; Company, A M; McGlumphy, E A

    2009-09-01

    Although immediate/early loading protocols for dental implants have presented encouraging outcomes, immediate loading procedures may cause discomfort to the patient and may increase the possibility of damage to the surgical site during the impression procedures. The aim of this study was to describe an alternative technique to fabricate a mandibular hybrid prosthesis in three or four days without making any final impression and to evaluate the outcomes of this technique. Seven patients aged 41 to 71 years (mean age, 58 +/- 11) were considered for this study. Each patient received five implants for the reconstruction of the edentulous mandible. These implants were placed in the anterior region of an edentulous mandible and restored with a final mandibular hybrid prosthesis in four days using the Ohio State University (OSU) acrylic frame requiring no final impression procedure. The patients were followed up to 19 months after implant placement. No implants were lost, no technical complications were observed and only minor marginal bone loss was noted after an average 15 months. This clinical study shows that the OSU acrylic frame, which can easily be customized and accommodates variability in arch form, may be an alternative method to restore any edentulous mandible with an early load mandibular hybrid prosthesis.

  9. Streamflow, water-quality, and biological data on streams in an area of longwall coal mining, southern Ohio, water years 1987-89

    USGS Publications Warehouse

    Coen, A. W.

    1992-01-01

    This report presents data on the first 3 years of a 5-year study of the effects of longwall coal mining on six streams near a mining complex in Meigs, Gallia, and Vinton Counties, Ohio. Longwall coal mining is method of underground mining in which 75 to 90 percent of the coal is removed; conventional methods, such as room-and-pillar mining, remove only about 50 percent of the coal. Use of the longwall method is expected to increase in Ohio. Collapse or subsidence of the overburden and land surface occurs immediately after the removal of the coal. Such collapse can disrupt surface drainage and the recharge of ground water. The data include streamflow, water quality, and the abundance and diversity of aquatic macroinvertebrates and fish. The data were collected from eight sites on six streams from July 1987 through September 1989. The drainage areas of these sites range from 2.04 to 80.8 square miles and include the major drainages of the area being mined. Total precipitation in 1987 and 1988 in the study area was 78 and 81 percent, respectively, of the annual average (from 1939 to 1989) of 39.59 inches. The total precipitation in 1989 was 135 percent of the annual average. Streams at six of the eight sites were dry for parts of the first 2 years. Specific conductance ranged from 180 to 3,500 microsiemens per centimeter at 25 degrees Celsius, pH ranged from 6.9 to 8.0, and the concentration of total recoverable iron ranged from 80 to 1,800 micrograms per liter. Macroinvertebrate and fish populations indicate a warmwater-habitat rating of fair to good according to Ohio Environmental Protection Agency standards. This information will help provide a data base from which the effects of longwall mining on streams in southern Ohio can be evaluated. Correlations of surface-water quality and quantity with longwall mining were not attempted in this study.

  10. Vocational-Technical Education Interface with Ohio's High Technology Business and Industrial Sector. Final Report.

    ERIC Educational Resources Information Center

    McCormick, Robert W.

    This study explored the relationship of vocational-technical educational institutions in Ohio with business and industry using high-technology applications. The study attempted to determine what high-technology applications will be adopted by Ohio's business and industry in the next 5 years, what experience the schools have had in working with…

  11. The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992; Revision

    SciTech Connect

    Savage, R.L.; Lazarov, L.K.; Prudich, M.E.; Lange, C.A.; Kumar, N.

    1994-03-10

    The initial technical goal in the project was to develop a chemical method for the cost effective removal of both inorganic and organic sulfur from Ohio coals. Verifying and using a process of reacting ethanol vapors with coal under conditions disclosed in U.S. Patent 4,888,029, the immediate technical objectives were to convert a small scale laborative batch process to a larger scale continuous process which can serve as the basis for commercial development of the technology. This involved getting as much information as possible from small scale batch autoclave or fluid bed laboratory reactors for use in pilot plant studies. The laboratory data included material balances on the coal and sulfur, temperature and pressure ranges for the reaction, minimum reaction times at different conditions, the effectiveness of different activators such as oxygen and nitric oxide, the amount and nature of by-products such as sulfur dioxide, hydrogen sulfide and acetaldehyde, the effect of coal particle size on the speed and completeness of the reaction, and the effectiveness of the reaction on different Ohio coals. Because the laboratory experiments using the method disclosed in U.S. 4,888,029 were not successful, the objective for the project was changed to develop a new laboratory process to use ethanol to remove sulfur from coal. Using copper as a catalyst and as an H{sub 2}S scavenger, a new laboratory procedure to use ethanol to remove sulfur from coal has been developed at Ohio University and a patent application covering this process was filed in March, 1993. The process is based on the use of copper as a catalyst for the dehydrogenation of ethanol to produce nascent hydrogen to remove sulfur from the coal and the use of copper as a scavenger to capture the hydrogen sulfide formed from the sulfur removed from coal.

  12. Trees for Ohio

    Treesearch

    Ernest J. Gebhart

    1980-01-01

    Other members of this panel are going to reveal the basic statistics about the coal strip mining industry in Ohio so I will confine my remarks to the revegetation of the spoil banks. So it doesn't appear that Ohio confined its tree planting efforts to spoil banks alone, I will rely on a few statistics.

  13. Geophysical investigations of the Western Ohio-Indiana region: Final report, October 1981-September 1986

    SciTech Connect

    Christensen, D.H.; Pollack, H.N.; Lay, T.; Schwartz, S.Y.

    1987-03-01

    Earthquake activity in the Western Ohio-Indiana region has been monitored with a precision seismograph network consisting of nine stations located in west-central Ohio and four stations located in Indiana. Five local and near-regional earthquakes have been recorded and located during the 1985-86 fiscal report period, ranging in magnitude from 0.5 to 5.0m/sub b/. The two largest of these events (January 31, 1986, near Cleveland, Ohio, magnitude = 5.0m/sub b/, and July 12, 1986, near St. Marys, Ohio, magnitude = 4.5m/sub b/) were felt with minor damage reported in each case. Focal mechanisms and isoseismal maps for these events are included in this report. These events are the largest to have occurred in Ohio since the events of March 2 and March 9, 1937 (magnitude = 4.5 and 4.9, respectively). The remaining three earthquakes of this report period all occurred in Ohio, north of the array. A total of 42 local and near-regional events, eleven of which have been felt, have now been recorded by the Ohio-Indiana array since its initiation in 1976. Teleseismic P-wave arrival and residual tables have been updated to include newly acquired data. The results are similar to those in previous years. The local velocity structure has been investigated using data acquired during a refraction experiment in the summer of 1984 and travel time data of local and near regional earthquakes.

  14. Landslide remediation on Ohio State Route 83 using clean coal combustion by-products

    SciTech Connect

    Payette, R.; Chen, Xi You; Wolfe, W.; Beeghly, J.

    1995-12-31

    The disposal of flue gas desulfurization (FGD) by-products has become a major concern as issues of emission cleansing and landfill costs continue to rise. Laboratory tests conducted at the Ohio State University have shown that dry FGD by-products possess certain engineering properties that have proven desirable in a number of construction uses. As a follow on to the laboratory program, a field investigation into engineering uses of dry FGD wastes was initiated. In the present work, an FGD by-product was used to reconstruct the failed portion of a highway embankment. The construction process and the stability of the repaired embankment are examined.

  15. Surface-water quality of coal-mine lands in Raccoon Creek Basin, Ohio

    USGS Publications Warehouse

    Wilson, K.S.

    1985-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans to reclaim abandoned surface mines in the Raccoon Creek watershed in southern Ohio. Historic water-quality data collected between 1975 and 1983 were complied and analyzed in terms of eight selected mine-drainage characteristics to develop a data base for individual subbasin reclamation projects. Areas of mine drainage affecting Raccoon Creek basin, the study Sandy Run basin, the Hewett Fork basin, and the Little raccoon Creek basin. Surface-water-quality samples were collected from a 41-site network from November 1 through November 3, 1983, Results of the sampling reaffirmed that the major sources of mine drainage to Raccoon Creek are in the Little Raccoon Creek basin, and the Hewett Fork basin. However, water quality at the mouth of Sandy Run indicated that it is not a source of mine drainage to Raccoon Creek. Buffer Run, Goose Run, an unnamed tributary to Little Raccoon Creek, Mulga Run, and Sugar Run were the main sources of mine drainage sampled in the Little Raccoon Creek basin. All sites sampled in the East Branch Raccoon Creek basin were affected by mine drainage. This information was used to prepare a work plan for additional data collection before, during, and after reclamation. The data will be used to define the effectiveness of reclamation effects in the basin.

  16. Reclamation Strategies and Geomorphic Outcomes in Coal Surface Mines of Eastern Ohio

    NASA Astrophysics Data System (ADS)

    Pollock, M.; Jaeger, K. L.

    2014-12-01

    Coal surface mining is a significant landscape disturbance in the United States. Since 1977, the reclamation of mined lands has been regulated by the Surface Mine Control and Reclamation Act (SMCRA). Prior to the act, many coalfields were left un-reclaimed or partially reclaimed, with highly irregular topology and drainage networks. Under the act, the reverse is often true; adherence to SMCRA often leads to the homogenization of surfaces and channel networks. While both pre and post-SMCRA landscapes are highly altered, they exhibit strongly dissimilar characteristics. We examine pre-SMCRA, post-SMCRA and unmined watersheds at 3 spatial scales in order to compare the geomorphic differences between reclamation strategies. In particular, we attempt to separate anthropogenic factors from pre-existing, natural factors via comparisons to unmined watersheds. Our study design incorporates a 3 scale top-down analysis of 21 independent watersheds (7 of each treatment type). Each watershed has an area of approximately 1km2. All watersheds share similar geography, climate and geology. At the landscape scale, characteristics are derived from 0.762m (2.5ft) resolution Digital Elevation Models (DEMs). At the channel network scale, DEMs, as well as remote sensing data (including the National Wetlands Inventory database) are used. Finally, the reach scale incorporates longitudinal and cross-section surveys (using a total station) as well as a particle size distribution. At each scale, attributes are parameterized for statistical comparison. Post-SMCRA sites are characterized by a general reduction of watershed surface slopes (11.9% median) compared to pre-SMCRA (19.3%) and unmined (19.8%) sites. Both pre and post-SMCRA channel networks are characterized by significant surface impoundments (in the form of remnant headwall trenches on pre-SMCRA sites and engineered retention basins on post-SMCRA sites). Pre-SMCRA outlet reaches have significantly steeper bed slopes (2.79% mean) than

  17. 75 FR 34939 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Final Approval and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...), (NN)(5), (OO), (OO)(1), (OO)(2), (OO)(3), (OO)(4), (PP)(2), (UU)(3), (AAA), (DDD), and Appendix A. EPA... of Volatile Organic Compounds from Stationary Sources, Paragraph (AAA), as adopted by Ohio on October...

  18. Ground-water quality and geochemistry of aquifers associated with coal in the Allegheny and Monongahela formations, southeastern Ohio

    USGS Publications Warehouse

    Razem, A.C.; Sedam, A.C.

    1985-01-01

    Ground water from aquifers associated with coal beds in the Allegheny and Monongahela Formations in southeastern Ohio is predominantly a calcium magnesium bicarbonate type. Sodium bicarbonate type water is less common. Isolated areas of sodium chloride and calcium sulfate types also are present. The water is predominantly very hard, and has a median hardness concentration of 258 milligrams per liter as calcium carbonate and a median dissolved-solids concentration of 436 milligrams per liter. Few wells contain water with dissolved-solids concentrations in excess of 1,000 milligrams per liter. Bicarbonate concentration in ground water was found to be significantly different among coals, whereas concentrations of bicarbonate, hardness, calcium, magnesium, sodium, iron, manganese, and strontium were significantly different between ground water in the Allegheny and Monongahela Formations. Many constituents are significantly correlated, but few correlation coefficients are high. The presence of sulfate or iron is attributed to the kinetic mechanism operating during the oxidation of pyrite. The position along the sulfide or ferrous-iron oxidation pathways controls the reaction products of pyrite found in solution, and the formation of either the sulfate of iron constituents. The availability and rate of diffusion of oxygen in the formations exerts control on the water quality. Discriminant-function analysis correctly classifies 89 percent of the observations into the Allegheny or Monongahela Formations. As a verifications, 39 of 41 observations from another study were correctly classified by formation. The differences in water chemistry between the Allegheny and the Monongahela Formations are gradational and are attributed the oxidation of iron sulfide. The diffusion and availability of oxygen, which controls the chemical reaction, is regulated by the porosity and permeability of the rock with respect to oxygen and the presence or absence of carbonates, which controls the

  19. Population differentiation in Andropogon virginicus L. between abandoned coal strip mine spoil and old field habitats in Ohio

    SciTech Connect

    Nellessen, J.E.

    1989-01-01

    Populations of Andropogon virginicus L. from abandoned coal mine spoils and old fields in southeastern Ohio were studied to determine whether ecotypic differentiation had occurred. Three mine spoil and three old field populations were paired for reciprocal transplant studies. A uniform garden was also established. Mine spoil and old field populations were compared for differences in demographic patterns, vegetative growth and phenology, reproductive output, and physiology. There were a greater number of seedlings and smaller individuals in the mine spoils, but seed production was similar between habitats. Seeds disperse farther in mine spoils and there was no or very little seedling establishment in 8 to 35 year old fields. Plants attained greater height in mine spoils. Population differentiation between one of the mine sites and one of the old fields was evident for seed weight, numbers of seeds per plant, and plant biomass. The three old field populations also differed from each other in reproductive characteristics. Mine spoil plants contained significantly more nitrogen within seeds despite the fact that mine soils had only half the available nitrogen as old field soils. Old field plants had a higher magnesium content in leaves. Chlorophyll content of leaves was higher for plants in old fields than for plants in mines. Undisturbed plants from both habitats had significantly higher photosynthetic rates than transplants. Old field plants had significantly greater photosynthetic rates than mine plants when grown in the uniform garden even though transpiration rates were similar. Differentiation between some coal mine spoil and old field populations of A. virginicus was evident for height growth, seed weight, photosynthesis, seed nitrogen content, magnesium content, and seed germination. Local population differentiation in plant height, seed weight, and in the timing of plant maturation was also observed.

  20. Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I

    SciTech Connect

    1982-01-31

    The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

  1. Modeling carbon and nitrogen dynamics in disturbed ecosystems: A case study of coal surface-mined lands in eastern Ohio

    NASA Astrophysics Data System (ADS)

    West, Tristram Lyf O'brien

    The quantification of carbon (C) and nitrogen (N) cycling in ecosystems is important for (a) understanding changes in ecosystem structure and function with changes in land use, (b) determining sustainability of ecosystems, and (c) balancing the global C budget as it relates to global climate change. Estimating future dynamics of C and N is complicated by the projected changes in climate including increased atmospheric CO2 and temperature. Regional climate change can differ significantly from average global change and should be accounted for if accurate changes in C and N budgets are to be obtained. In the State of Ohio, increased precipitation and existing tropospheric aerosols need to be considered in addition to expected increases in CO2 and temperature. A meso-scale study was conducted to determine regional effects of climate change on C and N cycling within disturbed ecosystems. Objectives of the research were to quantify (a) sediment yield, (b) current C storage in vegetation and soils, and (c) C efflux from soils from both abandoned and rehabilitated coal surface-mined lands in Ohio. A process-based, dynamic model was developed to simulate sediment yield, grassland production, and C and N cycling on mined lands. Verification of plant production and soil erosion submodels with data sets from surface-mined lands in the mid-western U.S. showed r2 values of 99.5% and 97%, respectively. A spatial model was developed with land cover and topographic data in a geographic information system to supply the dynamic model with land area, percent slope, and slope aspect values for the study region. From the land cover theme and other documented sources, the estimated extent of surface-mined lands was 102 km2 of abandoned, unvegetated, surface-mined land and 565 km2 of rehabilitated surface-mined land. Simulations from the dynamic model estimated that unvegetated surface-mined lands in Ohio produce approximately 441,325 t yr-1 of sediment and between 2,000 and 20,000 t yr

  2. Health hazard evaluation determination report No. MHETA-81-108-9006, Consolidation Coal Company, central machine shop 20, Cadiz, Ohio

    SciTech Connect

    Cornwell, R.J.; Hodgson, M.

    1984-01-01

    Employee exposure to welding fumes and solvents at the Consolidation Coal Company Central Machine Shop 20 (SIC-1211), Cadiz, Ohio, was investigated. The Mine Safety and Health Administration (MSHA) requested the study following worker reports of alleged excessive morbidity and mortality. The study was performed on February 22 to 24, 1982. About 75 individuals were employed at the shop. Personal and area air samples were collected. Airborne concentrations of manganese (7439965), iron (7439896), fluorides, ozone (10028156), nitrogen-dioxide (10102440), and carbon-monoxide, (630080) were below applicable NIOSH recommended limits. Twenty percent of the samples for chromium (VI) (18540299) exceeded or equaled the NIOSH standard of 0.001 milligrams per cubic meter (mg/m3), having values of 0.002 and 0.001mg/m3. Three of eight nickel (7440020) samples obtained for welders in the blacksmith shop showed time weighted averages of airborne nickel in excess of the NIOSH standard of 0.015mg/m3. The authors conclude that welders in the blacksmith shop are exposed to chromium (VI) and nickel, both of which are carcinogenic. Recommendations include improved ventilation systems, use of metal fume respirators and tinted spectacles, and worker education.

  3. Desulfurization of coal. Final report. [Flotation followed by olefin and vinyl monomer treatment

    SciTech Connect

    Dichter, M.; Sanduja, M.

    1980-10-01

    Ohio coal, like many other types of coal, has a high sulfur as well as ash content. We at PRCA, through a series of steps involving the treatment of coal with an olefin-catalyst and/or catalyzed oxidizing system, have established the following: (1) Crushing and pulverizing of coal to a size of 150 to 200 mesh is an important factor in the process of desulfurization, as this allows improvement of the efficiency of flotation and chemical desulfurization. (2) Flotation results in a significant reduction of sulfur and ash content of the coal and reduces the amount of water absorbed on the pulverized coal when petroleum fractions are introduced into the flotation process. Coal containing 4.3% and 2.7% sulfur have been desulfurized to 2.8% to 3.0% and 1.5% to 1.9%, respectively. The ash content has been reduced after flotation from 10.7% to 6.5% of the Pittsburgh No. 8 coal and from 16.5% to 10.5% of a coal provided by Consolidation Coal Co. (3) Chemical treatment with olefins and monomers allows complete removal of the rest of the pyritic sulfur and part of the organic sulfur. The higher molecular weight olefins give better results and an introduction of some maleic anhydride monomer helps to get a higher reduction of the sulfur in the coal. The presence of an alkaline medium (NaOH or Na/sub 2/CO/sub 3/) enhances the sulfur removal efficiency. (4) Elevated temperatures and pressures allows reduction of the time of reaction to obtain lower sulfur content coal. However, the pressure in the range of 100 to 200 psi allows achievement of an optimum desulfurization of treated coal. Even 25 to 30 psi has shown satisfactory results in the same time. (5) The results of desulfurization by a monomer (olefin) treatment are given. Further work on the desulfurization of the Ohio coals is recommended in a small scale pilot plant on a continuous basis. This pilot plant will represent an approximation of a real plant which will allow the necessary insight needed for scale up.

  4. An Evaluation of Tech Prep in Ohio. Year One Final Report.

    ERIC Educational Resources Information Center

    MGT of America, Inc., Tallahassee, FL.

    In January 1995, a private research firm conducted the first year of a 5-year evaluation of tech prep (TP) in Ohio. State- and consortium-level baseline data about the following were collected: state policies/practices for TP; role of consortia in TP; professional development of instructors/administrators for TP; selected groups'…

  5. The Implementation of CETA in Ohio. R&D Monograph 44. Final Report.

    ERIC Educational Resources Information Center

    Ripley, Randall B.

    This last of a series of reports on the implementation of the Comprehensive Employment and Training Act (CETA) in Ohio, from the inception of the program in 1974 through mid-1976, compares 16 of the 17 prime sponsors in the State. The monograph describes and explains patterns of influence over decisionmaking about CETA at the local level, a…

  6. A Study of the Vocational Equipment Used in the Secondary Schools of Ohio. Final Report.

    ERIC Educational Resources Information Center

    Torge, Herman

    Based on the feeling that the quality of any vocational program is directly and positively related to the quality of equipment used in the program, a study was undertaken of the vocational equipment used in secondary public schools in Ohio. Five questions were addressed by the study: (1) How does the equipment used in vocational education programs…

  7. Geophysical investigations of the western Ohio-Indiana region. Technical report (final) Nov 75-Sep 81

    SciTech Connect

    Jackson, P.L.; Christensen, D.H.; Mauk, F.H.

    1982-01-01

    The geophysical investigations of the Western Ohio and Indiana regions include the maintenance of a precision seismograph network to monitor earthquake activity. Data generated by this network, supplemented with other information, are used to analyze regional seismicity and to interpret the local geologic and seismotectonic structure. Four array stations in Indiana were added to the nine stations near Anna, Ohio, and the Ohio stations were upgraded by replacing seismometers and installing more stable electronic systems. A new digital computer with analog-to-digital convertors was obtained for direct digital recording and other digital analysis. Ten small earthquakes in the Anna region were recorded, six in a very tight cluster near the village of Anna. Only one of the earthquakes was felt. P-wave studies show an azimuthally dependent difference in residuals between stations within the Western Ohio array--a difference which can only be caused by significant variation in local structure. Aftershocks were recorded, public responses obtained and classified, and intensity contours drawn for the 5.1 magnitude earthquake on July 27, 1980, in Sharpsburg, Kentucky.

  8. Teaching and Learning Conditions in Ohio: Implications for Supply and Demand. Final Report, Fall 2007

    ERIC Educational Resources Information Center

    Berry, Barnett; Fuller, Ed

    2007-01-01

    In Spring 2007, educators in 63 participating Ohio school districts across the state spoke out on working conditions in their schools by participating in a web-based survey that addressed key teaching and learning conditions related to time, empowerment, school leadership, professional development, and facilities and resources. This is the final…

  9. DOE-GO-14154-1 OHIO FINAL report Velocys 30Sept08

    SciTech Connect

    Terry J. Mazanec

    2008-09-30

    The overall goal of the OHIO project was to develop a commercially viable high intensity process to produce ethylene by controlled catalytic reaction of ethane with oxygen in a microchannel reactor. Microchannel technology provides a breakthrough solution to the challenges identified in earlier development work on catalytic ethane oxidation. Heat and mass transfer limitations at the catalyst surface create destructively high temperatures that are responsible for increased production of waste products (CO, CO2, and CH4). The OHIO project focused on microscale energy and mass transfer management, designed to alleviate these transport limitations, thereby improving catalyst selectivity and saving energy-rich feedstock. The OHIO project evaluated ethane oxidation in small scale microchannel laboratory reactors including catalyst test units, and full commercial length single- and multi-channel reactors. Small scale catalyst and single channel results met target values for ethylene yields, demonstrating that the microchannel concept improves mass and heat transport compared to conventional reactors and results in improved ethylene yield. Earlier economic sensitivity studies of ethane oxidation processes suggested that only modest improvements were necessary to provide a system that provides significant feedstock, energy, and capital benefits compared to conventional steam ethane cracking. The key benefit derived from the OHIO process is energy savings. Ethylene production consumes more energy than any other U.S. chemical process.1 The OHIO process offers improved feedstock utilization and substantial energy savings due to a novel reaction pathway and the unique abilities of microchannel process technology to control the reaction temperature and other critical process parameters. Based on projected economic benefits of the process, the potential energy savings could reach 150 trillion Btu/yr by the year 2020, which is the equivalent of over 25 million barrels of oil.

  10. Formation and retention of methane in coal. Final report

    SciTech Connect

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  11. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  12. X-ray Computed Tomography of coal: Final report

    SciTech Connect

    Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

    1986-12-01

    X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

  13. Coal slurry tanker movements of western coal to east coast utilities. Final report

    SciTech Connect

    Rieber, M.

    1983-02-01

    From four western coal areas, coal slurry pipelines of 10 MMTY and 25 MMTY are designed and costed (1982 basis) for coal delivery to three ports. Supertankers are routed around South America, Panamax through the Panama Canal. Tanker characteristics are specified statistically and costs determined. A tidewater utility alternative is investigated. Based on western coal prices, adjusted for quality differentials, plus transport costs, delivered coal costs are compared to current east coast delivered steam coal prices. The proposed system is not economically feasible at current prices but may become commercial as steam coal demand increases and eastern coal prices rise.

  14. Coal gasification tests at TVA (Tennessee Valley Authority): Final report

    SciTech Connect

    Crim, M.C.; Williamson, P.C.

    1987-02-01

    This report presents the results obtained from the EPRI cofunded tests conducted at TVA's 200 tpd Texaco coal gasification facility equipped with a water quench gasifier. Four US coals were tested at TVA: (1) Utah coal from the SUFCO mine, (2) Illinois No. 6 coal from the Amax Delta mine, (3) Pittsburgh No. 8 coal from the Blacksville No. 2 mine and (4) a high ash-fusion Maryland coal. The TVA tests were of short term duration totaling approximately 10 to 20 days of cumulative operation on each coal. The gasification behavior of each coal was tested under a wide range of process conditions and feed characteristics. All four coals produced carbon conversion of 92% or higher. Utah and Illinois No. 6 coals achieved carbon conversions of 95 to 97%. The high heating value Pittsburgh No. 8 coal had lower carbon conversion because the maximum allowable gasifier temperature was reached at relatively low O/C ratios. The high-ash fusion Maryland coal was gasified with a fluxing agent at temperatures within the design limit of the TVA gasifier. The gasification behavior of the coals was similar to that observed from tests at other Texaco gasifiers. However, earlier experiments at Texaco's Montebello Research Laboratories showed higher values for both carbon conversion and coal gas efficiency. 27 figs., 35 tabs.

  15. Intergrated study of the Devonian-age black shales in eastern Ohio. Final report

    SciTech Connect

    Gray, J.D.; Struble, R.A.; Carlton, R.W.; Hodges, D.A.; Honeycutt, F.M.; Kingsbury, R.H.; Knapp, N.F.; Majchszak, F.L.; Stith, D.A.

    1982-09-01

    This integrated study of the Devonian-age shales in eastern Ohio by the Ohio Department of Natural Resources, Division of Geological Survey is part of the Eastern Gas Shales Project sponsored by the US Department of Energy. The six areas of research included in the study are: (1) detailed stratigraphic mapping, (2) detailed structure mapping, (3) mineralogic and petrographic characterization, (4) geochemical characterization, (5) fracture trace and lineament analysis, and (6) a gas-show monitoring program. The data generated by the study provide a basis for assessing the most promising stratigraphic horizons for occurrences of natural gas within the Devonian shale sequence and the most favorable geographic areas of the state for natural gas exploration and should be useful in the planning and design of production-stimulation techniques. Four major radioactive units in the Devonian shale sequence are believed to be important source rocks and reservoir beds for natural gas. In order of potential for development as an unconventional gas resource, they are (1) lower and upper radioactive facies of the Huron Shale Member of the Ohio Shale, (2) upper Olentangy Shale (Rhinestreet facies equivalent), (3) Cleveland Shale Member of the Ohio Shale, and (4) lower Olentangy Shale (Marcellus facies equivalent). These primary exploration targets are recommended on the basis of areal distribution, net thickness of radioactive shale, shows of natural gas, and drilling depth to the radioactive unit. Fracture trends indicate prospective areas for Devonian shale reservoirs. Good geological prospects in the Devonian shales should be located where the fracture trends coincide with thick sequences of organic-rich highly radioactive shale.

  16. Coal plasticity at high heating rates and temperatures. Final technical progress report

    SciTech Connect

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  17. The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992

    SciTech Connect

    Not Available

    1993-04-15

    In developing the new Ohio University procedure the thermodynamic limitations of the reactions for removal of both pyritic and organic sulfur from coal at 400--600{degrees}C were studied using copper as a very strong H{sub 2}S-acceptor. Copper serves as a catalyst for ethanol dehydrogenation to form nascent hydrogen. Copper also serves as a scavenger to form copper sulfide from the hydrogen sulfide evolved during the reaction. Copper sulfide in turn serves as a catalyst for organic sulfur hydrodesulfurization reactions. If the coal to be desulfurized contains pyrite (FeS{sub 2}) or FeS, the copper scavenger effect reduces any back reaction of hydrogen sulfide with the iron and increases the removal of sulfur from the carbonaceous material. The desired effect of using copper can be achieved by using copper or copper containing alloys as materials of construction or as liners for a regenerable reactor. During the time period that Ohio Coal Development Office supported this work, small scale (560 grams) laboratory experiments with coals containing about 3.5% sulfur have achieved up to 90% desulfurization at temperatures of 500{degrees}C when using a copper reactor. Results from the autoclave experiments have identified the nature of the chemical reactions taking place. Because the process removes both pyritic and organic sulfur in coal, the successful scale up of the process would have important economic significance to the coal industry. Even though this and other chemical processes may be relatively expensive and far from being commercial, the reason for further development is that this process may hold the promise of achieving much greater sulfur reduction and of producing a cleaner coal than other methods. This would be especially important for small or older power plants and industrial boilers.

  18. Enhancement of surface properties for coal beneficiation. Final report

    SciTech Connect

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  19. Magnetic relaxation - coal swelling, extraction, pore size. Final technical report

    SciTech Connect

    Doetschman, D.C.

    1994-10-26

    The aim of the contract was to employ electron and nuclear magnetic relaxation techniques to investigate solvent swelling of coals, solvent extraction of coals and molecular interaction with solvent coal pores. Many of these investigations have appeared in four major publications and a conference proceedings. Another manuscript has been submitted for publication. The set of Argonne Premium Coals was chosen as extensively characterized and representative samples for this project.

  20. Reactivity of coal in direct hydrogenation processes: Final report

    SciTech Connect

    Baldwin, R. M.; Miller, R. L.

    1989-07-01

    This research program consisted of two facets dealing with fundamental and applied studies on coal reactivity under direct hydroliquefaction conditions. The first facet was concerned with an investigation of the relationship between coal reactivity and coal properties. Data on the rate and extent of direct coal hydroliquefaction for 5 bituminous coals from the Argonne Premium Sample Bank were measured. Data on rate of conversion of coal to THF and toluene solubles were modeled with a simple reversible rate expression, and activation energies for conversion to each solvent solubility class determined. Data on carbon and proton distribution in the coals were obtained by /sup 1/H-NMR and /sup 13/C-NMR. A strong correlation of activation energy with the aliphatic hydrogen content of the coal was found for conversion to THF solubles. The second facet of the program dealt with a mechanistic study of the effect of hydrogen on the rate and extent of coal liquefaction. The objective was to investigate the effect of radical quenching by aromatic and hydroaromatic vehicles on the activity and selectivity of hydrogen under conditions relevant to direct coal hydroliquefaction. The experimental portion of the program consisted of a series of runs on a model compound system, followed by experiments utilizing 5 bituminous coals from the Argonne Premium Coal sample bank. 45 refs., 14 figs., 17 tabs.

  1. Field and laboratory study of cold-asphalt-mix recycling in Ohio. Final report

    SciTech Connect

    Majidzadeh, K.; Ilves, G.J.; Abdulshafi, A.; Kaloush, K.

    1987-09-01

    The report presents a study initiated in 1984 to develop specification guidelines and mix-design recommendations and to obtain performance data on cold-mix recycling projects in Ohio. Two mainline, low-volume roads and one shoulder pavement were selected for the study. Documentation and evaluation of the projects are discussed generally in two parts. The first part includes the site-selection criteria, pre-construction evaluation, mix designs, construction specifications and construction monitoring. The second part discusses performance evaluation through field inspection, data collection, and laboratory evaluation of material properties.

  2. Solar heating and cooling system installed at Columbus, Ohio. Final report

    SciTech Connect

    Coy, R. G.; Braden, R. P.

    1980-09-01

    The Solar Energy System installed at Columbus Technical Institute, Columbus, Ohio was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5000 gallon steel tank below ground storage system, hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building. Extracts from the site files specification references, drawings, installation, operation and maintenance instructions are included.

  3. Chemical quality, benthic organisms, and sedimentation in streams draining coal-mined lands in Raccoon Creek basin, Ohio, July 1984 through September 1986

    USGS Publications Warehouse

    Wilson, K.S.

    1988-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans widespread reclamation of abandoned coal mines in the Raccoon Creek basin in southeastern Ohio. Throughout Raccoon Creek basin, chemical, biological, and suspended-sediment data were collected from July 1984 through September 1986. Chemical and biological data collected at 17 sites indicate that the East Branch, Brushy Creek, Hewett Fork, and Little Raccoon Creek subbasins, including Flint Run, are affected by drainage from abandoned coal mines. In these basins, median pH values ranged from 2.6 to 5.1, median acidity values ranged from 20 to 1,040 mg/L (milligrams per liter) as CaCo3, and median alkalinity values ranged from 0 to 4 mg/L as CaCo3. Biological data indicate that these basins do not support diverse populations because of degraded water systems. Suspended-sediment yields of 70.7 tons per square mile per year at the headwaters of Raccoon Creek and 54.5 tons per square mile per year near the month of Raccoon Creek indicate that cumulative sedimentation from erosion of abandoned-mine lands is not excessive in the basin.

  4. Solvent-emissions reduction study at Newark AFB, Ohio. Final report, Aug 88-Apr 89

    SciTech Connect

    Ayer, J.; Wolbach, C.D.

    1990-05-01

    The objective of this effort was to collect baseline Freon emissions data, and subsequently recommend potential emission control alternatives to minimize Freon emissions that result from routine maintenance and repair operations conducted at Newark AFB, Ohio. Newark AFB, Ohio, uses a number of solvents to clean and maintain electronic guidance devices. The solvent most often used in this application is 1,1,2-trichloro-1,2,2-trifluoroethane, a solvent commonly known by the DuPont Company trademark Freon 113TM (hereafter referred to as Freon). Newark AFB purchases large quantities of Freon (nearly 600,000 pounds annually), and in previous years, lost nearly all of it (555,000 pounds) as unrecovered Freon vapor. Freon is one of a general class of chemicals known as chlorofluorocarbons (CFCs). Scientific evidence strongly suggests that CFC emissions are responsible for the depletion of the protective ozone layer surrounding the earth's atmosphere. For this reason, the U.S. air Force must reduce and eventually eliminate CFC emissions from Air Force facilities. Several steps have been taken to reduce the quantity of Freon emitted from the more than 100 emission point sources at Newark AFB. For example, the recovery of solvent vapors emitted from more than half of the point sources at the facility is achieved with limited success by the use of two carbon adsorption (CA) systems.

  5. Final safety assessment of Coal Tar as used in cosmetics.

    PubMed

    2008-01-01

    Coal Tar is a semisolid by-product obtained in the destructive distillation of bituminous coal, which functions in cosmetic products as a cosmetic biocide and denaturant--antidandruff agent is also listed as a function, but this is considered an over-the-counter (OTC) drug use. Coal Tar is a nearly black, viscous liquid, heavier than water, with a naphthalene-like odor and a sharp burning taste, produced in cooking ovens as a by-product in the manufacture of coke. Crude Coal Tar is composed of 48% hydrocarbons, 42% carbon, and 10% water. In 2002, Coal Tar was reported to the Food and Drug Administration (FDA) to be used in four formulations, all of which appear to be OTC drug products. Coal Tar is monographed by the FDA as Category I (safe and effective) OTC drug ingredient for use in the treatment of dandruff, seborrhoea, and psoriasis. Coal Tar is absorbed through the skin of animals and humans and is systemically distributed. In short-term studies, mice fed a diet containing Coal Tar found it unpalatable, but no adverse effects were reported other than weight loss; rats injected with Coal Tar experienced malaise in one study and decreased water intake and increased liver weights in another; rabbits injected with Coal Tar residue experienced eating avoidance, respiratory difficulty, sneezing, and weight loss. In a subchronic neurotoxicity study using mice, a mixture of phenols, cresols, and xylenols at concentrations approximately equal to those expected in Coal Tar extracts produced regionally selective effects, with a rank order of corpus striatum > cerebellum > cerebral cortex. Coal Tar applied to the backs of guinea pigs increases epidermal thickness. Painting female rabbits with tar decreases the absolute and relative weights of the ovaries and decreased the number of interstitial cells in the ovary. Four therapeutic Coal Tar preparations used in the treatment of psoriasis were mutagenic in the Ames assay. Urine and blood from patients treated with Coal Tar

  6. Superfund Record of Decision (EPA Region 5): Industrial Excess Landfill site, Uniontown, Ohio (first remedial action), September 1987. Final report

    SciTech Connect

    Not Available

    1987-09-30

    The Industrial Excess Landfill (IEL) is a 30-acre closed sanitary landfill located in Uniontown, Stark County, Ohio. Over 400 residential homes, located within a 0.5 mile radius of the landfill, rely entirely on individual or private well supplies for drinking water. Prior to 1961, the landfill property may have been utilized as a coal mine and later for mining sand and gravel. Gradually, the mining/excavation pit was converted into a landfill which received a variety of wastes. Between 1964 and 1968, the site was used to store fly ash, masonry rubble, paper and lumber scrap. From 1968 to 1980, IEL accepted municipal, commercial, industrial, and chemical wastes of substantially undetermined and unknown composition, primarily from the nearby rubber industry. Large quantities of chemical and liquid waste were dumped onto the ground either from 55-gallon drums or from tanker trucks. In January of 1972, the Stark County Board of Health (SCBH) ordered the dumping of chemical wastes stopped. In 1980, due to public concern and facility volume limitations, the landfill was ordered to close.

  7. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  8. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2005-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and

  9. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  10. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0

  11. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2004-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic

  12. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2003-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and

  13. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  14. Advanced physical fine coal cleaning spherical agglomeration. Final report

    SciTech Connect

    Not Available

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  15. Extraction, separation, and analysis of high sulfur coal. Final report

    SciTech Connect

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr.

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  16. Biological degradation of low-rank coal: Final report

    SciTech Connect

    Jones, W.J.

    1989-06-01

    The principal objective of this research project as to investigate the potential for anaerobic bioconversion of low-rank coal. The research was divided into three phases, including: (a) assessment of biodegradation and coal chemistry, (b) anaerobic bioconversion of ''model'' low-rank coal constituents; and (c) anaerobic bioconversion of coal. A literature review of coal chemistry and microbially-mediated processes related to coal bioconversion was performed. Initial lab studies were conducted with selected ''model'' compounds, including simple aromatic constituents (phenol, cresol, catechol) as well as more complex aromatic compounds (naphthol, 9-phenanthrol, dibenzothiophene) which may be components of low-rank coal. Analytical procedures were developed for efficient extraction, separation and quantitation of the test ''model'' compounds. Additional studies with a benzene-derived extract of a low-rank coal sample were performed. Extraction and quantitation procedures were developed to assess bioconversion potential. Preliminary toxicity experiments with ''model'' compounds revealed partial inhibition of growth of selected pure bacterial cultres as well as inhibition of microbial consortia at concentrations above those used in our test system. For most of the test compounds, little or no inhibition (toxicity) was noted. Overall results suggest that complex aromatic constituents which may be representative of low-rank coal structure are relatively recalcitrant to microbial attack by natural microbial populations. 88 refs., 14 figs., 23 tabs.

  17. Aerial gamma ray and magnetic survey, Huntington quadrangle: Ohio, West Virginia and Kentucky. Final report

    SciTech Connect

    Not Available

    1981-04-01

    The Huntington quadrangle of Kentucky, Ohio, and West Virginia covers 7250 square miles of the easternmost Midwestern Physiographic Province. Paleozoic exposures dominate the surface. These Paleozoics deepen toward the east from approximately 500 feet to a maximum depth of 8000 feet. Precambrian basement is thought to underlie the entire area. No known uranium deposits exist in the area. One hundred anomalies were found using the standard statistical analysis. Some high uranium concentration anomalies that may overlie the stratigraphic equivalent of the Devonian-Mississippian New Albany or Chattanooga Shales may represent significant levels of naturally occurring uranium. Future studies should concentrate on this unit. Magnetic data are largely in concurrence with existing structural interpretations but suggest some complexities in the underlying Precambrian.

  18. Low-rank coal thermal properties and diffusivity: Final report

    SciTech Connect

    Ramirez, W.F.

    1987-06-01

    This project developed techniques for measuring thermal properties and mass diffusivities of low-rank coals and coal powders. Using the concept of volume averaging, predictive models have been developed for these porous media properties. The Hot Wire Method was used for simultaneously measuring the thermal conductivity and thermal diffusivity of both consolidated and unconsolidated low-rank coals. A new computer-interfaced experiment is presented and sample container designs developed for both coal powders and consolidated coals. A new mathematical model, based upon volume averaging, is presented for the prediction of these porous media properties. Velocity and temperature effects on liquid-phase dispersion through unconsolidated coal were determined. Radioactive tracer data were used to determine mass diffusivities. A new predictive mathematical model is presented based upon volume averaging. Vapor-phase diffusivity measurements of organic solvents in consolidated lignite coal are reported. An unsteady-state pressure response experiment with microcomputed-based data acquisition was developed to estimate dispersion coefficients through consolidated lignite coals. The mathematical analysis of the pressure response data provides the dispersion coefficient and the adsorption coefficient. 48 refs., 59 figs., 17 tabs.

  19. Predictors of plasticity in bituminous coals. Final technical report

    SciTech Connect

    Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Davis, E.; Fitzpatrick, A.; Irefin, A.; Jiminez, A.; Jones, T. M.

    1984-02-01

    A group of 40 hvb coals, mostly from western Kentucky fields, has been examined with regard to ASTM Gieseler plastometric properties. Twenty-nine of these coals have also been studied over a range of temperatures by isothermal Gieseler plastometry. Raw Gieseler data provide melting and coking slopes and readily calculable fluidity spans. Maximum fluidity by slope intersection is a more consistent measure than observed maximum fluidity. Isothermal slopes and maximum fluidities follow Arrhenius temperature dependencies, with activation energies related systematically to fluid properties. These freshly sampled coals are also characterized by chemical, physical and petrographic criteria, by quantitative solvent extractions, by pyrolysis gas chromatography, by Fourier Transform infrared analysis of coals and extraction residues, by the HPLC analysis of coal extracts, and by optical microscopy of coals and Gieseler semi-coke residues. Multiple linear regression analysis yields three-term expressions which estimate maximum fluidities (both ASTM and isothermal) with R values of .90 to .92. Slopes and critical temperatures are similarly predictable. Plastometer experiments with selected coals under superatmospheric pressures show both melting slopes and maximum fluidities to be sharply increased, the latter by one to three orders of magnitude. Some suggestions are offered to accommodate this new information into the general body of knowledge concerning the phenomenon of plasticity in mid-ranked coals. 81 references, 28 figures, 40 tables.

  20. Coal-sand attrition system and its importance in fine coal cleaning. Final report

    SciTech Connect

    Mehta, R.K.; Zhu, Qinsheng

    1993-08-01

    It is known that ultra-fine coals are prerequisite for the deep cleaning of most US coal seams if environmental pollution arising from the use of such coals is to be minimized. Therefore, the production of finely liberated coal particles in conjunction with reduced heavy metal contaminants at low costs is desirable, if not mandatory. The liberation of intimately disseminated impurities from the coal matrix therefore, demands that the material be ground to a high degree of fineness. Similarily, some technologies for coal utilization require superfine particles (i.e., sizes less than ten microns). This implies additional costs for coal preparation plants due to the high energy and media costs associated with fine grinding operations. Besides, there are problems such as severe product contaminations due to media wear and impairment of the quality of coal. Hence, proper choice of grinding media type is important from the viewpoints of cost reduction and product quality. The use of natural quartz sand as grinding media in the comminution of industrial minerals in stirred ball mills has been indicated. The advantages of natural sand compared to steel media include low specific energy inputs, elimination of heavy metal contaminants and low media costs. In this work, the effect of rotor speed, solids concentration and feed-size are studied on four coals in conjunction with silica sand and steel shot. The results obtained are used to evaluate the suitability of silica sands as an alternative grinding media. for coal. Coal-sand and coal-steel systems are compared in terms of specific energy consumption, product fineness, media/wear contaminationanalysis and calorific values, liberation spectrum and particle shape characteristics. In general cleaner flotation concentrate was obtained from coals when they were ground with sand media. The zeta potential of coals was found to be different and lower when they ground with sand.

  1. State summaries: Ohio

    USGS Publications Warehouse

    Wolfe, M.E.

    2006-01-01

    In 2005, the value of coal and industrial minerals sold in Ohio amounted to $1.5 billion, an increase of 7% from 2004. Coal production for the year increased 4.7% from 2004, totalling 22.3 Mt. Aggregate production totalled 114 Mt, a 4% decrease from 2004. In 2005, the state's salt sales amounted to $132 million. Production of industrial sandstone and conglomerate as well as dimension stone and limestone also increased.

  2. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    SciTech Connect

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  3. Near-extinction and final burnout in coal combustion

    SciTech Connect

    Hurt, R.H.; Davis, K.A.

    1994-02-01

    The late stages of char combustion have a special technological significance, as carbon conversions of 99% or greater are typically required for the economic operation of pulverized coal fired boilers. In the present article, two independent optical techniques are used to investigate near-extinction and final burnout phenomenas. Captive particle image sequences, combined with in situ optical measurements on entrained particles, provide dramatic illustration of the asymptotic nature of the char burnout process. Single particle combustion to complete burnout is seen to comprise two distinct stages: (1) a rapid high-temperature combustion stage, consuming about 70% of the char carbon and ending with near-extinction of the heterogeneous reactions due to a loss of global particle reactivity, and (2) a final burnout stage occurring slowly at lower temperatures. For particles containing mineral matter, the second stage can be further subdivided into: (2a) late char combustion, which begins after the near-extinction event, and converts carbon-rich particles to mixed particle types at a lower temperature and a slower rate; and (2b) decarburization of ash -- the removal of residual carbon inclusions from inorganic (ash) frameworks in the very late stages of combustion. This latter process can be extremely slow, requiring over an order of magnitude more time than the primary rapid combustion stage. For particles with very little ash, the loss of global reactivity leading to early near-extinction is clearly related to changes in the carbonaceous char matrix, which evolves over the course of combustion. Current global kinetic models used for the prediction of char combustion rates and carbon burnout in boilers do not predict the asymptotic nature of char combustion. More realistic models accounting for the evolution of char structure are needed to make accurate predictions in the range of industrial interest.

  4. Low severity conversion of activated coal. Final report

    SciTech Connect

    Hirschon, A.S.; Ross, D.S.

    1990-01-01

    The results suggest that coal contains regions with structural components significantly reactive under the hydrothermal environment. Although the specific mechanism for this process remains to be developed, this activity is reminiscent of findings in studies of accelerated maturation of oil shale, where hydrothermal treatment (hydrous pyrolysis) leads to the production of petroleum hydrocarbons. In line with what has been seen in the oil shale work, the pretreatment-generated hydrocarbons and phenols appear to represent a further or more complete maturation of some fraction of the organic material within the coal. These observations could have an impact in two areas. The first is in the area of coal structure, where immature, reactive regions have not been included in the structures considered at present. The second area of interest is the more practical one of conversions to coal liquids and pyrolytic tars. It seems clear that the hydrothermal pretreatment changes the coal in some manner that favorably affects the product quality substantially and, as in the CO/water liquefaction case, favorably affects the yields. The conversions of coals of lower rank, i.e., less mature coals, could particularly benefit in terms of both product quality and product quantity. The second portion of this project also shows important benefits to coal conversion technology. It deals with synthesizing catalysts designed to cleave the weak links in the coal structure and then linking these catalysts with the pretreatment methods in Task 2. The results show that highly dispersed catalysts can effectively be used to increase the yields of soluble material. An important aspect of highly dispersed catalysts are that they can effectively catalyze coal conversion even in poor liquefaction solvents, thus making them very attractive in processes such as coprocessing where inexpensive liquefaction media such as resids are used.

  5. Effects of highway deicing chemicals on shallow unconsolidated aquifers in Ohio--final report

    USGS Publications Warehouse

    Kunze, Allison E.; Sroka, Bernard N.

    2004-01-01

    As a result of concerns about salt intrusion into drinking water aquifers, the effects of highway deicing chemicals on shallow aquifers were studied at eight locations in Ohio from 1988 through 2002. The study was done by the U.S. Geological Survey, in cooperation with the Ohio Department of Transportation and the Federal Highway Administration. Sites were selected along major undivided highways where drainage is by open ditches and ground-water flow is approximately perpendicular to the highway. Records of deicer application rates were kept, and apparent movement of deicing chemicals through shallow, unconsolidated aquifers was monitored by means of periodic measurements of specific conductance and concentrations of dissolved sodium, calcium, and chloride. The State routes monitored were the following: State Route (SR) 3 in Ashland County, SR 84 in Ashtabula County, SR 29 in Champaign County, SR 4 in Clark County, SR 2 in Lucas County, SR 104 in Pickaway County, SR 14 in Portage County, and SR 97 in Richland County. The study began in 1988 with background data collection, extensive literature review, and site selection. This process, including drilling of wells at numerous test sites and the eight selected sites, lasted 3 years. Routine groundwater sampling at 4- to 6-week intervals began in January 1991 and continued through September 1999. A multilevel, passive flow ground-water sampling device was constructed and used. Other conditions monitored on a regular basis included ground-water level (monitored continuously), specific conductance, air and soil temperature, precipitation,chloride concentration in soil samples, and deicing-chemical application times and rates. Evidence from water analysis, specific-conductance measurements, and surface-geophysical measurements indicates that three of the eight sites (Ashtabula County, Lucas County, and Portage County sites) were affected by direct application of deicing chemicals. Climatic data collected during the study

  6. Investigation of the use of fly-ash based autoclaved cellular concrete blocks in coal mines for air duct work. Final report, January 25, 1993--December 31, 1994

    SciTech Connect

    Horvath, M.L.

    1995-06-19

    Coal mines are required to provide ventilation to occupied portions of underground mines. Concrete block is used in this process to construct air duct walls. However, normal concrete block is heavy and not easy to work with and eventually fails dramatically after being loaded due to mine ceiling convergence and/or floor heave. Autoclaved cellular concrete block made from (70{plus_minus}%) coal fly ash is lightweight and less rigid when loaded. It is lighter and easier to use than regular concrete block for underground mine applications. It has also been used in surface construction around the world for over 40 years. Ohio Edison along with eight other electric utility companies, the Electric Power Research Institute (EPRI), and North American Cellular Concrete constructed a mobile demonstration plant to produce autoclaved cellular concrete block from utility fly ash. To apply this research in Ohio, Ohio Edison also worked with the Ohio Coal Development Office and CONSOL Inc. to produce autoclaved cellular concrete block not only from coal ash but also from LIMB ash, SNRB ash, and PFBC ash from various clean coal technology projects sponsored by the Ohio Coal Development Office. The purpose of this project was to demonstrate the potential for beneficial use of fly ash and clean coal technology by-products in the production of lightweight block.

  7. Gaseous phase coal surface modification. Final technical report

    SciTech Connect

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  8. Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal. Final report

    SciTech Connect

    Chauhan, S.P.; Kim, B.C.; Menton, R.; Senapati, N.; Criner, C.L.; Jirjis, B.; Muralidhara, H.S.; Chou, Y.L.; Wu, H.; Hsieh, P.; Johnson, H.R.; Eason, R.; Chiang, S.M.; Cheng, Y.S.; Kehoe, D.

    1991-10-31

    Battelle (Columbus, Ohio) undertook development of its electro-acoustic (EAD) process to demonstrate its commercial potential for continuous dewatering of fine and ultrafine coals. The pilot plant and laboratory results, provided in this report, show that a commercial-size EAD machine is expected to economically achieve the dewatering targets for {minus}100 mesh and {minus}325 mesh coals. The EAD process utilizes a synergistic combination of electric and acoustic (e.g., ultrasonic) fields in conjunction with conventional mechanical processes, such as belt presses, screw presses, plate and frame filter presses, and vacuum filters. The application of EAD is typically most beneficial after a filter cake is formed utilizing conventional mechanical filtration. (VC)

  9. Inhibition of retrogressive reactions in coal/petroleum co-processing. Final technical report

    SciTech Connect

    Schobert, H.H.; Tomic, J.

    1993-05-25

    The objective of this study was to examine the processes in coal/petroleum coprocessing systems which led to coke formation. Specifically, the interactions between the petroleum residue and coal, leading to retrogressive products, were investigated. Five coals were reacted with five model compounds in order to investigate the coal conversions in a variety of solvents and to determine the role of the solvent in promoting or inhibiting coal conversion. The selected model compounds range from paraffinic to fully aromatic and were chosen as representative of types of compounds that are found in petroleum residua. Coprocessing experiments were conducted using the five coals and three petroleum residua. The effect of temperature on coal conversions was crucial. The coal conversions at 350 and 400{degree}C seem to be governed by the nature of the coal and to a lesser extent by the petroleum residua. Negative coal conversions were observed above 400{degree}C indicating that retrogressive processes had occurred. At temperatures higher than 400{degree}C, the petroleum residua undergo physical and chemical transformations and the influence of the petroleum residua on coal conversions is significant. The structural features of the residues indicated that the residues were predominately coal-derived. An overall increase in aromaticity was observed with increasing temperature which was also accompanied by loss of oxygen functional groups. The retrogressive reactions with non-caking coals involve carbonyl and carboxyl group leading to a final solid characterized by a cross-linked structure. In the case of caking coal, these reactions are governed by loss of aromatic oxygen groups and loss of alkyl groups.

  10. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Final report

    SciTech Connect

    Doyle, F.M.

    1996-01-26

    Coal oxidation has been studies extensively in previous work. However, there is still no general agreement concerning the mechanisms of oxidation. Moreover, the oxidation behavior of coal and mineral matter have generally been regarded as separate processed. There is appreciable evidence that organic and inorganic oxidation process are actually coupled, consequently the changes in their surface properties induced by oxidation are difficult to predict. This makes the effectively of coal cleaning processes highly sensitive to the extent of weathering and oxidation that the coal has experienced. The objective of this research was to investigate the oxidation behavior of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with these surface properties that would influence the behavior in physical cleaning processes.

  11. Mixture design and performance prediction of rubber-modified asphalt in Ohio. Final report

    SciTech Connect

    Liang, R.Y.

    1997-08-01

    Appropriate disposal of scrap tires has been a major environmental concern over the years, mainly due to potential fire and health hazards associated with uncontrolled stockpiling. Primarily driven by this environmental concern, the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 has required each State to begin incorporating scrap tire rubber into its asphalt paving materials. Although in the revision of the original ISTEA, the mandate has been eliminated, there remains a language of encouraging the use of crumb rubbers in asphalt paving materials. Ohio Department of Transportation (ODOT) desires to develop the mix design procedure, construction practice, and performance specifications for crumb rubber modified asphalt paving materials. This research was conducted to develop the needed design and construction guidance for meeting the ODOT anticipated needs. Specifically, the objectives of this research encompass the following scope: (1) investigation of the rheological properties of asphalt-rubber binder to determine optimum content of crumb rubber, (2) development of optimum mix design for various applications, including both wet and dry mix processes, (3) characterization of mechanical properties of recommended paving mixtures, including resilient modulus, fatigue cracking behavior, low-temperature thermal cracking resistance, water sensitivity test, incremental creep test and loaded wheel track test, and (4) comparison of performance of selected paving mixes.

  12. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C.; Hu, W.; Zou, Y.; Chen, W.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  13. Encoal mild coal gasification project: Final design modifications report

    SciTech Connect

    1997-07-01

    The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

  14. Improving the scheme for final comminution of the coal charge

    SciTech Connect

    Antonov, A.V.; Zagoruiko, S.I.; Vorob'ev, S.E.; Kress, L.A.; Stepura, P.G.

    1983-01-01

    Proceeding from laboratory and pilot plant tests of the screening of fine classes of coal under the effect of gravitational forces on stationary grates, and also from the experience of the Krivoi Rog and Kommunarsk Coke Works, the coal preparation division of OKhMK (Orsk-Khalilovo Intergrated Iron and Steel Works) adopted an industrial scheme of comminution of the coal before coking, screening out the fine classes ahead of the hammer crushers. In the bottom of the feeder chute a stamped screen was installed (dimensions 2100 x 1600 x 5 mm with apertures of 40 x 100 mm) with the large side perpendicular to the flow of coal. The distance between the apertures on the small side of the screen was 20 mm, on the large side 15 mm; the inclination was 60/sup 0/. The overscreen product enters the crusher, and the underscreen product is injected into the crushed charge without comminution.

  15. Advanced coal-fueled gas turbine systems. Final report

    SciTech Connect

    Not Available

    1993-08-01

    The configuration of the subscale combustor has evolved during the six years of this program from a system using only an impact separator to remove particulates to a system which also included a slagging cyclone separator before the lean-quench combustor. The system also now includes active slag tapping after the impact separator rather than a bucket to collect the slag. The subscale 12 MM Btu/hr (higher heating value, HHV) slagging combustor has demonstrated excellent coal-fired operation at 6 atm. The combustor has fired both coal-water mixtures (CWM) and pulverized coal (PC). Three Wyoming subbituminous coals and two bituminous coals have been successfully fired in the TVC. As a result of this active testing, the following conclusions may be drawn: (1) it was possible to achieve the full design thermal capacity of 12 MM Btu/hr with the subscale slagging combustor, while burning 100% pulverized coal and operating at the design pressure of 6 atm; (2) because of the separate-chamber, rich-lean design of the subscale slagging combustor, NO{sub x} emissions that easily meet the New Source Performance Standards (NSPS) limits were achieved; (3) carbon burnout efficiency was in excess of 99% when 100% coal-fired; (4) ninety percent of the ash can be separated as slag in the impact separator, and a total 98 to 99% removed with the addition of the slagging cyclone separator; (5) Objectives for third-stage exit temperature (1850{degrees}F), and exit temperature pattern factor (14%) were readily achieved; (6) overall pressure loss is currently an acceptable 5 to 6% without cyclone separator and 7 to 9% with the cyclone; and (7) feeding pulverized coal or sorbent into the combustor against 6 atm pressure is achievable.

  16. Fugitive emissions from coal-fired power plants. Final report

    SciTech Connect

    Currier, E.L.; Neal, B.D.

    1984-06-01

    Potential sources of airborne and waterborne fugitive emissions at coal-fired power plants are identified and discussed. Fugitive emissions are defined as pollutant discharges that do not pass through a chimney, vent, discharge pipe, or other functionally equivalent opening. A search of the literature was conducted to locate, evaluate, and report the available data pertaining to such emissions. Data from various reports and studies are discussed and rated according to a validity rating system. Control methods and efficiencies are also discussed. Despite the uncertainty in much of the information in the literature, the most reliable data were selected and were used to estimate the quantity and quality of fugitive emissions from two hypothetical 500 MW coal-fired power plants. Airborne fugitive emissions consist primarily of particulate matter from coal handling and storage, ash handling and disposal, and vehicular traffic. Airborne fugitive emissions from a typical, well-controlled, 500 MW power plant were estimated to amount to about 71 to 75 metric tons/year. This is about 20 percent as much particulate matter as would be emitted from the boiler stack. Waterborne fugitive emissions from coal-fired power plants are comprised mainly of any uncollected and uncontrolled coal pile surface runoff or drainage and any uncollected and uncontrolled leachate from ash/sludge disposal areas. Drainage from coal piles containing eastern coal can be expected to be low in pH and any surface runoff can be expected to contain high concentrations of total suspended solids; drainage from western coal piles appears to be near neutral in pH. Leachate from ash disposal sites may contain high concentrations of total dissolved solids and trace elements. 62 references, 64 tables.

  17. Illinois coal reserve assessment and database development. Final report

    SciTech Connect

    Treworgy, C.G.; Prussen, E.I.; Justice, M.A.; Chenoweth, C.A.

    1997-11-01

    The new demonstrated reserve base estimate of coal of Illinois is 105 billion short tons. This estimate is an increase from the 78 billion tons in the Energy Information Administration`s demonstrated reserve base of coal, as of January 1, 1994. The new estimate arises from revised resource calculations based on recent mapping in a number of countries, as well as significant adjustments for depletion due to past mining. The new estimate for identified resources is 199 billion tons, a revision of the previous estimate of 181 billion tons. The new estimates incorporate the available analyses of sulfur, heat content, and rank group appropriate for characterizing the remaining coal resources in Illinois. Coal-quality data were examined in conjunction with coal resource mapping. Analyses of samples from exploration drill holes, channel samples from mines and outcrops, and geologic trends were compiled and mapped to allocate coal resource quantities to ranges of sulfur, heat content, and rank group. The new allocations place almost 1% of the demonstrated reserve base of Illinois in the two lowest sulfur categories, in contrast to none in the previous allocation used by the Energy Information Administration (EIA). The new allocations also place 89% of the demonstrated reserve base in the highest sulfur category, in contrast to the previous allocation of 69% in the highest category.

  18. Permeability changes in coal resulting from gas desorption. Final report

    SciTech Connect

    Levine, J.R.; Johnson, P.W.

    1992-11-30

    This report documents studies on the effects of gas sorption on coal, with the intent of eventually evaluating how sorption and strain affect permeability. These studies were, carried out at the University of Alabama during the period from 1989 through 1992. Two major experimental methods were developed and used. In the strain experiments, electronic strain gauges were attached to polished blocks of coal in order to measure linear and volumetric swelling due to gas sorption. The effects of bedding plane orientation, of gas type, and of coal type were investigated. In the gravimetric experiment the weight of small samples of coal was measured during exposure to high pressure gases. Sample measurements were corrected for buoyancy effects and for sample swelling, and the results were plotted in the form of Langmuir isotherms. Experiments were conducted to determine the effect of grain size, coal type, moisture, and of sorbant gas. The advantage of this method is that it can be applied to very small samples, and it enabled comparison liptinite versus vitrinite concentrates, and kerogen rich versus kerogen depleted oil shales. Also included is a detailed discussion of the makeup of coal and its effect on gas sorption behavior.

  19. Developing anthracite coal water slurry fuel. Final report

    SciTech Connect

    Simmon, F.J.; Keller, D.V.; Marino, J.; Keller, D.S.; Ask, T.E.

    1993-09-01

    Public law has directed the Department of Defense (DOD) to increase the use of coal, particularly anthracite, at steam generating facilities. This study evaluates the feasibility of producing slurry fuel from anthracite coal and examines the combustion characteristics of the anthracite/water fuel slurry. The T-Process, a proprietary process developed by Otisca Industries, Ltd., Syracuse, NY, was used to produce anthracite-based coal water slurries for testing and combustion. Although it is feasible to manufacture anthracite water fuel, the slurries used in this research would not burn well without substantial amounts of natural gas cofiring. Stable combustion with reduced support fuel can probably be achieved by chemically or physically modifying the factors that affect combustion. Additional research to determine the differences between anthracite and bituminous slurries, to increase the residence time for anthracite slurries, and to manufacture slurries with oil rather than water needs to be conducted to help the DOD meet anthracite purchase/consumption targets. Coal, Combustion, Coal water fuel, Anthracite coal.

  20. Fact Sheet: Final Rule on Coal Combustion Residuals Generated by Electric Utilities

    EPA Pesticide Factsheets

    This fact sheet describes the final rule signed on December 19, 2014 establishing a comprehensive set of requirements for the disposal of coal combustion residuals generated by electric utilities in landfills and surface impoundments.

  1. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    SciTech Connect

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  2. Liquid chromatographic analysis of coal surface properties. Final report, September 1991--February 1995

    SciTech Connect

    Kwon, K.C.

    1996-03-01

    Experiments on equilibrium adsorption loadings of various probe compounds on 60-200 mesh Illinois {number_sign}6 coal (PSOC-1539), Adaville {number_sign}1 coal (PSOC-1544), Wyodak coal (PSOC-1545) and Pittsburgh {number_sign}8 coal (PSOC-1549) were performed. the probe compounds include m-cresol, p-cresol, o-cresol, phenol, n-octanol, n-heptanol, n-propanol, isopropanol n-butanol, s-butanol, 2-butanol, t-butanol, 2-naphthol, cyclohexanol, 2-methyl-1-pentanol (2M1P), 4-methyl-2-pentanol (4M2P), benzene and toluene. Equilibrium adsorption of various probe compounds on the coals were measured with the inverse liquid chromatography method. Experiments on flotation of various 60-200 mesh treated coals such as Illinois {number_sign}6 coal (PSOC-1539), Adaville {number_sign}1 coal (PSOC-1544), Wyodak coal (PSOC-1545) and Pittsburgh {number_sign}8 coal (PSOC-1549) were performed. The chosen coals were treated with steam, nitrogen and air at 1 atm and 125-225{degrees}C for 24 hours. The coals were treated with water as well as 20-1000 ppm aqueous alcohol solutions for 3-24 hours at 150-225{degrees}C. The coals also were treated with 20-ppm alcohol aqueous solutions for 1-24 hours at the 0.002-g/min mass flow rate of alcohol aqueous solutions and at 225{degrees}C. Flotation experiments were conducted with a 500-cm{sup 3} batch-type micro flotation apparatus, introducing nitrogen at the bottom of the apparatus. This final report was prepared with the experimental data obtained during the period of September 1991-March 1994.

  3. Coal desulfurization by bacterial treatment and column flotation. Final report

    SciTech Connect

    Kawatra, S.K.

    1994-06-01

    A review of the literature showed that bacterial leaching, using the microorganism Thiobacillus ferrooxidans, was a very effective technique for removing pyrite from coal, as it could dissolve even the finest pyrite particles without the need for expensive reagents or extreme processing conditions. Unfortunately, bacterial leaching is also rather slow, and so the initial goal of this research was to decrease the leaching time as much as possible. However, this still left the bacteria needing approximately a week to remove half of the pyritic sulfur, and so a faster technique was sought. Since it had been reported in the literature that T. ferrooxidans could be used to depress the flotation of pyrite during froth flotation of coal, this was investigated further. By studying the recovery mechanisms of coal-pyrite in froth flotation, it was found that pyrite was being recovered by entrainment and by locking to coal particles, not by true flotation of hydrophobic pyrite. Therefore, no pyrite depressant could be of any significant benefit for keeping pyrite out of the coal froth product, and it was much more important to prevent entrainment from occurring. Countercurrent flotation columns were invented to essentially eliminate entrainment effects, by washing the froth and reducing mixing of the froth and tailings products. Existing flotation columns tend to be quite simple, and in order to give reasonable product quality they must be very tall (typically 30--45 feet). As a result, they have difficulty in handling the high froth volumes which occur in coal flotation, and are awkward to install in existing plants. The bulk of this project therefore concentrated on developing an improved coal flotation column, and testing it under actual plant conditions.

  4. The single electron transfer chemistry of coals. Final report

    SciTech Connect

    Larsen, J.W.; Flowers, R.A. II

    1994-12-31

    This research addressed electron donar properties and radical reactions in coal. Solid residues from pyridine Soxhlet extractions of Pocahontas No. 3, Upper Freeport, Pittsburgh No. 8, Illinois No. 6 and Wyodak coals were exposed to 4-vinylpyridine vapors and swelled. All of the 4-vinylpyridine could not be removed under vacuum at 100{degree}C. Diffuse reflectance FTIR revealed the presence of poly-(4-vinylpyridine) in the Illinois No. 6 and Wyodak coals. EPR spectra displayed the loss of inertinite radicals in Upper Freeport, Illinois No. 6 and Wyodak residues after exposure to 4-vinylpyridine. There was little change in the vitrinite radical density or environment. The molecule N,N{prime}-Diphenyl-p-phenylene diamine (DPPD) was exposed to the solid residues from pyridine Soxhlet extractions of the above coals. Diffuse reflectance FTIR failed to detect the imine product from radical reaction with DPPD. EPR spectra displayed the loss of inertinite radicals in Upper Freeport and Wyodak residues. 7,7,8,8-Tetracyanoquinodimethane (TCNQ) and Tetracyanoethylene (TCNE) were deposited into coals in pyridine. FTIR indicated complete conversion of TCNQ to a material with a singly occupied LUMO. In TCNE the LUMO is about 30% occupied. TCNQ and TCNE were deposited into the pyridine extracts and residues of Illinois No. 6 and Pittsburgh No. 8 coals. Only a small amount of the TCNQ and TCNE displayed nitrile shifts in the IR spectrum of a material with an occupied LUMO. It has been concluded that TCNQ must be part of the aromatic stacks in coal and the TCNQ LUMO is part of an extended band.

  5. Design of optimum coal-preparation systems for Missouri coal seams. Final report

    SciTech Connect

    Erten, M.H.; Evans, J.J.; Lounsbury, P.J.; Holloran, R.A.

    1982-08-01

    The objectives of this research were (1) with the use of washability curves and other data, to design suitable coal preparation systems that will provide marketable coals with maximum yield and minimum ash and sulfur contents for raw coals obtained from different Missouri coal seams, and (2) to test the performance of units comprising the systems (flowsheets) with the use of the equipment available at the Mineral and Coal Preparation Laboratories of the University of Missouri at Rolla. On each channel sample, proximate analysis, float and sink, tabling, flotation, hydrocyclone, and forms of sulfur tests were conducted. Because of the limited quantities of core samples, only such tests as proximate analysis, washability, and forms of sulfur could be performed. A survey of the mining operations in the state of Missouri showed that at least six companies worked more than one seam at any time of the year and that most of the coal mined was direct-shipped to power plants. Since there were no data available about the washability and other characteristics of these jointly mined coals, new samples were prepared according to their production ratios and all the tests performed on individual samples were also applied to these joint samples. Also, for these samples the most suitable coal preparation systems (flowsheets) were designed and tested in the laboratory. The actual test results obtained with the use of eight different circuits for the six sets of jointly mined seams were compared with the individual test results. It was concluded that for optimum yield and maximum ash and sulfur removal, a physical washing system containing dense medium and Deister Table is the most suitable coal preparation method for Missouri coals.

  6. Mercury and other trace elements in Ohio River fish collected near coal-fired power plants: Interspecific patterns and consideration of consumption risks.

    PubMed

    Reash, Robin J; Brown, Lauren; Merritt, Karen

    2015-07-01

    Many coal-fired electric generating facilities in the United States are discharging higher loads of Hg, Se, and other chemicals to receiving streams due to the installation of flue gas desulfurization (FGD) air pollution control units. There are regulatory concerns about the potential increased uptake of these bioaccumulative trace elements into food webs. We evaluated the concentrations of As, total Hg (THg), methylmercury (MeHg), and Se in Ohio River fish collected proximal to coal-fired power plants, of which 75% operate FGD systems. Fillet samples (n = 50) from 6 fish species representing 3 trophic levels were analyzed. Geometric mean fillet concentrations of THg (wet wt), MeHg (wet wt), and Se (dry wt) in 3 species were 0.136, 0.1181, and 3.19 mg/kg (sauger); 0.123, 0.1013, and 1.56 mg/kg (channel catfish); and 0.127, 0.0914, and 3.30 mg/kg (hybrid striped bass). For all species analyzed, only 3 fillet samples (6% of total) had MeHg concentrations that exceeded the US Environmental Protection Agency (USEPA) human health criterion (0.3 mg/kg wet wt); all of these were freshwater drum aged ≥ 19 y. None of the samples analyzed exceeded the USEPA proposed muscle and whole body Se thresholds for protection against reproductive effects in freshwater fish. All but 8 fillet samples had a total As concentration less than 1.0 mg/kg dry wt. Mean Se health benefit values (HBVSe ) for all species were ≥ 4, indicating that potential Hg-related health risks associated with consumption of Ohio River fish are likely to be offset by adequate Se concentrations. Overall, we observed no measurable evidence of enhanced trace element bioaccumulation associated with proximity to power plant FGD facilities, however, some enhanced bioaccumulation could have occurred in the wastewater mixing zones. Furthermore, available evidence indicates that, due to hydraulic and physical factors, the main stem Ohio River appears to have low net Hg methylation potential.

  7. Surface magnetic enhancement for coal cleaning. Final report

    SciTech Connect

    Hwang, J.Y.

    1992-10-01

    The program consisted of a fundamental study to define the chemistry for the interactions between magnetic reagent and mineral and coal particles, a laboratory study to determine the applicability of this technology on coal cleaning, and a parameter study to evaluate the technical and economical feasibility of this technology for desulfurization and de-ashing under various processing schemes. Surface magnetic enhancement using magnetic reagent is a new technology developed at the Institute. This technology can be applied to separate pyrite and other minerals particles from coal with a magnetic separation after adsorbing magnetic reagent on the surface of pyrite and other minerals particles. Particles which have absorbed magnetic reagent are rendered magnetic. The adsorption can be controlled to yield selectivity. Thus, the separation of traditionally nonmagnetic materials with a magnetic separator can be achieved. Experiments have been performed to demonstrate the theoretical fundamentals and the applications of the technology. Adsorbability, adsorption mechanisms, and adsorption selectivity are included in the fundamental study. The effects of particle size, magnetic reagent dosage, solid contents, magnetic matrix, applied magnetic field strengths, retention times, and feed loading capacities are included in the application studies. Three coals, including Illinois No. 6, Lower Kittanning and Pocahontas seams, have been investigated. More than 90% pyritic sulfur and ash reductions have been achieved. Technical and economic feasibilities of this technology have been demonstrated in this study. Both are competitive to that of the froth flotation approach for coal cleaning.

  8. Analysis of chemical coal cleaning processes. Final report

    SciTech Connect

    Not Available

    1980-06-01

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  9. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  10. Structural change in the coal industry: Coal industry concentration trends, 1970--1994. Final report

    SciTech Connect

    Schwartz, S.; Glover, W.

    1995-05-01

    This report evaluates the historical and current concentration of the US coal industry, with special consideration given to its potential impact on competitiveness and coal Prices. Four time periods are studied: 1970, 1980, 1990, and 1994. The report Presents data at various levels: nationwide, eastern US, western US, and subregions -- Powder River Basin, Rockies, Northern Appalachia, Central Appalachia, Southern Appalachia, Illinois Basin, and several smaller areas. The report presents data on mine size, number of mines, coal Prices, Production, and ownership. Herfindahl Hirschman indices (the surn of squares Of companies` market shares) were calculated on the coal Production and ownership data to represent concentration. Through these periods, the coal industry has been relatively unconcentrated aid highly competitive. However, in most parts of the country, concentration has increased dramatically since 1990, surpassing historical levels. Concentration is also expected to continue increasing. The effects of such concentration are felt unevenly, depending of factors unique to each coal buyer and each coal company merger, acquisition, or divestment. Generally, the population of potential suppliers for each buyer is limited quality constraints. Those buyers who are greatly limited by such factors can experience dramatic changes in the concentration of their supplier populations by mergers that may have little impact on other buyers.

  11. Studies of low rank coal stabilities. Final report

    SciTech Connect

    1998-03-01

    The National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Research Center, tested feed coal and product samples from Wyoming and Montana for thermal stability in the adiabatic oven and sealed flask apparatus. The results indicated that the products had higher thermal stabilities in comparison with the feed coals. However, both the products samples and feed coals exhibited high spontaneous combustion potentials. A report on these studies was submitted in December 1995. Experiments were also completed in the adiabatic oven to determine the rate of decrease in the heating rate of a reactive sample on exposure to pulses of moist air, and moist nitrogen. The results indicated that with each succeeding pulse, longer time were required to reach selected elevated temperatures. The results also indicated some level of synergy between water and oxygen in the heat generation reaction. The data and results were transmitted to Dr. Dennis Finseth upon completion of the experiments.

  12. Demonstrated reserve base for coal in New Mexico. Final report

    SciTech Connect

    Hoffman, G.K.

    1995-02-01

    The new demonstrated reserve base estimate of coal for the San Juan Basin, New Mexico, is 11.28 billion short tons. This compares with 4.429 billion short tons in the Energy Information Administration`s demonstrated reserve base of coal as of January 1, 1992 for all of New Mexico and 2.806 billion short tons for the San Juan Basin. The new estimate includes revised resource calculations in the San Juan Basin, in San Juan, McKinley, Sandoval, Rio Arriba, Bernalillo and Cibola counties, but does not include the Raton Basin and smaller fields in New Mexico. These estimated {open_quotes}remaining{close_quotes} coal resource quantities, however, include significant adjustments for depletion due to past mining, and adjustments for accessibility and recoverability.

  13. Utilization of coal-associated minerals. Final report

    SciTech Connect

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-01-01

    Under contract number DE-AS21-77ET10533 with the US-DOE several methods of utilizing coal associated by-products were examined for potential commercial use. Such use could transform a costly waste disposal situation into new materials for further use and could provide incentive for the adoption of new coal utilization processes. Several utilization processes appear to have merit and are recommended for further study. Each process is discussed separately in the text of this report. Common coal cleaning processes were also examined to determine the effect of such processes on the composition of by-products. Data obtained in this portion of the research effort are reported in the Appendix. Information of this type is required before utilization processes can be considered. A knowledge of the mineral composition of these materials is also required before even simple disposal methods can be considered.

  14. Dewatering of ultrafine coal: Final report, August 1984-December 1986

    SciTech Connect

    Chiang, Shiao-Hung; Klinzing, G.E.; Morsi, B.I.; Tierney, J.W.; Badgujar, M.; Binkley, T.; Cheng, Yisun; Huang, Suxuan; Qamar, I.; Venkatadri, R.

    1986-12-01

    The surfactant, Aerosol-OT, was used to wash distilled water cakes. In previous studies, cakes were washed with Triton X-114. The dewatering performance and influence on cake structure of the two reagents are compared. Also, filter cakes were analyzed using an image analysis system and micrographic analysis of coal particles was initiated. In the area of theoretical modelling, the concept of bond-flow correlation greatly improved the network model predicting the experimental desaturation curves. Predicted results for treated cakes suggested that the effect of the presence of surface-active agents was adequately accounted for. The effects of the various operating conditions on the filtration/dewatering characteristics of the 10 ..mu..m coal particles were assessed and comparisons with the -32 mesh coal were made as to its trends in response to changes in the operating conditions. 20 refs., 75 figs., 17 tabs.

  15. Feasibility of coal tar biodegradation by land treatment. Final report

    SciTech Connect

    Fogel, S.

    1987-09-01

    Coal tar, a by-product of coal gasification, contains monoaromatic and polycyclic aromatic hydrocarbons (PAH) which have been identified as carcinogens. Billions of gallons of this waste have been disposed of at numerous gas manufacturing facilities in the United States. The treatment of tar-contaminated soil by bacterial degradation has shown great promise, since one-, two-, and three-ring PAH can be readily degraded by bacteria. Research was carried out to establish whether 4- and 5-ring PAH could also be degraded by bacteria. The data indicated that 4-ring PAH could degrade when dissolved in a hydrocarbon carrier or when applied to soil as a component of coal tar. Experiments to stimulate the bacterial degradation of benzo(a)pyrene, a 5-ring PAH, were unsuccessful.

  16. Thermal maturity patterns in Pennsylvanian coal-bearing rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania: Chapter F.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Hower, James C.; Grady, William C.; Levine, Jeffrey R.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Thermal maturation patterns of Pennsylvanian strata in the Appalachian basin and part of the Black Warrior basin were determined by compiling previously published and unpublished percent-vitrinite-reflectance (%R0) measurements and preparing isograd maps on the basis of the measurements. The isograd values range from 0.6 %R0 in Ohio and the western side of the Eastern Kentucky coal field to 5.5 %R0 in the Southern field in the Pennsylvania Anthracite region, Schuylkill County, Pa. The vitrinite-reflectance values correspond to the American Society of Testing Materials (ASTM) coal-rank classes of high-volatile C bituminous to meta-anthracite, respectively. In general, the isograds show that thermal maturity patterns of Pennsylvanian coals within the Appalachian basin generally decrease from east to west. In the Black Warrior basin of Alabama, the isograds show a circular pattern with the highest values (greater than 1.6 %R0) centered in Jefferson County, Ala. Most of the observed patterns can be explained by variations in the depth of burial, variations in geothermal gradient, or a combination of both; however, there are at least four areas of higher ranking coal in the Appalachian basin that are difficult to explain by these two processes alone: (1) a set of west- to northwest-trending salients centered in Somerset, Cambria, and Fayette Counties, Pa.; (2) an elliptically shaped, northeast-trending area centered in southern West Virginia and western Virginia; (3) the Pennsylvania Anthracite region in eastern Pennsylvania; and (4) the eastern part of the Black Warrior coal field in Alabama. The areas of high-ranking coal in southwestern Pennsylvania, the Black Warrior coal field, and the Pennsylvania Anthracite region are interpreted here to represent areas of higher paleo-heat flow related to syntectonic movement of hot fluids towards the foreland associated with Alleghanian deformation. In addition to the higher heat flow from these fluids, the Pennsylvania

  17. Recovery, restoration, and development of an enhancement plan for the Leading Creek watershed after dewatering of the Meigs {number_sign}31 coal mine in Ohio

    SciTech Connect

    Cherry, D.S.; Hassel, J.H. Van; Yeager, M.M.; Babendreier, J.E.; Currie, R.J.; Astin, L.E.; Lynde, S.R. |

    1995-12-31

    Following the flooding of the Meigs {number_sign}31 deep coal mine in Meigs County, Ohio, a proactive plan was developed to evaluate effects of initial dewatering, recovery, and development of a watershed enhancement plan. Approximately half of the 31-mile Leading Creek mainstem received coal mine discharge of high conductivity, low pH, high metals and total suspended solids loading. Most forms of aquatic life were depleted in the impacted areas of the creek. After three years since the incident, many forms of benthic macroinvertebrates and fish have returned to the creek, and sediments have been purged of metal loading by storm water events. The enhancement plan involves a reconnaissance of the creek and tributaries pinpointing areas of agricultural sedimentation and abandoned mined land (AML) influences in the lower half. Research activities involved sampling water and sediment in 10 stations of the creek and 17 major tributaries. The tributaries were addressed as point source discharges with water/sediment toxicity testing conducted. In-situ testing included growth impairment evaluation of Asian clams at 27 stations in the watershed. Several tributaries were intermittently toxic depending upon rainfall and the degree of AML input. Benthic macroinvertebrate assembles in most tributaries were stressed and comprised 0--3 taxa. Erosion/sedimentation loading was being addressed by hydrological modeling of the creek, land use management/habitat assessment, and data management by geographic information systems.

  18. Coal anion structure and chemistry of coal alkylation. Final report, March 1, 1979-February 29, 1980

    SciTech Connect

    Stock, L.M.

    1980-01-01

    In accord with Task 1, some ether cleavage reactions were carried out in two different media - potassium/naphthalene/tetrahydrofuran and potassium/ ammonia - so that the merits and demerits of the two methods could be compared. Preliminary results suggest that both systems yield the same products, and that the ammonia medium is more convenient to work with, because of the absence of by-products such as reduced naphthalenes and tetralin. Dialkyl ethers were found to be least reactive compounds while the benzyl and phenyl ethers were found to be most reactive, as would be expected. The reductive alkylation of coal was carried out in ammonia at 25/sup 0/C. The tetrahydrofuran solubility of the reaction product was surprisingly low. We have obtained additional /sup 13/C)/sup 1/H) nmr data for tetrahydrofuran-soluble butylated coal and some model compounds; obtained additional Styragel(R) chromatography data of tetrahydrofuran-soluble coal labelled with 98%-enriched butyl-1,1-d/sub 2/ iodide; and obtained /sup 2/D nmr spectra of all the deuterium-labelled, tetrahydrofuran-soluble coal products. In accord with Task 4, we have undertaken a review of the information now available concerning the nature of Illinois No. 6 coal. Also, the effects of organic additives on the exchange reactions between tetralin-d/sub 12/ and diphenyl-methane and on the thermal cleavage reactions of several model compounds in tetralin were investigated to probe the relationship between structure and reactivity. The exchange reaction can be accelerated by coal, asphaltene-preasphaltene fractions derived from coal, compounds with labile bonds, or compounds which can be reduced readily. The pyridine-insoluble coal product, acids, and bases are inactive toward the exchange reaction.

  19. Fine particle clay catalysts for coal liquefaction. Final technical report

    SciTech Connect

    Olson, E.S.

    1995-08-01

    In an effort to develop new disposable catalysts for direct coal liquefaction, several types of clay-supported pyrrhotite catalysts were prepared and tested. These included iron-pillared montmorillonite, mixed iron/alumina-pillared montmorillonite, iron-impregnated montmorillonite, and iron oxometallate-impregnated montmorillonite.

  20. Evaluation of hyperbaric filtration for fine coal dewatering. Final report

    SciTech Connect

    Parekh, B.K.; Hogg, R.; Fonseca, A.

    1996-08-15

    The main objectives of the project were to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20% moisture. The program consisted of three phases, namely Phase 1 -- Model Development, Phase 2 -- Laboratory Studies, Phase 3 -- Pilot Plant Testing. The Pennsylvania State University led efforts in Phase 1, the University of Kentucky in Phase 2, and CONSOL Inc. in Phase 3 of the program. All three organizations were involved in all the three phases of the program. The Pennsylvania State University developed a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky conducted experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in Phase 1 and 2 were tested in two of the CONSOL Inc. coal preparation plants using an Andritz Ruthner portable hyperbaric filtration unit.

  1. Biological production of ethanol from coal. Final report

    SciTech Connect

    Not Available

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  2. Improving the scheme for final comminution of the coal charge

    SciTech Connect

    Antonov, A.V.; Kress, L.A.; Stepura, P.G.; Vorob'ev, S.E.; Zayoruiko, S.I.

    1983-01-01

    Proceeding from laboratory and pilot plant tests of the screening of fine classes of coal under the effect of gravitational forces on stationary grates, and also from the experience of the Krivoi Rog and Kommunarsk Coke Works (1,2), the coal preparation division of OKhMK (Orsk-Khalilovo Integrated Iron and Steel Works) adopted an industrial scheme of comminution of coal before coking, screening out the fine classes ahead of the hammer crushers. In the bottom of the feeder chute a stamped screen was installed (dimensions 2100 X 1600 X 5 mm with apertures of 40 X 100 mm) with the large side perpendicular to the flow of coal. The distance between the apertures on the small side of the screen was 20 mm, on the large side 15 mm; the inclination was 60/sup 0/. The overscreen product enters the crusher, and the underscreen product is injected into the crushed charge without comminution. The improvement in the uniformity of the granulometric and qualitative composition of the prepared charge resulted in an improvement in the physicomechanical properties of the blast furnace coke. The mechanical strength of the coke by the M/sub 25/ index rose from 86.4 to 86.6%, while the abradability by the M/sub 10/ index decreased from 7.5 to 7.3%.

  3. Basic properties of coals and other solids. Final report, September 1, 1989--August 30, 1992

    SciTech Connect

    Arnett, E.M.

    1992-12-31

    The previous project dissected the heats of interactions of a series of coals into components that represented Bronsted acidity, hydrogen-bonding acidity and dispersion force interactions through comparison with the simple prototype solid acids: sulfonic acid resin, silica, and graphitized carbon black respectively. The present grant has emphasized the interaction of basic components in the coal with strong Bronsted acids and boron trichloride, a very strong Lewis acid, with a brief examination of the interactions of the coals with phenols as weaker hydrogen-bonding acids. We have also compared several coals with liquids derived from them at Wilsonville and Exxon. Finally, we have examined the effect of citric acid washing on several coals.

  4. Coal-fired high performance power generating system. Final report

    SciTech Connect

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  5. High-pressure coal fuel processor development. Final report

    SciTech Connect

    Greenhalgh, M.L.

    1992-12-01

    Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

  6. 76 FR 56708 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... February 16, 2009. From Production of Dyes, Pigments, and Food, Drug and Cosmetic Colorants; Mass Loadings...; 3745-51-30; 3745- From Production of Dyes, 51-32; 3745-270-20; 3745-270-40; Effective Pigments, and Food, Drug and February 16, 2009. Cosmetic Colorants; Mass Loadings-Based Listing; Final...

  7. Geologic setting and water quality of selected basins in the active coal-mining areas of Ohio, 1989-91, with a summary of water quality for 1985-91

    USGS Publications Warehouse

    Sedam, A.C.; Francy, D.S.

    1993-01-01

    This report presents streamwater- and ground-water-quality data collected to characterize the baseline water quality for 21 drainage basins in the coal-mining region of eastern Ohio. The study area is mostly within the unglaciated part of eastern Ohio along the western edge of the Appalachian Plateaus Physiographic Province. The data collected from 1989-91 and presented in this report represent the third and final phase of a 7-year study to assess baseline water quality in Ohio's coal region during 1985-1991. During 1989-91, 246 samples from 41 streamwater sites were collected periodically from a long-term site network. Ranges and medians of measurements made at the long-term streamwater sites were following: specific conductance, 270 to 5,170 and 792 microsiemens per centimeter at 25 degrees Celsius; pH, 2.7 to 9.1 and 7.8; alkalinity, 1 to 391 and 116 mg/L (milligrams per liter). Ranges and medians of laboratory analyses of the same samples were the following: dissolved sulfate, 13 to 2,100 and 200 mg/L; dissolved aluminum, <10 to 17,000 and 300 ? /L (micrograms per liter); dissolved iron, <10 to 53,000 and 60 ? /L; and dissolved manganese, <10 to 17,000 and 295 ? /L. The ranges for concentrations of total recoverable aluminum, iron, and manganese were similar to the ranges of concentrations found for dissolved constituents. Medians of total recoverable aluminum and iron were about 10 times greater than the medians of dissolved aluminum and iron. During 1989-91, once-only sample collections were done at 45 streamwater sites in nine basins chosen for synoptic sampling. At several sites in the Middle Hocking River basin and Leading Creek basin, water had low pH and high concentrations of dissolved aluminum, iron and manganese. These water-quality characteristics are commonly associated with ace mine drainage. Throughout the entire 7-year study (1985-91), medians for most constituents at the long-term streamwater-sampling sites were fairly consistent, despite the

  8. Fine coal cleaning. Final report for the period ending March 31, 1986

    SciTech Connect

    Brown, D.J.

    1986-06-01

    Washability data on coals from the western United States is generally very limited and their response to standard washing techniques cannot be predicted. To expand the data base, the Department of Energy initiated a washability study for both conventional and fine-size ranges of western coals. The Pittsburgh Energy Technology Center (PETC) performed float-sink washability testing on 156 western coals crushed to 1 1/2'' x 0, 3/8'' x 0, and 14 mesh x 0. The University of North Dakota Energy Research Center (UNDERC) performed centrifugal float-sink washability resting on 61 of those 156 test coals crushed to 65 mesh x 0. In addition, 35 of the 65 mesh x 0 coals were further reduced to 200 mesh x 0 and tested, and three coals were pulverized to 325 mesh x 0 and tested. Generally, the higher-ranked coals were most amenable to the gravity separation technique. Pulverized of study coals to finer grain size distributions did not significantly improve the coal's Washabilities, as float ash content of 200 mesh x 0 and 325 mesh x 0 samples were generally similar to 65 mesh x 0 float ash content. UNDERC also investigated the applicability of oil agglomeration and froth floatation on the benefication of four selected economically important western coals. In general, these tests were not as successful at beneficiating western coals as the standard float-sink technique, which provided the highest degree of ash separation at the highest weight yields. This final report summarizes work completed on the float-sink washability data base, oil agglomeration testing, and froth flotation testing at UNDERC from May 1983 through March 1986. 12 refs., 1 fig., 1 tab.

  9. Surface Properties of Photo-Oxidized Bituminous Coals: Final report

    SciTech Connect

    1998-09-01

    Natural weathering has a detrimental effect on the hydrophobic nature of coal, which in turn can influence clean-coal recovery during flotation. Few techniques are available that can establish the quality of coal surfaces and that have a short analysis time to provide input for process control. Luminescence emissions which can be quantified with an optical microscope and photometer system, are measurably influenced by degree of weathering as well as by mild storage deterioration. In addition, it has been shown that when vitrinite is irradiated with a relatively high intensity flux of violet- or ultraviolet- light in the presence of air, photo-oxidation of the surface occurs. The combination of measuring the change in luminescence emission intensity with degree of surface oxidation provided the impetus for the current investigation. The principal aim of this research was to determine whether clear correlations could be established among surface oxygen functionality, hydrophobicity induced by photo-oxidation, and measurements of luminescence intensity and alteration. If successful, the project would result in quantitative luminescence techniques based on optical microscopy that would provide a measure of the changes in surface properties as a function of oxidation and relate them to coal cleanability. Two analytical techniques were designed to achieve these goals. Polished surfaces of vitrain bands or a narrow size fraction of powdered vitrain concentrates were photo-oxidized using violet or ultraviolet light fluxes and then changes in surface properties and chemistry were measured using a variety of near-surface analytical techniques. Results from this investigation demonstrate that quantitative luminescence intensity measurements can be performed on fracture surfaces of bituminous rank coals (vitrains) and that the data obtained do reveal significant variations depending upon the level of surface oxidation. Photo-oxidation induced by violet or ultraviolet light

  10. Spin-mapping of coal structures with ESE and ENDOR. Final technical report

    SciTech Connect

    Belford, R.L.; Clarkson, R.B.

    1993-06-01

    Several kinds of electron paramagnetic resonance (EPR) spectra of coal (including whole coal, separated macerals, density-gradient separated fractions, and treated coals) and of model organic thought to be molecular constituents of coals were acquired and analyzed in order to probe the molecular structure and surface properties of coals and of model systems. Typically, the model compounds under investigation and their analogues are found in coals as stable free radicals which give rise to an EPR signal. In some cases, the model compounds were selected because they have some characteristic, such as a particular functional group or heteroatom which may be found in coals, which fits them to serve as test materials for methods development. Two critical instruments for this work - the W-band EPR spectrometer and the S-band ESE spectrometer - were built in this laboratory and were both further developed as part of this project. The ENDOR spectrometer also has been improved. During the course of this project, the W-band EPR system has proven to be the most fruitful tool for probing the chemical structures of coal with the ESE system providing the most valuable auxiliary data. The following report summarizes highlights of these studies. It provides some background, rationale, and selected data and results. Finally, a list of papers and presentations is provided together with abstracts of all of them.

  11. 76 FR 38266 - Notice of Final Federal Agency Actions on Proposed Highway in Ohio

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... claim is filed on or before December 27, 2011. If the Federal law that authorizes judicial review of a...]; Federal-Aid Highway Act . 2. Air: Clean Air Act, 42 U.S.C. 7401-7671(q). 3. Land: Land and Water... other Federal agencies that are final within the meaning of 23 U.S.C. 139(l)(1). The actions relate to...

  12. Investigation of formation of nitrogen compounds in coal combustion. Final report

    SciTech Connect

    Blair, D.W.; Crane, I.D.; Wendt, J.O.L.

    1983-10-01

    This is the final report on DOE contract number DE-AC21-80MC14061. It concerns the formation of nitrogen oxide from fuel-bound nitrogen during coal combustion. The work reported was divided into three tasks. They addressed problems of time-resolving pyrolysis rates of coal under simulated combustion conditions, the combustion of the tar that results from such pyrolysis, and theoretical modeling of the pyrolysis process. In all of these tasks, special attention was devoted to the fate of coal nitrogen. The first two tasks were performed by Exxon Research and Engineering Company. 49 references.

  13. The geochemistry of coal origins in relation to coal structure: Final technical report

    SciTech Connect

    Given, P.H.; Spackman, W.; Painter, P.C.

    1987-10-06

    The principal objective of the study is to seek an understanding of the processes involved in the transformation of ligno-cellulosic cell walls of higher plants into coal-forming entities during the early stages of coal formation. It is felt that this is one valid and potentially valuable approach to solving the problems of coal structure and elucidating the origins of coal macerals. The tactical approach has been to select samples of very immature coals that exhibit differing degrees of preservation of woody structure and examine them by optical microscopy, using transmission of light through thin sections with and without polarizing screens, and fluorescence excited by blue or uv light. Specimens characterized in this way were then studied by Fourier Transform Infrared spectroscopy, /sup 13/C NMR and various pyrolysis/mass spectrometric techniques. Samples from two different sites were available, but most of the work was on a large set of samples collected from the Brandon lignite in Vermont; plants whose remains are seen in this lignite include many of those now populating parts of the Okefenokee Swamp in Georgia and the Everglades of Florida. A number of samples of peatified wood were included in the microscopic studies, in order to document the earliest changes and provide material for comparison.

  14. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 3. Group I. Coal & Coke.

    DTIC Science & Technology

    1980-12-01

    waterways Traffic surveys 0, ABST’ACT ( a , nf us , -rover"s td - d Ido.njd by block n.uber) < This Corps of Engineers report describes one of three...will be used to evaluate specific waterway improvements to meet short and long-term navigation needs. The output from these studies will serve as...System. These data will be used in current studies relating to improvement of Gallipolis Locks, the Monongahela River, the Upper Ohio River, th4

  15. Innovative coal-fueled diesel engine injector. Final report

    SciTech Connect

    Badgley, P.; Doup, D.

    1991-05-01

    The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

  16. Enhanced coal hydrogasification via oxidative pretreatment. Final technical report

    SciTech Connect

    Miller, D.J.

    1992-04-16

    The gasification of coal char by hydrogen is much slower than in steam or carbon dioxide; moreover, hydrogasification rate in pure hydrogen decreases sharply with conversion for most carbons. To overcome this kinetic behavior, the oxidation of the char prior to and during hydrogasification has been investigated as a means of enhancing hydro gasification rate. Kinetic rate studies under well-characterized conditions have been complemented by careful surface analyses to characterize oxygen on the char surface prior to and during hydrogasification.

  17. MHD coal combustor technology. Final report, phase II

    SciTech Connect

    Not Available

    1980-09-01

    The design, performance, and testing of a 20-MW coal combustor for scaleup to 50 MW for use in an MHD generator are described. The design incorporates the following key features: (1) a two-stage combustor with an intermediate slag separator to remove slag at a low temperture, thus minimizing enthalpy losses required for heating and vaporizing the slag; (2) a first-stage pentad (four air streams impinging on one coal stream) injector design with demonstrated efficient mixing, promoting high carbon burnout; (3) a two-section first-stage combustion chamber; the first stage using a thin slag-protected refractory layer and the second section using a thick refractory layer, both to minimize heat losses; (4) a refractory lining in the slag separator to minimize heat losses; (5) a second-stage combustor, which provided both de-swirl of the combustion products exiting from the slag separator and simple mixing of the vitiated secondary air and seed; (6) a dense-phase coal feed system to minimize cold carrier gas entering the first-stage combustors; (7) a dry seed injection system using pulverized K/sub 2/CO/sub 3/ with a 1% amorphous, fumed silicon dioxide additive to enhance flowability, resulting in rapid vaporization and ionization and ensuring maximum performance; and (8) a performance evaluation module (PEM) of rugged design based on an existing, successfully-fired unit. (WHK)

  18. Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1994-06-14

    This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

  19. Advanced concepts in coal liquefaction: Optimization of reactor configuration in coal liquefaction. Final report

    SciTech Connect

    Pradhan, V.R.; Comolli, A.G.; Lee, L.K.

    1994-11-01

    The overall objective of this Project was to find the ways to effectively reduce the cost of coal liquids to about dollar 25 per barrel of crude oil equivalent. The work described herein is primarily concerned with the testing at the laboratory scale of three reactor configuration concepts, namely (1) a fixed-bed plug-flow reactor as a ``finishing reactor`` in coal liquefaction, (2) three-stage well-mixed reactors in series, and (3) interstage stream concentration/product separation. The three reactor configurations listed above were tested during this project using a 20 cc tubing microreactor, a fixed-bed plug flow reactor, and a two-stage modified Robinson-Mahoney reactor system. The reactor schemes were first evaluated based on theoretical modelling studies, then experimentally evaluated at the microautoclave level and laboratory scale continuous operations. The fixed-bed ``finishing reactor`` concept was evaluated in both the upflow and the downflow modes of operation using a partially converted coal-solvent slurry as feed. For most of the testing of concepts at the microautoclave level, simulated coal, recycle oil, and slurry feedstocks were either specially prepared (to represent a specific state of coal/resid conversion) and/or obtained from HRI`s other ongoing bench-scale and PDU scale coal liquefaction experiments. The three-stage continuous stirred tank reactors (CSTR) and interstage product stream separation/concentration concepts were tested using a simulated three-stage CSTR system by employing a laboratory-scale ebullated-bed system and a modified version of the HRI`s existing Robinson-Mahoney fixed catalyst basket reactor system. This testing was conducted as a fourteen day long continuous run, divided into four Conditions to allow for a comparison of the new three-stage CSTR and interstage product concentration concepts with a two-stage CSTR baseline configuration.

  20. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule... of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP) under...

  1. 78 FR 26739 - Notice of Final Action on Petition From Earthjustice To List Coal Mines as a Source Category and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... AGENCY 40 CFR Part 63 Notice of Final Action on Petition From Earthjustice To List Coal Mines as a Source Category and To Regulate Air Emissions From Coal Mines AGENCY: Environmental Protection Agency (EPA..., the Acting EPA Administrator, Bob Perciasepe, signed a letter denying a petition to add coal mines to...

  2. Characterization and evaluation of washability of Alaskan coals: Fifty selected seams from various coal fields: Final technical report, September 30, 1976-February 28, 1986. [50 coal seams

    SciTech Connect

    Rao, P.D.

    1986-09-01

    This final report is the result of a study initiated in 1976 to obtain washability data for Alaskan coals, to supplement the efforts of the US Department of Energy in their ongoing studies on washability of US coals. Washability characteristics were determined for fifty coal samples from the Northern Alaska, Chicago Creek, Unalakleet, Nenana, Matanuska, Beluga, Yentna and Herendeen Bay coal fields. The raw coal was crushed to 1-1/2 inches, 3/8 inch, 14 mesh and 65 mesh top sizes, and float-sink separations were made at 1.30, 1.40 and 1.60 specific gravities. A limited number of samples were also crushed to 200 and 325 mesh sizes prior to float-sink testing. Samples crushed to 65 mesh top size were also separated at 1.60 specific gravity and the float and sink products were characterized for proximate and ultimate analyses, ash composition and ash fusibility. 72 refs., 79 figs., 57 tabs.

  3. Coal-water slurry (CWS) dispenser: Final report

    SciTech Connect

    Loth, J.L.; Kulkarni, B.M.

    1987-01-01

    This thesis addressed some of the problems associated with using Coal-Water Slurry as a fuel in gas turbine combustors. A technique has been developed which reduces the velocity and average droplet size distribution needed for good atomization to achieve high combustion efficiency. Finely atomized droplets are desired to minimize the number of coal particles which fuse together in the high radiation zone. Any big droplet discharged from the atomizing nozzle will be slow to dry and ignite, which consequently may reduce the combustion efficiency. To study the characteristics of a CWS spray entering the combustor, a dryer dispenser unit was designed and built. Typical gas turbine operating conditions are discussed. Atomization aspects are discussed. CWS nozzles are found to produce high velocity spray with a wide range of particle sizes. Dried samples were studied under the scanning electron microscope. The micrographs of the samples collected in the range of 70 to 550/sup 0/F show that the individual coal particles are within a 15 micron range. The single droplet drying rate was found to be unrelated to that occurring inside a jet. Particles collected at room temperature are sharp and not rounded at the edges. Particles collected at 400/sup 0/F have a tendency to stay together; they are much more rounded at the edges than those collected at 70/sup 0/F. The individual particle size distribution is not much affected in the range of temperatures from 70 to 500/sup 0/F, but agglomeration is directly proportional to the dryer temperature. Since the particle size distribution of CWS does not change much in the range of 70 to 500/sup 0/F, predrying prior to entering the high radiation zone, is not beneficial. Fine CWS atomization is more important to decrease the ignition delay and to maximize the combustion efficiency.

  4. Kinetics assisted design of catalysts for coal liquefaction. Final report

    SciTech Connect

    Klein, M.T.; Foley, H.C.; Calkins, W.H.; Scouten, C.

    1998-02-01

    The thermal and catalytic reactions of 4-(1-naphthylmethyl)bibenzyl (NBBM), a resid and coal model compound, were examined. Catalytic reaction of NBBM was carried out at 400 C under hydrogen with a series of transition metal-based catalytic materials including Fe(CO){sub 4}PPh{sub 3}, Fe(CO){sub 3}(PPh{sub 3}){sub 2}, Fe(CO){sub 2}(PPh{sub 3}){sub 2}CS{sub 2}, Fe(CO){sub 5}, Mo(CO){sub 6}, Mn{sub 2}(CO){sub 10}, Fe{sub 2}O{sub 3} and MoS{sub 2}. Experimental findings and derived mechanistic insights were organized into molecular-level reaction models for NBBM pyrolysis and catalysis. Hydropyrolysis and catalysis reaction families occurring during NBBM hydropyrolysis at 420 C were summarized in the form of reaction matrices which, upon exhaustive application to the components of the reacting system, yielded the mechanistic reaction model. Each reaction family also had an associated linear free energy relationship (LFER) which provided an estimate of the rate constant k{sub i} given a structural property of species i or its reaction. Including the catalytic reaction matrices with those for the pyrolysis model provided a comprehensive NBBM catalytic reaction model and allowed regression of fundamental LFER parameters for the catalytic reaction families. The model also allowed specification of the property of an optimal catalyst. Iron, molybdenum and palladium were predicted to be most effective for model compound consumption. Due to the low costs associated with iron and its disposal, it is a good choice for coal liquefaction catalysis and the challenge remains to synthesize small particles able to access the full surface area of the coal macromolecule.

  5. Lock hopper valves for coal gasification. Final report

    SciTech Connect

    Not Available

    1981-05-01

    The design, fabrication, and testing of two configurations of Lock Hopper Valves is described. These two configurations are intended to meet the requirements for four typical types of service in coal gasification plants. Operating pressures for either configuration is 1600 psi. One configuration is designed for use at temperatures up to 2000/sup 0/F, and the other for temperatures up to 850/sup 0/F. Several unique construction features are employed, including the extensive use of dense alumina ceramic, especially in the high-temperature valve. The description includes details of construction, and problems encountered during fabrication and testing, and proposed solutions to those problems.

  6. Advanced direct coal liquefaction concepts. Final report, Volume 2

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1994-07-01

    Integration of innovative steps into new advanced processes have the potential to reduce costs for producing liquid fuels. In this program, objective is to develop a new approach to liquefaction that generates an all distillate product slate at a reduced cost of about US$25/barrel of crude oil equivalent. A Counterflow Reactor was developed in cooperation with GfK mbH, Germany. Advantages are low hydrogen recycle rates and low feed preheating requirements. Coal/heavy oil slurry is injected into the top of the reactor while the recycle gas and make up hydrogen is introduced into the bottom; hydrogenation products are withdrawn from the top. PU study resulted in distillable oil yields up to 74 wt % on feed (dry ash free) from coprocessing feed slurries containing 40 wt % Vesta subbituminous coal and 60 wt % Cold Lake heavy vacuum tower bottoms. Technologies developed separately by CED and ARC were combined. A 1-kg/hr integrated continuous flow bench scale unit was constructed at the ARC site in Devon, Alberta, based on modifications to a unit at Nisku, Alberta (the modified unit was used in the preliminary economic evaluation).

  7. Phase equilibrium in coal liquefaction processes. Final report

    SciTech Connect

    Chao, K.C.

    1984-08-01

    Gas-liquid equilibrium data have been determined in simulation of coal liquefaction process conditions in mixtures of light gases + heavy hydrocarbons to add to the accumulated data previously reported in EPRI AP-1593. The mixture systems newly investigated are: methane + 9,10 dihydrophenanthrene; hydrogen + methane + 1-methylnaphthalene; hydrogen + carbon dioxide + tetralin; hydrogen + carbon dioxide + 1-methynaphthalene; hydrogen + carbon dioxide + quinoline; nitrogen + tetralin, + n-hexadecane, + 1-methylnaphthalene, + quinoline, and + m-cresol. Correlations for the solubilities of methane and carbon dioxide have been developed from the data based on the use of solubility parameter. The solubility of hydrogen was correlated in EPRI AP-1593. Two equations of state are developed for the description of both the gas solubility and the vaporization of the heavy oil. The Chain-of-Rotators (COR) equation of state explicitly accounts for the rotational molecular motion contribution to the pressure of a fluid. The Cubic-Chain-of-Rotators (CCOR) equation is obtained upon simplifying the COR equation. Interaction constants in the CCOR equation have been determined for the light gases with the heavy hydrocarbons based on data from this project, and the constants are correlated. Equilibrium flash vaporization has been experimentally determined for three coal liquids and for their mixtures with hydrogen. The data are correlated with the CCOR equation of state. 74 figures, 46 tables.

  8. Advanced Coal-Fueled Gas Turbine Program. Final report

    SciTech Connect

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  9. The effect of selective solvent absorption on coal conversion. Final technical report

    SciTech Connect

    Larsen, J.W.

    1993-11-01

    Using a pair of different recycle oils from Wilsonville and {sup 1}H NMR, {sup 13}C NMR, gel permeation (GPC) chromatography, high pressure liquid chromatography (HPLC), and elemental analysis, no significant differences were observed between the composition of the recycle oil and that portion of the oil not absorbed by the coal. For these complex mixtures, coals are not selective absorbants. Since most of the heteroatoms responsible for most of the specific interactions have been removed by hydrogenolyses, this is perhaps not surprising. To address the issue of the role of hydrogen bond donors in the reused as hydrogen donor coal, tetralin and 2-t-butyltetralin were used as hydrogen donor solvents. This work is reported in detail in Section 2. The basic idea is that the presence of the t-butyl group on the aromatic ring will hinder or block diffusion of the hydrogen donor into the coal resulting in lower conversions and less hydrogen transferred with 2-t-butyltetralin than with tetralin. Observed was identical amounts of hydrogen transfer and nearly identical conversions to pyridine solubles for both hydrogen donors. Diffusion of hydrogen donors into the coal does not seem to play a significant role in coal conversion. Finally, in Section 3 is discussed the unfavorable impact on conversion of the structural rearrangements which occur when Illinois No. 6 coal is swollen with a solvent. We believe this rearrangement results in a more strongly associated solid leading to the diminution of coal reactions. Hydrogen donor diffusion does not seem to be a major factor in coal conversion while the structural rearrangement does. Both areas warrant further exploration.

  10. Recovery and reconnaissance of the Leading Creek watershed, Meigs County, Ohio, following a dewatering of Meigs {number_sign}31 coal mine

    SciTech Connect

    Currie, R.J.; Astin, L.E.; Yeager, M.M.; Cherry, D.S.; Hassel, J.H. van |

    1995-12-31

    A database has been developed before and after the dewatering of the Meigs {number_sign}31 deep coal mine in Meigs County, Ohio, three years ago. This strategy was to compare potential recovery of the watershed in the mainstem of Leading Creek as well as to reconnaissance the tributaries for point-source input into the creek. After the dewatering process, {approximately} half of the 31-mile Leading Creek mainstem received a discharge of conductivity, low pH, high metals (iron, manganese, copper, aluminum), and total suspended solids (TSS). Most forms of aquatic life in the creek were depleted in the impacted areas, but recovery has been encouraging. Relative fish abundance has returned to pre-event levels, while benthic macroinvertebrates show recovery in two key stream segments. Reconnaissance of the watershed indicated that the system is uniquely segregated with high sedimentation from agricultural input in the upper half and abandoned mined land (AML) discharges in the lower. The AML-influenced tributaries were intermittently toxic throughout the year with 48-hr LC50 values of 14.6--6.0% effluent at Thomas Fork tributary. Macroinvertebrate assemblages in many of the AML and agriculturally influenced tributaries ranged from 0--3 taxa. The consequence of erosion/sedimentation loading is being addressed relative to autochromous input of in-stream AML/TSS input versus that from allochthomous input from stream bank/land use management.

  11. Thermally induced structural changes in coal combustion. Final report

    SciTech Connect

    Flagan, R.C.; Gavalas, G.R.

    1992-01-01

    The effects of the temperature-time history during coal devolitization and oxidation on the physical properties and the reactivity of resulting char were studied experimentally for temperatures and residence times typical of pulverized combustion. Experiments were also carried out at somewhat lower temperatures and correspondingly longer residence times. An electrically heated laminar flow reactor was used to generate char and measure the rates of oxidation at gas temperatures about 1600K. Partially oxidized chars were extracted and characterized by gas adsorption and mercury porosimetry, optical and scanning electron microscopy, and oxidation in a thermogravimetric analysis system (TGA). A different series of experiments was conducted using a quadrople electrodynamic balance. Single particles were suspended electrodynamically and heated by an infrared laser in an inert or oxygen-containing atmosphere. During the laser heating, measurements were taken of particle mass, size/shape, and temperature.

  12. Silica membranes for hydrogen separation from coal gas. Final report

    SciTech Connect

    Gavalas, G.R.

    1996-01-01

    This project is a continuation of a previous DOE-UCR project (DE-FG22- 89PC89765) dealing with the preparation of silica membranes highly permselective to hydrogen at elevated temperatures, suitable for hydrogen separation from coal gas. The membranes prepared in the previous project had very high selectivity but relatively low permeance. Therefore, the general objectives of this project were to improve the permeance of these membranes and to obtain fundamental information about membrane structure and properties. The specific objectives were: (1) to explore new silylation reagents and reaction conditions with the purpose of reducing the thickness and increasing the permeance of silica membranes prepared by chemical vapor deposition (CVD), (2) to characterize the membrane structure, (3) to delineate mechanism and kinetics of deposition, (4) to measure the permeability of silica layers at different extents of deposition, and (5) to mathematically model the relationship between structure and deposition kinetics.

  13. Perminalized Alethopteris from the Upper Pennsylvanian of Ohio and Illinois

    SciTech Connect

    Mickle, J.E.; Rothwell, G.W.

    1982-03-01

    Fern-like foliage referable to Alethopteris Steinberg has been discovered in coal balls of Late Pennsylvanian age from near Staubenville, Ohio, and Berryville, Illinois. Pinnule morphology is described from specimens preserved on coal-ball surfaces.

  14. A mineralogical and geochemical investigation of street sediment near a coal-fired power plant in Hamilton, Ohio: an example of complex pollution and cause for community health concerns.

    PubMed

    LeGalley, Erin; Krekeler, Mark P S

    2013-05-01

    The Hamilton Municipal Electric Plant is a 125 MW coal-fired power plant, owned and operated by the City of Hamilton in Butler County, Ohio. The plant is located within 110 m of 50 homes. Bulk chemical investigation of street sediment near these homes indicates average concentrations of 25 ppm Cr, 40 ppm Cu, 15 ppm Ni, 215 ppm Pb, and 500 ppm Zn. Lead and Zn have maximum concentrations of 1207 ppm and 1512 ppm, respectively. Scanning electron microscopy indicates coal ash spherules are present in the street sediment as well as a variety of Pb, Ni, Cr, W, and BaSO4 particulates. Transmission electron microscopy indicates heavy metals are sorbed onto clay particles with some preference for illite over chlorite. This investigation shows bulk chemistry and electron microscopy approaches are very effective tools to investigate particulate pollutants and identify contexts in complex urban settings involving coal pollution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Encoal mild coal gasification project: Encoal project final report, July 1, 1997--July 31, 1997

    SciTech Connect

    1997-07-01

    This document is the summative report on the ENCOAL Mild Coal Gasification Project. It covers the time period from September 17, 1990, the approval date of the Cooperative Agreement between ENCOAL and the US Department of Energy (DOE), to July 17, 1997, the formal end of DOE participation in the Project. The Cooperative Agreement was the result of an application by ENCOAL to the DOE soliciting joint funding under Round III of the Clean Coal Technology Program. By June 1992, the ENCOAL Plant had been built, commissioned and started up, and in October 1994, ENCOAL was granted a two-year extension, carrying the project through to September 17, 1996. No-cost extensions have moved the Cooperative Agreement end date to July 17, 1997 to allow for completion of final reporting requirements. At its inception, ENCOAL was a subsidiary of Shell Mining Company. In November 1992, Shell Mining Company changed ownership, becoming a subsidiary of Zeigler Coal Holding Company (Zeigler) of Fairview Heights, Illinois. Renamed successively as SMC Mining Company and then Bluegrass Coal Development Company, it remained the parent entity for ENCOAL, which has operated a 1,000-ton/day mild coal gasification demonstration plant near Gillette, Wyoming for nearly 5 years. ENCOAL operates at the Buckskin Mine owned by Triton Coal Company (Triton), another Zeigler subsidiary.

  16. Coal-gasification systems: a guide to status, applications, and economics. Final report

    SciTech Connect

    Simbeck, D.R.; Dickenson, R.L.; Oliver, E.D.

    1983-06-01

    Coal gasification has been the subject of a great deal of study and development worldwide over the past decade. The open literature currently contains bewildering and often inconsistent information concerning the development status and economic viability of coal gasification systems. The Advanced Power Systems Division of EPRI has devoted considerable resources to the development and demonstration of coal gasification technology for ultimate use in electric-power-generation systems. The primary objective of this Guide is to provide current and consistent information concerning the status of commercial development, potential utility applications and EPRI-developed capital and operating costs for coal-gasification technologies that have already been demonstrated at commercial scale as well as for those that are close to commercial practice. Current commercial/developmental status of Lurgi, Koppers-Totzek, Texaco, Shell, British Gas Corporation/Lurgi, KILnGAS, Westinghouse and High Temperature Winkler is discussed. Environmental aspects, thermal performance, reliabiilty and cost information are provided for medium-Btu gas production; retrofitting and repowering existing steam plants; integrated gasification combined cycle (IGCC) systems; low-water-consumption IGCC systems; methanol from coal; once-through methanol production in an IGCC system; and IGCC systems employing advanced, molten-carbonate fuel cells. Finally, for comparison purposes, performance and cost estimates on a consistent basis are provided for coal-fired steam plants; oil-fired steam plants; oil- and gas-fired combined-cycle and combustion-turbine plants. 88 figures, 86 tables.

  17. Final Environmental Impact Statement. Permit Application by United States Steel Corp., Proposed Lake Front Steel Mill, Conneaut, Ohio. Volume 3.

    DTIC Science & Technology

    1979-01-01

    interested in fishing may travel to the Grand River near Harpersfield and Austinburg, and for hunting, users may travel to the New Lyme and Orwell ...Pyiiatuning Reservoir Orwell , Ohio Grand River Tributary Albion, Pennsylvania East Branch of Conneaut Creek Waterford, Pennsylvania LeBoeuf Creek Union City

  18. CLASSIFICATION OF HIGH SPATIAL RESOLUTION, HYPERSPECTRAL REMOTE SENSING IMAGERY OF THE LITTLE MIAMI RIVER WATERSHED IN SOUTHWEST OHIO, USA (FINAL)

    EPA Science Inventory

    The document and associated land use/land cover (LULC) coverage, entitled Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA, is the result of a collaborative effort among an interdisci...

  19. 77 FR 38881 - Notice of Final Federal Agency Actions on Proposed Two New Ohio River Bridge Crossings in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... a proposed highway project, the Louisville-Southern Indiana Ohio River Bridges Project, which would...(l)(1). A claim seeking judicial review of the Federal agency actions on the highway project will be... shorter time period still applies. FOR FURTHER INFORMATION CONTACT: For FHWA: Mr. Duane Thomas,...

  20. Elevating the Importance of Teaching at Ohio Wesleyan University, 1975-1977, Final Report. National Project III.

    ERIC Educational Resources Information Center

    Ohio Wesleyan Univ., Delaware.

    A two-year study was conducted at Ohio Wesleyan University to analyze the faculty rewards structure as it relates to teaching; develop better diagnostic procedures for improving teaching; better coordinate teaching support services; and analyze student and faculty perceptions of effective teaching and learning. During the first study year, faculty…

  1. Energy Policy Act Transportation Rate Study: Final Report on Coal Transportation

    EIA Publications

    2000-01-01

    This is the final in a series of reports prepared for the U.S. Congress by the Secretary of Energy on coal distribution and transportation rates as mandated by Title XIII, Section 1340, Establishment of Data Base and Study of Transportation Rates, of the Energy Policy Act of 1992 (P.L. 102-486).

  2. Soil carbon and nitrogen in 28-year-old land uses in reclaimed coal mine soils of Ohio.

    PubMed

    Shrestha, Raj K; Lal, Rattan

    2007-01-01

    Carbon (C) and nitrogen (N) play an important role in the restoration of ecosystem functions of reclaimed mine soils (RMSs). Postreclamation land use in RMSs affects soil C and N pools and fluxes. We compared the effects of 28-yr-old postreclamation land uses (forest, hay, and pasture) on selected chemical properties of soil, and C and N pools in reference to undisturbed forest and moderately disturbed agricultural land use in southeastern Ohio. The electrical conductivity was higher in RMSs under hay than that in pasture and forest land uses. The RMSs under pasture, hay, and forest had moderately acidic, neutral to slightly alkaline, and slightly alkaline pH, respectively. In the 0- to 5-cm soil depth, soil organic C (SOC) was higher in RMSs under pasture by 99% and under hay by 52% over that under forest. Similarly, total nitrogen (TN) was higher in RMSs under pasture by 98% and under hay by 43% over that under forest. Aggregate-associated SOC concentration in the 0- to 5-cm depth decreased in the order of RMSs under hay > RMSs under pasture > RMSs under forest. The SOC pools in the 0- to 30-cm depth decreased in the order of RMSs under hay = RMSs under pasture > RMSs under forest = undisturbed forest = agriculture land use. Nitrogen pools followed a similar trend. Hay land use has a better potential for improving soil quality in RMSs by enhancing chemical properties and SOC and TN pools than forest or pasture land uses.

  3. The mechanism of hydrogen incorporation in coal liquefaction. Final report

    SciTech Connect

    1995-11-01

    The purpose of the research was to determine the detailed molecular mechanism for the introduction of hydrogen into coal when it is heated in an atmosphere of H{sub 2} in the absence of catalysts and to use this information as a baseline for the study of catalyzed processes. The plan was to study the reaction of model compounds with D{sub 2} in a glass-lined reactor of the authors` design and, by determining the distribution of D atoms in the reaction products, to deduce the reaction mechanism(s). As of the date of this report (Nov. 1995), the authors have, they believe conclusively, demonstrated the mechanism of the thermal process. They have studied several gas-phase reactions and, recently, have extended these to surface-immobilized models. The data are consistent in their support of the proposed sequence. Within the past year, they have begun to look at catalyzed hydrothermolysis and, while the work is at an early stage, they can draw a few significant conclusions, presented in the report.

  4. Kinetics of coal conversion to soluble products. Final technical report

    SciTech Connect

    Larsen, J.W.

    1994-04-12

    The objectives of this work are (1) to measure the kinetics of the conversion of coals to soluble products under model liquefaction conditions using GPS techniques to count the number of bonds broken; (2) to analyze these data using kinetic schemes based on the behavior of crosslinked macromolecular networks. The product was Soxhlet extracted with pyridine until the pyridine solution was clear. A gel permeation chromatogram of the pyridine soluble is shown in Figure 2A. The improved mass sensitive detector system requires only about 500 ng to acquire a chromatogram having fairly good S/N ratio. Apparently, no disturbance is caused by the remaining tetralin and naphthalene formed by dehydrogenation of tetralin. These seriously affect the lower molecular weight region when IR or UV detectors are used. It is a notable advantage of the mass sensitive detector that suitable adjustment of the nebulizer and of the evaporator completely suppressed the contribution of solvent to the chromatogram. The molecular weight distribution of liquefaction product appears to be almost unimodal if the small shoulder at the lower elution volume side is neglected.

  5. Biological upgrading of coal-derived synthesis gas: Final report

    SciTech Connect

    Barik, S.; Johnson, E.R.; Ko, C.W.; Clausen, E.C.; Gaddy, J.L.

    1986-10-01

    The technical feasibility of the biological conversion of coal synthesis gas to methane has been demonstrated in the University of Arkansas laboratories. Cultures of microorganisms have been developed which achieve total conversion in the water gas shift and methanation reactions in either mixed or pure cultures. These cultures carry out these conversions at ordinary temperatures and pressures, without sulfur toxicity. Several microorganisms have been identified as having commercial potential for producing methane. These include a mixed culture of unidentified bacteria; P. productus which produces acetate, a methane precursor; and Methanothrix sp., which produces methane from acetate. These cultures have been used in mixed reactors and immobilized cell reactors to achieve total CO and H/sub 2/ conversion in a retention time of less than two hours, quite good for a biological reactor. Preliminary economic projections indicate that a biological methanation plant with a size of 5 x 10/sup 10/ Btu/day can be economically attractive. 42 refs., 26 figs., 86 tabs.

  6. Applications of micellar enzymology to clean coal technology. Final report

    SciTech Connect

    Walsh, C.T.

    1993-03-10

    The sequential addition of enzyme and H{sub 2}O{sub 2} during the reverse micelle incubation was found to enhance sulfoxidation, but levels of EPSn remained low. The triplicate addition of enzyme and H{sub 2}0{sub 2} during the reverse micelle incubation of EPS was found to enhance sulfoxidation to EPSn and unidentified material. Low conversion to EPSn was not due to the inability of the enzyme to oxidize EPSX in reverse micelles, since the latter was demonstrated with both commercially available and enzymatically synthesized EPSx as starting material. Chloroperoxidase in an AOT-isooctane reverse micelle solution also mediated production of a metabolite from DBT with characteristics consistent with DBTSx. The magnitude of conversion was enhanced to 10% of the starting material by triplicate addition of enyme and H{sub 2}0{sub 2}. The identity of this metabolite as DBTSx was verified by GC/MS. Chloroperoxidase in reverse micelles appears therefore to be a versatile catalyst for sulfoxidation of aliphatic and aromatic sulfur-containing model coal compounds.

  7. An Economic Model of Future Coal/Densified Refuse-Derived Fuel Use at Wright-Patterson AFB, Ohio.

    DTIC Science & Technology

    1981-09-01

    DCUMETATON PkGEREAD INSTRUCTIONS REPORT DOCUMAEHTAT1OH PAGE DE.Ri C0MsLrT1cGFoRs TBEFORE COMPLETING FORM 1. RPORTMUM--En-12. OVT CC7~j 1 3. ME ENT*S...CATA6OG NUMOER LSSR 97-81 4. TITLE (and Subeitle) S. TYPE OF REPORT a PERIOD COVIRED AN ECONOMIC MODEL OF FUTURE COAL/DENSIFIED Master’s thesis REFUSE...DERIVED FUEL USE AT WRIGHT- 6. PERFORMING OAG. REPORT NUMBER PATTERSON AFB OH 7. AUTMOR(a) U. CONTRACT OR GRANT NUMGR(s) Richard G. Fedors, Captain, USAF

  8. Re-Use of Clean Coal Technology By-Products in the Construction of Low Permeability Liners. Final report

    SciTech Connect

    Wolfe, William E.; Butalia, Tarunjit S.; Walker, Harold; Mitsch, William

    2005-07-15

    This final project report presents the results of a research program conducted at The Ohio State University from January 3, 2000 to June 30, 2005 to investigate the long-term use of stabilized flue gas desulfurization (FGD) materials in the construction of low permeability liners for ponds and wetlands. The objective of the research program was to establish long-term field-verified time-dependent relationships for the performance of liners constructed from stabilized FGD byproducts generated in Ohio. The project objective was accomplished with a coordinated program of testing and analyzing small-scale laboratory specimens under controlled conditions, mediumscale wetland experiments, and monitoring of a full-scale FGD-lined pond facility. Although the specific uses directly addressed by this report include liners for surface impoundments, the results presented in this study are also useful in other applications especially in the design of daily covers and liners for landfills, seepage cutoff walls and trenches, and for nutrient retention and pollution mitigation wetlands. The small-scale laboratory tests and monitoring of the full-scale FGD lined facility (capacity of one million gallons) shows that stabilized FGD materials can be used as low permeability liners in the construction of water and manure holding ponds. Actual long-term permeability coefficients in the range of 10-7 cm/sec (3 x 10-9 ft/sec) can be obtained in the field by compacting lime and fly ash enriched stabilized FGD materials. Leachate from the FGD material meets Ohio’s non-toxic criteria for coal combustion by-products, and for most potential contaminants the national primary and secondary drinking water standards are also met. The low permeability non-toxic FGD material investigated in this study poses very minimal risks, if any, for groundwater contamination. The FGD wetland experiments indicated no significant differences in phosphorus retention between the clay and FGD

  9. Ultrafine grinding of low-rank coal: Final report

    SciTech Connect

    Bouchillon, C.W.; Steele, W.G.

    1986-08-01

    A study of ultrafine grinding of low-rank coals in a fluid-energy mill was undertaken. This report presents the results of the Phase I effort which included a review of the literature on ultrafine grinding, a review of theories of grinding, a combined grinding and drying experiment on Martin Lake Texas lignite, an evaluation of the energy requirements for the process, and an evaluation of the properties of the products from the grinding tests. A sample of Martin Lake Texas lignite was obtained and a series of tests were conducted in a fluid-energy mill at the Ergon, Inc., Micro-Energy Division development facility at Vicksburg, MS. The grinding fluids used were air at 116 F and steam at 225, 310, 350, 400, and 488 F as measured in the mill. The products of these tests were analyzed for volatile mattr, ash, total moisture, equilibrium moisture, heating value, density distribution, aerodynamic particle size classification, angle of repose, porosity, density, and particle size distribution. ASTM test procedures were followed where applicable. Ultimate and ash mineral analyses were also conducted on the samples. Results of the various tests are presented in detail in the report. In general, the fluid energy mill was used succssfully in simultaneous grinding and drying of the lignite. Particle size reduction to less than 10 microns on a population basis was achieved. The equilibrium moisture of the samples decreased with increasing grinding fluid temperatures. Density distribution studies showed that a significant fraction of the ash appeared in the >1.6 specific gravity particles. The energy required for the grinding/drying process increased with increasing mill temperatures. 29 refs., 18 figs., 13 tabs.

  10. Simulated coal gas MCFC power plant system verification. Final report

    SciTech Connect

    1998-07-30

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  11. Coal.

    ERIC Educational Resources Information Center

    Brant, Russell A.; Glass, Gary B.

    1983-01-01

    Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

  12. Coal.

    ERIC Educational Resources Information Center

    Brant, Russell A.; Glass, Gary B.

    1983-01-01

    Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

  13. Combustion of coal/water mixtures with thermal preconditioning. Final report

    SciTech Connect

    Novack, M.; Roffe, G.; Miller, G.

    1985-12-01

    Thermal preconditioning is a process in which coal/water mixtures are vaporized to produce coal/steam suspensions, and then superheated to allow the coal to devolatilize producing suspensions of char particles in hydrocarbon gases and steam. This final product of the process can be injected without atomization, and burned directly in a gas turbine combustor. This paper reports on the results of an experimental program in which thermally preconditioned coal/water mixture was successfully burned with a stable flame in a gas turbine combustor test rig. Tests were performed at a mixture flowrate of 300 lb/hr and combustor pressure of 8 atmospheres. The coal/water mixture was thermally preconditioned and injected into the combustor over a temperature range from 350 to 600/sup 0/F, and combustion air was supplied at between 600 to 725/sup 0/F. Test durations generally varied between 10 to 20 minutes. Major results of the combustion testing were that: a stable flame was maintained over a wide equivalence ratio range, between phi = 2.4 (rich) to 0.2 (lean); and, combustion efficiency of over 99% was achieved when the mixture was preconditioned to 600/sup 0/F and the combustion air preheated to 725/sup 0/F. Measurements of ash particulates captured in the exhaust sampling probe located 20 inches from the injector face, show typical sizes collected to be about 1 micron, with agglomerates of these particulates to be not more than 8 microns. The original mean coal particle size for these tests, prior to preconditioning was 25 microns. System studies indicate that preconditioning can be incorporated into either stationary or mobile power plant designs without system derating. On the basis of these results, thermal pretreatment offers a practical alternative to fuel atomization in gas turbine applications. 20 figs., 4 tabs.

  14. Management of solid wastes from the Limestone Injection Dry Scrubbing (LIDS) clean coal technology. Final report

    SciTech Connect

    Musiol, W.F. Jr.; Czuczwa, J.M.

    1993-03-01

    The objectives of this project were to characterize by-products from a pilot Limestone Injection Dry Scrubbing (LIDS) process and to develop processes directed toward the safe and economic use or disposal of these wastes. Because LIDS is a developing Clean Coal technology, a database of chemical and physical characteristics of the by-product was first developed. During the course of this project, it was found that the waste alone did not form high-strength products sufficient for use in construction and engineering applications. Therefore, the project was redirected to evaluate the by-product as a soil-cement and Portland cement raw material, agricultural liming agent, backfill/landfill material component, and mine reclamation/neutralizing agent. Based on these evaluations, the most viable uses for the LIDS byproduct include use in mine reclamation or as a neutralization agent. If soluble sulfites can be minimized by avoiding a dolomitic LIDS reagent, use as an agricultural liming agent has promise. Interest from an Ohio utility in the LIDS process suggests possible application of results at the demonstration or commercial stages.

  15. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  16. Long-term effects of surface coal mining on ground-water levels and quality in two small watersheds in eastern Ohio

    USGS Publications Warehouse

    Cunningham, W.L.; Jones, R.L.

    1990-01-01

    Two small watersheds in eastern Ohio that were surface mined for coal and reclaimed were studied during 1986-89. Water-level and water-quality data were compared with similar data collected during previous investigations conducted during 1976-83 to determine long-term effects of surface mining on the hydrologic system. Before mining, the watersheds were characterized by sequences of flat-lying sedimentary rocks containing two major coal seams and underclays. An aquifer was present above each of the underclays. Surface mining removed the upper aquifer, stripped the coal seam, and replaced the sediment. This created a new upper aquifer with different hydraulic and chemical characteristics. Mining did not disturb the middle aquifer. A third, deeper aquifer in each watershed was not studied. Water levels were continuously recorded in one well in each aquifer. Other wells were measured every 2 months. Water levels in the upper aquifers reached hydraulic equilibrium from 2 to 5 years after mining ceased. Water levels in the middle aquifers increased more than 5 feet during mining and reached equilibrium almost immediately thereafter. Water samples were collected from three upper-aquifer well, a seep from the upper aquifer, and the stream in each watershed. Two samples were collected in 1986 and 1987, and one each in 1988 and 1989. In both watersheds, sulfate replaced bicarbonate as the dominant upper-aquifer and surface-water anion after mining. For the upper aquifer of a watershed located in Muskingum County, water-quality data were grouped into premining and late postmining time periods (1986-89). The premining median pH and concentration of dissolved solids and sulfate were 7.6, 378 mg/L (milligrams per liter), and 41 mg/L, respectively. The premining median concentrations of iron and manganese were 10? /L (micrograms per liter) and 25?, respectively. The postmining median values of pH, dissolved solids, and sulfate were 6.7, 1,150 mg/L, and 560 mg/L, respectively

  17. Development of environment assessment screening criteria for coal conversion solid wastes. Final draft report

    SciTech Connect

    Not Available

    1982-03-12

    The overall objective of this project was to devise a scientifically-sound and cost-effective battery of screening bioassays which can be used in the assessment of the environmental and health effects of various coal conversion solid wastes. The project consisted of the following 5 discrete tasks: review of existing health and environmental effects information; identification and selection of relevant assessment criteria (bioassay methods); application of selected bioassay battery to coal conversion waste samples; evaluation of the test battery and recommendations for future analysis of coal conversion wastes; and preparation of draft and final reports. This report has been organized to describe the results of the work done under each of these project tasks. The report describes the methods utilized in searching the literature and the criteria used to evaluate information obtained from the different literature references. Results of this study strongly suggest the need for using a battery of bioassays for proper assessment of coal conversion solid wastes. The inclusion of different biological systems (rodents, microorganisms, plants, algae) and the use of different end-points allows a more accurate toxicological profile, since the different assays are indicative of different deleterious biological activities, i.e., acutely toxic, mutagenic, phytotoxic. The DMSO and the carbonic acid extraction procedure yielded a combined leachate that was adequate for health effects evaluation but that was still large incompatible with the environmental effects bioassays.

  18. Appalachian Clean Coal Technology Consortium. Final report, October 10, 1994--March 31, 1997

    SciTech Connect

    Yoon, R.H.; Parekh, B.K.; Meloy, T.

    1997-12-31

    The Appalachian Clean Coal Technology Consortium is a group comprised of representatives from the Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky Center for Applied Energy Research, that was formed to pursue research in areas related to the treatment and processing of fine coal. Each member performed research in their respective areas of expertise and the report contained herein encompasses the results that were obtained for the three major tasks that the Consortium undertook from October, 1994 through March, 1997. In the first task, conducted by Virginia Polytechnic Institute, novel methods (both mechanical and chemical) for dewatering fine coal were examined. In the second task, the Center for Applied Energy Research examined novel approaches for destabilization of [highly stable] flotation froths. And in the third task, West Virginia University developed physical and mathematical models for fine coal spirals. The Final Report is written in three distinctive chapters, each reflecting the individual member`s task report. Recommendations for further research in those areas investigated, as well as new lines of pursuit, are suggested.

  19. Ohio incinerator battle continues

    SciTech Connect

    Melody, M.

    1993-05-01

    Waste Technologies Industries (WTI; East Liverpool, Ohio) is trying to wing what it hopes will be its final battle in a 13-year, $160 million war with the government, and community and environmental groups. The company since 1980 has sought EPA approval to operate a hazardous waste incinerator in East Liverpool, Ohio. WTI late last year conducted a pre-test burn, or shakedown, during which the incinerator burned certain types of hazardous waste. The test demonstrates the incinerator's performance under normal operating conditions, Regulatory authorities, including EPA and the Ohio Environmental Protection Agency (OEPA), monitored activity during the shakedown, which was limited to 720 hours of operation. In accordance with RCRA requirements, the company in March conducted a trial burn to demonstrate that the incinerator meets permit standards. WTI's permit specifies three performance parameters the incinerator must meet -- particulate and hydrogen chloride emissions limits, and destruction removal efficiencies (DREs).

  20. Geophysical investigations of the Western Ohio-Indiana region. Final report, October 1986--September 1992: Volume 10

    SciTech Connect

    Ruff, L.; LaForge, R.; Thorson, R.; Wagner, T.; Goudaen, F.

    1994-01-01

    Earthquake activity in the Western Ohio-Indiana region has been monitored with a seismograph network consisting of nine stations located in west-central Ohio and four stations located in Indiana. Six local and regional earthquakes have been recorded from October 1990 to September 1992 with magnitudes ranging from 0.6 to 5.0. A total of 36 local and regional earthquakes have been recorded in the past 6-year period (October 1986 to September 1992). Overall a total of 78 local and regional earthquakes have been recorded since the network went into operation in 1977. There was a peak in seismicity in 1986, including the July 12, 1986 St. Marys` event (mb=4.5), followed by an anomalously low level of seismicity for about 2 years. The most unusual feature of the seismicity in the past.year is the occurrence of three earthquakes in Indiana. The locations of the felt earthquakes are scattered across central Indiana; an area that had been aseismic. Analysis of arrival time data accumulated over the past 14 years shows that the Anna region crustal structure is ``slower`` than the average mid-continent crustal structure. This implies that the proposed Keewenawan rift in the Anna region has a different structure than that of other Keewenawan rifts in the mid-continent.

  1. Mulled coal: A beneficiated coal form for use as a fuel or fuel intermediate. Phase 3, Final report

    SciTech Connect

    Not Available

    1993-08-01

    Energy International Corporation (El) was awarded a contract to evaluate a new concept for utilization of the fine coal wetcake produced by many of the physical beneficiation processes now under development. EI proposed development of a stabilized wetcake with properties that would facilitate storage, handling, transport, and subsequent conversion of the material into Coal-Water Fuel (CWF) at the point of use. The effort was performed in three phases. Phase I established the technical feasibility of stabilizing the fine coal ``wetcake`` in a form that can be readily handled and converted into a desired fuel form at the combustion site. The preferred form of stabilized ``wetcake`` was a granular free flowing material with the moisture encapsulated with the fine coal particles. The product was termed Mulled Coal. Phase I results indicated that the Mulled Coal was not only suitable as a CWF intermediate, but also had potential as a solid fuel. Phase II demonstrated the utilization of the Mulled Coal process to store and move fine coal products as a stable ``wetcake.`` Tasks in this phase tested components of the various systems required for storage, handling and combustion of the fine coals. Phase III expanded the technology by: 1. Evaluating Mulled Coal from representative coals from all producing regions in the US. 2. Development of bench-scale tests. 3. Design, construction, and operation of a 1 ton/hr continuous processing unit. 4. Evaluation of the effects of beneficiation. and 5. Developing an estimate of capital and operating costs for commercial units.

  2. Rheology of coal-water slurries prepared by the high-pressure roll mill grinding of coal. Final report

    SciTech Connect

    Fuerstenau, D.W.; De, A.

    1996-08-01

    The preparation of coal water slurries to replace fuel oil for direct combustion has become an important field in modem coal technology. The U.S. Department of Energy has planned or has underway several demonstration projects to burn coal-water slurries to replace fuel oil is attractive not only because there is an assured domestic supply of coal, but also on various technoeconomic grounds. Coal-water slurries combine the handling flexibility of fuel oil in power plants and various other industrial applications. This report discusses the rheology of coal-water slurries and the correlation to the coal preparation by grinding with a choke-fed high pressure roll mill. Performance of the roll mills and energy consumption are described.

  3. Maumee Bay State Park, Ohio. Shoreline Erosion Beach Restoration Study. Final Feasibility Report and Final Environmental Impact Statement. Interim to Western Lake Erie Shore Study. Volume 1. Main Report. Revised.

    DTIC Science & Technology

    1983-12-01

    REPORT NUMBER VT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) S . TYPE OF REPORT & PERIOD COVERED Maumee Bay State Park, Ohio Final...EDITION OF I NOV OS IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entere* • . . . - o. . . -. .’. % s SECURITY CLASSIFICATION OF THIS PAGE...associated ODNR develop- ment are $5.7 million. With total annual charges of $1.7 million, the . benefit-to-cost ratio is 3.41 to 1.0. S ""ODNR is fully

  4. Advanced coal-gasification technical analyses. Appendix 2: coal fines disposal. Final report, December 1982-September 1985

    SciTech Connect

    Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

    1986-01-01

    This report is a compilation of several studies conducted by KRSI under the Advanced Coal Gasification Technical Analyses contract with GRI. It addresses the issue of disposal and/or utilization of the coal fines that cannot be used as feedstock for fixed-bed (i.e. Lurgi) gasifiers. Specific items addressed are: (1) Technical, legal and economic aspects of fines burial, (2) Estimation of the premium for fines-free coal delivered to an SNG plant and resulting reduction in SNG production costs, (3) Comparison of the relative advantages and limitations of Winkler and GKT gasifiers to consuming fines, (4) Review of coal-size consist curves in the GRI Guidelines to assess the fines content of ROM coals, (5) a first-pass design and cost estimate using GKT gasifiers in tandem with Lurgi gasifiers in an North Dakota lignite-to-SNG plant to consume full range of coal-size consist, (6) Evaluation of the General Electric technology for extrusion of coal fines and testing of the extrudates in a fixed-bed gasifier, and (7) Investigation of equipment and variables involved in briquetting of coal fines, such that fines could be fed to the gasifiers along with the lump coal.

  5. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative liquid fuel. Final quarterly report, January 1, 1981-March 31, 1981

    SciTech Connect

    Dooher, J.P.

    1981-05-01

    Combustion tests were performed using a Cleaver-Brooks 350 hp fire-tube boiler-furnace to determine the efficiency of sulfur dioxide removal using soda ash and micronized additives. A high sulfur, 4.7% Ohio bituminous coal, ground to 92% through 200 mesh, was mixed with medium weight No. 4 oil and water to form the emulsions. Soda ash and micronized dolomite were added to the emulsion for SO/sub 2/ removal. An emulsion, without additives, was first tested and a thermal efficiency of 88% was obtained. The best SO/sub 2/ removal was with soda ash with from 82% to 96% removal. There were problems with ash deposition and slagging in the second pass. Fuel preparation problems were encountered with high particle content micronized dolomite emulsions. The successful dolomite fuels had poor SO/sub 2/ removal results. The long term testing on a coal/oil/water emulsion without any additives has begun and no major problems have been encountered.

  6. Wear mechanism and wear prevention in coal-fueled diesel engines. Final report

    SciTech Connect

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  7. Superfund Record of Decision (EPA Region 5): Industrial Excess Landfill, Inc. , Uniontown, Ohio (Second remedial action), July 1989. Final report

    SciTech Connect

    Not Available

    1989-07-17

    The 300-acre Industrial Excess Landfill site is in Uniontown, Stark County, Ohio. Several hundred residences are within a half mile of the site, and all residences and businesses in the Uniontown area rely on ground water from private-well supplies. The site was operated as a mixed industrial and refuse landfill from 1966 until 1980. Large amounts of fly ash and liquid wastes including latex and spent organic solvents were disposed of in the landfill between 1968 and 1972. In 1986 an active methane extraction system was installed to prevent the offsite migration of explosive levels of methane gas. In April 1987 EPA installed air strippers in eight residences and two businesses due to the presence of low levels of volatile organic compounds. In September 1987 EPA signed a Record of Decision (ROD) to provide an alternate water supply to 100 homes west of the site to ensure that the community received safe drinking water. The primary contaminants of concern affecting the soil, sediments, and ground water are VOCs including benzene, vinyl chloride, and PCE; other organics including carcinogenic PAHs; and metals.

  8. Final Environmental Impact Statement Permit Application by United States Steel Corp. Proposed Lake Front Steel Mill, Conneaut, Ohio. Volume 1,

    DTIC Science & Technology

    1979-04-01

    iron ore pellets, 2.8 million tons of iron ore, 1.4 million tons of limestone, approximately 6.0 million tons of coal and oil , and an average of...would produce 4.9 million tons of hot-rolled sheets and . oils and 1.52 million tons of steel plate which would aid the U. S. Steel Corporation in...400 million cubic feet by 1986. Total consumption of distillate oil by plant-induced secondary development is estimated to reach a maxi- mum of

  9. Mulled coal: A beneficiated coal form for use as a fuel or fuel intermediate. Phase 1 feasibility studies: Final

    SciTech Connect

    Not Available

    1991-10-01

    Energy International is developing a technology that will create a staged formulation with the first coal form (Mulled Coal) that can be stored, transported, and pumped. Just prior to combustion, the Mulled Coal (MC) would be modified to provide the properties needed for proper atomization. This concept is an alternative to the expensive and energy intensive thermal drying processing of fine coal wet cakes. The material is suitable for both direct feed use in conventional and fluid bed combustors as well as on-site conversion to combustible slurries. By maintaining the coal form relatively close to the feed wet cake, only minor processing with low additive levels and low energy blending needed at the point of production. Its conversion to slurry or other use-feed form is made near the time of use and thus the requirements for stability, climatic control, and other storage, transport, and handling requirements are much less severe.

  10. Direct comparison of XAFS spectroscopy and sequential extraction for arsenic speciation in coal

    USGS Publications Warehouse

    Huggins, Frank E.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.A.; Finkelman, R.B.

    2000-01-01

    The speciation of arsenic in an Ohio bituminous coal and a North Dakota lignite has been examined by the complementary methods of arsenic XAFS spectroscopy and sequential extraction by aqueous solutions of ammonium acetate, HCl, HF, and HNO3. In order to facilitate a more direct comparison of the two methods, the arsenic XAFS spectra were obtained from aliquots of the coal prepared after each stage of the leaching procedure. For the aliquots, approximately linear correlations (r2 > 0.98 for the Ohio coal, > 0.90 for the ND lignite) were observed between the height of the edge-step in the XAFS analysis and the concentration of arsenic measured by instrumental neutron activation analysis. Results from the leaching sequence indicate that there are two major arsenic forms present in both coals; one is removed by leaching with HCl and the other by HNO3. Whereas the XAFS spectral signatures of the arsenic leached by HCl are compatible with arsenate for both coals, the arsenic leached by HNO3 is identified as arsenic associated with pyrite for the Ohio coal and as an As3+ species for the North Dakota lignite. Minor arsenate forms persist in both coals after the final leaching with nitric acid. The arsenate forms extracted in HCl are believed to be oxidation products derived from the other major arsenic forms upon exposure of the pulverized coals to air.

  11. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    SciTech Connect

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  12. Coal Combustion Products Extension Program

    SciTech Connect

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be

  13. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    SciTech Connect

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  14. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific. Final technical report

    SciTech Connect

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT`s. However, there appears to be potential for introduction of CCT`s in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT`s introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT`s in a number of countries.

  15. Technical data. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming

    SciTech Connect

    1982-01-01

    This volume includes a description of the railway to transport the coal; possible unbalance in the electrical power supply is considered in detail, as well as communications, signalling, etc. The railway will also be used to transport ashes and sludges for waste disposal. Coal fines in the coal supply will be burned to generate power. A very brief description of the coal gasification plant and its components is accompanied by a printout of the dates final engineering is to be completed. Permit applications are listed and socio-economic factors are discussed. The financing plan is discussed in some detail: basically, a loan guarantee from the Synthetic Fuels Corporation; equity provided by investment tax credit, deferred taxes, AFUDC and the sponsors; price support; and gas purchase agreement (this whole section includes several legal details.). (LTN)

  16. Effect of coal quality on maintenance costs at utility plants. Final report. [Effect of ash and sulfur content of coal

    SciTech Connect

    Holt, E.C. Jr.

    1980-06-01

    In an attempt to determine if correlation exists between coal quality, as measured by its ash and sulfur contents, and the maintenance cost at utility plants, an examination was made of the actual maintenance cost experience of selected portions of five TVA coal-fired power plants as a function of the fuel quality consumed during an extended period of time. The results indicate that, according to our decision rules developed in compliance with accepted statistical practices, correlation does exist in many portions of the coal-fired plants for which sufficient maintenance cost records were available. The degree of correlation varies significantly among the individual portions of a particular plant as well as among the various plants. However, the indicators are sufficient to confirm that a change (within the design constraints of the unit) in the ash and/or sulfur content of the coal being consumed by a utility boiler will have a proportionate effect on the maintenance cost at the plant. In the cases examined, each percent variation in ash content could have a monetary effect of from $0.05 to $0.10 per ton of coal consumed. Similarly, each percent variation in sulfur content could influence maintenance costs from $0.30 to $0.50 per ton of coal. Since these values are based on preliminary analysis of limited data, they must be approached with caution and not removed from the context in which they are presented. However, if borne out by further study, the potential magnitude of such savings may be sufficient to justify the acquisition of superior coal supplies, either by changing the source and/or using preparation to obtain a lower ash and sulfur fuel.

  17. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect

    Not Available

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  18. Impact of government regulations on leadtimes of coal facilities. Final report

    SciTech Connect

    Singh, J.; Carboni, J.V.; Shah, D.V.; White, J.M. Jr.

    1980-08-01

    The ability of the US to increase coal use depends on the leadtimes required to bring from inception into operation: (1) new coal use facilities such as powerplants, industrial boilers, coke ovens, and coal-based synfuel plants; and (2) new coal facilities including surface mines, deep mines, coal preparation plants, and railroad lines. This study examines the effect of government regulations on the leadtimes for the following ten facilities: surface mines on federal land; surface mines - private surface/private coal; underground coal mines; coal preparation plants; railroad lines; coal-fired electric generating plants; coal-fired industrial facilities; coke plants; synthetic fuels; and transmission lines. Environmental activities consume a significant portion of critical path time for all facilities. The time spent for obtaining permits and licenses account for as much as 63% of total critical path time in the case of a new railroad line servicing a coal mine in the western US. For surface mines, permitting accounts for 33% of total project critical path; for underground mines, it is 43%. Permitting requires 26 and 42% of the critical paths for new industrial facilities and power plants, respectively. Long durations of critical environmental activities account for much of the uncertainty surrounding the approval of large coal projects. Government regulations have also affected the way companies conduct their business. Dealing with government regulations has become as important to the completion of new coal facilities as project financing, design, and construction.

  19. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    SciTech Connect

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  20. Coking properties of coal under pressure and their influence on moving-bed gasification. Final report

    SciTech Connect

    Lancet, M.S.; Curran, G.P.; Sim, F.A.

    1982-08-01

    The coking properties of seven bituminous coals, including three Eastern US coals, one Midwestern US coal, a Western US coal and two from the UK were studied with respect to the possible utilization of these coals in moving bed gasifier systems. Complete physical, chemical and petrographic analyses were obtained for each coal in addition to the highly specialized CCDC simulated gasifier coking test data. The effects of total pressure, hydrogen partial pressure, heating rate and the addition of gob and tar on the fluidity and swelling properties of each coal was studied. Samples of each coal were shock heated under pressure to simulate coking in the top of a Lurgi gasifier. The resultant cokes were tested for various physical properties and the product yields were determined. Gas release patterns during pressurized pyrolysis were obtained in several instances. The data obtained in this work should provide a valuable data base for future gasifier feedstock evaluation programs.

  1. A new approach in ultrapurification of coal by selective flocculation. Final report

    SciTech Connect

    Moudgil, B.M.

    1992-04-01

    The specific objective of the present investigation is to develop a mathematical and computational model to elicit values of active sites ({phi}) and fractional surface coverage ({theta}) which would yield optimum separation of coal from coal pyrite and coal refuse. Attempts are to be made to select appropriate flocculants and experimental conditions to obtain {phi} and {theta} values as dictated by the theoretical model so as to achieve the desired separation in naturally occurring samples of fine coal. (VC)

  2. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    SciTech Connect

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  3. Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report

    SciTech Connect

    Kakwani, R.M.; Kamo, R.

    1989-01-01

    This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

  4. Impact of government regulations on leadtimes of coal facilities. Final report

    SciTech Connect

    Not Available

    1980-08-01

    The ability of the US to increase coal use depends on the leadtimes required to bring from inception into operation: (1) new coal use facilities such as powerplants, industrial boilers, coke ovens, and coal-based synfuel plants; and (2) new coal facilities including surface mines, deep mines, coal preparation plants, and railroad lines. This study examines the effect of government regulations on the leadtimes for the following ten facilities: surface mines on federal land; surface mines - private surface/private coal; underground coal mines; coal preparation plants; railroad lines; coal-fired electric generating plants; coal-fired industrial facilities; coke plants; synthetic fuels; and transmission lines. These appendices contain summaries of legislation affecting the above coal facilities. Discussed are: the Clean Air Act; National Environmental Policy Act; Federal Coal Leasing Amendments Act; Surface Mining Control and Reclamation Act; Federal Land Policy and Management Act; River and Harbors Act; Federal Mine Health and Safety Amendments Act; Fish and Wildlife Coordination Act; National Historic Preservation Act; Endangered Species Act; the Clear Water Act; and the Resource Conservation and Recovery Act. (DMC)

  5. Surface electrochemical control for fine coal and pyrite separation. Final report

    SciTech Connect

    Wadsworth, M.E.; Bodily, D.M.; Hu, Weibai; Chen, Wanxiong; Huang, Qinping; Liang, Jun; Riley, A.M.; Li, Jun; Wann, Jyi-Perng; Zhong, Tingke; Zhu, Ximeng

    1993-01-20

    Laboratory flotation tests were carried out on three coals and on coal pyrite. Floatability measurements included natural floatability, flotation with a xanthate collector and salt flotation. The ranking of the floatability of the three coals were: Upper Freeport > Pittsburgh > Illinois. The floatability of mineral pyrite and coal pyrite increased markedly with xanthate concentration, but decreased with increased pH. In general, coal pyrite was more difficult to float than mineral pyrite. This was attributed to the presence of surface carbonaceous and mineral matter, since floatability of coal pyrite improved by acid pretreatment. Flotation tests demonstrated that the floatability of coal and mineral pyrite was greatly enhanced by the presence of an electrolyte. Flotation was also enhanced by the addition of modifiers such as CuSO{sub 4}, Na{sub 2}S, CO{sub 2} and EDTA. Lime additions markedly reduced the floatability of coal pyrite. Enhanced floatability of coal pyrite resulted when the pyrite was anodically oxidized in a specially constructed electrochemical flotation cell Pretreatment in potential ranges previously observed for polysulfide and sulfur film formation resulted in the enhanced floatability. While interesting trends and influences, both chemical and electrochemical, markedly improved the floatability of coal, there is little hope for reverse flotation as an effective technology for coal/coal-pyrite separations. The effects of poor liberation and entrainment appear overriding.

  6. Development and Dissemination of a Manual for Developing Coal Mining Curricula. Final Report.

    ERIC Educational Resources Information Center

    Oglesby, Elizabeth H.; Katz, D. S.

    This report describes and summarizes the purposes, activities, major findings, and recommendations of three coal-related study reports: (1) An Assessment of Employment and Training needs for Coal and Gasification Occupations, (2) A Manual for Competency-Matched Instructional Resources for Developing Coal Mining Curricula, and (3) The Preparation…

  7. Development and Dissemination of a Manual for Developing Coal Mining Curricula. Final Report.

    ERIC Educational Resources Information Center

    Oglesby, Elizabeth H.; Katz, D. S.

    This report describes and summarizes the purposes, activities, major findings, and recommendations of three coal-related study reports: (1) An Assessment of Employment and Training needs for Coal and Gasification Occupations, (2) A Manual for Competency-Matched Instructional Resources for Developing Coal Mining Curricula, and (3) The Preparation…

  8. Anaerobic biprocessing of low rank coals. Final technical report, September 12, 1990--August 10, 1993

    SciTech Connect

    Jain, M.K.; Narayan, R.

    1993-08-05

    Coal solubilization under aerobic conditions results in oxygenated coal product which, in turn, makes the coal poorer fuel than the starting material. A novel approach has been made in this project is to remove oxygen from coal by reductive decarboxylation. In Wyodak subbituminous coal the major oxygen functionality is carboxylic groups which exist predominantly as carboxylate anions strongly chelating metal cations like Ca{sup 2+} and forming strong macromolecular crosslinks which contribute in large measure to network polymer structure. Removal of the carboxylic groups at ambient temperature by anaerobic organisms would unravel the macromoleculer network, resulting in smaller coal macromolecules with increased H/C ratio which has better fuel value and better processing prospects. These studies described here sought to find biological methods to remove carboxylic functionalities from low rank coals under ambient conditions and to assess the properties of these modified coals towards coal liquefaction. Efforts were made to establish anaerobic microbial consortia having decarboxylating ability, decarboxylate coal with the adapted microbial consortia, isolate the organisms, and characterize the biotreated coal products. Production of CO{sup 2} was used as the primary indicator for possible coal decarboxylation.

  9. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    SciTech Connect

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  10. Cooperative research in coal liquefaction. Final report, May 1, 1990-- April 30, 1991

    SciTech Connect

    Huffman, G.P.

    1992-02-15

    The Consortium for Fossil Fuel Liquefaction Science (CFFLS) is currently engaged in a three year contract with the US Department of Energy investigating a range of research topics dealing with direct coal liquefaction. This report summarizes the results of this program in its second year, from May 1, 1990 to April 30, 1991. Accomplishments for this period are presented for the following tasks: Iron-based catalysts for coal liquefaction, exploratory research on coal conversion, novel coal liquefaction concepts, and novel catalysts for coal liquefaction.

  11. Application of geostatistics to coal-resource characterization and mine planning. Final report

    SciTech Connect

    Kauffman, P.W.; Walton, D.R.; Martuneac, L.; Kim, Y.C.; Knudsen, H.P.; Baafi, E.Y.; Lonergan, J.E.; Martino, F.

    1981-12-01

    Geostatistics is a proven method of ore reserve estimation in many non-coal mining areas but little has been published concerning its application to coal resources. This report presents the case for using geostatistics for coal mining applications and describes how a coal mining concern can best utilize geostatistical techniques for coal resource characterization and mine planning. An overview of the theory of geostatistics is also presented. Many of the applications discussed are documented in case studies that are a part of the report. The results of an exhaustive literature search are presented and recommendations are made for needed future research and demonstration projects.

  12. Analytical method for the evaluation of sulfur functionalities in American coals. Final report

    SciTech Connect

    Attar, A.

    1983-05-01

    This investigation consisted of the following 6 tasks: (1) improve the instrumentation for the sulfur functional groups analysis and make it more reliable. (2) create a set of reference standards of sulfur-containing compounds. (3) examine the sulfur groups distribution in untreated and desulfurized coals. (4) examine the sulfur functionalities in raw and processed coals, i.e., liquefied coals. (5) determine the distribution of sulfur functionalities in modified coals. (6) prepare computer programs for calculations related to the distribution of sulfur functional groups in coal. Each task is discussed and results are presented. Appendix A contains the computer program used to interpret the data. 31 references, 56 figures, 17 tables.

  13. The potential for underground coal gasification in Indiana. Final report to the Indiana Center for Coal Technology Research (CCTR)

    SciTech Connect

    John Rupp; Evgeny Shafirovich; Arvind Varma; Maria Mastalerz; Agnieszka Drobniak

    2009-03-15

    The preliminary feasability assessment analyses the potential for underground coal gasification within Indiana. A review of existing worldwide operations and geological requirements demonstrates that the application of UCG practices in Indiana has very significant potential benefits, but careful analysis of the specific geological conditions, physical and chemical properties of coals, water resources, coupled with an assessment of the state-of-the-art technologies must be conducted to identify potential UCG sites and to determine the feasibility of employing this technology in Indiana. Of particular importance is the relatively small number of active and successful operators of UCG projects around the world and that collaborations with one or two among them could be beneficial for all concerned. There are significant opportunities for economic development that will provide dividends for first movers in the Illinois basin. The report recommends nine 'promising zones' for UCG in two large coal deposits (the Springfield and Seelyville coal beds) in Knox, Gibson, Vanderburgh, Warrick and Posey counties. 69 refs., 10 figs., 6 tabs., 1 app.

  14. Catalytic hydrogenation of bituminous coal and various coal extracts: Final report for the 1987--1988 SOMED project year

    SciTech Connect

    Kispert, L.D.

    1988-01-01

    Naphthalene (II), quinoline (III), isoquinoline (IV), 6-methylquinoline (V) and 2-methylquinoline (VI) can be hydrogenated selectively to form 1,2,3,4-tetrahydronaphthalene (VII) (100% yield at 22/degree/C), 1,2,3,4-tetrahydroquinoline (VIII) (73% yield at 22/degree/C), 1,2,3,4-tetrahydroisoquinoline (IX) (70% yield at 90/degree/C), 6-methyl-1,2,3,4-tetrahydroquinoline (X) (100% at 90/degree/C), and 2-methyl-1,2,3,4-tetrahydroquinoline (XI) (76% at 90/degree/C) by use of the Ziegler-type catalyst Co(stearate)/sub 2/-AlEt/sub 3/ (I) in a hexane solvent at a hydrogen pressure of 700 psi. Catalyst (I) does not hydrogenate dibenzothiophene, nitroquinolines or 4-chloro-2-methylquinoline. By extrapolating these results, a maximum yield of hydrogenation product from low sulfur coal using catalyst (I) was achieved by either maintaining the temperatures as low as 100/degree/C for a long period of time or by conducting the process at high temperature (/approximately/150/degree/C) for a short period of time. Hydrogenation of low sulfur coal resulted in a hydrogenated liquid product equal to 20% of the initial coal weight at 100/degree/C and 800 psi hydrogen pressure. Microanalysis of the product showed the hydrogen content had doubled. On the other hand, attempts to hydrogenate high sulfur content coal (Illinois No. 6), gave unsatisfactory results. 27 refs., 3 tabs.

  15. 76 FR 45612 - Notice of Availability of the Buckskin Mine Hay Creek II Coal Lease-by-Application Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... and non-Federal lands within Wyoming. On December 21, 2007, the BLM published a Notice of Intent (NOI... Bureau of Land Management Notice of Availability of the Buckskin Mine Hay Creek II Coal Lease-by-Application Final Environmental Impact Statement, Wyoming AGENCY: Bureau of Land Management, Interior....

  16. Re-Use of Clean Coal Technology By-Products in the Construction of Low Permeability Liners. Final report, 10/1/1996 - 3/31/2000

    SciTech Connect

    Wolfe, William E.; Butalia, Tarunjit S.; Whitlach, Jr., E. Earl; Mitsch, William

    2000-12-31

    This final project report presents the results of a research program conducted at The Ohio State University from October 1, 1996 to March 31, 2000 to investigate the use of stabilized flue gas desulfurization (FGD) materials in the construction of low permeability liners. The objective of the research program was to establish field-verified time-dependent relationships for the performance of liners constructed from stabilized FGD by-products generated in Ohio. The project objective was accomplished with a coordinated program of testing and analyzing small scale laboratory specimens under controlled conditions, medium-scale wetland mesocosms, and a full-scale pond facility. Although the specific uses directly addressed by this report include liners for surface impoundments, the results presented in this study are also useful in other applications including design of daily cover and liners for landfills, seepage cutoff walls and trenches and for nutrient retention and pollution mitigation wetlands. The small scale laboratory tests, medium scale mesocosm wetland experiments, and construction and monitoring of a full-scale FGD lined facility (capacity of one million gallons) shows that stabilized FGD materials can be used as low permeability liners in the construction of water and manure holding ponds, and constructed wetlands for wastewater treatment. Actual permeability coefficients in the range of 10-7 cm/sec (3 x 10-9 ft/sec) can be obtained in the field by properly compacting lime and fly ash enriched stabilized FGD materials. Leachate from the FGD material meets Ohio’s non-toxic criteria for coal combustion by-products, and for most potential contaminants the national primary and secondary drinking water standards are also met. The low permeability non-toxic FGD material investigated in this study poses very minimal risks, if any, for groundwater contamination. Constructed FGD-lined wetlands offer the opportunity for increased phosphorous

  17. Ohio EPA Teachers Kit.

    ERIC Educational Resources Information Center

    Ohio State Environmental Protection Agency, Columbus.

    In an effort to provide teachers in Ohio with assistance in environmental education, the Ohio Environmental Protection Agency (EPA) has produced this teachers kit. It is designed to describe what the Ohio EPA is doing to protect Ohio's air, land, and water. The background information provides an historical account of some of the events that have…

  18. Ohio EPA Teachers Kit.

    ERIC Educational Resources Information Center

    Ohio State Environmental Protection Agency, Columbus.

    In an effort to provide teachers in Ohio with assistance in environmental education, the Ohio Environmental Protection Agency (EPA) has produced this teachers kit. It is designed to describe what the Ohio EPA is doing to protect Ohio's air, land, and water. The background information provides an historical account of some of the events that have…

  19. Rate enhancement for catalytic upgrading coal naphthas. Final of final technical progress report, July 1991--September 1994

    SciTech Connect

    Davis, B.H.

    1995-08-01

    The objective of this project is to remove sulfur, nitrogen, and oxygen from naphtha derived from coal liquefaction. The project is concerned with the development of hydrotreating catalysts. This period, a ruthenium sulfide catalyst has been studied.

  20. Regulations implementing the Federal Coal Mine Health and Safety Act of 1969, as amended. Employment Standards Administration, Labor. Final rule.

    PubMed

    2000-12-20

    On January 22, 1997, the Department issued a proposed rule to amend the regulations implementing the Black Lung Benefits Act. 62 FR 3338-3435 (Jan. 22, 1997). When the comment period closed on August 21, 1997, the Department had received written submissions from almost 200 interested persons, including coal miners, coal mine operators, insurers, physicians, and attorneys. The Department also held hearings in Charleston, West Virginia, and Washington, D.C. at which over 50 people testified. The Department carefully reviewed the testimony and the comments and, on October 8, 1999, issued a second notice of proposed rulemaking. 64 FR 54966-55072 (Oct. 8, 1999). In its second notice, the Department proposed changing several of the most important provisions in its initial proposal. The Department also explained its decision not to alter the original proposal with respect to other key regulations based on the comments received to date. Finally, the Department prepared an initial regulatory flexibility analysis. In order to ensure that small businesses that could be affected by the Department's proposal received appropriate notice of the Department's proposed changes, the Department mailed a copy of the second notice of proposed rulemaking to all coal mine operators contained in the databases maintained by the Mine Safety and Health Administration. The Department initially allowed interested parties until December 7, 1999 to file comments to its second proposal, but extended that period until January 6, 2000. The Department received 37 written submissions before the close of the comment period, from groups representing both coal miners and coal mine operators. The Department also received comments from individual miners, various coal mining and insurance companies, as well as from claims processing organizations, attorneys, and various professional organizations. The Department has carefully reviewed all of the comments, and is issuing its final rule. The rule contains a

  1. Selective flotation of fossil resin from Western coal. Final report, July 1, 1990--May 25, 1992

    SciTech Connect

    Jensen, G.F.; Miller, J.D.

    1992-05-25

    The proof-of-concept test program was designed to clarify a number of concerns that have been raised by coal companies who own the valuable resin resource. First, from laboratory bench-scale flotation experiments, a froth product from cleaner flotation containing more than 80% hexane-extractable resin at higher than 80% recovery can be produced. Pilot-plant testing was initiated to demonstrate the selective flotation of fossil resin and to establish a better confidence level in the new technology. Second, pilot-plant testing was designed to evaluate the effect and impact of random variation in slurry solids concentration and feed grade on this new selective fossil resin flotation technology. The flotation performance obtained under these industrial conditions is more realistic for process evaluation. Third, more accurate operating cost data was to be obtained for economic analysis. Fourth, sufficient quantities of the fossil resin concentrate were to be produced from the test program for evaluation by potential industrial users. Fifth, and finally, optimum levels for the operating variables were to be established. Such information was required for eventual scale-up and design of a fossil resin flotation plant. The pilot-plant proof-of-concept testing of selective resinate flotation has demonstrated that: (1) technically, the new flotation technologies discovered at the University of Utah and then improved upon by Advanced Processing Technologies, Inc. provide a highly efficient means to selectively recover fossil resin from coal. The proof-of-concept continuous flotation circuit (about 0.1 tph) resulted in fossil resin recovery with the same separation efficiency as was obtained from laboratory bench-scale testing (more than 80% recovery at about 80% concentrate grade); and (2) economically, the selective flotation process has been shown to be sufficiently profitable to justify the development of a fossil resin industry based on this new flotation process.

  2. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    SciTech Connect

    Osseo-Asare, K.; Wei, Dawei

    1996-01-01

    This project seeks to advance the fundamental understanding of the physico-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. Central to this research is the use of synthetic microsize particles of pyrite as model microelectrodes to investigate the semiconductor electrochemistry of pyrite. The research focuses on: (a) the synthesis of microsize particles of pyrite in aqueous solution at room temperature, (b) the formation of iron sulfide complex, the precursor of FeS or FeS{sub 2}, and (c) the relationship between the semiconductor properties of pyrite and its interfacial electrochemical behavior in the dissolution process. In Chapter 2, 3 and 4, a suitable protocol for preparing microsize particles of pyrite in aqueous solution is given, and the essential roles of the precursors elemental sulfur and ``FeS`` in pyrite formation are investigated. In Chapter 5, the formation of iron sulfide complex prior to the precipitation of FeS or FeS{sub 2} is investigated using a fast kinetics technique based on a stopped-flow spectrophotometer. The stoichiometry of the iron sulfide complex is determined, and the rate and formation constants are also evaluated. Chapter 6 provides a summary of the semiconductor properties of pyrite relevant to the present study. In Chapters 7 and 8, the effects of the semiconductor properties on pyrite dissolution are investigated experimentally and the mechanism of pyrite dissolution in acidic aqueous solution is examined. Finally, a summary of the conclusions from this study and suggestions for future research are presented in Chapter 9.

  3. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  4. Improvement of storage, handling, and transportability of fine coal. Final report

    SciTech Connect

    Maxwell, R.C. Jr.; Jamison, P.R.

    1996-03-01

    The Mulled Coal process is a technology which has evolved from a line of investigations which began in the 1970`s. There was a major breakthrough in 1990, and since then, with significant support from DOE-PETC, the technology has progressed from the conceptual stage to a proven laboratory process. It is a simple process which involves the addition of a low cost specifically formulated reagent to wet fine coal by mixing the two in a pug mill. Although the converted material (Mulled Coal) retains some of its original surface moisture, it handles, transports, and stores like dry coal. But, unlike thermally dried fine coal Mulled Coal is not dusty, it will not rewet, and it causes no fugitive dust problems. This project was designed to advance the technology from the status of a process which works well in the laboratory to the status of a technology which is fully ready for commercialization. Project objectives were to: 1. Prove the concept that the technology can be used to produce Mulled Coal of a consistent quality, on a continuous basis, at a convincing rate of production, and at a major preparation plant which produces fine clean coal on a commercial basis. 2. Prove the concept that Mulled Coal, either as a blend with coarser clean coal or as a stand-alone fuel will successfully pass through a representative cross section of conventional coal storage, handling and transportation environments without causing any of the problems normally associated with wet fine coal. 3 Test the design and reliability of Mulled Coal circuit equipment and controls. 4. Test the circuit over a wide range of operating conditions. 5. Project scale-up designs for major equipment components and control circuits. 6. Forecast capital and operating costs for commercial circuits ranging from 25 TPH to 75 TPH. This report describes the work, the test results, and conclusions at each step along the way.

  5. Structure of coal: new approaches to characterizing organonitrogen and organosulfur functionalities in coal and coal liquids. Final report. [Finnigan triple quadrupole mass spectrometers

    SciTech Connect

    Cooks, R.G.

    1983-01-01

    This report describes the application of tandem mass spectrometry (MS/MS) to the analysis of coal-related materials. A Finnigan Triple State Quadrupole mass spectrometer was used for most of the results obtained in this study. Both collision energy (0 to 30 eV) and collision gas pressure (0 to 2.5 mtorr, typically argon) have significant effects on the spectra. Increasing the collision energy or collision pressure results in an increased fragmentation of the selected ion. The analytical utility of different chemical ionization (CI) reagent gases is shown. The MS/MS spectra of a selected ion obtained by isobutane and ammonia CI are identical, which paves the way for development of MS/MS libraries. A library is being developed especially for the analysis of coal-related materials. Three principal MS/MS scan modes (daughter, parent and neutral loss) are utilized in the analysis of coal-related materials. Parent and neutral loss scans characterize the complex mixture for particular chemical moieties (functional groups, structure type), while daughter scans are used for identification of specific components. SRC II was the principal sample studied by CI. Laser desorption methodology for coal analysis was developed. Other fuel-related materials were examined to generalize the analytical methodology being developed for the coal-related materials, including shale oil and diesel exhaust particulates. 35 references, 50 figures, 3 tables.

  6. Feasibility study for utilization of landfill gas at the Royalton Road Landfill, Broadview Heights, Ohio. Final report

    SciTech Connect

    1983-09-01

    The technical viability of landfill gas recovery has been previously demonstrated at numerous sites. However, the economics of a full scale utilization system are dependent on proper market conditions, appropriate technologies, landfill gas quantity and quality, and public/purchaser acceptance. The specific objectives of this feasibility study were to determine: The available markets which might purchase landfill gas or landfill gas derived energy products; An extraction system concept design and to perform an on-site pumping test program; The landfill gas utilization technologies most appropriate for the site; Any adverse environmental, health, safety, or socioeconomic impacts associated with the various proposed technologies; The optimum project economics, based on markets and processes examined. Findings and recommendations were presented which review the feasibility of a landfill gas utilization facility on the Royalton Road Landfill. The three identified utilization alternatives are indeed technically feasible. However, current market considerations indicate that installation of a full scale system is not economically advisable at this time. This final report encompasses work performed by SCS Engineers from late 1980 to the present. Monitoring data from several extraction and monitoring wells is presented, including pumping rates and gas quality and quantity analysis. The Market Analysis Data Form, local climatological data, and barometric pressure data are included in the appendix section. 33 figures, 25 tables.

  7. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units: Chapter D.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Because of the many names used to identify individual coal beds and coal zones in the historic Appalachian basin coal-mining districts, coal bed designations may differ even more than stratigraphic nomenclature. In eastern Kentucky, northwest of the Pine Mountain thrust fault on the Cumberland overthrust sheet, for example, coal beds or coal zones equivalent to the Lower Elkhorn coal zone (within the Pikeville Formation) are identified also as the Eagle coal zone, Pond Creek coal zone, and Blue Gem coal bed (fig. 1). Southeast of the Pine Mountain thrust fault, yet still in Kentucky, equivalent coals in this same interval are known as the Imboden and Rich Mountain. Moreover, this same interval of coal is identified as the Blue Gem coal in Tennessee, the Imboden coal bed or Campbell Creek or Pond Creek coal zones in Virginia, and the Eagle coal zone in West Virginia.

  8. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative clean liquid fuel. Final report

    SciTech Connect

    Not Available

    1983-04-01

    This report presents the Phase II results of a combustion program designed to assess the feasibility of utilizing coal/oil/water (COW) emulsions as a fuel for fire tube package boilers. Also examined was the effect of the addition of alkaline absorbents to the fuel for sulfur dioxide capture. Presented are the findings of testing involving optimizing sulfur dioxide removal while still maintaining a rheologically favorable fuel. Overall performance of COW as a boiler fuel was evaluated over long term operation. Emphasis was placed on burner design as well as coal characteristics. Three different bituminous coals were used during this program. Results indicate that COW emulsions may be a feasible alternative for oil in industrial fire tube boilers if the major problem, deposition buildup, can be resolved. This appears possible with a proper soot blower design. Soda ash is a viable means for obtaining at least 80% removal, using a 1:1 molar ratio. However, the deposition problem with soda ash indicated that stack injection may be a more feasible approach.

  9. Dissolving coal at moderate temperatures and pressures. Final report, August 20, 1982-September 30, 1984. [Benzylamine

    SciTech Connect

    Mayo, F.R.; Hirschon, A.S.; Sundback, K.A.

    1984-09-21

    The main objectives of this research were to make Illinois No. 6 coal liquid or soluble with inexpensive reagents (e.g., solvolysis with methanol and acids), without high pressure equipment, and to see if our soluble products would be more reactive than whole coal in liquefaction processes. These efforts are unpromising. However, efforts to make coal soluble by oxidation with nitric acid gave encouraging results. When Illinois No. 6 and Wyodak coals were allowed to stand in sunlight for 282 days, 27% of the original weight and 32% of the original carbon were lost. Concurrent experiments in the dark at 24/sup 0/C indicate that these coals are fairly stable in air in the dark; light causes most of the oxidation. The solubility properties of these aged coals will not be available before the end of this grant period. Several other minor lines of work, some very interesting, are summarized in order of decreasing significance. 1 figure, 6 tables.

  10. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    SciTech Connect

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  11. Coal quality field test at Northeastern Unit 4 of Public Service Company of Oklahoma. Final report

    SciTech Connect

    Giovanni, D.V.; Carr, R.C.; Landham, E.C.; Frompovicz, Z.J.; Vitta, P.K.; Thompson, R.E.

    1995-10-01

    Two products of coal quality research at the Electric Power Research Institute (EPRI) are available for field evaluation: Coal Quality Impact Model (CQIM{trademark}), and Fireside Testing Guidelines (FTG). The CQIM is a computer program that may be tailored to simulate the performance characteristics of a coal-fired power plant. The FTG is a technical report that guides utilities in conducting field tests to gather performance data and quantify the technical and economic impacts of different coals. Moreover, the results from field tests may be utilized to validate and assess the applicability of the CQIM. Field tests were conducted at Public Service Company of Oklahoma`s Northeastern Unit 4 to evaluate the coal quality impacts of coal switching on boiler performance and emissions. Northeastern Unit 4 was designed to generate 445 M (net), but is frequently operated at loads up 480 NM. The boiler was manufactured by Combustion Engineering (CE) and is rated at 3,200,000 lb/hr steam flow at 1,005F and 3,500 psig. Design reheat steam temperature is also 1,005F. The unit is equipped with a Lodge-Cottrell cold-side electrostatic precipitator for particulate matter control. Comprehensive tests were conducted on all major equipment components, including the pulverizers, fans, combustion equipment, boiler heat transfer surfaces, air preheater, and electrostatic precipitator. The tests were conducted with a baseline, 100% Wyoming coal, and two coal blends: a 90% Wyoming/10% Oklahoma coal, and a 70% Wyoming/30% Oklahoma coal. The CQIM was configured to predict the performance of the unit when burning each coal. The work was sponsored by EPRI and the US Department of Energy, and Public Service Company of Oklahoma (PSO) was the host utility company. This report summarizes results from the field test program, including potential heat rate improvements that were identified, and the differences in unit operations and performance for the two coals.

  12. New reagents for coal desulfurization. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect

    Buchanan, D.H.; Kalembasa, S.; Olson, D.; Wang, S.; Warfel, L.

    1991-12-31

    The primary goal of this project was development and exploration of potential new desulfurization reagents for the removal of ``organic sulfur`` from Illinois coals by mild chemical methods. Potential new desulfurization reagents were investigated using organic sulfur compounds of the types thought to be present in coals. Reagents included low-valent metal complexes based on nickel and on iron as well as possible Single Electron Transfer reagents. Soluble coal extracts served as second generation model compounds during this reagent development project.

  13. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    SciTech Connect

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  14. Effect of reagent access on the reactivity of coals. Final report. [Maleic anhydride; dialkylmaleates

    SciTech Connect

    Larsen, J.W.

    1983-04-01

    The objective of this work is to determine the extent to which the mass transport of reagents into solid coals limits the reactivity of those coals. The purpose of task one is to determine the effect of reagent access on the acid catalyzed depolymerization of coals using phenols and/or alkyl phenyl ethers. For task two, the purpose is to determine the effect of coal swelling on its rate of reaction with a dienophile. Work on depolymerization of coals in hot, acidic phenol has been completed. The conclusion is that due to incomplete depolymerization, the complications of competing Friedel-Crafts alkylation, and the condensation reactions of the solvent, the depolymerization of coals in hot, acidic phenol is not a useful technique for solubilizing coals for structural investigations. In task two, the rate of the Diels-Alder reaction between bituminous coals and maleic anhydride was found to be diffusion controlled. The observations of simple Fickian diffusion and reaction rate constants much slower than the Diels-Alder reaction of maleic anhydride and anthracene have no other reasonable explanation than rate limiting mass transport. The diffusion rates were found to be independent of the degree of solvent swelling of the coal. In addition, the dependence of the observed rates on temperature and the size of the dienophile were measured. Results obtained using a series of dialkylmaleates are presented. Size was found to play only a small role as long as the reagent is planar. 2 tables.

  15. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    SciTech Connect

    Chunshan Song; Schobert, H.H.; Parfitt, D.P.

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  16. Oxidative derivatization and solubilization of coal. Final report. Period: October 1, 1986 - April 30, 1988

    SciTech Connect

    Schulz, J.G.; Porowski, E.N.; Straub, A.M.

    1988-05-01

    We investigated the solubilization of coal by oxidative means to produce motor fuels. Nitric acid was used in the first of two approaches taken to cleave aliphatic linkages in coal and reduce the size of its macrostructure. Mild conditions, with temperatures up to a maximum of 75 C, and nitric acid concentrations below 20% by weight, characterize this process. The solid product, obtained in high yields, is soluble in polar organic solvents. Lower alcohols, methanol in particular, are of interest as carrier solvents in diesel fuel applications. Coals investigated were New York State peat, Wyodak subbituminous coal, North Dakota lignite, and Illinois No. 6 bituminous coal. The lower tank coals were easily converted and appear well suited to the process, while the bituminous Illinois No. 6 and Pitt Seam coals were unreactive. We concentrated our efforts on Wyodak coal and North Dakota lignite. Reaction conditions with regards to temperature, acid concentration, and time were optimized to obtain high product selectivity at maximum conversion. A continuous process scheme was developed for single pass coal conversions of about 50% to methanol-soluble product.

  17. Nuclear assay of coal. Volume 9. Prototype design of a continuous coal assay system. Final report. [Continuous on-line coal analyzer (CONAC)

    SciTech Connect

    Spencer, C.M.; Gozani, T.; Brown, D.R.

    1984-10-01

    This report describes how constraints imposed by the physical principles of the various assay techniques, by the potential user and by the industrial environment have been accounted for in the design and construction of the Continuous On-line Coal Analyzer of Coal--CONAC. The report describes the overall instrument requirements for accuracy and precision in the determination of the elemental constituents of the coal along with its moisture, ash and calorific value. How these and other design requirements are met for each of the CONAC subsystems are also described. These subsystems embody the various non-intrusive assay techniques incorporated in the CONAC, including prompt gamma neutron activation analysis (PGNAA), microwave moisture monitoring, gamma ray densitometry, and hydrogen monitoring by neutron moderation. Other subsystems of the CONAC described in this report include the radioactive source-shielding system, the coal conveyance system, the data acquisition system, and the software operator interface. The general mechanical and electrical specifications for the CONAC are also included. 7 references, 19 figures, 5 tables.

  18. Integrated system for coal-methanol liquefaction and slurry pipeline transportation. Final report. [In slurry transport

    SciTech Connect

    Banks, W.F.; Davidson, J.K.; Horton, J.H.; Summers, C.W.

    1980-03-31

    The engineering economics of an integrated coal-to-methanol conversion system and coal-in-methanol transportation system are examined, under the circumstances of the western coalfields, i.e., long distances from major markets and scarcity of water in the vicinity of the mines. The transportation economics are attractive, indicating tariffs of approximately 40 cents per million Btu per thousand miles for the coal-methanol pipeline vs 60 cents via coal-water pipelines and upwards of a dollar via rail. Energy consumption is also less in the coal-methanol pipeline than in the coal-water pipeline, and about equal to rail. It is also concluded that, by a proper marriage of the synthetic fuel (methanolization) plant to the slurrification plant, most, and in some cases all, of the water required by the synthetic fuel process can be supplied by the natural moisture of the coal itself. Thus, the only technology which presently exists and by which synthetic fuel from western coal can displace petroleum in the automotive fuel market is the integrated methanol conversion and tranportation system. The key element is the ability of the methanol slurry pipeline to accept and to deliver dry (1 to 5% moisture) coal, allowing the natural coal moisture to be used as synthesis feedstock in satisfaction of the large water requirement of any synthetic fuel plant. By virtue of these unique properties, this integrated system is seen as the only means in the foreseeable future whereby western coal can be converted to synthetic fuel and moved to distant markets.

  19. A new model of coal-water interaction and relevance for dewatering. Final report

    SciTech Connect

    Suuberg, E.M.; Yun, Y.; Lilly, W.D.; Leung, K.; Gates, T.; Otake, Y.; Deevi, S.C.

    1995-02-01

    This project was concerned with developing an improved understanding of how moisture is held in coals. There is a concern that the historically held view, that capillary condensation in pores plays a significant role, could not be correct, since the coal shrinks and swells in response to moisture loss and gain. Thus there is no well-defined pore system for holding the moisture. This appears true for a range of ranks from lignite to high volatile bituminous coal. Instead, it appears that something more like classical swelling of coals in solvents is responsible. This study examined this hypothesis by various means, considering both the mixing thermodynamics of coal and water (or coal and other swelling solvents) and by examining coal`s elastic response. The conclusion is that water does indeed behave like many other swelling solvents, but is a somewhat poor swelling solvent. The structure of the water swollen coal appears to remain fairly glassy, implying that many non-covalent crosslinks remain unbroken. The water interacts with coal only at certain types of adsorption sites. This is consistent with a second historical view that polar functionality is responsible for water retention. The filling of these sites, somewhat surprisingly, appeared to involve a strong enthalpic driving force, rather than the entropic driving force that characterizes solvent swelling in other solvents. The practical importance of these results for thermal dewatering processes is that the historical view is supported. That is, that pyrolytic polar group removal is necessary. An alternative suggestion, based upon attempts to further crosslink coal, has not received support.

  20. Combustion characterization of coals for industrial applications. Final technical report, January 1, 1981-May 29, 1985

    SciTech Connect

    Nsakala, N.; Patel, R.L.; Lao, T.C.

    1985-03-01

    In-depth fundamental information was obtained from a two-inch inner diameter laminar flow reactor referred to as the Drop Tube Furnace System (DTFS). This information consists of the following: (1) pyrolysis kinetic characteristics of four coals of various rank (Texas lignite, Montana subbituminous, Alabama high volatile bituminous, and Pennsylvania anthracite); and (2) combustion kinetic studies of chars produced from the foregoing parent coals. A number of standard ASTM and special in-house bench scale tests were also performed on the coals and chars prepared therefrom to characterize their physicochemical properties. The pilot scale (500,000 Btu/hr) Controlled Mixing History Furnace (CMHF) was used to determine the effect of staged combustion on NO/sub x/ emissions control from an overall combustion performance of the Alabama high volatile bituminous coal. The quantitative fundamental data developed from this study indicate significant differences in coal/char chemical, physical, and reactivity characteristics, which should be useful to those interested in modeling coal combustion and pyrolysis processes. These results underscore the fact that coal selection is one of the keys governing a successful coal conversion/utilization process. The combustion kinetic information obtained on the high volatile bituminous coal has been used in conjunction with combustion engineering's proprietary mathematical models to predict the combustion performance of this coal in the Controlled Mixing History Furnace. Comparison of the predicted data with the experimental results shows a virtually one-to-one scale-up from the DTFS to the CMHF. These data should provide vital information to designers in the area of carbon burnout and NO/sub x/ reduction for large scale coal utilization applications. 31 refs., 28 figs., 17 tabs.

  1. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    SciTech Connect

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  2. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report

    SciTech Connect

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  3. Studies for the stabilization of coal-oil mixtures. Final report, August 1978-May 1981

    SciTech Connect

    Botsaris, G.D.; Glazman, Y.M.; Adams-Viola, M.

    1981-01-01

    A fundamental understanding of the stabilization of coal-oil mixtures (COM) was developed. Aggregation of the coal particles was determined to control both the sedimentation and rheological properties of the COM. Sedimentation stability of COM prepared with coal, 80% < 200 mesh, is achieved by particle aggregation, which leads to the formation of a network of particles throughout the oil. The wettability of coal powders was evaluated by the Pickering emulsion test and a spherical agglomeration test to assess its effect on the stability of various COM formulations. Sedimentation stability of hydrophilic coal-oil-water mixtures (COWM) involves the formation of water bridges between the coal particles, while less stabilization of oleophilic COWM is achieved by the formation of an emulsion. Anionic SAA were least sensitive to the coal type and enhanced the aggregation stability of the suspension. The effect of cationic SAA, nonionic SAA and polymer additives depended upon the specific chemical structure of the SAA, the water content of the COM and the type of coal. The sedimentation stability of ultrafine COM was not directly due to the fineness of the powder but due to the formation of a network of flocculated particles.

  4. Molecular biological enhancement of coal biodesulfurization. Final report, October 1988--December 1991

    SciTech Connect

    Kilbane, J.J. II; Bielaga, B.A.

    1991-12-01

    The overall objective of this project was to use molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal, and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. (VC)

  5. Conversion of Army heating plants to coal: three case studies. Final report

    SciTech Connect

    Singer, R.; Collishaw, A.

    1982-03-01

    This study reports the results of three site-specific engineering studies to convert main heating plants to coal as a fuel. The Army installations examined were Redstone Arsenal, AL; Picatinny Arsenal, NJ; and the U.S. Military Academy (West Point) in New York. Each of these installations formerly fired coal and was converted to fuel oil about two decades ago. Researchers considered application of both current and advanced coal systems, which included direct combustion (either in suspension or on a grate), production and firing of low- and high-Btu coal-derived gas, and production and use of coal-derived liquid fuel. Both rehabilitation and replacement of plants were considered. Capital investment and annual operating costs are reported for alternative conversions. The report concludes that all three installations should change from fuel oil to coal based on the economics presented. The report recommends: that Redstone Arsenal rehabilitate and reconvert its boilers to fire coal; that Picatinny Arsenal build a new fluid bed boiler plant to replace the existing oil-fired plant; and that West Point build at a new location a coal-fired plant to replace the existing plant.

  6. Secondary economic impact of acid deposition control legislation in six coal producing states: Final report

    SciTech Connect

    Scott, M.J.; Guthrie, S.J.

    1988-12-01

    Among the difficult policy questions on the US environmental agenda is what to do about emissions to the earth's atmosphere of pollutants that may result in ''acid rain''. The Congress has considered several pieces of legislation spelling out potential approaches to the problem and setting goals for emission reduction, mostly emphasizing the control of oxides of sulfur and nitrogen. Significant policy concern is the dollar costs to the nation's economy of achieving the intended effects of the legislation and the potential impacts on economic activity---in particular, losses of both coal mining and secondary service sector employment in states and regions dependent on the mining of high sulfur coal. There are several direct economic effects of regulations such as the acid rain control legislation. One of the more obvious effects was the switching from high sulfur coal to low sulfur coal. This would result in increases in employment and coal business procurements in low sulfur coal mining regions, but also would result in lower employment and lower coal business procurements in high sulfur coal mining areas. The potential negative effects are the immediate policy concern and are the focus of this report. 15 refs., 1 fig., 17 tabs.

  7. Sorption and chemical transformation of PAHs on coal fly ash. Final technical report

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1995-02-01

    The objectives of this work were to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAH`s) and their derivatives, and to attempt to understand the influence of surface properties of coal ash in the chemical transformations of PAH`s.

  8. Coal liquefaction: A research and development needs assessment: Final report, Volume I

    SciTech Connect

    Schindler, H.D.; Burke, F.P.; Chao, K.C.; Davis, B.H.; Gorbaty, M.L.; Klier, K.; Kruse, C.W.; Larsen, J.W.; Lumpkin, R.E.; McIlwain, M.E.; Wender, I.; Stewart, N.

    1989-03-01

    The DOE Coal Liquefaction Research Needs (COLIRN) Panel reviewed, developed, and assessed R and D needs for the development of coal liquefaction for the production of transportation fuels. Technical, economics, and environmental considerations were important components of the panel's deliberations. The panel examined in some depth each of the following technologies: direct liquefaction of coal, indirect liquefaction via conversion of coal-derived synthesis gas, pyrolysis, coprocessing of combined coal/oil feedstocks, and bioconversion of coal and coal-derived materials. In this assessment particular attention was given to highlighting the fundamental and applied research which has revealed new and improved liquefaction mechanisms, the potentially promising innovative processes currently emerging, and the technological and engineering improvements necessary for significant cost reductions. As the result of this assessment, the COLIRN panel developed a list of prioritized research recommendations needed to bring coal liquefaction to technical and economic readiness in the next 5--20 years. The findings and the research recommendations generated by the COLIRN panel are summarized in this publication. 107 figs., 63 tabs.

  9. Lignin-assisted coal depolymerization. [Final] technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Lalvani, S.B.; Muchmore, C.B.; Koropchak, J.A.; Kim, Jong Won

    1992-12-31

    Liquefaction of an Illinois bituminous and a caustic lignin was studied in an initial hydrogen pressure of 140 psig. Experiments were conducted in the temperature range of 325-375{degree}C in tetralin. The addition of lignin to coal was found to be synergistic in that it significantly improves the quality and yield of the liquid products obtained. Kinetic data for coal conversion enhancement due to lignin addition were obtained. A mathematical model describing the reaction chemistry, using lignin, has been proposed and developed. The analysis of the results indicates that the intermediates produced from lignin were responsible for enhancement in coal depolymerization rate, however, the intermediates are short-lived as compared to the time needed for a significant coal conversion yield. Coal depolymerization rate was found to be a function of time; compared to processing coal alone, it doubled upon reacting coal with lignin at 375{degree}C and after 67 minutes from the beginning of the experiment. Overall mass recoveries of 95--98% of the total mass charged to the reactor were obtained. A careful statistical analysis of the data shows that coal depolymerization yield is enhanced by 11.9% due to the lignin addition. The liquids obtained were examined for their elemental composition, and molecular weight determination by size exclusion chromatography. The stability of liquid products was characterized by determining their solubility in pentane and benzene, and by evaluating the molecular weight.

  10. Heterofunctionality interaction with donor solvent coal liquefaction. Final progress report, August 1982-April 1984

    SciTech Connect

    Cronauer, D.C.

    1984-05-01

    This project was undertaken to understand the role of the coal liquefaction solvent through a study of the interaction between the hydrogen donor solvent characteristics and the heterofunctionality of the solvent. Specifically, hydroxyl- and nitrogen-containing solvents were studied and characterized. A series of coal liquefaction experiments were carried out at 450/sup 0/C in a continuous feed stirred-tank reactor (CSTR) to observe the effect of adding phenolics to anthracene oil (AO) and SRC-II recycle solvents. The addition of phenol to AO at a ratio of 5/65 resulted in a nominal increase in coal conversion to THF solubles, but the amount of asphaltenes more than doubled resulting in a sizable net loss of solvent. The addition of m-cresol to both AO and SRC-II solvents had a positive effect on coal conversion to both THF and pentane solubles (oils). The partial removal of an OH-concentrate from SRC-II solvent was carried out using Amberlyst IRA-904 ion exchange resin. The resin-treated oil was only marginally better than raw SRC-II recycle solvent for coal liquefaction. Hydroaromatics having nitrogen functionality should be good solvents for coal liquefaction considering their effective solvent power, ability to penetrate and swell coal, and their ability to readily transfer hydrogen, particularly in the presence of oxygen functionality. However, these benefits are overshadowed by the strong tendency of the nitrogen-containing species to adduct with themselves and coal-derived materials.

  11. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  12. 78 FR 19990 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards; Correction AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule... air quality standards in a new chapter of rules and adjusted the rule references accordingly...

  13. Estimated maintenance and repair requirements for coal-fired propulsion systems. Final report

    SciTech Connect

    Little, D.E.; Murtagh, M.M.

    1982-06-01

    This study was directed toward identifying unique maintenance and repair requirements in terms of manpower and materials for coal-fired steam turbine propulsion plant ships. The method of approach included surveys of industrial and marine coal-fired plant operators and coal-firing equipment manufacturers to obtain a data base of manpower and material requirements for a range of plant sizes and operating scenarios. A national coal-fired plant was then developed and the maintenance data base adapted to the marine coal-fired system. From this information, required crew manpower was determined and compared to typical oil-fired systems and associated manpower availability evaluated. Material and contract manpower costs were assessed and parametric data developed to allow potential operators to estimate daily maintenance and repair costs.

  14. Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report

    SciTech Connect

    McHale, E.T.; Paul, A.D.; Bartis, J.T.; Korkmaz, M.

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  15. Temperature effects on chemical structure and motion in coal. Final report

    SciTech Connect

    Maciel, G.E.

    1996-09-30

    The objective of this project was to apply recently developed, state-of-the-art nuclear magnetic resonance (NMR) techniques to examine in situ changes in the chemical structure and molecular/macromolecular motion in coal as the temperature is increased above room temperature. Although alterations in the chemical structure of coal have been studied previously by {sup 13}C NMR, using quenched samples, the goal of this project was to examine these chemical structural changes, and changes in molecular/macromolecular mobility that may precede or accompany the chemical changes, at elevated temperatures, using modern {sup 13}C and {sup 1}H NMR techniques, especially {sup 1}H dipolar-dephasing techniques and related experiments pioneered in the laboratory for examining pyridine-saturated coals. This project consisted of the following four primary segments and related efforts on matters relevant to the first four tasks. (1) {sup 1}H NMR characterization of coal structure and mobility as a function of temperature variation over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (2) {sup 1}H NMR characterization of coal structure, mobility and conversion as a function of temperature variation over a temperature range (240--500 C) for which chemical transformations of coal are known to occur. (3) {sup 13}C NMR investigation of coal structure/mobility as a function of temperature over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (4) {sup 13}C NMR investigation of coal structure, dynamics and conversion as a function of temperature variation over a range (240--500 C) for which chemical transformations of coal are known to occur. (5) Related matters relevant to the first four tasks: (a) {sup 1}H CRAMPS NMR characterization of oil shales and their kerogen concentrates; and (b) improved quantitation in {sup 13}C MAS characterization of coals.

  16. Development of the chemical and electrochemical coal cleaning (CECC) process. Final report

    SciTech Connect

    Yoon, Roe-Hoan; Basilio, C.I.

    1992-05-01

    The Chemical and Electrochemical Coal Cleaning (CECC) process developed at Virginia Polytechnic Institute and State University was studied further in this project. This process offers a new method of physically cleaning both low- and high-rank coals without requiring fine grinding. The CECC process is based on liberating mineral matter from coal by osmotic pressure. The majority of the work was conducted on Middle Wyodak, Pittsburgh No. 8 and Elkhorn No. 3 coals. The coal samples were characterized for a variety of physical and chemical properties. Parametric studies were then conducted to identify the important operating parameters and to establish the optimum conditions. In addition, fundamental mechanisms of the process were studied, including mineral matter liberation, kinetics of mineral matter and pyrite dissolution, ferric ion regeneration schemes and alternative methods of separating the cleaned coal from the liberated mineral matter. The information gathered from the parametric and fundamental studies was used in the design, construction and testing of a bench-scale continuous CECC unit. Using this unit, the ash content of a Middle Wyodak coal was reduced from 6.96 to 1.61% at a 2 lbs/hr throughput. With an Elkhorn No. 3 sample, the ash content was reduced from 9.43 to 1.8%, while the sulfur content was reduced from 1.57 to 0.9%. The mass balance and liberation studies showed that liberation played a more dominant role than the chemical dissolution in removing mineral matter and inorganic sulfur from the different bituminous coals tested. However, the opposite was found to be the case for the Wyodak coal since this coal contained a significant amount of acid-soluble minerals.

  17. Development of a pulsed coal combustor fired with CWM (coal-water mixture): Phase 3, Final report

    SciTech Connect

    Mansour, M.N.; Durai-Swamy, K.

    1986-11-01

    This report presents the results of an R and D program aimed at developing a new burner technology for coal-water mixture (CWM) fuels to enable the substitution of these new fuels in utility and industrial boilers and process heaters currently firing oil and gas. The application of pulse combustion to CWM fuels is chosen to alleviate many of the physical plant and environmental constraints presently associated with the direct use of these fuels in equipment designed for oil and gas firing. Pulse combustion has been shown to be capable of high-intensity burning of coal for acceptably complete combustion within relatively small equipment volumes. It also has the inherent capability to agglomerate ash particles, thus rendering ash more easily separable from the combustion gas prior to its entrance into the convective section of the boiler or heater, thereby reducing ash buildup and pluggage. Pulse combustion is also well-suited to staged combustion for NO/sub x/ control and has excellent potential for enhanced in-furnace SO/sub 2/ removal due to the enhanced levels of mass transfer brought about by the vigorous flow oscillations. The primary objective of the Phase 2 work was to develop a detailed program for laboratory development and evaluation of the pulse CWM combustor and system design concepts. 112 refs., 40 figs., 94 tabs.

  18. Research and development of rapid hydrogenation for coal conversion to synthetic motor fuels (riser cracking of coal). Final report, April 1, 1976-September 30, 1980

    SciTech Connect

    Duncan, D. A.; Beeson, J. L.; Oberle, R. D.

    1981-02-01

    The objective of the program described was to develop a noncatalytic process for the hydropyrolysis of lignite and coal to produce high-octane blending gasoline constituents, methane, ethane, and carbon oxides. The process would operate in a balanced plant mode, using spent char to generate process hydrogen by steam-oxygen gasification. The technical program included the construction and operating of a bench-scale unit (5-10 lb/hr), the design, construction, and operation of a process development unit (PDU) (100 lb/hr), and a final technical and economic assessment of the process, called Riser Cracking of Coal. In the bench-scale unit program, 143 runs were made investigating the effects of pressure, temperature, heating rate, residence time, and particle size, processing North Dakota lignite in hydrogen. Some runs were made in which the hydrogen was preheated to pyrolysis temperatures prior to contact with the coal, and, also, in which steam was substituted for half of the hydrogen. Attempts to operate the bench-scale unit at 1200 psig and 1475/sup 0/F were not successful. Depth of carbon conversion was found to be influenced by hydrogen pressure, hydrogen-to-coal ratio, and the severity of the thermal treatment. The composition of hydrocarbon liquids produced was found to change with severity. At low severity, the liquids contained sizable fractions of phenols and cresols. At high severity, the fraction of phenols and cresols was much reduced, with an attendant increase in BTX. In operating the PDU, it was necessary to use more oxygen than was planned to achieve pyrolysis temperatures because of heat losses, and portions of hydrocarbon products were lost through combustion with a large increase in carbon oxide yields. Economic studies, however, showed that selling prices for gasoline blending stock, fuel oil, and fuel gas are competitive in current markets, so that the process is held to warrant further development.

  19. Interaction of H atoms with ultrafine coal dust. Final technical report, January 16, 1976-August 15, 1979. [Photoproduced H atoms

    SciTech Connect

    Mains, G.J.

    1980-03-01

    Photoproduced H atoms reacted with coal at temperatures as low as 100/sup 0/C (and much more vigorously at 200/sup 0/C). The sites of attack were not at alkane sites or BTX and different for each rank of coal as expected; quite the reverse, the sites of attack appear to be PNA clusters which are rapidly and indescriminately hydrogenated to saturated gasoline-type hydrocarbons (spiked with a little surviving BTX). Unfortunately, photochemically produced H atoms are an expensive way to convert coal into gasoline. When the temperature was raised to 200/sup 0/C, BTX condensation was no longer a concern. However, when the HPLC analyses suggested pyrene, phenanthrene, and fluoranthene as H-atom cracking products, the investigators were quite startled. In fact, these three and four ring PNA were formed at levels well below their vapor pressure at 200/sup 0/C, and may only indicate the tip of the iceberg. It is possible, indeed likely, that considerably larger PNA molecules are liberated by H-atoms at 200/sup 0/C but, because of their very high reactivity, get cracked to these smaller PNA products before they can exit the reactor. It would appear that H-atoms are indeed an effective probe of the coal surface. The surface must contain an increasing number of partially oxidized phenanthrene, fluoranthene (or benzo (b) fluoranthene) precursors as the coal rank increases. Precisely what these structures are can never be inferred from steady state experiments because of subsequent and rapid hydrogenation/cracking. While this study did not provide a final structure for the surface of coal, it surely has eliminated a lot of early postulates, including Given and Wiser's models, at least at the ground and admittedly-altered surface.

  20. Draft final feasibility study report and proposed plan for Operable Unit 4, response to comments: Fernald Environmental Management Project, Fernald, Ohio

    SciTech Connect

    Not Available

    1994-02-01

    This report contains questions and comments regarding a risk evaluation and possible remedial action of Operable Unit 4 at the Feed Materials Production Center at Fernald, Ohio. Attention is focused on the US EPA Region V feasibility study and on the CRARE. The CRARE is a post-remediation time frame document.

  1. Home School and Adult Instruction Component Home-School-Community Agents Project 1990-91. Final Evaluation Report. Ohio Disadvantaged Pupil Program Fund.

    ERIC Educational Resources Information Center

    Chamberlain, Ed

    The Home-School-Community Agent (HSCA) Project of the Columbus (Ohio) Public Schools was established in the 1990-91 school year to help disruptive students make a positive adjustment to elements in their lives that interfere with success in school. The project was implemented through 21 HSCAs in nine high schools and 12 middle schools. Each agent…

  2. Coal conversion at Picatinny Arsenal and Forts Campbell, Bragg, and Gordon: A feasibility study. Final report

    SciTech Connect

    Lin, M.C.; Thurber, L.; Durbin, T.; Tarvin, R.

    1993-12-01

    Public Law 99-190 requires the Department of Defense to increase the use of coal at its facilities in the United States. This study investigated the feasibility of converting oil- and gas-fired heating plants to coal firing at four Army installations: Fort Bragg, NC; Fort Campbell, KY; Fort Gordon, GA; and Picatinny Arsenal, NJ. Information on the energy systems at the selected sites was gathered by site visit and survey, and project life cycle cost (LCC) was computationally estimated. The study concluded that, for the four installations, there would be a lower life-cycle cost (LCC) in maintaining the status quo than in building new plants. However, where new plant construction is planned, the larger the plants, the better its potential for cost-effectively using coal as a plant fuel. The use of coal at a new plant at Fort Bragg was found to be more cost effective than gas or oil, and may result in significant cost savings. For the other three installations studied, significant price increases in alternate fuels would be required before coal would become economically feasible (31 to 73 percent for gas, and 50 to 84 percent for 6 fuel oil). Ft. Bragg, NC, Army coal conversion program, Ft. Campbell, KY, Coal-fixed technologies, Ft. Gordon, GA, Cost-effectiveness.

  3. Development of high energy density fuels from mild gasification of coal. Final report

    SciTech Connect

    Not Available

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  4. High-mass-flux coal gasifier. Final report, Phase III. [Bill high mom flux

    SciTech Connect

    Simpkin, A.J.; Montanino, L.N.; Reinhardt, T.F.; Ferger, T.M.

    1981-05-01

    This report describes the design, analysis, construction and test activities associated with bringing a short-residence-time, entrained-flow gasifier Process Development Unit (PDU) to operational status. The basis High Mass Flux (HMF) gasifier, incorporated in the PDU, operates at a coal through-put of twelve tons per day, a pressure of fifteen atmospheres and processes coal, oxygen and steam to produce a synthesis gas. When applied to the production of Substitute Natural Gas (SNG), the option exists to add secondary coal to the basic HMF gasifier, for the purpose of enhancing the methane content of the product. A secondary coal feed system was developed and its injection capability demonstrated in a cold flow test facility. Operability and performance of the synthesis gas stage of the HMF gasifier were demonstrated with Pittsburgh seam coal and North Dakota Lignite. Curtailment of testing precluded the conduct of any gasification tests with secondary coal injection. Included in the main program was a task to evaluate the effects of slag fluxing additives upon viscosity/temperature relationships for Pittsburgh seal coal slags. The testing associated with this task was conducted by the Alfred University Research Foundation (AURF).

  5. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Final project report

    SciTech Connect

    Not Available

    1994-02-01

    As part of the US Department of Energy`s (DOE`s) Innovative Clean Coal Technology Program, under Round 2, a project for Full Scale Demonstration of Coal Reburning for Cyclone Boiler Nitrogen Oxide (NO{sub x},) Control was selected. DOE sponsored The Babcock & Wilcox (B&W) Company, with Wisconsin Power & Light (WP&L) as the host utility, to demonstrate coal reburning technology at WP&L`s 110 MW{sub c}, cyclone-fired Unit No.2 at the Nelson Dewey Generating Station in Cassville, Wisconsin. The coal reburning demonstration was justified based on two prior studies. An Electric Power Research Institute (EPRI) and B&W sponsored engineering feasibility study indicated that the majority of cyclone-equipped boilers could successfully apply reburning technology to reduce NO{sub x}, emissions by 50 to 70%. An EPRI/Gas Research Institute (GRI)/B&W pilot-scale evaluation substantiated this conclusion through pilot-scale testing in B&W`s 6 million Btu/hr Small Boiler Simulator. Three different reburning fuels, natural gas, No. 6 oil, and pulverized coal were tested. This work showed that coal as a reburning fuel performs nearly as well as gas/oil without deleterious effects of combustion efficiency. Coal was selected for a full scale demonstration since it is available to all cyclone units and represents the highest level of technical difficulty-in demonstrating the technology.

  6. Characterization of silica in the lungs of autopsied coal miners. Final report

    SciTech Connect

    Not Available

    1989-01-01

    A two-part study was conducted to investigate silica in lungs of coal miners at autopsy. The prevalence of silicosis at death in coal miners in relation to mining and job categories was investigated in the first part. Lung-tissue sections submitted to the National Coal Workers Autopsy Study (NCWAS) for the period 1971 through 1980 were assessed for the presence of silicotic lesions in the pulmonary parenchyma and tracheobronchial lymph nodes. Silicosis usually occurred against a background of coal workers' pneumoconiosis; only 7.2% of lungs without coal workers' pneumoconiosis showed silicosis. Transportation workers showed the highest prevalence of silicosis, while workers primarily engaged in surface activities at underground mines have the lowest prevalence. Geographical area affected the prevalence of silicosis. The number of years spent in underground mining was found to be clearly correlated with prevalence and severity of silicosis. The second part studied the particle-size distributions and number of particles in coal miners' lungs. Particulate burdens were determined for lung specimens from 21 coal miners by scanning electron-microscope-based automated image analysis. Results were compared with those for urban dwellers. In spite of the specimens being chosen to represent a wide range of exposure and medical history, particle-size data were similar.

  7. Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report

    SciTech Connect

    Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

    1982-09-01

    The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than the higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.

  8. Mild coal pretreatment to improve liquefaction reactivity. Final technical report, September 1990--February 1994

    SciTech Connect

    Miller, R.L.; Shams, K.G.

    1994-07-01

    Recent research efforts in direct coal liquefaction are focused on lowering the level of reaction severity, identification and determination of the causes of retrogressive reactions, and improving the economics of the process. Ambient pretreatment of coals using methanol and a trace amount of hydrochloric acid was extensively studied in connection with low severity coal liquefaction. Ambient pretreatment of eight Argonne coals using methanol/HCl improved THF-soluble conversions 24.5 wt % (maf basis) for Wyodak subbituminous coal and 28.4 wt % for Beulah-Zap lignite with an average increase of 14.9 wt % for the eight Argonne coals at 623 K (350{degrees}C) reaction temperature and 30 minutes reaction time. Optimal pretreatment conditions were determined using Wyodak and Illinois No. 6 coals. Acid concentration was the most important pretreatment variable studied; liquefaction reactivity increased with increasing acid concentration up to 2 vol %. The FTIR spectra of treated and untreated Wyodak coal samples demonstrated formation of carboxylic functional groups during pretreatment, a result of divalent (Ca, Mg) cationic bridge destruction. The extent of liquefaction reactivity directly correlated with the amount of calcium removed during pretreatment, and results from calcium ``addback`` experiments supported the observation that calcium adversely affected coal reactivity at low severity reaction conditions. Model compound studies using benzyl phenyl ether demonstrated that calcium cations catalyzed retrogressive reactions, inhibited hydrogenation reactions at low severity reaction conditions, and were more active at higher reaction temperatures. Based on kinetic data, mechanisms for hydrogenation-based inhibition and base-catalyzed retrogressive reactions are proposed. The base-catalyzed retrogressive reactions are shown to occur via a hydrogen abstraction mechanism where hydrogenation inhibition reactions are shown to take place via a surface quenching mechanism.

  9. Drying and reconstitution of subbituminous coal - CRADA 90-004. Final report

    SciTech Connect

    Wen, W. W.; Nowak, M. A.; Killmeyer, R. P.

    1991-10-30

    AMAX Coal Company (AMAX) has built a 200 tph, demonstration scale fluidized-bed drying process at their Belle Ayr Mine in Wyoming to dry the subbituminous coal of Wyodak seam from an average moisture content of 25-30 wt% to about 10 wt%. Currently, the dryer generates too many fines for proper transportation and handling. Though the raw coal is about 2-inch top size, about 80 wt% of the dryer product ends up finer than 28 mesh, and about 10 wt% of the dried coal is collected in the dryer bag house (minus 200 mesh). Paul Woessner, Director of Research and Development of AMAX, met with personnel from PETC Coal Preparation Division and expressed an interest in an investigation of the feasibility of applying the PETC`s humic acid binder to reconstitute the bag house fines from the dryer. This was an area in which PETC had been doing some research and had some expertise. As a result, AMAX and the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) signed a Cooperative Research and Development Agreement (CRADA, see appendix A) in June 1990 to produce, from fine subbituminous coal, economic low moisture reconstituted solid fuel forms that have suitable storage, handling, transportation, and combustion properties. PETC`s task in this agreement was to conduct broad, baseline studies in three areas: (1) to develop a humic acid binder from AMAX subbituminous coal using the PETC-developed Humic Acid Binder Process, (2) to reconstitute AMAX`s dried subbituminous coal fines from the bag house and the fluidized bed dryer product with humic acid binder, and (3) to produce low moisture, water-resistant pellets from raw subbituminous coal by the PETC-developed Lignipel Process. AMAX, on the other hand, agreed to produce 1-2 tons of reconstituted solid fuel for handleability and combustion tests and partially funded PETC`s efforts.

  10. Characterization of organic nitrogen in IBCSP coals. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect

    Kruge, M.A.

    1991-12-31

    The overall objective of this study was to determine the content and distribution of organic nitrogen in a series of IBCSP coals and their isolated macerals. The specific objectives were: to determine the bulk nitrogen contents for coals, isolated macerals, oxidation products and residues, solvent extracts and their liquid chromatographic fractions, and pyrolyzates; to determine the distribution of organic nitrogen in all coal derivatives enumerated in Objective 1 which are Gas Chromatography (GC)-amenable. This will be accomplished by GC-Thermionic Specific Detectors; to determine the molecular structure of the major nitrogen compounds detected in Objective 2, using mass spectrometry.

  11. Digging our own graves: coal miners and the struggle over black lung disease. Doctoral thesis (final)

    SciTech Connect

    Smith, B.E.

    1981-05-01

    The report analyzes the controversy over black lung disease among U.S. coal miners, situated within the recent struggle over industrial relations in bituminous coal. Summaries of the postwar coal industry and the changing medical approach to black lung provide the historical backdrop to the recent controversy. The development of the black lung movement is reconstructed primarily through material from oral interviews with its participants. The movement is viewed essentially as a class conflict between miners and operators over who would bear the burden of occupational disease: miners, by continuing to be disabled and without compensation; or the operators, by reducing dust levels in the mines and financing benefits for disabled workers.

  12. Coal conversion and biomass conversion: Volume 1: Final report on USAID (Agency for International Development)/GOI (Government of India) Alternate Energy Resources and Development Program

    SciTech Connect

    Kulkarni, A.; Saluja, J.

    1987-06-30

    The United States Agency for International Development (AID), in joint collaboration with the Government of India (GOI), supported a research and development program in Alternate Energy Resources during the period March 1983 to June 1987. The primary emphasis of this program was to develop new and advanced coal and biomass conversion technologies for the efficient utilization of coal and biomass feedstocks in India. This final ''summary'' report is divided into two volumes. This Report, Volume I, covers the program overview and coal projects and Volume II summarizes the accomplishments of the biomass projects. The six projects selected in the area of coal were: Evaluation of the Freeboard Performance in a Fluidized-Bed Combustor; Scale-up of AFBC boilers; Rheology, Stability and Combustion of Coal-Water Slurries; Beneficiation of Fine Coal in Dense Medium Cyclones; Hot Gas Cleanup and Separation; and Cold Gas Cleanup and Separation.

  13. Correlation of stability/rheology relationship with coal: Properties and chemical additives. Final technical report, September 1988--November 1991

    SciTech Connect

    Ohene, F.

    1992-02-19

    Coal-water slurries have the potential of a near term replacement for fuel oil. In order to gain the fundamental understanding of the preparation and handling of coal-water slurries, experiments were performed to identify the relationship between the coal content of a given coal-water slurry and its physical and chemical properties. The objectives of this program were: Investigate the relationship between the chemical and physical properties of coal and the rheology of coal-water slurry Define procedures for evaluating and preparing coal water slurries for a particular coal candidate, based on the characteristic coal properties Develop improved methods of screening surfactants used in coal-water slurry preparation Perform experiments designed to investigate the effect of characteristic coal properties on slurry quality, by examining the effect of the individual coal properties on slurry quality Develop a statistical formulation to predict the coal content of a given coal water slurry content based on the coal characteristic properties.

  14. Char particle fragmentation and its effect on unburned carbon during pulverized coal combustion. Final report, March 20, 1997

    SciTech Connect

    Mitchell, R.E.

    1997-12-31

    This document is the final report of work on a project concerned with the fragmentation of char particles during pulverized coal combustion that was conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California. The project is intended to satisfy, in part, PETC`s research efforts to understand the chemical and physical processes that govern coal combustion. The overall objectives of the project were: (1) to characterize the fragmentation events as a function of combustion environment, (2) to characterize fragmentation with respect to particle porosity and mineral loadings, (3) to assess overall mass loss rates with respect to particle fragmentation, and (4) to quantify the impact of fragmentation on unburned carbon in ash. The knowledge obtained during the course of this project can be used to predict accurately the overall mass loss rates of coals based on both the physical and chemical characteristics of their chars. The work provides a means of assessing reasons for unburned carbon in the ash of coal fired boilers and furnaces.

  15. Coal-fired propulsion system dynamics. Volume 1. Executive summary. Final report

    SciTech Connect

    Greenlee, T.L.; Pearsons, J.L.

    1982-12-01

    This volume summarizes the objectives, scope, and conclusions of an effort that was undertaken to develop and analyze a dynamic model/simulation of a coal-fired ship with steam turbine propulsion system. The General Dynamics CV-3600 self-unloading coal collier was used as the basis for this effort. The effort was jointly sponsored by General Dynamics and the U.S. Department of Transportation, Maritime Administration, for the purpose of investigating the responsiveness of coal-fired ships in maneuvering and in restricted-water operation. The volume concludes with a set of specification results that indicate the component/control system design trends that should be followed to obtain a rapidly responding coal-fired propulsion system.

  16. Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993

    SciTech Connect

    Huffman, G.P.

    1996-03-01

    Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

  17. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final report

    SciTech Connect

    Conkle, H.N.

    1992-09-29

    Battelle-Columbus and Amax Research & Development conducted a program to develop a process to transport, handle, store, and utilize ultra-fine, ultra-clean (UFUC) coals. The primary objective was to devise a cost-effective method, based on conventional pelletization techniques, to transform the sludge-like filter cake produced in advanced flotation cleaning processes into a product which could be used like lump coal. A secondary objective was the production of a pellet which could be readily converted into a coal water fuel (CWF) because the UFUC coal would ultimately be used as CWF. The resulting product would be a hard, waterproof pellet which could be easily reduced to small particle sizes and formulated with water into a liquid fuel.

  18. McHuchuma/Katewaka coal fired power plant feasibility study. Final report. Export trade information

    SciTech Connect

    1996-11-22

    This study, conducted by Black and Veatch International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility for the development of a new coal fueled power plant in Tanzania at the Mchuchuma/Katewaka coal concession area. Volume 3, the Main Report, is divided into the following sections: (1.0) Introduction; (2.0) Power System Development Studies; (3.0) Conceptual Design Summary of the Mchuchuma Coal Fired Power Plant; (4.0) Fuel Supply Evaluation; (5.0) Transmission System Evaluation; (6.0) Power Plant Site and Infrastructure Evaluation; (7.0) Environmental Impact Assessment; (8.0) Institutional Aspects; (9.0) Financial Evaluation and Benefit Analysis; (10.0) Sources of Finance; Appendix (A) Preliminary Design of Mchuchuma Coal Plant.

  19. Study of hydrocyclone applications to separation processes for coal preparation. Final report

    SciTech Connect

    Bouchillon, C.W.

    1981-01-01

    The project objectives were to conduct a literature survey, visit coal cleaning facilities, develop an empirical predictive model and a life cycle cost method - while involving several students in an introduction to coal technology. A computerized literature research of four files was made and the more pertinent references were reviewed and presented. A visit was made to the Paradise, Kentucky coal washing plant of TVA and the coal cleaning activity of PETC-DOE at Pittsburgh, Pennsylvania. An empirical predictive model was developed for hydrocyclones based on one manufacturer's information on flow rates, pressure drops, hydrocyclone geometry, and particle sizes. This was combined with a life cycle economic analysis program to provide additional techniques for proper hydrocyclone selection criteria.

  20. Reducing the moisture content of clean coals. Volume 3, Belt filter press: Final report

    SciTech Connect

    Shields, G.

    1992-12-01

    Reducing the Moisture Content of Clean Coals, Volume 3: Belt Filter Press contains the results of an EPRI investigation into the performance of an alternative clean coal dewatering device. Investigators at EPRI`s Coal Quality Development Center (CQDC) designed test so that mathematical relationships predicting filter cake moisture and solids capture could be developed. They also compared the economics of installing and operating a belt filter press with a vacuum disc filter, which is its nearest equivalent. For 100M {times} 0 clean coal from the Upper Freeport seam, the belt filter press produced filter cake with an average moisture content of 30 percent. This moisture is 5 to 10 percentage points higher than moistures from a vacuum disc filter. Economic analysis shows that the belt filter press costs an additional $72,000 a year to operate in place of a vacuum disc filter.

  1. Fine coal fractionation using a magnetohydrostatic separation process CRADA 91-003. Final report

    SciTech Connect

    Cho, Heechan; Killmeyer, R. P.

    1992-10-31

    The magnetohydrostatic separation (MHS) process uses a magnetic fluid which has the ability to float a submerged particle in a magnetic field. The objective of this project was to develop a technique for laboratory gravity fractionation of coal using MHS.

  2. Water, Ohio's Remarkable Resource.

    ERIC Educational Resources Information Center

    Groves, Carrie J.

    Information on water and water resources in Ohio is presented in seven sections. Water from Ohio streams, water storage, lakes in Ohio, and ground water are discussed in the first section ("Water, A Part of the Earth"). A brief discussion on the ecosystem is provided in the second section ("Water and Life"). Topics discussed in…

  3. Curriculum Related Ohio Resources.

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.

    1994-01-01

    A professor in the School of Library and Information Science at Kent State University (Ohio) compiled a bibliography of Ohio children's literature. A list of sources is provided with the following topics: general Ohio information; professional resources; journals; picture books; fiction; maps, posters, puzzles; and audiovisual materials. (AEF)

  4. Water, Ohio's Remarkable Resource.

    ERIC Educational Resources Information Center

    Groves, Carrie J.

    Information on water and water resources in Ohio is presented in seven sections. Water from Ohio streams, water storage, lakes in Ohio, and ground water are discussed in the first section ("Water, A Part of the Earth"). A brief discussion on the ecosystem is provided in the second section ("Water and Life"). Topics discussed in…

  5. Cleavage and crosslinking of polymeric coal structures during pyrolysis. Final report

    SciTech Connect

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionization mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.

  6. Coal-fueled diesel technology development. Final report, March 3, 1988--January 31, 1994

    SciTech Connect

    1994-01-31

    Since 1979, the US Department of Energy has been sponsoring Research and Development programs to use coal as a fuel for diesel engines. In 1984, under the partial sponsorship of the Burlington Northern and Norfolk Southern Railroads, GE completed a 30-month study on the economic viability of a coal-fueled locomotive. In response to a GE proposal to continue researching the economic and technical feasibility of a coal-fueled diesel engine for locomotives, DOE awarded a contract to GE Corporate Research and Development for a three-year program that began in March 1985 and was completed in 1988. That program was divided into two parts: an Economic Assessment Study and a Technical Feasibility Study. The Economic Assessment Study evaluated the benefits to be derived from development of a coal-fueled diesel engine. Seven areas and their economic impact on the use of coal-fueled diesels were examined; impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The Technical Feasibility Study used laboratory- and bench-scale experiments to investigate the combustion of coal. The major accomplishments of this study were the development of injection hardware for coal water slurry (CWS) fuel, successful testing of CWS fuel in a full-size, single-cylinder, medium-speed diesel engine, evaluation of full-scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions. Full combustion of CWS fuel was accomplished at full and part load with reasonable manifold conditions.

  7. Dewatering studies of fine clean coal. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Parekh, B.K.

    1992-12-31

    Physical cleaning of ultra-fine coal using advanced froth flotation technique provides a low ash product; however, the amount of water associated with clean coal is high. Economic removal of water from the froth will be important for commercial applicability of the advanced flotation processes. The main objective of the present research program is to study and understand dewatering characteristics of ultra-fine clean coal and to develop process parameters to effectively reduce the moisture to less than 20 percent in the clean coal product. The research approach utilized synergistic effect of metal ions and surfactant addition to lower the moisture of clean coal using the conventional vacuum dewatering technique. The studies have identified a combinations of metal ions and surfactants in providing a 22 percent moisture filter cake. Surface chemical study indicated a direct correlation between the point-of-zero charge (PZC) of metal ion/fine coal system and lowering of moisture in the filter cake. Adsorption of either metal ions or surfactants alone did not provide a significant reduction of moisture in the filter cake. However, a combination of the two provided a filter cake containing about 22 percent moisture. Filtration tests conducted using a laboratory vacuum drum filter indicated that the results obtained in batch filtration could be reproduced on a continuous filtration unit. FT-IR studies indicated that anionic surfactant and metal ions form complex species which adsorbs on the fine coal and results in improved moisture reduction during filtration. Recommendations are offered for testing this novel dewatering process on a pilot scale at a coal preparation plant in Illinois.

  8. Investigation of mechanisms of ash deposit formation from low-rank coal combustion: Final report

    SciTech Connect

    Greene, F.T.; O'Donnell, J.E.

    1987-08-01

    This project was undertaken to determine the chemical behavior of alkali metal and other species implicated in the ash fouling which can occur during the combustion of low rank coals. The coal combustion was studied in unaugmented premixed pulverized coal flames. Vapor species were measured by molecular beam mass spectrometry. Temperatures were also measured, and time-resolved coal/ash particulate samples were collected and analyzed. A major part of the research on this project was devoted to: (1) the development and refinement of techniques for the MBMS analysis of trace quantities of unstable and reactive high temperature vapor species from the pulverized coal flames; and (2) the time-resolved sampling and collection of particulates. The equipment is now operating very satisfactorily. Inorganic species, some of which were present at parts-per-million levels, were quantitatively sampled and measured in the pulverized coal flames. Time-resolved particulate samples which were free of vapor deposited contaminants were collected without the use of an interfering substrate. Profiles of the alkali metal species in Beulah lignite and Decker subbituminous coal flames were obtained. It was found in both flames that sodium is volatilized as the atomic species early (milliseconds) in the combustion process. The gaseous Na reacts, also in milliseconds, to form an unknown species which is probably an oxide fume, but which is not NaOH or Na/sub 2/SO/sub 4/. This is probably the mechanism for the formation of the alkali ''fumes'' observed in other systems. Measurements were also made of a number of other gaseous species, and time-resolved coal/ash samples were obtained and analyzed. 27 refs., 23 figs., 8 tabs.

  9. BI-GAS coal-gasification program. Final report, November 1979-August 1982

    SciTech Connect

    McIntosh, M.J.

    1983-01-31

    The primary purpose of this report is to cover in detail activities at the BI-GAS Coal-Gasification Pilot Plant from November 1979 through August 1982. During this period Stearns-Roger Incorporated was the prime contractor for the project. Volume 2 contains topical reports which describe the operation of the gasifier and each of the auxiliary process areas as well as heat and material balance data, computer simulation, gasification of Pittsburgh seam coal and materials evaluation.

  10. Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report, September 1, 1983-September 1, 1986

    DOE R&D Accomplishments Database

    Olah, G. A.

    1986-01-01

    This research project involved the study of a raw comparatively mild coal conversion process. The goal of the project was to study model systems to understand the basic chemistry involved and to provide a possible effective pretreatment of coal which significantly improves liquefaction-depolymerization under mild conditions. The conversion process operates at relatively low temperatures (170 degrees C) and pressures and uses an easily recyclable, stable superacid catalysts (HF-BF{sub 3}). It consequently offers an attractive alternative to currently available processes. From the present studies it appears that the modification of coal structure by electrophilic alkylation and subsequent reaction of alkylated coal with HF-BF{sub 3}-H{sub 2} system under mild conditions considerably improves the extractability of coal in pyridine and cyclohexane. On the other hand, nitration of coal and its subsequent reaction with HF-BF{sub 3}H{sub 2} decreases the pyridine and cyclohexane extractability. Study of model compounds under conditions identical with the superacidic HF/BF{sub 3}/H{sub 2} system provided significant information about the basic chemistry of the involved cleavage-hydrogenation reactions.

  11. Determining the radiative properties of pulverized-coal particles from experiments. Final report

    SciTech Connect

    Menguec, M.P.

    1992-02-01

    A comprehensive coupled experimental-theoretical study has been performed to determine the effective radiative properties of pulverized-coal/char particles. The results obtained show that the ``effective`` scattering phase function of coal particles are highly forward scattering and show less sensitivity to the size than predicted from the Lorenz-Mie theory. The main reason for this is the presence of smaller size particles associated with each larger particle. Also, the coal/char particle clouds display more side scattering than predicted for the same size range spheres, indicating the irregular shape of the particles and fragmentation. In addition to these, it was observed that in the visible wavelength range the coal absorption is not gray, and slightly vary with the wavelength. These two experimental approaches followed in this study are unique in a sense that the physics of the problem are not approximated. The properties determined include all uncertainties related to the particle shape, size distribution, inhomogeneity and spectral complex index of refraction data. In order to obtain radiative property data over a wider wavelength spectrum, additional ex-situ experiments have been carried out using a Fourier Transform Infrared (FT-IR) Spectrometer. The spectral measurements were performed over the wavelength range of 2 to 22 {mu}m. These results were interpreted to obtain the ``effective`` efficiency factors of coal particles and the corresponding refractive index values. The results clearly show that the coal/char radiative properties display significant wavelength dependency in the infrared spectrum.

  12. Western New York State coal-water fuel market and boiler-conversion study. Final report

    SciTech Connect

    Not Available

    1987-04-01

    This report examines the feasibility of converting industrial boilers in Western New York to burn coal-water fuel (CWF) and the attractiveness of producing CWF in this region. Use of coal would increase the diversification of fuel supplies. The project began with a market study to determine the market size and estimate the potential demand for CWF. The project then evaluated the technical and economic feasibility of converting two coal-designed boilers in Western New York, currently firing oil, to CWF. A coal supplier was located and an analysis was made of the options for developing a 315,000 tpy CWF production facility. Adapting an existing site with the facilities for coal receiving, handling, storing, and pollution control, such as a steelmaking facility, would provide the least-cost fuel. Coal-water fuel could be competitive with oil and, to a lesser extent, gas; however, the estimated savings failed to provide an adequate rate of return against the costs associated with converting the industrial boilers at this time.

  13. Burning of suspended coal-water slurry droplet with oil as combustion additive. Final report

    SciTech Connect

    Yao, S.C.

    1984-10-01

    The combustion of single coal-water slurry droplet with oil as combustion additive (CWOM) has been studied. In this study, the droplet is suspended on a fine quartz fiber and is exposed to the hot combustion product of propane (C/sub 3/H/sub 8/) and air. The results are documented in a movie series. The combustion of CWOM with various combinations of concentrations are compared with that of coal-water slurry and water-oil mixture droplets. The combustion of coal-water slurry is enhanced significantly due to the presence of emulsified kerosene. The enhancement is also dependent upon the mixing procedure during preparation of CWOM. The presence of emulsified kerosene induces local boil-off and combustion that coal particles are splashed as fire works during the early evaporation stage of droplet heat-up. After particle splashing, blow-holes appear on the droplet surface. The popcorn and swelling phenomena usually occurred in coal-water-slurry combustion is greatly reduced. Significant combustion enhancement occurs with the use of kerosene in an amount of about 15 percent of the overall CWOM. This process of using kerosene as combustion additive may provide obvious advantage for the combustion of bituminous coal-water slurry. 4 references, 6 figures.

  14. Fundamental research on novel process alternatives for coal gasification: Final report

    SciTech Connect

    Hill, A H; Knight, R A; Anderson, G L; Feldkirchner, H L; Babu, S P

    1986-10-01

    The Institute of Gas Technology has conducted a fundamental research program to determine the technical feasibility of and to prepare preliminary process evaluations for two new approaches to coal gasification. These two concepts were assessed under two major project tasks: Task 1. CO/sub 2/-Coal Gasification Process Concept; Task 2. Internal Recirculation Catalysts Coal Gasification Process Concept. The first process concept involves CO/sub 2/-O/sub 2/ gasification of coal followed by CO/sub 2/ removal from the hot product gas by a solid MgO-containing sorbent. The sorbent is regenerated by either a thermal- or a pressure-swing step and the CO/sub 2/ released is recycled back to the gasifier. The product is a medium-Btu gas. The second process concept involves the use of novel ''semivolatile'' materials as internal recirculating catalysts for coal gasification. These materials remain in the gasifier because their vapor pressure-temperature behavior is such that they will be in the vapor state at the hotter, char exit part of the reactor and will condense in the colder, coal-inlet part of the reactor. 21 refs., 43 figs., 43 tabs.

  15. Coal unit trains: operations, maintenance, and technology. Volume 4. Costs and benefits of aluminum coal cars. Final report

    SciTech Connect

    Boghani, A.B.

    1984-11-01

    This report examines the costs and benefits to a utility of acquiring aluminum coal cars. After discussing the history of aluminum car production, the report describes in detail the characteristics of several aluminum cars now in use, and the experience of railroads and utilities with them. The effects of acquiring aluminum cars instead of steel cars on the fuel cost, crew cost, maintenance-of-way cost, and car costs (capital and maintenance) are discussed. An illustrative example is given, in which the internal rate of return (IRR) and payback period of the extra investment made to acquire aluminum cars are calculated. A parametric analysis is performed to determine the sensitivity of IRR and payback period to the freight-rate discount for the aluminum car, the inflation rate, the purchase price of aluminum and steel cars, their maintenance costs, bad order ratios, car lives, salvage values, trip length, and car utilization. The study concludes that the aluminum cars can be an excellent investment, provided a reasonable freight-rate discount is obtained. The first cost of an aluminum car compared to that of a steel car, its estimated downtime, its estimated maintenance cost, and the anticipated degree of its utilization are also shown to significantly affect the attractiveness of the extra investment. In addition, the study reveals that some aluminum cars have proved more durable in service than others. Thus, the importance of a thorough evaluation of the design of the aluminum cars being offered is demonstrated. 11 references, 15 figures, 8 tables.

  16. Catalytic hydrogenation of high volatile bituminous coal and various coal extracts: Final report for 1986/1987 SOMED Project

    SciTech Connect

    Kispert, L.D.

    1987-09-01

    Model compounds, naphthalene, quinolines, and isoquinoline (possible extracts of coal) were selectively hydrogenated to 1,2,3,4-tetrahydro products by a Ziegler type catalyst (I) made of cobalt stearate and triethyl aluminum (1:2 molar ratio) in hexane solvent and temperatures as low as 22/degree/C and hydrogen pressure of 700-800 psi. It was established that a hydrogen pressure greater than 300 psi is crucial for hydrogenation to occur. For instance, at a pressure of 300 psi, only 5% reduction of naphthalene was observed with the rest of the starting material remaining intact. The important feature of this Ziegler catalyst is that it works best at low temperatures, moderate pressures and short reaction times, most unusual for a Ziegler catalyst. The catalyst, however, failed to bring about any reduction with such compounts as 8-nitro-2-methylquinoling, 4-chloro-2-methylquinoline, phenol, and dibenzothiophene. These failures are not surprising as nitro compounds are known to interact with and deactivate similar catalysts and homogeneous transition metal catalysts usually fail in the present of sulfur containing compounds. 23 refs., 2 tabs.

  17. Coal slurry pump development. Final report, October 1, 1979-March 31, 1984

    SciTech Connect

    Wong, G.S.; Aukerman, R.E.

    1984-01-01

    A coal slurry pump development program for coal liquefaction was conducted by Rocketdyne Division, Rockwell International for the Department of Energy, Division of Fossil Fuel Processing. The program was initiated in October 1979 and consisted of fabrication and testing of a high-capacity, high-pressure, prototype, centrifugal slurry pump module that meets the following requiremennts for a coal/oil slurry with 50% concentration and 200 mesh coal: flowrate of 2500 gpm; operating pressure of 3000 psi; temperature of 550 F; pressure rise of 500 psi; a rotative speed of 3600 rpm; and a horsepower of 960. A two-stage, centrifugal slurry test pump was fabricated from steel castings and high wear-resistant materials for components exposed to slurry such as: cast white iron, titanium carbide, and tungsten carbide. A unique hydraulic design was utilized to reduce the severe wear on impeller and volute cutwater. The slurry pump incorporates a unique high-pressure, hydrostatic fluid seal capable of 3000 psi operating pressure. A slurry test facility for testing the centrifugal slurry pump was constructed at the Colorado School of Mines Research Institute (CSMRI), Golden, Colorado. The facility contains an 8-inch-diameter test loop, 1.7 million Btu/hr gas-fired oil heater, slurry head tank, boost pump, purge oil storage tank, high-pressure seal purge oil system, and a centrifuge/polishing filter system for recovering purge oil from the closed-loop coal slurry system. The prototype slurry pump successfully completed a three-phase hydraulic and wear test program in hot oil and hot coal/oil slurry, and achieved nearly continuous operation in slurry in excess of 242 hours with minimum wear. The feasibility of utilizing high-pressure centrifugal slurry pumps for coal liquefaction has been successfully demonstrated and further development is highly warranted. 73 figures, 19 tables.

  18. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report

    SciTech Connect

    Kabadi, V.N.

    1995-06-30

    The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

  19. Testing of indoor radon-reduction techniques in central Ohio houses: Phase 1 (Winter 1987-1988). Report for October 1987-August 1988 (Final)

    SciTech Connect

    Findlay, W.O.; Robertson, A.; Scott, A.G.

    1989-07-01

    The U.S. Environmental Protection Agency (EPA) has a program to demonstrate practical, cost-effective methods to reduce indoor radon concentrations in housing to 150 Bq/cu m (4 pCi/L) or less. The complete program will evaluate the full range of radon-reduction methods, i.e., house ventilation, sealing of entry routes, soil ventilation, radon removal from water, and air cleaning in the full range of housing substructure types and building styles, and geological conditions across the continental United States. The program described in the report demonstrated certain radon-reduction methods in housing and geology typical of southern Ohio in particular, and the central Great Plains States in general. The testing of radon-mitigation systems in Ohio houses is envisioned as taking place in two phases. The report describes Phase 1, which was carried out in 16 existing houses in the Dayton area during the 1987-1988 heating season.

  20. Evaluation of freshwater mussels in the lower Ohio River in relation to the Olmstead locks and dam project: 1995, 1996, and 1997 studies. Final report

    SciTech Connect

    Payne, B.S.; Miller, A.C.

    1998-09-01

    Surveys were conducted in 1995, 1996, and 1997 to assess community characteristics, population demography of dominant species, status of endangered species, and characteristics of nonindigenous populations of freshwater bivalves in the lower Ohio River. Data will be used to analyze impacts of construction and operation of a new lock and dam at River Mile (RM) 964.4. The greatest focus has been on a mussel bed just downstream of the project. Density categories of <20, 20 to 50, and >50 individuals per square meter are reasonable for delineating low-, moderate-, and high-density assemblages within this bed. Density >200 individuals per square meter is occasionally measured, but always describes a location heavily dominated by recent recruits. The native mussel community of the lower Ohio River is dominated by Fusconaia ebena. Dominance of this species was high at RM 967 (near Olmsted, IL), typically exceeding 80 percent of the community. At RM 957 (near Post Creek, IL), F. ebena is much less dominant (33 percent). Species richness is similar at both locations. The F. ebena population in the lower Ohio River is heavily dominated by a single-year class (probably 1990) of recent recruits. Prior to the exceptional recruitment in 1990, this population was dominated by a very abundant 1981 cohort.

  1. Photochemical coal dissolution. Final technical progress report, September 30, 1993--September 29, 1996

    SciTech Connect

    Doetschman, D.C.

    1997-05-01

    A flowing solvent photochemical reactor was designed, built and tested. A modified ACE photochemical reactor, lamp and power supply were employed. They were modified to accommodate a silica column-constrained dispersed coal sample and a solvent flowing through the silica/coal column to sweep away coal extract. Before each experiment the column was packed with the mixture of silica and coal in the annular space around the lamp. A reflective aluminum surface (foil) reflected any light-transmitted through the column for multiple passes back through the sample. A variable speed Rainin Rabbit Plus peristaltic pump was interfaced to an IBM XT computer via a Gilson RS232/RS422 converter. The purpose of the computer control was to vary the speed of the pump so as to control the absorbance of the solution of coal extract in the solvent. Absorbances at a chosen wavelength were measured by a Spec 21 spectrophotometer with a flow cell connected to the column effluent port. A signal proportional to transmittance from the Spec 21 was delivered to the computer through a Keithley DAS 801 A/D plug-in the computer. The analysis of the Spec 21 signal and control of the pump speed was based on a QuickBasic computer program written by us.

  2. Estimation of NO{sub x} emissions from pulverized coal-fired utility boilers. Final report

    SciTech Connect

    Wildman, D.J.; Smouse, S.M.

    1995-05-01

    The formation of nitrogen oxides (NO{sub x}) during pulverized-coal combustion in utility boilers is governed by many factors, including the boiler`s design characteristics and operating conditions, and coal properties. Presently, no simple, reliable method is publicly available to estimate NO{sub x} emissions from any coal-fired boiler. A neural network back-propagation algorithm was previously developed using a small data set of boiler design characteristics and operating conditions, and coal properties for tangentially fired boilers. This initial effort yielded sufficient confidence in the use of neural network data analysis techniques to expand the data base to other boiler firing modes. A new neural network-based algorithm has been developed for all major pulverized coal-firing modes (wall, opposed-wall, cell, and tangential) that accurately predicts NO{sub x} emissions using 11 readily available data inputs. A sensitivity study, which was completed for all major input parameters, yielded results that agree with conventional wisdom and practical experience. This new algorithm is being used by others, including the Electric Power Research Institute (EPRI). EPRI has included the algorithm in its new software for making emissions compliance decisions, the Clean Air Technology Workstation.

  3. Micro-agglomerate flotation for deep cleaning of coal. Final report

    SciTech Connect

    Chander, S.; Hogg, R.

    1997-01-15

    The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 {micro}m) needed to achieve adequate liberation of the mineral matter from the coal matrix. In this investigation a hybrid process--Micro-agglomerate flotation--which is a combination of oil-agglomeration and froth flotation was studied. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles and to use froth flotation to separate these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units will be relatively large agglomerates (30--50 {micro}m in size) rather than fine coal particles (1--10 {micro}m) the problems of froth overload and water/mineral carryover should be significantly alleviated. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is demonstrated in this study that the process is very sensitive to fluctuations in operating parameters. It is necessary to maintain precise control over the chemistry of the liquid phases as well as the agitation conditions in order to promote selectivity. Both kinetics as well as thermodynamic factors play a critical role in determining overall system response.

  4. High temperature alkali corrosion of ceramics in coal gas: Final report

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.

    1994-12-31

    There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.

  5. Coal precursors for production of carbon and graphite products. Final report

    SciTech Connect

    Lewis, I.C.; Lewis, R.T.; Mayer, H.K.

    1996-04-08

    The main goal of this program was to demonstrate the utility of coal extracts from the West Virginia University (WVU) extraction process as suitable base raw materials for the carbon products encompassed by the Carbon Products Consortium (CPC) team. These include binder and impregnation pitches, Coke for graphite electrodes, Cokes for anodes and specialty graphite, matrices for C/C composites and raw material for mesophase pitch fibers. Previous work in this program has shown that the WVU coal extraction process coupled with hydrotreatment, does have the potential for achieving this objective. The current effort involved screening and evaluation of extracts produced by the WVU Group and recommending appropriate materials for scaleup for subsequent evaluation by Consortium Team members. The program involved an initial characterization of small-scale extracts using standard analytical methods and mesophase formation studies. This was followed by feedback to the WVU Group and to the CPC partners with recommendation of material for scaleup. Similar analytical and mesophase studies on some of the scaled-up extracts was performed. The activation of the coal extraction residues for the purpose of producing a useful active carbon was investigated. A further task was to fabricate a small graphite artifact using Coke derived from coal extract as the filler and the coal extract itself as a binder. The results of the studies are summarized in this report.

  6. Conceptual design of a coal-fired MHD retrofit. Final technical report

    SciTech Connect

    1994-06-01

    Coal-fired magnetohydrodynamics (MHD) technology is ready for its next level of development - an integrated demonstration at a commercial scale. The development and testing of MHD has shown its potential to be the most efficient, least costly, and cleanest way to burn coal. Test results have verified a greater than 99% removal of sulphur with a potential for greater than 60% efficiency. This development and testing, primarily funded by the U.S. Department of Energy (DOE), has progressed through the completion of its proof-of-concept (POC) phase at the 50 MWt Component Development and Integration Facility (CDIF) and 28 MWt Coal Fired Flow Facility (CFFF), thereby, providing the basis for demonstration and further commercial development and application of the technology. The conceptual design of a retrofit coal-fired MHD generating plant was originally completed by the MHD Development Corporation (MDC) under this Contract, DE-AC22-87PC79669. Thereafter, this concept was updated and changed to a stand-alone MHD demonstration facility and submitted by MDC to DOE in response to the fifth round of solicitations for Clean Coal Technology. Although not selected, that activity represents the major interest in commercialization by the developing industry and the type of demonstration that would be eventually necessary. This report updates the original executive summary of the conceptual design by incorporating the results of the POC program as well as MDC`s proposed Billings MHD Demonstration Project (BMDP) and outlines the steps necessary for commercialization.

  7. Development and evaluation of coal/water mixture combustion technology. Final report

    SciTech Connect

    Scheffee, R.S.; Rossmeissl, N.P.; Skolnik, E.G.; McHale, E.T.

    1981-08-01

    The objective was to advance the technology for the preparation, storage, handling and combustion of highly-loaded coal/water mixtures. A systematic program to prepare and experimentally evaluate coal/water mixtures was conducted to develop mixtures which (1) burn efficiently using combustion chambers and burners designed for oil, (2) can be provided at a cost less than that of No. 6 oil, and (3) can be easily transported and stored. The program consisted of three principal tasks. The first was a literature survey relevant to coal/water mixture technology. The second involved slurry preparation and evaluation of rheological and stability properties, and processing techniques. The third consisted of combustion tests to characterize equipment and slurry parameters. The first task comprised a complete search of the literature, results of which are tabulated in Appendix A. Task 2 was involved with the evaluation of composition and process variables on slurry rheology and stability. Three bituminous coals, representing a range of values of volatile content, ash content, and hardness were used in the slurries. Task 3 was concerned with the combustion behavior of coal/water slurry. The studies involved first upgrading of an experimental furnace facility, which was used to burn slurry fuels, with emphasis on studying the effect on combustion of slurry properties such as viscosity and particle size, and the effect of equipment parameters such as secondary air preheat and atomization.

  8. Coal-liquid fuel/diesel engine operating compatibility. Final report

    SciTech Connect

    Hoffman, J.G.; Martin, F.W.

    1983-09-01

    This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

  9. Environmental aspects of the Brandon woods coal ash site. Final report

    SciTech Connect

    Keating, R.W.; Price, R.

    1994-05-01

    The Maryland Power Plant Research Program (PPRP) has evaluated the potential environmental effects of coal ash used as structural fill material at the Baltimore Gas and Electric Company (BG E) Brandon Woods Energy Business Park. The main purpose of the evaluation was to assess the potential for leachate constituents derived from the coal ash to affect ground and surface water quality. Ground water conditions at the site were evaluated using the water level readings collected from 21 shallow and deep monitoring wells installed by BG E prior to site development, and ground water quality data collected from the time the facility began coal ash filling operations in 1982 to December 1990. The absence of ground water quality degradation downgradient of the ash indicates that several site conditions minimize potential adverse enviromental impacts from leachate generation.

  10. Solvent-refined-coal (SRC) process. Volume II. Sections V-XIV. Final report

    SciTech Connect

    Not Available

    1982-05-01

    This report documents the completion of development work on the Solvent Refined Coal Process by The Pittsburgh and Midway Coal Mining Co. The work was initiated in 1966 under Office of Coal Research, US Department of Interior, Contract No. 14-01-0001-496 and completed under US Department of Energy Contract No. DE-AC05-79ET10104. This report discusses work leading to the development of the SRC-I and SRC-II processes, construction of the Fort Lewis Pilot Plant for the successful development of these processes, and results from the operation of this pilot plant. Process design data generated on a 1 ton-per-day Process Development Unit, bench-scale units and through numerous research projects in support of the design of major demonstration plants are also discussed in summary form and fully referenced in this report.

  11. US bituminous coal test program in the British Gas/Lurgi (BGL) gasifier. Final report

    SciTech Connect

    de Souza, M.D.; Tart, K.R.; Eales, D.F.; Turna, O.

    1991-12-01

    The BGL moving-bed, slagging-gasification process is an extension of the commercially proven Lurgi dry-ash, moving-bed gasification process. British Gas and Lurgi have demonstrated the process over an 11-year period at the 350 and 500 t/d scale at British Gas` Westfield Development Center, Scotland, with a wide variety of US and British coals. British Gas also installed a gas purification and HICOM methanation plant at Westfield to treat approximately 190,000 sft{sup 3}/h of purified syngas. Objectives are: To demonstrate the suitability of US bituminous coals as feed-stocks in the BGL gasification process; to provide performance data for use in designing commercial-scale BGL-based gasification-combined-cycle (GCC) power plants; and to evaluate the performance of the British Gas HICOM process for methanation of US coal-derived syngas.

  12. Coal-mine road technology: An assessment of references and annotated bibliography, January 1983. Final report

    SciTech Connect

    Not Available

    1983-01-01

    The report identifies the sources of information regarding specific aspects of the design, construction, maintenance, and reclamation of coal mine roads (haul or access roads) in accordance with Public Law 95-87. Its purpose is to assist persons in the design, construction, and maintenance of coal mine roads by providing a reference list to aid individuals in developing their own libraries regarding various aspects of roads. The report is the result of an intensive literature search (including use of computerized information retrieval systems as well as published bibliographies). Guidelines and requirements for design, construction, and maintenance of coal mine roads have been developed by the Office of Surface Mining as well as state regulatory authorities. The information provides operating standards or design guidelines with limited information regarding the actual design process.

  13. Thermodynamic model for calorimetric and phase coexistence properties of coal derived fluids. Final technical report

    SciTech Connect

    Kabadi, V.N.

    1992-10-01

    The work on this project was initiated on September 1, 1989. The project consisted of three different tasks. 1. A thermodynamic model to predict VLE and calorimetric properties of coal liquids. 2. VLE measurements at high temperature and high pressure for coal model compounds and 3. Chromatographic characterization of coal liquids for distribution of heteroatoms. The thermodynamic model developed is an extension of the previous model developed for VLE of coal derived fluids (DOE Grant no. FG22-86PC90541). The model uses the modified UNIFAC correlation for the liquid phase. Some unavailable UNIFAC interactions parameters have been regressed from experimental VLE and excess enthalpy data. The model is successful in predicting binary VLE and excess enthalpy data. Further refinements of the model are suggested. An apparatus for the high pressure high temperature VLE data measurements has been built and tested. Tetralin-Quinoline is the first binary system selected for data measurements. The equipment was tested by measuring 325{degree}C isotherm for this system and comparing it with literature data. Additional isotherms at 350{degree}C and 370{degree}C have been measured. The framework for a characterization procedure for coal derived liquids has been developed. A coal liquid is defined by a true molecular weight distribution and distribution of heteroatoms as a function of molecular weights. Size exclusions liquid chromatography, elemental analysis and FTIR spectroscopy methods are used to obtain the molecular weight and hetroatom distributions. Further work in this area should include refinements of the characterization procedure, high temperature high pressure VLE data measurements for selective model compound binary systems, and improvement of the thermodynamic model using the new measured data and consistent with the developments in the characterization procedure.

  14. Steam pretreatment for coal liquefaction. Final report, September 26, 1990--March 18, 1995

    SciTech Connect

    Graff, R.A.; Balogh-Nair, V.; Ivanenko, O.; Brathwaite, C.

    1995-10-16

    The objective of this study is to demonstrate the use of subcritical steam to pretreat coal for slurry liquefaction, allowing liquefaction to be carried out at lower severity and improving product yield and quality. Samples of Illinois No. 6 coal were pretreated in 750 psia steam at 340{degree}C for 15 minutes. These samples, as well as raw coal, were liquefied at high (400{degree}C, 30 min.) and low (385{degree}C, 15 min.) severity conditions under 1500 psia hydrogen with tetralin as the donor solvent. Improved yields were obtained at both conditions. (Improved yields were not obtained at a liquefaction temperature of 350{degree}C as that put the sample into the region of retrogressive reactions). The deleterious effects of slow heating and exposure of the sample to air were demonstrated. Under low severity conditions, steam pretreatment more that doubled the oil yield, increasing it from 12.5 to 29 wt %. Tests were also conducted with aromatic ethers as model compounds. These were exposed to inert gas and steam at pretreatment conditions and in some cases to liquid water at 315{degree}C. {alpha}-Benzylnaphthyl ether and {alpha}- naphthylmethyl phenyl ether show little difference in conversion and product distribution when the thermolysis atmosphere is changed from inert gas to steam. However when these compounds were reacted in the presence of 5 {angstrom} zeolite, the yields of the thermolysis products improved. Zeolite proved effective in suppressing isomerization of the starting materials. These results suggested that zeolites might be beneficial in steam pretreatment of coal and in coal liquefaction. Pretreatment and liquefaction of mixtures of coal and zeolites increases yields of asphaltenes and preasphaltenes.

  15. Evaluation of anthracite as a coal-water slurry fuel. Final report

    SciTech Connect

    Not Available

    1985-02-01

    This study evaluated the use of anthracite as a coal-water slurry fuel. The study consisted of two major activities: (1) fundamental slurry formulation experiments leading to the production and combustion characteristics investigation of suitable, anthracite slurries, and (2) analytical evaluations of the potential of anthracite slurry as a boiler fuel for new industrial and utility boiler application and for retrofit application of an industrial oil-fired boiler. The study results have shown that anthracite can be readily processed into a coal-water slurry with coal loading 70 wt % coal and 30% water plus chemical additives. Slurry viscosity, handling, and storage characteristics are similar to the bituminous coal-water slurries that are under active commercial development. Commercial anthracite-water slurry processing cost is projected to be only slightly higher than for bituminous coal-water slurry. Combustion testing in a small, industrial, water-tube boiler has shown that stable combustion of anthracite-water slurry can be achieved with high carbon conversion. The results also indicate that oxygen enrichment and secondary fuel firing can compensate for the low volatile content of the anthracite to achieve good combustion. Under the conditions assumed, anthracite-water slurry was not an economical fuel retrofit option for an existing oil-fired, industrial boiler. Contributing significantly to the economic results were the requirement for secondary fuel and oxygen to achieve good anthracite slurry combustion in the oil-designed boiler. Minimizing or eliminating the secondary fuel and oxygen requirements through a continued burner/boiler development program or more radical boiler modification to fire low-volatile fuel would greatly improve conversion economics and likely make anthracite-water slurry a candidate for industrial boiler fuel retrofit. 10 refs., 22 figs., 38 tabs.

  16. Coal-mine road technology: An assessment of references and annotated bibliography, June 1982. Final report

    SciTech Connect

    Not Available

    1982-06-01

    The report identifies the sources of information regarding specific aspects of the design, construction, maintenance, and reclamation of coal-mine roads (haul or access roads) in accordance with Public Law 95-87. Its purpose is to assist persons in the design, construction, and maintenance of coal mine roads by providing a reference list to aid individuals in developing their own libraries regarding various aspects of roads, particularly in subject areas outside their specialty, and also to evaluate the availability of information in various subject areas.

  17. Coal-mine road technology: An assessment of references and annotated bibliography. Final report

    SciTech Connect

    Not Available

    1983-01-01

    The report identifies the sources of information regarding specific aspects of the design, construction, maintenance, and reclamation of coal mine roads (haul or access roads) in accordance with Public Law 95-87. Its purpose is to assist persons in the design, construction, and maintenance of coal mine roads by providing a reference list to aid individuals in developing their own libraries regarding various aspects of roads, particularly in subject areas outside their specialty, and also to evaluate the availability of information in various subject areas.

  18. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    SciTech Connect

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  19. H-coal fluid dynamics. Final report, August 1, 1977-December 31, 1979

    SciTech Connect

    Not Available

    1980-04-16

    This report presents the results of work aimed at understanding the hydrodynamic behavior of the H-Coal reactor. A summary of the literature search related to the fluid dynamic behavior of gas/liquid/solid systems has been presented. Design details of a cold flow unit were discussed. The process design of this cold flow model followed practices established by HRI in their process development unit. The cold fow unit has been used to conduct experiments with nitrogen, kerosene, or kerosene/coal char slurries, and HDS catalyst, which at room temperature have properties similar to those existing in the H-Coal reactor. Mineral oil, a high-viscosity liquid, was also used. The volume fractions occupied by gas/liquid slurries and catalyst particles were determined by several experimental techniques. The use of a mini-computer for data collection and calculation has greatly accelerated the analysis and reporting of data. Data on nitrogen/kerosene/HDS catalyst and coal char fines are presented in this paper. Correlations identified in the literature search were utilized to analyze the data. From this analysis it became evident that the Richardson-Zaki correlation describes the effect of slurry flow rate on catalyst expansion. Three-phase fluidization data were analyzed with two models.

  20. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    SciTech Connect

    Osseo-Asare, K.; Wei, D.

    1996-01-01

    This project is concerned with the physiochemical processes occuring at the pyrite/aqueous interface, in the context of coal cleaning, desulfurization, and acid mine drainage. The use of synthetic particles of pyrite as model electrodes to investigate the semiconductor electrochemistry of pyrite is employed.

  1. Documentation of the demonstrated reserve base of coal in the United States. Volume 2. Final report

    SciTech Connect

    Herhal, A J; Britton, S G; Minnucci, C A

    1982-03-01

    The purpose of this report is to document the methodologies used to develop the 1979 Demonstrated Reserve Base (DRB) of coal. The main body of this report summarizes the methodological procedures used to develop each state reserve estimate. The appendices to the report provide a detailed description of the entire DRB process for each state.

  2. Low-rank coal research: Volume 1, Control technology, liquefaction, and gasification: Final report

    SciTech Connect

    Weber, G.F.; Collings, M.E.; Schelkoph, G.L.; Steadman, E.N.; Moretti, C.J.; Henke, K.R.; Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1987-04-01

    Volume I contains articles on SO/sub x//NO/sub x/ control, waste management, low-rank direct liquefaction, hydrogen production from low-rank coals, and advanced wastewater treatment. These articles have been entered individually into EDB and ERA. (LTN)

  3. Ultrasonic characterization of coal liquefaction products. Final report, April 11, 1979-February 11, 1980

    SciTech Connect

    Leffert, C. B.; Weisman, L.; Moore, D.

    1980-02-29

    The Wayne State University ultrasonic device and technique was used successfully to calibrate coal-derived 0 to 45% wt % asphaltene-in-oil mixtures (2 wt % increments) for transmitted signal strength versus temperature (25 to 100/sup 0/C). Computer-aided cross plots of the transmitted signal strength versus concentration of asphaltene showed that a wide range of concentration and temperature exists where the viscosity-dominated (lower temperature) sound absorption is such that a single-valued number for the concentration of the asphaltene can be obtained from measurement of the sample temperature and transmitted signal strength and thus obtain a measure of the quality of the coal-derived product. Sufficient samples were not provided to obtain a complete calibration of added particulate matter of ash and undissolved coal at all asphaltene in oil concentrations; however, calibrations were made of added ash to three concentrations of asphaltene-in-oil and the data showed the greatest effect at the higher temperatures indicating (as planned) that sound attenuation from Rayleigh scattering is predominant with the suspended particles. We conclude from these two sets of measurements that there is a excellent expectation that the Wayne State ultrasonic device and technique could be used to simultaneously measure (on-line) the suspended particle concentration as well as the quality of the coal-derived product.

  4. Configurational diffusion of coal macromolecules. Final technical report, September 15, 1986--September 14, 1991

    SciTech Connect

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.; Kim, S.; Hwang, D.; Chen, C.C.; Chiou, Z.

    1991-12-31

    The objective of our research was to obtain fundamental information regarding the functional dependence of the diffusion coefficient of coal molecules on the ratio of molecule to pore diameter. That is, the objective of our study was to examine the effect of molecule size and configuration on hindered diffusion of coal macromolecules through as porous medium. To best accomplish this task, we circumvented the complexities of an actual porous catalyst by using a well defined porous matrix with uniform capillaric pores, i.e., a track-etched membrane. In this way, useful information was obtained regarding the relationship of molecular size and configuration on the diffusion rate of coal derived macromolecules through a pore structure with known geometry. Similar studies were performed using a pellet formed of porous alumina, to provide a link between the idealized membranes and the actual complex pore structure of real catalyst extrudates. The fundamental information from our study will be useful toward the tailoring of catalysts to minimize diffusional influences and thereby increase coal conversion and selectivity for desirable products. (VC)

  5. Impact of federal regulations on the small coal mine in Appalachia. Final report

    SciTech Connect

    Davis, B.; Ferrell, R.

    1980-11-01

    This report contains the results of a study of the total costs of compliance with federal regulations of coal mines in Eastern Kentucky. The mines were stratified by tonnage per year and employment. Mail and personal interview surveys were conducted for each stratum. Survey results attempt to suggest the competitive position of small concerns and to form a basis for necessary modifications in regulations.

  6. Land application of coal combustion by-products: Use in agriculture and land reclamation. Final report

    SciTech Connect

    Horn, M.E.

    1995-06-01

    Land application of coal combustion by-products (CCBP) can prove beneficial for a number of reasons. The data presented in this survey provide a basis for optimizing the rates and timing of CCBP applications, selecting proper target soils and crops, and minimizing adverse effects on soil properties, plant responses, and groundwater quality.

  7. Molten salt coal gasification process development unit. Phase 1. Volume 2. Commercial plant study. Final report

    SciTech Connect

    Kohl, Arthur L.

    1980-05-01

    This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit (PDU). This process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of the salt. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

  8. Geochemistry of a reclaimed coal slurry impoundment. Final technical report, September 1, 1993--November 30, 1994

    SciTech Connect

    Dreher, G.B.; Roy, W.R.; Steele, J.D.; Heidari, M.

    1994-12-31

    The highly alkaline residue from the fluidized-bed combustion (FBC) of coal may be an environmentally acceptable material for use in neutralizing acid produced by the oxidation of pyrite in coal. slurry solids (CSS). Previous research indicated that FBC residues in mixtures with pyrite-rich CSS neutralized the acid produced by or attenuated the oxidation of pyrite in CSS. In the present research project we retrieved five drill cores from a reclaimed coal slurry impoundment, and installed three samplers in one of the core holes. The solids were chemically and mineralogically analyzed. Display of the mineralogical data on a cross section showed that pyrite was randomly distributed through much of the length of the coal slurry impoundment. Trace concentrations of heavy metals were correlated with pyrite in the core solids. Water samples were collected and analyzed. The water analyses showed that nutrients are insufficient to support plant growth without supplemental fertilization. The analytical data will provide background information necessary for the development of a predictive computer model of the kinetics of pyrite oxidation at near-neutral pH conditions. Programming of a computerized model to simulate pyrite oxidation under near-neutral pH conditions was begun. The program includes ideas from Morel and Hering (1993) and species are calculated in terms of 7 components of known concentrations. The ionic strength of the solution, the species activity coefficients, and the activities are calculated iteratively.

  9. Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report

    SciTech Connect

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A.; Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M.; Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L.; Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A.

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  10. Western Cretaceous Coal Seam Project. Final project summary. Final topical report, 1 January 1988-31 August 1989 (research)

    SciTech Connect

    Mavor, M.J.; Close, J.C.

    1989-12-31

    A summary of the Western Cretaceous Coal Seam project conclusions and data collection efforts is presented in the report. The discussion includes a summary of the geologic, formation evaluation, and stimulation analyses of four major wells. The names operators and locations of these wells are: Hamilton No. 3, Mesa Operating Limited Partnership, San Juan Co. NM, Sec. 30, Twn. 32 N, Rng. 10 W; Northeast Blanco Unit No. 403, Blackwood Nichols Co., Ltd, Rio Arriba Co. NM, Sec. 9, Twn. 30 N, Rng. 7 W; Southern Ute - Mobil 36-1, McKenzie Methane Co., LaPlata Co. CO, Sec. 36, Twn 34 N, Rng. 10 W; and Colorado 32-7 No. 9, Mobil Oil Corp., LaPlata Co, CO, Sec. 4, Twn. 32 N, Rng. 7 W. The discussion includes a summary of 7 minor well efforts in addition to the above major efforts.

  11. Cooperative research in coal liquefaction. Final report, May 1, 1991--April 30, 1992

    SciTech Connect

    Huffman, G.P.

    1996-03-01

    Extensive research continued on catalysts based on novel anion-treated (mainly sulfated) oxides and oxyhydroxides of iron [Fe{sub x}O{sub y}/SO{sub 4}]. In addition, sulfated oxides of tin as well as molybdenum promoted iron oxides were used. Incorporation of small amounts of sulfate, molybdate, or tungstate anions by wet precipitation/impregnation methods was found to increase the surface acidic character of iron oxides; more importantly, it reduced the grain sizes significantly with corresponding increases in specific surface areas. These anion-treated iron and tin oxides were more active for direct coal liquefaction and coal-heavy oil coprocessing than their untreated counterparts. With these catalyst systems, higher conversion levels are obtained as compared to the soluble precursors of iron and molybdenum at the same catalyst metalloading (3500 ppm iron and 50 ppm molybdenum with respect to coal). Sulfated iron oxides and oxyhydroxides were equally active as coal liquefaction catalysts. The sulfate, molybdate, and tungstate anions were found to have similar promotional effects on the properties and activities of iron oxides. One step in the synthesis of anion-treated iron and tin oxides is precipitation as hydroxides using either urea or ammonium hydroxide. The catalysts prepared using urea as a precipitation agent were more reproducible than those using ammonium, hydroxide in terms of activities and properties. These catalysts/catalyst precursors were characterized by several techniques to determine their physical (size and structure related) and chemical (acidity) properties. Sulfated and molybdated iron oxides were found to have grain sizes as small as 10-20 nm. An attempt was made to correlate the physicochemical properties of these catalysts with their activity for coal liquefaction.

  12. Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991

    SciTech Connect

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  13. Flow and design characteristics of the hydrocyclone for the recovery of coal fines. Final report

    SciTech Connect

    Davis, P.K.

    1984-03-01

    The objective of this project was to do a basic study to identify the flow and design variables of the conventional hydrocyclone and experimentally determine how each one individually affects its operation while all the others are held constant. Spheres were initially used to model solid particles. It was then to be seen if the data using spheres could be used to determine optimum configurations for given applications. The specific application of interest in this project is the separation of coal fines from waste materials such as gob or settling pond settlings. The relevant variables of the standard hydrocyclone have been identified. Two experimental hydrocyclone systems have been designed and constructed so that the flow rate, inlet area, vortex finder length and diameter, underflow diameter, length of hydrocyclone chamber and cone angle can all be varied, one at a time, while all other variables are held constant. It was first shown that the sphere data compares well with data using random shaped coal particles with approximately the same mean diameters as the spheres. Then a hydrocyclone configuration was selected, by use of the sphere data, to separate coal fines from gob material. Good coal fines recovery from the gob (mineral waste) samples has been achieved on a batch basis. Recovery of 99% to 100% of the coal fines in a sample of gob has been achieved in the size range of from 0.187 inch (0.0047 m) to 0.500 inch (0.0127 m). Recovery of approximately 91% was achieved in the size range of from 0.0937 inch (0.0024 m) to 0.187 inch (0.0047 m). It should be emphasized that these results were obtained on a batch basis. 97 references, 5 figures, 3 tables.

  14. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    SciTech Connect

    Not Available

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  15. User's manual for computer simulation and design of the moving-bed coal gasifier. Final report

    SciTech Connect

    Wen, C.Y.; Chen, H.; Onozaki, M.

    1982-01-01

    A computer model of countercurrent moving-bed coal gasifier developed previously has been updated. This manual presents in detail how the computer program developed is used. The unique feature of the present gasifier model is the treatment of the pyrolysis of coal. A semi-empirical approach is taken in the present model to represent the pyrolysis zone of the bed. The pyrolysis reactions are represented by three simple chemical reactions: devolatilization, cracking and carbon deposition with empirically estimated reaction rate constants. The gasification reactions are assumed to be heterogeneous reactions. For fast reactions, diffusion is the rate controlling step while for slow reactions, the surface reactions within the pores of particles is the rate controlling step. Therefore, the rates of gasification reactions used in the model are composed of two terms,the reaction term and the diffusion term. The computer program developed can be used for both simulation and design. It can be used to simulate a gasifier to obtain the gas product distributions and coal conversion and calculate the required bed height for a given carbon conversion. A map of feasible operation ranges can then be constructed for the optimum design of a gasifier. Kinetic parameters for three different kinds of coal are specified in the program. However, the program users may change these parameters according to the guides listed in the manual if the coal used is different. In addition, the reaction rate equations may be replaced if better rate expressions become available. It is important that the user checks the assumptions, the simplifications and the limitations of this computer program before applying in order to assure that the applicability of the model is within the range specified. The scale-up and extrapolation from normal operating conditions should be done with caution and, if possible, verified through additional experimentations.

  16. Assessment of discharges from Sasol I Lurgi-based coal gasification plant. Final report Sep 81-Mar 82

    SciTech Connect

    Thomson, S.J.; Kasper, G.; Nagy, J.F.; Tzou, A.; Pernot, L.S.

    1983-08-01

    The report discusses analytical information, obtained from Sasol I, on the emission and effluent streams analyzed in the normal course of operation and testing. The purpose was to provide EPA with representative information on a commercial-size Lurgi-based coal gasification project. The final report gives operating data and supplementary data, including material balances and pollutant distribution evaluations. Although much of this supplementary information is based on engineering estimates and calculations, it is believed to be representative of a Sasol I gasification operation. The data presented should be confirmed by a series of test runs before they are used for process design purposes, cost estimates, or environmental control studies.

  17. Capturing the emerging market for climate-friendly technologies: opportunities for Ohio

    SciTech Connect

    2006-11-15

    This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energy technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.

  18. Evaluation of the effects of coal-mine reclamation on water quality in Big Four Hollow near Lake Hope, southeastern Ohio

    USGS Publications Warehouse

    Nichols, V.E.

    1985-01-01

    A subsurface clay dike and mine-entrance hydraulic seals were constructed from July 1979 through May 1980 by the Ohio Department if Natural Resources, Division of Reclamation to reduce acidic mine drainage from abandoned drift-mine complex 88 into Big Four Hollow Creek. Big Four Hollow Creek flows into Sandy Run--the major tributary to Lake Hope. A data-collection program was established in 1979 by the U.S. Geological Survey to evaluate effects of drift-mine sealing on surface-water systems of the Big Four Hollow Creek and Sandy Run area just below the mine. Data collected by private consultants from 1970 through 1971 near the mouth of Big Four Hollow Creek (U.S. Geological Survey station 03201700) show that pH ranged from 2.7 to 4.8, with a median of 3.1. The calculated iron load was 50 pounds per day. Data collecetd near the mouth of Big Four Hollow Creek (station 03201700) from 1971 through 1979 (before dike construction) show the daily pH ranged from 2.1 to 6.7; the median was 3.6. The daily specific conduction ranged from 72 to 3,500 microsiements per centimeter at 25? Celsius and averaged 770. The estimated loads of chemical constituents were: Sulfate, 1,100 pounds per day: iron, 54 pounds per day: and manganese, 12 pounds per day. All postconstruction data collected at station 03201700 through the end of the project, May 1980 through June 30, 1983, show that the daily pH ranged from 2.4 to 7.7, with a median of 3.7. Daily specific conductance ranged from 87 to 3,200 microsiemens per centimeter and averaged 1,200. The estimated loads of chemical constituents for this period were: Sulfate, 1,000 pounds per day: iron, 44 pounds per day: and manganese, 16 pounds per day. Standard nonparametric statistical tests were performed on the data collected before and after reclamation. Differences at the 95-percent confidence level were found in the before- and after-reclamation data sets for specific conductance, aluminum, and manganese at station 03201700. Data

  19. BIOREMEDIATION TECHNIQUES ON CRUDE OIL CONTAMINATED SOILS IN OHIO. Final report includes the quarterly report that ended 12/31/1996

    SciTech Connect

    David A. Hodges; Richard J. Simmers

    1997-05-30

    The purpose of this study is to define the optimum limits of chemical and physical conditions that reduce soil salinity and maximize indigenous aerobic microbiological populations in the bioremediation of oil field waste solids. Specifically, the study centers around treatment of surface contained oily waste having low density and limited solubility in water. Successful remediation is defined by total petroleum hydrocarbon (TPH) reduction to 1% and no hydrocarbon or salinity impact on ground water resources. The Department of Energy, the US Environmental Protection Agency and the Interstate Oil and Gas Compact Commission have encouraged oil and gas producing states to identify and develop improved methods such as this to reduce, recycle or treat solid waste generated with the exploration and development of domestic petroleum resources (IOGCC, 1995). With encouragement and funding assistance through the Department of Energy, Ohio is developing these bioremediation practices to protect soil and water resources. Ohio produced 8,300,000 barrels of crude oil in 1996 from wells operated by 4310 registered owners (ODNR, 1996). Good well site housekeeping can minimize spills, however accidental spills inevitably occur with oil production of this magnitude. Development of sound environmental and economical clean-up procedures is essential.

  20. Characterization of solid wastes for the proposed WyCoalGas gasification facility. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming

    SciTech Connect

    Not Available

    1982-01-01

    The proposed facility will produce large volumes of coal ash, both from the gasifiers and the steam generating boilers, and flue gas desulfurization (FGD) sludge, requiring disposal. Several other wastes will be produced in much smaller volumes. These major solid waste streams are characterized in this technical note. The waste characterizations are based on the analyses of samples from a test at the SASOL I (proprietary) Limited Coal Conversion facility in South Africa. The SASOL facility uses Lurgi gasifiers, and the test coal was from the Jacobs Ranch coal mine adjacent to the Rochelle mine. Solid waste samples from the XYZ Power Station power plant, which burns coal similar in composition to the Rochelle coal, were also collected and characterized. Wastes other than coal ashes and FGD sludge are characterized based on analyses of waste from similar processes or on existing data from Lurgi gasifiers and steam generating boilers. Section 2 of this note contains a summary of the waste characteristics with emphasis on those waste properties which will affect disposal requirements. Sample acquisition is discussed in Section 3. The final three sections present the detailed results of the waste characterizations. Section 4 describes the analyses that were performed to satisfy current regulations; Section 5 presents the results of a comprehensive analysis of the wastes, including trace element and organic analyses; Section 6 presents the physical properties of the wastes which will affect the waste handling and disposal operations.

  1. Coal-Waste Artificial Reef Program: reef measurements over four years in the sea. Final report

    SciTech Connect

    Woodhead, P.M.J.

    1987-05-01

    In September 1980, a fishing reef was constructed off the shore of Long Island, southeast of the Fire Island Inlet. The reef consisted of 15,000 blocks made from coal-waste materials. The report documents the conclusions of a four-year project that monitored the physical properties, chemical changes, biological communities, and mineral phases of the reef in an ocean environment. Analyses were made based on the monitoring project, as well as an economics project conducted earlier and sponsored by the Electric Power Research Institute. Results showed the stabilized, coal-waste artificial reef had no adverse effect on the sea and showed no deterioration. Fish populations were normal and dense in number.

  2. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    SciTech Connect

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  3. Development of an extraction process for removal of heteroatoms from coal liquids. Final report

    SciTech Connect

    Not Available

    1994-04-01

    The main goal of this contract was to develop an extraction process for upgrading coal liquids; and in doing so, to reduce the hydrogen requirement in downstream upgrading processes and to yield valuable byproducts. This goal was to be achieved by developing a novel carbon dioxide extraction process for heteroatom removal from coal-derived naphtha, diesel, and jet fuel. The research plan called for the optimization of three critical process variables using a statistically-designed experimental matrix. The commercial potential of the new process was to be evaluated by demonstrating quantitatively the effectiveness of heteroatom removal from three different feedstocks and by conducting a comparative economic analysis of alternate heteroatom removal technologies. Accomplishments are described for the following tasks: food procurement and analysis process variable screening studies; and process assessment.

  4. Supercritical fluid thermodynamics for coal processing. Final report, September 15, 1988--September 14, 1991

    SciTech Connect

    van Swol, F.; Eckert, C.A.

    1988-09-15

    The main objective of this research is to develop an equation of state that can be used to predict solubilities and tailor supercritical fluid solvents for the extraction and processing of coal. To meet this objective we have implemented a two-sided. approach. First, we expanded the database of model coal compound solubilities in higher temperature fluids, polar fluids, and fluid mixtures systems. Second, the unique solute/solute, solute/cosolvent and solute/solvent intermolecular interactions in supercritical fluid solutions were investigated using spectroscopic techniques. These results increased our understanding of the molecular phenomena that affect solubility in supercritical fluids and were significant in the development of an equation of state that accurately reflects the true molecular makeup of the solution. (VC)

  5. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    SciTech Connect

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  6. Hydrotreating of a Lurgi coal liquid. Phase one. Final report, June 1, 1978-December 31, 1979

    SciTech Connect

    Wilson, D.B.; Conners, R.W.

    1980-07-01

    Coal liquids produced during the gasification of coal via the Lurgi Process were hydrotreated to determine whether sulfur, nitrogen and oxygen could be removed leaving a liquid product suitable for high grade use, e.g. refinery feed or chemicals. The experimental system was a semi-batch (continuous gas flow) stirred, slurry reactor. A commercial nickel-molybdenum catalyst was used which required presulfiding prior to hydrotreating. The reaction system was operated at 360 psig and at temperatures of 275, 300 and 325/sup 0/C. Product analysis was by gas chromatography. Qualitative determination of ammonia (primary denitrogenation product) and water (primary deoxygenation product) was made. Quantitative determination of hydrogen sulfide was performed. The lumped kinetics desulfurization reactions were pseudo first order with an apparent activation energy 14.500 Kcal/g mole.

  7. Advanced coal liquefaction. Final quarterly report, January 1, 1996--March 31, 1996

    SciTech Connect

    1997-06-01

    Coal liquid upgrading using compound No. 9, 4-(1-naphthymethyl) bibenzyl, as a model was performed in a catalytic membrane reactor in this quarter. Membrane packed with granular catalyst synthesized from Si-CVD coatedy-Al{sub 2}O{sub 3} was used as a reactor. A control was also performed using the same reactor under a packed-bed operation mode. About 52% conversion of compound No. 9 was obtained in a packed-bed at 400{degrees}C and 200 psi. Under a similar operating condition, compound No. 9 was completely decomposed in the catalytic membrane reactor. The results offer the experimental evidence of enhanced upgrading efficiency of upgrading coal liquid using a membrane reactor. A similar study will be duplicated before the end of the contract.

  8. BLAST FURNACE GRANULAR COAL INJECTION SYSTEM. Final Report Volume 2: Project Performance and Economics

    SciTech Connect

    Unknown

    1999-10-01

    Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998.

  9. Thermophysical properties of coal liquids. Final report. [300 to 600 K

    SciTech Connect

    Droege, J. W.; Stickford, G. H.; Longanbach, J. R.; Venkateswar, R.; Chauhan, S. P.

    1982-04-23

    Thermophysical properties for coal-solvent slurries were determined in the range 300 to 600 K, in some cases extending to 700 K. Density, viscosity, thermal conductivity, and enthalpy were determined. A recycle solvent from the Wilsonville SRC-I plant and a KY-9 coal were used. Rheology was studied with a reciprocating cylinder viscometer designed to operate at elevated pressure and temperature. Viscous properties were found to follow the Bingham plastic model. A high-viscosity peak in the range 500 to 600 K was characterized by very high values of yield stress. At other temperatures the slurries were nearly Newtonian. Time and temperature dependence of viscous behavior were studied. Densities were determined by high temperature pyknometer, thermal conductivities by the transient line-source technique, and enthalpies by drop calorimeter and by pressure DSC.

  10. Coal combustion by-products and low-volume wastes comanagement survey. Final report

    SciTech Connect

    Ladwig, K.J.

    1997-12-01

    A survey of utilities was performed to obtain information regarding the comanagement of low-volume wastes with high-volume combustion by-products in utility disposal sites. This information will be used to provide technical input for a regulatory determination by the US Environmental Protection Agency on the comanagement practice. The survey found that low-volume wastes are comanaged with high-volume combustion by-products at 80% of the 259 active disposal facilities responding to the survey. The most commonly comanaged low-volume wastes are coal mill rejects, floor/yard drain wastewater, demineralizer regenerant, airheater/precipitator washwater, and coal pile runoff. Comanagement is more common at impoundments than landfills. The median number of low-volume wastes comanaged at impoundments is eight, while the median at landfills is two. While unlined impoundments were typical 20 years ago, the current trend in utility disposal sites appears to be toward lined landfills with groundwater monitoring.

  11. Combustion of dense streams of coal particles. Final report, August 29, 1990--February 28, 1994

    SciTech Connect

    Annamalai, K.; Gopalakrishnan, C.; Du, X.

    1994-05-01

    The USA consumes almost 94 quads of energy (1 quad = 10{sup 15} BTU or 1.05 {times} 10{sup 15} KJ). The utilities account for about 30 quads of fossil energy where coal is predominantly used as energy source. The coal is ground to finer size and fired into the boiler as dense suspension. Under dense conditions, the particles burn at slower rate due to deficient oxygen within the interparticle spacing. Thus interactions exist amongst the particles for dense clouds. While the earlier literature dealt with combustion processes of isolated particles, the recent research focusses upon the interactive combustion. The interactive combustion studies include arrays consisting of a finite number of particles, and streams and clouds of a large number of particles. Particularly stream combustion models assume cylindrical geometry and predict the ignition and combustion characteristics. The models show that the ignition starts homogeneously for dense streams of coal particles and the ignition time show a minimum as the stream denseness is increased, and during combustion, there appears to be an inner flame within the stream and an outer flame outside the stream for a short period of time. The present experimental investigation is an attempt to verify the model predictions. The set-up consists of a flat flame burner for producing hot vitiated gases, a locally fluidizing feeder system for feeding coal particles, a particle collection probe for collecting particles and an image processing system for analyzing the flame structure. The particles are introduced as a stream into the hot gases and subsequently they ignite and burn. The ash % of fired and collected particles are determined and used to estimate the gasification efficiency or burnt fraction. The parametric studies include gas temperature, oxygen % in gases, residence time, and A:F ratio of the stream.

  12. Control of pyrite surface chemistry in physical coal cleaning. Final report

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Richardson, P.E.

    1993-05-19

    In Part I, Surface Chemistry of Coal Pyrite the mechanisms responsible for the inefficient rejection of coal pyrite were investigated using a number of experimental techniques. The test results demonstrate that the hydrophobicity of coal pyrite is related to the surface products formed during oxidation in aqueous solutions. During oxidation, a sulfur-rich surface layer is produced in near neutral pH solutions. This surface layer is composed mainly of sulfur species in the form of an iron-polysulfide along with a smaller amount of iron oxide/hydroxides. The floatability coal pyrite increases dramatically in the presence of frothers and hydrocarbon collectors. These reagents are believed to absorb on the weakly hydrophobic pyrite surfaces as a result of hydrophobic interaction forces. In Part III, Developing the Best Possible Rejection Schemes, a number of pyrite depressants were evaluated in column and conventional flotation tests. These included manganese (Mn) metal, chelating agents quinone and diethylenetriamine (DETA), and several commercially-available organic depressants. Of these, the additives which serve as reducing agents were found to be most effective. Reducing agents were used to prevent pyrite oxidation and/or remove oxidation products present on previously oxidized surfaces. These data show that Mn is a significantly stronger depressant for pyrite than quinone or DETA. Important factors in determining the pyrite depression effect of Mn include the slurry solid content during conditioning, the addition of acid (HCl), and the amount of Mn. The acid helps remove the oxide layer from the surface of Mn and promotes the depression of pyrite by Mn.

  13. Molten salt coal gasification process development unit. Phase 1. Volume 1. PDU operations. Final report

    SciTech Connect

    Kohl, A.L.

    1980-05-01

    This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit. In this process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of sodium carbonate, removal of sulfur, and disposal of the ash. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner during one of the runs. The principal problem encountered during the five test runs was maintaining a continuous flow of melt from the gasifier to the quench tank. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined-cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

  14. Final Report: Technoeconomic Evaluation of UndergroundCoal Gasification (UCG) for Power Generationand Synthetic Natural Gas

    SciTech Connect

    McVey, T.

    2011-06-15

    This report concerns the technoeconomics of using Underground Coal Gasification (UCG) for power generation and for production of synthetic natural gas. Lawrence Livermore National Laboratory was retained under the Work for Others Agreement L-13208 for ExxonMobil Upstream Research Laboratoryi to investigate the economics of using UCG for feedstock supply for these two scenarios. The scope included conceptual designs, mass balances, and capital & operating cost estimates.

  15. Co-firing high sulfur coal with refuse derived fuels. Final report

    SciTech Connect

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1997-11-30

    This project was designed to evaluate the combustion performance of and emissions from a fluidized bed combustor during the combustion of mixtures of high sulfur and/or high chlorine coals and municipal solid waste (MSW). The project included four major tasks, which were as follows: (1) Selection, acquisition, and characterization of raw materials for fuels and the determination of combustion profiles of combination fuels using thermal analytical techniques; (2) Studies of the mechanisms for the formation of chlorinated organics during the combustion of MSW using a tube furnace; (3) Investigation of the effect of sulfur species on the formation of chlorinated organics; and (4) Examination of the combustion performance of combination fuels in a laboratory scale fluidized bed combustor. Several kinds of coals and the major combustible components of the MSW, including PVC, newspaper, and cellulose were tested in this project. Coals with a wide range of sulfur and chlorine contents were used. TGA/MS/FTIR analyses were performed on the raw materials and their blends. The possible mechanism for the formation of chlorinated organics during combustion was investigated by conducting a series of experiments in a tube furnace. The effect of sulfur dioxide on the formation of molecular chlorine during combustion processes was examined in this study.

  16. Co-production of electricity and alternate fuels from coal. Final report, August 1995

    SciTech Connect

    1995-12-31

    The Calderon process and its process development unit, PDU, were originally conceived to produce two useful products from a bituminous coal: a desulfurized medium BTU gas containing primarily CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and H{sub 2}O; and a desulfurized low BTU gas containing these same constituents plus N{sub 2} from the air used to provide heat for the process through the combustion of a portion of the fuel. The process was viewed as a means for providing both a synthesis gas for liquid fuel production (perhaps CH{sub 3}OH, alternatively CH{sub 4} or NH{sub 3}) and a pressurized, low BTU fuel gas, for gas turbine based power generation. The Calderon coal process comprises three principle sections which perform the following functions: coal pyrolysis in a continuous, steady flow unit based on coke oven technology; air blown, slagging, coke gasification in a moving bed unit based on a blast furnace technology; and a novel, lime pebble based, product gas processing in which a variety of functions are accomplished including the cracking of hydrocarbons and the removal of sulfur, H{sub 2}S, and of particulates from both the medium and low BTU gases. The product gas processing unit, based on multiple moving beds, has also been conceived to regenerate the lime pebbles and recover sulfur as elemental S.

  17. EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I

    SciTech Connect

    1984-02-01

    All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

  18. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    SciTech Connect

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  19. Improved method for extinguishing coal-refuse fires. Final research report Jun 89-Feb 91

    SciTech Connect

    Gross, S.S.

    1991-04-01

    Coal refuse fires present environmental and personnel hazards to those living in the vicinity of the fire as well as those engaged in the reclamation efforts. The fire can also increase subsidence problems as well as prevent revegatation and reclamation of the site. Conventional efforts have been excavation and quenching; expensive, dangerous, and very often unsuccessful techniques. Water flooding has also proven unsuccessful due to the poor distribution of the water in the refuse pile. Water quickly drains from the coal refuse pile below its injection point with little or no laterial distribution. As an alternate to excavation and/or quenching, the feasibility of using water based foams to improve the distribution of water injected into a coal refuse fire was examined. Using surfactants to foam the water and gelling agents to reduce its fluidity, tests were conducted in the lab and the field. The foam still tends to follow the larger channels/openings in the pile, although above, as well as below the injection point. While the foam does improve water distribution in the pile, additional work needs to be conducted to prevent preferential channel flow and further improve distribution.

  20. Development of the LICADO coal cleaning process. Final report, October 1, 1987--April 2, 1990

    SciTech Connect

    Not Available

    1990-07-31

    Development of the liquid carbon dioxide process for the cleaning of coal was performed in batch, variable volume (semi-continuous), and continuous tests. Continuous operation at feed rates up to 4.5 kg/hr (10-lb/hr) was achieved with the Continuous System. Coals tested included Upper Freeport, Pittsburgh, Illinois No. 6, and Middle Kittanning seams. Results showed that the ash and pyrite rejections agreed closely with washability data for each coal at the particle size tested (-200 mesh). A 0.91 metric ton (1-ton) per hour Proof-of-Concept Plant was conceptually designed. A 181 metric ton (200 ton) per hour and a 45 metric ton (50 ton) per hour plant were sized sufficiently to estimate costs for economic analyses. The processing costs for the 181 metric ton (200 ton) per hour and 45 metric ton (50 ton) per hour were estimated to be $18.96 per metric ton ($17.20 per ton) and $11.47 per metric ton ($10.40 per ton), respectively for these size plants. The costs for the 45 metric ton per hour plant are lower because it is assumed to be a fines recovery plant which does not require a grinding circuit of complex waste handling system.

  1. Healy Clean Coal Project, Healy FCM testing at Niro Air Pollution Control Pilot Facility. Final report

    SciTech Connect

    Not Available

    1992-10-01

    In September, 1991, pilot testing was performed at the Niro Air Pollution Control Pilot Plant in Copenhagen, Denmark in support of the Healy Clean Coal Project (HCCP), which is part of the United States Department of Energy (DOE) Clean Coal Technology Ill Program. The HCCP is a proposed new coal fired power plant, located in Healy, Alaska. It consists of a TRW entrained combustion system, coupled with a limestone calciner, which operates in synergism with a Joy/Niro Spray Dryer Absorber (SDA) system equipped with a lime activation system that is designed to increase the utilization of the calcined product for sulfur capture in the SDA. The pilot tests, which were funded by the United States Department of Energy (DOE) and the Alaska Industrial Development and Export Authority (AIDEA), were conducted to investigate the characteristics of the TRW combustor/limestone calciner product, referred to as Flash Calcined Material (FCM) with respect to its ability to remove S0{sub 2 } in the Joy/Niro Activated Recycle SDA system. This report describes the pilot facility, the test objectives and methods, and the results of the tests.

  2. Life assessment and emissions monitoring of Indian coal-fired power plants. Final report

    SciTech Connect

    Not Available

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  3. Development of a coal fired pulse combustor for residential space heating. Phase I, Final report

    SciTech Connect

    1988-04-01

    This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

  4. Improved Fischer-Tropsch catalysts for indirect coal liquefaction. Final report

    SciTech Connect

    Wilson, R.B. Jr.; Tong, G.T.; Chan, Y.W.; Huang, H.W.; McCarty, J.G.

    1989-02-01

    The Fischer-Tropsch synthesis (FTS)reaction is the established technology for the production of liquid fuels from coal by an indirect route using coal-derived syngas (CO + H{sub 2}). Modern FTS catalysts are potassium- and copper-promoted iron preparations. These catalysts exhibit moderate activity with carbon monoxide-rich feedstocks such as the syngas produced by advanced coal gasification processes. However, the relatively large yields of by-product methane and high-molecular-weight hydrocarbon waxes detract from the production of desired liquid products in the C{sub 5}-C{sub 16} range needed for motor and aviation fuel. The goal of this program is to decrease undesirable portions of the FTS hydrocarbon yield by altering the Schultz-Flory polymerization product distribution through design and formulation of improved catalysts. Two approaches were taken: (1) reducing the yield of high-molecular-weight hydrocarbon waxes by using highly dispersed catalysts produced from surface-confined multiatomic clusters on acid supports and (2) suppressing methane production by uniformly pretreating active, selective conventional FTS catalysts with submonolayer levels of sulfur.

  5. Coal-fluid properties with an emphasis on dense phase. Final report

    SciTech Connect

    Klinzing, G.E.

    1985-04-01

    Many fossil fuel energy processes depend on the movement of solids by pneumatic transport. Despite the considerable amount of work reported in the literature on pneumatic transport, the design of new industrial systems for new products continues to rely to a great extent on empiricism. A pilot-scale test facility has been constructed at Pittsburgh Energy Technology Center (PETC), equipped with modern sophisticated measuring techniques (such as Pressure Transducers, Auburn Monitors and Micro Motion Mass Flow Meters) and an automatic computer-controlled data acquisition system to study the effects of particle pneumatic transport. Pittsburgh Seam and Montana Rosebud coals of varying size consist and moisture content were tested in the atmospheric and pressurized coal flow test loops (AP/CFTL and HP/CFTL) at PETC. The system parameters included conveying gas velocity, injector tank pressure, screw conveyor speed, pipe radius and pipe bends. In this report, results from the coal flow tests were presented and analyzed. Existing theories and correlations on two phase flows were reviewed. Experimental data were compared with values calculated from empirically or theoretically derived equations available in the literature and new correlations were proposed, when applicable, to give a better interpretation of the data and a better understanding of the various flow regimes involved in pneumatic transport. 55 refs., 56 figs., 6 tabs.

  6. Development of a Coal Quality Expert. Final technical progress report No. 12, [January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-08-12

    During the past quarter, Tasks 3, 4, 5, and 6 were active. Task 3 Pilot Scale Combustion Testing activity included data analysis of pilot- and bench-scale combustion samples in support of the development of CQE slogging and fouling models. Under Task 4, field testing at the fifth host utility site -- New England Power Service Company`s Brayton Point Unit 3 -- was completed in March with the testing of the alternate coal. Test plans were finalized for the sixth and final field test to be performed at Brayton Point Unit 2 in April 1993. Tasks 5 and 6 activities were directed at design and development of CQE base classes and objects, continued formulation and integration of CQE algorithms and submodels, development of the user interface prototype, and preparation of the Fireside Advisor.

  7. Combustion characterization of the blend of plant coal and recovered coal fines. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Singh, S.; Scaroni, A.; Miller, B.; Choudhry, V.

    1992-12-31

    The overall objective of this proposed research program was to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples were prepared as 100% plant coal, 90% plant coal/10% fines, 85% plant coal/15% fines, and 80% plant coal /20% fines with a particle size distribution of 70% passing through {minus}200 mesh size. The plant coal and recovered coal fines were obtained from the Randolph Preparation Plant of Peabody Coal Co., Marissa, IL. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace was used mainly to measure the emissions and ash deposition study, while the drop tube furnace was used to determine burning profile, combustion efficiency, etc. The burning profile of the plant coal and the three blends was determined in a thermogravimetric analyzer. Results indicated slower burning of the blends due to low volatile matter and oxidized coal particles. Combustion emissions of these samples were determined in the down-fired combustor, while relative ignition temperatures were determined in the drop tube furnace. Chemical composition of ashes were analyzed to establish a correlation with their respective ash fusion temperatures. Overall study of these samples suggested that the blended samples had combustion properties similar to the original plant coal. In other words, flames were stable under identical firing rates of approximately 200,000 Btu`s/hr and 25% excess air. CO, NO{sub x}, and SO{sub x}, were similar to each other and within the experimental error. Combustion efficiency of 99{sup +}% was achievable. Ash chemical analysis of each sample revealed that slagging and fouling should not be different from each other.

  8. Public health assessment for sanitary landfill (A/K/A Cardington Road Landfill), Dayton, Montgomery County, Ohio, Region 5. Cerclis No. OHD093895787. Final report

    SciTech Connect

    Not Available

    1994-05-16

    The Sanitary Landfill Site (also known as the Cardington Road Landfill Site) is within the municipal limits of the City of Moraine, approximately one mile south of the city of Dayton, in Montgomery County, Ohio. A broad spectrum of commercial, industrial, and municipal wastes were placed in the landfill. The Sanitary Landfill is a public health hazard because of the explosive levels of methane present in soil samples at the site. Methane was present in on-site and off-site soil gas samples and on-site vents at levels posing a risk of explosion or fire. There is also a potential for people to be exposed to toluene in ambient air and chemicals in soil gas. In addition, on-site and off-site soil gas contained high concentrations of volatile organic compounds. Exposure directly to chemicals in soil gas is not likely, however, chemicals may migrate into buildings bordering the landfill.

  9. Ohio's Forests 2011

    Treesearch

    Richard H Widmann; Cotton K. Randall; Brett J. Butler; Grant M. Domke; Douglas M. Griffith; Cassandra M. Kurtz; W. Keith Moser; Randall S. Morin; Mark D. Nelson; Rachel Riemann; Christopher W. Woodall

    2014-01-01

    This report summarizes the second full cycle of annual inventories, 2007-2011, of Ohio's forests by the Forest Inventory and Analysis unit of the Northern Research Station in cooperation with the Ohio Department of Natural Resources, Division of Forestry. Since 2006, forest land increased by 2.1 percent and currently totals 8.1 million acres. Net volume of live...

  10. Ohio forests: 2006

    Treesearch

    Richard H. Widmann; Dan Balser; Charles Barnett; Brett J. Butler; Douglas M. Griffith; Tonya W. Lister; W. Keith Moser; Charles H. Perry; Rachel Riemann; Christopher W. Woodall

    2009-01-01

    This report summarizes annual forest inventories conducted in Ohio from 2001 to 2006 by the Northern Research Station's Forest Inventory and Analysis unit. Ohio's forest land covers 7.9 million acres or 30 percent of the State's land area, changing little in forest land area since 1991. Of this land, 5.8 million acres (73 percent) are held by family...

  11. Ohio News Nuggets

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2010-01-01

    This article presents a snapshot of major happenings at some colleges and universities in Ohio. Ohio universities build on a tradition of inclusion. The Buckeye State has a rich tradition of progressive higher education institutions, many of which were among the first in the nation to offer degrees to women and people of color. Antioch College,…

  12. Ohio News Nuggets

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2010-01-01

    This article presents a snapshot of major happenings at some colleges and universities in Ohio. Ohio universities build on a tradition of inclusion. The Buckeye State has a rich tradition of progressive higher education institutions, many of which were among the first in the nation to offer degrees to women and people of color. Antioch College,…

  13. Northern Powder River basin coal, Montana. Final environmental statement, regional analysis

    SciTech Connect

    Not Available

    1980-01-01

    This environmental statement is in two parts: a regional analysis and a site-specific analysis of coal development in the northern Powder River basin region of Montana. The regional analysis addresses cumulative impacts of coal development in the region by 1990, with emphasis on industry proposals that now require or have recently required action by Federal and state authorities. A site-specific analysis of the proposed mining and reclamation plan for the Pearl mine makes up volumes 2 and 4 of this FES. Total annual coal production from the designated region of southeastern Montana is estimated at about 39 million tons by 1980, 50 million tons by 1985, and 53 million tons by 1990. The Big Sky, Pearl, and Spring Creek mines would collectively produce approximately 15% of the total by 1980, 26.5% by 1985, and 25% by 1990. Three impacts were determined to be locally significant. The National Ambient Air Quality Standards for total suspended particulates would frequently be exceeded near all three minesites during mine life. Degradation of air quality would cause subtle injury to vegetation within about 1 mile of the mines and about 4 miles of the generating units, slightly reducing vegetative productivity. Wildlife populations, primarily antelope, mule deer, and sage grouse, would be significantly reduced during mine life and probably for several decades after mining. No threatened or endangered species would be adversely affected.Social impacts would be significant in Colstrip and Forsyth - comparable to those experienced during the construction of Colstrip units 1 and 2. At least during the 2 or 3 years of most rapid growth, local governments, formal and informal institutions, and social networks in Colstrip and Forsyth would not be able to meet the demands placed on them. Comment letters and responses are included.

  14. Computer simulation of coal preparation plants. Part 2. User's manual. Final report

    SciTech Connect

    Gottfried, B.S.; Tierney, J.W.

    1985-12-01

    This report describes a comprehensive computer program that allows the user to simulate the performance of realistic coal preparation plants. The program is very flexible in the sense that it can accommodate any particular plant configuration that may be of interest. This allows the user to compare the performance of different plant configurations and to determine the impact of various modes of operation with the same configuration. In addition, the program can be used to assess the degree of cleaning obtained with different coal feeds for a given plant configuration and a given mode of operation. Use of the simulator requires that the user specify the appearance of the plant configuration, the plant operating conditions, and a description of the coal feed. The simulator will then determine the flowrates within the plant, and a description of each flowrate (i.e., the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, and Btu content). The simulation program has been written in modular form using the Fortran language. It can be implemented on a great many different types of computers, ranging from large scientific mainframes to IBM-type personal computers with a fixed disk. Some customization may be required, however, to ensure compatibility with the features of Fortran available on a particular computer. Part I of this report contains a general description of the methods used to carry out the simulation. Each of the major types of units is described separately, in addition to a description of the overall system analysis. Part II is intended as a user's manual. It contains a listing of the mainframe version of the program, instructions for its use (on both a mainframe and a microcomputer), and output for a representative sample problem.

  15. The fate of alkali species in advanced coal conversion systems. Final report

    SciTech Connect

    Krishnan, G.N.; Wood, B.J.

    1991-11-01

    The fate of species during coal combustion and gasification was determined experimentally in a fluidized bed reactor. A molecular-beam sampling mags spectrometer was used to identify and measure the concentration of vapor phase sodium species in the high temperature environment. Concurrent collection and analysis of the ash established the distribution of sodium species between gas-entrained and residual ash fractions. Two coals, Beulah Zap lignite and Illinois No. 6 bituminous, were used under combustion and gasification conditions at atmospheric pressure. Steady-state bed temperatures were in the range 800--950{degree}C. An extensive calibration procedure ensured that the mass spectrometer was capable of detecting sodium-containing vapor species at concentrations as low as 50 ppb. In the temperature range 800{degree} to 950{degree}C, the concentrations of vapor phase sodium species (Na, Na{sub 2}O, NaCl, and Na{sub 2}SO{sub 4}) are less than 0.05 ppm under combustion conditions with excess air. However, under gasification conditions with Beulah Zap lignite, sodium vapor species are present at about 14 ppm at a temperature of 820{degree}. Of this amount, NaCl vapor constitutes about 5 ppm and the rest is very likely NAOH. Sodium in the form of NaCl in coal enhances the vaporization of sodium species during combustion. Vapor phase concentration of both NaCl and Na{sub 2}SO{sub 4} increased when NaCl was added to the Beulah Zap lignite. Ash particles account for nearly 100% of the sodium in the coal during combustion in the investigated temperature range. The fine fly-ash particles (<10 {mu}m) are enriched in sodium, mainly in the form of sodium sulfate. The amount of sodium species in this ash fraction may be as high as 30 wt % of the total sodium. Sodium in the coarse ash particle phase retained in the bed is mainly in amorphous forms.

  16. Autopsy studies of coal miners' lungs. Phase 2. Final report August 77-July 80

    SciTech Connect

    Ruckley, V.A.; Chapman, J.S.; Collings, P.L.; Douglas, A.N.; Fernie, J.M.

    1981-11-01

    This report is based on a post mortem study of the lungs and hearts of various groups of coal workers drawn from an original cohort of 500 men. The men had worked in collieries which took part in Pneumoconiosis Field Research and which covered the range of mining conditions in Britain. The aim of the study was to relate pathological evidence of pneumoconiosis, emphysema and bronchitis and the radiographic appearances of pneumoconiosis to both the dust retained in the lung and the respirable dust to which the men were exposed. Also included were studies of right-sided heart disease and respiratory function during life in relation to lung pathology.

  17. Transformations of inorganic coal constituents in combustion systems. Volume 2, Sections 6 and 7: Final report

    SciTech Connect

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A.; Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M.; Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L.; Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A.

    1992-11-01

    Results from an experimental investigation of the mechanisms governing the ash aerosol size segregated composition resulting from the combustion of pulverized coal in a laboratory scale down-flow combustor are described. The results of modeling activities used to interpret the results of the experiments conducted under his subtask are also described in this section. Although results from the entire program are included, Phase II studies which emphasized: (1) alkali behavior, including a study of the interrelationship between potassium vaporization and sodium vaporization; and (2) iron behavior, including an examination of the extent of iron-aluminosilicate interactions, are highlighted. Idealized combustion determination of ash particle formation and surface stickiness are also described.

  18. Evaluation of coal-conversion catalysts. Final report, January 1978-December 1985

    SciTech Connect

    Lee, A.L.

    1987-11-01

    A novel family of sulfur-resistant, low-carbon fouling hydrogenation catalysts were discovered by Catalysis Research Corporation for GRI. These catalysts promote the direct methanation reaction in which equal molar concentrations of H/sub 2/ and CO react to produce CH/sub 4/ and CO/sub 2/. IGT evaluated these catalysts. The work performed during the period included the following: Evaluated 12 sulfur-resistant catalysts for direct methanation; Obtained design data for the direct methanation process for British Gas Corp./Lurgi Slagging, Lurgi, Westinghouse, Underground Coal, and Shell gasification processes; and Performed life tests of 200 to 10,000 hours.

  19. Transformations of inorganic coal constituents in combustion systems. Volume 3, Appendices: Final report

    SciTech Connect

    Helble, J.J.; Srinivasachar, S.; Wilemski, G.; Boni, A.A.; Kang, Shim-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M.; Peterson, T.W.; Wendt, O.L.; Gallagher, N.B.; Bool, L.; Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A.

    1992-11-01

    This report contains the computer codes developed for the coal combustion project. In Subsection B.1 the FORTRAN code developed for the percolative fragmentation model (or the discrete model, since a char is expressed as a collection of discrete elements in a discrete space) is presented. In Subsection B.2 the code for the continuum model (thus named because mineral inclusions are distributed in a continuum space) is presented. A stereological model code developed to obtain the pore size distribution from a two-dimensional data is presented in Subsection B.3.

  20. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    SciTech Connect

    Sendlein, L.V.A.

    1987-06-29

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  1. Bio-oxidation of thiocyanates typical of coal conversion effluents. Final report

    SciTech Connect

    Neufeld, R. D.; Mattson, L.; Lubon, P.

    1981-01-08

    Thiocyanates have been found in most coal conversion and coke plant effluents. The objectives of this study were to develop data for the biological degradation fate kinetics of thiocyanate removal, and to develop material balance information for the fate of sulfur and nitrogen resulting from such bio-decomposition of aqueous thiocyanates. A literature review of thiocyanate bio-degradation indicates that while much biochemistry information is available, little information in the biological processing arena is known. Based on both batch and continuous culture experiments utilizing an activated sludge type of system with strictly thiocyanate degradating organisms, the specific utilization rate for SCN degradation was found to follow a substrate inhibition biokinetic relationship as: d(SCN)/dt-X = 2.24/(1 + (5/SCN) + (SCN/1340)/sup 6/) where; d(SCN)/dt-X = lb SCN used/lb biomass-day, SCN = mg/L SCN in effluent. The observed biomass sludge production rate was quantified as a function of sludge age in the bio-reactor. The major metabolic by-products of SCN aerobic biodegradation are ammonia and sulfate, with such formation being stochiometric with SCN. High levels of SCN in coal conversion and Stretford system effluents may lead to biological nitrification process requirements to be added to the wastetreatment scheme for compliance with BAT effluent ammonia discharge restrictions.

  2. Microbial recovery of metals from spent coal liquefaction catalysts. Final report

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1995-07-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types were the subject of the contract. The first was a Ni-No catalyst support on alumina (Shell 324), the catalyst used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. The second material was an unsupported ammonium molybdate catalyst used in a pilot process by the Department of Energy at the Pittsburgh Energy Technology Center. This material was obtained in late February 1990 but has not been pursued since the Mo content of this particular sample was too low for the current studies and the studies at the Pittsburgh Energy Technology Center have been discontinued. The object of the contract was to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans , but also other Thiobacillus spp. and possibly Sulfolobus and other potential microorganisms, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which could be readily recovered by conventional techniques.

  3. Combustion of ultrafine coal/water mixtures and their application in gas turbines: Final report

    SciTech Connect

    Toqan, M.A.; Srinivasachar, S.; Staudt, J.; Varela, F.; Beer, J.M.

    1987-10-01

    The feasibility of using coal-water fuels (CWF) in gas turbine combustors has been demonstrated in recent pilot plant experiments. The demands of burning coal-water fuels with high flame stability, complete combustion, low NO/sub x/ emission and a resulting fly ash particle size that will not erode turbine blades represent a significant challenge to combustion scientists and engineers. The satisfactory solution of these problems requires that the variation of the structure of CWF flames, i.e., the fields of flow, temperature and chemical species concentration in the flame, with operating conditions is known. Detailed in-flame measurements are difficult at elevated pressures and it has been proposed to carry out such experiments at atmospheric pressure and interpret the data by means of models for gas turbine combustor conditions. The research was carried out in five sequential tasks: cold flow studies; studies of conventional fine-grind CWF; combustion studies with ultrafine CWF fuel; reduction of NO/sub x/ emission by staged combustion; and data interpretation-ignition and radiation aspects. 37 refs., 61 figs., 9 tabs.

  4. Coal extraction by aprotic dipolar solvents. Final report. [Tetramethylurea, hexa-methylphosphoramide

    SciTech Connect

    Sears, J T

    1985-12-01

    The overall goals of this project were to examine the rate and amount of extraction of coals at low temperature by a class of solvents with a generic structure to include tetramethylurea (TMU) and hexa-methylphosphoramide (HMPA) and to examine the nature of the extracted coal chemicals. The class of solvents with similar action, however, can be classified as aprotic, base solvents or, somewhat more broadly, specific solvents. The action of solvents by this last classification was then examined to postulate a mechanism of attack. Experimental work was conducted to explain the specific solvent attack including (1) pure solvent extraction, (2) extraction in mixtures with otherwise inert solvents and inhibitors, and (3) extraction with simultaneous catalytic enhancement attempts including water-gas shift conversion. Thus nuclear magnetic resonance (NMR) and gas-chromatograph mass spectrometer (GC-MS) analysis of extract molecules and extraction with high-pressure CO in TMU (plus 2% H2O) was performed. Effects of solvent additives such as cumene and quinone of large amounts of inert solvents such as tetralin, liminone, or carbon disulfide on extraction were also determined. Results are discussed. 82 refs., 36 figs., 37 tabs.

  5. Prediction of thermodynamic properties of coal derivatives. Final technical report, September 1, 1987--February 28, 1991

    SciTech Connect

    Donohue, M.D.

    1990-09-01

    The purpose of this research program is to understand the relationship between macroscopic thermodynamic properties and the various types of intermolecular forces. Since coal-derived liquids contain a wide variety of compounds, a theory capable of successfully predicting the thermophysical properties for coal processes must take into account the molecular shapes and all significant intermolecular forces: dispersion forces, anisotropic forces due to dipoles and quadrupoles, as well as Lewis acid-base interactions. We have developed the Acid-Base-Perturbed-Anisotropic-Chain Theory (ABPACT), a comprehensive theory that is capable of predicting the thermophysical properties for many systems where these different intermolecular forces are present. The ABPACT can treat non-polar compounds, polar compounds and compounds that associate through Lewis acid-base interactions. In addition to our theoretical work, we have used computer simulations to evaluate (and in some cases correct) the assumptions made in this theory. We also have conducted experiments to help us better understand the interplay of different kinds of interactions in multicomponent mixtures.

  6. Combustion of pulverized coal in vortex structures. Final report, October 1, 1993--December 31, 1995

    SciTech Connect

    Gollahalli, S.R.; Butuk, N.

    1996-03-01

    The objectives of the project were: (i) to understand the effects of heating one of the streams on the characteristics of shear layers, (ii) to investigate the changes in the characteristics of large scale vortex structures in the shear layer caused by the introduction of inert solid particles in one of the feed streams; (iii) to understand the effects of pyrolyzing solids on the shear layer behavior; and (iv) to study the effects of combustion of particles and their pyrolysis products on the shear layer structure, heat release rate, and pollutant emission characteristics. An experimental facility for generating two-dimensional shear layers containing vortex structures has been designed and fabricated. The experimental facility is essentially a low speed wind tunnel designed to (i) provide two gas streams, initially with uniform velocity profiles and isotropic turbulence, mixing at the end of a splitter plate, (ii) introduce vorticity by passively perturbing one of the streams, (iii) allow heating of one of the streams to temperatures high enough to cause pyrolysis of coal particles, and (iv) provide a natural gas flame in one of the streams to result in ignition and burning of coal particles.

  7. Diffusion of gases in coals and chars: Final report, September 15, 1985--September 14, 1988

    SciTech Connect

    Smith, D.M.

    1988-01-01

    Eight PSOC coals representing a wide range of rank and geographic origin have been subjected to a wide range of pore structure analysis methods as well as gas diffusion measurements. Pore structure analysis techniques employed included carbon dioxide and nitrogen adsorption, helium pycnometry, mercury porosimetry, and low-field NMR spin-lattice relaxation measurements. In principle, NMR pore structure analysis avoids many of the problems associated with conventional pore structure methods such as pore structure changes during drying, sample compression, network/percolation effects, pore shape assumptions, and a limited pore size range. Spin-lattice relaxation measurements were conducted at a proton frequency of 20 MHz and 303 K using water contained in the coal pores. Pore size distributions were obtained via deconvolution of the NMR relaxation measurements using the method of regularization and application of the ''two fraction-fast exchange'' model of pore fluid behavior. A qualitative comparison of the NMR pore size distributions and surface areas (CO/sub 2//N/sub 2/) yielded good agreement. Monodisperse and bidisperse pore size distributions were noted with pore volume in the size range of <0.5 nm to 0.5 ..mu..m. Effective diffusivities of methane and nitrogen were measured at 303 K and ambient pressure using a pulse tracer analysis method. 37 refs., 14 figs., 5 tabs.

  8. High performance materials in coal conversion utilization. Final report, October 1, 1993--September 30, 1996

    SciTech Connect

    McCay, T.D.; Boss, W.H.; Dahotre, N.

    1996-12-01

    This report describes the research conducted at the University of Tennessee Space Institute on high performance materials for use in corrosive environments. The work was supported by a US Department of Energy University Coal Research grant. Particular attention was given to the silicon carbide particulate reinforced alumina matrix ceramic composite manufactured by Lanxide Corporation as a potential tubular component in a coal-fired recuperative high-temperature air heater. Extensive testing was performed to determine the high temperature corrosion effects on the strength of the material. A computer modeling of the corrosion process was attempted but the problem proved to be too complex and was not successful. To simplify the situation, a computer model was successfully produced showing the corrosion thermodynamics involved on a monolithic ceramic under the High Performance Power System (HIPPS) conditions (see Appendix A). To seal the material surface and thus protect the silicon carbide particulate from corrosive attack, a dense non porous alumina coating was applied to the material surface. The coating was induced by a defocused carbon dioxide laser beam. High temperature corrosion and strength tests proved the effectiveness of the coating. The carbon dioxide laser was also used to successfully join two pieces of the Lanxide material, however, resources did not allow for the testing of the resulting joint.

  9. Novel hydrogen separation device development for coal gasification system applications. Final report

    SciTech Connect

    Not Available

    1993-08-01

    This study was undertaken for the development of a novel Electrochemical Hydrogen Separator (EHS) technology for low-cost hydrogen separation from coal derived gases. Design and operating parameter testing was performed using subscale cells (25 cm{sup 2}). High H{sub 2} purity, >99% is one of the main features of the EHS. It was found that N{sub 2}, CO{sub 2} and CH{sub 4} behave as equivalent inerts; EHS performance is not affected by the balance of feed gas containing these components. This product purity level is not sacrificed by increased H{sub 2} recovery. CO, however, does adversely affect EHS performance and therefore feed stream pretreatment is recommended. Low levels of H{sub 2}S and NH{sub 3} were added to the feed gas stream and it was verified that these impurities did not affect EHS performance. Task 2 demonstrated the scale-up to full size multi-cell module operation while maintaining a stable energy requirement. A 10-cell full-size module (1050 cm{sup 2} cell active area) was operated for over 3,800 hours and gave a stable baseline performance. Several applications for the EHS were investigated. The most economically attractive systems incorporating an EHS contain low pressure, dilute hydrogen streams, such as coal gasification carbonate fuel cell systems, hydrogen plant purification and fluid catalytic cracker units. In addition, secondary hydrogen recovery from PSA or membrane tailstreams using an EHS may increase overall system efficiency.

  10. Treatability testing of KILnGAS and Texaco coal gasification wastewaters: Final report

    SciTech Connect

    Peterson, D.L.; Eis, B.J.; Zeien, C.T.; Moe, T.A.; Turner, C.D.; Mayer, G.G.; Stephan, D.J.

    1988-07-01

    This report presents the results of treatability testing of wastewater from two coal gasification plants: the 600-tpd KILnGAS rotary-kiln gasifier in East Alton, Illinois, and the 1000-tyd Texaco entrained-flow gasifier at the Cool Water facility in Daggett, California. The wastewater was collected during steady-state operation of the gasifiers and shipped in barrels to the testing laboratory for characterization and treatment. Solvent extraction, steam stripping, biological treatment, granular activated carbon adsorption, ozonation, ion exchange, chemical precipitation, cooling tower evaporation, and wet air oxidation were evaluated in terms of their ability to meet the project's effluent quality targets. Preliminary process design criteria were also developed. Two sets of effluent discharge targets as well as a zero effluent discharge condition were established as goals for the testing. All of the effluent targets were met by the combination of processes used in the treatability testing program, with the exception of cyanide and COD for the KILnGAS wastewater and cyanide under one of the discharge conditions for the Texaco wastewater. These targets could likely be met by additional process steps or by further treatment with the processes tested. This test program confirmed that the principal containmants in these coal gasification wastewaters can be reduced to low concentrations by use of commercially proven treatment processes. 15 refs., 50 figs., 93 tabs.

  11. Coal liquefaction process streams characterization and evaluation. Volume 2, Participants program final summary evaluation

    SciTech Connect

    Brandes, S.D.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process develpment, and in so doing, provide a bridge between process design, development, and operation and analytical chemistry. To achieve this direct coal liquefaction-derived materials. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  12. A study of toxic emissions from a coal-fired gasification plant. Final report

    SciTech Connect

    1995-12-01

    Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

  13. Advanced coal-gasification technical analyses. Appendix 1: technology reviews. Final report, December 1982-September 1985

    SciTech Connect

    Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

    1986-01-01

    This document is a result of KRSI's activities to support the GRI/Advisors Committee thru the duration of the contract. It provides an overview of the gasification, shift/methanation, acid-gas removal, and sulfur-recovery technologies for use in coal-to SNG plant design. For selected processes in each technology area, Status Summary reports are presented. The non-proprietary information contained in these reports was utilized to assess the characteristics, efficiencies, and other performance variables of each process relative to criteria developed for each ssess the characteristics, efficiencies and other performance variables of each process relative to criteria developed for each technology area. The results of the assessment are presented in tables that can be utilized for selection of a process best suited for a given application. In the coal-gasification area, status summaries were prepared for Lurgi, GKT, Texaco, BGC/Lurgi, Westinghouse (now KRW), Exxon CCG, Shell and U-Gas processes. The Conventional Shift/Methanation, Combined Shift/Methanation, Direct Methanation and Comflux Methanation processes were selected for review of shift/methanation technology. In the acid-gas-removal technology area, evaluation of Selexol, Rectisol, Benfield and CNG processes is presented. For the sulfur-recovery technology area, Claus, Amoco Direct Oxidation, LO-CAT, Selectox, Stretford and Unisulf processes, were selected for assessment.

  14. The use of NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Final report

    SciTech Connect

    Netzel, D.A.; Miknis, F.P.; Wallace, J.C. Jr.; Butcher, C.H.; Mitzel, J.M.; Turner, T.F.; Hurtubise, R.J.

    1995-02-01

    Western Research Institute has conducted a study of different methods of coal drying as pretreatment steps before liquefaction. The objectives of this study were to develop a combined chemical dehydration/nuclear magnetic resonance (NMR) method for measuring the moisture content of coal, to measure the changes in coal structure that occur during drying, and to determine the effects of different drying methods on liquefaction reactivity of coals. Different methods of drying were investigated to determine whether coal drying can be accomplished without reducing the reactivity of coals toward liquefaction. Drying methods included thermal, microwave, and chemical dehydration. Coals of rank lignite to high volatile bituminous were studied. Coals that were dried or partially dried thermally and with microwaves had lower liquefaction conversions than coals containing equilibrium moisture contents. However, chemically dried coals had conversions equal to or greater than the premoisturized coals. The conversion behavior is consistent with changes in the physical structure and cross linking reactions because of drying. Thermal and microwave drying appear to cause a collapse in the pore structure, thus preventing donor solvents such as tetralin from contacting reactive sites inside the coals. Chemical dehydration does not appear to collapse the pore structure. These results are supported by the solvent swelling measurements in which the swelling ratios of thermally dried and microwave-dried coals were lower than those of premoisturized coals, indicating a greater degree of cross linking in the dried coals. The swelling ratios of the chemically dried coals were greater than those of the premoisturized coals because the pore structure remaining unchanged or increased when water was removed. These results are consistent with the NMR results, which did not show significant changes in coal chemical structure.

  15. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Final report, October 1, 1992--July 31, 1996

    SciTech Connect

    Ohene, F.

    1997-05-01

    To examine the factors that govern fine spray production during atomization of coal water slurries, an experimental study of the effect of coal beneficiation and their rheological properties on atomization of clean slurries was proposed. The objective of this study was to understand the effect of low shear, high shear rheology, and viscoelastic behavior on the atomization of beneficiated slurries.

  16. SOURCES OF MERCURY WET DEPOSITION IN EASTERN OHIO, USA

    EPA Science Inventory

    In the fall of 2002, an enhanced air monitoring site was established in Steubenville, Ohio as part of a multi-year comprehensive mercury monitoring and source apportionment study to investigate the impact of local and regional coal combustion sources on atmospheric mercury deposi...

  17. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    SciTech Connect

    Not Available

    1994-07-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  18. Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect

    Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

    1997-05-01

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

  19. Pneumatic dense-phase shipboard coal and ash conveying storage and bunkering systems for coal-fired ships (technical application manual). Final report Mar 81-May 82

    SciTech Connect

    Westbrook, A.S.

    1982-05-01

    The report provides descriptions and illustrations of the equipment used in pneumatic coal and ash conveying. Also, included are detailed descriptions of the differences between non-fluidizing dense-phase conveying and fluidizing type conveying systems. The discussions about onboard coal conveying systems describe the procedures for selecting dense-phase equipment sizes and capacities; selecting equipment and piping materials to obtain maximum life; designing bunkers, hoppers, and feed chutes; evaluating the quantities of coal conveying systems required between bunkers, hoppers, and the boilers; evaluating the quantities and sizes of dust filters for the coal storage structures; and sizing the air compressor/air storage tank system serving the ship's coal and ash conveying equipment.

  20. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1

    SciTech Connect

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  1. Coal-fired propulsion system dynamics. Volume II. Program documentation and user's guide. Final report

    SciTech Connect

    Greenlee, T.L.; Pearsons, J.L.

    1982-12-01

    This volume describes the use and internal details of a FORTRAN computer program that has been written for simulating the dynamic (transient) behavior of a dual-fired (coal or oil) ship propulsion system. The FORTRAN program implements and solves a system of coupled, nonlinear, first-order, ordinary differential equations that represent all major components of the ship propulsion system (feedwater pumps, boilers, headers, turbines, turbine/gears propeller shaft, and hull). These equations also represent all major control loops. The program incorporates a numerical linearization subroutine that can be used to generate the steady-state conditions for any operating point. This subroutine also produces a linearized version of the model that describes the transient behavior of the propulsion system in a neighborhood of the steady-state operating point. The eigenvalues (reciprocal time constants) of this linear model are also generated. A copy of the FORTRAN program is available on magnetic tape from MARAD.

  2. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4

    SciTech Connect

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  3. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2

    SciTech Connect

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  4. Documentation of the demonstrated reserve base of coal in the United States. Final report, Volume 1

    SciTech Connect

    Herhal, A J; Britton, S G; Minnucci, C A

    1982-03-01

    The purpose of this report is to document the methodologies used to develop the 1979 Demonstrated Reserve Base (DRB) of coal. All primary source documents used to prepare the 1979 DRB were reviewed. Using the methodologies and documentation found in the 1979 DRB published report as a guide, each of the state-level published reserve estimates were re-derived. In those cases where the estimates could not be reproduced, EIA personnel from the Eastern and Western Energy Data Offices were consulted and the differences, for the most part, were resolved. Throughout this report an attempt was made to describe the information flow that was an integral part of the DRB development. Particular attention and emphasis was given to those instances where deviations from standard, published EIA procedures were used to derive the DRB estimates. The main body of this report summarizes the methodological procedures used to develop each state reserve estimate.

  5. Coal liquefaction: A research and development needs assessment: Final report, Volume II

    SciTech Connect

    Schindler, H.D.; Burke, F.P.; Chao, K.C.; Davis, B.H.; Gorbaty, M.L.; Klier, K.; Kruse, C.W.; Larsen, J.W.; Lumpkin, R.E.; McIlwain, M.E.; Wender, I.; Stewart, N.

    1989-03-01

    Volume II of this report on an assessment of research needs for coal liquefaction contains reviews of the five liquefaction technologies---direct, indirect, pyrolysis, coprocessing, and bioconversion. These reviews are not meant to be encyclopedic; several outstanding reviews of liquefaction have appeared in recent years and the reader is referred to these whenever applicable. Instead, these chapters contain reviews of selected topics that serve to support the panel's recommendations or to illustrate recent accomplishments, work in progress, or areas of major research interest. At the beginning of each of these chapters is a brief introduction and a summary of the most important research recommendations brought out during the panel discussions and supported by the material presented in the review. A review of liquefaction developments outside the US is included. 594 refs., 100 figs., 60 tabs.

  6. Fire safety appraisal of residential wood and coal stoves in New York state. Final report

    SciTech Connect

    Lassoie, J.P.; Provencher, R.W.; Goff, G.R.; Brown, T.L.

    1983-04-01

    This study was designed to identify solid fuel (wood and coal) residential heating safety problems and associated causes, and the barriers to correction of these problems in NYS. Based on the research findings, recommendations were developed regarding public and private policies and services, legislation, and financial systems designed to improve the State's solid fuel heating safety situation. Data on solid fuel use was obtained via randomly conducted phone surveys, in-home resident interviews and solid fuel burning system inspections, and a mail survey of fire department chiefs. The most important barriers to safety were those of homeowner complacency (i.e., a sense of security grounded in ignorance -- in the nonpejorative sense) and apathy, with the former being the primary attitudinal barrier. The appendices vol. is the survey used.

  7. Advanced NMR-based techniques for pore structure analysis of coal. Final project report

    SciTech Connect

    Smith, D.M.; Hua, D.W.

    1996-02-01

    During the 3 year term of the project, new methods have been developed for characterizing the pore structure of porous materials such as coals, carbons, and amorphous silica gels. In general, these techniques revolve around; (1) combining multiple techniques such as small-angle x-ray scattering (SAXS) and adsorption of contrast-matched adsorbates or {sup 129}Xe NMR and thermoporometry (the change in freezing point with pore size), (2) combining adsorption isotherms over several pressure ranges to obtain a more complete description of pore filling, or (3) applying NMR ({sup 129}Xe, {sup 14}N{sub 2}, {sup 15}N{sub 2}) techniques with well-defined porous solids with pores in the large micropore size range (>1 nm).

  8. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3

    SciTech Connect

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  9. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  10. Solids throttling valves for coal conversion and utilization development. Final report

    SciTech Connect

    Sine, G.C.

    1980-11-01

    A complete test system to test, evaluate, and develop control valves for slurry letdown service in coal liquefaction plants is needed. The site identified for the test system was the SRC II Pilot Plant located at Ft. Lewis, Washington. The US Department of Energy, Morgantown Energy Technology Center, requested a test system design that would enable testing of various configuration letdown valves that would be compatible with the existing facility and have minimum impact on Pilot Plant operations. Drawings and specifications for such a test system were prepared, coordinated with Ft. Lewis personnel, revised to reflect Ft. Lewis operating personnel comments, and approved for use by the Morgantown Energy Technology Center. These drawings and specifications will enable the test system to be built, installed, and integrated with the existing facility by a general contractor.

  11. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5

    SciTech Connect

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  12. Selenium transformation in coal mine spoils: Its environmental impact assessment. Final report

    SciTech Connect

    Harness, J.; Atalay, A.; Koll, K.J.; Zhang, H.; Maggon, D.

    1991-12-31

    The objective of this program was to conduct an environmental impact assessment study for selenium from coal mine spoils. The use of in-situ lysimetry to predict selenium speciation, transformation, and mobility under natural conditions was evaluated. The scope of the study was to construct and test field-scale lysimeter and laboratory mini-column to assess mobility and speciation of selenium in coal mine overburden and soil systems; to conduct soil and groundwater sampling throughout the state of Oklahoma for an overall environmental impact assessment of selenium; and to conduct an in-depth literature review on the solubility, speciation, mobility, and toxicity of selenium from various sources. Groundwater and surface soil samples were also collected from each county in Oklahoma. Data collected from the lysimeter study indicated that selenium in the overburden of the abandoned mine site was mainly found in the selenite form. The amount of selenite found was too low and immobile to be of concern to the environment. The spoil had equilibrated long enough (over 50 years) that most of the soluble forms of selenium have already been lost. Examination of the overburden indicated the presence of pyrite crystals that precipitated over time. The laboratory mini-column study indicated that selenite is quite immobile and remained on the overburden material even after leaching with dilute acid. Data from groundwater samples indicated that based on the current permissible level for selenium in groundwater (0.01 mg Se/L), Oklahoma groundwater is widely contaminated with the element. However, according to the new regulation (0.05 mg Se/L), which is to be promulgated in 1992, only 9 of the 77 counties in the state exceed the limit.

  13. Genetic approach to microbial coal desulfurization: Final report, January 1--December 31, 1988

    SciTech Connect

    Clark, D. P.

    1989-03-01

    Naturally occurring sulfur bacteria such as Thiobacillus and Sulfolobus have been shown to remove inorganic sulfur form coal. If genetically modified bacteria could be developed to attack the organic sulfur (which is not removed by natural sulfur bacteria) then it should be possible to devise a microbial process for coal desulfurization. Such a biological approach should be relatively cheap and safe and produce harmless waste products. We have developed a multiple mutant of Escherichia coli which can oxidize thiophene derivatives and are continuing to improve this strain. We have cloned DNA fragments from the chromosome of the triple mutant NAR30 thdA thdC thD. One plasmid pKA 15 carries what is presumably the thdA gene. Another plasmid, pKA 10, carries two genes designated thdF and thdG which, when present on a plasmid in multiple copies, confer the ability to oxidize thiophenes and furans. We think it probable that thdA is a regulator gene and that thdF and thdG are two of the structural genes which it regulates. Recently we have subcloned fragments of a large plasmid present in a natural isolate which degrades dibenzo-thiophene sulfone. No single fragment alone confers on an E. coli host the ability to degrade any aromatic substrate; however, certain mixtures of two or three fragments confer the ability to degrade benzoate. We have also mapped and partly characterized mutant affecting the enzyme thiosulfate: sulfur transferase (''rhodanese'') which removes (or inserts) sulfur from (or into) a variety of organic molecules. 26 refs., 6 figs., 6 tabs.

  14. Investigation of two-phase flow processes in coal slurry/hydrogen heaters. Final report

    SciTech Connect

    Sam, R.G.; Crowley, C.J.

    1986-08-01

    Experimental and analytical results are presented for two-phase slug flow in a horizontal, transparent pipe at large diameter (6.75 in.) at high gas density (20 times the density of air at atmospheric pressure) and at liquid viscosities ranging from 1 to 1000 centipoise. The test section replicates 1 1/2 rectangular coils (40 ft by 10 ft) of a fired heater in a coal liquefaction plant. Regime transtion, pressure drop, void fraction, and slug characteristic data have been obtained for liquid superficial velocities ranging from 0.2 to 6 ft/s and gas superficial velocities ranging from 0.2 to 12 ft/s. Regime transition results have been compared with the Taitel-Dukler analytical flow regime map. The transition from stratified to slug flow, which is underpredicted by the original analysis, has been studied in particular. Comparison with the dimensionless transition criterion (gas Froude number) shows that increased liquid viscosity increases the liquid level at which the transition occurs. Pressure drop data at the transition have been used to evaluate the interfacial shear and to show that it is greater than is assumed in the Taitel-Dukler analysis. Sensitivity studies for the transition criterion and interfacial shear illustrate exactly why the transition is underpredicted on the flow regime map and how the predictions can be improved. Photos of the flow patterns illustrate the mechanism of slug formation at high viscosity compared with low viscosity. Pressure drop, void fraction, and slug characteristic results are compared with an analysis for pressure drop in slug flow, demonstrating better predictive capability of this model at large pipe size, high gas density, and high viscosity, compared with correlations from the literature. The pressure drop model is also shown to be in excellent agreement with coal liquefaction pilot plant data. 34 refs.

  15. Clean coal today

    SciTech Connect

    1990-01-01

    This is the first issue of the Clean Coal Today publication. Each issue will provide project status reports, feature articles about certain projects and highlight key events concerning the US Clean Coal Technology Demonstration Program. Projects described in this publication include: Colorado-Ute Electric Association Circulating Fluidized Bed Combustor Project at Nucla, Colorado; Babcock and Wilcox coolside and limestone injection multistage burner process (dry sorbent injection); Coal Tech's Advanced Cyclone Combustor Project; and the TIDD pressurized fluidized bed combustor combined cycle facility in Brilliant, Ohio. The status of other projects is included.

  16. Annual Coal Distribution

    EIA Publications

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  17. Simultaneous SO{sub 2}/NO/particulate removal from coal combustion gas by solid-state electrochemical technology. Final report

    SciTech Connect

    Cornell, L.P.; Cook, W.J.; Keyvani, M.; Neyman, M.; Helfritch, D.J.

    1991-01-21

    A solid-state electrochemical process now in an early stage of development converts NO{sub x}and SO{sub x} to nitrogen, oxygen, and sulfur. Process objectives are to remove 90+% of SO{sub x} and NO{sub x} and 99% of particulates from Ohio coal combustion flue gases. The electrochemical reactor cell uses ionically conductive ceramics as electrolyte, and electronically conductive materials (including some ceramics) as electrodes; there are no moving parts, no consumable reagents, no by-product sludges, and no process fluids except the flue gas. Downstream of the electro-chemical cell, particulates are removed with a filter or electrostatic precipitator and elemental sulfur is condensed. This work developed and tested electrocatalysts for their ability to selectively reduce SO{sub 2} and NO{sub x} in the presence of oxygen gas in concentrations typical of coal combustion flue gases. Several solid electrolytes and various electrode materials were also tested for use in the electrochemical cell. Gold was chosen as the electrode in the tests because it is porous, resistant to chemical attack, and conductive. Electrocatalyst coatings containing a single transition metal were applied to one inch diameter yttria stabilized ceria disks and tested for NO and SO{sub 2} reduction.

  18. Mercury control technology assessment study: General Electric Ccompany, Circleville Lamp Plant, Circleville, Ohio. Preliminary survey report for the site visit of October 6, 1981. Final report

    SciTech Connect

    Telesca, D.R.

    1982-02-19

    A visit was made to the General Electric Company's Circleville Lamp Facility, Circleville, Ohio for the purpose of evaluating control methods designed to protect the workers from exposure to hazardous levels of mercury. The visit included a review of the fluorescent-lamp manufacturing process, a tour of the production facility, and an investigation of engineering controls, work practices and monitoring programs. Existing control strategies appeared effective in maintaining mercury vapor levels below the OSHA standard of 0.10mg/m/sup 3/. This was achieved through a combined effort in providing extensive dilution ventilation, modifying process equipment for mercury control, and developing the proper work practices for handling mercury. Areas suggested for further research as a result of this visit include the development of a small portable vacuum cleaner which would be effective in safely cleaning mercury spills, developing a procedure to reprocess mercury laden oil, and developing a comfortable and lightweight powered air-purifying helmet for respiratory protection against exposure to mercury vapor.

  19. Testing of indoor radon reduction techniques in central Ohio houses: Phase 2 (Winter 1988-1989). Final report, September 1988-May 1989

    SciTech Connect

    Findlay, W.O.; Robertson, A.; Scott, A.G.

    1990-05-01

    The report gives results of tests of developmental indoor radon reduction techniques in nine slab-on-grade and four crawl-space houses near Dayton, Ohio. The slab-on-grade tests indicated that, when there is a good layer of aggregate under the slab, the sub-slab ventilation (SSV) mitigation technique, with only one or two suction pipes, can generally reduce indoor concentrations below 2 pCi/L (86 to 99% reduction). These reductions can be achieved even when: there are forced-air supply ducts under the slab; the slab is large (up to 2600 sq ft); and the foundation walls are hollow block. Operating the SSV system in suction always gave greater reductions than did operating in pressure. The crawl-space tests demonstrated that depressurizing under a plastic liner over the crawl-space floor was able to reduce living-area radon concentrations below 2 pCi/L (81 to 96% reduction). The performance of such sub-liner depressurization gave better reductions than did crawl-space ventilation (blowing air into, or out of, the crawl space). Completely covering the crawl-space floor with plastic sheeting was not always necessary to get adequate performance.

  20. Coal/water slurry preparation: Final report for the period ending June 30, 1986. [Hot water drying

    SciTech Connect

    Willson, W.G.; Baker, G.G.; Maas, D.J.; Potas, T.A.

    1986-09-01

    Raw low-rank coal/water slurries, primarily due to the high inherent moisture, have such low energy densities that they cannot be economically utilized. However, hot-water drying (HWD) permanently removes the inherent moisture and some oxygen, allowing dramatic improvements in the resulting slurry energy density. This process results in the coal essentially being slurried in its own moisture and produces a liquid fuel with approximately the same heating value as the parent coal. Elevated process temperatures cause the low-rank coals to undergo both chemical and physical changes, which include decarboxylation, mild pyrolysis, dehydration, and surface modification. Tars and waxes also form and flow to the coal surface where they solidify upon cooling and plug micropore entrances. As a result, lignite and subbituminous coals acquire surface characteristics and improved coal quality, which allow the preparation and utilization of concentrated low-rank coal/water fuels. Improvement of the energy density of HWD coal/water fuels versus those prepared with the raw coal are typically >30%. Conceptual economic studies have determined the cost to process Wyoming subbituminous coal into a 60 wt % CWS to be $1.40/MMBtu (Bechtel National Inc.), $2.20/MMBtu (UNDERC) and for processing Australian brown coal $2.00/MMBtu (Davy McKee Pacific). 18 refs., 21 figs., 8 tabs.

  1. Development and testing of a commercial scale coal-fired combustion system -- Phase 3. Final technical progress report, September 26, 1990--August 31, 1994

    SciTech Connect

    Litka, A.; Breault, R.

    1994-10-01

    This report summarizes the results of work performed in the development and testing of a coal-fired space heating system for the commercial market sector. Although coal is the most plentiful energy resource in the US, its use since World War II has been largely restricted to utility power generation for environmental and economic reasons. Within the commercial sector, oil and natural gas are the predominant heating fuels for office buildings, apartment complexes, and similar structures. Generally, these buildings require firing rates of 1 to 10 million Btu/hr. The objective of this program was to design, build, and test a coal-based heating system for this sector, and determine the economic viability and market potential for the system. Coal water slurry (CWS) fuel was chosen as the fuel form for this development effort. CWS eliminates the need to use dry pulverized coal with its attendant handling, metering, and dusting problems, as well as its explosive potential. A brief description of the overall system design is given in this report, as well as a discussion of the unique features of the system configuration and key components. This is followed by a summary of the testing performed, including a comparison between system performance and program goals. Finally, the results of the economic evaluation are presented, along with a commercialization plan for the technology. A key issue in the eventual commercialization of the technology is the availability of a competitively priced coal water slurry fuel. Predicted prices and availability of CWS are discussed.

  2. Simulation of coal and char nitrogen reactions in combustion. [Final report, September 1992--August 1993

    SciTech Connect

    Kumpaty, S.K.

    1993-10-01

    The observed rate of increase of N{sub 2}O (0.18% to 0.26% annually) is a matter of increasing concern both because N{sub 2}O is a greenhouse gas and has a major and unfavorable influence on the ozone layer (Weiss, 1981). The combustion contribution to the overall nitrous oxide budget is difficult to assess; yet the emission of N{sub 2}O from fluidized bed combustion (FBC) has been identified in the past few years as significant. It was concluded in the European workshop, 1988 that the emission level from a coal-fired fluidized bed boiler is 50--200 ppM but it is only 1--20 ppM in boilers equipped with other types of combustion devices. For this reason it is worthwhile to investigate the emissions from FBC more thoroughly. Gaseous fuels (Miller and Bowman, 1989), but the N{sub 2}O emissions under fluidized bed conditions is poorly understood. In fluidized bed combustion, N{sub 2}O can arise from homogeneous gas phase reactions involving amines and cyano species (Hiltunen et al, 1991) or it can be formed from heterogeneous reactions (eg. char oxidation). Removal of N{sub 2}O can be brought about by gas phase reactions or by catalytic or non-catalytic heterogeneous reduction on char/limestone. This work was carried out with an objective of enhancing the fundamental understanding of coal and char nitrogen reaction pathways in fluidized bed combustion environment. The formation and destruction of HCN and N{sub 2}O under variety of influential parameters were investigated. This simulation contained a nonisothermal single particle combustion in a preheated reactor and a gas phase reaction are designed to stimulate the nitrogen chemistry in a circulating fluidzied bed. The LSODE differential equation solver used for single particle combustion and the CHEMKIN package, developed by Sandia National Laboratories, was applied for gas phase reactions. This computational work was done as an exploratory research program under the solicitation of the DOE fossil energy utilization.

  3. The Ohio State University.

    ERIC Educational Resources Information Center

    CAUSE/EFFECT, 1978

    1978-01-01

    The three computer service facilities at Ohio State University in Columbus are described. Computer services are provided for: instructional purposes, public service activities, university management, the hospital information system, and student services. (BH)

  4. Springtime Demonstrations in Ohio

    NASA Astrophysics Data System (ADS)

    Adelson, Edward; Grant, Roderick M.; Jossem, E. Leonard; Kagan, Harris P.

    1998-04-01

    This demo show will introduce a selection of pleasurable and puzzling phenomena. From the customary big bang to the very perplexing behavior of an ordinary light bulb, there will be something to amaze and intrigue everyone. Our unicyclist will answer Alexander Pope's question: "Shall gravitation cease if you go by?'' See the world's largest soap film and the spectrum obtained without a prism or a slit, and see if the electrical demonstrations will work. The audience will receive a list of demos and a list of references and explanations. Contributing Authors: Mark J. Nandor, The Ohio State Univ., Richard A. Noll, The Ohio State Univ., Maarten Rutgers, The Ohio State Univ., Harold Whitt, The Ohio State Univ.

  5. Ohio Community College Portraits

    ERIC Educational Resources Information Center

    Ohio Board of Regents, 2009

    2009-01-01

    This paper provides information on student characteristics, success and progress rates, cost of attendance, degrees awarded, class size, faculty characteristics, and employment outcomes at each of Ohio's twenty-three community college.

  6. New concept for coal wettability evalution and modulation. Final report 1 January 1992--30 September 1995

    SciTech Connect

    Hu, Weibai; Zou, Yuzhi; Wang, Qingping

    1995-12-31

    The study was concerned with a new concept for coal surface wettability evaluation and modulation. The objectives of the work were to study the fundamental surface chemistry for the evaluation of the surface wettability and floatability of coal nd minerals. A new separation strategy will contribute to the advanced selective separation of coal and pyrite. The theories of wettability and floatability of coal and mineral are discussed. A new concept of kinetic wettability, kinetic floatability, and kinetic collectability has been explored. In addition, their evaluation and correlation have been established. Some practical applications to improve the advanced selective flotation of coal and pyrite have been suggested.

  7. Secondary atomization of coal-water fuels for gas turbine applications: Final report

    SciTech Connect

    Yu, T.U.; Kang, S.W.; Beer, J.M.

    1988-12-01

    The main research objective was to determine the effectiveness of the CWF treatments on atomization quality when applied to an ultrafine coal-water fuel (solids loading reduced to 50%) and to gas turbine operating conditions (atomization at elevated pressures). Three fuel treatment techniques were studied: (1) heating of CWF under pressure to produce steam as the pressure drops during passage of the CWF through the atomizer nozzle, (2) absorption of CO/sub 2/ gas in the CWF to produce a similar effect, and (3) a combination of the two treatments above. These techniques were expected to produce secondary atomization, that is, disruptive shattering of CWF droplets subsequent to their leaving the atomizing nozzle, and to lead to better burnout and finer fly ash size distribution. A parallel objective was to present quantitative information on the spray characteristics (mean droplet size, radial distribution of droplet size, and spray shape) of CWF with and without fuel treatment, applicable to the design of CWF-burning gas turbine combustors. The experiments included laser diffraction droplet size measurements and high-speed photographic studies in the MIT Spray Test Facility to determine mean droplet size (mass median diameter), droplet size distribution, and spray shape and angle. Three systems of atomized sprays were studied: (1) water sprays heated to a range of temperatures at atmospheric pressure; (2) CWF sprays heated at atmospheric pressure to different temperatures; and (3) sprays at elevated pressure. 31 refs., 47 figs., 1 tab.

  8. Coal-fired propulsion system dynamics. Volume III. Dynamic analysis of the cv-3600. Final report

    SciTech Connect

    Greenlee, T.L.; Pearsons, J.L.

    1982-12-01

    This volume summarizes the results of a thorough analysis of the CV-3600 dynamic model that was discussed in Volume II. The purpose of this effort was to determine general engineering details and specifications for coal-fired propulsion systems based on a detailed analysis of a specific propulsion system design. The basis for these specifications included the sensitivity of ship propulsion system response to component parameter and control variations such as grate travel speed and controls, spreader and distributor feed and controls, fan speed and damper controls, steam dump (sizing, control valve characteristics and controls), feedwater pump controls (drum level controls), throttle control, and desuperheater steam attemperation controls. To develop greater insight into the effects of these variations, both open-loop (without control) and closed-loop (with control) versions of the propulsion system were studied. The open and closed-loop responses were further analyzed through the use of linear models and eigenvalue analyses. Specific conclusions regarding desirable trends in component specification are provided as part of the conclusions in this volume.

  9. Clean coal technology III 10 MW demonstration of gas suspension absorption. Final public design report

    SciTech Connect

    1995-06-01

    This report provides the nonproprietary design information for the ``10 MW Demonstration of Gas Suspension Absorption (GSA)`` Demonstration Project at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emission Research (CER). The 10 MW Demonstration of GSA program is designed to demonstrate the performance of the GSA system in treating the flue gas from a boiler burning high sulfur coal. This project involves design, manufacturing, construction and testing of a retrofitted GSA system. This report presents a nonproprietary description of the technology and overall process performance requirements, plant location and plant facilities. The process, mechanical, structural and electrical design of the GSA system as well as project cost information are included. It also includes a description the modification or alterations made during the course of construction and start-up. Plant start-up provisions, environmental considerations and control, monitoring and safety considerations are also addressed for the process. This report, initially drafted in 1993, covers design information available prior to startup of the demonstration project. It does not reflect the results obtained in that project, which is now complete.

  10. Assessment of instrumentation needs for advanced coal power plant applications: Final report

    SciTech Connect

    Nelson, E.T.; Fischer, W.H.; Lipka, J.V.; Rutkowski, M.D.; Zaharchuk, R.

    1987-10-01

    The purpose of this study was to identify contaminants, identify instrumentation needs, assess available instrumentation and identify instruments that should be developed for controlling and monitoring gas streams encountered in the following power plants: Integrated Gasification Combined Cycle, Pressurized Fluidized Bed Combustion, and Gasification Molten Carbonate Fuel Cell. Emphasis was placed on hot gas cleanup system gas stream analysis, and included process control, research and environmental monitoring needs. Commercial process analyzers, typical of those currently used for process control purposes, were reviewed for the purpose of indicating commercial status. No instrument selection guidelines were found which were capable of replacing user interaction with the process analyzer vendors. This study leads to the following conclusions: available process analyzers for coal-derived gas cleanup applications satisfy current power system process control and regulatory requirements, but they are troublesome to maintain; commercial gas conditioning systems and in situ analyzers continue to be unavailable for hot gas cleanup applications; many research-oriented gas stream characterization and toxicity assessment needs can not be met by commercially available process analyzers; and greater emphasis should be placed on instrumentation and control system planning for future power plant applications. Analyzers for specific compounds are not recommended other than those needed for current process control purposes. Instead, some generally useful on-line laser-based and inductively coupled plasma methods are recommended for further development because of their potential for use in present hot gas cleanup research and future optimization, component protection and regulation compliance activities. 48 refs., 21 figs., 26 tabs.

  11. Utilization of fuel cells to beneficially use coal mine methane. Final report

    SciTech Connect

    Brown, J.T.; O`Brien, D.G.; Miller, A.R.; Atkins, R.; Sanders, M.

    1996-03-01

    DOE has been given the responsibility to encourage industry to recover and use methane that is currently being released to the atmosphere. At this time the only method being employed at the Left Fork Mine to remove methane is the mine ventilation system. The methane content was measured at one one-hundredth of a percent. To prevent this methane from being vented to the atmosphere, degasification wells are proposed. To use the coal mine methane, it is proposed to use phosphoric-acid fuel cells to convert methane to electric power. These fuel cells contain (1) a steam reformer to convert the methane to hydrogen (and carbon dioxide), (2) the fuel cell stack, and (3) a power conditioner that provides 200 kW of 60 Hz alternating current output. The environmental impacts and benefits of using this technology ware summarized in the report. The study indicates the methane emission reduction that could be achieved on a national and Global level. The important point being that this technology is economically viable as is demonstrated in the report.

  12. Evaluation of 450-MWe BGL GCC power plants fueled with Pittsburgh No. 8 coal. Final report

    SciTech Connect

    Pechtl, P.A.; Chen, T.P.; Thompson, B.H.; Greil, C.F.; Niermann, S.E.; Jandrisevits, M.; Attlefellner, H.

    1992-11-01

    In this study, a conceptual design and cost estimate were developed for a nominal 450 MW integrated gasification combined cycle plant using the British Gas/Lurgi slagging gasification process. The present study is a design update of a previous study (EPRI Report AP-6011). The major design improvements incorporated include use of the latest GE 7F gas turbine rating, integrating the air separation plant with gas turbine, use of fuel gas saturation for NO{sub x} control, use of treated gasifier waste water as makeup water for the fuel gas saturation, and several process changes in the acid gas removal and sulfur recovery areas. Alternate design options for feeding the excess coal fines to the gasifier, treating the gasifier waste water, and the use of conventional air separation without integration with gas turbine were evaluated. The design improvements incorporated were found to increase significantly the overall plant efficiency and reduce the cost reported in the previous study. The various design options evaluated were found to have significant impacts on the plant efficiency but negligible impacts on the cost of electricity.

  13. Thermal treatment for chlorine removal from coal. Final technical report, September 1, 1991--December 31, 1992

    SciTech Connect

    Muchmore, C.B.; Hesketh, H.E.; Chen, Han Lin

    1992-12-31

    It was the goal of this research to provide the technical basis for development of a process to remove chlorine from coal prior to combustion, based on a thermal treatment process. Reaction rate constants and activation energy have been determined, and energy and mass balances performed. Substitution of a synthetic flue gas (7% 0{sub 2}, 12% CO{sub 2}, 81% N{sub 2}) for nitrogen in the tube furnace resulted in at least equivalent chlorine removal (85.5%) compared to nitrogen. The fluidized bed dechlorination system modifications have resulted in a steady increase in performance, the most recent run providing 64% reduction in chlorine concentration. Addition of supplemental heat to the column should permit attainment of the slightly higher temperatures required to attain over 80% removal of the chlorine. Calcium chloride by-product of 67% purity has been produced. A bench scale catenary grid concentrator with supplemental heating coils and limited insulation is capable of concentrating CaCl{sub 2} solution up to essentially 40%, with no sign of scale or plugging. Further development of the process should include a thorough evaluation of the use of combustion gases to serve as the fluidizing medium and to provide the energy for the thermal dechlorination process.

  14. Application of the SULF-X process to coal conversion and utilization. Phase II final report

    SciTech Connect

    Shapiro, E.; Bramer, H.C.; New, R.A.

    1984-01-01

    Pittsburgh Environmental and Energy Systems, Inc. contracted with the Department of Energy to demonstrate the efficacy of an iron sulfide flue gas treatment system (FGT) for removing sulfur dioxide (SO/sub 2/) and nitrogen oxides (NO/sub x/) and to correlate process variables to system performance. Laboratory and bench-scale testing was conducted with the SULF-X process, using both synthesized gas and actual flue gas from a coal-fired furnace. Laboratory tests resulted in 95% SO/sub 2/ removal and up to 95% NO/sub x/ removal. The bench-scale system demonstrated similar SO/sub 2/ removal efficiencies, but achieved only 39% NO/sub x/ removal due to relatively high oxygen concentrations in the flue gas and insufficient liquid-gas interfacial area within the absorber. Elemental sulfur was recovered during the regeneration steps. Total capital investment for the SULF-X system was estimated to be $91 to $103 per kilowatt (electric), compared to $90/kw for sodium solution scrubbing, $78 to $83/kw for magnesia slurry scrubbing and $74/kw for limestone slurry scrubbing. Annual operating costs for the SULF-X system were estimated to be 5.44 to 6.90 mills per kilowatt-hour, compared to 4.96 to 5.22 for sodium, 3.68 to 3.99 for magnesia and 3.73 to 4.25 for limestone. 6 references, 6 figures, 9 tables.

  15. Separation and structure elucidation of coal molecule fragments. Final report, February 1, 1976-August 31, 1979

    SciTech Connect

    Schultz, R V; Jorgenson, J W; Maskarinec, M P; Kump, R L; Marli, F; Novotny, M; Todd, L J

    1980-01-01

    Separation and identification of the polynuclear aromatic and aliphatic fractions of solvent-refined coal and its recycle oil were performed using a combination of solvent partition and chromatographic fractionation procedures with glass-capillary gas chromatography/mass spectrometry. Chromatographic profiles were generated for each fraction and some semiquantitative data were also obtained. In total, 146 polynuclear aromatic components of SRC were tentatively identified by their molecular weights, as indicated by the mass spectra of the gas chromatography peaks. In addition, wherever possible, specific isomers have been indicated, based on comparison of spectral characteristics and retention data. Separation and identification of nitrogen-containing aromatics of the recycle oil of SRC was accomplished with a combination solvent partition and capillary gas chromatography with deactivated glass columns. High-precision retention measurements of known pyridine and quinoline derivatives are reported, utilizing parent aza-arenes as retention standards. Both precisely measured retention data and mass spectral information combined lead to positive identification of some compounds in SRC samples. A total of 48 two-membered or three-membered aza-arenes have been tentatively identified in the recycle oil.

  16. Coal ash utilization for soil amendment to enhance water relations and turf growth. Final report

    SciTech Connect

    Adriano, D.C.; Weber, J.T.

    1998-10-01

    A long-term (1993--96) field study assessed the effects of applying high rates of coal fly-ash as a soil amendment for the growth of the turf species, centipedegrass (Eremochloa ophiroides). A Latin Square plot design was employed with a control (no ash applied), and 280, 560, and 1,120 Mg ha{sup {minus}1} (i.e., tonne/ha) application rates of unweathered baghouse fly-ash from a power station of the South Carolina Electric and Gas Company. The applied fly-ash was spread evenly over each plot area, rototilled, and allowed to weather for 8 months before seeding to centipedegrass. High levels of soluble salts, indicated by the electrical conductivity of the soil extracts, in tandem with the phytotoxic effect of B, apparently inhibited the initial plant establishment as shown by substantially lower germination counts in ashed soils. The plant height and root length, however, were not adversely affected, nor were the dry matter yields throughout the study period. Ash treatment did not significantly influence infiltration rate, bulk density, or temperature of the soil, but substantially improved its water holding capacity and plant available water. This enhanced water retention capacity apparently rendered the soil less droughty and improved the coherence and handling property of the harvested sod.

  17. Improving the stability of coal slurries: Final report. [Polygalacturonic acid and gum tragacanth

    SciTech Connect

    Fogler, H.S.

    1988-12-01

    Polysaccharides were found to stabilize colloidal dispersions (such as coal particles and polystyrene latex particles) even at high ionic strengths. The stability studies with various kinds of polysaccharides showed that rod-like molecules (such as poly (galacturonic acid) and gum tragacanth) are much more effective stabilizers than highly-branched molecules such as arabinogalactan. This effective stabilization with the rod-like molecules was found to result from the adsorption of polysaccharides on the particles, i.e., the steric stabilization mechanism. The stability depends significantly on the solution pH, the molecular weight and the surface charge of particles. Adsorption isotherms, the zeta potential and the conformation of adsorbed molecules (the steric layer thicknesses) were measured as a function of the solution pH, the molecular weight and the surface charge. Photon correlation spectroscopy studies showed that the conformation of adsorbed molecules is strongly dependent on the solution pH, the molecular weight and the surface charge, suggesting that the dependence of stability on these parameters is due to the change of the conformation of the molecules adsorbed on the surface. In addition, the solution pH has a significant effect on the flocculation behavior of particles and can be modulated to bring about peptization of particles. This type of stabilization is referred to as electrosteric stabilization whereby steric stabilization is induced by changing the electrical properties of the system (the solution pH in this case). 41 refs., 43 figs., 10 tabs.

  18. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1994-12-31

    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  19. Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-12-31

    A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

  20. 75 FR 72947 - Ohio Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 935 Ohio Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement (OSM), Interior. ACTION: Final rule; approval of...'') regulations under the Surface Mining Control and Reclamation Act of 1977 (SMCRA or the Act). The...

  1. Recovery of coal fines from preparation plant effluents. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect

    Choudhry, V.

    1991-12-31

    The objectives of this project were to test and demonstrate the feasibility of recovering coal fines that are currently disposed of with coal preparation plant effluent streams and producing a fine clean coal product that can be blended with the plant coarse clean coal. This recovery was effected by means of Michigan Technological University`s static tube flotation process, which was successfully demonstrated on a number of raw coals to reject 85% of the pyritic sulfur and recover 90% of the combustible matter. Under this project, the process parameters for the technology were modified for this application in order to recover a low-ash, low-sulfur clean coal that is, at a minimum, compatible with the quality of the clean coal currently produced by the preparation plant.

  2. Characterization and evaluation of washability of Alaskan coals. Final technical report for Phase II, July 1, 1977-February 29, 1979

    SciTech Connect

    Rao, P. D.; Wolff, E. N.

    1980-10-01

    This report is a result of the second part of a continuing study to obtain washability data for Alaskan coals to supplement the efforts of the US Department of Energy in their ongoing studies on washability of US coals. Alaska, with its large coal resources, could supply the nation with environmentally acceptable low-ash, low-sulfur coals. Washability characteristics were determined for eleven coal samples, from the Northern Alaska, Broad Pass, Little Tonzona, Tramway Bar, Beluga, Yentna, Kenai and Nenana coal fields. The raw coals were crushed to 1-1/2 inches, 3/8 inch and 14 mesh top sizes and float-sink separations were made at 1.30, 1.40, and 1.60 specific gravities. Detailed results of the testing are given.

  3. Fluvial sediment in Ohio

    USGS Publications Warehouse

    Anttila, Peter W.; Tobin, Robert L.

    1978-01-01

    Characteristics of fluvial sediment in Ohio streams and estimates of sediment yield are reported. Results are based on data from several daily record stations and 5 years of intermittent record from a 38-station network. Most of the sediment transported by Ohio streams is in suspension. Mean annual bedload discharge, in percentage of mean annual suspended-sediment discharge, is estimated to be less than 10 percent at all but one of the sediment stations analyzed. Duration analysis shows that about 90 percent of the suspended sediment is discharged during 10 percent of the time. Concentration of suspended sediment averages less than 100 milligrams per liter 75 percent of the time and less than 50 milligrams per liter 50 percent of the time. Suspended sediment in Ohio streams is composed mostly of silt and clay. Sand particle content ranges from 1 to 2 percent in northwestern Ohio to 15 percent in the east and southeast. Sediment yields range from less than 100 tons per square mile per year (35 tonnes per square kilometer per year) in the northwest corner of Ohio to over 500 tons per square mile per year (17,5 tonnes per square kilometer per year) in the southern part, in Todd Fork basin, lower Paint Creek basin, and the Kentucky Bluegrass area. Yield from about 63 percent of Ohio's land area ranges from 100 to 200 tons per square mile per year (35 to 70 tonnes per square kilometer per year).

  4. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal. Final report

    SciTech Connect

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface charging characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.

  5. Petrographic characterization of Kentucky coals. Final report. Part IV. A petrographic and chemical model for the evolution of the Tradewater Formation coals in Western Kentucky

    SciTech Connect

    Graese, A.M.; Hower, J.C.; Ferm, J.C.

    1984-01-01

    A depositional model for the coals of the Tradewater Formation and associated rock units was constructed as a predictive device for the occurrence of economically important low sulfur coal. Twenty-one cores were examined and ninety-eight coal samples were analyzed for maceral, ash, and sulfur contents. These data were then analyzed to determine regional variation as well as vertical variation in single coal columns. Core data indicate that the majority of the Tradewater rocks consist of irregularly distributed, coarsening-upward, fine-grained detrital material which was deposited in shallow bodies of water. Minor fossiliferous shales and limestones suggest a marine influence. Less common coarse-grained, fining-upward sequences appear to be deposits of meandering channels. Like the detrital rocks, the coal seams are also irregularly distributed and exhibit variable petrographic and chemical properties reflecting changes in the Eh and pH of the coal swamp waters as well as detrital influx into the swamps. These swamps were relatively limited in extent and probably occupied the upper reaches of the tidal zone. The lack of significant stratigraphic and geographic trends in the regional data suggests that this mode of deposition was widespread and continued for a long period of time. 42 references, 19 figures, 9 tables.

  6. Tidd PFBC Demonstration Project: Public final design report

    SciTech Connect

    Not Available

    1992-10-01

    This Public Final Design Report describes the 70 MW(e) Tidd PFBC Demonstration Plant under construction in Brilliant, Ohio. This project is receiving cost-sharing from the US Department of Energy (DOE), and is being administered by the Morgantown Energy Technology Center in accordance with DOE Cooperative Agreement No. DE-FC21-87 MC24132.000. The project is also receiving costsharing from the State of Ohio. This award is being administered by the Ohio Coal Development Office. The Tidd PFBC Demonstration Project is the first utility-scale demonstration project in the US. Its objective is to demonstrate that the Pressurized Fluidized Bed Combustion (PFBC) combined-cycle technology is an economic, reliable, and environmentally superior alternative to conventional technology in using high-sulfur coal to generate electricity. Detailed design of the plant began in May 1987, leading to the start of construction in April 1988. First coal fire occurred in November 1990, and the three-year test program began in February 1991.

  7. Tidd PFBC Demonstration Project: Public final design report

    SciTech Connect

    Not Available

    1992-10-01

    This Public Final Design Report describes the 70 MW(e) Tidd PFBC Demonstration Plant under construction in Brilliant, Ohio. This project is receiving cost-sharing from the US Department of Energy (DOE), and is being administered by the Morgantown Energy Technology Center in accordance with DOE Cooperative Agreement No. DE-FC21-87 MC24132.000. The project is also receiving costsharing from the State of Ohio. This award is being administered by the Ohio Coal Development Office. The Tidd PFBC Demonstration Project is the first utility-scale demonstration project in the US. Its objective is to demonstrate that the Pressurized Fluidized Bed Combustion (PFBC) combined-cycle technology is an economic, reliable, and environmentally superior alternative to conventional technology in using high-sulfur coal to generate electricity. Detailed design of the plant began in May 1987, leading to the start of construction in April 1988. First coal fire occurred in November 1990, and the three-year test program began in February 1991.

  8. Mechanism of surface enrichment and adhesion of coal combustion particulates. Final report

    SciTech Connect

    Shadman, F.; Peterson, T.W.; Wendt, J.O.L.

    1992-09-01

    This study focuses on the effect of alkali adsorption on the agglomeration of particles of bauxite, kaolinite, emathlite, lime, and two types of coal ash. An agglomeration (adhesion) temperature is defined which characterizes the adhesion propensity of particles. Using a small fluidized bed, a unique experimental technique is developed to measure this agglomeration point in-situ. The effects of alkali adsorption on the agglomeration characteristics of the substrates are determined. The agglomeration temperature of all substrates decreases as the alkali content increases. At low alkali loadings, alkali adsorption enhances particle agglomeration by forming new compounds of lower melting points. At high alkali concentrations, adhesion and agglomeration are caused by a layer of molten alkali which covers the exterior of the particles. Alkali surface composition of particles is studied using a Scanning Auger Microprobe (SAM). Results indicate that the alkali surface concentration decreases as agglomeration temperature increases. The use of additives to scavenge alkali vapors is further studied in a pilot scale downflow combustor. SAM surface analyses of additive particles indicate three mechanisms of alkali capture. Adsorption by reaction, surface condensation, and nucleation and coagulation with additive particles. These mechanisms may occur independently or simultaneously depending primarily on the alkali vapor concentration and the temperature profile along the combustion furnace. A mathematical model is developed to represent the kinetics and mechanisms of the alkali adsorption and agglomeration process. Modeling results indicate that the adsorption-reaction process is influenced by diffusion of alkali through the surface product layer. The model predictions of the alkali adsorbed as a function of minimum agglomeration temperature agree very well with the experimental results.

  9. Synthesis of model compounds for coal liquefaction research. Final report, April 15, 1990--April 14, 1991

    SciTech Connect

    Not Available

    1991-11-01

    Coal liquefaction investigations required the availability of model compounds for mechanistic investigations. Towards this end, IITRI was funded to develop an approach for the synthesis of one of the target compound. This study was carried out in several phases as outlined here. Initial synthetic investigations on obtaining 2-tetrolol was carried out using high pressure and temperature reduction with Raney nickel catalyst. The next step consisted in incorporation of a hydroxymethyelene group at the C-3 position. This was successfully carried out utilizing 2-tetrolol, formaldehyde, and calcium oxide. An alternate improved method was developed using 3-carboxyl-2-naphthol. This required less time, gave a cheer product in higher yield. Efforts at the introduction of a chloromethylene group only yielded polymeric material or starting material in spite of protection the phenolic group by various groups. They synthesis of 3, 5-dimethyl-6- bromobenzyl chloride was successfully carried out by performing the Blank reaction of 2, 4-dimethyl bromobenzene. The product was characterized by GC/MS. Purification was not possible, as it was a complex mixture. Efforts at converting it to the acetate followed by separation to was not feasible. Unlike in the case of 2- hydroxyteralol, hydroxymetylation by established procedure yielded only the starting materials. Commercially available 4-methoxy-1- maphthaldehyde was protected as the ethylene acetal. The Wittig reagent 3-chlorobenzyl phosphonium bromide was prepared and condensed with 4-methoxy-1-napthaldehyde successfully and proved that the overall synthetic approach was proceeding in the desired direction. All the necessary intermediates have been synthesized,and we have demonstrated using model compounds, that the synthetic objective can be attained.

  10. Novel catalysts for upgrading coal-derived liquids. Final technical progress report

    SciTech Connect

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1995-03-31

    Research described in this report was aimed at synthesizing and evaluating supported Mo oxynitrides and oxycarbides for the selective removal of nitrogen, sulfur and oxygen from model and authentic coal-derived liquids. The Al{sub 2}O{sub 3}-supported oxynitrides and oxycarbides were synthesized via the temperature programmed reaction of supported molybdenum oxides or hydrogen bronzes with NH{sub 3} or an equimolar mixture of CH{sub 4} and H{sub 2}. Phase constituents and composition were determined by X-ray diffraction, CHN analysis, and neutron activation analysis. Oxygen chemisorption was used to probe the surface structure of the catalysts. The reaction rate data was collected using specially designed micro-batch reactors. The Al{sub 2}O{sub 3}-supported Mo oxynitrides and oxycarbides were competitively active for quinoline hydrodenitrogenation (HDN), benzothiophene hydrodesulfurization (HDS) and benzofuran hydrodeoxygenation (HDO). In fact, the HDN and HDO specific reaction rates for several of the oxynitrides and oxycarbides were higher than those of a commercial Ni-Mo/Al{sub 2}O{sub 3} hydrotreatment catalyst. Furthermore, the product distributions indicated that the oxynitrides and oxycarbides were more hydrogen efficient than the sulfide catalysts. For HDN and HDS the catalytic activity was a strong inverse function of the Mo loading. In contrast, the benzofuran hydrodeoxygenation (HDO) activities did not appear to be affected by the Mo loading but were affected by the heating rate employed during nitridation or carburization. This observation suggested that HDN and HDS occurred on the same active sites while HDO was catalyzed by a different type of site.

  11. Refining of fossil resin flotation concentrate from western coal. Final report

    SciTech Connect

    Jensen, G.F.; Miller, J.D.

    1995-02-16

    During the past several years, significant research efforts have been made to develop process technology for the selective flotation of fossil resin from western coals. As a result of these efforts, several new flotation technologies have been developed. Operation of a proof-of-concept continuous flotation circuit showed the selective flotation process to be sufficiently profitable to justify the development of a fossil resin industry. However, little attention has been given to the refining of the fossil resin flotation concentrate although solvent refining is a critical step for the fossil resin to become a marketable product. In view of this situation, DOE funded this two-year project to evaluate the following aspects of the fossil resin refining technology: 1) Characterization of the fossil resin flotation concentrate and its refined products; 2) Kinetics of fossil resin extraction; 3) Effects of operating variables on solvent extraction; 4) Extraction solvents; 5) Proof-of-concept continuous refining tests; and 6) Technical and economic analysis. The results from this research effort have led to the following conclusions: Hexane- or heptane-refined fossil resin has a light-yellow color, a melting point of 140 - 142{degrees}C, a density of 1.034 gram/cm, and good solubility in nonpolar solvents. Among the four solvents evaluated (hexane, heptane, toluene and ethyl acetate), hexane is the most appropriate solvent based on overall technical and economic considerations. Batch extraction tests and kinetic studies suggest that the main interaction between the resin and the solvent is expected to be the forces associated with solvation phenomena. Temperature has the most significant effect on extraction rate. With hexane as the solvent, a recovery of 90% cam be achieved at 50{degrees}C and 10% solids concentration with moderate agitation for 1 hour.

  12. Fire-safety appraisal of residential wood and coal stoves in New York State. Final report

    SciTech Connect

    Lassoie, J.P.; Provencher, R.W.; Goff, G.R.; Brown, T.L.

    1983-04-01

    This study was designed to identify solid fuel (wood and coal) residential heating safety problems and associated causes, and the barriers to correction of these problems in New York State. Data on solid fuel use was obtained via randomly conducted phone surveys, in-home resident interviews and solid fuel burning system inspections, and a mail survey of fire department chiefs. The study found that solid fuel (primarily wood) was a major heat source in 707,000, or 18% of the State's households (excluding Metropolitan New York City and southern Westchester County). Based on a safety evaluation system of 15 quantifiable installation, maintenance, and operation criteria developed during this study, the State's solid fuel heating systems were classified as being either safe (5.5%), unsafe (24.7%), hazardous (57.7%), or extremely hazardous (12.1%). The most important barriers to safety were those of homeowner complacency and apathy, with the former being the primary attitudinal barrier. Availability and affordability of safety information, and professional installation and inspection services generally were adequate; however, none of these had a substantial effect on the overall safety of the State's solid fuel systems. Results of the fire chief survey reflected a consensus of opinion on several key solid fuel safety issues. Fire chiefs believed that mandatory compliance by solid fuel users may be necessary for substantial improvement of the solid fuel safety situation due to the prevalence of certain attitudinal barriers. Recommendations designed to correct this situation through new, aggressive information and education programs and/or mandatory rules and regulations are presented and discussed. In addition, recommendations are presented for monitoring solid fuel safety, for cost assistance for homeowners to encourage the use of competent professionals, and for future research efforts. 25 references, 4 figures, 97 tables.

  13. Central Arkansas Energy Project: coal to medium-Btu gas. Volume 1. Feasibility study. Final report

    SciTech Connect

    Not Available

    1982-05-01

    The Central Arkansas Energy Project has as its objective the conversion of coal in a central location to a more readily usable energy source, medium Btu gas (MBG), for use at dispersed locations as fuel for power production and steam generation, or as a feedstock for chemical processing. The gasification plant will be located adjacent to AP and L's existing White Bluff Steam Electric Station near Redfield, Arkansas. A comprehensive 14-month study was performed to investigate the project feasibility. The study included preliminary design of the gasification plant including process engineering design bases, process flow diagrams, utility requirements, system descriptions, project engineering design, equipment specifications, plot plan and section plot plans, preliminary piping and instrument diagrams, and facilities requirements. Financial analyses and sensitivities were determined. Detailed design and construction schedules and manpower loadings were developed. Site characteristics and site suitability as well as an evaluation of the environmental safety, health and socioeconomic issues were performed. The results of these evaluations indicate that the gasification plant and pipeline are licensable and will have a minimal effect on the environment. An overall schedule for construction of the gasification plant was developed which indicated a 76 month requirement for design engineering and construction, including a 10 month start-up period. The estimated 1981 dollar project capital cost is $964 million. The escalated 1988 project capital cost is $1.370 billion. Financial analyses have indicated the plant would provide a 25% after-tax return on investment, based upon a 1988 MBG price of $11.02 MM Btu.

  14. Dynamic simulation models for selective sulfur removal in coal gasification systems. Final report

    SciTech Connect

    Vysniauskas, T.; Sim, W.D.

    1985-07-01

    A study was conducted, under EPRI Agreement RP1038-6, to investigate the feasibility of using computer simulation models to predict the steady-state and transient behavior of selective acid gas treating units. One of the prime objectives was to determine whether these models could be used to simulate the acid gas absorption units in coal gasification-combined cycle (GCC) power plants. Two dynamic simulation models were investigated; one model was developed by S-Cubed (formerly Systems, Science and Software) and the other was an in-house program developed by Hyprotech Ltd. These models were tailored specifically for the Norton Co. SELEXOL process for this study and incorporated an empirically fitted property package to represent the solvent. Both models used the same property package and were tested against SELEXOL plant data provided from the Bi-Gas pilot plant in Homer City, Pennsylvania, the Texaco pilot plant in Montebello, California and the TVA pilot plant in Muscle Shoals, Alabama. The results of this study are presented in this report. Although there were inconsistencies in some of the plant data, the models appeared to compare favorably with the plant data. The S-Cubed and Hyprotech model yielded nearly identical results when tested against the Bi-Gas plant data. Overall, the Hyprotech model proved to be faster than the S-Cubed version by about an order of magnitude and therefore offered the more attractive option for general simulation applications. However, further work is still needed to improve the solvent property predictions in the model. 7 refs.

  15. Characterization of the surface properties of Illinois basin coals. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Demir, I.; Harvey, R.D.; Lizzio, A.A.

    1992-12-31

    Surface area and pore volume distributions, surface charge, and surface chemical structure of the eight coals in the Illinois Basin Coal Sample Program (IBCSP) were determined. The IBC-101 coal has the lowest total and micropore (3.5-20.0 {Angstrom}) surface areas. The IBC-103 coal has the lowest mesopore (20-500 {Angstrom}) surface area. The mesopore surface areas of IBC-101, IBC-102, and IBC-107 coals are higher than the other four coals. Pore volume in pores <1800 {Angstrom} in diameter varies almost five-fold with IBC-103 coal having the lowest value. These differences may affect the reactivity of these coals during cleaning, conversion, and combustion processes. Surface charge and isoelectric points vary among the samples. The isoelectric point, where processes such as agglomeration and dewatering is most efficient, shifted to higher pH values for some of the samples upon exposure to air oxidation at room temperature. Diffuse reflectance infrared spectroscopy (DRIS) data indicate that the surfaces of the IBCSP coals contain aromatic hydrocarbon components, aliphatic hydrocarbons, and an aldehyde group. Ball-mill grinding reduced the organic hydroxyls and thus enriched relative concentrations of nonpolar aliphatic functional groups in the samples. The room temperature air oxidation did not cause any significant change on the surface chemical structure of the coals.

  16. Use of foaming mud cement to terminate underground coal fires and to control subsidence of burn cavities. Final report

    SciTech Connect

    Lucero, R.F.

    1988-09-29

    Foaming Mud Cement (FMC) is a class of materials related to cellular cement studied and developed for the purpose of addressing Abandoned Mine Land problems. During the 2-year program, significant advances were made using a specific methodology that properly employed will enable the successful termination of many surface and underground coal mine fires. Fundamental but key developments attained were: the ability to effectively isolate burning coal from the available air by effectively penetrating burning coal rubble with heat-resistive FMC and encapsulating and isolation of a wide range of coal particle sizes, resulting in permanent coal-fire termination by air exclusion. The materials developed were specifically designed to terminate underground coal fires and preventing further subsidence.

  17. Electrostatic precipitation of particulate emissions from the combustion of coal-oil-water and coal-water-slurry in an industrial packaged boiler. Final report

    SciTech Connect

    Noll, C.G.; Dooher, J.R.

    1984-12-01

    The report discusses the results of a research project designed to determine electrostatic-precipitation performance in collecting particulate emissions from coal-oil-water or coal-water slurry fuels. Measurements made on a mobile electrostatic precipitator (ESP) showed that New Source Performance Standards (NSPS) could be met by appropriate design and operation. Coal-oil-water fuels required a specific collection area (SCA) of 340 sq ft/1,000 ACFM flue gas, while coal-water slurry fuel needed 500 sq ft/ACFM flue gas to comply with NSPS. Specific electrode power densities were 200 watts/1,000 ACFM flue gas. The mobile ESP accepted flue gas from a packaged fire-tube boiler converted to coal-slurry firing. The fully instrumented boiler produced a fly-ash high-in carbon content, especially when burning CWS fuel. The high carbon content influenced fly-ash resistivity vs. temperature curves and must be taken into account in designing an ESP for this kind of service.

  18. Subcontracted R and D final report: SRC-I phase equilibrium and enthalpy data for coal liquefaction and solvent recovery areas. Vol. 3

    SciTech Connect

    Mehta, D.C.; Chu, I.C.; Kidnay, A.J.; Yesavage, V.F.

    1984-03-01

    The Enthalpy Program was a 20-month project initiated on January 18, 1982 by the International Coal Refining Company (ICRC) and under the technical direction of Professor Arthur J. Kidnay and Professor V.F. Yesavage at the Colorado School of Mines (CSM), Golden, Colorado. The objective of the program was to gather enthalpy data on representative pure model compounds, mixtures of model compounds, and selected coal-derived liquid samples furnished by ICRC. A copy of the technical agreement between ICRC and CSM is included in this report as Appendix A. This final report contains a complete description of the calorimeter and the experimental procedures used, separate data sections for each experimental task, and a copy of the technical agreement between ICRC and CSM. Data are presented for 11 coal liquid fractions. Each section of this report is organized to stand alone; thus, there are no general lists of references, tables of notation, or overall data tables.

  19. Superacid catalyzed depolymerization and conversion of coals. Final technical report. [HF:BF/sub 2//H/sub 2/

    SciTech Connect

    Olah, G.

    1980-01-01

    We were interested in applying superacid catalyzed cleavage-depolymerization and ionic hydrogenation low temperature conversion of coal to liquid hydrocarbon, as well as obtaining information about the reactions involved and the structure of intermediates of the coal liquefaction process. In order to show the feasibility of our proposed research we have carried out preliminary investigation in these areas. Preceding our work there was no practical application of a superacid system to coal liquefaction. We carried out an extensive study of the potential of the HF:BF/sub 3//H/sub 2/ system for coal hydroliquefaction. Under varying conditions of reactant ratio, reaction time and temperature, we were able to obtain over 95% pyridine extractible product by treating coal in HF:BF/sub 3/:H/sub 2/ system at approx. 100/sup 0/C for 4 hours. The coal to acid ratio was 1:5 and FB/sub 3/ at 900 psi and H/sub 2/ at 500 psi were used. These are extremely encouraging results in that the conditions used are drastically milder than those used in any known process, such as Exxon donor solvent and related processes. The cyclohexane extractibility of the treated coal was as high as 27% and the yield of liquid distillate at 400/sup 0/C/5 x 10/sup -3//sup torr/ was approx. 30%. The infrared spectrum of product coal, extracts and distillates were distinctly different from the starting coal and show a significant increase in the amount of saturates. The /sup 1/H NMR spectrum of cyclohexane extract of the treated coal shows essentially all aliphatic photons. The spectra of other treated coal extracts show increased amounts and types of aliphatic protons as well as significant amounts of protons bound to unsaturated sites. This again indicattes that the HF-BF/sub 3/ system is depolymerizing the coal to small fragments which are soluble in non-polar solvents.

  20. Superacid Catalyzed Depolymerization and Conversion of Coals. Final Technical Report. [HF:BF{sub 2}/H{sub 2}

    DOE R&D Accomplishments Database

    Olah, G.

    1980-01-01

    We were interested in applying superacid catalyzed cleavage-depolymerization and ionic hydrogenation low temperature conversion of coal to liquid hydrocarbon, as well as obtaining information about the reactions involved and the structure of intermediates of the coal liquefaction process. In order to show the feasibility of our proposed research we have carried out preliminary investigation in these areas. Preceding our work there was no practical application of a superacid system to coal liquefaction. We carried out an extensive study of the potential of the HF:BF{sub 3}/H{sub 2} system for coal hydroliquefaction. Under varying conditions of reactant ratio, reaction time and temperature, we were able to obtain over 95% pyridine extractible product by treating coal in HF:BF{sub 3}:H{sub 2} system at approx. 100 degrees C for 4 hours. The coal to acid ratio was 1:5 and FB{sub 3} at 900 psi and H{sub 2} at 500 psi were used. These are extremely encouraging results in that the conditions used are drastically milder than those used in any known process, such as Exxon donor solvent and related processes. The cyclohexane extractibility of the treated coal was as high as 27% and the yield of liquid distillate at 400 degrees C/5 x 10{sup -3}/sup torr/ was approx. 30%. The infrared spectrum of product coal, extracts and distillates were distinctly different from the starting coal and show a significant increase in the amount of saturates. The {sup 1}H NMR spectrum of cyclohexane extract of the treated coal shows essentially all aliphatic photons. The spectra of other treated coal extracts show increased amounts and types of aliphatic protons as well as significant amounts of protons bound to unsaturated sites. This again indicates that the HF-BF{sub 3} system is depolymerizing the coal to small fragments which are soluble in non-polar solvents.