Sample records for ohmic heating patterns

  1. Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice.

    PubMed

    Leizerson, Shirly; Shimoni, Eyal

    2005-05-04

    The scope of this study is the effect of ohmic heating thermal treatment on liquid fruit juice made of oranges. Effects of ohmic heating on the quality of orange juice were examined and compared to those of heat pasteurization at 90 degrees C for 50 s. Orange juice was treated at temperatures of 90, 120, and 150 degrees C for 1.13, 0.85, and 0.68 s in an ohmic heating system. Microbial counts showed complete inactivation of bacteria, yeast, and mold during ohmic and conventional treatments. The ohmic heating treatment reduced pectin esterase activity by 98%. The reduction in vitamin C was 15%. Ohmic-heated orange juice maintained higher amounts of the five representative flavor compounds than did heat-pasteurized juice. Sensory evaluation tests showed no difference between fresh and ohmic-heated orange juice. Thus, high-temperature ohmic-heating treatment can be effectively used to pasteurize fresh orange juice with minimal sensory deterioration.

  2. Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice.

    PubMed

    Park, Il-Kyu; Ha, Jae-Won; Kang, Dong-Hyun

    2017-05-19

    Control of foodborne pathogens is an important issue for the fruit juice industry and ohmic heating treatment has been considered as one of the promising antimicrobial interventions. However, to date, evaluation of the relationship between inactivation of foodborne pathogens and system performance efficiency based on differing soluble solids content of apple juice during ohmic heating treatment has not been well studied. This study aims to investigate effective voltage gradients of an ohmic heating system and corresponding sugar concentrations (°Brix) of apple juice for inactivating major foodborne pathogens (E. coli O157:H7, S. Typhimurium, and L. monocytogenes) while maintaining higher system performance efficiency. Voltage gradients of 30, 40, 50, and 60 V/cm were applied to 72, 48, 36, 24, and 18 °Brix apple juices. At all voltage levels, the lowest heating rate was observed in 72 °Brix apple juice and a similar pattern of temperature increase was shown in18-48 °Brix juice samples. System performance coefficients (SPC) under two treatment conditions (30 V/cm in 36 °Brix or 60 V/cm in 48 °Brix juice) were relatively greater than for other combinations. Meanwhile, 5-log reductions of the three foodborne pathogens were achieved after treatment for 60 s in 36 °Brix at 30 V/cm, but this same reduction was observed in 48 °Brix juice at 60 V/cm within 20 s without affecting product quality. With respect to both bactericidal efficiency and SPC values, 60 V/cm in 48 °Brix was the most effective ohmic heating treatment combination for decontaminating apple juice concentrates.

  3. Ohmic Heating: An Emerging Concept in Organic Synthesis.

    PubMed

    Silva, Vera L M; Santos, Luis M N B F; Silva, Artur M S

    2017-06-12

    The ohmic heating also known as direct Joule heating, is an advanced thermal processing method, mainly used in the food industry to rapidly increase the temperature for either cooking or sterilization purposes. Its use in organic synthesis, in the heating of chemical reactors, is an emerging method that shows great potential, the development of which has started recently. This Concept article focuses on the use of ohmic heating as a new tool for organic synthesis. It presents the fundamentals of ohmic heating and makes a qualitative and quantitative comparison with other common heating methods. A brief description of the ohmic reactor prototype in operation is presented as well as recent examples of its use in organic synthesis at laboratory scale, thus showing the current state of the research. The advantages and limitations of this heating method, as well as its main current applications are also discussed. Finally, the prospects and potential implications of ohmic heating in future research in chemical synthesis are proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Innovative food processing technology using ohmic heating and aseptic packaging for meat.

    PubMed

    Ito, Ruri; Fukuoka, Mika; Hamada-Sato, Naoko

    2014-02-01

    Since the Tohoku earthquake, there is much interest in processed foods, which can be stored for long periods at room temperature. Retort heating is one of the main technologies employed for producing it. We developed the innovative food processing technology, which supersede retort, using ohmic heating and aseptic packaging. Electrical heating involves the application of alternating voltage to food. Compared with retort heating, which uses a heat transfer medium, ohmic heating allows for high heating efficiency and rapid heating. In this paper we ohmically heated chicken breast samples and conducted various tests on the heated samples. The measurement results of water content, IMP, and glutamic acid suggest that the quality of the ohmically heated samples was similar or superior to that of the retort-heated samples. Furthermore, based on the monitoring of these samples, it was observed that sample quality did not deteriorate during storage. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.

  5. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.

    PubMed

    Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos

    2017-07-01

    Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50  ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.

  6. Effect of Electropermeabilization by Ohmic Heating for Inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes in Buffered Peptone Water and Apple Juice

    PubMed Central

    Park, Il-Kyu

    2013-01-01

    The effect of electric field-induced ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water (BPW) (pH 7.2) and apple juice (pH 3.5; 11.8 °Brix) was investigated in this study. BPW and apple juice were treated at different temperatures (55°C, 58°C, and 60°C) and for different times (0, 10, 20, 25, and 30 s) by ohmic heating compared with conventional heating. The electric field strength was fixed at 30 V/cm and 60 V/cm for BPW and apple juice, respectively. Bacterial reduction resulting from ohmic heating was significantly different (P < 0.05) from that resulting from conventional heating at 58°C and 60°C in BPW and at 55°C, 58°C, and 60°C in apple juice for intervals of 0, 10, 20, 25, and 30 s. These results show that electric field-induced ohmic heating led to additional bacterial inactivation at sublethal temperatures. Transmission electron microscopy (TEM) observations and the propidium iodide (PI) uptake test were conducted after treatment at 60°C for 0, 10, 20, 25 and 30 s in BPW to observe the effects on cell permeability due to electroporation-caused cell damage. PI values when ohmic and conventional heating were compared were significantly different (P < 0.05), and these differences increased with increasing levels of inactivation of three food-borne pathogens. These results demonstrate that ohmic heating can more effectively reduce bacterial populations at reduced temperatures and shorter time intervals, especially in acidic fruit juices such as apple juice. Therefore, loss of quality can be minimized in a pasteurization process incorporating ohmic heating. PMID:23995939

  7. Effect of electropermeabilization by ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water and apple juice.

    PubMed

    Park, Il-Kyu; Kang, Dong-Hyun

    2013-12-01

    The effect of electric field-induced ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water (BPW) (pH 7.2) and apple juice (pH 3.5; 11.8 °Brix) was investigated in this study. BPW and apple juice were treated at different temperatures (55°C, 58°C, and 60°C) and for different times (0, 10, 20, 25, and 30 s) by ohmic heating compared with conventional heating. The electric field strength was fixed at 30 V/cm and 60 V/cm for BPW and apple juice, respectively. Bacterial reduction resulting from ohmic heating was significantly different (P<0.05) from that resulting from conventional heating at 58°C and 60°C in BPW and at 55°C, 58°C, and 60°C in apple juice for intervals of 0, 10, 20, 25, and 30 s. These results show that electric field-induced ohmic heating led to additional bacterial inactivation at sublethal temperatures. Transmission electron microscopy (TEM) observations and the propidium iodide (PI) uptake test were conducted after treatment at 60°C for 0, 10, 20, 25 and 30 s in BPW to observe the effects on cell permeability due to electroporation-caused cell damage. PI values when ohmic and conventional heating were compared were significantly different (P<0.05), and these differences increased with increasing levels of inactivation of three food-borne pathogens. These results demonstrate that ohmic heating can more effectively reduce bacterial populations at reduced temperatures and shorter time intervals, especially in acidic fruit juices such as apple juice. Therefore, loss of quality can be minimized in a pasteurization process incorporating ohmic heating.

  8. Remarks on the thermal stability of an Ohmic-heated nanowire

    NASA Astrophysics Data System (ADS)

    Timsit, Roland S.

    2018-05-01

    The rise in temperature of a wire made from specific materials, due to ohmic heating by a DC electrical current, may lead to uncontrollable thermal runaway with ensuing melting. Thermal runaway stems from a steep decrease with increasing temperature of the thermal conductivity of the conducting material and subsequent trapping of the ohmic heat in the wire, i.e., from the inability of the wire to dissipate the heat sufficiently quickly by conduction to the cooler ends of the wire. In this paper, we show that the theory used to evaluate the temperature of contacting surfaces in a bulk electrical contact may be applied to calculate the conditions for thermal runaway in a nanowire. Implications of this effect for electrical contacts are addressed. A possible implication for memory devices using ohmic-heated nanofilms or nanowires is also discussed.

  9. Spin caloritronic nano-oscillator

    DOE PAGES

    Safranski, C.; Barsukov, I.; Lee, H. K.; ...

    2017-07-18

    Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here, we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in Y 3Fe 5O 12/Pt bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the Y 3Fe 5O 12 layer. This leads to excitation of auto-oscillations of the Ymore » 3Fe 5O 12 magnetization and generation of coherent microwave radiation. Thus, our work paves the way towards spin caloritronic devices for microwave and magnonic applications.« less

  10. Spin caloritronic nano-oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safranski, C.; Barsukov, I.; Lee, H. K.

    Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here, we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in Y 3Fe 5O 12/Pt bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the Y 3Fe 5O 12 layer. This leads to excitation of auto-oscillations of the Ymore » 3Fe 5O 12 magnetization and generation of coherent microwave radiation. Thus, our work paves the way towards spin caloritronic devices for microwave and magnonic applications.« less

  11. Analytical models of Ohmic heating and conventional heating in food processing

    NASA Astrophysics Data System (ADS)

    Serventi, A.; Bozzoli, F.; Rainieri, S.

    2017-11-01

    Ohmic heating is a food processing operation in which an electric current is passed through a food and the electrical resistance of the food causes the electric power to be transformed directly into heat. The heat is not delivered through a surface as in conventional heat exchangers but it is internally generated by Joule effect. Therefore, no temperature gradient is required and it origins quicker and more uniform heating within the food. On the other hand, it is associated with high energy costs and its use is limited to a particular range of food products with an appropriate electrical conductivity. Sterilization of foods by Ohmic heating has gained growing interest in the last few years. The aim of this study is to evaluate the benefits of Ohmic heating with respect to conventional heat exchangers under uniform wall temperature, a condition that is often present in industrial plants. This comparison is carried out by means of analytical models. The two different heating conditions are simulated under typical circumstances for the food industry. Particular attention is paid to the uniformity of the heat treatment and to the heating section length required in the two different conditions.

  12. Ohmic Inflation of Hot Jupiters: an Analytical Approach

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Sari, Re'em

    2015-12-01

    Many giant exoplanets in close orbits have observed radii which exceed theoretical predictions.One suggested explanation for this discrepancy is heat deposited deep inside the atmospheres of these hot Jupiters.We present an analytical model for the evolution of such irradiated, and internally heated gas giants, and derive scaling laws for their cooling rates and radii.We estimate the Ohmic dissipation resulting from the interaction between the atmospheric winds and the planet's magnetic field, and apply our model to Ohmically heated planets.Our model can account for the observed radii of many inflated planets, but not the most extreme ones.We show that Ohmically heated planets have already reached their equilibrium phase and they no longer contract.We show that it is possible to re-inflate planets, but we confirm that re-heating timescales are longer by about a factor of 30 than cooling times.

  13. [Acceleration of osmotic dehydration process through ohmic heating of foods: raspberries (Rubus idaeus)].

    PubMed

    Simpson, Ricardo R; Jiménez, Maite P; Carevic, Erica G; Grancelli, Romina M

    2007-06-01

    Raspberries (Rubus idaeus) were osmotically dehydrated by applying a conventional method under the supposition of a homogeneous solution, all in a 62% glucose solution at 50 degrees C. Raspberries (Rubus idaeus) were also osmotically dehydrated by using ohmic heating in a 57% glucose solution at a variable voltage (to maintain temperature between 40 and 50 degrees C) and an electric field intensity <100 V/cm. When comparing the results from both experiments it was evident that processing time is reduced when ohmic heating technique was used. In some cases this reduction reached even 50%. This is explained by the additional effect to the thermal damage that is generated in an ohmic process, denominated electroporation.

  14. Edge Ohmic Heating Experiment on HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Fan, Shuping; Li, Jian'gang; Meng, Yuedong; Luo, Jiarong; Yin, Fuxian; Zeng, Lei; Ding, Liancheng; Lin, Bili; Zhang, Wei; Han, Yuqing; Tong, Xingde; Luo, Lanchang; Gong, Xianzu; Jiang, Jiaguang; Wu, Mingjun; Yin, Fei

    1994-03-01

    An improved ohmic confinement has been achieved on HT-6M tokamak after application of edge ohmic heating pulse which makes plasma current rapidly ramp up (0.4 ms) in a ramp rate of 12 Ma/s. The improved ohmic confinement phase is characterized by (a) energy and particle confinement time increase, (b) non-symmetric increased density ne, (c) reduced Hα radiation, (d) increased Te and steeper Te, ne profile at the edge. The results from soft x-ray sawteeth inversion radius and βp + li/2 implied the anomalous current penetration.

  15. Extended Heat Deposition in Hot Jupiters: Application to Ohmic Heating

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Sari, Re'em

    2016-03-01

    The observed radii of many giant exoplanets in close orbits exceed theoretical predictions. One suggested origin for this discrepancy is heat deposited deep inside the atmospheres of these “hot Jupiters”. Here, we study extended power sources that distribute heat from the photosphere to the deep interior of the planet. Our analytical treatment is a generalization of a previous analysis of localized “point sources”. We model the deposition profile as a power law in the optical depth and find that planetary cooling and contraction halt when the internal luminosity (I.e., cooling rate) of the planet drops below the heat deposited in the planet’s convective region. A slowdown in the evolutionary cooling prior to equilibrium is possible only for sources that do not extend to the planet’s center. We estimate the ohmic dissipation resulting from the interaction between the atmospheric winds and the planet’s magnetic field, and apply our analytical model to ohmically heated planets. Our model can account for the observed radii of most inflated planets, which have equilibrium temperatures of ≈1500-2500 K and are inflated to a radius of ≈ 1.6{R}J. However, some extremely inflated planets remain unexplained by our model. We also argue that ohmically inflated planets have already reached their equilibrium phase, and no longer contract. Following Wu & Lithwick, who argued that ohmic heating could only suspend and not reverse contraction, we calculate the time it takes ohmic heating to re-inflate a cold planet to its equilibrium configuration. We find that while it is possible to re-inflate a cold planet, the re-inflation timescales are longer by a factor of ≈ 30 than the cooling time.

  16. Enhancement of ohmic and stochastic heating by resonance effects in capacitive radio frequency discharges: a theoretical approach.

    PubMed

    Mussenbrock, T; Brinkmann, R P; Lieberman, M A; Lichtenberg, A J; Kawamura, E

    2008-08-22

    In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are dominant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) stochastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases the dissipation by factors of 2-5. We conclude that the nonlinear plasma dynamics should be taken into account in order to describe quantitatively correct electron heating in asymmetric capacitive radio frequency discharges.

  17. Electric current heating calibration of a laser holographic nondestructive test system

    NASA Technical Reports Server (NTRS)

    Liu, H.-K.; Kurtz, R. L.

    1975-01-01

    Holographic NDT was used to measure small surface displacements controlled by electric heating by detecting the difference of the interference fringe patterns as viewed through the hologram on a real time basis. A perforated aluminum test plate, with the holes used to position thin metal foils, was used in the experiment. One of the foils was connected to an electric power source and small displacements of the foil were caused and controlled by Ohmic heating. An He-Ne laser was used to perform the holography.

  18. Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating.

    PubMed

    Jaeschke, Débora Pez; Marczak, Ligia Damasceno Ferreira; Mercali, Giovana Domeneghini

    2016-05-15

    The effect of electric field on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating was evaluated. Ascorbic acid kinetic degradation was evaluated at 80, 85, 90 and 95°C during 60 min of thermal treatment by ohmic and conventional heating. Carotenoid degradation was evaluated at 90 and 95°C after 50 min of treatment. The different temperatures evaluated showed the same effect on degradation rates. To investigate the influence of oxygen concentration on the degradation process, ohmic heating was also carried out under rich and poor oxygen modified atmospheres at 90°C. Ascorbic acid and carotenoid degradation was higher under a rich oxygen atmosphere, indicating that oxygen is the limiting reagent of the degradation reaction. Ascorbic acid and carotenoid degradation was similar for both heating technologies, demonstrating that the presence of the oscillating electric field did not influence the mechanisms and rates of reactions associated with the degradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of ohmic heating of soymilk on urease inactivation and kinetic analysis in holding time.

    PubMed

    Li, Fa-De; Chen, Chen; Ren, Jie; Wang, Ranran; Wu, Peng

    2015-02-01

    To verify the effect of the ohmic heating on the urease activity in the soymilk, the ohmic heating methods with the different electrical field conditions (the frequency and the voltage ranging from 50 to 10 kHz and from 160 to 220 V, respectively) were employed. The results showed that if the value of the urease activity measured with the quantitative spectrophotometry method was lower than 16.8 IU, the urease activity measured with the qualitative method was negative. The urease activity of the sample ohmically heated was significantly lower than that of the sample conventionally heated (P < 0.01) at the same target temperature. It was concluded that the electrical field enhanced the urease inactivation. In addition, the inactivation kinetics of the urease in the soymilk could be described with a biphasic model during holding time at a target temperature. Thus, it was concluded that the urease in the soymilk would contain 2 isoenzymes, one is the thermolabile fraction, the other the thermostable fraction, and that the thermostable isoenzyme could not be completely inactivated when the holding time increased, whether the soymilk was cooked with the conventional method or with the ohmic heating method. Therefore, the electric field had no effect on the inactivation of the thermostable isoenzyme of the urease. © 2015 Institute of Food Technologists®

  20. Device and Container for Reheating and Sterilization

    NASA Technical Reports Server (NTRS)

    Sastry, Sudhir K.; Heskitt, Brian F.; Jun, Soojin; Marcy, Joseph E.; Mahna, Ritesh

    2012-01-01

    Long-duration space missions require the development of improved foods and novel packages that do not represent a significant disposal issue. In addition, it would also be desirable if rapid heating technologies could be used on Earth as well, to improve food quality during a sterilization process. For this purpose, a package equipped with electrodes was developed that will enable rapid reheating of contents via ohmic heating to serving temperature during space vehicle transit. Further, the package is designed with a resealing feature, which enables the package, once used, to contain and sterilize waste, including human waste for storage prior to jettison during a long-duration mission. Ohmic heating is a technology that has been investigated on and off for over a century. Literature indicates that foods processed by ohmic heating are of superior quality to their conventionally processed counterparts. This is due to the speed and uniformity of ohmic heating, which minimizes exposure of sensitive materials to high temperatures. In principle, the material may be heated rapidly to sterilization conditions, cooled rapidly, and stored. The ohmic heating device herein is incorporated within a package. While this by itself is not novel, a reusable feature also was developed with the intent that waste may be stored and re-sterilized within the packages. These would then serve a useful function after their use in food processing and storage. The enclosure should be designed to minimize mass (and for NASA's purposes, Equivalent System Mass, or ESM), while enabling the sterilization function. It should also be electrically insulating. For this reason, Ultem high-strength, machinable electrical insulator was used.

  1. REACTOR

    DOEpatents

    Spitzer, L. Jr.

    1962-01-01

    The system conteraplates ohmically heating a gas to high temperatures such as are useful in thermonuclear reactors of the stellarator class. To this end the gas is ionized and an electric current is applied to the ionized gas ohmically to heat the gas while the ionized gas is confined to a central portion of a reaction chamber. Additionally, means are provided for pumping impurities from the gas and for further heating the gas. (AEC)

  2. Ohmic Heating of an Electrically Conductive Food Package.

    PubMed

    Kanogchaipramot, Kanyawee; Tongkhao, Kullanart; Sajjaanantakul, Tanaboon; Kamonpatana, Pitiya

    2016-12-01

    Ohmic heating through an electrically conductive food package is a new approach to heat the food and its package as a whole after packing to avoid post-process contamination and to serve consumer needs for convenience. This process has been successfully completed using polymer film integrated with an electrically conductive film to form a conductive package. Orange juice packed in the conductive package surrounded with a conductive medium was pasteurized in an ohmic heater. A mathematical model was developed to simulate the temperature distribution within the package and its surroundings. A 3-D thermal-electric model showed heating uniformity inside the food package while the hot zone appeared in the orange juice adjacent to the conductive film. The accuracy of the model was determined by comparing the experimental results with the simulated temperature and current drawn; the model showed good agreement between the actual and simulated results. An inoculated pack study using Escherichia coli O157:H7 indicated negative growth of viable microorganisms at the target and over target lethal process temperatures, whereas the microorganism was present in the under target temperature treatment. Consequently, our developed ohmic heating system with conductive packaging offers potential for producing safe food. © 2016 Institute of Food Technologists®.

  3. Ohmic Heating Assisted Lye Peeling of Pears.

    PubMed

    Gupta, Sarvesh; Sastry, Sudhir K

    2018-05-01

    Currently, high concentrations (15% to 18%) of lye (sodium hydroxide) are used in peeling pears, constituting a wastewater handling and disposal problem for fruit processors. In this study, the effect of ohmic heating on lye peeling of pears was investigated. Pears were peeled using 0.5%, 1%, 2%, and 3% NaOH under different electric field strengths at two run times and their peeled yields were compared to that obtained at 2% and 18% NaOH with conventional heating. Results revealed that ohmic heating results in greater than 95% peeled yields and the best peel quality at much lower concentrations of lye (2% NaOH at 532 V/m and 3% NaOH at 426 and 479 V/m) than those obtained under conventional heating conditions. Treatment times of 30 and 60 s showed no significant differences. Within the studied range, the effects of increasing field strength yielded no significant additional benefits. These results confirm that the concentration of lye can be significantly lowered in the presence of ohmic heating to achieve high peeled yields and quality. Our work shows that lye concentrations can be greatly reduced while peeling pears, resulting in significant savings in use of caustic chemicals, reduced costs for effluent treatment and waste disposal. © 2018 Institute of Food Technologists®.

  4. Mathematical Model of Solid Food Pasteurization by Ohmic Heating: Influence of Process Parameters

    PubMed Central

    2014-01-01

    Pasteurization of a solid food undergoing ohmic heating has been analysed by means of a mathematical model, involving the simultaneous solution of Laplace's equation, which describes the distribution of electrical potential within a food, the heat transfer equation, using a source term involving the displacement of electrical potential, the kinetics of inactivation of microorganisms likely to be contaminating the product. In the model, thermophysical and electrical properties as function of temperature are used. Previous works have shown the occurrence of heat loss from food products to the external environment during ohmic heating. The current model predicts that, when temperature gradients are established in the proximity of the outer ohmic cell surface, more cold areas are present at junctions of electrodes with lateral sample surface. For these reasons, colder external shells are the critical areas to be monitored, instead of internal points (typically geometrical center) as in classical pure conductive heat transfer. Analysis is carried out in order to understand the influence of pasteurisation process parameters on this temperature distribution. A successful model helps to improve understanding of these processing phenomenon, which in turn will help to reduce the magnitude of the temperature differential within the product and ultimately provide a more uniformly pasteurized product. PMID:24574874

  5. Mathematical model of solid food pasteurization by ohmic heating: influence of process parameters.

    PubMed

    Marra, Francesco

    2014-01-01

    Pasteurization of a solid food undergoing ohmic heating has been analysed by means of a mathematical model, involving the simultaneous solution of Laplace's equation, which describes the distribution of electrical potential within a food, the heat transfer equation, using a source term involving the displacement of electrical potential, the kinetics of inactivation of microorganisms likely to be contaminating the product. In the model, thermophysical and electrical properties as function of temperature are used. Previous works have shown the occurrence of heat loss from food products to the external environment during ohmic heating. The current model predicts that, when temperature gradients are established in the proximity of the outer ohmic cell surface, more cold areas are present at junctions of electrodes with lateral sample surface. For these reasons, colder external shells are the critical areas to be monitored, instead of internal points (typically geometrical center) as in classical pure conductive heat transfer. Analysis is carried out in order to understand the influence of pasteurisation process parameters on this temperature distribution. A successful model helps to improve understanding of these processing phenomenon, which in turn will help to reduce the magnitude of the temperature differential within the product and ultimately provide a more uniformly pasteurized product.

  6. Effect of continuous ohmic heating to inactivate Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice and tomato juice.

    PubMed

    Lee, S-Y; Sagong, H-G; Ryu, S; Kang, D-H

    2012-04-01

    The purpose of this study was to investigate the efficacy of continuous ohmic heating for reducing Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice and tomato juice. Orange juice and tomato juice were treated with electric field strengths in the range of 25-40 V cm(-1) for different treatment times. The temperature of the samples increased with increasing treatment time and electric field strength. The rate of temperature change for tomato juice was higher than for orange juice at all voltage gradients applied. Higher electric field strength or longer treatment time resulted in a greater reduction of pathogens. Escherichia coli O157:H7 was reduced by more than 5 log after 60-, 90- and 180-s treatments in orange juice with 40, 35 and 30 V cm(-1) electric field strength, respectively. In tomato juice, treatment with 25 V cm(-1) for 30 s was sufficient to achieve a 5-log reduction in E. coli O157:H7. Similar results were observed in Salm. Typhimurium and L. monocytogenes. The concentration of vitamin C in continuous ohmic heated juice was significantly higher than in conventionally heated juice (P < 0·05). Continuous ohmic heating can be effective in killing foodborne pathogens on orange juice and tomato juice with lower degradation of quality than conventional heating. These results suggest that continuous ohmic heating might be effectively used to pasteurize fruit and vegetable juices in a short operating time and that the effect of inactivation depends on applied electric field strengths, treatment time and electric conductivity. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  7. Influence of infrared final cooking on color, texture and cooking characteristics of ohmically pre-cooked meatball.

    PubMed

    Yildiz Turp, Gulen; Icier, Filiz; Kor, Gamze

    2016-04-01

    The objective of the current study was to improve the quality characteristics of ohmically pre-cooked beef meatballs via infrared cooking as a final stage. Samples were pre-cooked in a specially designed-continuous type ohmic cooker at a voltage gradient of 15.26 V/cm for 92 s. Infrared cooking was then applied to the pre-cooked samples at different combinations of heat fluxes (3.706, 5.678, and 8.475 kW/m(2)), application distances (10.5, 13.5, and 16.5 cm) and application durations (4, 8, and 12min). Effects of these parameters on color, texture and cooking characteristics of ohmically pre-cooked beef meatballs were investigated. The appearance of ohmically pre-cooked meatball samples was improved via infrared heating. A dark brown layer desired in cooked meatballs formed on the surface of the meatballs with lowest application distance (10.5 cm) and longest application duration (12 min). The texture of the samples was also improved with these parameters. However the cooking yield of the samples decreased at the longest application duration of infrared heating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Ohmic cooking of whole beef muscle--evaluation of the impact of a novel rapid ohmic cooking method on product quality.

    PubMed

    Zell, Markus; Lyng, James G; Cronin, Denis A; Morgan, Desmond J

    2010-10-01

    Cylindrical cores of beef semitendinosus (500g) were cooked in a combined ohmic/convection heating system to low (72 degrees C, LTLT) and high (95 degrees C, HTST) target end-point temperatures. A control was also cooked to an end-point temperature of 72 degrees C at the coldest point. Microbial challenge studies on a model meat matrix confirmed product safety. Hunter L-values showed that ohmically heated meat had significantly (p<0.05) lighter surface-colours (63.05 (LTLT) and 62.26 (HTST)) relative to the control (56.85). No significant texture differences (p>/=0.05) were suggested by Warner-Bratzler peak load values (34.09, 36.37 vs. 35.19N). Cook loss was significantly (p<0.05) lower for LTLT samples (29.3%) compared to the other meats (36.3 and 33.8%). Sensory studies largely confirmed these observations. Cook values were lower for LTLT (3.05) while HTST and the control were more comparable (6.09 and 7.71, respectively). These results demonstrate considerable potential for this application of ohmic heating for whole meats. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  9. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, C., E-mail: csung@physics.ucla.edu; White, A. E.; Greenwald, M.

    2016-04-15

    Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local,more » electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].« less

  10. Application of low frequency pulsed ohmic heating for inactivation of foodborne pathogens and MS-2 phage in buffered peptone water and tomato juice.

    PubMed

    Kim, Sang-Soon; Choi, Won; Kang, Dong-Hyun

    2017-05-01

    The purpose of this study was to inactivate foodborne pathogens effectively by ohmic heating in buffered peptone water and tomato juice without causing electrode corrosion and quality degradation. Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes were used as representative foodborne pathogens and MS-2 phage was used as a norovirus surrogate. Buffered peptone water and tomato juice inoculated with pathogens were treated with pulsed ohmic heating at different frequencies (0.06-1 kHz). Propidium iodide uptake values of bacterial pathogens were significantly (p < 0.05) larger at 0.06-0.5 kHz than at 1 kHz, and sub-lethal injury of pathogenic bacteria was reduced by decreasing frequency. MS-2 phage was inactivated more effectively at low frequency, and was more sensitive to acidic conditions than pathogenic bacteria. Electrode corrosion and quality degradation of tomato juice were not observed regardless of frequency. This study suggests that low frequency pulsed ohmic heating is applicable to inactivate foodborne pathogens effectively without causing electrode corrosion and quality degradation in tomato juice. Copyright © 2016. Published by Elsevier Ltd.

  11. Noncontact sheet resistance measurement technique for wafer inspection

    NASA Astrophysics Data System (ADS)

    Kempa, Krzysztof; Rommel, J. Martin; Litovsky, Roman; Becla, Peter; Lojek, Bohumil; Bryson, Frank; Blake, Julian

    1995-12-01

    A new technique, MICROTHERM, has been developed for noncontact sheet resistance measurements of semiconductor wafers. It is based on the application of microwave energy to the wafer, and simultaneous detection of the infrared radiation resulting from ohmic heating. The pattern of the emitted radiation corresponds to the sheet resistance distribution across the wafer. This method is nondestructive, noncontact, and allows for measurements of very small areas (several square microns) of the wafer.

  12. Alfvén oscillations in ohmic discharges with runaway electrons in the TUMAN-3M tokamak

    NASA Astrophysics Data System (ADS)

    Tukachinsky, A. S.; Askinazi, L. G.; Balachenkov, I. M.; Belokurov, A. A.; Gin, D. B.; Zhubr, N. A.; Kornev, V. A.; Lebedev, S. V.; Khil'kevich, E. M.; Chugunov, I. N.; Shevelev, A. E.

    2016-12-01

    Studying the mechanism of Alfvén wave generation in plasma is important, since the interaction of these waves with energetic particles in tokamak-type reactors can increase the losses of energy and particles with the corresponding decrease in the efficiency of plasma heating and, under certain conditions, lead to the damage of structural elements of the system. Despite the previous detailed investigations of the excitation of Alfvén waves by superthermal particles in regimes with additional heating, the physics of Alfvén mode generation in discharges with ohmic heating of plasma is still not sufficiently studied. We have established that a significant factor inf luencing the development of Alfvén oscillations in ohmic discharge is the presence of runaway electrons. A physical mechanism explaining this relationship is proposed.

  13. Product formulation for ohmic heating: blanching as a pretreatment method to improve uniformity in heating of solid-liquid food mixtures.

    PubMed

    Sarang, S; Sastry, S K; Gaines, J; Yang, T C S; Dunne, P

    2007-06-01

    The electrical conductivity of food components is critical to ohmic heating. Food components of different electrical conductivities heat at different rates. While equal electrical conductivities of all phases are desirable, real food products may behave differently. In the present study involving chicken chow mein consisting of a sauce and different solid components, celery, water chestnuts, mushrooms, bean sprouts, and chicken, it was observed that the sauce was more conductive than all solid components over the measured temperature range. To improve heating uniformity, a blanching method was developed to increase the ionic content of the solid components. By blanching different solid components in a highly conductive sauce at 100 degrees C for different lengths of time, it was possible to adjust their conductivity to that of the sauce. Chicken chow mein samples containing blanched particulates were compared with untreated samples with respect to ohmic heating uniformity at 60 Hz up to 140 degrees C. All components of the treated product containing blanched solids heated more uniformly than untreated product. In sensory tests, 3 different formulations of the blanched product showed good quality attributes and overall acceptability, demonstrating the practical feasibility of the blanching protocol.

  14. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  15. Cryogenic focussing, ohmically heated on-column trap

    NASA Technical Reports Server (NTRS)

    Springston, Stephen R.

    1991-01-01

    A procedure is described for depositing a conductive layer of gold on the exterior of a fused-silica capillary used in gas chromatography. By subjecting a section of the column near the inlet to a thermal cycle of cryogenic cooling and ohmic heating, volatile samples are concentrated and subsequently injected. The performance of this trap as a chromatographic injector is demonstrated. Several additional applications are suggested and the unique properties of this device are discussed.

  16. Analysis of plasma termination in the JET hybrid scenario

    NASA Astrophysics Data System (ADS)

    Hobirk, J.; Bernert, M.; Buratti, P.; Challis, C. D.; Coffey, I.; Drewelow, P.; Joffrin, E.; Mailloux, J.; Nunes, I.; Pucella, G.; Pütterich, T.; de Vries, P. C.; Contributors, JET

    2018-07-01

    This paper analyses the final phase of hybrid scenario discharges at JET, the reduction of auxiliary heating towards finally the Ohmic phase. The here considered Ohmic phase is mostly still in the current flattop but may also be in the current ramp down. For this purpose a database is created of 54 parameters in 7 phases distributed in time of the discharge. It is found that the occurrence of a locked mode is in most cases preceded by a radiation peaking after the main heating phase either in a low power phase and/or in the Ohmic phase. To gain insight on the importance of different parameters in this process a correlation analysis to the radiation peaking in the Ohmic phase is done. The first finding is that the further away in time the analysed phases are the less the correlation is. This means in the end that a good termination scenario might also be able to terminate unhealthy plasmas safely. The second finding is that remaining impurities in the plasma after reducing the heating power in the termination phase are the most important reason for generating a locked mode which can lead to a disruption.

  17. Paleoclassical transport explains electron transport barriers in RTP and TEXTOR

    NASA Astrophysics Data System (ADS)

    Hogeweij, G. M. D.; Callen, J. D.; RTP Team; TEXTOR Team

    2008-06-01

    The recently developed paleoclassical transport model sets the minimum level of electron thermal transport in a tokamak. This transport level has proven to be in good agreement with experimental observations in many cases when fluctuation-induced anomalous transport is small, i.e. in (near-)ohmic plasmas in small to medium size tokamaks, inside internal transport barriers (ITBs) or edge transport barriers (H-mode pedestal). In this paper predictions of the paleoclassical transport model are compared in detail with data from such kinds of discharges: ohmic discharges from the RTP tokamak, EC heated RTP discharges featuring both dynamic and shot-to-shot scans of the ECH power deposition radius and off-axis EC heated discharges from the TEXTOR tokamak. For ohmically heated RTP discharges the Te profiles predicted by the paleoclassical model are in reasonable agreement with the experimental observations, and various parametric dependences are captured satisfactorily. The electron thermal ITBs observed in steady state EC heated RTP discharges and transiently after switch-off of off-axis ECH in TEXTOR are predicted very well by the paleoclassical model.

  18. Effect of Frequency and Waveform on Inactivation of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in Salsa by Ohmic Heating

    PubMed Central

    Lee, Su-Yeon; Ryu, Sangryeol

    2013-01-01

    The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform. PMID:23023752

  19. Effect of frequency and waveform on inactivation of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in salsa by ohmic heating.

    PubMed

    Lee, Su-Yeon; Ryu, Sangryeol; Kang, Dong-Hyun

    2013-01-01

    The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform.

  20. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges

    DOE R&D Accomplishments Database

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.

    1987-02-01

    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  1. Ohmic heating pretreatment of algal slurry for production of biodiesel.

    PubMed

    Yodsuwan, Natthawut; Kamonpatana, Pitiya; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2018-02-10

    Suspensions of the model microalga Chlorella sp. TISTR 8990 were pretreated by ohmic heating to facilitate release of lipids from the cells in subsequent extraction and lipase-mediated transesterification to biodiesel. After ohmic pretreatment, the moist biomass was suspended in a system of water, hexane, methanol and immobilized lipase for extraction of lipids and simultaneous conversion to biodiesel. The ohmic pretreatment was optimized using an experimental design based on Taguchi method to provide treated biomass that maximized the biodiesel yield in subsequent extraction-transesterification operation. The experimental factors were the frequency of electric current (5-10 5  Hz), the processing temperature (50-70 °C), the algal biomass concentration in the slurry (algal fresh weight to water mass ratio of 1-3) and the incubation time (1-3 min). Extraction-transesterification of the pretreated biomass was carried out at 40 °C for 24 h using a reaction systems of a fixed composition (i.e. biomass, hexane, methanol, water and immobilized enzyme). Compared to control (i.e. untreated biomass), the ohmic pretreatment under optimal conditions (5 Hz current frequency, 70 °C, 1:2 mass ratio of biomass to water, incubation time of 2-min) increased the rate of subsequent transesterification by nearly 2-fold. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ohmic ITBs in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rowan, William L.; Bespamyatnov, Igor O.; Fiore, C. L.; Dominguez, A.; Hubbard, A. E.; Ince-Cushman, A.; Greenwald, M. J.; Lin, L.; Marmar, E. S.; Reinke, M.; Rice, J. E.; Zhurovich, K.

    2007-11-01

    Internal transport barrier (ITB) plasmas can arise spontaneously in Ohmic Alcator C-Mod plasmas. The operational prescription for the ITB include formation of an EDA H-mode in a toroidal magnetic field that is ramping down and a subsequent increase in the toroidal magnetic field. Like ITBs generated with off-axis ICRF heating, these have peaked pressure profiles which can be suppressed by on-axis ICRF heating. Recent work on onset conditions for the ICRF generated ITB (K. Zhurovich, et al., To be published in Nuclear Fusion) demonstrates that the broadening of the ion temperature profile due to off-axis ICRF reduces the ion temperature gradient and suppreses the ITG instability driven particle flux as the primary mechanism for ITB formation. The object of this study is to examine the characteristics of Ohmic ITBs to find whether this model for onset is supported.

  3. Radii and Orbits of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Wu, Yanqin

    2011-09-01

    Hot jupiters suffer extreme external (stellar) and internal (tidal, Ohmic and wind-power) heating. These lead to peculiar thermal evolution, which is potentially self-destrutive. For instance, the amount of energy deposited during tidal dissipation far exceeds the planets' binding energy. If this energy is mostly deposited in shallow layers, it does little damage to the planet. However, the presence of stellar insolation changes the picture, and Ohmic/wind-power heating further modifies the subsequent evolution of these jupiters. A diversity of planetary sizes results. We tie these thermodynamical processes together with the migration history of hot jupiters to explain the orbital distribution and physical radii of hot jupiters. Moreover, we constrain the location of tidal heating inside the planet.

  4. On the role of metastable states in low pressure oxygen discharges

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Hannesdóttir, H.

    2017-03-01

    We use the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 to explore the spatio-temporal evolution of the electron heating mechanism in a capacitively coupled oxygen discharge in the pressure range 10 - 200 mTorr. The electron heating is most significant in the sheath vicinity during the sheath expansion phase. We explore how including and excluding detachment by the singlet metastable states O2(a1 Δg) and O2(b1Σ+g) influences the heating mechanism, the effective electron temperature and electronegativity, in the oxygen discharge. We demonstrate that the detachment processes have a significant influence on the discharge properties, in particular for the higher pressures. At 10 mTorr the time averaged electron heating shows mainly ohmic heating in the plasma bulk (the electronegative core) and at higher pressures there is no ohmic heating in the plasma bulk, that is electron heating in the sheath regions dominates.

  5. Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.

    A rocket-borne experiment called 'MINIX' was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction eXperiment and was carried out on August 29, 1983. The objective of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere, such as the ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no ohmic heating effects were detected.

  6. Universal Scaling of Robust Thermal Hot Spot and Ionic Current Enhancement by Focused Ohmic Heating in a Conic Nanopore

    NASA Astrophysics Data System (ADS)

    Pan, Zehao; Wang, Ceming; Li, Meng; Chang, Hsueh-Chia

    2016-09-01

    A stable nanoscale thermal hot spot, with temperature approaching 100 °C , is shown to be sustained by localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore. The self-similar (length-independent) conic geometry allows us to match the singular heat source at the tip to the singular radial heat loss from the slender cone to obtain a self-similar steady temperature profile along the cone and the resulting ionic current conductance enhancement due to viscosity reduction. The universal scaling, which depends only on a single dimensionless parameter Z , collapses the measured conductance data and computed temperature profiles in ion-track conic nanopores and conic nanopipettes. The collapsed numerical data reveal universal values for the hot-spot location and temperature in an aqueous electrolyte.

  7. Universal Scaling of Robust Thermal Hot Spot and Ionic Current Enhancement by Focused Ohmic Heating in a Conic Nanopore.

    PubMed

    Pan, Zehao; Wang, Ceming; Li, Meng; Chang, Hsueh-Chia

    2016-09-23

    A stable nanoscale thermal hot spot, with temperature approaching 100 °C, is shown to be sustained by localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore. The self-similar (length-independent) conic geometry allows us to match the singular heat source at the tip to the singular radial heat loss from the slender cone to obtain a self-similar steady temperature profile along the cone and the resulting ionic current conductance enhancement due to viscosity reduction. The universal scaling, which depends only on a single dimensionless parameter Z, collapses the measured conductance data and computed temperature profiles in ion-track conic nanopores and conic nanopipettes. The collapsed numerical data reveal universal values for the hot-spot location and temperature in an aqueous electrolyte.

  8. Goat milk free fatty acid characterization during conventional and ohmic heating pasteurization.

    PubMed

    Pereira, R N; Martins, R C; Vicente, A A

    2008-08-01

    The disruption of the milk fat globule membrane can lead to an excessive accumulation of free fatty acids in milk, which is frequently associated with the appearance of rancid flavors. Solid-phase microextraction and gas chromatography techniques have been shown to be useful tools in the quantification of individual free fatty acids in dairy products providing enough sensitivity to detect levels of rancidity in milk. Therefore, the aim of this study was to characterize the short-chain and medium-chain free fatty acid profile in i) raw untreated goat milk; ii) raw goat milk passing through pumps and heating units (plate-and-frame heat exchanger and ohmic heater); and iii) processed goat milk by conventional and ohmic pasteurization to determine the influence of each treatment in the final quality of the milk. Multivariate statistical analysis has shown that the treatments studied were not responsible for the variability found on free fatty acid contents. In particular, it was possible to conclude that ohmic pasteurization at 72 degrees C for 15 s did not promote an extended modification of free fatty acid contents in goat milk when compared with that of conventional pasteurization. Furthermore, principal component analysis showed that the capric acid can be used to discriminate goat's milk with different free fatty acid concentrations. Hierarchical cluster analysis showed evidence of the existence of correlations between contents of short and medium chain free fatty acids in goat milk.

  9. Heating and Large Scale Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Schnack, Dalton D.

    2000-01-01

    The effort was concentrated in the areas: coronal heating mechanism, unstructured adaptive grid algorithms, numerical modeling of magnetic reconnection in the MRX experiment: effect of toroidal magnetic field and finite pressure, effect of OHMIC heating and vertical magnetic field, effect of dynamic MESH adaption.

  10. Bayesian Analysis of Hot Jupiter Radius Anomalies Points to Ohmic Dissipation

    NASA Astrophysics Data System (ADS)

    Thorngren, Daniel; Fortney, Jonathan

    2018-01-01

    The cause of the unexpectedly large radii of hot Jupiters has been the subject of many hypotheses over the past 15 years and is one of the long-standing open issues in exoplanetary physics. In our work, we seek to examine the population of 300 hot Jupiters to identify a model that best explains their radii. Using a hierarchical Bayesian framework, we match structure evolution models to the observed giant planets’ masses, radii, and ages, with a prior for bulk composition based on the mass from Thorngren et al. (2016). We consider various models for the relationship between heating efficiency (the fraction of flux absorbed into the interior) and incident flux. For the first time, we are able to derive this heating efficiency as a function of planetary T_eq. Models in which the heating efficiency decreases at the higher temperatures (above ~1600 K) are strongly and statistically significantly preferred. Of the published models for the radius anomaly, only the Ohmic dissipation model predicts this feature, which it explains as being the result of magnetic drag reducing atmospheric wind speeds. We interpret our results as evidence in favor of the Ohmic dissipation model.

  11. Universal Scaling of Robust Thermal Hot Spot and Ionic Current Enhancement by Focused Ohmic Heating in a Conic Nanopore

    PubMed Central

    Pan, Zehao; Wang, Ceming; Li, Meng; Chang, Hsueh-Chia

    2017-01-01

    A stable nanoscale thermal hot spot, with temperature approaching 100 °C, is shown to be sustained by localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore. The self-similar (length-independent) conic geometry allows us to match the singular heat source at the tip to the singular radial heat loss from the slender cone to obtain a self-similar steady temperature profile along the cone and the resulting ionic current conductance enhancement due to viscosity reduction. The universal scaling, which depends only on a single dimensionless parameter Z, collapses the measured conductance data and computed temperature profiles in ion-track conic nanopores and conic nanopipettes. The collapsed numerical data reveal universal values for the hot-spot location and temperature in an aqueous electrolyte. PMID:27715110

  12. Diamond thin film temperature and heat-flux sensors

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  13. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles

    NASA Astrophysics Data System (ADS)

    Smith, Kandler; Wang, Chao-Yang

    A 1D electrochemical, lumped thermal model is used to explore pulse power limitations and thermal behavior of a 6 Ah, 72 cell, 276 V nominal Li-ion hybrid-electric vehicle (HEV) battery pack. Depleted/saturated active material Li surface concentrations in the negative/positive electrodes consistently cause end of high-rate (∼25 C) pulse discharge at the 2.7 V cell -1 minimum limit, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell -1 maximum limit, meant to protect the negative electrode from lithium deposition side reaction during charge, is overly conservative for high-rate (∼15 C) pulse charges initiated from states-of-charge (SOCs) less than 100%. Two-second maximum pulse charge rate from the 50% SOC initial condition can be increased by as much as 50% without risk of lithium deposition. Controlled to minimum/maximum voltage limits, the pack meets partnership for next generation vehicles (PNGV) power assist mode pulse power goals (at operating temperatures >16 °C), but falls short of the available energy goal. In a vehicle simulation, the pack generates heat at a 320 W rate on a US06 driving cycle at 25 °C, with more heat generated at lower temperatures. Less aggressive FUDS and HWFET cycles generate 6-12 times less heat. Contact resistance ohmic heating dominates all other mechanisms, followed by electrolyte phase ohmic heating. Reaction and electronic phase ohmic heats are negligible. A convective heat transfer coefficient of h = 10.1 W m -2 K -1 maintains cell temperature at or below the 52 °C PNGV operating limit under aggressive US06 driving.

  14. Influence of lateral and in-depth metal segregation on the patterning of ohmic contacts for GaN-based devices

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Vázquez, L.; Alves, L. C.; Corregidor, V.; Romero, M. F.; Pantellini, A.; Lanzieri, C.; Muñoz, E.

    2014-05-01

    The lateral and in-depth metal segregation of Au/Ni/Al/Ti ohmic contacts for GaN-based high electron mobility transistors were analysed as a function of the Al barrier's thickness (d). The surface of the contacts, characterized by atomic force and scanning electron microscopy, shows a transition from a fractal network of rough and complex island-like structures towards smoother and cauliflower-like fronts with increasing d. Rutherford backscattering spectrometry and energy dispersive x-ray spectroscopy (EDXS) at different energies were used to confirm the in-depth intermixing of the metals relevant for the final contact resistance. EDXS mapping reveals a significant lateral segregation too, where the resulting patterns depend on two competing NiAlx and AuAlx phases, the intermixing being controlled by the available amount of Al. The optimum ohmic resistance is not affected by the patterning process, but is mainly dependent on the partial interdiffusion of the metals.

  15. Plasma current start-up by the outer ohmic heating coils in the Saskatchewan TORus Modified (STOR-M) iron core tokamak

    DOE PAGES

    Mitarai, O.; Xiao, C.; McColl, D.; ...

    2015-03-24

    A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less

  16. Plasma current start-up by the outer ohmic heating coils in the Saskatchewan TORus Modified (STOR-M) iron core tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitarai, O.; Xiao, C.; McColl, D.

    A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. Our results suggest a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. Finally, the effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments inmore » the STOR-M tokamak.« less

  17. Formation of ohmic contacts to MOCVD grown p-GaN by controlled activation of Mg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminska, E.; Piotrowska, A.; Barcz, A.

    2000-11-27

    We report on the formation of low resistivity ohmic contacts to p-GaN, r{sub c} < 10{sup {minus}4}{Omega}cm{sup 2}, by increasing the concentration of the active Mg in the subcontact zone, via Zr-mediated release of hydrogen. We have investigated the process of evolution of hydrogen from MOCVD grown p-GaN via Zr-based metallization, and determined the optimum processing conditions (temperature and gas ambient) for fabrication of low resistance ohmic contacts. When the process is conducted in N{sub 2} flow, the metallization remains stable at temperatures required to achieve the ohmic behavior, and the morphology of the metal/semiconductor interface is unaltered by suchmore » a heat treatment. The processing in O{sub 2}, on the contrary, causes the interdiffusion of metallization constituents and the incorporation of oxygen into the semiconductor subcontact region, which could be responsible for increased resistivity of these contacts.« less

  18. X-ray emission reduction and photon dose lowering by energy loss of fast electrons induced by return current during the interaction of a short-pulse high-intensity laser on a metal solid target

    NASA Astrophysics Data System (ADS)

    Compant La Fontaine, A.

    2018-04-01

    During the interaction of a short-pulse high-intensity laser with the preplasma produced by the pulse's pedestal in front of a high-Z metal solid target, high-energy electrons are produced, which in turn create an X-ray source by interacting with the atoms of the converter target. The current brought by the hot electrons is almost completely neutralized by a return current j → driven by the background electrons of the conductive target, and the force exerted on the hot electrons by the electric field E → which induces Ohmic heating j → .E → , produced by the background electrons, reduces the energy of the hot electrons and thus lowers the X-ray emission and photon dose. This effect is analyzed here by means of a simple 1-D temperature model which contains the most significant terms of the relativistic Fokker-Planck equation with electron multiple scattering, and the energy equations of ions, hot, and cold electrons are then solved numerically. This Ohmic heating energy loss fraction τOh is introduced as a corrective term in an improved photon dose model. For instance, for a ps laser pulse with 10 μm spot size, the dose obtained with a tantalum target is reduced by less than about 10% to 40% by the Ohmic heating, depending upon the plasma scale length, target thickness, laser parameters, and in particular its spot size. The laser and plasma parameters may be optimized to limit the effect of Ohmic heating, for instance at a small plasma scale length or small laser spot size. Conversely, others regimes not suitable for dose production are identified. For instance, the resistive heating is enhanced in a foam target or at a long plasma scale length and high laser spot size and intensity, as the mean emission angle θ0 of the incident hot electron bunch given by the ponderomotive force is small; thus, the dose produced by a laser interacting in a gas jet may be inhibited under these circumstances. The resistive heating may also be maximized in order to reduce the X-ray emission to lower the radiation level for instance in a safety radiological goal.

  19. Feasibility of Applying Ohmic Heating and Split-Phase Aseptic Processing for Ration Entree Preservation

    DTIC Science & Technology

    1994-08-01

    study demonstrated that either of these reduced- temperature sterilization processes will produce an acceptable product that is an alternative to thermal...and uniform heating of liquids and solids simultaneously, even of large particles, up to sterilization temperatures . Uniform heating means shorter...potential cost reduction by substitution of continuous processing of a high- temperature /short-time ( HTST ) nature for traditional batch retort

  20. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Multilayer CrPtCr/NiAu ohmic contacts with p-type GaAs in heterojunction laser structures

    NASA Astrophysics Data System (ADS)

    Wójcik, I.; Stareev, G.; Barcz, A.; Domański, M.

    1988-11-01

    Multilayer CrPtCr/NiAu metallization was deposited by sputtering in a magnetron on the p-type side of GaAs in a pulsed laser heterostructure. Heat treatment at 490 °C for 3 min produced a reliable ohmic contact with a specific resistance of 10- 6-10- 5 Ω · cm2, depending on the substrate doping. Secondary-ion mass spectroscopy and Rutherford backscattering methods were used to study the mechanism of formation of a contact.

  1. Numerical study on characteristics of radio-frequency discharge at atmospheric pressure in argon with small admixtures of oxygen

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Liu, Yue

    2017-07-01

    In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to-argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.

  2. Aging behavior of Au-based ohmic contacts to GaAs

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.

    1989-01-01

    Gold based alloys, commonly used as ohmic contacts for solar cells, are known to react readily with GaAs. It is shown that the contact interaction with the underlying GaAs can continue even at room temperature upon aging, altering both the electrical characteristics of the contacts and the nearby pn junction. Au-Ge-Ni as-deposited (no heat-treatment) contacts made to thin emitter (0.15 microns) GaAs diodes have shown severe shunting of the pn junction upon aging for several months at room temperature. The heat-treated contacts, despite showing degradation in contact resistance, did not affect the underlying pn junction. Au-Zn-Au contacts to p-GaAs emitter (0.2 microns) diodes, however, showed slight improvement in contact resistance upon 200 C isothermal annealing for several months, without degrading the pn junction. The effect of aging on electrical characteristics of the as-deposited and heat-treated contacts and the nearby pn junction, as well as on the surface morphology of the contacts are presented.

  3. Aging behavior of Au-based ohmic contacts to GaAs

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.

    1988-01-01

    Gold based alloys, commonly used as ohmic contacts for solar cells, are known to react readily with GaAs. It is shown that the contact interaction with the underlying GaAs can continue even at room temperature upon aging, altering both the electrical characteristics of the contacts and the nearby pn junction. Au-Ge-Ni as-deposited (no heat treatment) contacts made to thin emitter (0.15 micrometer) GaAs diodes have shown severe shunting of the pn junction upon aging for several months at room temperature. The heat-treated contacts, despite showing degradation in contact resistance did not affect the underlying pn junction. Au-Zn-Au contacts to p-GaAs emitter (0.2 micrometer) diodes, however, showed slight improvement in contact resistance upon 200 C isothermal annealing for several months, without degrading the pn junction. The effect of aging on electrical characteristics of the as-deposited and heat-treated contacts and the nearby pn junction, as well as on the surface morphology of the contacts are presented.

  4. Microsecond switchable thermal antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher

    2014-07-21

    We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heatingmore » less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.« less

  5. Investigation of impurity transport using laser blow-off technique in the HL-2A Ohmic and ECRH plasmas

    NASA Astrophysics Data System (ADS)

    Kai, Zhang; Zheng-Ying, Cui; Ping, Sun; Chun-Feng, Dong; Wei, Deng; Yun-Bo, Dong; Shao-Dong, Song; Min, Jiang; Yong-Gao, Li; Ping, Lu; Qing-Wei, Yang

    2016-06-01

    Impurity transports in two neighboring discharges with and without electron cyclotron resonance heating (ECRH) are studied in the HL-2A tokamak by laser blow-off (LBO) technique. The progression of aluminium ions as the trace impurity is monitored by soft x-ray (SXR) and bolometer detector arrays with good temporal and spatial resolutions. Obvious difference in the time trace of the signal between the Ohmic and ECRH L-mode discharges is observed. Based on the numerical simulation with one-dimensional (1D) impurity transport code STRAHL, the radial profiles of impurity diffusion coefficient D and convective velocity V are obtained for each shot. The result shows that the diffusion coefficient D significantly increases throughout the plasma minor radius for the ECRH case with respect to the Ohmic case, and that the convection velocity V changes from negative (inward) for the Ohmic case to partially positive (outward) for the ECRH case. The result on HL-2A confirms the pump out effect of ECRH on impurity profile as reported on various other devices.

  6. Numerical simulation and experimental investigation of GaN-based flip-chip LEDs and top-emitting LEDs.

    PubMed

    Liu, Xingtong; Zhou, Shengjun; Gao, Yilin; Hu, Hongpo; Liu, Yingce; Gui, Chengqun; Liu, Sheng

    2017-12-01

    We demonstrate a GaN-based flip-chip LED (FC-LED) with a highly reflective indium-tin oxide (ITO)/distributed Bragg reflector (DBR) ohmic contact. A transparent ITO current spreading layer combined with Ta 2 O 5 /SiO 2 double DBR stacks is used as a reflective p-type ohmic contact in the FC-LED. We develop a strip-shaped SiO 2 current blocking layer, which is well aligned with a p-electrode, to prevent the current from crowding around the p-electrode. Our combined numerical simulation and experimental results revealed that the FC-LED with ITO/DBR has advantages of better current spreading and superior heat dissipation performance compared to top-emitting LEDs (TE-LEDs). As a result, the light output power (LOP) of the FC-LED with ITO/DBR was 7.6% higher than that of the TE-LED at 150 mA, and the light output saturation current was shifted from 130.9  A/cm 2 for the TE-LED to 273.8  A/cm 2 for the FC-LED with ITO/DBR. Owing to the high reflectance of the ITO/DBR ohmic contact, the LOP of the FC-LED with ITO/DBR was 13.0% higher than that of a conventional FC-LED with Ni/Ag at 150 mA. However, because of the better heat dissipation of the Ni/Ag ohmic contact, the conventional FC-LED with Ni/Ag exhibited higher light output saturation current compared to the FC-LED with ITO/DBR.

  7. Density scaling on n  =  1 error field penetration in ohmically heated discharges in EAST

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Hui; Sun, You-Wen; Shi, Tong-Hui; Zang, Qing; Liu, Yue-Qiang; Yang, Xu; Gu, Shuai; He, Kai-Yang; Gu, Xiang; Qian, Jin-Ping; Shen, Biao; Luo, Zheng-Ping; Chu, Nan; Jia, Man-Ni; Sheng, Zhi-Cai; Liu, Hai-Qing; Gong, Xian-Zu; Wan, Bao-Nian; Contributors, EAST

    2018-05-01

    Density scaling of error field penetration in EAST is investigated with different n  =  1 magnetic perturbation coil configurations in ohmically heated discharges. The density scalings of error field penetration thresholds under two magnetic perturbation spectra are br\\propto n_e0.5 and br\\propto n_e0.6 , where b r is the error field and n e is the line averaged electron density. One difficulty in understanding the density scaling is that key parameters other than density in determining the field penetration process may also be changed when the plasma density changes. Therefore, they should be determined from experiments. The estimated theoretical analysis (br\\propto n_e0.54 in lower density region and br\\propto n_e0.40 in higher density region), using the density dependence of viscosity diffusion time, electron temperature and mode frequency measured from the experiments, is consistent with the observed scaling. One of the key points to reproduce the observed scaling in EAST is that the viscosity diffusion time estimated from energy confinement time is almost constant. It means that the plasma confinement lies in saturation ohmic confinement regime rather than the linear Neo-Alcator regime causing weak density dependence in the previous theoretical studies.

  8. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    .R. Wilson, C.E. Kessel, S. Wolfe, I.H. Hutchinson, P. Bonoli, C. Fiore, A.E. Hubbard, J. Hughes, Y. Lin, Y. Ma, D. Mikkelsen, M. Reinke, S. Scott, A.C.C. Sips, S. Wukitch and the C-Mod Team

    Alcator C-Mod is performing ITER-like experiments to benchmark and verify projections to 15 MA ELMy H-mode Inductive ITER discharges. The main focus has been on the transient ramp phases. The plasma current in C-Mod is 1.3 MA and toroidal field is 5.4 T. Both Ohmic and ion cyclotron (ICRF) heated discharges are examined. Plasma current rampup experiments have demonstrated that (ICRF and LH) heating in the rise phase can save voltseconds (V-s), as was predicted for ITER by simulations, but showed that the ICRF had no effect on the current profile versus Ohmic discharges. Rampdown experiments show an overcurrent inmore » the Ohmic coil (OH) at the H to L transition, which can be mitigated by remaining in H-mode into the rampdown. Experiments have shown that when the EDA H-mode is preserved well into the rampdown phase, the density and temperature pedestal heights decrease during the plasma current rampdown. Simulations of the full C-Mod discharges have been done with the Tokamak Simulation Code (TSC) and the Coppi-Tang energy transport model is used with modified settings to provide the best fit to the experimental electron temperature profile. Other transport models have been examined also. __________________________________________________« less

  9. Thick-film materials for silicon photovoltaic cell manufacture

    NASA Technical Reports Server (NTRS)

    Field, M. B.

    1977-01-01

    Thick film technology is applicable to three areas of silicon solar cell fabrication; metallization, junction formation, and coating for protection of screened ohmic contacts, particularly wrap around contacts, interconnection and environmental protection. Both material and process parameters were investigated. Printed ohmic contacts on n- and p-type silicon are very sensitive to the processing parameters of firing time, temperature, and atmosphere. Wrap around contacts are easily achieved by first printing and firing a dielectric over the edge and subsequently applying a low firing temperature conductor. Interconnection of cells into arrays can be achieved by printing and cofiring thick film metal pastes, soldering, or with heat curing conductive epoxies on low cost substrates. Printed (thick) film vitreous protection coatings do not yet offer sufficient optical uniformity and transparency for use on silicon. A sprayed, heat curable SiO2 based resin shows promise of providing both optical matching and environmental protection.

  10. Semiconductor structural damage attendant to contact formation in III-V solar cells

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1991-01-01

    In order to keep the resistive losses in solar cells to a minimum, it is often necessary for the ohmic contacts to be heat treated to lower the metal-semiconductor contact resistivity to acceptable values. Sintering of the contacts, however can result in extensive mechanical damage of the semiconductor surface under the metallization. An investigation of the detailed mechanisms involved in the process of contact formation during heat treatment may control the structural damage incurred by the semiconductor surface to acceptable levels, while achieving the desired values of contact resistivity for the ohmic contacts. The reaction kinetics of sintered gold contacts to InP were determined. It was found that the Au-InP interaction involves three consecutive stages marked by distinct color changes observed on the surface of the Au, and that each stage is governed by a different mechanism. A detailed description of these mechanisms and options to control them are presented.

  11. Quench of non-Markovian coherence in the deep sub-Ohmic spin–boson model: A unitary equilibration scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yao, E-mail: yaoyao@fudan.edu.cn

    The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovianmore » feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model.« less

  12. Neutron and Gamma-ray Detection in Reversed-Field Pinch Deuterium Plasmas in the RFX-mod Device

    NASA Astrophysics Data System (ADS)

    Zuin, Matteo; Stevanato, Luca; Martines, Emilio; Gonzalez, Winder; Cavazzana, Roberto; Cester, Davide; Nebbia, G.; Sajo-Bohus, Laszlo; Viesti, Giuseppe

    2014-10-01

    An experimental analysis of neutron and gamma-ray fluxes exiting purely ohmically heated plasmas in reversed-field pinch (RFP) configuration is presented. The diagnostic system, installed in the RFX-mod, is made of 2 scintillators (EJ-301 liquid and NaI(Tl)) coupled to flat-panel photomultipliers, which can be operated under magnetic fields. The production of neutrons and gamma rays in Deuterium plasmas is found to be strongly dependent on the Ohmic input power, with a threshold value of about 1.2 MA in terms of plasma current level, below which low levels of gamma rays and almost no neutrons are detected. Neutron and gamma production is characterized by a bursty behavior, correlated to the spontaneous magnetic reconnection events, occurring almost cyclically in the RFP plasmas. The role of ion heating and particle acceleration during such events is discussed.

  13. Influence of infrared final cooking on polycyclic aromatic hydrocarbon formation in ohmically pre-cooked beef meatballs.

    PubMed

    Kendirci, Perihan; Icier, Filiz; Kor, Gamze; Onogur, Tomris Altug

    2014-06-01

    Effects of infrared cooking on polycyclic aromatic hydrocarbon (PAH) formation in ohmically pre-cooked beef meatballs were investigated. Samples were pre-cooked in a specially designed-continuous type ohmic cooking at a voltage gradient of 15.26V/cm for 92s. Infrared cooking was applied as a final cooking method at different combinations of heat fluxes (3.706, 5.678, 8.475kW/m(2)), application distances (10.5, 13.5, 16.5cm) and application durations (4, 8, 12min). PAHs were analyzed by using high performance liquid chromatography (HPLC) equipped with a fluorescence detector. The total PAH levels were detected to be between 4.47 and 64μg/kg. Benzo[a] pyrene (B[a]P) and PAH4 (sum of B[a]P, chrysene (Chr), benzo[a]anthracene (B[a]A) and benzo[b]fluoranthene (B[b]F)) levels detected in meatballs were below the EC limits. Ohmic pre-cooking followed by infrared cooking may be regarded as a safe cooking procedure of meatballs from a PAH contamination point of view. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M

    NASA Astrophysics Data System (ADS)

    Peng, Jianfei; Xuan, Weimin; Wang, Haibing; Li, Huajun; Wang, Yingqiao; Wang, Shujin

    2013-03-01

    A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as x″d = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes.

  15. A new method of producing local enhancement of buoyancy in liquid flows

    NASA Astrophysics Data System (ADS)

    Bhat, G. S.; Narasimha, R.; Arakeri, V. H.

    1989-11-01

    We describe here a novel method of generating large volumetric heating in a liquid. The method uses the principle of ohmic heating of the liquid, rendered electrically conducting by suitable additives if necessary. Electrolysis is prevented by the use of high frequency alternating voltage and chemically treated electrodes. The technique is demonstrated by producing substantial heating in an initially neutral jet of water. Simple flow visualisation studies, made by adding dye to the jet, show marked changes in the growth and development of the jet with heat addition.

  16. Fabrication of SWCNT based flexible chemiresistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajput, Mayank, E-mail: mnk.rajput1@gmail.com; Das, S.; Kaur, Rajvinder

    2016-04-13

    Carboxyl (-COOH) functionalized SWCNT chemiresistors have been realized on Kapton substrate patterned with Au microelectrodes by the drop casting of functionalized SWCNT dispersion in DI water. I-V measurements on fabricated chemiresistor showed ohmic behavior at different temperatures (25°C-120°C). The effect of bending on flexible functionalized SWCNT chemiresistor for different diameter has been measured. It has been found that bending at different radius of curvature doesn’t change the ohmic behavior of fabricated chemiresistor. Achieved results are promising for cheap flexible electronic devices.

  17. Ohmic ignition with high engineering beta based on the RFP

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.; Anderson, J. K.; Chapman, B. E.; McCollam, K. J.

    2017-10-01

    The RFP configuration allows the possibility of ohmic ignition for fusion energy, eliminating the need for auxiliary heating by rf or neutral beam injection. Complex plasma-facing antennas and NBI sources are therefore not required, simplifying the difficult fusion materials challenge. While all toroidal configurations require a volume-average 〈 B 〉 >= 5 T, the field strength at the magnet in the RFP is only Bcoil 3T since plasma current generates almost all of the field. Engineering beta is therefore maximized. We summarize access to ohmic ignition by examining a Lawson-like power balance for an RFP fusion plasma comparable to the ARIES-AT advanced tokamak, which generates neutron wall loading Pn / A 5 MW/m2. The required energy confinement for ohmic ignition in an RFP is similar to that for a tokamak. Confinement in MST is comparable to a same-size, same-field tokamak plasma, but 〈 B 〉 in MST is only 1/20th that required for fusion. While transport could ultimately be dominated by micro turbulence, extrapolation of stochastic transport using Lundquist number scaling for MHD tearing indicates standard RFP confinement (not enhanced by current profile control) could be sufficient to access ohmic ignition. This bolsters the possibility for steady-state inductive sustainment using oscillating field current drive. The high beta and classical energetic ion confinement measured in MST also bolster the RFP's fusion potential. Work supported by U.S. DoE.

  18. Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface.

    PubMed

    Zhou, Gaochao; Dai, Penghui; Wu, Jingbo; Jin, Biaobing; Wen, Qiye; Zhu, Guanghao; Shen, Ze; Zhang, Caihong; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2017-07-24

    An active vanadium dioxide integrated metasurface offering broadband transmitted terahertz wave modulation with large modulation-depth under electrical control is demonstrated. The device consists of metal bias-lines arranged with grid-structure patterned vanadium dioxide (VO 2 ) film on sapphire substrate. Amplitude transmission is continuously tuned from more than 78% to 28% or lower in the frequency range from 0.3 THz to 1.0 THz, by means of electrical bias at temperature of 68 °C. The physical mechanism underlying the device's electrical tunability is investigated and found to be attributed to the ohmic heating. The developed device possessing over 87% modulation depth with 0.7 THz frequency band is expected to have many potential applications in THz regime such as tunable THz attenuator.

  19. Microscale Soft Patterning for Solution Processable Metal Oxide Thin Film Transistors.

    PubMed

    Jung, Sang Wook; Chae, Soo Sang; Park, Jee Ho; Oh, Jin Young; Bhang, Suk Ho; Baik, Hong Koo; Lee, Tae Il

    2016-03-23

    We introduce a microscale soft pattering (MSP) route utilizing contact printing of chemically inert sub-nanometer thick low molecular weight (LMW) poly(dimethylsiloxane) (PDMS) layers. These PDMS layers serve as a release agent layer between the n-type Ohmic metal and metal oxide semiconductors (MOSs) and provide a layer that protects the MOS from water in the surrounding environment. The feasibility of our MSP route was experimentally demonstrated by fabricating solution processable In2O3, IZO, and IGZO TFTs with aluminum (Al), a typical n-type Ohmic metal. We have demonstrated patterning gaps as small as 13 μm. The TFTs fabricated using MSP showed higher field-effect-mobility and lower hysteresis in comparison with those made using conventional photolithography.

  20. SUNIST Microwave Power System

    NASA Astrophysics Data System (ADS)

    Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng

    2005-06-01

    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  1. Impurity transport during neutral beam injection in the ISX-B tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isler, R. C.; Crume, E. C.; Arnurius, D. E.

    1980-10-01

    In ohmically heated ISX-B discharges, both the intrinsic iron impurity ions and small amounts of argon introduced as a test gas accumulate at the center of the plasma. But during certain beam-heated discharges, it appears that this accumulation does not take place. These results may reflect the conclusion of Stacey and Sigmar that momentum transferred from the beams to the plasma can inhibit inward impurity transport.

  2. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  3. Destruction of Bacillus cereus spores in a thick soy bean paste (doenjang) by continuous ohmic heating with five sequential electrodes.

    PubMed

    Ryang, J H; Kim, N H; Lee, B S; Kim, C T; Rhee, M S

    2016-07-01

    This study selected spores from Bacillus cereus FSP-2 strain (the isolate from a commercial doenjang processing line) as the test strain which showed significantly higher thermal resistance (P < 0·05) than B. cereus reference strain (ATCC 27348). The spores in doenjang were subjected to ohmic heating (OH) at 95, 105, 115 and 125°C for 30, 60 or 90 s using a five sequential electrode system (electrical field: 26·7 V cm(-1) ; alternating current frequency: 25 kHz). OH at 105°C for 30-90 s reduced the B. cereus spore count in doenjang samples to <4 log CFU g(-1) . Since OH treatment at 115 and 125°C caused a perceivable colour change in the product (>1·5 National Bureau of Standards units), treatment at 105°C for 60 s was selected and applied on a large scale (500 kg of product). Reliable and reproducible destruction of B. cereus spores occurred; the reductions achieved (to < 4 log CFU g(-1) ) met the Korean national standards. Scanning electron microscopy revealed microstructural alterations in the spores (shrinkage and a distorted outer spore coat). OH is an effective method for destroying B. cereus spores to ensure the microbiological quality and safety of a thick, highly viscous sauce. This study shows that an ohmic heating (OH) using a five sequential electrode system can effectively destroy highly heat-resistant Bacillus cereus spores which have been frequently found in a commercial doenjang processing line without perceivable quality change in the product. In addition, it may demonstrate high potential of the unique OH system used in this study that will further contribute to ensure microbiological quality and safety of crude sauces containing high levels of electrolyte other than doenjang as well. © 2016 The Society for Applied Microbiology.

  4. COUPLED EVOLUTIONS OF THE STELLAR OBLIQUITY, ORBITAL DISTANCE, AND PLANET'S RADIUS DUE TO THE OHMIC DISSIPATION INDUCED IN A DIAMAGNETIC HOT JUPITER AROUND A MAGNETIC T TAURI STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yu-Ling; Gu, Pin-Gao; Bodenheimer, Peter H.

    We revisit the calculation of the ohmic dissipation in a hot Jupiter presented by Laine et al. by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modeled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small corotation orbital radius can undergo orbital decay bymore » the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/antiparallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model of Laine et al. and find that the planet's radius is sustained at a nearly constant value by the ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.« less

  5. Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect

    DTIC Science & Technology

    2013-11-18

    the molecule dissipates energy to emit another photon (spontaneous emission, or fluorescence, with rate kf) or to heat (intrinsic nonradiative process...enhancement gives rise to both enhanced radiation and enhanced nonradiation (energy dissipation due to Ohmic losses). The enhancement of

  6. Apparatus and processes for the mass production of photovoltaic modules

    DOEpatents

    Barth, Kurt L [Ft. Collins, CO; Enzenroth, Robert A [Fort Collins, CO; Sampath, Walajabad S [Fort Collins, CO

    2007-05-22

    An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.

  7. Apparatus and processes for the mass production of photovotaic modules

    DOEpatents

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2002-07-23

    An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.

  8. Pellet injection research on the HT-6M and HT-7 tokamaks

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Bao, Yi; Li, Jiangang; Gu, Xuemao; He, Yexi

    1999-11-01

    A multishot in situ pellet injection system has been constructed in the Institute of Plasma Physics. Single- and multi-pellet injection experiments were performed on the HT-6M and superconducting HT-7 tokamaks. The system proved to be convenient and reliable to operate. Pellets were fired into ohmically and LHCD and ICRF heated plasmas. Single pellet injection in ohmic discharge was found to increase the central density of HT-7 by about one half, while two pellet injection increased the central density in a step-like fashion by one half with each shot. Peaking of the electron density profile and a hollow electron temperature profile were obtained.

  9. Magnetic heating of stellar chromospheres and coronae

    NASA Astrophysics Data System (ADS)

    van Ballegooijen, A. A.

    The theoretical discussion of magnetic heating focuses on heating by dissipation of field-aligned electric currents. Several mechanisms are set forth to account for the very high current densities needed to generate the heat, but observed radiative losses do not justify the resultant Ohmic heating rate. Tearing modes, 'turbulent resistivity', and 'hyper-resistivity' are considered to resolve the implied inefficiency of coronal heating. Because the mechanisms are not readily applicable to the sun, transverse magnetic energy flows and magnetic flare release are considered to account for the magnitude of observed radiative loss. High-resolution observations of the sun are concluded to be an efficient way to examine the issues of magnetic heating in spite of the very small spatial scales of the heating processes.

  10. Inductive ion acceleration and heating in picket fence geometry: Theory and simulations

    NASA Astrophysics Data System (ADS)

    Leboeuf, J. N.; Dawson, J. M.; Ratliff, S. T.; Rhodes, M.; Luhmann, N. C., Jr.

    1982-11-01

    Particle simulations and analytic theory confirm the experimental observation of preferential ion acceleration and heating by an inductive electric field Edc in picket-fence geometry. The ions which are unmagnetized over most of the current channel are freely accelerated by the inductive field; the magnetized electrons are tied to the field lines and do not run away as long as the binding ev×B/c force is greater than the detrapping inductive force eEdc. Consequently, most of the current is carried by the ions which are also Ohmically heated.

  11. Fabrication of Ohmic contact on semi-insulating 4H-SiC substrate by laser thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yue; Lu, Wu-yue; Wang, Tao

    The Ni contact layer was deposited on semi-insulating 4H-SiC substrate by magnetron sputtering. The as-deposited samples were treated by rapid thermal annealing (RTA) and KrF excimer laser thermal annealing (LTA), respectively. The RTA annealed sample is rectifying while the LTA sample is Ohmic. The specific contact resistance (ρ{sub c}) is 1.97 × 10{sup −3} Ω·cm{sup 2}, which was determined by the circular transmission line model. High resolution transmission electron microscopy morphologies and selected area electron diffraction patterns demonstrate that the 3C-SiC transition zone is formed in the near-interface region of the SiC after the as-deposited sample is treated by LTA,more » which is responsible for the Ohmic contact formation in the semi-insulating 4H-SiC.« less

  12. Non-Markovian dynamics of fermionic and bosonic systems coupled to several heat baths

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, A. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.

    2018-03-01

    Employing the fermionic and bosonic Hamiltonians for the collective oscillator linearly FC-coupled with several heat baths, the analytical expressions for the collective occupation number are derived within the non-Markovian quantum Langevin approach. The master equations for the occupation number of collective subsystem are derived and discussed. In the case of Ohmic dissipation with Lorenzian cutoffs, the possibility of reduction of the system with several heat baths to the system with one heat bath is analytically demonstrated. For the fermionic and bosonic systems, a comparative analysis is performed between the collective subsystem coupled to two heat baths and the reference case of the subsystem coupled to one bath.

  13. Whey acerola-flavoured drink submitted ohmic heating processing: Is there an optimal combination of the operational parameters?

    PubMed

    Cappato, Leandro P; Ferreira, Marcus Vinícius S; Pires, Roberto P S; Cavalcanti, Rodrigo N; Bisaggio, Rodrigo C; Freitas, Mônica Q; Silva, Marcia C; Cruz, Adriano G

    2018-04-15

    Whey acerola-flavoured drink was treated using ohmic heating (OH) at 65°C for 30min to evaluate different frequencies (10, 100 and 1000Hz with 25V) and voltages (45, 60 and 80V at 60Hz) and by conventional heating (CH) with the same temperature profile (65°C/30min). Rheology parameters, color changes (h°, C∗, ΔE) microstructure (optical microscopy), and ascorbic acid (AA) degradation kinetics were performed. AA degradation rates ranged from 1.7 to 29.3% and from 2.8 to 24.8% for OH and CH, respectively. The beverages treated with both processes exhibited a pseudo-plastic behavior (n<1), higher saturation (C∗), lesser reddish color (h°), and higher color variations (ΔE∗). In microstructure analysis, OH (1000Hz-25V and 80V-60Hz) was able to rupture the cell structure. The best results were observed at low frequencies and voltage OH processes on whey acerola-flavoured drinks should be performed at low frequencies and voltages (≤100Hz and 45V), an alternating current (A/C). However, despite the use of inert electrodes, the existence of corrosion was not evaluated, being an important information to be investigated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes - a comprehensive review.

    PubMed

    Deng, Li-Zhen; Mujumdar, Arun S; Zhang, Qian; Yang, Xu-Hai; Wang, Jun; Zheng, Zhi-An; Gao, Zhen-Jiang; Xiao, Hong-Wei

    2017-12-20

    Pretreatment is widely used before drying of agro-products to inactivate enzymes, enhance drying process and improve quality of dried products. In current work, the influence of various pretreatments on drying characteristics and quality attributes of fruits and vegetables is summarized. They include chemical solution (hyperosmotic, alkali, sulfite and acid, etc.) and gas (sulfur dioxide, carbon dioxide and ozone) treatments, thermal blanching (hot water, steam, super heated steam impingement, ohmic and microwave heating, etc), and non-thermal process (ultrasound, freezing, pulsed electric field, and high hydrostatic pressure, etc). Chemical pretreatments effectively enhance drying kinetics, meanwhile, it causes soluble nutrients losing, trigger food safety issues by chemical residual. Conventional hot water blanching has significant effect on inactivating various undesirable enzymatic reactions, destroying microorganisms, and softening the texture, as well as facilitating drying rate. However, it induces undesirable quality of products, e.g., loss of texture, soluble nutrients, pigment and aroma. Novel blanching treatments, such as high-humidity hot air impingement blanching, microwave and ohmic heat blanching can reduce the nutrition loss and are more efficient. Non-thermal technologies can be a better alternative to thermal blanching to overcome these drawbacks, and more fundamental researches are needed for better design and scale up.

  15. Comparison of Alcator C data with the Rebut-Lallia-Watkins critical gradient scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, I.H.

    The critical temperature gradient model of Rebut, Lallia and Watkins is compared with data from Alcator C. The predicted central electron temperature is derived from the model, and a simple analytic formula is given. It is found to be in quite good agreement with the observed temperatures on Alcator C under ohmic heating conditions. However, the thermal diffusivity postulated in the model for gradients that exceed the critical is not consistent with the observed electron heating by Lower Hybrid waves.

  16. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Hao; Zhang, Tao; Han, Xiang

    2015-08-15

    An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured bymore » the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.« less

  17. Whey acerola-flavoured drink submitted Ohmic Heating: Bioactive compounds, antioxidant capacity, thermal behavior, water mobility, fatty acid profile and volatile compounds.

    PubMed

    Cappato, Leandro P; Ferreira, Marcus Vinicius S; Moraes, Jeremias; Pires, Roberto P S; Rocha, Ramon S; Silva, Ramon; Neto, Roberto P C; Tavares, Maria Inês B; Freitas, Mônica Q; Rodrigues, Flavio N; Calado, Veronica M A; Raices, Renata S L; Silva, Marcia C; Cruz, Adriano G

    2018-10-15

    Whey acerola-flavoured drink was subjected to Ohmic Heating (OH) under different operational conditions (45, 60, 80 V at 60 Hz and 10, 100, 1000 Hz with 25 V, 65 °C/30 min) and conventional pasteurization (65 °C/30 min). Bioactive compounds (total phenolics, DPPH, FRAP, ACE levels), fatty acid profile, volatile compounds (CG-MS), thermal behaviors (DSC) and water mobility (TD-NMR) were performed. Reduction of frequency (1000-10 Hz) resulted in a lower bioactive compounds and antioxidant capacity of the samples, except for the DPPH values. Concerning the thermal behaviors, fatty acids profile and volatile compounds, different findings were observed as a function of the parameters used (voltage and frequency). In respect of TD-NMR parameters, OH led to a slightly reduction of the relaxation time when compared to the conventional treatment, suggesting more viscous beverages. Overall, OH may be interesting option to whey acerola-flavoured drink processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Theoretical transport modeling of Ohmic cold pulse experiments

    NASA Astrophysics Data System (ADS)

    Kinsey, J. E.; Waltz, R. E.; St. John, H. E.

    1998-11-01

    The response of several theory-based transport models in Ohmically heated tokamak discharges to rapid edge cooling due to trace impurity injection is studied. Results are presented for the Institute for Fusion Studies—Princeton Plasma Physics Laboratory (IFS/PPPL), gyro-Landau-fluid (GLF23), Multi-mode (MM), and the Itoh-Itoh-Fukuyama (IIF) transport models with an emphasis on results from the Texas Experimental Tokamak (TEXT) [K. W. Gentle, Nucl. Technol./Fusion 1, 479 (1981)]. It is found that critical gradient models containing a strong ion and electron temperature ratio dependence can exhibit behavior that is qualitatively consistent with experimental observation while depending solely on local parameters. The IFS/PPPL model yields the strongest response and demonstrates both rapid radial pulse propagation and a noticeable increase in the central electron temperature following a cold edge temperature pulse (amplitude reversal). Furthermore, the amplitude reversal effect is predicted to diminish with increasing electron density and auxiliary heating in agreement with experimental data. An Ohmic pulse heating effect due to rearrangement of the current profile is shown to contribute to the rise in the core electron temperature in TEXT, but not in the Joint European Tokamak (JET) [A. Tanga and the JET Team, in Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 65] and the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk, V. Arunsalam, M. G. Bell et al., in Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 51]. While this phenomenon is not necessarily a unique signature of a critical gradient, there is sufficient evidence suggesting that the apparent plasma response to edge cooling may not require any underlying nonlocal mechanism and may be explained within the context of the intrinsic properties of electrostatic drift wave-based models.

  19. The dependence of divertor power sharing on magnetic flux balance in near double-null configurations on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-07-01

    Management of power exhaust will be a crucial task for tokamak fusion reactors. Reactor concepts are often proposed with double-null divertors, i.e. having two magnetic separatrices in an up-down symmetric configuration. This arrangement is potentially advantageous since the majority of the tokamak exhaust power tends to flow to the outer pair of divertor legs at large major radius, where the geometry is favorable for spreading the heat over a large surface area and there is more room for advanced divertor configurations. Despite the importance, there have been relatively few studies of divertor power sharing in near double null configurations and no studies at the poloidal magnetic fields and scrape-off layer power widths anticipated for a reactor. Motivated by this need we have undertaken a systematic study on Alcator C-Mod, examining the effect of magnetic flux balance on the power sharing among the four divertor legs in near double-null plasmas. Ohmic L-modes at three values of plasma current and ICRF-heated enhanced D-alpha (EDA) H-modes and I-modes at a single value of plasma current are explored, producing poloidal magnetic fields of 0.42, 0.62 and 0.85 Tesla. For Ohmic L-modes and ICRF-heated EDA H-modes, we find that the point of equal power sharing between upper and lower divertors occurs remarkably close to a balanced double null. Power sharing amongst the outer (upper versus lower) and inner (upper versus lower) pairs of divertors can be described in terms of a logistic function of magnetic flux balance, consistent with heat flux mapping along magnetic field lines to the outer midplane. Power sharing between inner and outer legs is found to follow a Gaussian-like function of magnetic flux balance with non-zero power to the inner divertors at double null. The overall behavior of H-modes operated near double null and for I-modes operating to within one heat flux e-folding of double null are found similar to Ohmic L-modes, with a significant reduction of power on the inner divertor legs. The results are encapsulated in terms of empirically-informed analytic functions of magnetic flux balance. When combined with magnetic equilibrium control system specifications, these relationships can be used to specify the power flux handling requirements for each of the four divertor target plates.

  20. The Influence of Heat Treatment on the Electrical Characteristics of Semi-Insulating SiC Layers Obtained by Irradiating n-SiC with High-Energy Argon Ions

    NASA Astrophysics Data System (ADS)

    Ivanov, P. A.; Potapov, A. S.; Kudoyarov, M. F.; Kozlovskii, M. A.; Samsonova, T. P.

    2018-03-01

    Irradiation of crystalline n-type silicon carbide ( n-SiC) with high-energy (53-MeV) argon ions was used to create near-surface semi-insulating ( i-SiC) layers. The influence of subsequent heat treatment on the electrical characteristics of i-SiC layers has been studied. The most high-ohmic ion-irradiated i-SiC layers with room-temperature resistivity of no less than 1.6 × 1013 Ω cm were obtained upon the heat treatment at 600°C, whereas the resistivity of such layers heat-treated at 230°C was about 5 × 107 Ω cm.

  1. The structure of high-temperature solar flare plasma in non-thermal flare models

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1985-01-01

    Analytic differential emission measure distributions have been derived for coronal plasma in flare loops heated both by collisions of high-energy suprathermal electrons with background plasma, and by ohmic heating by the beam-normalizing return current. For low densities, reverse current heating predominates, while for higher densities collisional heating predominates. There is thus a minimum peak temperature in an electron-heated loop. In contrast to previous approximate analyses, it is found that a stable reverse current can dominate the heating rate in a flare loop, especially in the low corona. Two 'scaling laws' are found which relate the peak temperature in the loop to the suprathermal electron flux. These laws are testable observationally and constitute a new diagnostic procedure for examining modes of energy transport in flaring loops.

  2. Two-terminal monolithic InP-based tandem solar cells with tunneling intercell ohmic connections

    NASA Technical Reports Server (NTRS)

    Shen, C. C.; Chang, P. T.; Emery, K. A.

    1991-01-01

    A monolithic two-terminal InP/InGaAsP tandem solar cell was successfully fabricated. This tandem solar cell consists of a p/n InP homojunction top subcell and a 0.95 eV p/n InGaAsP homojunction bottom subcell. A patterned 0.95 eV n(+)/p(+) InGaAsP tunnel diode was employed as an intercell ohmic connection. The solar cell structure was prepared by two-step liquid phase epitaxial growth. Under one sun, AM1.5 global illumination, the best tandem cell delivered a conversion efficiency of 14.8 pct.

  3. Observations of Intrinsic Rotation Reversal Hysteresis in Alcator C-Mod Plasmas

    NASA Astrophysics Data System (ADS)

    Cao, Norman; Rice, John; White, Anne; Baek, Seung; Chilenski, Mark; Creely, Alexander; Ennever, Paul; Hubbard, Amanda; Hughes, Jerry; Irby, Jim; Rodriguez-Fernandez, Pablo; Reinke, Matthew; Diamond, Patrick; Alcator C-Mod Team

    2016-10-01

    Intrinsic core toroidal rotation in Alcator C-Mod L-mode plasmas has been observed to spontaneously reverse direction when the normalized collisionality ν*, evaluated at the profile minimum, passes through a critical value around 0.4. In Ohmic plasmas, the low density linear Ohmic confinement regime exhibits co-current toroidal rotation, and the higher density saturated Ohmic confinement regime exhibits counter-current rotation. The reversal manifests a hysteresis loop in ν*, where the critical collisionalities for the forward and reverse transitions differ by 10-15%. There appears to be memory associated with the rotation state, since reversals which do not begin from fully saturated rotation states do not manifest this hysteresis. In addition, high-k PCI fluctuation ``wings'' (kθρs up to 1) at low density and high current appear only in the co-current rotation state, while density peaking and ``non-local'' heat transport behavior do not appear to change significantly with the rotation state. Results from fluctuation measurements and preliminary transport and stability analyses will also be presented. This work is supported by the US DOE under Grant DE-FC02-99ER54512 (C-Mod).

  4. The challenges of heat sterilization of peritoneal dialysis solutions: is there an alternative?

    PubMed

    Hanrahan, Conor T; Himmele, Rainer; Diaz-Buxo, Jose A

    2012-01-01

    Peritoneal dialysis (PD) solutions are currently sterilized in an autoclave using high-temperature saturated steam. Although thermal methods are an effective means of sterilization, the heating of PD solutions results in the formation of toxic glucose degradation products (GDPs). Here, we review basic concepts in the sterilization of PD solutions and discuss possible alternatives to steam sterilization, including filtration, ohmic heat, ionizing radiation, and pulsed ultraviolet light. Although the latter methods have several advantages, many also have prohibitive limitations or have not been adequately studied for use on PD solutions. Thus, in the absence of suitable alternatives, conventional heat sterilization, in combination with low-GDP manufacturing practices, remains the best option at the present time.

  5. Bayesian Analysis of Hot-Jupiter Radius Anomalies: Evidence for Ohmic Dissipation?

    NASA Astrophysics Data System (ADS)

    Thorngren, Daniel P.; Fortney, Jonathan J.

    2018-05-01

    The cause of hot-Jupiter radius inflation, where giant planets with {T}eq} > 1000 K are significantly larger than expected, is an open question and the subject of many proposed explanations. Many of these hypotheses postulate an additional anomalous power that heats planets’ convective interiors, leading to larger radii. Rather than examine these proposed models individually, we determine what anomalous powers are needed to explain the observed population’s radii, and consider which models are most consistent with this. We examine 281 giant planets with well-determined masses and radii and apply thermal evolution and Bayesian statistical models to infer the anomalous power as a fraction of (and varying with) incident flux ɛ(F) that best reproduces the observed radii. First, we observe that the inflation of planets below about M = 0.5 M J appears very different than their higher-mass counterparts, perhaps as the result of mass loss or an inefficient heating mechanism. As such, we exclude planets below this threshold. Next, we show with strong significance that ɛ(F) increases with {T}eq} toward a maximum of ∼2.5% at T eq ≈ 1500 K, and then decreases as temperatures increase further, falling to ∼0.2% at T eff = 2500 K. This high-flux decrease in inflation efficiency was predicted by the Ohmic dissipation model of giant planet inflation but not other models. We also show that the thermal tides model predicts far more variance in radii than is observed. Thus, our results provide evidence for the Ohmic dissipation model and a functional form for ɛ(F) that any future theories of hot-Jupiter radii can be tested against.

  6. Edge ohmic heating and improved confinement on HT-6M Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, X.

    1995-04-01

    An improved confinement has been observed on HT-6M tokamak after application of Edge Ohmic Heating (EOH) which makes plasma current rapidly ramp up from an initial steady state (I{sub p}=55 kA) within a small time scale (0.4 ms) to a second steady state (I{sub p}=60 kA) with a ramp rate of 12 MA/sec. The improved confinement is characterized by (a) increased average density n{sub e}; (b) reduced H{sub alpha} radiation; (c) reduced density fluctuations both in the center and at the edge; (d) a steeper n{sub e} and T{sub e} profile at the edge; (e) the changed profiles of plasmamore » parameters n{sub e}(r), q(r) and j(r); (f) transferred the oscillation modes of the soft-X ray signals from Mirnov fluctuation (12 kHz) to sawtooth oscillation (1.7 kHz). The changes of edge fluctuation, radial electric field and bremsstrahlung during EOH were measured and discussed in details. The measured values of {beta}{sub p}+l{sub i}/2 and soft-X ray sawtooth inversion radius implied the anomalous current penetration. 10 refs., 2 figs.« less

  7. Pulsating flow and boundary layers in viscous electronic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Moessner, Roderich; Surówka, Piotr; Witkowski, Piotr

    2018-04-01

    Motivated by experiments on a hydrodynamic regime in electron transport, we study the effect of an oscillating electric field in such a setting. We consider a long two-dimensional channel of width L , whose geometrical simplicity allows an analytical study as well as hopefully permitting an experimental realization. The response depends on viscosity ν , driving frequency ω , and ohmic heating coefficient γ via the dimensionless complex variable L/2ν (i ω +γ ) =i Ω +Σ . While at small Ω , we recover the static solution, a different regime appears at large Ω with the emergence of a boundary layer. This includes a splitting of the location of maximal flow velocity from the center towards the edges of the boundary layer, an increasingly reactive nature of the response, with the phase shift of the response varying across the channel. The scaling of the total optical conductance with L differs between the two regimes, while its frequency dependence resembles a Drude form throughout, even in the complete absence of ohmic heating, against which, at the same time, our results are stable. Current estimates for transport coefficients in graphene and delafossites suggest that the boundary-layer regime should be experimentally accessible.

  8. Self-focusing and defocusing of Gaussian laser beams in collisional underdense magnetized plasmas with considering the nonlinear ohmic heating and ponderomotive force effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettehadi Abari, Mehdi; Sedaghat, Mahsa; Shokri, Babak, E-mail: b-shokri@sbu.ac.ir

    2015-10-15

    The propagation characteristics of a Gaussian laser beam in collisional magnetized plasma are investigated by considering the ponderomotive and ohmic heating nonlinearities. Here, by taking into account the effect of the external magnetic field, the second order differential equation of the dimensionless beam width parameter is solved numerically. Furthermore, the nonlinear dielectric permittivity of the mentioned plasma medium in the paraxial approximation and its dependence on the propagation characteristics of the Gaussian laser pulse is obtained, and its variation in terms of the dimensionless plasma length is analyzed at different initial normalized plasma and cyclotron frequencies. The results show thatmore » the dimensionless beam width parameter is strongly affected by the initial plasma frequency, magnetic strength, and laser pulse intensity. Furthermore, it is found that there exists a certain intensity value below which the laser pulse tends to self focus, while the beam diverges above of this value. In addition, the results confirm that, by increasing the plasma and cyclotron frequencies (plasma density and magnetic strength), the self-focusing effect can occur intensively.« less

  9. Ion and electron heating characteristics of magnetic reconnection in tokamak plasma merging experiments

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Tanabe, H.; Yamada, T.; Inomoto, M.; T, Ii; Inoue, S.; Gi, K.; Watanabe, T.; Gryaznevich, M.; Scannell, R.; Michael, C.; Cheng, C. Z.

    2012-12-01

    Recently, the TS-3 and TS-4 tokamak merging experiments revealed significant plasma heating during magnetic reconnection. A key question is how and where ions and electrons are heated during magnetic reconnection. Two-dimensional measurements of ion and electron temperatures and plasma flow made clear that electrons are heated inside the current sheet mainly by the Ohmic heating and ions are heated in the downstream areas mainly by the reconnection outflows. The outflow kinetic energy is thermalized by the fast shock formation and viscous damping. The magnetic reconnection converts the reconnecting magnetic field energy mostly to the ion thermal energy in the outflow region whose size is much larger than the current sheet size for electron heating. The ion heating energy is proportional to the square of the reconnection magnetic field component B_p^2 . This scaling of reconnection heating indicates the significant ion heating effect of magnetic reconnection, which leads to a new high-field reconnection heating experiment for fusion plasmas.

  10. Global power balance on high density field reversed configurations for use in magnetized target fusion

    NASA Astrophysics Data System (ADS)

    Renneke, Richard M.

    Field Reversed Configuration plasmas (FRCs) have been created in the Field Reversed Experiment-Liner (FRX-L) with density 2--6 x 10 22 m-3, total temperature 300--400 eV, and lifetime on the order of 10 micros. This thesis investigates global energy balance on high-density FRCs for the first time. The zero-dimensional approach to global energy balance developed by Rej and Tuszewski (Phys. Fluids 27, p. 1514, 1984) is utilized here. From the shots analyzed with this method, it is clear that energy loss from these FRCs is dominated by particle and thermal (collisional) losses. The percentage of radiative losses versus total loss is an order of magnitude lower than previous FRC experiments. This is reasonable for high density based on empirical scaling from the extensive database of tokamak plasma experiments. Ohmic dissipation, which heats plasma when trapped magnetic field decays to create electric field, is an important source of heating for the plasma. Ohmic heating shows a correlation with increasing the effective Lundquist number (S*). Empirical evidence suggest S* can be increased by lowering the density, which does not achieve the goals of FRX-L. A better way to improve ohmic heating is to trap more poloidal flux. This dissertation shows that FRX-L follows a semi-empirical scaling law which predicts plasma temperature gains for larger poloidal flux. Flux (tauφ) and particle (tauN) lifetimes for these FRCs were typically shorter than 10 micros. Approximately 1/3 of the particle and flux lifetimes for these FRCs did not scale with the usual tauN ≈ tauφ scaling of low-density FRCs, but instead showed tauN ≥ tau φ. However, scatter in the data indicates that the average performance of FRCs on FRX-L yields the typical (for FRCs) relationship tau N ≈ tauφ. Fusion energy gain Q was extrapolated for the shots analyzed in this study using a zero-dimensional scaling code with liner effects. The predicted Q is below the desired value of 0.1 (Schoenberg et al., LA-UR-98-2413, 1998). The situation predicted to lead to Q = 0.1 requires a larger plasma pressure than shown in the present data. This can be accomplished by increasing the plasma density (through larger fill pressure) and maintaining temperature with increased flux trapping. Larger Q and other benefits could be realized by raising the plasma pressure for future FRX-L shots. The innovation inherent in this work performed by the author is the extension of the global power balance model to include a time history of the plasma discharge. This extension required rigorous checking of the power balance model using internal density profiles provided by the multichord interferometer. Typical orders of the parameters calculated by the model are ˜500 MW total loss power, ˜100 MW ohmic heating power, and ˜200 MW total compression (input) power. Radiation was never measured above 5 MW, which is why it was deemed insignificant. It should be noted that these numbers are merely estimates and vary widely between shots.

  11. Effect of heating on the suppression of tearing modes in tokamaks.

    PubMed

    Classen, I G J; Westerhof, E; Domier, C W; Donné, A J H; Jaspers, R J E; Luhmann, N C; Park, H K; van de Pol, M J; Spakman, G W; Jakubowski, M W

    2007-01-19

    The suppression of (neoclassical) tearing modes is of great importance for the success of future fusion reactors like ITER. Electron cyclotron waves can suppress islands, both by driving noninductive current in the island region and by heating the island, causing a perturbation to the Ohmic plasma current. This Letter reports on experiments on the TEXTOR tokamak, investigating the effect of heating, which is usually neglected. The unique set of tools available on TEXTOR, notably the dynamic ergodic divertor to create islands with a fully known driving term, and the electron cyclotron emission imaging diagnostic to provide detailed 2D electron temperature information, enables a detailed study of the suppression process and a comparison with theory.

  12. High beta plasma operation in a toroidal plasma producing device

    DOEpatents

    Clarke, John F.

    1978-01-01

    A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.

  13. Staged Z-pinch for the production of high-flux neutrons and net energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessel, Frank J.; Rahman, Hafiz Ur; Rostoker, Norman

    A fusible target is embedded in a high Z liner, ohmically heated and then shock wave heated by implosion of an enveloping high Z liner. The target is adiabatically heated by compression, fusibly ignited and charged-particle heated as it is being ignited. A shock front forms as the liner implodes which shock front detaches from the more slowly moving liner, collides with the outer surface of the target, accelerates inward, rapidly heating the target, adiabatically compressing the target and liner and amplifying the current to converge the liner mass toward a central axis thereby compressing the target to a fusionmore » condition when it begins to ignite and produce charged particles. The charged particles are trapped in a large magnetic field surrounding the target. The energy of the charged particles is deposited into the target to further heat the target to produce an energy gain.« less

  14. All-vapor processing of p-type tellurium-containing II-VI semiconductor and ohmic contacts thereof

    DOEpatents

    McCandless, Brian E.

    2001-06-26

    An all dry method for producing solar cells is provided comprising first heat-annealing a II-VI semiconductor; enhancing the conductivity and grain size of the annealed layer; modifying the surface and depositing a tellurium layer onto the enhanced layer; and then depositing copper onto the tellurium layer so as to produce a copper tellurium compound on the layer.

  15. Density and beta limits in the Madison Symmetric Torus Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Caspary, Kyle Jonathan

    Operational limits and the underlying physics are explored on the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP) using deuterium pellet fueling. The injection of a fast pellet provides a large source of fuel in the plasma edge upon impact with the vessel wall, capable of triggering density limit terminations for the full range of plasma current, up to 600 kA. As the pellet size and plasma density increase, approaching the empirical Greenwald limit, plasma degradation is observed in the form of current decay, increased magnetic activity in the edge and core, increased radiation and plasma cooling. The complete termination of the plasma is consistent with the Greenwald limit; however, a slightly smaller maximum density is observed in discharges without toroidal field reversal. The plasma beta is the ratio of the plasma pressure to the confining magnetic pressure. Beta limits are known to constrain other magnetic confinement devices, but no beta limit has yet been established on the RFP. On MST, the highest beta values are obtained in improved confinement discharges with pellet fueling. By using pellet injection to scan the plasma density during PPCD, we also achieve a scan of Ohmic input power due to the increase in plasma resistivity. We observe a factor of 3 or more increase in Ohmic power as we increase the density from 1*1019 to 3*10 19 m-3. Despite this increased Ohmic power, the electron contribution to beta is constant, suggesting a confinement limited beta for the RFP. The electrons and ions are classically well coupled in these cold, dense pellet fueled plasmas, so the increase in total beta at higher density is primarily due to the increased ion contribution. The interaction of pellet fueling and NBI heating is explored. Modeling of MST's neutral heating beam suggests an optimal density for beam power deposition of 2-3*1019 m-3. Low current, NBI heated discharges show evidence of an increased electron beta in this density range. Additionally, the fast ion population can enhance ablation as well as cause pellet deflection. Other exploratory experiments with the pellet injection system explore additional injection scenarios and expand the injector capabilities.

  16. Scale Sizes of High-Latitude Neutral Mass Density Perturbations

    NASA Astrophysics Data System (ADS)

    Huang, C. Y.; Huang, Y.; Su, Y. J.; Huang, T.; Sutton, E. K.

    2017-12-01

    In a statistical study of neutral mass density maxima, we found for a select interval, that 57% of the maxima have correlated field-aligned current (FAC) signatures, indicative of localized Ohmic heating. However the remaining 43% do not, and we suggested that these maxima may be due to gravity waves generated by neutral heating. We follow up on this study by an investigation into the spatial scale sizes of the mass density maxima using high-resolution neutral density and FAC data from CHAMP, when the satellite is in conjunction with DMSP, which provides the corresponding ion drift velocity, particle precipitation and Poynting flux. The study shows the average scale sizes of the perturbations due to J x B heating, as well as the sizes of the waves generated by Joule heating.

  17. Electromagnetic eigenmodes of collisional and collisionless plasmas and their stability to stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Pathak, Vishwa Bandhu; Tripathi, V. K.

    2007-02-01

    Nonlinear electromagnetic eigenmodes of collisional and collisionless plasmas, when the temporal extent of the modes is longer than the ambipolar diffusion time, have been investigated. The nonlinearity in a collisionless plasma arises through ponderomotive force, whereas in collisional plasmas Ohmic nonlinearity prevails. The mode structure in both cases, representing a balance between the nonlinearity-induced self-convergence and diffraction-induced divergence, closely resembles Gaussian form. The spot size of the mode decreases with the increasing axial amplitude of the laser, attains a minimum, and then rises very gradually. The modes are susceptible to stimulated Brillouin backscattering. The growth rate of the Brillouin process initially increases with mode amplitude, attains a maximum, and then decreases. The reduction in the growth rate is caused by strong electron evacuation from the axial region by the ponderomotive force and thermal pressure gradient force created by nonuniform Ohmic heating.

  18. The Experiment of Modulated Toroidal Current on HT-7 and HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Mao, Jian-shan; P, Phillips; Luo, Jia-rong; Xu, Yu-hong; Zhao, Jun-yu; Zhang, Xian-mei; Wan, Bao-nian; Zhang, Shou-yin; Jie, Yin-xian; Wu, Zhen-wei; Hu, Li-qun; Liu, Sheng-xia; Shi, Yue-jiang; Li, Jian-gang; HT-6M; HT-7 Group

    2003-02-01

    The Experiments of Modulated Toroidal Current were done on the HT-6M tokamak and HT-7 superconducting tokamak. The toroidal current was modulated by programming the Ohmic heating field. Modulation of the plasma current has been used successfully to suppress MHD activity in discharges near the density limit where large MHD m = 2 tearing modes were suppressed by sufficiently large plasma current oscillations. The improved Ohmic confinement phase was observed during modulating toroidal current (MTC) on the Hefei Tokamak-6M (HT-6M) and Hefei superconducting Tokamak-7 (HT-7). A toroidal frequency-modulated current, induced by a modulated loop voltage, was added on the plasma equilibrium current. The ratio of A.C. amplitude of plasma current to the main plasma current ΔIp/Ip is about 12%-30%. The different formats of the frequency-modulated toroidal current were compared.

  19. Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics

    PubMed Central

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M.; Güney, Durdu Ö.

    2014-01-01

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%–95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance. PMID:24811322

  20. KTX circuit model and discharge waveform prediction

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Lan, T.; Mao, W. Z.; You, W.; Li, H.; Liu, A. D.; Xie, J. L.; Wan, S. D.; Liu, W. D.; Yang, L.; Fu, P.; Xiao, C. J.; Ding, W. X.

    2013-10-01

    The Keda Torus eXperiment (KTX) is a constructing reversed field pinch (RFP) device in University of Science and Technology of China. The KTX power supply system includes the Ohmic heating, field shaping and toroidal power supply systems, which produce the Ohmic field, equilibrium field and toroidal field, respectively. The detailed circuit model will be introduced in this poster. Another purpose is to predict its discharge waveforms using the modified Bessel function mode (MBFM), which describes the evolution of plasma current and magnetic flux in RFP base on Taylor theory. Furthermore, the power supply requirements of external field shaping winding are also predicted in the model, which will be very helpful for the design of plasma equilibrium controlling system. Supported by ITER-China program (No. 2011GB106000), NNSFC (Nos. 10990210, 10990211, 10335060 and 10905057), CPSF (No. 20080440104), YIF (No. WK2030040019) and KIPCAS (No. kjcx-yw-n28).

  1. CXSFIT Code Application to Process Charge-Exchange Recombination Spectroscopy Data at the T-10 Tokamak

    NASA Astrophysics Data System (ADS)

    Serov, S. V.; Tugarinov, S. N.; Klyuchnikov, L. A.; Krupin, V. A.; von Hellermann, M.

    2017-12-01

    The applicability of the CXSFIT code to process experimental data from Charge-eXchange Recombination Spectroscopy (CXRS) diagnostics at the T-10 tokamak is studied with a view to its further use for processing experimental data at the ITER facility. The design and operating principle of the CXRS diagnostics are described. The main methods for processing the CXRS spectra of the 5291-Å line of C5+ ions at the T-10 tokamak (with and without subtraction of parasitic emission from the edge plasma) are analyzed. The method of averaging the CXRS spectra over several shots, which is used at the T-10 tokamak to increase the signal-to-noise ratio, is described. The approximation of the spectrum by a set of Gaussian components is used to identify the active CXRS line in the measured spectrum. Using the CXSFIT code, the ion temperature in ohmic discharges and discharges with auxiliary electron cyclotron resonance heating (ECRH) at the T-10 tokamak is calculated from the CXRS spectra of the 5291-Å line. The time behavior of the ion temperature profile in different ohmic heating modes is studied. The temperature profile dependence on the ECRH power is measured, and the dynamics of ECR removal of carbon nuclei from the T-10 plasma is described. Experimental data from the CXRS diagnostics at T-10 substantially contribute to the implementation of physical programs of studies on heat and particle transport in tokamak plasmas and investigation of geodesic acoustic mode properties.

  2. A unified model of density limit in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Zanca, P.; Sattin, F.; Escande, D. F.; Pucella, G.; Tudisco, O.

    2017-05-01

    In this work we identify by analytical and numerical means the conditions for the existence of a magnetic and thermal equilibrium of a cylindrical plasma, in the presence of Ohmic and/or additional power sources, heat conduction and radiation losses by light impurities. The boundary defining the solutions’ space having realistic temperature profile with small edge value takes mathematically the form of a density limit (DL). Compared to previous similar analyses the present work benefits from dealing with a more accurate set of equations. This refinement is elementary, but decisive, since it discloses a tenuous dependence of the DL on the thermal transport for configurations with an applied electric field. Thanks to this property, the DL scaling law is recovered almost identical for two largely different devices such as the ohmic tokamak and the reversed field pinch. In particular, they have in common a Greenwald scaling, linearly depending on the plasma current, quantitatively consistent with experimental results. In the tokamak case the DL dependence on any additional heating approximately follows a 0.5 power law, which is compatible with L-mode experiments. For a purely externally heated configuration, taken as a cylindrical approximation of the stellarator, the DL dependence on transport is found stronger. By adopting suitable transport models, DL takes on a Sudo-like form, in fair agreement with LHD experiments. Overall, the model provides a good zeroth-order quantitative description of the DL, applicable to widely different configurations.

  3. Minimum maximum temperature gradient coil design.

    PubMed

    While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart

    2013-08-01

    Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.

  4. Influence of dimension parameters of the gravity heat pipe on the thermal performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosa, Ľuboš, E-mail: lubos.kosa@fstroj.uniza.sk; Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Jobb, Marián, E-mail: marian.jobb@fstroj.uniza.sk

    Currently the problem with the increasing number of electronic devices is a problem with the outlet Joule heating. Joule heating, also known as ohmic heating and resistive heating, is the process by which the passage of an electric current through a conductor releases heat. Perfect dustproof cooling of electronic components ensures longer life of the equipment. One of more alternatives of heat transfer without the using of mechanical equipment is the use of the heat pipe. Heat pipes are easy to manufacture and maintenance of low input investment cost. The advantage of using the heat pipe is its use inmore » hermetic closed electronic device which is separated exchange of air between the device and the environment. This experiment deals with the influence of changes in the working tube diameter and changing the working fluid on performance parameters. Changing the working fluid and the tube diameter changes the thermal performance of the heat pipe. The result of this paper is finding the optimal diameter with ideal working substance for the greatest heat transfer for 1cm{sup 2} sectional area tube.« less

  5. A patterned ZnO nanorod array/gas sensor fabricated by mechanoelectrospinning-assisted selective growth.

    PubMed

    Wang, Xiaomei; Sun, Fazhe; Huang, Yongan; Duan, Yongqing; Yin, Zhouping

    2015-02-21

    Micropatterned ZnO nanorod arrays were fabricated by the mechanoelectrospinning-assisted direct-writing process and the hydrothermal growth process, and utilized as gas sensors that exhibited excellent Ohmic behavior and sensitivity response to oxidizing gas NO2 at low concentrations (1-100 ppm).

  6. Perturbative tests of theoretical transport models using cold pulse and modulated electron cyclotron heating experiments

    NASA Astrophysics Data System (ADS)

    Kinsey, J. E.; Waltz, R. E.; DeBoo, J. C.

    1999-05-01

    It is difficult to discriminate between various tokamak transport models using standardized statistical measures to assess the goodness of fit with steady-state density and temperature profiles in tokamaks. This motivates consideration of transient transport experiments as a technique for testing the temporal response predicted by models. Results are presented comparing the predictions from the Institute for Fusion Studies—Princeton Plasma Physics Laboratory (IFS/PPPL), gyro-Landau-fluid (GLF23), Multi-mode (MM), Current Diffusive Ballooning Mode (CDBM), and Mixed-shear (MS) transport models against data from ohmic cold pulse and modulated electron cyclotron heating (ECH) experiments. In ohmically heated discharges with rapid edge cooling due to trace impurity injection, it is found that critical gradient models containing a strong temperature ratio (Ti/Te) dependence can exhibit behavior that is qualitatively consistent both spatially and temporally with experimental observation while depending solely on local parameters. On the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], off-axis modulated ECH experiments have been conducted in L-mode (low confinement mode) and the perturbed electron and ion temperature response to multiple heat pulses has been measured across the plasma core. Comparing the predicted Fourier phase of the temperature perturbations, it is found that no single model yielded agreement with both electron and ion phases for all cases. In general, it was found that the IFS/PPPL, GLF23, and MS models agreed well with the ion response, but not with the electron response. The CDBM and MM models agreed well with the electron response, but not with the ion response. For both types of transient experiments, temperature coupling between the electron and ion transport is found to be an essential feature needed in the models for reproducing the observed perturbative response.

  7. Numerical study for peristalsis of Carreau-Yasuda nanomaterial with convective and zero mass flux condition

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmed, Bilal; Alsaedi, A.; Abbasi, F. M.

    2018-03-01

    The present communication investigates flow of Carreau-Yasuda nanofluid in presence of mixed convection and Hall current. Effects of viscous dissipation, Ohmic heating and convective conditions are addressed. In addition zero nanoparticle mass flux condition is imposed. Wave frame analysis is carried out. Coupled differential systems after long wavelength and low Reynolds number are numerically solved. Effects of different parameters on velocity, temperature and concentration are studied. Heat and mass transfer rates are analyzed through tabular values. It is observed that concentration for thermophoresis and Brownian motion parameters has opposite effect. Further heat and mass transfer rates at the upper wall enhances significantly when Hartman number increases and reverse situation is noticed for Hall parameter.

  8. Theory of short-scale field-aligned density striations due to ionospheric heating

    NASA Technical Reports Server (NTRS)

    Lee, M.-C.; Fejer, J. A.

    1978-01-01

    The theoretical saturation spectrum of parametrically excited Langmuir waves in a locally uniform ionosphere is shown by the present calculations to produce, by ohmic dissipation, short-scale field-aligned density striations. The spectrum of the calculated striations is not inconsistent with observations of field-aligned scatter of VHF and UHF waves in ionospheric modification experiments if local increases of the pump field due to focusing are invoked.

  9. Exact Magnetic Diffusion Solutions for Magnetohydrodynamic Code Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D S

    In this paper, the authors present several new exact analytic space and time dependent solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to verify several different elements of an MHD implementation: magnetic diffusion, external circuit time integration, current and voltage energy sources, spatially dependent conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D simulation results from the Ares code.

  10. Turbulence studies with means of reflectometry at TEXTOR

    NASA Astrophysics Data System (ADS)

    Krämer-Flecken, A.; Dreval, V.; Soldatov, S.; Rogister, A.; Vershkov, V.; TEXTOR-team

    2004-11-01

    At TEXTOR, an O-mode heterodyne reflectometer system is installed and operated for the measurement of plasma density fluctuations and turbulence investigations. With two antenna arrays in the equatorial and top positions having two and three horn antennae, respectively, poloidal correlations are investigated under different plasma scenarios. From the amplitude, cross-phase and coherency spectrum, differences in the ohmic and auxiliary heated discharges are investigated. Furthermore the dynamic behaviour of the turbulence is studied in the SOC-IOC transition and in the precursor phase of a disruption. For the latter an increased integrated power spectral density was observed at the X-point of the mode compared with the O-point. Stationary m = 2 mode activity is observed for the first time at TEXTOR by reflectometry. The fluctuation level is calculated for different conditions and rises significantly increasing heating power which is consistent with the L-mode confinement degradation. Correlation measurements yield the measured phase delays which are used to calculate the poloidal phase velocity perpendicular to the magnetic field. In ohmic plasmas the turbulence rotates like a 'rigid body' with constant angular velocity inside the q = 2 surface. The rigid body rotation is broken up during tangential neutral beam injection. From the deduced poloidal wavenumber of the turbulence, most likely ion temperature gradient modes are the driving mechanism of the turbulence.

  11. Development of the striation and filament form of the electrothermal instability

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Awe, T. J.; Yelton, W. G.; McKenzie, B. B.; Peterson, K. J.; Bauer, B. S.; Hutchinson, T. M.; Fuelling, S.; Yates, K. C.; Shipley, G.

    2017-10-01

    Magnetically imploded liners have broad application to ICF, dynamic material property studies, and flux compression. An important consideration in liner performance is the electrothermal instability (ETI), an Ohmic heating instability that manifests in 2 ways: assuming vertical current flow, ETI forms hot, horizontal bands (striations) in metals, and vertical filaments in plasmas. Striations are especially relevant in that they can develop into density perturbations, which then couple to the dangerous magneto Rayleigh-Taylor (MRT) instability during liner acceleration. Recent visible emission images of Ohmically heated rods show evidence of both the striation and filament form of ETI, suggesting several questions: (1) can simulation qualitatively reproduce the data? (2) If so, what seeds the striation ETI, and how does it transition to filaments? (3) Does the striation develop into a strong density perturbation, important for MRT? In this work, we use analytic theory and 3D MHD simulation to study how isolated resistive inclusions, embedded in a perfectly smooth rod and communicating through current redistribution, can be used to address the above questions. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DOE NNSA under contract DE-NA0003525.

  12. Calculation of Eddy Currents In the CTH Vacuum Vessel and Coil Frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Zolfaghari, A. Brooks, A. Michaels, J. Hanson, and G. Hartwell

    2012-09-25

    Knowledge of eddy currents in the vacuum vessel walls and nearby conducting support structures can significantly contribute to the accuracy of Magnetohydrodynamics (MHD) equilibrium reconstruction in toroidal plasmas. Moreover, the magnetic fields produced by the eddy currents could generate error fields that may give rise to islands at rational surfaces or cause field lines to become chaotic. In the Compact Toroidal Hybrid (CTH) device (R0 = 0.75 m, a = 0.29 m, B ≤ 0.7 T), the primary driver of the eddy currents during the plasma discharge is the changing flux of the ohmic heating transformer. Electromagnetic simulations are usedmore » to calculate eddy current paths and profile in the vacuum vessel and in the coil frame pieces with known time dependent currents in the ohmic heating coils. MAXWELL and SPARK codes were used for the Electromagnetic modeling and simulation. MAXWELL code was used for detailed 3D finite-element analysis of the eddy currents in the structures. SPARK code was used to calculate the eddy currents in the structures as modeled with shell/surface elements, with each element representing a current loop. In both cases current filaments representing the eddy currents were prepared for input into VMEC code for MHD equilibrium reconstruction of the plasma discharge. __________________________________________________« less

  13. Solar coronal loop heating by cross-field wave transport

    NASA Technical Reports Server (NTRS)

    Amendt, Peter; Benford, Gregory

    1989-01-01

    Solar coronal arches heated by turbulent ion-cyclotron waves may suffer significant cross-field transport by these waves. Nonlinear processes fix the wave-propagation speed at about a tenth of the ion thermal velocity, which seems sufficient to spread heat from a central core into a large cool surrounding cocoon. Waves heat cocoon ions both through classical ion-electron collisions and by turbulent stochastic ion motions. Plausible cocoon sizes set by wave damping are in roughly kilometers, although the wave-emitting core may be only 100 m wide. Detailed study of nonlinear stabilization and energy-deposition rates predicts that nearby regions can heat to values intermediate between the roughly electron volt foot-point temperatures and the about 100 eV core, which is heated by anomalous Ohmic losses. A volume of 100 times the core volume may be affected. This qualitative result may solve a persistent problem with current-driven coronal heating; that it affects only small volumes and provides no way to produce the extended warm structures perceptible to existing instruments.

  14. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device.

    PubMed

    Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun

    2017-03-03

    Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor's dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.

  15. Laser Powder Welding of a Ti52Al46.8Cr1Si0.2Titanium Aluminide Alloy at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Smal, C. A.; Meacock, C. G.; Rossouw, H. J.

    2011-04-01

    A method for the joining of a Ti52Al46.8Cr1Si0.2Titanium Aluminide alloy by laser powder welding is presented. The technique acts to join materials by consolidating powder with focused laser beam to form weld beads that fill a V joint. In order to avoid the occurrence of residual thermal stresses and hence cracking of the brittle material, the weld plates were heated to a temperature of 1173 K (= 900 °C) by an ohmic heating device, welded and then slowly cooled to produce pore and crack free welds.

  16. Hall effects on peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal conductivity

    NASA Astrophysics Data System (ADS)

    Abbasi, F. M.; Gul, Maimoona; Shehzad, S. A.

    2018-05-01

    Current study provides a comprehensive numerical investigation of the peristaltic transport of boron nitride-ethylene glycol nanofluid through a symmetric channel in presence of magnetic field. Significant effects of Brownian motion and thermophoresis have been included in the energy equation. Hall and Ohmic heating effects are also taken into consideration. Resulting system of non-linear equations is solved numerically using NDSolve in Mathematica. Expressions for velocity, temperature, concentration and streamlines are derived and plotted under the assumption of long wavelength and low Reynolds number. Influence of various parameters on heat and mass transfer rates have been discussed with the help of bar charts.

  17. Plasma non-uniformity in a symmetric radiofrequency capacitively-coupled reactor with dielectric side-wall: a two dimensional particle-in-cell/Monte Carlo collision simulation

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal

    2018-02-01

    A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207-9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484-6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376-90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected) pressure gradient term becomes significant.

  18. Improved Ohmic-contact to AlGaN/GaN using Ohmic region recesses by self-terminating thermal oxidation assisted wet etching technique

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, J.; Wang, H.; Zhu, L.; Wu, W.

    2017-06-01

    Lower Ti/Al/Ni/Au Ohmic contact resistance on AlGaN/GaN with wider rapid thermal annealing (RTA) temperature window was achieved using recessed Ohmic contact structure based on self-terminating thermal oxidation assisted wet etching technique (STOAWET), in comparison with conventional Ohmic contacts. Even at lower temperature such as 650°C, recessed structure by STOAWET could still obtain Ohmic contact with contact resistance of 1.97Ω·mm, while conventional Ohmic structure mainly featured as Schottky contact. Actually, both Ohmic contact recess and mesa isolation processes could be accomplished by STOAWET in one process step and the process window of STOAWET is wide, simplifying AlGaN/GaN HEMT device process. Our experiment shows that the isolation leakage current by STOAWET is about one order of magnitude lower than that by inductivity coupled plasma (ICP) performed on the same wafer.

  19. Entrainment in Laboratory Simulations of Cumulus Cloud Flows

    NASA Astrophysics Data System (ADS)

    Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.

    2010-12-01

    A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.

  20. On the correlation between ‘non-local’ effects and intrinsic rotation reversals in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, P.; Rice, J. E.; Cao, N. M.; Creely, A. J.; Howard, N. T.; Hubbard, A. E.; Irby, J. H.; White, A. E.

    2017-07-01

    Contemporary predictive models for heat and particle transport in tokamak plasmas are based on the assumption that local fluxes can be described in terms of local plasma parameters, where electromagnetic drift-wave-type turbulence is driven by local gradients and results in cross-field transport. The question of whether or not transport could be dominated by non-local terms in certain circumstances is essential for our understanding of transport in magnetically confined plasmas, and critical for developing predictive models for future tokamaks, such as ITER. Perturbative transport experiments using cold-pulse injections at low density seem to challenge the local closure of anomalous transport: a rapid temperature increase in the core of the plasma following a sharp edge cooling is widely observed in tokamaks and helical devices. Past work in Ohmic plasmas in Alcator C-Mod and in ECH plasmas in KSTAR found that the temperature inversions disappear at higher densities, above the intrinsic toroidal rotation reversal density. These observations suggested that the so-called ‘non-local’ heat transport effects were related to the intrinsic rotation reversal, and therefore to changes in momentum transport. In this work, new experiments and analysis at Alcator C-Mod show that intrinsic rotation reversals and disappearance of temperature inversions are not concomitant in Ohmic plasmas at high plasma current and in ICRH L-modes. This new data set shows that the correlation between transient temperature inversions and intrinsic rotation reversals is not universal, suggesting that ‘non-local’ heat transport and momentum transport effects may be affected by different physical mechanisms.

  1. Thermo-mechanical fatigue behavior of reduced activation ferrite/martensite stainless steels

    NASA Astrophysics Data System (ADS)

    Petersen, C.; Rodrian, D.

    2002-12-01

    The thermo-mechanical cycling fatigue (TMCF) behavior of reduced activation ferrite/martensite stainless steels is examined. The test rig consists of a stiff load frame, which is directly heated by the digitally controlled ohmic heating device. Cylindrical specimens are used with a wall thickness of 0.4 mm. Variable strain rates are applied at TMCF test mode, due to the constant heating rate of 5.8 K/s and variable temperature changes. TMCF results of as received EUROFER 97 in the temperature range between 100 and 500-600 °C show a reduction in life time (a factor of 2) compared to F82H mod. and OPTIFER IV. TMCF-experiments with hold times of 100 and 1000 s show dramatic reduction in life time for all three materials.

  2. SPECIAL TOPIC: ITER L mode confinement database

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Greenwald, M.; Stroth, U.; Kardaun, O.; Kus, A.; Schissel, D.; DeBoo, J.; Bracco, G.; Thomsen, K.; Cordey, J. G.; Miura, Y.; Matsuda, T.; Tamai, H.; Takizuda, T.; Hirayama, T.; Kikuchi, H.; Naito, O.; Chudnovskij, A.; Ongena, J.; Hoang, G.

    1997-09-01

    This special topic describes the contents of an L mode database that has been compiled with data from Alcator C-Mod, ASDEX, DIII, DIII-D, FTU, JET, JFT-2M, JT-60, PBX-M, PDX, T-10, TEXTOR, TFTR and Tore Supra. The database consists of a total of 2938 entries, 1881 of which are in the L phase while 922 are ohmically heated only (ohmic). Each entry contains up to 95 descriptive parameters, including global and kinetic information, machine conditioning and configuration. The special topic presents a description of the database and the variables contained therein, and it also presents global and thermal scalings along with predictions for ITER. The L mode thermal confinement time scaling, determined from a subset of 1312 entries for which the τE,th are provided, is τE,th = 0.023Ip0.96BT0.03R1.83(R/a)0.06 κ0.64ne0.40Meff0.20P-0.73 in units of seconds, megamps, teslas, metres, -, -, 10-9 m-1

  3. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials

    PubMed Central

    Khanikaev, A. B.; Arju, N.; Fan, Z.; Purtseladze, D.; Lu, F.; Lee, J.; Sarriugarte, P.; Schnell, M.; Hillenbrand, R.; Belkin, M. A.; Shvets, G.

    2016-01-01

    Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with chiral molecules or other nano objects lacking mirror symmetries in three-dimensional (3D) space. While chiral optical properties are weak in most of naturally occurring materials, they can be engineered and significantly enhanced in synthetic optical media known as chiral metamaterials, where the spatial symmetry of their building blocks is broken on a nanoscale. Although originally discovered in 3D structures, circular dichroism can also emerge in a two-dimensional (2D) metasurface. The origin of the resulting circular dichroism is rather subtle, and is related to non-radiative (Ohmic) dissipation of the constituent metamolecules. Because such dissipation occurs on a nanoscale, this effect has never been experimentally probed and visualized. Using a suite of recently developed nanoscale-measurement tools, we establish that the circular dichroism in a nanostructured metasurface occurs due to handedness-dependent Ohmic heating. PMID:27329108

  4. Application of Townsend avalanche theory to tokamak startup by coaxial helicity injection

    NASA Astrophysics Data System (ADS)

    Hammond, K. C.; Raman, R.; Volpe, F. A.

    2018-01-01

    The Townsend avalanche theory is employed to model and interpret plasma initiation in NSTX by Ohmic heating and coaxial helicity injection (CHI). The model is informed by spatially resolved vacuum calculations of electric field and magnetic field line connection length in the poloidal cross-section. The model is shown to explain observations of Ohmic startup including the duration and location of breakdown. Adapting the model to discharges initiated by CHI offers insight into the causes of upper divertor (absorber) arcs in cases where the discharge fails to start in the lower divertor gap. Finally, upper and lower limits are established for vessel gas fill based on requirements for breakdown and radiation. It is predicted that CHI experiments on NSTX-U should be able to use as much as four times the amount of prefill gas employed in CHI experiments in NSTX. This should provide greater flexibility for plasma start-up, as the injector flux is projected to be increased in NSTX-U.

  5. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink.

    PubMed

    Wang, Kai; Schonbrun, Ethan; Steinvurzel, Paul; Crozier, Kenneth B

    2011-09-13

    Although optical tweezers based on far-fields have proven highly successful for manipulating objects larger than the wavelength of light, they face difficulties at the nanoscale because of the diffraction-limited focused spot size. This has motivated interest in trapping particles with plasmonic nanostructures, as they enable intense fields confined to sub-wavelength dimensions. A fundamental issue with plasmonics, however, is Ohmic loss, which results in the water, in which the trapping is performed, being heated and to thermal convection. Here we demonstrate the trapping and rotation of nanoparticles using a template-stripped plasmonic nanopillar incorporating a heat sink. Our simulations predict an ~100-fold reduction in heating compared with previous designs. We further demonstrate the stable trapping of polystyrene particles, as small as 110 nm in diameter, which can be rotated around the nanopillar actively, by manual rotation of the incident linear polarization, or passively, using circularly polarized illumination.

  6. High Temperature Characteristics of Pt/TaSi2/Pt/W and Pt/Ti/W Diffusion Barrier Systems for Ohmic Contacts to 4H-SiC

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy

    2017-01-01

    The degradation of ohmic contacts to 4H-SiC pressure sensors over time at high temperature is primarily due to two failure mechanisms: migrating bond pad Au and atmospheric O toward the ohmic contact SiC interface and the inter-metallic mixing between diffusion barrier systems (DBS) and the underlying ohmic contact metallization. We investigated the effectiveness of Pt/TaSi2/Pt/W (DBS-A) and Pt/Ti/W (DBS-B) in preventing Au and O diffusion through the underlying binary Ti/W or alloyed W50:Ni50 ohmic contacts to 4H-SiC and the DBS ohmic contact intermixing at temperature up to 700 C.

  7. Energy balance in TM-1-MH Tokamak (ohmical heating)

    NASA Astrophysics Data System (ADS)

    Stoeckel, J.; Koerbel, S.; Kryska, L.; Kopecky, V.; Dadalec, V.; Datlov, J.; Jakubka, K.; Magula, P.; Zacek, F.; Pereverzev, G. V.

    1981-10-01

    Plasma in the TM-1-MH Tokamak was experimentally studied in the parameter range: tor. mg. field B = 1,3 T, plasma current I sub p = 14 kA, electron density N sub E 3.10 to the 19th power cubic meters. The two numerical codes are available for the comparison with experimental data. TOKATA-code solves simplified energy balance equations for electron and ion components. TOKSAS-code solves the detailed energy balance of the ion component.

  8. Plasma Confinement in the UCLA Electric Tokamak.

    NASA Astrophysics Data System (ADS)

    Taylor, Robert J.

    2001-10-01

    The main goal of the newly constructed large Electric Tokamak (R = 5 m, a = 1 m, BT < 0.25 T) is to access an omnigeneous, unity beta(S.C. Cowley, P.K. Kaw, R.S. Kelly, R.M. Kulsrud, Phys. fluids B 3 (1991) 2066.) plasma regime. The design goal was to achieve good confinement at low magnetic fields, consistent with the high beta goal. To keep the program cost down, we adopted the use of ICRF as the primary heating source. Consequently, antenna surfaces covering 1/2 of the surface of the tokamak has been prepared for heating and current drive. Very clean hydrogenic plasmas have been achieved with loop voltage below 0.7 volt and densities 3 times above the Murakami limit, n(0) > 8 x 10^12 cm-3 when there is no MHD activity. The electron temperature, derived from the plasma conductivity is > 250 eV with a central electron energy confinement time > 350 msec in ohmic conditions. The sawteeth period is 50 msec. Edge plasma rotation is induced by plasma biasing via electron injection in an analogous manner to that seen in CCT(R.J. Taylor, M.L. Brown, B.D. Fried, H. Grote, J.R. Liberati, G.J. Morales, P. Pribyl, D. Darrow, and M. Ono. Phys. Rev Lett. 63 2365 1989.) and the neoclassical bifurcation is close to that described by Shaing et al(K.C. Shaing and E.C. Crume, Phys. Rev. Lett. 63 2369 (1989).). In the ohmic phase the confinement tends to be MHD limited. The ICRF heating eliminates the MHD disturbances. Under second harmonic heating conditions, we observe an internal confinement peaking characterized by doubling of the core density and a corresponding increase in the central electron temperature. Charge exchange data, Doppler data in visible H-alpha light, and EC radiation all indicate that ICRF heating works much better than expected. The major effort is focused on increasing the power input and controlling the resulting equilibrium. This task appears to be easy since our current pulses are approaching the 3 second mark without RF heating or current drive. Our initial experience with current profile control, needed for high beta plasma equilibrium, will be also discussed.

  9. Computational design and refinement of self-heating lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Guang; Zhang, Guangsheng; Wang, Chao-Yang

    2016-10-01

    The recently discovered self-heating lithium ion battery has shown rapid self-heating from subzero temperatures and superior power thereafter, delivering a practical solution to poor battery performance at low temperatures. Here, we describe and validate an electrochemical-thermal coupled model developed specifically for computational design and improvement of the self-heating Li-ion battery (SHLB) where nickel foils are embedded in its structure. Predicting internal cell characteristics, such as current, temperature and Li-concentration distributions, the model is used to discover key design factors affecting the time and energy needed for self-heating and to explore advanced cell designs with the highest self-heating efficiency. It is found that ohmic heat generated in the nickel foil accounts for the majority of internal heat generation, resulting in a large internal temperature gradient from the nickel foil toward the outer cell surface. The large through-plane temperature gradient leads to highly non-uniform current distribution, and more importantly, is found to be the decisive factor affecting the heating time and energy consumption. A multi-sheet cell design is thus proposed and demonstrated to substantially minimize the temperature gradient, achieving 30% more rapid self-heating with 27% less energy consumption than those reported in the literature.

  10. Correlation between thermal annealing temperature and Joule-heating based insulator-metal transition in VO2 nanobeams

    NASA Astrophysics Data System (ADS)

    Rathi, Servin; Park, Jin-Hyung; Lee, In-yeal; Jin Kim, Min; Min Baik, Jeong; Kim, Gil-Ho

    2013-11-01

    Rapid thermal annealing of VO2 nanobeams in an ambient argon environment has been carried out at various temperatures after device fabrication. Our analysis revealed that increasing the annealing temperature from 200 °C to 400 °C results in the reduction of both ohmic and nanobeam resistances with an appreciable decrease in joule-heating based transition voltage and transition temperature, while samples annealed at 500 °C exhibited a conducting rutile-phase like characteristics at room temperature. In addition, these variation trends were explored using a physical model and the results were found to be in agreement with the observed results, thus verifying the model.

  11. Far-infrared laser diagnostics on the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Gao, X.; Lu, H. J.; Guo, Q. L.; Wan, Y. X.; Tong, X. D.

    1995-01-01

    A multichannel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-6M tokamak. The structure of the seven-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous-wave glow discharge HCN laser with a cavity length of 3.4 m and power output of about 100 mW at 337 μm. The detection sensitivity was 1/15 fringe with a temporal resolution of 0.1 ms. Experimental results were measured by the seven-channel FIR HCN laser interferometer with edge Ohmic heating, a pumping limiter, and ion cyclotron resonant heating on the HT-6M tokamak are reported.

  12. Improved Confinement by Edge Multi-pulse Turbulent Heating on HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Mao, Jian-shan; Luo, Jia-rong; Li, Jian-gang; Pan, Yuan; Wang, Mao-quan; Liu, Bao-hua; Wan, Yuan-xi; Li, Qiang; Wu, Xin-chao; Liang, Yun-feng; Xu, Yu-hong; Yu, Chang-xuan

    1997-10-01

    In the recent experiment on HT-6M tokamak, an improved ohmic confinement phase has been observed after application of the edge multi-pulse turbulent heating, and variance of plasma current ΔIp/Ip is about 14-20%. The improved edge plasma confinement phase is characterized by (a) increased average electron density bar Ne and electron temperature Te; (b) reduced Hα radiation from the edge; (c) steeper density and temperature profiles at the edge; (d) a more negative radial electric field over a region of ~ 5 mm deep inside the limiter; (e) a deeper electrostatic potential well at the edge; (f) reduced magnetic fluctuations at the edge.

  13. Comparative electron temperature measurements of Thomson scattering and electron cyclotron emission diagnostics in TCABR plasmas.

    PubMed

    Alonso, M P; Figueiredo, A C A; Borges, F O; Elizondo, J I; Galvão, R M O; Severo, J H F; Usuriaga, O C; Berni, L A; Machida, M

    2010-10-01

    We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfvén wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfvén wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.

  14. Electrical, Chemical, And Microstructural Analysis of the Thermal Stability of Nickel-based Ohmic Contacts to Silicon Carbide for High-Temperature Electronics

    NASA Astrophysics Data System (ADS)

    Virshup, Ariel R.

    With increasing attention on curbing the emission of pollutants into the atmosphere, chemical sensors that can be used to monitor and control these unwanted emissions are in great demand. Examples include monitoring of hydrocarbons from automobile engines and monitoring of flue gases such as CO emitted from power plants. One of the critical limitations in high-temperature SiC gas sensors, however, is the degradation of the metal-SiC contacts over time. In this dissertation, we investigated the high-temperature stability of Pt/TaSix/Ni/SiC ohmic contacts, which have been implemented in SiC-based gas sensors developed for applications in diesel engines and power plants. The high-temperature stability of a Pt/TaSi2/Ni/SiC ohmic contact metallization scheme was characterized using a combination of current-voltage measurements, Auger electron spectroscopy, secondary ion mass spectrometry, and transmission electron microscope imaging and associated analytical techniques. Increasing the thicknesses of the Pt and TaSi2 layers promoted electrical stability of the contacts, which remained ohmic at 600°C in air for over 300 h; the specific contact resistance showed only a gradual increase from an initial value of 5.2 x 10-5 O-cm 2. We observed a continuous silicon-oxide layer in the thinner contact structures, which failed after 36 h of heating. It was found that the interface between TaSix and NiySi was weakened by the accumulation of free carbon (produced by the reaction of Ni and SiC), which in turn facilitated oxygen diffusion from the contact edges. Additional oxygen diffusion occurred along grain boundaries in the Pt overlayer. Meanwhile, thicker contacts, with less interfacial free carbon and enhanced electrical stability contained a much lower oxygen concentration that was distributed across the contact layers, precluding the formation of an electrically insulating contact structure.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ke-Wei; Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Fujihashi, Yuta

    A master equation approach based on an optimized polaron transformation is adopted for dynamics simulation with simultaneous diagonal and off-diagonal spin-boson coupling. Two types of bath spectral density functions are considered, the Ohmic and the sub-Ohmic. The off-diagonal coupling leads asymptotically to a thermal equilibrium with a nonzero population difference P{sub z}(t → ∞) ≠ 0, which implies localization of the system, and it also plays a role in restraining coherent dynamics for the sub-Ohmic case. Since the new method can extend to the stronger coupling regime, we can investigate the coherent-incoherent transition in the sub-Ohmic environment. Relevant phase diagramsmore » are obtained for different temperatures. It is found that the sub-Ohmic environment allows coherent dynamics at a higher temperature than the Ohmic environment.« less

  16. An explicit scheme for ohmic dissipation with smoothed particle magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Yusuke; Iwasaki, Kazunari; Inutsuka, Shu-ichiro

    2013-09-01

    In this paper, we present an explicit scheme for Ohmic dissipation with smoothed particle magnetohydrodynamics (SPMHD). We propose an SPH discretization of Ohmic dissipation and solve Ohmic dissipation part of induction equation with the super-time-stepping method (STS) which allows us to take a longer time step than Courant-Friedrich-Levy stability condition. Our scheme is second-order accurate in space and first-order accurate in time. Our numerical experiments show that optimal choice of the parameters of STS for Ohmic dissipation of SPMHD is νsts ˜ 0.01 and Nsts ˜ 5.

  17. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device

    NASA Astrophysics Data System (ADS)

    Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun

    2017-03-01

    Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor’s dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.

  18. Thermometry in dielectrophoresis chips for contact-free cell handling

    NASA Astrophysics Data System (ADS)

    Jaeger, M. S.; Mueller, T.; Schnelle, T.

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells.

  19. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    NASA Astrophysics Data System (ADS)

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.

    2013-07-01

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  20. Ensemble Monte Carlo particle investigation of hot electron induced source-drain burnout characteristics of GaAs field-effect transistors

    NASA Astrophysics Data System (ADS)

    Moglestue, C.; Buot, F. A.; Anderson, W. T.

    1995-08-01

    The lattice heating rate has been calculated for GaAs field-effect transistors of different source-drain channel design by means of the ensemble Monte Carlo particle model. Transport of carriers in the substrate and the presence of free surface charges are also included in our simulation. The actual heat generation was obtained by accounting for the energy exchanged with the lattice of the semiconductor during phonon scattering. It was found that the maximum heating rate takes place below the surface near the drain end of the gate. The results correlate well with a previous hydrodynamic energy transport estimate of the electronic energy density, but shifted slightly more towards the drain. These results further emphasize the adverse effects of hot electrons on the Ohmic contacts.

  1. Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST Team

    2018-01-01

    The transient perturbation method with metallic impurities such as iron (Fe, Z  =  26) and copper (Cu, Z  =  29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.

  2. Numerical study of MHD micropolar carreau nanofluid in the presence of induced magnetic field

    NASA Astrophysics Data System (ADS)

    Atif, S. M.; Hussain, S.; Sagheer, M.

    2018-03-01

    The heat and mass transfer of a magnetohydrodynamic micropolar Carreau nanofluid on a stretching sheet has been analyzed in the presence of induced magnetic field. An internal heating, thermal radiation, Ohmic and viscous dissipation effects are also considered. The system of the governing partial differential equations is converted into the ordinary differential equations by means of the suitable similarity transformation. The resulting ordinary differential equations are then solved by the well known shooting technique. The impact of emerging physical parameters on the velocity, angular velocity, temperature and concentration profiles are analyzed graphically. The dimensionless velocity is enhanced for the Weissenberg number and the power law index while reverse situation is studied in the thermal and the concentration profile.

  3. Multi-megawatt millimeter-wave source for plasma heating and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, J.L.; Wang, C.; Ganguly, A.K.

    1995-12-31

    Results of a feasibility study are summarized for multi-megawatt mm-wavelength gyroharmonic converters for plasma heating applications. Output power in these devices is extracted at a high harmonic of the modulation frequency of a spatiotemporally gyrating electron beam prepared using cyclotron autoresonance acceleration. An example is described in which an output of 2.2 MW at 148.5 GHz is predicted at the 13th harmonic of an 8 MW 11.424 GHz CARA, after including waveguide ohmic wall losses. Achievement of this performance requires a high quality 200 kV, 16 A luminar pencil beam injected into CARA, and effective suppression of competing output modes;more » means to realize these requirements are discussed.« less

  4. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.

    2016-04-01

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  5. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    NASA Astrophysics Data System (ADS)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  6. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.; McGuffey, C., E-mail: cmcguffey@ucsd.edu; Qiao, B.

    2016-04-15

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam depositionmore » profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.« less

  7. Low-loss plasmon-assisted electro-optic modulator.

    PubMed

    Haffner, Christian; Chelladurai, Daniel; Fedoryshyn, Yuriy; Josten, Arne; Baeuerle, Benedikt; Heni, Wolfgang; Watanabe, Tatsuhiko; Cui, Tong; Cheng, Bojun; Saha, Soham; Elder, Delwin L; Dalton, Larry R; Boltasseva, Alexandra; Shalaev, Vladimir M; Kinsey, Nathaniel; Leuthold, Juerg

    2018-04-01

    For nearly two decades, researchers in the field of plasmonics 1 -which studies the coupling of electromagnetic waves to the motion of free electrons near the surface of a metal 2 -have sought to realize subwavelength optical devices for information technology 3-6 , sensing 7,8 , nonlinear optics 9,10 , optical nanotweezers 11 and biomedical applications 12 . However, the electron motion generates heat through ohmic losses. Although this heat is desirable for some applications such as photo-thermal therapy, it is a disadvantage in plasmonic devices for sensing and information technology 13 and has led to a widespread view that plasmonics is too lossy to be practical. Here we demonstrate that the ohmic losses can be bypassed by using 'resonant switching'. In the proposed approach, light is coupled to the lossy surface plasmon polaritons only in the device's off state (in resonance) in which attenuation is desired, to ensure large extinction ratios between the on and off states and allow subpicosecond switching. In the on state (out of resonance), destructive interference prevents the light from coupling to the lossy plasmonic section of a device. To validate the approach, we fabricated a plasmonic electro-optic ring modulator. The experiments confirm that low on-chip optical losses, operation at over 100 gigahertz, good energy efficiency, low thermal drift and a compact footprint can be combined in a single device. Our result illustrates that plasmonics has the potential to enable fast, compact on-chip sensing and communications technologies.

  8. High temperature electrically conducting ceramic heating element and control system

    NASA Technical Reports Server (NTRS)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  9. Shaping metallic glasses by electromagnetic pulsing

    PubMed Central

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  10. Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers

    DOEpatents

    Carrigan, Charles R.; Nitao, John J.

    2003-06-10

    Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

  11. Prospects for Alpha Particle Heating in JET in the Hot Ion Regime

    NASA Astrophysics Data System (ADS)

    Cordey, J. G.; Keilhacker, M.; Watkins, M. L.

    1987-01-01

    The prospects for alpha particle heating in JET are discussed. A computational model is developed to represent adequately the neutron yield from JET plasmas heated by neutral beam injection. This neutral beam model, augmented by a simple plasma model, is then used to determine the neutron yields and fusion Q-values anticipated for different heating schemes in future operation of JET with tritium. The relative importance of beam-thermal and thermal-thermal reactions is pointed out and the dependence of the results on, for example, plasma density, temperature, energy confinement and purity is shown. Full 1½-D transport code calculations, based on models developed for ohmic, ICRF and NBI heated JET discharges, are used also to provide a power scan for JET operation in tritium in the low density, high ion temperature regime. The results are shown to be in good agreement with the estimates made using the simple plasma model and indicate that, based on present knowledge, a fusion Q-value in the plasma centre above unity should be achieved in JET.

  12. Thermally coupled moving boundary model for charge-discharge of LiFePO4/C cells

    NASA Astrophysics Data System (ADS)

    Khandelwal, Ashish; Hariharan, Krishnan S.; Gambhire, Priya; Kolake, Subramanya Mayya; Yeo, Taejung; Doo, Seokgwang

    2015-04-01

    Optimal thermal management is a key requirement in commercial utilization of lithium ion battery comprising of phase change electrodes. In order to facilitate design of battery packs, thermal management systems and fast charging profiles, a thermally coupled electrochemical model that takes into account the phase change phenomenon is required. In the present work, an electrochemical thermal model is proposed which includes the biphasic nature of phase change electrodes, such as lithium iron phosphate (LFP), via a generalized moving boundary model. The contribution of phase change to the heat released during the cell operation is modeled using an equivalent enthalpy approach. The heat released due to phase transformation is analyzed in comparison with other sources of heat such as reversible, irreversible and ohmic. Detailed study of the thermal behavior of the individual cell components with changing ambient temperature, rate of operation and heat transfer coefficient is carried out. Analysis of heat generation in the various regimes is used to develop cell design and operating guidelines. Further, different charging protocols are analyzed and a model based methodology is suggested to design an efficient quick charging protocol.

  13. Ring discharge on the backsurface of a composite skin with ohmic anisotropy in response to frontal high current injection

    NASA Astrophysics Data System (ADS)

    Lee, T. S.; Robb, J. D.

    The ring discharge hazard to a carbon-reinforced-composites fuel tank skin under lightning strike conditions is investigated. A model of anisotropy in electric conductivity is adopted whereby longitudinal conductivity and transverse conductivity are considered separately. It is concluded that the current flow pattern contains a stagnation-dominated near-field region and a geometry-dominated far-field decaying region. While this pattern is unaltered by anisotropy in conductivity, the accompanying nonliner electrical field pattern is greatly distorted. It is noted that conclusions applicable to the ignition hazard which were derived from the model of a uniform scalar conductivity for the skin still remain intact.

  14. Dual ohmic contact to N- and P-type silicon carbide

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  15. Demonstration of improvement in the signal-to-noise ratio of Thomson scattering signal obtained by using a multi-pass optical cavity on the Tokyo Spherical Tokamak-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Togashi, H., E-mail: togashi@fusion.k.u-tokyo.ac.jp; Ejiri, A.; Nakamura, K.

    2014-11-15

    The multi-pass Thomson scattering (TS) scheme enables obtaining many photons by accumulating multiple TS signals. The signal-to-noise ratio (SNR) depends on the accumulation number. In this study, we performed multi-pass TS measurements for ohmically heated plasmas, and the relationship between SNR and the accumulation number was investigated. As a result, improvement of SNR in this experiment indicated similar tendency to that calculated for the background noise dominant situation.

  16. Electron thermal confinement in a partially stochastic magnetic structure

    NASA Astrophysics Data System (ADS)

    Morton, L. A.; Young, W. C.; Hegna, C. C.; Parke, E.; Reusch, J. A.; Den Hartog, D. J.

    2018-04-01

    Using a high-repetition-rate Thomson scattering diagnostic, we observe a peak in electron temperature Te coinciding with the location of a large magnetic island in the Madison Symmetric Torus. Magnetohydrodynamic modeling of this quasi-single helicity plasma indicates that smaller adjacent islands overlap with and destroy the large island flux surfaces. The estimated stochastic electron thermal conductivity ( ≈30 m 2/s ) is consistent with the conductivity inferred from the observed Te gradient and ohmic heating power. Island-shaped Te peaks can result from partially stochastic magnetic islands.

  17. A complete two-phase model of a porous cathode of a PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.

    This paper has developed a complete two-phase model of a proton exchange membrane (PEM) fuel cell by considering fluid flow, heat transfer and current simultaneously. In fluid flow, two momentum equations governing separately the gaseous-mixture velocity (u g) and the liquid-water velocity (u w) illustrate the behaviors of the two-phase flow in a porous electrode. Correlations for the capillary pressure and the saturation level connect the above two-fluid transports. In heat transfer, a local thermal non-equilibrium (LTNE) model accounting for intrinsic heat transfer between the reactant fluids and the solid matrices depicts the interactions between the reactant-fluid temperature (T f) and the solid-matrix temperature (T s). The irreversibility heating due to electrochemical reactions, Joule heating arising from Ohmic resistance, and latent heat of water condensation/evaporation are considered in the present non-isothermal model. In current, Ohm's law is applied to yield the conservations in ionic current (i m) and electronic current (i s) in the catalyst layer. The Butler-Volmer correlation describes the relation of the potential difference (overpotential) and the transfer current between the electrolyte (such as Nafion™) and the catalyst (such as Pt/C).

  18. Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.

    The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less

  19. INSTRUMENTS AND METHODS OF INVESTIGATION: Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures

    NASA Astrophysics Data System (ADS)

    Asinovskii, Erik I.; Kirillin, Alexander V.; Kostanovskii, Alexander V.

    2002-08-01

    A consistent procedure for plotting the carbon melting and boiling coexistence curves based on published data and the authors' experimental results is proposed. The parameters of a triple point are predicted to differ markedly from the currently accepted values: pt approx1 bar and Tt approx 4000 K. Two types of experimental facilities were used, with laser heating of samples in one and direct ohmic heating in the other. The existence of a carbyne region (a stable linear polymer consisting of carbon atoms) in the carbon phase diagram is discussed. Results on the direct solid-phase graphite - carbyne transition are presented, and this is shown to occur under certain conditions in the form of a thermal explosion.

  20. A thermal oscillating two-stream instability

    NASA Technical Reports Server (NTRS)

    Dysthe, K. B.; Mjolhus, E.; Rypdal, K.; Pecseli, H. L.

    1983-01-01

    A theory for the oscillating two-stream instability, in which the Ohmic heating of the electrons constitutes the nonlinearity, is developed for an inhomogeneous and magnetized plasma. Its possible role in explaining short-scale, field-aligned irregularities observed in ionospheric heating experiments is emphasized. The theory predicts that the initial growth of such irregularities is centered around the level of upper hybrid resonance. Furthermore, plane disturbances nearly parallel to the magnetic meridian plane have the largest growth rates. Expressions for threshold, growth rate, and transverse scale of maximum growth are obtained. Special attention is paid to the transport theory, since the physical picture depends heavily on the kind of electron collisions which dominate. This is due to the velocity dependence of collision frequencies, which gives rise to the thermal forces

  1. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOEpatents

    Raffetto, Mark [Raleigh, NC; Bharathan, Jayesh [Cary, NC; Haberern, Kevin [Cary, NC; Bergmann, Michael [Chapel Hill, NC; Emerson, David [Chapel Hill, NC; Ibbetson, James [Santa Barbara, CA; Li, Ting [Ventura, CA

    2012-01-03

    A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

  2. Fabricating Ohmic contact on Nb-doped SrTiO{sub 3} surface in nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuhang; National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621999; Shi, Xiaolan

    2016-05-09

    Fabricating reliable nano-Ohmic contact on wide gap semiconductors is an important yet difficult step in oxide nanoelectronics. We fabricated Ohmic contact on the n-type wide gap oxide Nb-doped SrTiO{sub 3} in nanoscale by mechanically scratching the surface using an atomic force microscopy tip. Although contacted to high work function metal, the scratched area exhibits nearly linear IV behavior with low contact resistance, which maintains for hours in vacuum. In contrast, the unscratched area shows Fowler–Nordheim tunneling dominated Schottky rectifying behavior with high contact resistance. It was found that the Ohmic conductivity in the scratched area was drastically suppressed by oxygenmore » gas indicating the oxygen vacancy origin of the Ohmic behavior. The surface oxygen vacancy induced barrier width reduction was proposed to explain the phenomena. The nanoscale approach is also applicable to macroscopic devices and has potential application in all-oxide devices.« less

  3. Development of Numerical Methods to Estimate the Ohmic Breakdown Scenarios of a Tokamak

    NASA Astrophysics Data System (ADS)

    Yoo, Min-Gu; Kim, Jayhyun; An, Younghwa; Hwang, Yong-Seok; Shim, Seung Bo; Lee, Hae June; Na, Yong-Su

    2011-10-01

    The ohmic breakdown is a fundamental method to initiate the plasma in a tokamak. For the robust breakdown, ohmic breakdown scenarios have to be carefully designed by optimizing the magnetic field configurations to minimize the stray magnetic fields. This research focuses on development of numerical methods to estimate the ohmic breakdown scenarios by precise analysis of the magnetic field configurations. This is essential for the robust and optimal breakdown and start-up of fusion devices especially for ITER and its beyond equipped with low toroidal electric field (ET <= 0.3 V/m). A field-line-following analysis code based on the Townsend avalanche theory and a particle simulation code are developed to analyze the breakdown characteristics of actual complex magnetic field configurations including the stray magnetic fields in tokamaks. They are applied to the ohmic breakdown scenarios of tokamaks such as KSTAR and VEST and compared with experiments.

  4. Development of an Extreme High Temperature n-type Ohmic Contact to Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.; Okojie, Robert S.; Lukco, Dorothy

    2011-01-01

    We report on the initial demonstration of a tungsten-nickel (75:25 at. %) ohmic contact to silicon carbide (SiC) that performed for up to fifteen hours of heat treatment in argon at 1000 C. The transfer length method (TLM) test structure was used to evaluate the contacts. Samples showed consistent ohmic behavior with specific contact resistance values averaging 5 x 10-4 -cm2. The development of this contact metallization should allow silicon carbide devices to operate more reliably at the present maximum operating temperature of 600 C while potentially extending operations to 1000 C. Introduction Silicon Carbide (SiC) is widely recognized as one of the materials of choice for high temperature, harsh environment sensors and electronics due to its ability to survive and continue normal operation in such environments [1]. Sensors and electronics in SiC have been developed that are capable of operating at temperatures of 600 oC. However operating these devices at the upper reliability temperature threshold increases the potential for early degradation. Therefore, it is important to raise the reliability temperature ceiling higher, which would assure increased device reliability when operated at nominal temperature. There are also instances that require devices to operate and survive for prolonged periods of time above 600 oC [2, 3]. This is specifically needed in the area of hypersonic flight where robust sensors are needed to monitor vehicle performance at temperature greater than 1000 C, as well as for use in the thermomechanical characterization of high temperature materials (e.g. ceramic matrix composites). While SiC alone can withstand these temperatures, a major challenge is to develop reliable electrical contacts to the device itself in order to facilitate signal extraction

  5. A Study on Ohmic Contact to Dry-Etched p-GaN

    NASA Astrophysics Data System (ADS)

    Hu, Cheng-Yu; Ao, Jin-Ping; Okada, Masaya; Ohno, Yasuo

    Low-power dry-etching process has been adopted to study the influence of dry-etching on Ohmic contact to p-GaN. When the surface layer of as-grown p-GaN was removed by low-power SiCl4/Cl2-etching, no Ohmic contact can be formed on the low-power dry-etched p-GaN. The same dry-etching process was also applied on n-GaN to understand the influence of the low-power dry-etching process. By capacitance-voltage (C-V) measurement, the Schottky barrier heights (SBHs) of p-GaN and n-GaN were measured. By comparing the change of measured SBHs on p-GaN and n-GaN, it was suggested that etching damage is not the only reason responsible for the degraded Ohmic contacts to dry-etched p-GaN and for Ohmic contact formatin, the original surface layer of as-grown p-GaN have some special properties, which were removed by dry-etching process. To partially recover the original surface of as-grown p-GaN, high temperature annealing (1000°C 30s) was tried on the SiCl4/Cl2-etched p-GaN and Ohmic contact was obtained.

  6. Study on the failure temperature of Ti/Pt/Au and Pt5Si2-Ti/Pt/Au metallization systems

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Han, Jianqiang; Yin, Yijun; Dong, Lizhen; Niu, Wenju

    2017-09-01

    The Ti/Pt/Au metallization system has an advantage of resisting KOH or TMAH solution etching. To form a good ohmic contact, the Ti/Pt/Au metallization system must be alloyed at 400 °C. However, the process temperatures of typical MEMS packaging technologies, such as anodic bonding, glass solder bonding and eutectic bonding, generally exceed 400 °C. It is puzzling if the Ti/Pt/Au system is destroyed during the subsequent packaging process. In the present work, the resistance of doped polysilicon resistors contacted by the Ti/Pt/Au metallization system that have undergone different temperatures and time are measured. The experimental results show that the ohmic contacts will be destroyed if heated to 500 °C. But if a 20 nm Pt film is sputtered on heavily doped polysilicon and alloyed at 700 °C before sputtering Ti/Pt/Au films, the Pt5Si2-Ti/Pt/Au metallization system has a higher service temperature of 500 °C, which exceeds process temperatures of most typical MEMS packaging technologies. Project supported by the National Natural Science Foundation of China (No. 61376114).

  7. Reverse Current in Solar Flares

    NASA Technical Reports Server (NTRS)

    Knight, J. W., III

    1978-01-01

    An idealized steady state model of a stream of energetic electrons neutralized by a reverse current in the pre-flare solar plasma was developed. These calculations indicate that, in some cases, a significant fraction of the beam energy may be dissipated by the reverse current. Joule heating by the reverse current is a more effective mechanism for heating the plasma than collisional losses from the energetic electrons because the Ohmic losses are caused by thermal electrons in the reverse current which have much shorter mean free paths than the energetic electrons. The heating due to reverse currents is calculated for two injected energetic electron fluxes. For the smaller injected flux, the temperature of the coronal plasma is raised by about a factor of two. The larger flux causes the reverse current drift velocity to exceed the critical velocity for the onset of ion cyclotron turbulence, producing anomalous resistivity and an order of magnitude increase in the temperature. The heating is so rapid that the lack of ionization equilibrium may produce a soft X-ray and EUV pulse from the corona.

  8. High-order Two-Fluid Plasma Solver for Direct Numerical Simulations of Magnetic Flows with Realistic Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Li, Zhaorui; Livescu, Daniel

    2017-11-01

    The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.

  9. Carrier Transport of Silver Nanowire Contact to p-GaN and its Influence on Leakage Current of LEDs

    NASA Astrophysics Data System (ADS)

    Oh, Munsik; Kang, Jae-Wook; Kim, Hyunsoo

    2018-03-01

    The authors investigated the silver nanowires (AgNWs) contact formed on p-GaN. Transmission line model applied to the AgNWs contact to p-GaN produced near ohmic contact with a specific contact resistance (ρ sc) of 10-1˜10-4 Ω·cm2. Noticeably, the contact resistance had a strong bias-voltage (or current-density) dependence associated with a local joule heating effect. Current-voltage-temperature (I-V-T) measurement revealed a strong temperature dependence with respect to ρ sc, indicating that the temperature played a key role of an enhanced carrier transport. The local joule heating at AgNW/GaN interface, however, resulted in a generation of leakage current of light-emitting diodes (LEDs) caused by degradation of AgNW contact.

  10. Evidence of a primordial solar wind. [T Tauri-type evolution model

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1974-01-01

    A model is reviewed which requires a T Tauri 'wind' and at the same time encompasses certain early-object stellar features. The theory rests on electromagnetic induction driven by the 'wind'. Plasma confinement of the induced field prohibits a scattered field, and all energy loss is via ohmic heating in the scatterer (i.e., planetary objects). Two modes, one caused by the interplanetary electric field (transverse magnetic) and the other by time variations in the interplanetary magnetic field (transverse electric) are present. Parent body melting, lunar surface melting, and a primordial magnetic field are components of the proposed model.

  11. Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Joakim; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore; Ni, Pavel

    Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side-on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.

  12. Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore; Andersson, Joakim; Ni, Pavel

    Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.

  13. Influence of Magnetic Field Ripple on the Intrinsic Rotation of Tokamak Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nave, M. F. F.; Johnson, T.; Eriksson, L.-G.

    Using the unique capability of JET to monotonically change the amplitude of the magnetic field ripple, without modifying other relevant equilibrium conditions, the effect of the ripple on the angular rotation frequency of the plasma column was investigated under the conditions of no external momentum input. The ripple amplitude was varied from 0.08% to 1.5% in Ohmic and ion-cyclotron radio-frequency (ICRF) heated plasmas. In both cases the ripple causes counterrotation, indicating a strong torque due to nonambipolar transport of thermal ions and in the case of ICRF also fast ions.

  14. Minimization of Ohmic Losses for Domain Wall Motion in a Ferromagnetic Nanowire

    NASA Astrophysics Data System (ADS)

    Tretiakov, O. A.; Liu, Y.; Abanov, Ar.

    2010-11-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain-wall velocity we find the time dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic.

  15. Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements.

    PubMed

    Polley, Craig M; Clarke, Warrick R; Simmons, Michelle Y

    2011-10-03

    We examine nickel silicide as a viable ohmic contact metallization for low-temperature, low-magnetic-field transport measurements of atomic-scale devices in silicon. In particular, we compare a nickel silicide metallization with aluminium, a common ohmic contact for silicon devices. Nickel silicide can be formed at the low temperatures (<400°C) required for maintaining atomic precision placement in donor-based devices, and it avoids the complications found with aluminium contacts which become superconducting at cryogenic measurement temperatures. Importantly, we show that the use of nickel silicide as an ohmic contact at low temperatures does not affect the thermal equilibration of carriers nor contribute to hysteresis in a magnetic field.

  16. Voltage Controlled Hot Carrier Injection Enables Ohmic Contacts Using Au Island Metal Films on Ge.

    PubMed

    Ganti, Srinivas; King, Peter J; Arac, Erhan; Dawson, Karl; Heikkilä, Mikko J; Quilter, John H; Murdoch, Billy; Cumpson, Peter; O'Neill, Anthony

    2017-08-23

    We introduce a new approach to creating low-resistance metal-semiconductor ohmic contacts, illustrated using high conductivity Au island metal films (IMFs) on Ge, with hot carrier injection initiated at low applied voltage. The same metallization process simultaneously allows ohmic contact to n-Ge and p-Ge, because hot carriers circumvent the Schottky barrier formed at metal/n-Ge interfaces. A 2.5× improvement in contact resistivity is reported over previous techniques to achieve ohmic contact to both n- and p- semiconductor. Ohmic contacts at 4.2 K confirm nonequilibrium current transport. Self-assembled Au IMFs are strongly orientated to Ge by annealing near the Au/Ge eutectic temperature. Au IMF nanostructures form, provided the Au layer is below a critical thickness. We anticipate that optimized IMF contacts may have applicability to many material systems. Optimizing this new paradigm for metal-semiconductor contacts offers the prospect of improved nanoelectronic systems and the study of voltage controlled hot holes and electrons.

  17. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOEpatents

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2014-06-24

    A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 .ANG.. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.

  18. Minimization of Ohmic losses for domain wall motion in ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Abanov, Artem; Tretiakov, Oleg; Liu, Yang

    2011-03-01

    We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain wall velocity we find the time-dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic. This work was supported by the NSF Grant No. 0757992 and Welch Foundation (A-1678).

  19. Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements

    PubMed Central

    2011-01-01

    We examine nickel silicide as a viable ohmic contact metallization for low-temperature, low-magnetic-field transport measurements of atomic-scale devices in silicon. In particular, we compare a nickel silicide metallization with aluminium, a common ohmic contact for silicon devices. Nickel silicide can be formed at the low temperatures (<400°C) required for maintaining atomic precision placement in donor-based devices, and it avoids the complications found with aluminium contacts which become superconducting at cryogenic measurement temperatures. Importantly, we show that the use of nickel silicide as an ohmic contact at low temperatures does not affect the thermal equilibration of carriers nor contribute to hysteresis in a magnetic field. PMID:21968083

  20. Main Geomagnetic Field Models from Oersted and Magsat Data Via a Rigorous General Inverse Theory with Error Bounds

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1999-01-01

    The purpose of the grant was to study how prior information about the geomagnetic field can be used to interpret surface and satellite magnetic measurements, to generate quantitative descriptions of prior information that might be so used, and to use this prior information to obtain from satellite data a model of the core field with statistically justifiable error estimates. The need for prior information in geophysical inversion has long been recognized. Data sets are finite, and faithful descriptions of aspects of the earth almost always require infinite-dimensional model spaces. By themselves, the data can confine the correct earth model only to an infinite-dimensional subset of the model space. Earth properties other than direct functions of the observed data cannot be estimated from those data without prior information about the earth. Prior information is based on what the observer already knows before the data become available. Such information can be "hard" or "soft". Hard information is a belief that the real earth must lie in some known region of model space. For example, the total ohmic dissipation in the core is probably less that the total observed geothermal heat flow out of the earth's surface. (In principle, ohmic heat in the core can be recaptured to help drive the dynamo, but this effect is probably small.) "Soft" information is a probability distribution on the model space, a distribution that the observer accepts as a quantitative description of her/his beliefs about the earth. The probability distribution can be a subjective prior in the sense of Bayes or the objective result of a statistical study of previous data or relevant theories.

  1. Energy dissipation of composite multifilamentary superconductors for high-current ramp-field magnet applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gung, C.Y.

    1993-01-01

    Energy dissipation, which is also called AC loss, of a composite multifilamentary superconducting wire is one of the most fundamental concerns in building a stable superconducting magnet. Characterization and reduction of AC losses are especially important in designing a superconducting magnet for generating transient magnetic fields. The goal of this thesis is to improve the understanding of AC-loss properties of superconducting wires developed for high-current ramp-field magnet applications. The major tasks include: (1) building an advanced AC-loss measurement system, (2) measuring AC losses of superconducting wires under simulated pulse magnet operations, (3) developing an analytical model for explaining the newmore » AC-loss properties found in the experiment, and (4) developing a computational methodology for comparing AC losses of a superconducting wire with those of a cable for a superconducting pulse magnet. A new experimental system using an isothermal calorimetric method was designed and constructed to measure the absolute AC losses in a composite superconductor. This unique experimental setup is capable of measuring AC losses of a brittle Nb{sub 3}Sn wire carrying high AC current in-phase with a large-amplitude pulse magnetic field. Improvements of the accuracy and the efficiency of this method are discussed. Three different types of composite wire have been measured: a Nb{sub 3}Sn modified jelly-roll (MJR) internal-tin wire used in a prototype ohmic heating coil, a Nb{sub 3}Sn internal-tin wire developed for a fusion reactor ohmic heating coil, and a NbTi wire developed for the magnets in a particle accelerator. The cross sectional constructions of these wires represent typical commercial wires manufactured for pulse magnet applications.« less

  2. Effect of interfacial composition on Ag-based Ohmic contact of GaN-based vertical light emitting diodes

    NASA Astrophysics Data System (ADS)

    Wu, Ning; Xiong, Zhihua; Qin, Zhenzhen

    2018-02-01

    By investigating the effect of a defective interface structure on Ag-based Ohmic contact of GaN-based vertical light-emitting diodes, we found a direct relationship between the interfacial composition and the Schottky barrier height of the Ag(111)/GaN(0001) interface. It was demonstrated that the Schottky barrier height of a defect-free Ag(111)/GaN(0001) interface was 2.221 eV, and it would be dramatically decreased to 0.375 eV with the introduction of one Ni atom and one Ga vacancy at the interface structure. It was found that the tunability of the Schottky barrier height can be attributed to charge accumulations around the interfacial defective regions and an unpinning of the Fermi level, which explains the experimental phenomenon of Ni-assisted annealing improving the p-type Ohmic contact characteristic. Lastly, we propose a new method of using Cu as an assisted metal to realize a novel Ag-based Ohmic contact. These results provide a guideline for the fabrication of high-quality Ag-based Ohmic contact of GaN-based vertical light-emitting diodes.

  3. Dynamics of vapor emissions at wire explosion thresholda)

    NASA Astrophysics Data System (ADS)

    Belony, Paul A.; Kim, Yong W.

    2010-10-01

    X-pinch plasmas have been actively studied in the recent years. Numerical simulation of the ramp-up of metallic vapor emissions from wire specimens shows that under impulsive Ohmic heating the wire core invariably reaches a supercritical state before explosion. The heating rate depends sensitively on the local wire resistance, leading to highly variable vapor emission flux along the wire. To examine the vapor emission process, we have visualized nickel wire explosions by means of shock formation in air. In a single explosion as captured by shadowgraphy, there usually appear several shocks with spherical or cylindrical wave front originating from different parts of the wire. Growth of various shock fronts in time is well characterized by a power-law scaling in one form or another. Continuum emission spectra are obtained and calibrated to measure temperature near the explosion threshold. Shock front structures and vapor plume temperature are examined.

  4. The effect of beam-driven return current instability on solar hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Cromwell, D.; Mcquillan, P.; Brown, J. C.

    1986-01-01

    The problem of electrostatic wave generation by a return current driven by a small area electron beam during solar hard X-ray bursts is discussed. The marginal stability method is used to solve numerically the electron and ion heating equations for a prescribed beam current evolution. When ion-acoustic waves are considered, the method appears satisfactory and, following an initial phase of Coulomb resistivity in which T sub e/T sub i rise, predicts a rapid heating of substantial plasma volumes by anomalous ohmic dissipation. This hot plasma emits so much thermal bremsstrahlung that, contrary to previous expectations, the unstable beam-plasma system actually emits more hard X-rays than does the beam in the purely collisional thick target regime relevant to larger injection areas. Inclusion of ion-cyclotron waves results in ion-acoustic wave onset at lower T sub e/T sub i and a marginal stability treatment yields unphysical results.

  5. Production of multicharged metal ion beams on the first stage of tandem-type ECRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagino, Shogo, E-mail: hagino@nf.eie.eng.osaka-u.ac.jp; Nagaya, Tomoki; Nishiokada, Takuya

    2016-02-15

    Multicharged metal ion beams are required to be applied in a wide range of fields. We aim at synthesizing iron-endohedral fullerene by transporting iron ion beams from the first stage into the fullerene plasma in the second stage of the tandem-type electron cyclotron resonance ion source (ECRIS). We developed new evaporators by using a direct ohmic heating method and a radiation heating method from solid state pure metal materials. We investigate their properties in the test chamber and produce iron ions on the first stage of the tandem-type ECRIS. As a result, we were successful in extracting Fe{sup +} ionmore » beams from the first stage and introducing Fe{sup +} ion beams to the second stage. We will try synthesizing iron-endohedral fullerene on the tandem-type ECRIS by using these evaporators.« less

  6. Electric field-based technologies for valorization of bioresources.

    PubMed

    Rocha, Cristina M R; Genisheva, Zlatina; Ferreira-Santos, Pedro; Rodrigues, Rui; Vicente, António A; Teixeira, José A; Pereira, Ricardo N

    2018-04-01

    This review provides an overview of recent research on electrotechnologies applied to the valorization of bioresources. Following a comprehensive summary of the current status of the application of well-known electric-based processing technologies, such as pulsed electric fields (PEF) and high voltage electrical discharges (HVED), the application of moderate electric fields (MEF) as an extraction or valorization technology will be considered in detail. MEF, known by its improved energy efficiency and claimed electroporation effects (allowing enhanced extraction yields), may also originate high heating rates - ohmic heating (OH) effect - allowing thermal stabilization of waste stream for other added-value applications. MEF is a simple technology that mostly makes use of green solvents (mainly water) and that can be used on functionalization of compounds of biological origin broadening their application range. The substantial increase of MEF-based plants installed in industries worldwide suggests its straightforward application for waste recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effect of reflective p-type ohmic contact on thermal reliability of vertical InGaN/GaN LEDs

    NASA Astrophysics Data System (ADS)

    Son, Jun Ho; Song, Yang Hee; Kim, Buem Joon; Lee, Jong-Lam

    2014-11-01

    We report on the enhanced thermal reliability of vertical-LEDs (VLEDs) using novel reflective p-type ohmic contacts with good thermal stability. The reflective p-type ohmic contacts with Ni/Ag-Cu alloy multi-layer structure shows low contact resistivity, as low as 9.3 × 10-6 Ωcm2, and high reflectance of 86% after annealing at 450°C. The V-LEDs with Ni/Ag-Cu alloy multi-layer structure show good thermal reliability with stress time at 300°C in air ambient. The improved thermal stability of the reflective ohmic contacts to p-type GaN is believed to play a critical role in the thermal reliability of V-LEDs. [Figure not available: see fulltext.

  8. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    DOE PAGES

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; ...

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and aftermore » BOE exposure.« less

  9. Features of Stationary Photoconductivity of High-Ohmic Semiconductors Under Local Illumination

    NASA Astrophysics Data System (ADS)

    Lysenko, A. P.; Belov, A. G.; Kanevskii, V. E.; Odintsova, E. A.

    2018-04-01

    Photoconductivity has been thoroughly studied for a long time. However, most researchers have examined photoconductivity of semiconductors while illuminating the entire surface of samples. The present paper examines the effect of local exposure that ensures a high level of injection of free charge carriers upon the conductivity of high-ohmic cadmium telluride and semi-insulating gallium arsenide samples and upon the properties of ohmic contacts to samples. The authors found that regardless of the exposure area the value of transition resistance of ohmic contacts decreases and the concentration of the main charge carriers increases in the sample in proportion to radiation intensity. This research uncovered a number of previously unknown effects that are interesting from the physical point of view. This paper focuses on discussing these effects.

  10. Laser method for forming low-resistance ohmic contacts on semiconducting oxides

    DOEpatents

    Narayan, Jagdish

    1981-01-01

    This invention is a new method for the formation of high-quality ohmic contacts on wide-band-gap semiconducting oxides. As exemplified by the formation of an ohmic contact on n-type BaTiO.sub.3 containing a p-n junction, the invention entails depositing a film of a metallic electroding material on the BaTiO.sub.3 surface and irradiating the film with a Q-switched laser pulse effecting complete melting of the film and localized melting of the surface layer of oxide immediately underlying the film. The resulting solidified metallic contact is ohmic, has unusually low contact resistance, and is thermally stable, even at elevated temperatures. The contact does not require cleaning before attachment of any suitable electrical lead. This method is safe, rapid, reproducible, and relatively inexpensive.

  11. Method for forming low-resistance ohmic contacts on semiconducting oxides

    DOEpatents

    Narayan, J.

    1979-10-01

    The invention provides a new method for the formation of high-quality ohmic contacts on wide-band-gap semiconducting oxides. As exemplified by the formation of an ohmic contact on n-type BaTiO/sub 3/ containing a p-n junction, the invention entails depositing a film of a metallic electroding material on the BaTiO/sub 3/ surface and irradiating the film with a Q-switched laser pulse effecting complete melting of the film and localized melting of the surface layer of oxide immediately underlying the film. The resulting solidified metallic contact is ohmic, has unusually low contact resistance, and is thermally stable, even at elevated temmperatures. The contact does not require cleaning before attachment of any suitable electrical lead. This method is safe, rapid, reproducible, and relatively inexpensive.

  12. Very low Schottky barrier height at carbon nanotube and silicon carbide interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Suzuki, Kazuma; Shibuya, Megumi

    2015-03-23

    Electrical contacts to silicon carbide with low contact resistivity and high current durability are crucial for future SiC power devices, especially miniaturized vertical-type devices. A carbon nanotube (CNT) forest formed by silicon carbide (SiC) decomposition is a densely packed forest, and is ideal for use as a heat-dissipative ohmic contact in SiC power transistors. The contact resistivity and Schottky barrier height in a Ti/CNT/SiC system with various SiC dopant concentrations were evaluated in this study. Contact resistivity was evaluated in relation to contact area. The Schottky barrier height was calculated from the contact resistivity. As a result, the Ti/CNT/SiC contactmore » resistivity at a dopant concentration of 3 × 10{sup 18 }cm{sup −3} was estimated to be ∼1.3 × 10{sup −4} Ω cm{sup 2} and the Schottky barrier height of the CNT/SiC contact was in the range of 0.40–0.45 eV. The resistivity is relatively low for SiC contacts, showing that CNTs have the potential to be a good ohmic contact material for SiC power electronic devices.« less

  13. LETTER: ECH pre-ionization and assisted startup in the fully superconducting KSTAR tokamak using second harmonic

    NASA Astrophysics Data System (ADS)

    Bae, Y. S.; Jeong, J. H.; Park, S. I.; Joung, M.; Kim, J. H.; Hahn, S. H.; Yoon, S. W.; Yang, H. L.; Kim, W. C.; Oh, Y. K.; England, A. C.; Namkung, W.; Cho, M. H.; Jackson, G. L.; Bak, J. S.; KSTAR Team

    2009-02-01

    This letter reports on the successful demonstration of the second harmonic electron cyclotron heating (ECH)-assisted startup in the first plasma experiments recently completed in the fully superconducting Korea Superconducting Tokamak Advanced Research (KSTAR) device whose major and minor radii are 1.8 m and 0.5 m, respectively. For the second harmonic ECH-assisted startup, an 84 GHz EC wave at 0.35 MW was launched before the onset of the toroidal electric field of the Ohmic system. And it was observed that this was sufficient to achieve breakdown in the ECH pre-ionization phase, allow burn-through and sustain the plasma during the current ramp with a low loop voltage of 2.0 V and a corresponding toroidal electric field of 0.24 V m-1at the innermost vacuum vessel wall (R = 1.3 m). This is a lower value than 0.3 Vm-1 which is the maximum electric field in ITER. Due to the limited volt-seconds and the loop voltage of the Ohmic power system, the extended pulse duration of the ECH power up to 180 ms allowed the plasma current to rise up to more than 100 kA with a ramp-up rate of 0.8 MA s-1.

  14. Operando μ-Raman study of the actual water content of perfluorosulfonic acid membranes in the fuel cell

    NASA Astrophysics Data System (ADS)

    Peng, Zhe; Badets, Vasilica; Huguet, Patrice; Morin, Arnaud; Schott, Pascal; Tran, Thi Bich Hue; Porozhnyy, Mikhaël; Nikonenko, Victor; Deabate, Stefano

    2017-07-01

    Operando μ-Raman spectroscopy is used to probe the water distribution across Nafion® and Aquivion™ membranes in the operating fuel cell. The through-plane water concentration profile is obtained with μm resolution at the middle of the active surface, both at the gas distribution channel and at the under-lands areas. Depth-resolved measurements carried out at room temperature show that the water content of both membranes increases with the increase of the feed gas relative humidity and decreases with the increase of stoichiometry. At given relative humidity and stoichiometry conditions, the water content first increases at the fuel cell start-up and, then, decreases progressively with the increase of the current density delivered by the cell. The water loss is due to the concomitant rise of pressure drops and of the cell inner temperature, the latter giving the larger contribution. Pressure drops are related to the increase of the feed gases fluxes while temperature rise is due to increasing ohmic losses and heat from the electrochemical reaction. Compared to Nafion, Aquivion exhibits larger water content, but similar dehydration rate as a function of ohmic losses, and larger water accumulation at the under-lands area compared to channel.

  15. On the breakdown modes and parameter space of Ohmic Tokamak startup

    NASA Astrophysics Data System (ADS)

    Peng, Yanli; Jiang, Wei; Zhang, Ya; Hu, Xiwei; Zhuang, Ge; Innocenti, Maria; Lapenta, Giovanni

    2017-10-01

    Tokamak plasma has to be hot. The process of turning the initial dilute neutral hydrogen gas at room temperature into fully ionized plasma is called tokamak startup. Even with over 40 years of research, the parameter ranges for the successful startup still aren't determined by numerical simulations but by trial and errors. However, in recent years it has drawn much attention due to one of the challenges faced by ITER: the maximum electric field for startup can't exceed 0.3 V/m, which makes the parameter range for successful startup narrower. Besides, this physical mechanism is far from being understood either theoretically or numerically. In this work, we have simulated the plasma breakdown phase driven by pure Ohmic heating using a particle-in-cell/Monte Carlo code, with the aim of giving a predictive parameter range for most tokamaks, even for ITER. We have found three situations during the discharge, as a function of the initial parameters: no breakdown, breakdown and runaway. Moreover, breakdown delay and volt-second consumption under different initial conditions are evaluated. In addition, we have simulated breakdown on ITER and confirmed that when the electric field is 0.3 V/m, the optimal pre-filling pressure is 0.001 Pa, which is in good agreement with ITER's design.

  16. A high density field reversed configuration (FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Zhang, S. Y.; Degnan, J. H.; Furno, I.; Grabowski, C.; Hsu, S. C.; Ruden, E. L.; Sanchez, P. G.; Taccetti, J. M.; Tuszewski, M.; Waganaar, W. J.; Wurden, G. A.

    2004-05-01

    Magnetized target fusion (MTF) is a potentially low cost path to fusion, intermediate in plasma regime between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. To demonstrate the physics basis for MTF, a field reversed configuration (FRC) target plasma has been chosen that will ultimately be compressed within an imploding metal liner. The required FRC will need large density, and this regime is being explored by the FRX-L (FRC-Liner) experiment. All theta pinch formed FRCs have some shock heating during formation, but FRX-L depends further on large ohmic heating from magnetic flux annihilation to heat the high density (2-5×1022m-3), plasma to a temperature of Te+Ti≈500 eV. At the field null, anomalous resistivity is typically invoked to characterize the resistive like flux dissipation process. The first resistivity estimate for a high density collisional FRC is shown here. The flux dissipation process is both a key issue for MTF and an important underlying physics question.

  17. Simulations towards the achievement of non-inductive current ramp-up and sustainment in the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Poli, F. M.; Andre, R. G.; Bertelli, N.; ...

    2015-10-30

    One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW andmore » electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.« less

  18. ITER L-mode confinement database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, S.M.

    This paper describes the content of an L-mode database that has been compiled with data from Alcator C-Mod, ASDEX, DIII, DIII-D, FTU, JET, JFT-2M, JT-60, PBX-M, PDX, T-10, TEXTOR, TFTR, and Tore-Supra. The database consists of a total of 2938 entries, 1881 of which are in the L-phase while 922 are ohmically heated only (OH). Each entry contains up to 95 descriptive parameters, including global and kinetic information, machine conditioning, and configuration. The paper presents a description of the database and the variables contained therein, and it also presents global and thermal scalings along with predictions for ITER.

  19. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak.

    PubMed

    Purohit, S; Joisa, Y S; Raval, J V; Ghosh, J; Tanna, R; Shukla, B K; Bhatt, S B

    2014-11-01

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.

  20. Cooling a magnetic nanoisland by spin-polarized currents.

    PubMed

    Brüggemann, J; Weiss, S; Nalbach, P; Thorwart, M

    2014-08-15

    We investigate cooling of a vibrational mode of a magnetic quantum dot by a spin-polarized tunneling charge current exploiting the magnetomechanical coupling. The spin-polarized current polarizes the magnetic nanoisland, thereby lowering its magnetic energy. At the same time, Ohmic heating increases the vibrational energy. A small magnetomechanical coupling then permits us to remove energy from the vibrational motion and cooling is possible. We find a reduction of the vibrational energy below 50% of its equilibrium value. The lowest vibration temperature is achieved for a weak electron-vibration coupling and a comparable magnetomechanical coupling. The cooling rate increases at first with the magnetomechanical coupling and then saturates.

  1. A novel carbon coating technique for foil bolometers

    NASA Astrophysics Data System (ADS)

    Sheikh, U. A.; Duval, B. P.; Labit, B.; Nespoli, F.

    2016-11-01

    Naked foil bolometers can reflect a significant fraction of incident energy and therefore cannot be used for absolute measurements. This paper outlines a novel coating approach to address this problem by blackening the surface of gold foil bolometers using physical vapour deposition. An experimental bolometer was built containing four standard gold foil bolometers, of which two were coated with 100+ nm of carbon. All bolometers were collimated and observed the same relatively high temperature, ohmically heated plasma. Preliminary results showed 13%-15% more incident power was measured by the coated bolometers and this is expected to be much higher in future TCV detached divertor experiments.

  2. Thermal energy creation and transport and X-ray/EUV emission in a thermodynamic MHD CME simulation

    NASA Astrophysics Data System (ADS)

    Reeves, K.; Mikic, Z.; Torok, T.; Linker, J.; Murphy, N. A.

    2017-12-01

    We model a CME using the PSI 3D numerical MHD code that includes coronal heating, thermal conduction and radiative cooling in the energy equation. The magnetic flux distribution at 1 Rs is produced by a localized subsurface dipole superimposed on a global dipole field, mimicking the presence of an active region within the global corona. We introduce transverse electric fields near the neutral line in the active region to form a flux rope, then a converging flow is imposed that causes the eruption. We follow the formation and evolution of the current sheet and find that instabilities set in soon after the reconnection commences. We simulate XRT and AIA EUV emission and find that the instabilities manifest as bright features emanating from the reconnection region. We examine the quantities responsible for plasma heating and cooling during the eruption, including thermal conduction, radiation, adiabatic compression and expansion, coronal heating and ohmic heating due to dissipation of currents. We find that the adiabatic compression plays an important role in heating the plasma around the current sheet, especially in the later stages of the eruption when the instabilities are present. Thermal conduction also plays an important role in the transport of thermal energy away from the current sheet region throughout the reconnection process.

  3. Modelling transport phenomena in a multi-physics context

    NASA Astrophysics Data System (ADS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  4. Modelling transport phenomena in a multi-physics context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, Francesco

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. Inmore » the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.« less

  5. Development of Active Microwave Thermography for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Foudazi, Ali

    Active Microwave Thermography (AMT) is an integrated nondestructive testing and evaluation (NDT&E) method that incorporates aspects of microwave NDT and thermography techniques. AMT uses a microwave excitation to generate heat and the surface thermal profile of the material or structure under test is subsequently measured using a thermal camera (or IR camera). Utilizing a microwave heat excitation provides advantages over traditional thermal excitations (heat lamps, etc.) including the potential for non-contact, selective and focused heating. During an AMT inspection, two heating mechanisms are possible, referred to as dielectric and induction heating. Dielectric heating occurs as a result of the interaction of microwave energy with lossy dielectric materials which results in dissipated microwave energy and a subsequent increase in temperature. Induction heating is a result of induced surface current on conductive materials with finite conductivity under microwave illumination and subsequently ohmic loss. Due to the unique properties of microwave signals including frequency of operation, power level, and polarization, as well as their interaction with different materials, AMT has strong potential for application in various industries including infrastructure, transportation, aerospace, etc. As such, this Dissertation explores the application of AMT to NDT&E needs in these important industries, including detection and evaluation of defects in single- or multi-layered fiber-reinforced polymer-strengthened cement-based materials, evaluation of steel fiber percentage and distributions in steel fiber reinforced structures, characterization of corrosion ratio on corroded reinforcing steel bars (rebar), and evaluation of covered surface cracks orientation and size in metal structures.

  6. High Isolation Single-Pole Four-Throw RF MEMS Switch Based on Series-Shunt Configuration

    PubMed Central

    Khaira, Navjot

    2014-01-01

    This paper presents a novel design of single-pole four-throw (SP4T) RF-MEMS switch employing both capacitive and ohmic switches. It is designed on high-resistivity silicon substrate and has a compact area of 1.06 mm2. The series or ohmic switches have been designed to provide low insertion loss with good ohmic contact. The pull-in voltage for ohmic switches is calculated to be 7.19 V. Shunt or capacitive switches have been used in each port to improve the isolation for higher frequencies. The proposed SP4T switch provides excellent RF performances with isolation better than 70.64 dB and insertion loss less than 0.72 dB for X-band between the input port and each output port. PMID:24711730

  7. Gas dynamics in the impulsive phase of solar flares. I Thick-target heating by nonthermal electrons

    NASA Technical Reports Server (NTRS)

    Nagai, F.; Emslie, A. G.

    1984-01-01

    A numerical investigation is carried out of the gas dynamical response of the solar atmosphere to a flare energy input in the form of precipitating nonthermal electrons. Rather than discussing the origin of these electrons, the spectral and temporal characteristics of the injected flux are inferred through a thick-target model of hard X-ray bremsstrahlung production. It is assumed that the electrons spiral about preexisting magnetic field lines, making it possible for a one-dimensional spatial treatment to be performed. It is also assumed that all electron energy losses are due to Coulomb collisions with ambient particles; that is, return-current ohmic effects and collective plasma processes are neglected. The results are contrasted with earlier work on conductive heating of the flare atmosphere. A local temperature peak is seen at a height of approximately 1500 km above the photosphere. This derives from a spatial maximum in the energy deposition rate from an electron beam. It is noted that such a feature is not present in conductively heated models. The associated localized region of high pressure drives material both upward and downward.

  8. MHD Flow and Heat Transfer Characteristics in a Casson Liquid Film Towards an Unsteady Stretching Sheet with Temperature-Dependent Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mostafa A. A.; Megahed, Ahmed M.

    2017-10-01

    Theoretical and numerical outcomes of the non-Newtonian Casson liquid thin film fluid flow owing to an unsteady stretching sheet which exposed to a magnetic field, Ohmic heating and slip velocity phenomena is reported here. The non-Newtonian thermal conductivity is imposed and treated as it vary with temperature. The nonlinear partial differential equations governing the non-Newtonian Casson thin film fluid are simplified into a group of highly nonlinear ordinary differential equations by using an adequate dimensionless transformations. With this in mind, the numerical solutions for the ordinary conservation equations are found using an accurate shooting iteration technique together with the Runge-Kutta algorithm. The lineaments of the thin film flow and the heat transfer characteristics for the pertinent parameters are discussed through graphs. The results obtained here detect many concern for the local Nusselt number and the local skin-friction coefficient in which they may be beneficial for the material processing industries. Furthermore, in some special conditions, the present problem has an excellent agreement with previously published work.

  9. Investigation of Plasma Surface Interactions with the PISCES ELM Laser System

    NASA Astrophysics Data System (ADS)

    Umstadter, K. R.; Baldwin, M.; Hanna, J.; Doerner, R.; Lynch, T.; Palmer, T.; Tynan, G. R.

    2007-11-01

    When an ELM occurs in tokamaks, up to 30% of the pedestal energy can be deposited on the wall of the tokamak causing heating & material loss due to sublimation, evaporation and melt splashing of plasma facing components (PFCs) and expansion of the ejected material into the plasma. We have explored heat pulses using an electrical power circuit to draw electrons from the plasma to heat samples ohmically. This system is limited in power to ˜250kJ/m^2 at the minimum pulse width of 10ms and depletes the plasma column, complicating spectroscopy. We have completed calculations that indicate that a pulsed laser system can be used to simulate the heat pulse of ELMs. We are integrating laser systems into the existing PFC research program in PISCES, a laboratory facility capable of reproducing plasma-materials interactions expected during normal operation of large tokamaks. Two Nd:YAG lasers capable of delivering up to 50J of energy over various pulsewidths are used for the experiments. Laser heat pulse only, H+/D+ plasma only, and laser+plasma experiments were conducted and initial results indicate that metals behave very differently while exposed to plasma and simultaneous heat pulses. We will also discuss initial results for carbon PFCs and material transport into the plasma. Supported by US DoE grant DE-FG02-07ER-54912.

  10. Analysis of disturbances in a hypersonic boundary layer on a cone with heating/cooling of the nose tip

    NASA Astrophysics Data System (ADS)

    Bountin, Dmitry; Maslov, Anatoly; Gromyko, Yury

    2018-05-01

    Experimental results of the influence of local heating/cooling on the development of hypersonic boundary layer disturbances are reported. Local heating/cooling is applied at the cone nose tip. The experiments are carried out at the Mach number M = 5.95, stagnation temperature T0 = 360-418 K, and stagnation pressure P0 = 3.7-45 atm. The unit Reynolds number is varied in the interval Re1 = (4.5-63) × 106 m-1. The investigations are conducted in the boundary layer on a cone with an apex half-angle of 7° and varied bluntness radius of the nose tip [R = 0.03 (sharp nose), 0.75, and 1.5 mm] for different values of the local temperature factor. The nose tip is heated by an ohmic heater. Cooling is performed by supplying liquid nitrogen into the internal cavity of the model nose. A comparative analysis of pressure pulsation spectra on the cone surface is performed. It is demonstrated that heating/cooling in the case of a sharp cone leads to flow destabilization/stabilization. The opposite effect is observed for blunted cones: heating/cooling stabilizes/destabilizes the second-mode disturbances. This effect is enhanced by increasing the nose tip bluntness. All the observed effects vanish with distance downstream from the nose tip.

  11. Plasma Formation and Evolution on Cu, Al, Ti, and Ni Surfaces Driven by a Mega-Ampere Current Pulse

    NASA Astrophysics Data System (ADS)

    Yates, Kevin C.

    Metal alloy mm-diameter rods have been driven by a 1-MA, 100-ns current pulse from the Zebra z-pinch. The intense current produces megagauss surface magnetic fields that diffuse into the load, ohmically heating the metal until plasma forms. Because the radius is much thicker than the skin depth, the magnetic field reaches a much higher value than around a thin-wire load. With the "barbell" load design, plasma formation in the region of interest due to contact arcing or electron avalanche is avoided, allowing for the study of ohmically heated loads. Work presented here will show first evidence of a magnetic field threshold for plasma formation in copper 101, copper 145, titanium, and nickel, and compare with previous work done with aluminum. Copper alloys 101 and 145, titanium grade II, and nickel alloy 200 form plasma when the surface magnetic field reaches 3.5, 3.0, 2.2, and 2.6 megagauss, respectively. Varying the element metal, as well as the alloy, changes multiple physical properties of the load and affects the evolution of the surface material through the multiple phase changes. Similarities and differences between these metals will be presented, giving motivation for continued work with different material loads. During the current rise, the metal is heated to temperatures that cause multiple phase changes. When the surface magnetic field reaches a threshold, the metal ionizes and the plasma becomes pinched against the underlying cooler, dense material. Diagnostics fielded have included visible light radiometry, two-frame shadowgraphy (266 and 532 nm wavelengths), time-gated EUV spectroscopy, single-frame/2ns gated imaging, and multi-frame/4ns gated imaging with an intensified CCD camera (ICCD). Surface temperature, expansion speeds, instability growth, time of plasma formation, and plasma uniformity are determined from the data. The time-period of potential plasma formation is scrutinized to understand if and when plasma forms on the surface of a heated conductor. When photodiode signals of visible light surface emission reach values indicating temperatures consistent with plasma formation, a sharp increase in signal is observed, which can be interpreted as related to an abrupt increase in conductivity when plasma forms, as has been observed experimentally as well as in Quantum Molecular Dynamic simulations. The increase in conductivity, in the context of an overall rising current, causes an abrupt increase in current density in the plasma-forming layer, leading to an increase in temperature that reinforces the increase in conductivity. Laser shadowgaphy images allow for the observation of expansion as well as the development and evolution of surface instabilities. The sudden expansion of the surface of a heated conductor is not sufficient to claim plasma formation. The development of late-time surface instabilities does indicate surface plasma formed, although it does not pinpoint the moment of plasma formation. The self-emission images captured by ICCD cameras provide a third indicator of plasma formation. The images first show non-uniform dots begin to glow, then show bright filaments in the direction of current flow, and eventually show a uniform surface emission. The early dots are believed to be plasma; however, the filamentation occurs near the time of the abrupt increase in the visible diode signal. The filaments are likely caused by electrothermal instabilities a formation attributed to a plasma. The interplay between an ohmically heated conductor and a magnetic field is important for the field of Magnetized Target Fusion (MTF). MTF compresses a magnetized fuel by imploding a flux-conserving metal liner. During compression, fields reach several megagauss, with a fraction of the flux diffusing into the metal liner. The magnetic field induces eddy currents in the metal, leading to ionization and potential mixing of metal contaminant into the fusion fuel.

  12. Plasma-assisted ohmic contact for AlGaN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaqi; Wang, Lei; Wang, Qingpeng; Jiang, Ying; Li, Liuan; Zhu, Huichao; Ao, Jin-Ping

    2016-03-01

    An Al-based ohmic process assisted by an inductively coupled plasma (ICP) recess treatment is proposed for AlGaN/GaN heterostructure field-effect transistors (HFETs) to realize ohmic contact, which is only needed to anneal at 500 °C. The recess treatment was done with SiCl4 plasma with 100 W ICP power for 20 s and annealing at 575 °C for 1 min. Under these conditions, contact resistance of 0.52 Ωmm was confirmed. To suppress the ball-up phenomenon and improve the surface morphology, an Al/TiN structure was also fabricated with the same conditions. The contact resistance was further improved to 0.30 Ωmm. By using this plasma-assisted ohmic process, a gate-first HFET was fabricated. The device showed high drain current density and high transconductance. The leakage current of the TiN-gate device decreased to 10-9 A, which was 5 orders of magnitude lower than that of the device annealed at 800 °C. The results showed that the low-temperature ohmic contact process assisted by ICP treatment is promising for the fabrication of gate-first and self-aligned gate HFETs.

  13. An “ohmic-first” self-terminating gate-recess technique for normally-off Al2O3/GaN MOSFET

    NASA Astrophysics Data System (ADS)

    Wang, Hongyue; Wang, Jinyan; Li, Mengjun; He, Yandong; Wang, Maojun; Yu, Min; Wu, Wengang; Zhou, Yang; Dai, Gang

    2018-04-01

    In this article, an ohmic-first AlGaN/GaN self-terminating gate-recess etching technique was demonstrated where ohmic contact formation is ahead of gate-recess-etching/gate-dielectric-deposition (GRE/GDD) process. The ohmic contact exhibits few degradations after the self-terminating gate-recess process. Besides, when comparing with that using the conventional fabrication process, the fabricated device using the ohmic-first fabrication process shows a better gate dielectric quality in terms of more than 3 orders lower forward gate leakage current, more than twice higher reverse breakdown voltage as well as better stability. Based on this proposed technique, the normally-off Al2O3/GaN MOSFET exhibits a threshold voltage (V th) of ˜1.8 V, a maximum drain current of ˜328 mA/mm, a forward gate leakage current of ˜10-6 A/mm and an off-state breakdown voltage of 218 V at room temperature. Meanwhile, high temperature characteristics of the device was also evaluated and small variations (˜7.6%) of the threshold voltage was confirmed up to 300 °C.

  14. Direct patterning of highly-conductive graphene@copper composites using copper naphthenate as a resist for graphene device applications.

    PubMed

    Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao

    2017-11-09

    We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.

  15. Study of degradation processes kinetics in ohmic contacts of resonant tunneling diodes based on nanoscale AlAs/GaAs heterostructures under influence of temperature

    NASA Astrophysics Data System (ADS)

    Makeev, M. O.; Meshkov, S. A.

    2017-07-01

    The artificial aging of resonant tunneling diodes based on nanoscale AlAs/GaAs heterostructures was conducted. As a result of the thermal influence resonant tunneling diodes IV curves degrade firstly due to ohmic contacts' degradation. To assess AlAs/GaAs resonant tunneling diodes degradation level and to predict their reliability, a functional dependence of the contact resistance of resonant tunneling diode AuGeNi ohmic contacts on time and temperature was offered.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arutyunyan, S. S., E-mail: spartakmain@gmail.com; Pavlov, A. Yu.; Pavlov, B. Yu.

    The fabrication of a two-layer Si{sub 3}N{sub 4}/SiO{sub 2} dielectric mask and features of its application in the technology of non-fired epitaxially grown ohmic contacts for high-power HEMTs on AlGaN/GaN heterostructures are described. The proposed Si{sub 3}N{sub 4}/SiO{sub 2} mask allows the selective epitaxial growth of heavily doped ohmic contacts by nitride molecular-beam epitaxy and the fabrication of non-fired ohmic contacts with a resistance of 0.15–0.2 Ω mm and a smooth surface and edge morphology.

  17. Improved Turn-On and Operating Voltages in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro

    2017-10-01

    While good ohmic contact formation has been achieved on both p-GaN and n-AlGaN surfaces, the turn-on and operating voltages of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) remain very high. We find that this critical problem is mainly caused by the large difference between the annealing temperatures required for ohmic contact formation on the p-GaN and high Al-fraction n-AlGaN surfaces. We studied the effects of the high-temperature annealing treatments required for n-ohmic contact formation on the subsequent p-ohmic contact formation process in DUV-LEDs. The results show that post-annealing treatment at high temperature is necessary to form an ohmic contact on n-Al0.7Ga0.3N, but a treatment temperature of 900°C or more could cause severe degradation of the specific contact resistivity and the bulk resistivity of p-GaN. We conclude that 900°C is the optimum temperature to form an ohmic contact on n-Al0.7Ga0.3N in DUV-LEDs, where p-GaN and n-Al0.7Ga0.3N act as the p- and n-ohmic contact layers, respectively. We also found that the specific contact resistivity of p-GaN can be reduced by an additional low-temperature annealing treatment after the high-temperature annealing step; this effect can be attributed to the enhancement of the hole concentration in the p-GaN surface contact region. Finally, DUV-LEDs that emit at 280 nm were fabricated using four different annealing treatments during processing. A considerable reduction in the series resistance and thereby in the operating voltage was confirmed using the annealing process proposed above, consisting of a high-temperature anneal at 900°C followed by a low-temperature anneal at 500°C for 3 min.

  18. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies

    NASA Astrophysics Data System (ADS)

    Kotadiya, Naresh B.; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W. M.; Wetzelaer, Gert-Jan A. H.

    2018-02-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  19. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies.

    PubMed

    Kotadiya, Naresh B; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W M; Wetzelaer, Gert-Jan A H

    2018-04-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  20. Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion

    NASA Astrophysics Data System (ADS)

    Sung Park, Pil; Reddy, Kongara M.; Nath, Digbijoy N.; Yang, Zhichao; Padture, Nitin P.; Rajan, Siddharth

    2013-04-01

    A simple method for the creation of Ohmic contact to 2D electron gas in AlGaN/GaN high electron-mobility transistors using Cr/graphene layer is demonstrated. A weak temperature dependence of this Ohmic contact observed in the range 77 to 300 K precludes thermionic emission or trap-assisted hopping as possible carrier-transport mechanisms. It is suggested that the Cr/graphene combination acts akin to a doped n-type semiconductor in contact with AlGaN/GaN heterostructure, and promotes carrier transport along percolating Al-lean paths through the AlGaN layer. This use of graphene offers a simple method for making Ohmic contacts to AlGaN/GaN heterostructures, circumventing complex additional processing steps involving high temperatures. These results could have important implications for the fabrication and manufacturing of AlGaN/GaN-based microelectronic and optoelectronic devices/sensors of the future.

  1. AlGaN channel field effect transistors with graded heterostructure ohmic contacts

    NASA Astrophysics Data System (ADS)

    Bajaj, Sanyam; Akyol, Fatih; Krishnamoorthy, Sriram; Zhang, Yuewei; Rajan, Siddharth

    2016-09-01

    We report on ultra-wide bandgap (UWBG) Al0.75Ga0.25N channel metal-insulator-semiconductor field-effect transistors (MISFETs) with heterostructure engineered low-resistance ohmic contacts. The low intrinsic electron affinity of AlN (0.6 eV) leads to large Schottky barriers at the metal-AlGaN interface, resulting in highly resistive ohmic contacts. In this work, we use a reverse compositional graded n++ AlGaN contact layer to achieve upward electron affinity grading, leading to a low specific contact resistance (ρsp) of 1.9 × 10-6 Ω cm2 to n-Al0.75Ga0.25N channels (bandgap ˜5.3 eV) with non-alloyed contacts. We also demonstrate UWBG Al0.75Ga0.25N channel MISFET device operation employing the compositional graded n++ ohmic contact layer and 20 nm atomic layer deposited Al2O3 as the gate-dielectric.

  2. The Role of Compressibility in Energy Release by Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Birn, J.; Borovosky, J. E.; Hesse, M.

    2012-01-01

    Using resistive compressible magnetohydrodynamics, we investigate the energy release and transfer by magnetic reconnection in finite (closed or periodic) systems. The emphasis is on the magnitude of energy released and transferred to plasma heating in configurations that range from highly compressible to incompressible, based on the magnitude of the background beta (ratio of plasma pressure over magnetic pressure) and of a guide field in two-dimensional reconnection. As expected, the system becomes more incompressible, and the role of compressional heating diminishes, with increasing beta or increasing guide field. Nevertheless, compressional heating may dominate over Joule heating for values of the guide field of 2 or 3 (in relation to the reconnecting magnetic field component) and beta of 5-10. This result stems from the strong localization of the dissipation near the reconnection site, which is modeled based on particle simulation results. Imposing uniform resistivity, corresponding to a Lundquist number of 10(exp 3) to 10(exp 4), leads to significantly larger Ohmic heating. Increasing incompressibility greatly reduces the magnetic flux transfer and the amount of energy released, from approx. 10% of the energy associated with the reconnecting field component, for zero guide field and low beta, to approx. 0.2%-0.4% for large values of the guide field B(sub y0) > 5 or large beta. The results demonstrate the importance of taking into account plasma compressibility and localization of dissipation in investigations of heating by turbulent reconnection, possibly relevant for solar wind or coronal heating.

  3. Continuous, edge localized ion heating during non-solenoidal plasma startup and sustainment in a low aspect ratio tokamak

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.

    2017-07-01

    Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV  ⩽  650 eV, which is in contrast to T i,OV  ⩽  70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, while {{T}\\text{i,\\parallel}} experiences little change, in agreement with two-fluid reconnection theory. This ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.

  4. Optimal irradiance for sintering of inkjet-printed Ag electrodes with a 532nm CW laser

    NASA Astrophysics Data System (ADS)

    Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Hwang, Jun Young; Moon, Seung Jae

    2013-09-01

    Industrial solar cell fabrication generally adopts printing process to deposit the front electrodes, which needs additional heat treatment after printing to enhance electrical conductivity. As a heating method, laser irradiation draws attention not only because of its special selectivity, but also because of its intense heating to achieve high electric conductivity which is essential to reduce ohmic loss of solar cells. In this study, variation of electric conductivity was examined with laser irradiation having various beam intensity. 532 nm continuous wave (CW) laser was irradiated on inkjet-printed silver lines on glass substrate and electrical resistance was measured in situ during the irradiation. The results demonstrate that electric conductivity varies nonlinearly with laser intensity, having minimum specific resistance of 4.1 x 10-8 Ωm at 529 W/cm2 irradiation. The results is interesting because the specific resistance achieved by the present laser irradiation was about 1.8 times lower than the best value obtainable by oven heating, even though it was still higher by 2.5 times than that of bulk silver. It is also demonstrated that the irradiation time, needed to finish sintering process, decreases with laser intensity. The numerical simulation of laser heating showed that the optimal heating temperature could be as high as 300 oC for laser sintering, while it was limited to 250 oC for oven sintering. The nonlinear response of sintering with heating intensity was discussed, based on the results of FESEM images and XRD analysis.

  5. Continuous, edge localized ion heating during non-solenoidal plasma startup and sustainment in a low aspect ratio tokamak

    DOE PAGES

    Burke, Marcus G.; Barr, Jayson L.; Bongard, Michael W.; ...

    2017-05-16

    Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV ≤ 650 eV, which is in contrast to T i,OV ≤ 70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, whilemore » $${{T}_{\\text{i},\\parallel}}$$ experiences little change, in agreement with two-fluid reconnection theory. In conclusion, this ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.« less

  6. Completely transparent ohmic electrode on p-type AlGaN for UV LEDs with core-shell Cu@alloy nanosilk network (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cai, Duanjun; Wang, Huachun; Huang, Youyang; Wu, Chenping; Chen, Xiaohong; Gao, Na; Wei, Tongbo T.; Wang, Junxi; Li, Shuping; Kang, Junyong

    2016-09-01

    Metal nanowire networks hold a great promise, which have been supposed the only alternative to ITO as transparent electrodes for their excellent performance in touch screen, LED and solar cell. It is well known that the difficulty in making transparent ohmic electrode to p-type high-Al-content AlGaN conducting layer has highly constrained the further development of UV LEDs. On the IWN-2014, we reported the ohmic contact to n, p-GaN with direct graphene 3D-coated Cu nanosilk network and the fabrication of complete blue LED. On the ICNS-2015, we reported the ohmic contact to n-type AlGaN conducting layer with Cu@alloy nanosilk network. Here, we further demonstrate the latest results that a novel technique is proposed for fabricating transparent ohmic electrode to high-Al-content AlGaN p-type conducting layer in UV LEDs using Cu@alloy core-shell nanosilk network. The superfine copper nanowires (16 nm) was synthesized for coating various metals such as Ni, Zn, V or Ti with different work functions. The transmittance showed a high transparency (> 90%) over a broad wavelength range from 200 to 3000 nm. By thermal annealing, ohmic contact was achieved on p-type Al0.5Ga0.5N layer with Cu@Ni nanosilk network, showing clearly linear I-V curve. By skipping the p-type GaN cladding layer, complete UV LED chip was fabricated and successfully lit with bright emission at 276 nm.

  7. Flexible carbon-based ohmic contacts for organic transistors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik (Inventor)

    2007-01-01

    The present invention relates to a system and method of organic thin-film transistors (OTFTs). More specifically, the present invention relates to employing a flexible, conductive particle-polymer composite material for ohmic contacts (i.e. drain and source).

  8. Improved ohmic contact of Ga-Doped ZnO to p-GaN by using copper sulfide intermediate layers

    NASA Astrophysics Data System (ADS)

    Gu, Wen; Xu, Tao; Zhang, Jianhua

    2013-11-01

    Copper sulfide (CuS) was used as the intermediate layer to build ohmic contact of Ga-Doped ZnO (GZO) transparent conduction layer (TCL) to p-GaN. The CuS and GZO layers were prepared by thermal evaporation and RF magnetron sputtering, respectively. Although the GZO-only contacts to p-GaN exhibit nonlinear behavior, ohmic contact with a specific contact resistance of 1.6 × 10-2 Ω cm2 has been realized by inserting 3 nm CuS layer between GZO and p-GaN. The optical transmittance of CuS/GZO film was measured to be higher than 80% in the range of 450-600 nm wavelength. The possible mechanism for the ohmic contact behavior can be attributed to the increased hole concentration of p-GaN surface induced by CuS films after annealing. The forward voltage of LEDs with CuS/GZO TCL has been reduced by 1.7 V at 20 mA and the output power has been increased by 29.6% at 100 mA compared with LEDs without CuS interlayer. These results indicated that using CuS intermediate layer could be a potential ohmic contact method to realize high-efficiency LEDs.

  9. Contact formation and patterning approaches for group-III nitride light emitters

    NASA Astrophysics Data System (ADS)

    Hou, Wenting

    Solid state lighting via light emitting diodes (LEDs) and laser diodes (LDs) is a rapidly progressing technology with the potential to greatly exceed the efficiency of traditional lighting systems. This dissertation focuses on the development of electrical contacts and patterning schemes for highly efficient green LEDs and LD structures. Efficiency of LEDs can be greatly improved by means of nano-patterning processes. LEDs grown on nano-imprint patterned sapphire substrates showed promising performance, with improvement in both internal quantum efficiency and light extraction efficiency. As an alternative to nano-imprint lithography, this study utilized a simple method to generate irregular nano-patterns by a Ni self-assembly process and applied the process to both sapphire substrate and n-GaN template. In both approaches, the nano-patterned LEDs showed an improvement in light output power. For the device fabrication of LEDs and LDs, low-resistance ohmic contacts are essential for high efficiency. In search of a highly transparent ohmic contact to p-type GaN, I analyzed various metal/indium-tin-oxide (ITO) (Ag/ITO, AgCu/ITO, Ni/ITO, and NiZn/ITO) contact schemes and compared them with Ni/Au, NiZn/Ag, and ITO contacts. For ITO-based contacts, the inserted metal layer can boost conductivity while the ITO thickness can be optimized for constructive transmission interference on GaN exceeding the extraction from bare GaN. The best compromise was obtained for an Ag/ITO (3 nm /67 nm) ohmic contact, with a relative transmittance of 97% of the bare GaN near 530 nm, and a specific contact resistance of 3x10-2 O·cm 2. The contact proved particularly suitable for green light emitting diodes in epi-up geometry. Graphene as another alternative transparent p-contact was also evaluated. Furthermore, this dissertation offered a pre-deposition treatment to contact schemes on undoped and n-doped GaN, rendering a standard post-deposition annealing step unnecessary. As-deposited Ti/Al/Ti/Au usually forms a Schottky contact. By means of oxygen rapid thermal annealing prior to the metal deposition, the contact developed an ohmic behavior with a specific contact resistance of 3.8x10-5 O cm2. X-ray photoelectron spectroscopy characterization showed that the Ga 3d electron binding energy increased with the pre-treatment, indicating a shift of the Fermi level closer to the conduction band edge. This explained the improvement in contact performance. While low contact resistance to GaN-based devices has been achieved to p-type and n-type layers separately, contacts are likely to degrade when both types need to be integrated into a single fabrication process in bipolar devices. This dissertation presents a solution to the problem by the pre-deposition oxygen thermal treatment on n-GaN. By utilizing this process, an important gain in device fabrication flexibility was realized. LEDs with the integrated process for both n- and p-contacts showed lower series resistance and lower voltage drop compared to those with separately optimized contacts. In addition to the fabrication of LEDs, the development of green LDs was studied. To extend the emission wavelength of AlGaInN-based LDs to a 500 nm green spectral region, both highly efficient active layers and suitable optical confinement are critical. This work presents the development progress by first identifying active regions that show stimulated emission at 450 nm under optical excitation. Then such layers were embedded in an etched cavity. Under electrical injection, the same transition appeared as a short-wavelength shoulder of a broader band. By using a silver mirror on the p-side, an enhanced optical confinement was obtained, and the 450 nm emission showed an even better dominance over the long-wavelength contribution. As an alternative, an optical confinement was implemented by applying AlGaN cladding layers in ridge wave-guided structures. A superior optical confinement was achieved in an epitaxial ridge re-growth approach. Under pulsed electrical injection, narrow-peak emission in the 510--520 nm range was achieved, rendering the approach suitable for the further development of blue and green laser diodes.

  10. A titanium hydride gun for plasma injection into the T2-reversed field pinch device

    NASA Astrophysics Data System (ADS)

    Voronin, A. V.; Hellblom, K. G.

    1999-02-01

    A study of a plasma gun (modified Bostic type) with titanium hydride electrodes has been carried out. The total number of released hydrogen atoms was in the range 1016-1018 and the maximum plasma flow velocity was 2.5×105 m s-1. The ion density near the gun edge reached 1.8×1020 m-3 and the electron temperature was around 40 eV as estimated from probe measurements. No species other than hydrogen or titanium were seen in the plasma line radiation. The plasma injector was successfully used for gas pre-ionization in the Extrap T2 reversed-field pinch device (ohmic heating toroidal experiment (OHTE)).

  11. Impact of the plasma geometry on divertor power exhaust: experimental evidence from TCV and simulations with SolEdge2D and TOKAM3X

    NASA Astrophysics Data System (ADS)

    Gallo, A.; Fedorczak, N.; Elmore, S.; Maurizio, R.; Reimerdes, H.; Theiler, C.; Tsui, C. K.; Boedo, J. A.; Faitsch, M.; Bufferand, H.; Ciraolo, G.; Galassi, D.; Ghendrih, P.; Valentinuzzi, M.; Tamain, P.; the EUROfusion MST1 Team; the TCV Team

    2018-01-01

    A deep understanding of plasma transport at the edge of magnetically confined fusion plasmas is needed for the handling and control of heat loads on the machine first wall. Experimental observations collected on a number of tokamaks over the last three decades taught us that heat flux profiles at the divertor targets of X-point configurations can be parametrized by using two scale lengths for the scrape-off layer (SOL) transport, separately characterizing the main SOL ({λ }q) and the divertor SOL (S q ). In this work we challenge the current interpretation of these two scale lengths as well as their dependence on plasma parameters by studying the effect of divertor geometry modifications on heat exhaust in the Tokamak à Configuration Variable. In particular, a significant broadening of the heat flux profiles at the outer divertor target is diagnosed while increasing the length of the outer divertor leg in lower single null, Ohmic, L-mode discharges. Efforts to reproduce this experimental finding with both diffusive (SolEdge2D-EIRENE) and turbulent (TOKAM3X) modelling tools confirm the validity of a diffusive approach for simulating heat flux profiles in more traditional, short leg, configurations while highlighting the need of a turbulent description for modified, long leg, ones in which strongly asymmetric divertor perpendicular transport develops.

  12. The Maillard reaction and its control during food processing. The potential of emerging technologies.

    PubMed

    Jaeger, H; Janositz, A; Knorr, D

    2010-06-01

    The Maillard reaction between reducing sugars and amino acids is a common reaction in foods which undergo thermal processing. Desired consequences like the formation of flavor and brown color of some cooked foods but also the destruction of essential amino acids and the production of anti-nutritive compounds require the consideration of the Maillard reaction and relevant mechanisms for its control. This paper aims to exemplify the recent advances in food processing with regard to the controllability of heat-induced changes in the food quality. Firstly, improved thermal technologies, such as ohmic heating, which allows direct heating of the product and overcoming the heat transfer limitations of conventional thermal processing are presented in terms of their applicability to reduce the thermal exposure during food preservation. Secondly, non-thermal technologies such as high hydrostatic pressure and pulsed electric fields and their ability to extend the shelf life of food products without the application of heat, thus also preserving the quality attributes of the food, will be discussed. Finally, an innovative method for the removal of Maillard reaction substrates in food raw materials by the application of pulsed electric field cell disintegration and extraction as well as enzymatic conversion is presented in order to demonstrate the potential of the combination of processes to control the occurrence of the Maillard reaction in food processing. (c) 2009 Elsevier Masson SAS. All rights reserved.

  13. Spherical tokamaks with plasma centre-post

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2013-10-01

    The metal centre-post (MCP) in tokamaks is a structure which carries the total toroidal field current and also houses the Ohmic heating solenoid in conventional or low aspect ratio (Spherical)(ST) tokamaks. The MCP and solenoid are critical components for producing the toroidal field and for the limited Ohmic flux in STs. Constraints for a ST reactor related to these limitations lead to a minimum plasma aspect ratio of 1.4 which reduces the benefit of operation at higher betas in a more compact ST reactor. Replacing the MCP is of great interest for reactor-based ST studies since the device is simplified, compactness increased, and maintenance reduced. An experiment to show the feasibility of using a plasma centre-post (PCP) is being currently under construction and involves a high level of complexity. A preliminary study of a very simple PCP, which is ECR(Electron Cyclotron Resonance)-assisted and which includes an innovative fuelling system based on pellet injection, has recently been reported. This is highly suitable for an ultra-low aspect ratio tokamak (ULART) device. Advances on this PCP ECR-assisted concept within a ULART and the associated fuelling system are presented here, and will include the field topology for the PCP ECR-assisted scheme, pellet ablation modeling, and a possible global equilibrium simulation. VIE-ITCR, IAEA-CRP contr.17592, National Instruments-Costa Rica.

  14. Ohmic contacts to semiconducting diamond

    NASA Astrophysics Data System (ADS)

    Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.

    1990-10-01

    Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.

  15. Dramatically enhanced non-Ohmic properties and maximum stored energy density in ceramic-metal nanocomposites: CaCu3Ti4O12/Au nanoparticles

    PubMed Central

    2013-01-01

    Non-Ohmic and dielectric properties of a novel CaCu3Ti4O12/Au nanocomposite were investigated. Introduction of 2.5 vol.% Au nanoparticles in CaCu3Ti4O12 ceramics significantly reduced the loss tangent while its dielectric permittivity remained unchanged. The non-Ohmic properties of CaCu3Ti4O12/Au (2.5 vol.%) were dramatically improved. A nonlinear coefficient of ≈ 17.7 and breakdown electric field strength of 1.25 × 104 V/m were observed. The maximum stored energy density was found to be 25.8 kJ/m3, which is higher than that of pure CaCu3Ti4O12 by a factor of 8. Au addition at higher concentrations resulted in degradation of dielectric and non-Ohmic properties, which is described well by percolation theory. PMID:24257060

  16. Surface hole gas enabled transparent deep ultraviolet light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Gao, Ying; Zhou, Ling; Gil, Young-Un; Kim, Kyoung-Min

    2018-07-01

    The inherent deep-level nature of acceptors in wide-band-gap semiconductors makes p-ohmic contact formation and hole supply difficult, impeding progress for short-wavelength optoelectronics and high-power high-temperature bipolar electronics. We provide a general solution by demonstrating an ultrathin rather than a bulk wide-band-gap semiconductor to be a successful hole supplier and ohmic contact layer. Free holes in this ultrathin semiconductor are assisted to activate from deep acceptors and swept to surface to form hole gases by a large electric field, which can be provided by engineered spontaneous and piezoelectric polarizations. Experimentally, a 6 nm thick AlN layer with surface hole gas had formed p-ohmic contact to metals and provided sufficient hole injection to a 280 nm light-emitting diode, demonstrating a record electrical-optical conversion efficiency exceeding 8.5% at 20 mA (55 A cm‑2). Our approach of forming p-type wide-band-gap semiconductor ohmic contact is critical to realizing high-efficiency ultraviolet optoelectronic devices.

  17. Nanoscale electro-structural characterisation of ohmic contacts formed on p-type implanted 4H-SiC

    NASA Astrophysics Data System (ADS)

    Frazzetto, Alessia; Giannazzo, Filippo; Lo Nigro, Raffaella; di Franco, Salvatore; Bongiorno, Corrado; Saggio, Mario; Zanetti, Edoardo; Raineri, Vito; Roccaforte, Fabrizio

    2011-12-01

    This work reports a nanoscale electro-structural characterisation of Ti/Al ohmic contacts formed on p-type Al-implanted silicon carbide (4H-SiC). The morphological and the electrical properties of the Al-implanted layer, annealed at 1700°C with or without a protective capping layer, and of the ohmic contacts were studied using atomic force microscopy [AFM], transmission line model measurements and local current measurements performed with conductive AFM. The characteristics of the contacts were significantly affected by the roughness of the underlying SiC. In particular, the surface roughness of the Al-implanted SiC regions annealed at 1700°C could be strongly reduced using a protective carbon capping layer during annealing. This latter resulted in an improved surface morphology and specific contact resistance of the Ti/Al ohmic contacts formed on these regions. The microstructure of the contacts was monitored by X-ray diffraction analysis and a cross-sectional transmission electron microscopy, and correlated with the electrical results.

  18. Ohmic contacts to Al-rich AlGaN heterostructures

    DOE PAGES

    Douglas, E. A.; Reza, S.; Sanchez, C.; ...

    2017-06-06

    Due to the ultra-wide bandgap of Al-rich AlGaN, up to 5.8 eV for the structures in this study, obtaining low resistance ohmic contacts is inherently difficult to achieve. A comparative study of three different fabrication schemes is presented for obtaining ohmic contacts to an Al-rich AlGaN channel. Schottky-like behavior was observed for several different planar metallization stacks (and anneal temperatures), in addition to a dry-etch recess metallization contact scheme on Al 0.85Ga 0.15N/Al 0.66Ga 0.34N. However, a dry etch recess followed by n +-GaN regrowth fabrication process is reported as a means to obtain lower contact resistivity ohmic contacts onmore » a Al 0.85Ga 0.15N/Al 0.66Ga 0.34N heterostructure. In conclusion, specific contact resistivity of 5×10 -3 Ω cm 2 was achieved after annealing Ti/Al/Ni/Au metallization.« less

  19. Two-Dimensional Vlasov Simulations of Fast Stochastic Electron Heating in Ionospheric Modification Experiments

    NASA Astrophysics Data System (ADS)

    Speirs, David Carruthers; Eliasson, Bengt; Daldorff, Lars K. S.

    2017-10-01

    Ionospheric heating experiments using high-frequency ordinary (O)-mode electromagnetic waves have shown the induced formation of magnetic field-aligned density striations in the ionospheric F region, in association with lower hybrid (LH) and upper hybrid (UH) turbulence. In recent experiments using high-power transmitters, the creation of new plasma regions and the formation of descending artificial ionospheric layers (DAILs) have been observed. These are attributed to suprathermal electrons ionizing the neutral gas, so that the O-mode reflection point and associated turbulence is moving to a progressively lower altitude. We present the results of two-dimensional (2-D) Vlasov simulations used to study the mode conversion of an O-mode pump wave to trapped UH waves in a small-scale density striation of circular cross section. Subsequent multiwave parametric decays lead to UH and LH turbulence and to the excitation of electron Bernstein (EB) waves. Large-amplitude EB waves result in rapid stochastic electron heating when the wave amplitude exceeds a threshold value. For typical experimental parameters, the electron temperature is observed to rise from 1,500 K to about 8,000 K in a fraction of a millisecond, much faster than Ohmic heating due to collisions which occurs on a timescale of an order of a second. This initial heating could then lead to further acceleration due to Langmuir turbulence near the critical layer. Stochastic electron heating therefore represents an important potential mechanism for the formation of DAILs.

  20. A latchable thermally activated phase change actuator for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Sachsenheimer, Kai; Rapp, Bastian E.

    2016-03-01

    Complex microfluidic systems often require a high number of individually controllable active components like valves and pumps. In this paper we present the development and optimization of a latchable thermally controlled phase change actuator which uses a solid/liquid phase transition of a phase change medium and the displacement of the liquid phase change medium to change and stabilize the two states of the actuator. Because the phase change is triggered by heat produced with ohmic resistors the used control signal is an electrical signal. In contrast to pneumatically activated membrane valves this concept allows the individual control of several dozen actuators with only two external pressure lines. Within this paper we show the general working principle of the actuator and demonstrate its general function and the scalability of the concept at an example of four actuators. Additionally we present the complete results of our studies to optimize the response behavior of the actuator - the influence of the heating power as well as the used phase change medium on melting and solidifying times.

  1. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  2. Lack of dependence on resonant error field of locked mode island size in ohmic plasmas in DIII-D

    DOE PAGES

    Haye, R. J. La; Paz-Soldan, C.; Strait, E. J.

    2015-01-23

    DIII-D experiments show that fully penetrated resonant n=1 error field locked modes in Ohmic plasmas with safety factor q 95≳3 grow to similar large disruptive size, independent of resonant error field correction. Relatively small resonant (m/n=2/1) static error fields are shielded in Ohmic plasmas by the natural rotation at the electron diamagnetic drift frequency. However, the drag from error fields can lower rotation such that a bifurcation results, from nearly complete shielding to full penetration, i.e., to a driven locked mode island that can induce disruption.

  3. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance.

  4. Deterministic quantum controlled-PHASE gates based on non-Markovian environments

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Tian; Wang, Xiang-Bin

    2017-12-01

    We study the realization of the quantum controlled-PHASE gate in an atom-cavity system beyond the Markovian approximation. The general description of the dynamics for the atom-cavity system without any approximation is presented. When the spectral density of the reservoir has the Lorentz form, by making use of the memory backflow from the reservoir, we can always construct the deterministic quantum controlled-PHASE gate between a photon and an atom, no matter the atom-cavity coupling strength is weak or strong. While, the phase shift in the output pulse hinders the implementation of quantum controlled-PHASE gates in the sub-Ohmic, Ohmic or super-Ohmic reservoirs.

  5. Field-effect P-N junction

    DOEpatents

    Regan, William; Zettl, Alexander

    2015-05-05

    This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.

  6. Contact effects in light activated GaAs switches

    NASA Astrophysics Data System (ADS)

    Durkin, P. S.

    1985-05-01

    The purpose of this work was to examine the effects of various types of contacts on the switching behavior of a light-triggered power switch. The switch was constructed from a homogeneous wafer of chromium-doped gallium arsenide; the contacts were either ohmic, non-ohmic, or Schottky barriers. These were formed on the wafer in two geometries; both contacts on one side, and one contact spacings were used to permit the effects of the location of the existing laser pulse to be studied. A high voltage power supply (zero to 20 kV) was employed as the bias supply. A Nd:YAG laser, in the pulsed mode, was used to trigger the switch, which was mounted on a cold finger cooled to near liquid nitrogen temperature. Cooling reduced the dark current to manageable values (less than 1 micro A), and also reduced the avalanche breakdown voltage. The results of the measurements indicate that ohmic contacts produced more reliable switching than the non-ohmic or Schottky contacts, in as much as the shape of the output current pulse was better, and the number of pulses which the switches could sustain before the pulse shape deteriorated was greater, for the ohmic contacts. Surface discharge between the one-sided contacts obscured any differences in switching characteristics which might have depended on the location of the pulsed light excitation, so that no correlation between position and behavior could be obtained.

  7. Three-dimensional simulation of H-mode plasmas with localized divertor impurity injection on Alcator C-Mod using the edge transport code EMC3-EIRENE

    DOE PAGES

    Lore, Jeremy D.; Reinke, M. L.; Brunner, D.; ...

    2015-04-28

    We study experiments in Alcator C-Mod to assess the level of toroidal asymmetry in divertor conditions resulting from poloidally and toroidally localized extrinsic impurity gas seeding show a weak toroidal peaking (~1.1) in divertor electron temperatures for high-power enhanced D-alpha H-modeplasmas. This is in contrast to similar experiments in Ohmically heated L-modeplasmas, which showed a clear toroidal modulation in the divertor electron temperature. Modeling of these experiments using the 3D edge transport code EMC3-EIRENE [Y. Feng et al., J. Nucl. Mater. 241, 930 (1997)] qualitatively reproduces these trends, and indicates that the different response in the simulations is due tomore » the ionization location of the injected nitrogen. Low electron temperatures in the private flux region (PFR) in L-mode result in a PFR plasma that is nearly transparent to neutral nitrogen, while in H-mode the impurities are ionized in close proximity to the injection location, with this latter case yielding a largely axisymmetric radiation pattern in the scrape-off-layer. In conclusion, the consequences for the ITER gas injection system are discussed. Quantitative agreement with the experiment is lacking in some areas, suggesting potential areas for improving the physics model in EMC3-EIRENE.« less

  8. A Waveguide-coupled Thermally-isolated Radiometric Source

    NASA Technical Reports Server (NTRS)

    Rostem, Karwan; Chuss, David T.; Lourie, Nathan P.; Voellmer, George M.; Wollack, Edward

    2013-01-01

    The design and validation of a dual polarization source for waveguide-coupled millimeter and sub-millimeter wave cryogenic sensors is presented. The thermal source is a waveguide mounted absorbing conical dielectric taper. The absorber is thermally isolated with a kinematic suspension that allows the guide to be heat sunk to the lowest bath temperature of the cryogenic system. This approach enables the thermal emission from the metallic waveguide walls to be subdominant to that from the source. The use of low thermal conductivity Kevlar threads for the kinematic mount effectively decouples the absorber from the sensor cold stage. Hence, the absorber can be heated to significantly higher temperatures than the sensor with negligible conductive loading. The kinematic suspension provides high mechanical repeatability and reliability with thermal cycling. A 33-50 GHz blackbody source demonstrates an emissivity of 0.999 over the full waveguide band where the dominant deviation from unity arises from the waveguide ohmic loss. The observed thermal time constant of the source is 40 s when the absorber temperature is 15 K. The specific heat of the lossy dielectric MF-117 is well approximated by Cv(T) = 0.12 T(exp 2.06) mJ/g/K between 3.5 K and 15 K.

  9. Simulations of thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    NASA Astrophysics Data System (ADS)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-11-01

    Operating a liquid-metal battery produces Ohmic losses in the electrolyte layer that separates both metal electrodes. As a consequence, temperature gradients establish which potentially cause thermal convection since density and interfacial tension depend on the local temperature. In our numerical investigations, we considered three plane, immiscible layers governed by the Navier-Stokes-Boussinesq equations held at a constant temperature of 500°C at the bottom and top. A homogeneous current is applied that leads to a preferential heating of the mid electrolyte layer. We chose a typical material combination of Li separated by LiCl-KCl (a molten salt) from Pb-Bi for which we analyzed the linear stability of pure thermal conduction and performed three-dimensional direct-numerical simulations by a pseudospectral method probing different: electrolyte layer heights, overall heights, and current densities. Four instability mechanisms are identified, which are partly coupled to each other: buoyant convection in the upper electrode, buoyant convection in the molten salt layer, and Marangoni convection at both interfaces between molten salt and electrode. The global turbulent heat transfer follows scaling predictions for internally heated buoyant convection. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. KO 5515/1-1 is gratefully acknowledged.

  10. Improved fabrication techniques for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Lange, A. E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Ion implantation and sputter metallization are used to produce ohmic electrical contacts to Ge:Ga chips. The method is shown to give a high yield of small monolithic bolometers with very little low-frequency noise. It is noted that when one of the chips is used as the thermometric element of a composite bolometer it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond is measured and found to be undesirably large. A procedure for soldering the chip to a metallized portion of the substrate in such a way as to reduce this resistance is outlined. An evaluation is made of the contribution of the metal film absorber to the heat capacity of a composite bolometer. It is found that the heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber possesses significantly lower heat capacity. A low-temperature blackbody calibrator is built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approximately 0.1 sr sq cm is constructed using the new techniques. The noise in this bolometer is white above 2.5 Hz and is slightly below the value predicted by thermodynamic equilibrium theory.

  11. Non-isothermal electrochemical model for lithium-ion cells with composite cathodes

    NASA Astrophysics Data System (ADS)

    Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang

    2015-06-01

    Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.

  12. A semi-analytic model of magnetized liner inertial fusion

    DOE PAGES

    McBride, Ryan D.; Slutz, Stephen A.

    2015-05-21

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primarymore » fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.« less

  13. A semi-analytic model of magnetized liner inertial fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Ryan D.; Slutz, Stephen A.

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primarymore » fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.« less

  14. Formation of gallium vacancies and their effects on the nanostructure of Pd/Ir/Au ohmic contact to p-type GaN.

    PubMed

    Kim, Kyong Nam; Kim, Tae Hyung; Seo, Jin Seok; Kim, Ki Seok; Bae, Jeong Woon; Yeom, Geun Young

    2013-12-01

    The properties of Pd/Ir/Au ohmic metallization on p-type GaN have been investigated. Contacts annealed at 400 degrees C in O2 atmosphere demonstrated excellent ohmic characteristics with a specific contact resistivity of 1.5 x 10(-5) Omega-cm2. This is attributed to the formation of Ga vacancies at the contact metal-semiconductor interfacial region due to the out-diffusion of Ga atoms. The out-diffusion of Ga atoms was confirmed by X-ray photoelectron spectroscopy depth profiles, high-resolution transmission electron microscopy, and electron energy loss spectroscopy using a scanning transmission electron microscope.

  15. Two-step deposition of Al-doped ZnO on p-GaN to form ohmic contacts.

    PubMed

    Su, Xi; Zhang, Guozhen; Wang, Xiao; Chen, Chao; Wu, Hao; Liu, Chang

    2017-12-01

    Al-doped ZnO (AZO) thin films were deposited directly on p-GaN substrates by using a two-step deposition consisting of polymer assisted deposition (PAD) and atomic layer deposition (ALD) methods. Ohmic contacts of the AZO on p-GaN have been formed. The lowest sheet resistance of the two-step prepared AZO films reached to 145 Ω/sq, and the specific contact resistance reduced to 1.47 × 10 -2 Ω·cm 2 . Transmittance of the AZO films remained above 80% in the visible region. The combination of PAD and ALD technique can be used to prepare p-type ohmic contacts for optoelectronics.

  16. Skyrmions Driven by Intrinsic Magnons

    NASA Astrophysics Data System (ADS)

    Psaroudaki, Christina; Loss, Daniel

    2018-06-01

    We study the dynamics of a Skyrmion in a magnetic insulating nanowire in the presence of time-dependent oscillating magnetic field gradients. These ac fields act as a net driving force on the Skyrmion via its own intrinsic magnetic excitations. In a microscopic quantum field theory approach, we include the unavoidable coupling of the external field to the magnons, which gives rise to time-dependent dissipation for the Skyrmion. We demonstrate that the magnetic ac field induces a super-Ohmic to Ohmic crossover behavior for the Skyrmion dissipation kernels with time-dependent Ohmic terms. The ac driving of the magnon bath at resonance results in a unidirectional helical propagation of the Skyrmion in addition to the otherwise periodic bounded motion.

  17. Two-step deposition of Al-doped ZnO on p-GaN to form ohmic contacts

    NASA Astrophysics Data System (ADS)

    Su, Xi; Zhang, Guozhen; Wang, Xiao; Chen, Chao; Wu, Hao; Liu, Chang

    2017-07-01

    Al-doped ZnO (AZO) thin films were deposited directly on p-GaN substrates by using a two-step deposition consisting of polymer assisted deposition (PAD) and atomic layer deposition (ALD) methods. Ohmic contacts of the AZO on p-GaN have been formed. The lowest sheet resistance of the two-step prepared AZO films reached to 145 Ω/sq, and the specific contact resistance reduced to 1.47 × 10-2 Ω·cm2. Transmittance of the AZO films remained above 80% in the visible region. The combination of PAD and ALD technique can be used to prepare p-type ohmic contacts for optoelectronics.

  18. Suppression of surface segregation of the phosphorous δ-doping layer by insertion of an ultra-thin silicon layer for ultra-shallow Ohmic contacts on n-type germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Michihiro; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp

    2015-09-28

    We demonstrate the formation of abrupt phosphorus (P) δ-doping profiles in germanium (Ge) by the insertion of ultra-thin silicon (Si) layers. The Si layers at the δ-doping region significantly suppress the surface segregation of P during the molecular beam epitaxial growth of Ge and high-concentration active P donors are confined within a few nm of the initial doping position. The current-voltage characteristics of the P δ-doped layers with Si insertion show excellent Ohmic behaviors with low enough resistivity for ultra-shallow Ohmic contacts on n-type Ge.

  19. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOEpatents

    Sopori, B.L.

    1995-07-04

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance. 5 figs.

  20. Formation and characterization of Ni/Al Ohmic contact on n+-type GeSn

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Zhang, Dongliang; Zheng, Jun; Liu, Zhi; He, Chao; Xue, Chunlai; Zhang, Guangze; Li, Chuanbo; Cheng, Buwen; Wang, Qiming

    2015-12-01

    In this study, a Ni/Al Ohmic contact on a highly doped n-type GeSn has been investigated. A specific contact resistivity as low as (2.26 ± 0.11) × 10-4 Ω cm2 was obtained with the GeSn sample annealed at a temperature of 450 °C for 30 s. The linear Ohmic behavior was attributed to the low resistance of the Ni(GeSn) phase; this behavior was determined using glancing-angle X-ray diffraction, and the quantum tunneling current through the Schottky barrier narrowed because of high doping; this phenomenon was confirmed from the contact resistance characteristics at different temperatures from 45 to 205 K.

  1. Formation of Ohmic contact to semipolar (11-22) p-GaN by electrical breakdown method

    NASA Astrophysics Data System (ADS)

    Jeong, Seonghoon; Lee, Sung-Nam; Kim, Hyunsoo

    2018-01-01

    The electrical breakdown (EBD) method was used to obtain Ohmic contact to semipolar (11-20) p-GaN surfaces using the Ti/SiO2/ p-GaN structure. The EBD method by which the electrical stress voltage was increased up to 70 V with a compliance current of 30 mA resulted in an Ohmic contact with a specific contact resistance of 3.1×10-3 Ωcm2. The transmission electron microscope (TEM) analysis revealed that the oxygen was slightly out-diffused from SiO2 layer toward Ti surface and the oxidation occurred at the Ti surface, while the GaN remained unchanged.

  2. Flexible, Carbon-Based Ohmic Contacts for Organic Transistors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik

    2005-01-01

    A low-temperature process for fabricating flexible, ohmic contacts for use in organic thin-film transistors (OTFTs) has been developed. Typical drainsource contact materials used previously for OTFTs include (1) vacuum-deposited noble-metal contacts and (2) solution-deposited intrinsically conducting molecular or polymeric contacts. Both of these approaches, however, have serious drawbacks.

  3. Internal optical losses in very thin CW heterojunction laser diodes

    NASA Technical Reports Server (NTRS)

    Butler, J. K.; Kressel, H.; Ladany, I.

    1975-01-01

    Theoretical calculations are presented showing the relationship between the internal laser absorption and structural parameters appropriate for CW room-temperature lasers. These diodes have submicron-thick recombination regions, and very small spacings between the heat sink and the recombination region to minimize the thermal resistance. The optical loss is shown to be strongly dependent on the degree of radiation confinement to the active region. In particular, absorption in the surface GaAs layer providing the ohmic contact becomes very significant when the intermediate (AlGa)As layer is reduced below about 1 micron. It is further shown that excessive penetration into the GaAs regions gives rise to anomalies in the far-field radiation profiles in the direction perpendicular to the junction plane.

  4. Energy Exchange in Driven Open Quantum Systems at Strong Coupling

    NASA Astrophysics Data System (ADS)

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-01

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .

  5. Three-dimensional observation of an helical hot structure during a sawtooth crash in the WT-3 tokamak.

    PubMed

    Yamaguchi, S; Igami, H; Tanaka, H; Maekawa, T

    2004-07-23

    Sawtooth crashes in an Ohmically heated plasma in the WT-3 tokamak have been observed by using soft x-ray computer tomography at three different poloidal cross sections around the torus. Initially, collapsing proceeds slowly with keeping the helical structure of an m = 1/n = 1 hot core around the torus. It accelerates as the helical hot structure is strongly deformed and fades away in the manner that the hot core at the high field side becomes obscure and disappears, while that at the low field side is deformed into a thin crescent aligned along the inversion circle, which survives even at the completion of the crash. Copyright 2004 The American Physical Society

  6. A zero-equation turbulence model for two-dimensional hybrid Hall thruster simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappelli, Mark A., E-mail: cap@stanford.edu; Young, Christopher V.; Cha, Eunsun

    2015-11-15

    We present a model for electron transport across the magnetic field of a Hall thruster and integrate this model into 2-D hybrid particle-in-cell simulations. The model is based on a simple scaling of the turbulent electron energy dissipation rate and the assumption that this dissipation results in Ohmic heating. Implementing the model into 2-D hybrid simulations is straightforward and leverages the existing framework for solving the electron fluid equations. The model recovers the axial variation in the mobility seen in experiments, predicting the generation of a transport barrier which anchors the region of plasma acceleration. The predicted xenon neutral andmore » ion velocities are found to be in good agreement with laser-induced fluorescence measurements.« less

  7. Plasma production and preliminary results from the ADITYA Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    R, L. TANNA; J, GHOSH; Harshita, RAJ; Rohit, KUMAR; Suman, AICH; Vaibhav, RANJAN; K, A. JADEJA; K, M. PATEL; S, B. BHATT; K, SATHYANARAYANA; P, K. CHATTOPADHYAY; M, N. MAKWANA; K, S. SHAH; C, N. GUPTA; V, K. PANCHAL; Praveenlal, EDAPPALA; Bharat, ARAMBHADIYA; Minsha, SHAH; Vismay, RAULJI; M, B. CHOWDHURI; S, BANERJEE; R, MANCHANDA; D, RAJU; P, K. ATREY; Umesh, NAGORA; J, RAVAL; Y, S. JOISA; K, TAHILIANI; S, K. JHA; M, V. GOPALKRISHANA

    2018-07-01

    The Ohmically heated circular limiter tokamak ADITYA (R 0 = 75 cm, a = 25 cm) has been upgraded to a tokamak named the ADITYA Upgrade (ADITYA-U) with an open divertor configuration with divertor plates. The main goal of ADITYA-U is to carry out dedicated experiments relevant for bigger fusion machines including ITER, such as the generation and control of runaway electrons, disruption prediction, and mitigation studies, along with an improvement in confinement with shaped plasma. The ADITYA tokamak was dismantled and the assembly of ADITYA-U was completed in March 2016. Integration of subsystems like data acquisition and remote operation along with plasma production and preliminary plasma characterization of ADITYA-U plasmas are presented in this paper.

  8. A predictive model for the tokamak density limit

    DOE PAGES

    Teng, Q.; Brennan, D. P.; Delgado-Aparicio, L.; ...

    2016-07-28

    We reproduce the Greenwald density limit, in all tokamak experiments by using a phenomenologically correct model with parameters in the range of experiments. A simple model of equilibrium evolution and local power balance inside the island has been implemented to calculate the radiation-driven thermo-resistive tearing mode growth and explain the density limit. Strong destabilization of the tearing mode due to an imbalance of local Ohmic heating and radiative cooling in the island predicts the density limit within a few percent. Furthermore, we found the density limit and it is a local edge limit and weakly dependent on impurity densities. Ourmore » results are robust to a substantial variation in model parameters within the range of experiments.« less

  9. PUMPS FOR LIQUID CURRENT-CONDUCTING MATERIAL

    DOEpatents

    Watt, D.A.

    1958-12-23

    An induction-type liquid conductor pump is described wherein the induced current flow is substantially tnansverse to the flow of the liquid in the duct, thus eliminating parallel current flow that tends to cause unwanted pressures resulting in turbulence, eddy-flow, heating losses, and reduced pumping efficiency. This improvement is achieved by offering the parallel current a path of lower impedance along the duct than that offered by the liquid so that the induced currents remaining in the liquid flow in a substantially transverse directlon. Thick copper bars are brazed to the liquid duct parallel to the flow, and additional induced currents are created in the copper bars of appropriate magnitude to balance the ohmic drop ln the current paths outside of the liquid metal.

  10. Control quantum evolution speed of a single dephasing qubit for arbitrary initial states via periodic dynamical decoupling pulses.

    PubMed

    Song, Ya-Ju; Tan, Qing-Shou; Kuang, Le-Man

    2017-03-08

    We investigate the possibility to control quantum evolution speed of a single dephasing qubit for arbitrary initial states by the use of periodic dynamical decoupling (PDD) pulses. It is indicated that the quantum speed limit time (QSLT) is determined by initial and final quantum coherence of the qubit, as well as the non-Markovianity of the system under consideration during the evolution when the qubit is subjected to a zero-temperature Ohmic-like dephasing reservoir. It is shown that final quantum coherence of the qubit and the non-Markovianity of the system can be modulated by PDD pulses. Our results show that for arbitrary initial states of the dephasing qubit with non-vanishing quantum coherence, PDD pulses can be used to induce potential acceleration of the quantum evolution in the short-time regime, while PDD pulses can lead to potential speedup and slow down in the long-time regime. We demonstrate that the effect of PDD on the QSLT for the Ohmic or sub-Ohmic spectrum (Markovian reservoir) is much different from that for the super-Ohmic spectrum (non-Markovian reservoir).

  11. Formation of low resistance ohmic contacts in GaN-based high electron mobility transistors with BCl3 surface plasma treatment

    NASA Astrophysics Data System (ADS)

    Fujishima, Tatsuya; Joglekar, Sameer; Piedra, Daniel; Lee, Hyung-Seok; Zhang, Yuhao; Uedono, Akira; Palacios, Tomás

    2013-08-01

    A BCl3 surface plasma treatment technique to reduce the resistance and to increase the uniformity of ohmic contacts in AlGaN/GaN high electron mobility transistors with a GaN cap layer has been established. This BCl3 plasma treatment was performed by an inductively coupled plasma reactive ion etching system under conditions that prevented any recess etching. The average contact resistances without plasma treatment, with SiCl4, and with BCl3 plasma treatment were 0.34, 0.41, and 0.17 Ω mm, respectively. Also, the standard deviation of the ohmic contact resistance with BCl3 plasma treatment was decreased. This decrease in the standard deviation of contact resistance can be explained by analyzing the surface condition of GaN with x-ray photoelectron spectroscopy and positron annihilation spectroscopy. We found that the proposed BCl3 plasma treatment technique can not only remove surface oxide but also introduce surface donor states that contribute to lower the ohmic contact resistance.

  12. Ohmic ITBs in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Rowan, W. L.; Dominguez, A.; Hubbard, A. E.; Ince-Cushman, A.; Greenwald, M. J.; Lin, L.; Marmar, E. S.; Reinke, M.; Rice, J. E.; Zhurovich, K.

    2007-11-01

    Internal transport barrier plasmas can arise spontaneously in ohmic Alcator C-Mod plasmas where an EDA H-mode has been developed by magnetic field ramping. These ohmic ITBs share the hallmarks of ITBs created with off-axis ICRF injection in that they have highly peaked density and pressure profiles and the peaking can be suppressed by on-axis ICRF. There is a reduction of particle and thermal flux in the barrier region which then allows the neoclassical pinch to peak the central density. Recent work on ITB onset conditions [1] which was motivated by turbulence studies [2] points to the broadening of the Ti profile with off-axis ICRF acting to reduce the ion temperature gradient. This suppresses ITG instability driven particle fluxes, which is thought to be the primary mechanism for ITB formation. The object of this study is to examine the characteristics of ohmic ITBs to find whether the stability of plasmas and the plasma parameters support the onset model. [1]K. Zhurovich, et al., To be published in Nuclear Fusion [2] D. R. Ernst, et al., Phys. Plasmas 11, 2637 (2004)

  13. A High Isolation Series-Shunt RF MEMS Switch

    PubMed Central

    Yu, Yuan-Wei; Zhu, Jian; Jia, Shi-Xing; Shi, Yi

    2009-01-01

    This paper presents a wide band compact high isolation microelectromechanical systems (MEMS) switch implemented on a coplanar waveguide (CPW) with three ohmic switch cells, which is based on the series-shunt switch design. The ohmic switch shows a low intrinsic loss of 0.1 dB and an isolation of 24.8 dB at 6 GHz. The measured average pull-in voltage is 28 V and switching time is 47 μs. In order to shorten design period of the high isolation switch, a structure-based small-signal model for the 3-port ohmic MEMS switch is developed and parameters are extracted from the measured results. Then a high isolation switch has been developed where each 3-port ohmic MEMS switch is closely located. The agreement of the measured and modeled radio frequency (RF) performance demonstrates the validity of the electrical equivalent model. Measurements of the series-shunt switch indicate an outstanding isolation of more than 40 dB and a low insertion loss of 0.35 dB from DC to 12 GHz with total chip size of 1 mm × 1.2 mm. PMID:22408535

  14. Improvement of electrical and optical properties of p-GaN Ohmic metals under ultraviolet light irradiation annealing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, S.W.; Yoon, S.K.; Kwak, J.S.

    2006-05-15

    We report the improvement of electrical and optical properties of p-GaN Ohmic metals, ZnNi(10 nm)/Au(10 nm), by ultraviolet (UV) light irradiation. After UV light irradiation, the specific contact resistance of p-GaN decreased slightly from 2.99x10{sup -4} to 2.54x10{sup -4} {omega} cm{sup 2}, while the transmittance of the contact layer increased form 75% to 85% at a wavelength of 460 nm. In addition, the forward voltage of InGaN/GaN light-emitting diode chip at 20 mA decreased from 3.55 to 3.45 V, and the output power increased form 18 to 25 mW by UV light irradiation. The low resistance and high transmittance ofmore » the p-GaN Ohmic metals are attributed to the reduced Shottky barrier by the formation of gallium oxide and the increased oxidation of p-Ohmic metals, respectively, due to ozone generated form oxygen during UV light irradiation.« less

  15. Sintered Cr/Pt and Ni/Au ohmic contacts to B 12P 2

    DOE PAGES

    Frye, Clint D.; Kucheyev, Sergei O.; Edgar, James H.; ...

    2015-04-09

    With this study, icosahedral boron phosphide (B 12P 2) is a wide-bandgap semiconductor possessing interesting properties such as high hardness, chemical inertness, and the reported ability to self-heal from irradiation by high energy electrons. Here, the authors developed Cr/Pt and Ni/Au ohmic contacts to epitaxially grown B 12P 2 for materials characterization and electronic device development. Cr/Pt contacts became ohmic after annealing at 700 °C for 30 s with a specific contact resistance of 2×10 –4 Ω cm 2, as measured by the linear transfer length method. Ni/Au contacts were ohmic prior to any annealing, and their minimum specific contactmore » resistance was ~l–4 × 10 –4 Ω cm 2 after annealing over the temperature range of 500–800 °C. Rutherford backscattering spectrometry revealed a strong reaction and intermixing between Cr/Pt and B 12P 2 at 700 °C and a reaction layer between Ni and B 12P 2 thinner than ~25 nm at 500 °C.« less

  16. Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    NASA Astrophysics Data System (ADS)

    Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-06-01

    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.

  17. Effect of frequency on the uniformity of symmetrical RF CCP discharges

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal

    2018-05-01

    A 2D Cartesian electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) model presented previously (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) is used to investigate the effect of the driving frequency (over the range of 15–45 MHz) on the plasma uniformity in radio frequency (RF) capacitively coupled plasma (CCP) discharges in a geometrically symmetric reactor with a dielectric side wall in argon gas. The reactor size (12 cm electrode length, 2.5 cm gap) and driving frequency are sufficiently small that electromagnetic effects can be ignored. Previously, we showed (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) that for 15 MHz excitation, Ohmic heating of electrons by the electric field perpendicular to the electrodes is enhanced in a region in front of the dielectric side wall, leading to a maximum in electron density there. In this work we show that increasing the excitation frequency (at constant applied voltage amplitude) not only increases the overall electron heating and density but also causes a stronger, narrower peak in electron heating closer to the dielectric wall, improving the plasma uniformity along the electrodes. This heating peak comes both from enhanced perpendicular electron heating and from the appearance at high frequency of significant parallel heating. The latter is caused by the presence of a significant parallel-direction RF oscillating electric field in the corners. Whereas at the reactor center the sheaths oscillate perpendicularly to the electrodes, near the dielectric edge they move in and out of the corners and must be treated in two dimensions.

  18. Resistive tearing instability in electron MHD: application to neutron star crusts

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos N.; Hollerbach, Rainer

    2016-12-01

    We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the corresponding eigenvalues and dispersion relation. The instability growth rate scales as γ ∝ B2/3σ-1/3, where B is the magnetic field and σ the electrical conductivity. We confirm the development of the tearing resistive instability in the fully non-linear case, in a plane-parallel configuration where the magnetic field polarity reverses, through simulations of systems initiating in Hall equilibrium with some superimposed perturbation. Following a transient phase, during which there is some minor rearrangement of the magnetic field, the perturbation grows exponentially. Once the instability is fully developed, the magnetic field forms the characteristic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the implications of this instability for the local magnetic field evolution in neutron stars' crusts, proposing that it can contribute to heating near the surface of the star, as suggested by models of magnetar post-burst cooling. In particular, we find that a current sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 1042 erg in thermal energy within a few days. We briefly discuss applications of this instability in other systems where the Hall effect operates such as protoplanetary discs and space plasmas.

  19. Measurements of molybdenum radiation in the Alcator C-Mod tokamak using a multilayer mirror soft x-ray polychromator

    NASA Astrophysics Data System (ADS)

    May, M. J.; Finkenthal, M.; Regan, S. P.; Moos, H. W.; Terry, J. L.; Graf, M. A.; Fournier, K.; Goldstein, W. L.

    1995-01-01

    A photometrically calibrated polychromator utilizing layered synthetic microstructure coated flats (also known as multilayer mirrors, MLMs) as dispersive elements is operating on the Alcator C-Mod tokamak to measure the molybdenum emissions in the XUV. Molybdenum, the first wall material in C-Mod, is the dominant high Z impurity in the plasma. Three spectral regions are measured by three separate MLM-detector channels. The characteristic charge states in the region between 30-40 Å are Mo xv to Mo xx, between 65-90 Å are Mo xxiv to Mo xxvi, and between 110-130 Å are Mo xxxi and Mo xxxii. The instrument's spectral resolution varies from 0.4 Å at λ=30 Å to 7 Å at λ=130 Å. The temporal resolution is typically 1.0 ms, but sampling rates of less than 1 ms are possible. The instrument was photometrically calibrated at The Johns Hopkins University using a Manson soft x-ray light source. Power loss estimates from Mo xxiv to Mo xxvi, Mo xxxi, and Mo xxxii have been obtained during ohmic and ICRF plasmas using the mist transport code to model the molybdenum charge state distributions in the plasma. The Mo concentrations have also been determined. Mo contributes ˜0.1 to the Zeff of 1.3 during ohmic plasmas. This contribution increases during ICRF heating to ˜0.5 of the Zeff of 2. The polychromator functions as a time-resolved soft x-ray emission power loss monitor.

  20. Plasma parameters of the cathode spot explosive electron emission cell obtained from the model of liquid-metal jet tearing and electrical explosion

    NASA Astrophysics Data System (ADS)

    Tsventoukh, M. M.

    2018-05-01

    A model has been developed for the explosive electron emission cell pulse of a vacuum discharge cathode spot that describes the ignition and extinction of the explosive pulse. The pulse is initiated due to hydrodynamic tearing of a liquid-metal jet which propagates from the preceding cell crater boundary and draws the ion current from the plasma produced by the preceding explosion. Once the jet neck has been resistively heated to a critical temperature (˜1 eV), the plasma starts expanding and decreasing in density, which corresponds to the extinction phase. Numerical and analytical solutions have been obtained that describe both the time behavior of the pulse plasma parameters and their average values. For the cell plasma, the momentum per transferred charge has been estimated to be some tens of g cm/(s C), which is consistent with the known measurements of ion velocity, ion erosion rate, and specific recoil force. This supports the model of the pressure-gradient-driven plasma acceleration mechanism for the explosive cathode spot cells. The ohmic electric field within the explosive current-carrying plasma has been estimated to be some tens of kV/cm, which is consistent with the known experimental data on cathode potential fall and explosive cell plasma size. This supports the model that assumes the ohmic nature of the cathode potential fall in a vacuum discharge.

  1. Preliminary measurements of neutrons from the D-D reaction in the COMPASS tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dankowski, J., E-mail: jan.dankowski@ifj.edu.pl; Kurowski, A.; Twarog, D.

    Recent results of measured fast neutrons created in the D-D reaction on the COMPASS tokamak during ohmic discharges are presented in this paper. Two different type detectors were used during experiment. He-3 detectors and bubble detectors as a support. The measurements are an introduction for neutron diagnostic on tokamak COMPASS and monitoring neutrons during discharges with Neutral Beam Injection (NBI). The He-3 counters and bubble detectors were located in two positions near tokamak vacuum chamber at a distance less than 40 cm to the centre of plasma. The neutrons flux was observed in ohmic discharges. However, analysis of our resultsmore » does not indicate any clear source of neutrons production during ohmic discharges.« less

  2. New flange correction formula applied to interfacial resistance measurements of ohmic contacts to GaAs

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo; Hannaman, David J.

    1987-01-01

    A quasi-two-dimensional analytical model is developed to account for vertical and horizontal current flow in and adjacent to a square ohmic contact between a metal and a thin semiconducting strip which is wider than the contact. The model includes side taps to the contact area for voltage probing and relates the 'apparent' interfacial resistivity to the (true) interfacial resistivity, the sheet resistance of the semiconducting layer, the contact size, and the width of the 'flange' around the contact. This relation is checked against numerical simulations. With the help of the model, interfacial resistivities of ohmic contacts to GaAs were extracted and found independent of contact size in the range of 1.5-10 microns.

  3. Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices.

    PubMed

    Gayduchenko, I A; Fedorov, G E; Moskotin, M V; Yagodkin, D I; Seliverstov, S V; Goltsman, G N; Yu Kuntsevich, A; Rybin, M G; Obraztsova, E D; Leiman, V G; Shur, M S; Otsuji, T; Ryzhii, V I

    2018-06-15

    We report on the sub-terahertz (THz) (129-450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.

  4. Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices

    NASA Astrophysics Data System (ADS)

    Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Kuntsevich, A. Yu; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I.

    2018-06-01

    We report on the sub-terahertz (THz) (129–450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.

  5. Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation.

    PubMed

    Liu, Shu-Yen; Sheu, J K; Lee, M L; Lin, Yu-Chuan; Tu, S J; Huang, F W; Lai, W C

    2012-03-12

    In this study, we demonstrated photoelectrochemical (PEC) hydrogen generation using p-GaN photoelectrodes associated with immersed finger-type indium tin oxide (IF-ITO) ohmic contacts. The IF-ITO/p-GaN photoelectrode scheme exhibits higher photocurrent and gas generation rate compared with p-GaN photoelectrodes without IF-ITO ohmic contacts. In addition, the critical external bias for detectable hydrogen generation can be effectively reduced by the use of IF-ITO ohmic contacts. This finding can be attributed to the greatly uniform distribution of the IF-ITO/p-GaN photoelectrode applied fields over the whole working area. As a result, the collection efficiency of photo-generated holes by electrode contacts is higher than that of p-GaN photoelectrodes without IF-ITO contacts. Microscopy revealed a tiny change on the p-GaN surfaces before and after hydrogen generation. In contrast, photoelectrodes composed of n-GaN have a short lifetime due to n-GaN corrosion during hydrogen generation. Findings of this study indicate that the ITO finger contacts on p-GaN layer is a potential candidate as photoelectrodes for PEC hydrogen generation.

  6. State transition of a non-Ohmic damping system in a corrugated plane.

    PubMed

    Lü, Kun; Bao, Jing-Dong

    2007-12-01

    Anomalous transport of a particle subjected to non-Ohmic damping of the power delta in a tilted periodic potential is investigated via Monte Carlo simulation of the generalized Langevin equation. It is found that the system exhibits two relative motion modes: the locked state and the running state. In an environment of sub-Ohmic damping (0=2D_(eff)(delta){t(delta_eff} . Our result shows that the effective power index delta_(eff) can be enhanced and is a nonmonotonic function of the temperature and the driving force. The mixture of the two motion modes also leads to a breakdown of the hysteresis loop of the mobility.

  7. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhoufei; Ouyang, Xiaolong; Gong, Zhihao

    An extended hierarchy equation of motion (HEOM) is proposed and applied to study the dynamics of the spin-boson model. In this approach, a complete set of orthonormal functions are used to expand an arbitrary bath correlation function. As a result, a complete dynamic basis set is constructed by including the system reduced density matrix and auxiliary fields composed of these expansion functions, where the extended HEOM is derived for the time derivative of each element. The reliability of the extended HEOM is demonstrated by comparison with the stochastic Hamiltonian approach under room-temperature classical ohmic and sub-ohmic noises and the multilayermore » multiconfiguration time-dependent Hartree theory under zero-temperature quantum ohmic noise. Upon increasing the order in the hierarchical expansion, the result obtained from the extended HOEM systematically converges to the numerically exact answer.« less

  9. Magnetic Reconnection Processes Involving Modes Propagating in the Ion Diamagnetic Velocity Direction

    NASA Astrophysics Data System (ADS)

    Buratti, P.; Coppi, B.; Pucella, G.; Zhou, T.

    2013-10-01

    Experiments in weakly collisional plasma regimes, (e.g. neutral beam heated plasmas in the H-regime), measuring the Doppler shift associated with the plasma local rotation, have shown that the toroidal mode phase velocity vph in the frame with Er = 0 is in the direction of the ion diamagnetic velocity. For ohmically heated plasmas, with higher collisionalities, vph in the laboratory frame is in the direction of the electron diamagnetic velocity, but plasma rotation is reversed as well, and vph, in the Er = 0 frame, is in the ion diamagnetic velocity direction. Theoretically, two classes of reconnecting modes should emerge: drift-tearing modes and ``inductive modes'' that depend on the effects of a finite plasma inductivity. The former modes, with vph in the direction of the electron diamagnetic velocity, require the pre-excitation of a different kind of mode in order to become unstable in weakly collisional regimes. The second kind of modes has a growth rate associated with the relevant finite ion viscosity. A comprehensive theory is presented. Sponsored in part by the US DOE.

  10. A Research Program of Spherical Tokamak in China

    NASA Astrophysics Data System (ADS)

    He, Ye-xi

    2002-08-01

    The mission of this program is to explore the spherical torus plasma with a SUNIST spherical tokamak. Main experiments in the start phase will be involved with breakdown and plasma current set-up with a mode of saving volt-second and without ohmic heating system, equilibrium and instability, current driving, heating and profile modification. The SUNIST is a university-scale conceptual spherical tokamak, with R = 0.3 m, A 1.3, Ip ~ 50 kA, BT < 0.15 T, and PRF = 100 kW. The only peculiarity of SUNIST is that there is a toroidal insulating break along the outer wall of vacuum vessel. The expected that advantages of this arrangement are helpful not only for saving flux swing, but also for having a deep understanding of what will influence the discharge startup and globe performances of plasma under different conditions of strong vessel eddy and ECR power assistance. Of course, the vessel structure of cross seal will be at a great risk of controlling vacuum quality, although we have achieved positive results on simulation test and vacuum vessel test.

  11. Initial Edge Stability Observations in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Battaglia, D. J.; Garstka, G. D.; Sontag, A. C.; Unterberg, E. A.

    2007-11-01

    Edge stability is an important consideration for design of fusion experiments, as transient heat loads generated by edge instabilities may damage the first wall. Such instabilities are now believed to include peeling (current driven) and ballooning (pressure driven) components. Peeling instability may be expected for high values of edge j||/B and low edge pressure gradient. This matches the operating space of Pegasus, with typical ˜100 kA/m^2, |B|˜ 0.01 T, and an L-mode edge. A new camera system has observed filamentary structures in the edge of nearly all ohmically-heated discharges. Ideal stability analysis of these discharges with DCON indicates marginal stability to resistive interchange for ψN>= 0.95. Modification of triangularity during startup is observed to delay instability onset. A plasma control system based on that used on DIII-D will allow study of the influence of plasma shaping on mode stability characteristics. An array of magnetic probes capable of insertion into the scrape-off layer and plasma edge is being developed to provide a local constraint on the edge current profile.

  12. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com; Singh, Navpreet, E-mail: navpreet.nit@gmail.com

    2015-11-15

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on amore » numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.« less

  13. Improved Confinement Regimes and the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Coppi, B.; Detragiache, P.

    2013-10-01

    The Ignitor experiment is the only one designed and planned to reach ignition under controlled DT burning conditions. The machine prameters have been established on the basis of existing knowledge of the confinement properties of high density plasmas. The optimal plasma evolution in order to reach ignition by means of Ohmic heating only, without the contribution of transport barriers has been identified. Improved confinement regimes are expected to be accessible by means of the available ICRH additional heating power and the injection of pellets for density profile control. Moreover, ECRH of the outer edge of the (toroidal) plasma column has been proposed using very high frequency sources developed in Russia. Ignition can then be reached at slightly reduced machine parameters. Significant exploration of the behavior of burning, sub-ignited plasmas can be carried out in less demanding operational conditions than those needed for ignition with plasmas accessing the I or H-regimes. These conditions will be discussed together with the provisions made in order to maintain the required (for ignition) degree of plasma purity. Sponsored in part by the U.S. DOE.

  14. Modeling, simulation and optimization of a no-chamber solid oxide fuel cell operated with a flat-flame burner

    NASA Astrophysics Data System (ADS)

    Vogler, Marcel; Horiuchi, Michio; Bessler, Wolfgang G.

    A detailed computational model of a direct-flame solid oxide fuel cell (DFFC) is presented. The DFFC is based on a fuel-rich methane-air flame stabilized on a flat-flame burner and coupled to a solid oxide fuel cell (SOFC). The model consists of an elementary kinetic description of the premixed methane-air flame, a stagnation-point flow description of the coupled heat and mass transport within the gas phase, an elementary kinetic description of the electrochemistry, as well as heat, mass and charge transport within the SOFC. Simulated current-voltage characteristics show excellent agreement with experimental data published earlier (Kronemayer et al., 2007 [10]). The model-based analysis of loss processes reveals that ohmic resistance in the current collection wires dominates polarization losses, while electronic loss currents in the mixed conducting electrolyte have only little influence on the polarized cell. The model was used to propose an optimized cell design. Based on this analysis, power densities of above 200 mW cm -2 can be expected.

  15. Analysis of Rotation and Transport Data in C-Mod ITB Plasmas

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.

    2009-11-01

    Internal transport barriers (ITBs) spontaneously form near the half radius of Alcator C-Mod plasmas when the EDA H-mode is sustained for several energy confinement times in either off-axis ICRF heated discharges or in purely ohmic heated plasmas. These plasmas exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles, and thermal transport coefficients that approach neoclassical values in the core. It has long been observed that the intrinsic central plasma rotation that is strongly co-current following the H-mode transition slows and often reverses as the density peaks as the ITB forms. Recent spatial measurements demonstrate that the rotation profile develops a well in the core region that decreases continuously as central density rises while the value outside of the core remains strongly co-current. This results in the formation of a steep potential gradient/strong electric field at the location of the foot of the ITB density profile. The resulting E X B shearing rate is also quite significant at the foot. These analyses and the implications for plasma transport and stability will be presented.

  16. High current density sheet-like electron beam generator

    NASA Astrophysics Data System (ADS)

    Chow-Miller, Cora; Korevaar, Eric; Schuster, John

    Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.

  17. Comparison of resistive MHD simulations and experimental CHI discharges in NSTX

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.; Sovinec, C. R.; Raman, R.; Fatima, F.

    2013-10-01

    Resistive MHD simulations using NIMROD simulate CHI discharges for NSTX startup plasmas. Quantitative comparison with experiment ensures that the simulation physics includes a minimal physics set needed to extend the simulations to new experiments, e.g. NSTX-U. Important are time-varying vacuum magnetic field, ohmic heating, thermal transport, impurity radiation, and spatially-varying plasma parameters including density. Equilibria are compared with experimental injector currents, voltages and parameters including toroidal current, photographs of emitted light and measurements of midplane temperature profiles, radiation and surface heating. Initial results demonstrate that adjusting impurity radiation and cross-field transport yields temperatures and injected-current channel widths similar to experiment. These determine the plasma resistance, feeding back to the impedance on the injector power supply. Work performed under the auspices of the U.S. Department of Energy under contracts DE-AC52-07NA27344 at LLNL and DE-AC02-09CH11466 at PPPL, and grants DE-FC02-05ER54813 at PSI Center (U. Wisc.) and DOE-FG02-12ER55115 (at Princeton U.).

  18. A waveguide-coupled thermally isolated radiometric source.

    PubMed

    Rostem, K; Chuss, D T; Lourie, N P; Voellmer, G M; Wollack, E J

    2013-04-01

    The design and validation of a dual polarization source for waveguide-coupled millimeter and sub-millimeter wave cryogenic sensors is presented. The thermal source is a waveguide mounted absorbing conical dielectric taper. The absorber is thermally isolated with a kinematic suspension that allows the guide to be heat sunk to the lowest bath temperature of the cryogenic system. This approach enables the thermal emission from the metallic waveguide walls to be subdominant to that from the source. The use of low thermal conductivity Kevlar threads for the kinematic mount effectively decouples the absorber from the sensor cold stage. Hence, the absorber can be heated to significantly higher temperatures than the sensor with negligible conductive loading. The kinematic suspension provides high mechanical repeatability and reliability with thermal cycling. A 33-50 GHz blackbody source demonstrates an emissivity of 0.999 over the full waveguide band where the dominant deviation from unity arises from the waveguide ohmic loss. The observed thermal time constant of the source is 40 s when the absorber temperature is 15 K. The specific heat of the lossy dielectric, MF-117, is well approximated by C(v)(T) = 0.12 T (2.06) mJ g(-1) K(-1) between 3.5 K and 15 K.

  19. Investigation of the plasma radiation power in the Globus-M tokamak by means of SPD silicon photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iblyaminova, A. D., E-mail: a.iblyaminova@mail.ioffe.ru; Avdeeva, G. F.; Aruev, P. N.

    2016-10-15

    Radiation losses from the plasma of the Globus-M tokamak are studied by means of SPD silicon photodiodes developed at the Ioffe Institute, Russian Academy of Sciences. The results from measurements of radiation losses in regimes with ohmic and neutral beam injection heating of plasmas with different isotope compositions are presented. The dependence of the radiation loss power on the plasma current and plasma–wall distance is investigated. The radiation power in different spectral ranges is analyzed by means of an SPD spectrometric module. Results of measurements of radiation losses before and after tokamak vessel boronization are presented. The time evolution ofmore » the sensitivity of the SPD photodiode during its two-year exploitation in Globus-M is analyzed.« less

  20. ITER L-Mode Confinement Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Kaye and the ITER Confinement Database Working Group

    This paper describes the content of an L-mode database that has been compiled with data from Alcator C-Mod, ASDEX, DIII, DIII-D, FTU, JET, JFT-2M, JT-60, PBX-M, PDX, T-10, TEXTOR, TFTR, and Tore-Supra. The database consists of a total of 2938 entries, 1881 of which are in the L-phase while 922 are ohmically heated (OH) only. Each entry contains up to 95 descriptive parameters, including global and kinetic information, machine conditioning, and configuration. The paper presents a description of the database and the variables contained therein, and it also presents global and thermal scalings along with predictions for ITER. The L-modemore » thermal confinement time scaling was determined from a subset of 1312 entries for which the thermal confinement time scaling was provided.« less

  1. Semiempirical models of H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, C.E.; Redi, M.; Boyd, D.

    1985-05-01

    The H-mode transition can lead to a rapid increase in tokamak plasma confinement. A semiempirical transport model was derived from global OH and L-mode confinement scalings and then applied to simulation of H-mode discharges. The radial diffusivities in the model also depend on local density and pressure gradients and satisfy an appropriate dimensional constraint. Examples are shown of the application of this and similar models to the detailed simulation of two discharges which exhibit an H-mode transition. The models reproduce essential features of plasma confinement in the ohmic heating, low and high confinement phases of these discharges. In particular, themore » evolution of plasma energy content through the H-mode transition can be reproduced without any sudden or ad hoc modification of the plasma transport formulation.« less

  2. Measurement of non-Maxwellian electron velocity distributions in a reflex discharge

    NASA Technical Reports Server (NTRS)

    Phipps, C. R., Jr.; Bershader, D.

    1978-01-01

    The results of a ruby laser Thomson scattering study of the space and time-resolved electron velocity distributions in a pulsed Penning discharge in hydrogen are presented. Electron densities were to the order of 10 to the 13th/cu cm and temperatures were roughly 3 eV. This point is just prior to the cessation of the discharge ohmic heating pulse. For magnetic strengths less than 200 G, Maxwellian distributions were found over an energy range six times thermal energy. Temperatures agreed with Langmuir probe data. For fields of 450 G, chaotic plasma potentials were observed to be unstable and the Thomson scattering showed that the electron velocity distributions had central temperatures of 2 eV and wing temperatures of 15-12 eV.

  3. Topological Magnon Modes in Patterned Ferrimagnetic Insulator Thin Films.

    PubMed

    Li, Yun-Mei; Xiao, Jiang; Chang, Kai

    2018-05-09

    Manipulation of magnons opens an attractive direction in the future energy-efficient information processing devices. Such quasi-particles can transfer and process information free from the troublesome Ohmic loss in conventional electronic devices. Here, we propose to realize topologically protected magnon modes using the interface between the patterned ferrimagnetic insulator thin films of different configurations without the Dzyaloshinskii-Moriya interaction. The interface thus behaves like a perfect waveguide to conduct the magnon modes lying in the band gap. These modes are immune to backscattering even in sharply bent tracks, robust against the disorders, and maintain a high degree of coherence during propagation. We design a magnonic Mach-Zehnder interferometer, which realizes a continuous change of magnon signal with varying external magnetic field or driving frequency. Our results pave a new way for realizing topologically protected magnon waveguide and finally achieving a scalable low-dissipation spintronic devices and even the magnonic integrated circuit.

  4. Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition

    PubMed Central

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Park, Won-Kyu; Lee, Jaejin

    2017-01-01

    Radial junction solar cells with vertically aligned wire arrays have been widely studied to improve the power conversion efficiency. In this work, we report the first Ge nanopillar solar cell. Nanopillar arrays are selectively patterned on p-type Ge (100) substrates using nanosphere lithography and deep reactive ion etching processes. Nanoscale radial and planar junctions are realized by an n-type Ge emitter layer which is epitaxially grown by MOCVD using isobutylgermane. In situ epitaxial surface passivation is employed using an InGaP layer to avoid high surface recombination rates and Fermi level pinning. High quality n-ohmic contact is realized by protecting the top contact area during the nanopillar patterning. The short circuit current density and the power conversion efficiency of the Ge nanopillar solar cell are demonstrated to be improved up to 18 and 30%, respectively, compared to those of the Ge solar cell with a planar surface. PMID:28209964

  5. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  6. Stacked Quantum Wire AlN/GaN HEMTs

    DTIC Science & Technology

    2012-04-27

    Zimmermann, Debdeep Jena and Huili Xing. Molecular beam epitaxy regrowth of ohmics in metal-face AlN/GaN transistors. International Conference on...mobility transistors with regrown ohmic contacts by molecular beam epitaxy . Physica Status Solidi (a), 208(7), 1617-1619, (2011). [9] Debdeep Jena...high Si doping concentrations grown by molecular beam epitaxy . Submitted, (2012). [14] Guowang Li, Ronghua Wang, Jai Verma, Yu Cao, Satyaki Ganguly

  7. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts.

    PubMed

    Tang, Cindy G; Ang, Mervin C Y; Choo, Kim-Kian; Keerthi, Venu; Tan, Jun-Kai; Syafiqah, Mazlan Nur; Kugler, Thomas; Burroughes, Jeremy H; Png, Rui-Qi; Chua, Lay-Lay; Ho, Peter K H

    2016-11-24

    To make high-performance semiconductor devices, a good ohmic contact between the electrode and the semiconductor layer is required to inject the maximum current density across the contact. Achieving ohmic contacts requires electrodes with high and low work functions to inject holes and electrons respectively, where the work function is the minimum energy required to remove an electron from the Fermi level of the electrode to the vacuum level. However, it is challenging to produce electrically conducting films with sufficiently high or low work functions, especially for solution-processed semiconductor devices. Hole-doped polymer organic semiconductors are available in a limited work-function range, but hole-doped materials with ultrahigh work functions and, especially, electron-doped materials with low to ultralow work functions are not yet available. The key challenges are stabilizing the thin films against de-doping and suppressing dopant migration. Here we report a general strategy to overcome these limitations and achieve solution-processed doped films over a wide range of work functions (3.0-5.8 electronvolts), by charge-doping of conjugated polyelectrolytes and then internal ion-exchange to give self-compensated heavily doped polymers. Mobile carriers on the polymer backbone in these materials are compensated by covalently bonded counter-ions. Although our self-compensated doped polymers superficially resemble self-doped polymers, they are generated by separate charge-carrier doping and compensation steps, which enables the use of strong dopants to access extreme work functions. We demonstrate solution-processed ohmic contacts for high-performance organic light-emitting diodes, solar cells, photodiodes and transistors, including ohmic injection of both carrier types into polyfluorene-the benchmark wide-bandgap blue-light-emitting polymer organic semiconductor. We also show that metal electrodes can be transformed into highly efficient hole- and electron-injection contacts via the self-assembly of these doped polyelectrolytes. This consequently allows ambipolar field-effect transistors to be transformed into high-performance p- and n-channel transistors. Our strategy provides a method for producing ohmic contacts not only for organic semiconductors, but potentially for other advanced semiconductors as well, including perovskites, quantum dots, nanotubes and two-dimensional materials.

  8. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric

    2016-10-17

    Here, atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell inline images equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing themore » Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.« less

  9. Comparison of equilibrium ohmic and nonequilibrium swarm models for monitoring conduction electron evolution in high-altitude EMP calculations

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric; Ji, Wei

    2016-10-01

    Atmospheric electromagnetic pulse (EMP) events are important physical phenomena that occur through both man-made and natural processes. Radiation-induced currents and voltages in EMP can couple with electrical systems, such as those found in satellites, and cause significant damage. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. CHAP-LA (Compton High Altitude Pulse-Los Alamos) is a state-of-the-art EMP code that solves Maxwell's equations for gamma source-induced electromagnetic fields in the atmosphere. In EMP, low-energy, conduction electrons constitute a conduction current that limits the EMP by opposing the Compton current. CHAP-LA calculates the conduction current using an equilibrium ohmic model. The equilibrium model works well at low altitudes, where the electron energy equilibration time is short compared to the rise time or duration of the EMP. At high altitudes, the equilibration time increases beyond the EMP rise time and the predicted equilibrium ionization rate becomes very large. The ohmic model predicts an unphysically large production of conduction electrons which prematurely and abruptly shorts the EMP in the simulation code. An electron swarm model, which implicitly accounts for the time evolution of the conduction electron energy distribution, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model previously in Pusateri et al. (2015). Here we demonstrate EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high-altitude, upward EMP modeling obtained by integrating a swarm model into CHAP-LA.

  10. Heating by transverse waves in simulated coronal loops

    NASA Astrophysics Data System (ADS)

    Karampelas, K.; Van Doorsselaere, T.; Antolin, P.

    2017-08-01

    Context. Recent numerical studies of oscillating flux tubes have established the significance of resonant absorption in the damping of propagating transverse oscillations in coronal loops. The nonlinear nature of the mechanism has been examined alongside the Kelvin-Helmholtz instability, which is expected to manifest in the resonant layers at the edges of the flux tubes. While these two processes have been hypothesized to heat coronal loops through the dissipation of wave energy into smaller scales, the occurring mixing with the hotter surroundings can potentially hide this effect. Aims: We aim to study the effects of wave heating from driven and standing kink waves in a coronal loop. Methods: Using the MPI-AMRVAC code, we perform ideal, three dimensional magnetohydrodynamic (MHD) simulations of both (a) footpoint driven and (b) free standing oscillations in a straight coronal flux tube, in the presence of numerical resistivity. Results: We have observed the development of Kelvin-Helmholtz eddies at the loop boundary layer of all three models considered here, as well as an increase of the volume averaged temperature inside the loop. The main heating mechanism in our setups was Ohmic dissipation, as indicated by the higher values for the temperatures and current densities located near the footpoints. The introduction of a temperature gradient between the inner tube and the surrounding plasma, suggests that the mixing of the two regions, in the case of hotter environment, greatly increases the temperature of the tube at the site of the strongest turbulence, beyond the contribution of the aforementioned wave heating mechanism. Three movies associated to Fig. 1 are available in electronic form at http://www.aanda.org

  11. Effect of counterions on the formation of ohmic contact between p-Si and poly(pyrrole) film - An ac impedance analysis

    NASA Technical Reports Server (NTRS)

    Nagsubramanian, G.; Distefano, S.; Moacanin, J.

    1986-01-01

    Conditions under which poly(pyrrole) (PP) films form ohmic contact with single-crystal p-Si are described. Counterions affect both the conductivity and flatband potential, V(FB), values of poly(pyrrole). While paratoluene-sulfonate-doped PP acts like a switch, the impedance behavior of PP films doped with ClO4(-), BF4(-), or PF6(-) allows evaluation of the V(FB) of these films. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP (ClO4) and PP films doped with other counterions, with p-Si, are explained in terms of conductivity of these films and V(FB) of PP films with respect to that of p-Si. PP film seems to passivate or block intrinsic surface states present on p-Si surface.

  12. Controlling interface oxygen for forming Ag ohmic contact to semi-polar (1 1 -2 2) plane p-type GaN

    NASA Astrophysics Data System (ADS)

    Park, Jae-Seong; Han, Jaecheon; Seong, Tae-Yeon

    2014-11-01

    Low-resistance Ag ohmic contacts to semi-polar (1 1 -2 2) p-GaN were developed by controlling interfacial oxide using a Zn layer. The 300 °C-annealed Zn/Ag samples showed ohmic behavior with a contact resistivity of 6.0 × 10-4 Ω cm2 better than that of Ag-only contacts (1.0 × 10-3 Ω cm2). The X-ray photoemission spectroscopy (XPS) results showed that annealing caused the indiffusion of oxygen at the contact/GaN interface, resulting in the formation of different types of interfacial oxides, viz. Ga-oxide and Ga-doped ZnO. Based on the XPS and electrical results, the possible mechanisms underlying the improved electrical properties of the Zn/Ag samples are discussed.

  13. Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment

    NASA Astrophysics Data System (ADS)

    Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.

    2016-02-01

    The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.

  14. Dissipation in graphene and nanotube resonators

    NASA Astrophysics Data System (ADS)

    Seoánez, C.; Guinea, F.; Castro Neto, A. H.

    2007-09-01

    Different damping mechanisms in graphene nanoresonators are studied: charges in the substrate, ohmic losses in the substrate and the graphene sheet, breaking and healing of surface bonds (Velcro effect), two level systems, attachment losses, and thermoelastic losses. We find that, for realistic structures and contrary to semiconductor resonators, dissipation is dominated by ohmic losses in the graphene layer and metallic gate. An extension of this study to carbon nanotube-based resonators is presented.

  15. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  16. Intermittent fluctuations in the Alcator C-Mod scrape-off layer for ohmic and high confinement mode plasmas

    NASA Astrophysics Data System (ADS)

    Garcia, O. E.; Kube, R.; Theodorsen, A.; LaBombard, B.; Terry, J. L.

    2018-05-01

    Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged waveforms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are similar for all these confinement modes. These results provide strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.

  17. Impact of crystal orientation on ohmic contact resistance of enhancement-mode p-GaN gate high electron mobility transistors on 200 mm silicon substrates

    NASA Astrophysics Data System (ADS)

    Van Hove, Marleen; Posthuma, Niels; Geens, Karen; Wellekens, Dirk; Li, Xiangdong; Decoutere, Stefaan

    2018-04-01

    p-GaN gate enhancement mode power transistors were processed in a Si CMOS processing line on 200 mm Si(111) substrates using Au-free metallization schemes. Si/Ti/Al/Ti/TiN ohmic contacts were formed after full recessing of the AlGaN barrier, followed by a HCl-based wet cleaning step. The electrical performance of devices aligned to the [11\\bar{2}0] and the perpendicular [1\\bar{1}00] directions was compared. The ohmic contact resistance was decreased from 1 Ω·mm for the [11\\bar{2}0] direction to 0.35 Ω·mm for the [1\\bar{1}00] direction, resulting in an increase of the drain saturation current from 0.5 to 0.6 A/mm, and a reduction of the on-resistance from 6.4 to 5.1 Ω·mm. Moreover, wafer mapping of the device characteristics over the 200 mm wafer showed a tighter statistical distribution for the [1\\bar{1}00] direction. However, by using an optimized sulfuric/ammonia peroxide (SPM/APM) cleaning step, the ohmic contact resistance could be lowered to 0.3 Ω·mm for both perpendicular directions.

  18. Characterization of the geology, geochemistry, and microbiology of the radio frequency heating demonstration site at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy Dilek, C.A.; Jarosch, T.R.; Fliermans, C.B.

    The overall objective of the Integrated Demonstration Project for the Remediation of Organics at Nonarid Sites at the Savannah River Site (SRS) is to evaluate innovative remediation, characterization, and monitoring systems to facilitate restoration of contaminated sites. The first phase of the demonstration focused on the application and development of in situ air stripping technologies to remediate sediments and groundwater contaminated with volatile organic compounds (VOCs). The second phase focused on the enhancement of the in situ air stripping process by adding selected nutrients to stimulate naturally occurring microorganisms that degrade VOCs. The purpose of the third phase was tomore » evaluate the use of heating technologies [radio frequency (rf) and ohmic heating] to enhance the removal of contamination from clay layers where mass transfer is limited. The objective of this report is to document pretest and post-test data collected in support of the rf heating demonstration. The following data are discussed in this report: (1) a general description of the site including piezometers and sensors installed to monitor the remedial process; (2) stratigraphy, lithology, and a detailed geologic cross section of the study site; (3) tabulations of pretest and post-test moisture and VOC content of the sediments; (4) sampling and analysis procedures for sediment samples; (5) microbial abundance and diversity; (6) three-dimensional images of pretest and post-test contaminant distribution; (7) volumetric calculations.« less

  19. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers.

    PubMed

    Zhang, Nan; Zhou, Peiheng; Cheng, Dengmu; Weng, Xiaolong; Xie, Jianliang; Deng, Longjiang

    2013-04-01

    We present the simulation, fabrication, and characterization of a dual-band metamaterial absorber in the mid-infrared regime. Two pairs of circular-patterned metal-dielectric stacks are employed to excite the dual-band absorption peaks. Dielectric characteristics of the dielectric spacing layer determine energy dissipation in each resonant stack, i.e., dielectric or ohmic loss. By controlling material parameters, both two mechanisms are introduced into our structure. Up to 98% absorption is obtained at 9.03 and 13.32 μm in the simulation, which is in reasonable agreement with experimental results. The proposed structure holds promise for various applications, e.g., thermal radiation modulators and multicolor infrared focal plane arrays.

  20. Post-patterning of an electronic homojunction in atomically thin monoclinic MoTe2

    NASA Astrophysics Data System (ADS)

    Kim, Sera; Kim, Jung Ho; Kim, Dohyun; Hwang, Geunwoo; Baik, Jaeyoon; Yang, Heejun; Cho, Suyeon

    2017-06-01

    Monoclinic group 6 transition metal dichalcogenides (TMDs) have been extensively studied for their intriguing 2D physics (e.g. spin Hall insulator) as well as for ohmic homojunction contacts in 2D device applications. A critical prerequisite for those applications is thickness control of the monoclinic 2D materials, which allows subtle engineering of the topological states or electronic bandgaps. Local thickness control enables the realization of clean homojunctions between different electronic states, and novel device operation in a single material. However, conventional fabrication processes, including chemical methods, typically produce non-homogeneous and relatively thick monoclinic TMDs, due to their distorted octahedral structures. Here, we report on a post-patterning technique using laser-irradiation to fabricate homojunctions between two different thickness areas in monoclinic MoTe2. A thickness-dependent electronic change from a metallic to semiconducting state, resulting in an electronic homojunction, was realized by the optical patterning of pristine MoTe2 flakes, and a pre-patterned device channel of monoclinic MoTe2 with a thickness-resolution of 5 nm. Our work provides insight on an optical post-process method for controlling thickness, as a promising approach for fabricating impurity-free 2D TMDs homojunction devices.

  1. Selective Dry Etch for Defining Ohmic Contacts for High Performance ZnO TFTs

    DTIC Science & Technology

    2014-03-27

    scale, high-frequency ZnO thin - film transistors (TFTs) could be fabricated. Molybdenum, tantalum, titanium tungsten 10-90, and tungsten metallic contact... thin - film transistor layout utilized in the thesis research . . . . . 42 3.4 Process Flow Diagram for Optical and e-Beam Devices...TFT thin - film transistor TLM transmission line model UV ultra-violet xvii SELECTIVE DRY ETCH FOR DEFINING OHMIC CONTACTS FOR HIGH PERFORMANCE ZnO TFTs

  2. A Simple and Reliable Setup for Monitoring Corrosion Rate of Steel Rebars in Concrete

    PubMed Central

    Jibran, Mohammed Abdul Azeem; Azad, Abul Kalam

    2014-01-01

    The accuracy in the measurement of the rate of corrosion of steel in concrete depends on many factors. The high resistivity of concrete makes the polarization data erroneous due to the Ohmic drop. The other source of error is the use of an arbitrarily assumed value of the Stern-Geary constant for calculating corrosion current density. This paper presents the outcomes of a research work conducted to develop a reliable and low-cost experimental setup and a simple calculation procedure that can be utilised to calculate the corrosion current density considering the Ohmic drop compensation and the actual value of the Stern-Geary constants calculated using the polarization data. The measurements conducted on specimens corroded to different levels indicate the usefulness of the developed setup to determine the corrosion current density with and without Ohmic drop compensation. PMID:24526907

  3. Graphene in ohmic contact for both n-GaN and p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Haijian; Liu, Zhenghui; Shi, Lin

    The wrinkles of single layer graphene contacted with either n-GaN or p-GaN were found both forming ohmic contacts investigated by conductive atomic force microscopy. The local I–V results show that some of the graphene wrinkles act as high-conductive channels and exhibiting ohmic behaviors compared with the flat regions with Schottky characteristics. We have studied the effects of the graphene wrinkles using density-functional-theory calculations. It is found that the standing and folded wrinkles with zigzag or armchair directions have a tendency to decrease or increase the local work function, respectively, pushing the local Fermi level towards n- or p-type GaN andmore » thus improving the transport properties. These results can benefit recent topical researches and applications for graphene as electrode material integrated in various semiconductor devices.« less

  4. Germanium- and tellurium-doped GaAs for non-alloyed p-type and n-type ohmic contacts

    NASA Astrophysics Data System (ADS)

    Park, Joongseo; Barnes, Peter A.; Lovejoy, Michael L.

    1995-08-01

    Epitaxial ohmic contacts to GaAs were grown by liquid phase epitaxy. Heavily Ge-doped GaAs was grown to prepare ohmic contacts to p-GaAs while Te was used for the n-type contacts. Hall measurements were carried out for the samples grown from melts in which the mole fraction of Ge was varied between 1.55 atomic % and 52.2 atomic %, while the Te mole fractions varied between 0.03% and 0.5%. Specific contact resistance, rc, as low as rcp=2.9×10-6 ohm-cm 2 for Ge doping of p=(Na-Nd)=6.0×1019 holes/cm3 was measured for p-contacts and rcn=9.6×10-5 ohm-cm2 was measured for Te doping of n=(Nd-Na)=8.9×1018 electrons/cm3 for GaAs metallized with non-alloyed contacts of Ti/Al.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, E. A.; Reza, S.; Sanchez, C.

    Due to the ultra-wide bandgap of Al-rich AlGaN, up to 5.8 eV for the structures in this study, obtaining low resistance ohmic contacts is inherently difficult to achieve. A comparative study of three different fabrication schemes is presented for obtaining ohmic contacts to an Al-rich AlGaN channel. Schottky-like behavior was observed for several different planar metallization stacks (and anneal temperatures), in addition to a dry-etch recess metallization contact scheme on Al 0.85Ga 0.15N/Al 0.66Ga 0.34N. However, a dry etch recess followed by n +-GaN regrowth fabrication process is reported as a means to obtain lower contact resistivity ohmic contacts onmore » a Al 0.85Ga 0.15N/Al 0.66Ga 0.34N heterostructure. In conclusion, specific contact resistivity of 5×10 -3 Ω cm 2 was achieved after annealing Ti/Al/Ni/Au metallization.« less

  6. Improvement of Ohmic contact to p-GaN by controlling the residual carbon concentration in p++-GaN layer

    NASA Astrophysics Data System (ADS)

    Liang, Feng; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Zhu, Jianjun; Chen, Ping; Yang, Jing; Liu, Wei; Li, Xiang; Liu, Shuangtao; Xing, Yao; Zhang, Liqun; Yang, Hui; Long, Heng; Li, Mo

    2017-06-01

    Growth conditions are used to control the residual carbon impurity incorporation in p++-GaN layers. Specific contact resistance (ρc) with various residual carbon concentrations has been investigated through the circular transmission line model (CTLM) method and secondary ion mass spectroscopy (SIMS) analysis. A correlation between residual carbon and ρc indicates that incorporation of proper carbon impurity can be an advantage for Ohmic contact, although carbon can also act as a compensating donor to worsen the Ohmic contact at a very high concentration. Finally, ρc is improved to 6.80 × 10-5 Ω × cm2 with a carbon concentration of 8.3 × 1017 cm-3 in p++-GaN layer, when the growth temperature, pressure and flow rate of CP2Mg and TMGa are 940 °C, 100 Torr, 3 μmol/min and 28 μmol/min, respectively.

  7. Au-Doped Indium Tin Oxide Ohmic Contacts to p-Type GaN

    NASA Astrophysics Data System (ADS)

    Guo, H.; Andagana, H. B.; Cao, X. A.

    2010-05-01

    Indium tin oxide (ITO) thin films doped with Au, Ni, or Pt (3.5 at.% to 10.5 at.%) were deposited on p-GaN epilayers (Mg ~4 × 1019 cm-3) using direct-current (DC) sputter codeposition. It was found that undoped ITO con- tacts to p-GaN exhibited leaky Schottky behavior, whereas the incorporation of a small amount of Au (3.5 at.% to 10.5 at.%) significantly improved their ohmic characteristics. Compared with standard Ni/ITO contacts, the Au-doped ITO contacts had a similar specific contact resistance in the low 10-2 Ω cm-2 range, but were more stable above 600°C and more transparent at blue wavelengths. These results provide support for the use of Au-doped ITO ohmic contact to p-type GaN in high-brightness blue light-emitting diodes.

  8. Planarized arrays of aligned, untangled multiwall carbon nanotubes with Ohmic back contacts

    DOE PAGES

    Rochford, C.; Limmer, S. J.; Howell, S. W.; ...

    2014-11-26

    Vertically aligned, untangled planarized arrays of multiwall carbon nanotubes (MWNTs) with Ohmic back contacts were grown in nanopore templates on arbitrary substrates. The templates were prepared by sputter depositing Nd-doped Al films onto W-coated substrates, followed by anodization to form an aluminum oxide nanopore array. The W underlayer helps eliminate the aluminum oxide barrier that typically occurs at the nanopore bottoms by instead forming a thin WO 3 layer. The WO 3 can be selectively etched to enable electrodeposition of Co catalysts with control over the Co site density. This led to control of the site density of MWNTs grownmore » by thermal chemical vapor deposition, with the W also serving as a back electrical contact. As a result, Ohmic contact to MWNTs was confirmed, even following ultrasonic cutting of the entire array to a uniform height.« less

  9. Sub-second carbon-nanotube-mediated microwave sintering for high-conductivity silver patterns on plastic substrates

    NASA Astrophysics Data System (ADS)

    Jung, Sunshin; Chun, Su Jin; Han, Joong Tark; Woo, Jong Seok; Shon, Cha-Hwa; Lee, Geon-Woong

    2016-02-01

    A method of microwave sintering that is mediated by carbon nanotubes (CNTs) has been developed to obtain high-conductivity Ag patterns on the top of heat-sensitive plastic substrates within a short time. The Ag patterns are printed on CNTs formed on plastic substrates and rapidly heated to a great extent by the heat transferred from the microwave-heated CNTs. The conductivity of the microwave-sintered Ag patterns reaches ~39% that of bulk Ag within 1 s without substrate deformation. Furthermore, microwave sintering enhances the adhesion of Ag patterns to the thermoplastic substrates because the sintering causes interfacial fusion between the Ag patterns and the substrates, and CNTs physically connect the patterns with the substrates.A method of microwave sintering that is mediated by carbon nanotubes (CNTs) has been developed to obtain high-conductivity Ag patterns on the top of heat-sensitive plastic substrates within a short time. The Ag patterns are printed on CNTs formed on plastic substrates and rapidly heated to a great extent by the heat transferred from the microwave-heated CNTs. The conductivity of the microwave-sintered Ag patterns reaches ~39% that of bulk Ag within 1 s without substrate deformation. Furthermore, microwave sintering enhances the adhesion of Ag patterns to the thermoplastic substrates because the sintering causes interfacial fusion between the Ag patterns and the substrates, and CNTs physically connect the patterns with the substrates. Electronic supplementary information (ESI) available: Temperature difference in Ag/CNT/PC samples; the carbon content and electrical performance after microwave sintering; microwave sintering of Ag/CNT patterns; physical connection between the substrate and sintered Ag lines; touch-piano (figure and movie). See DOI: 10.1039/c5nr08082g

  10. Development of high temperature stable Ohmic and Schottky contacts on n-gallium nitride

    NASA Astrophysics Data System (ADS)

    Khanna, Rohit

    In this work the effort was made to towards develop and investigate high temperature stable Ohmic and Schottky contacts for n type GaN. Various borides and refractory materials were incorporated in metallization scheme to best attain the desired effect of minimal degradation of contacts when placed at high temperatures. This work focuses on achieving a contact scheme using different borides which include two Tungsten Borides (namely W2B, W2B 5), Titanium Boride (TiB2), Chromium Boride (CrB2) and Zirconium Boride (ZrB2). Further a high temperature metal namely Iridium (Ir) was evaluated as a potential contact to n-GaN, as part of continuing improved device technology development. The main goal of this project was to investigate the most promising boride-based contact metallurgies on GaN, and finally to fabricate a High Electron Mobility Transistor (HEMT) and compare its reliability to a HEMT using present technology contact. Ohmic contacts were fabricated on n GaN using borides in the metallization scheme of Ti/Al/boride/Ti/Au. The characterization of the contacts was done using current-voltage measurements, scanning electron microscopy (SEM) and Auger Electron Spectroscopy (AES) measurements. The contacts formed gave specific contact resistance of the order of 10-5 to 10-6 Ohm-cm2. A minimum contact resistance of 1.5x10-6 O.cm 2 was achieved for the TiB2 based scheme at an annealing temperature of 850-900°C, which was comparable to a regular ohmic contact of Ti/Al/Ni/Au on n GaN. When some of borides contacts were placed on a hot plate or in hot oven for temperature ranging from 200°C to 350°C, the regular metallization contacts degraded before than borides ones. Even with a certain amount of intermixing of the metallization scheme the boride contacts showed minimal roughening and smoother morphology, which, in terms of edge acuity, is crucial for very small gate devices. Schottky contacts were also fabricated and characterized using all the five boride compounds. The barrier height obtained on n GaN was ˜0-5-0.6 eV which was low compared to those obtained by Pt or Ni. This barrier height is too low for use as a gate contact and they can only have limited use, perhaps, in gas sensors where large leakage current can be tolerated in exchange for better thermal reliability. AlGaN/GaN High Electron Mobility Transistors (HEMTs) were fabricated with Ti/Al/TiB2/Ti/Au source/drain ohmic contacts and a variety of gate metal schemes (Pt/Au, Ni/Au, Pt/TiB2/Au or Ni/TiB 2/Au) and were subjected to long-term annealing at 350°C. By comparison with companion devices with conventional Ti/Al/Pt/Au ohmic contacts and Pt/Au gate contacts, the HEMTs with boride-based ohmic metal and either Pt/Au, Ni/Au or Ni/TiB2/Au gate metal showed superior stability of both source-drain current and transconductance after 25 days aging at 350°C. The need for sputter deposition of the borides causes' problem in achieving significantly lower specific contact resistance than with conventional schemes deposited using e-beam evaporation. The borides also seem to be, in general, good getters for oxygen leading to sheet resistivity issues. Ir/Au Schottky contacts and Ti/Al/Ir/Au ohmic contacts on n-type GaN were investigated as a function of annealing temperature and compared to their more common Ni-based counterparts. The Ir/Au ohmic contacts on n-type GaN with n˜1017 cm-3 exhibited barrier heights of 0.55 eV after annealing at 700°C and displayed less intermixing of the contact metals compared to Ni/Au. A minimum specific contact resistance of 1.6 x 10-6 O.cm2 was obtained for the ohmic contacts on n-type GaN with n˜1018 cm-3 after annealing at 900°C. The measurement temperature dependence of contact resistance was similar for both Ti/Al/Ir/Au and Ti/Al/Ni/Au, suggesting the same transport mechanism was present in both types of contacts. The Ir-based ohmic contacts displayed superior thermal aging characteristics at 350°C. Auger Electron Spectroscopy showed that Ir is a superior diffusion barrier at these moderate temperatures than Ni.

  11. Recent sheath physics studies on DIII-D

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Labombard, B.; Stangeby, P. C.; Lasnier, C. J.; McLean, A. G.; Nygren, R. E.; Boedo, J. A.; Leonard, A. W.; Rudakov, D. L.

    2015-08-01

    A study to examine some current issues in the physics of the plasma sheath has been recently carried out in DIII-D low power Ohmic plasmas using both flush and domed Langmuir probes, divertor Thomson scattering (DTS), an infrared camera (IRTV), and a new calorimeter triple probe assembly mounted on the Divertor Materials Evaluation System (DIMES). The sheath power transmission factor was found to be consistent with the theoretically predicted value of 7 (±2) for low power plasmas. Using this factor, the three heat flux profiles derived from the LP, DTS, and calorimeter diagnostic measurements agree. Comparison of flush and domed Langmuir probes and divertor Thomson scattering indicates that proper interpretation of flush probe data to get target plate density and temperature is feasible and could potentially yield accurate measurements of target plate conditions where the probes are located.

  12. In-pile testing of ITER first wall mock-ups at relevant thermal loading conditions

    NASA Astrophysics Data System (ADS)

    Litunovsky, N.; Gervash, A.; Lorenzetto, P.; Mazul, I.; Melder, R.

    2009-04-01

    The paper describes the experimental technique and preliminary results of thermal fatigue testing of ITER first wall (FW) water-cooled mock-ups inside the core of the RBT-6 experimental fission reactor (RIAR, Dimitrovgrad, Russia). This experiment has provided simultaneous effect of neutron fluence and thermal cycling damages on the mock-ups. A PC-controlled high-temperature graphite ohmic heater was applied to provide cyclic thermal load onto the mock-ups surface. This experiment lasted for 309 effective irradiation days with a final damage level (CuCrZr) of 1 dpa in the mock-ups. About 3700 thermal cycles with a heat flux of 0.4-0.5 MW/m 2 onto the mock-ups were realized before the heater fails. Then, irradiation was continued in a non-cycling mode.

  13. Determination of the plasma effective charge from the soft X-ray spectrum and plasma conductivity at the L-2M stellarator after boronization of the vacuum chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshcheryakov, A. I., E-mail: meshch@fpl.gpi.ru; Vafin, I. Yu., E-mail: ildar@fpl.gpi.ru

    2016-07-15

    Boronization of the vacuum chamber wall results in a considerable change in the composition of the plasma generated in working pulses of the L-2M stellarator and, accordingly, in the plasma effective charge. The paper presents results of measurements of the plasma effective charge carried out by two methods in the ohmic heating mode: from the data on the plasma conductivity and from the soft X-ray spectrum of plasma emission. Comparison of the values of the plasma effective charge obtained by these two methods makes it possible to determine the conditions in which the two values are in good agreement. Undermore » these conditions, the plasma effective charge can be correctly estimated from spectral measurements.« less

  14. Global two-fluid simulations of geodesic acoustic modes in strongly shaped tight aspect ratio tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, J. R.; Hnat, B.; Thyagaraja, A.

    2013-05-15

    Following recent observations suggesting the presence of the geodesic acoustic mode (GAM) in ohmically heated discharges in the Mega Amp Spherical Tokamak (MAST) [J. R. Robinson et al., Plasma Phys. Controlled Fusion 54, 105007 (2012)], the behaviour of the GAM is studied numerically using the two fluid, global code CENTORI [P. J. Knight et al. Comput. Phys. Commun. 183, 2346 (2012)]. We examine mode localisation and effects of magnetic geometry, given by aspect ratio, elongation, and safety factor, on the observed frequency of the mode. An excellent agreement between simulations and experimental data is found for simulation plasma parameters matchedmore » to those of MAST. Increasing aspect ratio yields good agreement between the GAM frequency found in the simulations and an analytical result obtained for elongated large aspect ratio plasmas.« less

  15. Improved contact characteristics of laser-annealed p-GaN coated with Ni films

    NASA Astrophysics Data System (ADS)

    Zheng, Bo-Sheng; Ho, Chong-Long; Cheng, Kai-Yuan; Liao, Chien-Lan; Wu, Meng-Chyi; Hsieh, Kuang-Chien

    2015-08-01

    It is demonstrated that rapid thermal annealing or laser annealing of Mg-doped GaN (about 0.5 μm in thickness) in general helps activate acceptors and increase the average hole concentration by a factor of about 2 from low to mid of 1017/cm3 determined by the Hall measurements. Use of laser annealing of p-GaN coated with Ni and removal afterwards prior to depositing conventional Ni/Au ohmic-contact films, however, greatly improves the contact resistance from 10-2 to 1.6 × 10-4 Ω cm2. Other heat treatment schemes do not improve as much or make it even worse. The most reduction of contact resistance is attributed to the highest surface hole density in an uneven carrier profile achieved by laser annealing with a Ni cap layer.

  16. Annealing effects on electrical behavior of gold nanoparticle film: Conversion of ohmic to non-ohmic conductivity

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, Zeinab; Mansour, Nastaran

    2017-02-01

    This paper reports on the electrical behavior of self-assembled gold nanoparticle films before and after high-temperature annealing in ambient environment. These films are made by depositing gold nanoparticles from a colloidal solution on glass substrates using centrifuge deposition technique. The current-voltage (I-V) characteristics of these films exhibits ohmic and non-ohmic properties for un-annealed and annealed films respectively. As the annealing time duration increases, the onset of non-ohmic behavior occurs at higher voltages. To understand the underlying mechanisms for the observed electrical conduction behavior in these films and how electrical conduction is effected by film morphology and structural properties before and after annealing, systematic comparative studies based on scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray photoelectron spectroscopy (XPS) have been performed. The morphology of the films shows that the assembled gold nanoparticles are distributed on the substrate in a random way before annealing. After 2 h annealing gold nanoparticles exhibit a higher filling fraction when examined by SEM, which means that they coalesce, upon annealing, with respect to un-annealed films. The UV-vis absorption spectra of the films show that there is a red-shift and broadening in the absorption band for the annealed films. The observed phenomenon is related to the plasmon near-field coupling effect and suggests that the nanoparticle ensembles interspacing has decreased. The structural and crystallinity of the films exhibit amorphous structure before annealing and pure crystalline phases with a preferential growth direction along the (111) plane after annealing. The XPS analysis further suggests the existence of the stable thin oxide layer in the phase of Au2O3 in the annealed films. The I-V characteristics have been described by Simmons' model for tunnel transport through metal-insulator-metal (MIM) junctions. The Fowler-Nordheim (F-N) plots show the transition of the in-plane charge transport mechanism from direct tunneling to field emission in annealed films. Our results suggest that, the formation of a thin layer of Au2O3 , the proximity of the nanoparticles as well as their higher filling fraction are important parameters related with the tunneling process enhancement. The observed non-ohmic conductivity property can make these self-assembled gold nanoparticle films very useful structures in different applications such as sensing, resistors and other nanoelectronic applications.

  17. ZnO Schottky barriers and Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Brillson, Leonard J.; Lu, Yicheng

    2011-06-01

    ZnO has emerged as a promising candidate for optoelectronic and microelectronic applications, whose development requires greater understanding and control of their electronic contacts. The rapid pace of ZnO research over the past decade has yielded considerable new information on the nature of ZnO interfaces with metals. Work on ZnO contacts over the past decade has now been carried out on high quality material, nearly free from complicating factors such as impurities, morphological and native point defects. Based on the high quality bulk and thin film crystals now available, ZnO exhibits a range of systematic interface electronic structure that can be understood at the atomic scale. Here we provide a comprehensive review of Schottky barrier and ohmic contacts including work extending over the past half century. For Schottky barriers, these results span the nature of ZnO surface charge transfer, the roles of surface cleaning, crystal quality, chemical interactions, and defect formation. For ohmic contacts, these studies encompass the nature of metal-specific interactions, the role of annealing, multilayered contacts, alloyed contacts, metallization schemes for state-of-the-art contacts, and their application to n-type versus p-type ZnO. Both ZnO Schottky barriers and ohmic contacts show a wide range of phenomena and electronic behavior, which can all be directly tied to chemical and structural changes on an atomic scale.

  18. MAGNETIC SCALING LAWS FOR THE ATMOSPHERES OF HOT GIANT EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menou, Kristen

    2012-02-01

    We present scaling laws for advection, radiation, magnetic drag, and ohmic dissipation in the atmospheres of hot giant exoplanets. In the limit of weak thermal ionization, ohmic dissipation increases with the planetary equilibrium temperature (T{sub eq} {approx}> 1000 K) faster than the insolation power does, eventually reaching values {approx}> 1% of the insolation power, which may be sufficient to inflate the radii of hot Jupiters. At higher T{sub eq} values still magnetic drag rapidly brakes the atmospheric winds, which reduces the associated ohmic dissipation power. For example, for a planetary field strength B = 10 G, the fiducial scaling lawsmore » indicate that ohmic dissipation exceeds 1% of the insolation power over the equilibrium temperature range T{sub eq} {approx} 1300-2000 K, with a peak contribution at T{sub eq} {approx} 1600 K. Evidence for magnetically dragged winds at the planetary thermal photosphere could emerge in the form of reduced longitudinal offsets for the dayside infrared hotspot. This suggests the possibility of an anticorrelation between the amount of hotspot offset and the degree of radius inflation, linking the atmospheric and interior properties of hot giant exoplanets in an observationally testable way. While providing a useful framework to explore the magnetic scenario, the scaling laws also reveal strong parameter dependencies, in particular with respect to the unknown planetary magnetic field strength.« less

  19. Thermal island destabilization and the Greenwald limit

    DOE PAGES

    White, R. B.; Gates, D. A.; Brennan, D. P.

    2015-02-24

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. A magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration is evident in a fusion device. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Furthermore, modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturatedmore » island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. In addition destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.« less

  20. Overview of Recent Alcator C-Mod Highlights

    NASA Astrophysics Data System (ADS)

    Marmar, Earl; C-Mod Team

    2013-10-01

    Analysis and modeling of recent C-Mod experiments has yielded significant results across multiple research topics. I-mode provides routine access to high confinement plasma (H98 up to 1.2) in quasi-steady state, without large ELMs; pedestal pressure and impurity transport are regulated by short-wavelength EM waves, and core turbulence is reduced. Multi-channel transport is being investigated in Ohmic and RF-heated plasmas, using advanced diagnostics to validate non-linear gyrokinetic simulations. Results from the new field-aligned ICRF antenna, including significantly reduced high-Z metal impurity contamination, and greatly improved load-tolerance, are being understood through antenna-plasma modeling. Reduced LHCD efficiency at high density correlates with parametric decay and enhanced edge absorption. Strong flow drive and edge turbulence suppression are seen from LHRF, providing new approaches for plasma control. Plasma density profiles directly in front of the LH coupler show non-linear modifications, with important consequences for wave coupling. Disruption-mitigation experiments using massive gas injection at multiple toroidal locations show unexpected results, with potentially significant implications for ITER. First results from a novel accelerator-based PMI diagnostic are presented. What would be the world's first actively-heated high-temperature advanced tungsten divertor is designed and ready for construction. Conceptual designs are being developed for an ultra-advanced divertor facility, Alcator DX, to attack key FNSF and DEMO heat-flux challenges integrated with a high-performance core. Supported by USDOE.

  1. Thermal island destabilization and the Greenwald limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. B.; Gates, D. A.; Brennan, D. P.

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. A magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration is evident in a fusion device. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Furthermore, modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturatedmore » island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. In addition destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.« less

  2. Thermal island destabilization and the Greenwald limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. B.; Gates, D. A.; Brennan, D. P.

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. In a fusion device, a magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Further modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturated island. Becausemore » field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. An additional destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.« less

  3. Sawtooth control in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Angioni, C.; Budny, R. V.; Buttery, R. J.; Coda, S.; Eriksson, L.-G.; Gimblett, C. G.; Goodman, T. P.; Hastie, R. J.; Henderson, M. A.; Koslowski, H. R.; Mantsinen, M. J.; Martynov, An; Mayoral, M.-L.; Mück, A.; Nave, M. F. F.; Sauter, O.; Westerhof, E.; Contributors, JET–EFDA

    2005-12-01

    Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclotron heating in order to locally increase the current penetration time in the core. The latter is also achieved in various machines by depositing electron cyclotron current drive or ion cyclotron current drive close to the q = 1 rational surface. Crucially, localized current drive also succeeds in destabilizing sawteeth which are otherwise stabilized by a co-existing population of energetic trapped ions in the core. In addition, a recent reversed toroidal field campaign at JET demonstrates that counter-neutral beam injection (NBI) results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and the direction of injection also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based neutral beam injection (NNBI) heating planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted that a finite orbit effect of asymmetrically distributed circulating ions could strongly modify sawtooth stability. Furthermore, NNBI driven current with non-monotonic profile could significantly slow down the evolution of the safety factor in the core, thereby delaying sawteeth.

  4. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  5. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.

    PubMed

    Lee, Jun Yong; Jung, Sung-No; Kwon, Ho

    2015-01-01

    To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns. © 2014 by the Wound Healing Society.

  6. Theoretical Issues for Plasma Regimes to be Explored by the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Coppi, B.; Sonnino, G.

    2014-10-01

    At present, the Ignitor experiment is the only one designed and planned to approach and explore ignition regimes under controlled DT burning conditions. The machine parameters have been established on the basis of existing knowledge of the confinement properties of high density plasmas. A variety of improved confinement regimes are expected to be accessible by means of the available ICRH heating power in addition to the prevalent programmable Ohmic heating power and relying on the injection of high velocity pellets for density profile control. The relevance of the various known confinement regimes to the objectives of Ignitor is discussed. Among other theoretical efforts, a non-linear thermal energy balance equation is investigated to study the onset of thermonuclear instability in the plasmas expected to be produced in Ignitor. The equation for the temperature profile in the equilibrium state is solved with the resulting profiles in agreement with those obtained by a full transport code and commonly adopted scalings for them. The evolution of the thermonuclear instability that relies on the solution of the time dependent energy balance equation is obtained. Sponsored in part by the U.S. DOE.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaita, Robert; Boyle, Dennis; Gray, Timothy

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating themore » shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________« less

  8. Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations

    NASA Astrophysics Data System (ADS)

    Makwana, Kirit; Li, Hui; Guo, Fan; Li, Xiaocan

    2017-05-01

    We simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope between {k}\\perp -1.3 and {k}\\perp -1.1, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. Heating by the parallel E∥ · J∥ term dominates the perpendicular E⊥ · J⊥ term. Regions of strong E∥ · J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.

  9. TURBULENCE, TRANSPORT, AND WAVES IN OHMIC DEAD ZONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gole, Daniel; Simon, Jacob B.; Armitage, Philip J.

    We use local numerical simulations to study a vertically stratified accretion disk with a resistive mid-plane that damps magnetohydrodynamic (MHD) turbulence. This is an idealized model for the dead zones that may be present at some radii in protoplanetary and dwarf novae disks. We vary the relative thickness of the dead and active zones to quantify how forced fluid motions in the dead zone change. We find that the residual Reynolds stress near the mid-plane decreases with increasing dead zone thickness, becoming negligible in cases where the active to dead mass ratio is less than a few percent. This impliesmore » that purely Ohmic dead zones would be vulnerable to episodic accretion outbursts via the mechanism of Martin and Lubow. We show that even thick dead zones support a large amount of kinetic energy, but this energy is largely in fluid motions that are inefficient at angular momentum transport. Confirming results from Oishi and Mac Low, the perturbed velocity field in the dead zone is dominated by an oscillatory, vertically extended circulation pattern with a low frequency compared to the orbital frequency. This disturbance has the properties predicted for the lowest order r mode in a hydrodynamic disk. We suggest that in a global disk similar excitations would lead to propagating waves, whose properties would vary with the thickness of the dead zone and the nature of the perturbations (isothermal or adiabatic). Flows with similar amplitudes would buckle settled particle layers and could reduce the efficiency of pebble accretion.« less

  10. Methylation effect on the ohmic resistance of a poly-GC DNA-like chain

    NASA Astrophysics Data System (ADS)

    de Moura, F. A. B. F.; Lyra, M. L.; de Almeida, M. L.; Ourique, G. S.; Fulco, U. L.; Albuquerque, E. L.

    2016-10-01

    We determine, by using a tight-binding model Hamiltonian, the characteristic current-voltage (IxV) curves of a 5-methylated cytosine single strand poly-GC DNA-like finite segment, considering the methyl groups attached laterally to a random fraction of the cytosine basis. Striking, we found that the methylation significantly impacts the ohmic resistance (R) of the DNA-like segments, indicating that measurements of R can be used as a biosensor tool to probe the presence of anomalous methylation.

  11. Lead-germanium ohmic contact on to gallium arsenide formed by the solid phase epitaxy of germanium: A microstructure study

    NASA Astrophysics Data System (ADS)

    Radulescu, Fabian

    2000-12-01

    Driven by the remarkable growth in the telecommunication market, the demand for more complex GaAs circuitry continued to increase in the last decade. As a result, the GaAs industry is faced with new challenges in its efforts to fabricate devices with smaller dimensions that would permit higher integration levels. One of the limiting factors is the ohmic contact metallurgy of the metal semiconductor field effect transistor (MESFET), which, during annealing, induces a high degree of lateral diffusion into the substrate. Because of its limited reaction with the substrate, the Pd-Ge contact seems to be the most promising candidate to be used in the next generation of MESFET's. The Pd-Ge system belongs to a new class of ohmic contacts to compound semiconductors, part of an alloying strategy developed only recently, which relies on solid phase epitaxy (SPE) and solid phase regrowth to "un-pin" the Fermi level at the surface of the compound semiconductor. However, implementing this alloy into an integrated process flow proved to be difficult due to our incomplete understanding of the microstructure evolution during annealing and its implications on the electrical properties of the contact. The microstructure evolution and the corresponding solid state reactions that take place during annealing of the Pd-Ge thin films on to GaAs were studied in connection with their effects on the electrical properties of the ohmic contact. The phase transformations sequence, transition temperatures and activation energies were determined by combining differential scanning calorimetry (DSC) for thermal analysis with transmission electron microscopy (TEM) for microstructure identification. In-situ TEM annealing experiments on the Pd/Ge/Pd/GaAs ohmic contact system have permitted real time determination of the evolution of contact microstructure. The kinetics of the solid state reactions, which occur during ohmic contact formation, were determined by measuring the grain growth rates associated with each phase from the videotape recordings. With the exception of the Pd-GaAs interactions, it was found that four phase transformations occur during annealing of the Pd:Ge thin films on top of GaAs. The microstructural information was correlated with specific ohmic contact resistivity measurements performed in accordance with the transmission line method (TLM) and these results demonstrated that the Ge SPE growth on top of GaAs renders the optimal electrical properties for the contact. By using the focused ion beam (FIB) method to produce microcantilever beams, the residual stress present in the thin film system was studied in connection with the microstructure. Although, the PdGe/epi-Ge/GaAs seemed to be the optimal microstructural configuration, the presence of PdGe at the interface with GaAs did not damage the contact resistivity significantly. These results made it difficult to establish a charge transport mechanism across the interface but they explained the wide processing window associated with this contact.

  12. Mixed, charge and heat noises in thermoelectric nanosystems

    NASA Astrophysics Data System (ADS)

    Crépieux, Adeline; Michelini, Fabienne

    2015-01-01

    Mixed, charge and heat current fluctuations as well as thermoelectric differential conductances are considered for non-interacting nanosystems connected to reservoirs. Using the Landauer-Büttiker formalism, we derive general expressions for these quantities and consider their possible relationships in the entire ranges of temperature, voltage and coupling to the environment or reservoirs. We introduce a dimensionless quantity given by the ratio between the product of mixed noises and the product of charge and heat noises, distinguishing between the auto-ratio defined in the same reservoir and the cross-ratio between distinct reservoirs. From the linear response regime to the high-voltage regime, we further specify the analytical expressions of differential conductances, noises and ratios of noises, and examine their behavior in two concrete nanosystems: a quantum point contact in an ohmic environment and a single energy level quantum dot connected to reservoirs. In the linear response regime, we find that these ratios are equal to each other and are simply related to the figure of merit. They can be expressed in terms of differential conductances with the help of the fluctuation-dissipation theorem. In the non-linear regime, these ratios radically distinguish between themselves as the auto-ratio remains bounded by one, while the cross-ratio exhibits rich and complex behaviors. In the quantum dot nanosystem, we moreover demonstrate that the thermoelectric efficiency can be expressed as a ratio of noises in the non-linear Schottky regime. In the intermediate voltage regime, the cross-ratio changes sign and diverges, which evidences a change of sign in the heat cross-noise.

  13. The impact of frequency on the performance of microwave ablation.

    PubMed

    Sawicki, James F; Shea, Jacob D; Behdad, Nader; Hagness, Susan C

    2017-02-01

    The use of higher frequencies in percutaneous microwave ablation (MWA) may offer compelling interstitial antenna design advantages over the 915 MHz and 2.45 GHz frequencies typically employed in current systems. To evaluate the impact of higher frequencies on ablation performance, we conducted a comprehensive computational and experimental study of microwave absorption and tissue heating as a function of frequency. We performed electromagnetic and thermal simulations of MWA in ex vivo and in vivo porcine muscle at discrete frequencies in the 1.9-26 GHz range. Ex vivo ablation experiments were performed in the 1.9-18 GHz range. We tracked the size of the ablation zone across frequency for constant input power and ablation duration. Further, we conducted simulations to investigate antenna feed line heating as a function of frequency, input power, and cable diameter. As the frequency was increased from 1.9 to 26 GHz the resulting ablation zone dimensions decreased in the longitudinal direction while remaining relatively constant in the radial direction; thus at higher frequencies the overall ablation zone was more spherical. However, cable heating at higher frequencies became more problematic for smaller diameter cables at constant input power. Comparably sized ablation zones are achievable well above 1.9 GHz, despite increasingly localised power absorption. Specific absorption rate alone does not accurately predict ablation performance, particularly at higher frequencies where thermal diffusion plays an important role. Cable heating due to ohmic losses at higher frequencies may be controlled through judicious choices of input power and cable diameter.

  14. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    NASA Astrophysics Data System (ADS)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  15. Cost studies of thermally enhanced in situ soil remediation technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate & Treat (E&T), and Pump & Treat (P&T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies willmore » ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios.« less

  16. Mixed, charge and heat noises in thermoelectric nanosystems.

    PubMed

    Crépieux, Adeline; Michelini, Fabienne

    2015-01-14

    Mixed, charge and heat current fluctuations as well as thermoelectric differential conductances are considered for non-interacting nanosystems connected to reservoirs. Using the Landauer-Büttiker formalism, we derive general expressions for these quantities and consider their possible relationships in the entire ranges of temperature, voltage and coupling to the environment or reservoirs. We introduce a dimensionless quantity given by the ratio between the product of mixed noises and the product of charge and heat noises, distinguishing between the auto-ratio defined in the same reservoir and the cross-ratio between distinct reservoirs. From the linear response regime to the high-voltage regime, we further specify the analytical expressions of differential conductances, noises and ratios of noises, and examine their behavior in two concrete nanosystems: a quantum point contact in an ohmic environment and a single energy level quantum dot connected to reservoirs. In the linear response regime, we find that these ratios are equal to each other and are simply related to the figure of merit. They can be expressed in terms of differential conductances with the help of the fluctuation-dissipation theorem. In the non-linear regime, these ratios radically distinguish between themselves as the auto-ratio remains bounded by one, while the cross-ratio exhibits rich and complex behaviors. In the quantum dot nanosystem, we moreover demonstrate that the thermoelectric efficiency can be expressed as a ratio of noises in the non-linear Schottky regime. In the intermediate voltage regime, the cross-ratio changes sign and diverges, which evidences a change of sign in the heat cross-noise.

  17. Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo

    2017-06-01

    To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.

  18. Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis.

    PubMed

    Citeau, M; Olivier, J; Mahmoud, A; Vaxelaire, J; Larue, O; Vorobiev, E

    2012-09-15

    Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m², 20, 30, and 50 V-for digested sludge dewatering; and 20, 40 and 80 A/m², 20, 30, and 50 V-for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated. The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The significant effect of the thickness of Ni film on the performance of the Ni/Au Ohmic contact to p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2014-10-28

    The significant effect of the thickness of Ni film on the performance of the Ohmic contact of Ni/Au to p-GaN is studied. The Ni/Au metal films with thickness of 15/50 nm on p-GaN led to better electrical characteristics, showing a lower specific contact resistivity after annealing in the presence of oxygen. Both the formation of a NiO layer and the evolution of metal structure on the sample surface and at the interface with p-GaN were checked by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The experimental results indicate that a too thin Ni film cannot form enough NiO to decrease themore » barrier height and get Ohmic contact to p-GaN, while a too thick Ni film will transform into too thick NiO cover on the sample surface and thus will also deteriorate the electrical conductivity of sample.« less

  20. In situ ohmic contact formation for n-type Ge via non-equilibrium processing

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Frigerio, J.; Napolitani, E.; Ballabio, A.; Berencén, Y.; Rebohle, L.; Wang, M.; Böttger, R.; Voelskow, M.; Isella, G.; Hübner, R.; Helm, M.; Zhou, S.; Skorupa, W.

    2017-11-01

    Highly scaled nanoelectronics requires effective channel doping above 5 × 1019 cm-3 together with ohmic contacts with extremely low specific contact resistivity. Nowadays, Ge becomes very attractive for modern optoelectronics due to the high carrier mobility and the quasi-direct bandgap, but n-type Ge doped above 5 × 1019 cm-3 is metastable and thus difficult to be achieved. In this letter, we report on the formation of low-resistivity ohmic contacts in highly n-type doped Ge via non-equilibrium thermal processing consisting of millisecond-range flash lamp annealing. This is a single-step process that allows for the formation of a 90 nm thick NiGe layer with a very sharp interface between NiGe and Ge. The measured carrier concentration in Ge is above 9 × 1019 cm-3 with a specific contact resistivity of 1.2 × 10-6 Ω cm2. Simultaneously, both the diffusion and the electrical deactivation of P are fully suppressed.

  1. Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate.

    PubMed

    Morel, Alexandre; Zuo, Kuichang; Xia, Xue; Wei, Jincheng; Luo, Xi; Liang, Peng; Huang, Xia

    2012-08-01

    A novel configuration of microbial desalination cell (MDC) packed with ion-exchange resin (R-MDC) was proposed to enhance water desalination rate. Compared with classic MDC (C-MDC), an obvious increase in desalination rate (DR) was obtained by R-MDC. With relatively low concentration (10-2 g/L NaCl) influents, the DR values of R-MDC were about 1.5-8 times those of C-MDC. Ion-exchange resins packed in the desalination chamber worked as conductor and thus counteracted the increase in ohmic resistance during treatment of low concentration salt water. Ohmic resistances of R-MDC stabilized at 3.0-4.7 Ω. By contrast, the ohmic resistances of C-MDC ranged from 5.5 to 12.7 Ω, which were 55-272% higher than those of R-MDC. Remarkable improvement in desalination rate helped improve charge efficiency for desalination in R-MDC. The results first showed the potential of R-MDC in the desalination of water with low salinity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Transition of multidiffusive states in a biased periodic potential

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Ming; Bao, Jing-Dong

    2017-03-01

    We study a frequency-dependent damping model of hyperdiffusion within the generalized Langevin equation. The model allows for the colored noise defined by its spectral density, assumed to be proportional to ωδ -1 at low frequencies with 0 <δ <1 (sub-Ohmic damping) or 1 <δ <2 (super-Ohmic damping), where the frequency-dependent damping is deduced from the noise by means of the fluctuation-dissipation theorem. It is shown that for super-Ohmic damping and certain parameters, the diffusive process of the particle in a titled periodic potential undergos sequentially four time regimes: thermalization, hyperdiffusion, collapse, and asymptotical restoration. For analyzing transition phenomenon of multidiffusive states, we demonstrate that the first exist time of the particle escaping from the locked state into the running state abides by an exponential distribution. The concept of an equivalent velocity trap is introduced in the present model; moreover, reformation of ballistic diffusive system is also considered as a marginal situation but does not exhibit the collapsed state of diffusion.

  3. Effects of four different cooking methods on some quality characteristics of low fat Inegol meatball enriched with flaxseed flour.

    PubMed

    Turp, Gulen Yildiz

    2016-11-01

    The present study is concerned with the effects of four different cooking methods (grill, oven, pan and ohmic cooking) on physicochemical parameters (cooking yield moisture retention, fat retention, color, texture), fatty acid composition and sensory characteristics of low fat Turkish traditional Inegol meatball. Flaxseed flour was used as a fat substitute in the production of meatballs. Meatball proximate composition was affected by the cooking methods mainly as a consequence of the weight losses. The highest cooking yield was found in samples cooked in the oven. Flaxseed flour contains high amount of α-linolenic acid and ohmic cooking seems to be the best cooking method in terms of retaining this fatty acid in meatballs enriched with flaxseed flour. However ohmic cooked meatball samples had a brighter surface color and harder texture in comparison with meatball samples cooked via traditional methods. There was no significant difference between the sensory evaluation scores of meatballs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Self-aligned Ni-P ohmic contact scheme for silicon solar cells by electroless deposition

    NASA Astrophysics Data System (ADS)

    Lee, Eun Kyung; Lim, Dong Chan; Lee, Kyu Hwan; Lim, Jae-Hong

    2012-08-01

    We report a Ni-P metallization scheme for low resistance ohmic contacts to n-type Si for silicon solar cells. As-deposited Ni-P contacts to n-type Si showed a specific contact resistance of 6.42 × 10-4 Ω·cm2. The specific contact resistance decreased with increasing thermal annealing temperature. When the Ni-P contact was annealed at 600°C for 30 min in ambient air, the specific contact resistance was greatly decreased, to 6.37 × 10-5Ω·cm2. The improved ohmic property was attributed to the decrease in the work function due to the formation of Ni-silicides from Ni in-diffusion during the thermal annealing process. Effects of the annealing process on the electrical and crystal properties of the contacts were investigated by means of various resistivity measurements (circular transmission line method (c-TLM), 4-point probe), glancing angle x-ray diffraction (GAXRD), and x-ray photoelectron spectroscopy (XPS).

  5. Switching phenomenon in a Se{70}Te{30-x}Cd{x} films

    NASA Astrophysics Data System (ADS)

    Afifi, M. A.; Bekheet, A. E.; Hegab, N. A.; Wahab, L. A.; Shehata, H. A.

    2007-11-01

    Amorphous Se{70}Te{30-x}Cd{x} (x = 0, 10) are obtained by thermal evaporation under vacuum of bulk materials on pyrographite and glass substrates. The I-V characteristic curves for the two film compositions are typical for a memory switch. They exhibited a transition from an ohmic region in the lower field followed by non-ohmic region in the high field region in the preswitching region, which has been explained by the Poole-Frenkel effect. The temperature dependence of current in the ohmic region is found to be of thermally activated process. The mean value of the threshold voltage bar{V}th increases linearly with increasing film thickness in the thickness range (100 491 nm), while it decreases exponentially with increasing temperature in the temperature range (293 343 K) for both compositions. The results are explained in accordance with the electrothermal model for the switching process. The effect of Cd on these parameters is also investigated.

  6. Transparent ohmic contacts for solution-processed, ultrathin CdTe solar cells

    DOE PAGES

    Kurley, J. Matthew; Panthani, Matthew G.; Crisp, Ryan W.; ...

    2016-12-19

    Recently, solution-processing became a viable route for depositing CdTe for use in photovoltaics. Ultrathin (~500 nm) solar cells have been made using colloidal CdTe nanocrystals with efficiencies exceeding 12% power conversion efficiency (PCE) demonstrated by using very simple device stacks. Further progress requires an effective method for extracting charge carriers generated during light harvesting. Here, we explored solution-based methods for creating transparent Ohmic contacts to the solution-deposited CdTe absorber layer and demonstrated molecular and nanocrystal approaches to Ohmic hole-extracting contacts at the ITO/CdTe interface. Furthermore, we used scanning Kelvin probe microscopy to further show how the above approaches improved carriermore » collection by reducing the potential drop under reverse bias across the ITO/CdTe interface. Other methods, such as spin-coating CdTe/A 2CdTe 2 (A = Na, K, Cs, N 2H 5), can be used in conjunction with current/light soaking to improve PCE further.« less

  7. Observation of quasi-coherent edge fluctuations in Ohmic plasmas on National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Santanu; Diallo, A.; Zweben, S. J.

    A quasi-coherent edge density mode with frequency f{sub mode} ∼ 40 kHz is observed in Ohmic plasmas in National Spherical Torus Experiment using the gas puff imaging diagnostic. This mode is located predominantly just inside the separatrix, with a maximum fluctuation amplitude significantly higher than that of the broadband turbulence in the same frequency range. The quasi-coherent mode has a poloidal wavelength λ{sub pol} ∼ 16 cm and a poloidal phase velocity of V{sub pol} ∼ 4.9 ± 0.3 km s{sup −1} in the electron diamagnetic direction, which are similar to the characteristics expected from a linear drift-wave-like mode in the edge. This is the first observation of amore » quasi-coherent edge mode in an Ohmic diverted tokamak, and so may be useful for validating tokamak edge turbulence codes.« less

  8. Quantum dynamics simulations in an ultraslow bath using hierarchy of stochastic Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Ke, Yaling; Zhao, Yi

    2018-04-01

    The hierarchy of stochastic Schrödinger equation, previously developed under the unpolarised initial bath states, is extended in this paper for open quantum dynamics under polarised initial bath conditions. The method is proved to be a powerful tool in investigating quantum dynamics exposed to an ultraslow Ohmic bath, as in this case the hierarchical truncation level and the random sampling number can be kept at a relatively small extent. By systematically increasing the system-bath coupling strength, the symmetric Ohmic spin-boson dynamics is investigated at finite temperature, with a very small cut-off frequency. It is confirmed that the slow bath makes the system dynamics extremely sensitive to the initial bath conditions. The localisation tendency is stronger in the polarised initial bath conditions. Besides, the oscillatory coherent dynamics persists even when the system-bath coupling is very strong, in correspondence with what is found recently in the deep sub-Ohmic bath, where also the low-frequency modes dominate.

  9. Electrical, structural and surface morphological properties of thermally stable low-resistance W/Ti/Au multilayer ohmic contacts to n-type GaN

    NASA Astrophysics Data System (ADS)

    Jyothi, I.; Reddy, V. Rajagopal

    2010-10-01

    A W/Ti/Au multilayer scheme has been fabricated for achieving thermally stable low-resistance ohmic contact to n-type GaN (4.0 × 10 18 cm -3). It is shown that the as-deposited W/Ti/Au contact exhibits near linear I- V behaviour. However, annealing at temperature below 800 °C the contacts exhibit non-linear behaviour. After annealing at a temperature in excess of 850 °C, the W/Ti/Au contact showed ohmic behaviour. The W/Ti/Au contact produced specific contact resistance as low as 6.7 × 10 -6 Ω cm 2 after annealing at 900 °C for 1 min in a N 2 ambient. It is noted that the specific contact resistance decreases with increase in annealing temperature. It is also noted that annealing the contacts at 900 °C for 30 min causes insignificant degradation of the electrical and thermal properties. It is further shown that the overall surface morphology of the W/Ti/Au stayed fairly smooth even after annealing at 900 °C. The W/Ti/Au ohmic contact showed good edge sharpness after annealing at 900 °C for 30 min. Based on the Auger electron spectroscopy and glancing angle X-ray diffraction results, possible explanation for the annealing dependence of the specific contact resistance of the W/Ti/Au contacts are described and discussed.

  10. Microstructure, electrical properties, and thermal stability of Au-based ohmic contacts to p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.L.; Davis, R.F.; Kim, M.J.

    1997-09-01

    The work described in this paper is part of a systematic study of ohmic contact strategies for GaN-based semiconductors. Au contacts exhibited ohmic behavior on p-GaN when annealed at high temperature. The specific contact resistivity ({rho}{sub c}) calculated from TLM measurements on Au/p-GaN contacts was 53{Omega}{center_dot}cm{sup 2} after annealing at 800{degree}C. Multilayer Au/Mg/Au/p-GaN contacts exhibited linear, ohmic current-voltage (I-V) behavior in the as-deposited condition with {rho}{sub c}=214{Omega}{center_dot}cm{sup 2}. The specific contact resistivity of the multilayer contact increased significantly after rapid thermal annealing (RTA) through 725{degree}C. Cross-sectional microstructural characterization of the Au/p-GaN contact system via high-resolution electron microscopy (HREM) revealed thatmore » interfacial secondary phase formation occurred during high-temperature treatments, which coincided with the improvement of contact performance. In the as-deposited multilayer Au/Mg/Au/p-GaN contact, the initial 32 nm Au layer was found to be continuous. However, Mg metal was found in direct contact with the GaN in many places in the sample after annealing at 725{degree}C for 15 s. The resultant increase in contact resistance is believed to be due to the barrier effect increased by the presence of the low work function Mg metal. {copyright} {ital 1997 Materials Research Society.}« less

  11. Nonlinear interaction of an intense radio wave with ionospheric D/E layer plasma

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Agarwal, Sujeet Kumar

    2018-05-01

    This paper considers the nonlinear interaction of an intense electromagnetic wave with the D/E layer plasma in the ionosphere. A simultaneous solution of the electromagnetic wave equation and the equations describing the kinetics of D/E layer plasma is obtained; the phenomenon of ohmic heating of electrons by the electric field of the wave causes enhanced collision frequency and ionization of neutral species. Electron temperature dependent recombination of electrons with ions, electron attachment to O 2 molecules, and detachment of electrons from O2 - ions has also been taken into account. The dependence of the plasma parameters on the square of the electric vector of the wave E0 2 has been evaluated for three ionospheric heights (viz., 90, 100, and 110 km) corresponding to the mid-latitude mid-day ionosphere and discussed; these results are used to investigate the horizontal propagation of an intense radio wave at these heights.

  12. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show thatmore » the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.« less

  13. Geomagnetic spikes on the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Davies, Christopher; Constable, Catherine

    2017-05-01

    Extreme variations of Earth's magnetic field occurred in the Levant region around 1000 BC, when the field intensity rapidly rose and fell by a factor of 2. No coherent link currently exists between this intensity spike and the global field produced by the core geodynamo. Here we show that the Levantine spike must span >60° longitude at Earth's surface if it originates from the core-mantle boundary (CMB). Several low intensity data are incompatible with this geometric bound, though age uncertainties suggest these data could have sampled the field before the spike emerged. Models that best satisfy energetic and geometric constraints produce CMB spikes 8-22° wide, peaking at O(100) mT. We suggest that the Levantine spike reflects an intense CMB flux patch that grew in place before migrating northwest, contributing to growth of the dipole field. Estimates of Ohmic heating suggest that diffusive processes likely govern the ultimate decay of geomagnetic spikes.

  14. Laser diode with thermal conducting, current confining film

    NASA Technical Reports Server (NTRS)

    Hawrylo, Frank Z. (Inventor)

    1980-01-01

    A laser diode formed of a rectangular parallelopiped body of single crystalline semiconductor material includes regions of opposite conductivity type indium phosphide extending to opposite surfaces of the body. Within the body is a PN junction at which light can be generated. A stripe of a conductive material is on the surface of the body to which the P type region extends and forms an ohmic contact with the P type region. The stripe is spaced from the side surfaces of the body and extends to the end surfaces of the body. A film of germanium is on the portions of the surface of the P type region which is not covered by the conductive stripe. The germanium film serves to conduct heat from the body and forms a blocking junction with the P type region so as to confine the current through the body, across the light generating PN junction, away from the side surfaces of the body.

  15. Computational analysis of current-loss mechanisms in a post-hole convolute driven by magnetically insulated transmission lines

    DOE PAGES

    Rose, D.  V.; Madrid, E.  A.; Welch, D.  R.; ...

    2015-03-04

    Numerical simulations of a vacuum post-hole convolute driven by magnetically insulated vacuum transmission lines (MITLs) are used to study current losses due to charged particle emission from the MITL-convolute-system electrodes. This work builds on the results of a previous study [E.A. Madrid et al. Phys. Rev. ST Accel. Beams 16, 120401 (2013)] and adds realistic power pulses, Ohmic heating of anode surfaces, and a model for the formation and evolution of cathode plasmas. The simulations suggest that modestly larger anode-cathode gaps in the MITLs upstream of the convolute result in significantly less current loss. In addition, longer pulse durations leadmore » to somewhat greater current loss due to cathode-plasma expansion. These results can be applied to the design of future MITL-convolute systems for high-current pulsed-power systems.« less

  16. Transport Studies in Alcator C-Mod ITB Plasmas

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Bonoli, P. T.; Ernst, D.; Greenwald, M. J.; Ince-Cushman, A.; Lin, L.; Marmar, E. S.; Porkolab, M.; Rice, J. E.; Wukitch, S.; Rowan, W.; Bespamyatnov, I.; Phillips, P.

    2008-11-01

    Internal transport barriers occur in C-Mod plasmas that have off-axis ICRF heating and also in Ohmic H-mode plasmas. These ITBs are marked by highly peaked density and pressure profiles, as they rely on a reduction of particle and thermal flux in the barrier region which allows the neoclassical pinch to peak the central density without reducing the central temperature. Enhancement of several core diagnostics has resulted in increased understanding of C-Mod ITBs. Ion temperature profile measurements have been obtained using an innovative design for x-ray crystal spectrometry and clearly show a barrier forming in the ion temperature profile. The phase contrast imaging (PCI) provides limited localization of the ITB related fluctuations that increase in strength as the central density increases. Simulation of triggering conditions, integrated simulations with fluctuation measurements, parametric studies, and transport implications of fully ionized boron impurity profiles in the plasma are under study. A summary of these results will be presented.

  17. The evolution of stable magnetic fields in stars: an analytical approach

    NASA Astrophysics Data System (ADS)

    Mestel, Leon; Moss, David

    2010-07-01

    The absence of a rigorous proof of the existence of dynamically stable, large-scale magnetic fields in radiative stars has been for many years a missing element in the fossil field theory for the magnetic Ap/Bp stars. Recent numerical simulations, by Braithwaite & Spruit and Braithwaite & Nordlund, have largely filled this gap, demonstrating convincingly that coherent global scale fields can survive for times of the order of the main-sequence lifetimes of A stars. These dynamically stable configurations take the form of magnetic tori, with linked poloidal and toroidal fields, that slowly rise towards the stellar surface. This paper studies a simple analytical model of such a torus, designed to elucidate the physical processes that govern its evolution. It is found that one-dimensional numerical calculations reproduce some key features of the numerical simulations, with radiative heat transfer, Archimedes' principle, Lorentz force and Ohmic decay all playing significant roles.

  18. Anomalous current diffusion and improved confinement in the HT-6M tohamak

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, J. G.; Wan, Y. X.; Huo, Y. P.; Guo, W. K.; Fan, S. P.; Yu, C. X.; Luo, J. R.; Yin, F. X.; Meng, Y. D.; Zheng, L.; Yin, F.; Lin, B. L.; Zhang, S. Y.; Wang, S. Y.; Lu, H. J.; Liu, S. X.; Tong, X. D.; Ding, L. C.; Wu, Z. Y.; Yin, X. J.; Guo, Q. L.; Gong, X. Z.; Wu, X. C.; Zhao, J. Y.; Xi, J. S.

    1994-10-01

    Current diffusion was studied during edge ohmic heating (EOH) experiments in the HT-6M tokamak. The EOH power system makes the plasma current linearly ramp up from an initial steady state ( Ip=55kA) to a second steady state ( Ip=60kA) at a fast ramp rate of 12 MA/s. A stable discharge of an improved confinement was observed experimentally in the HT-6M tokamak after the plasma current was ramped to rise rapidly to a second steady state. The plasma current is ramped up much faster than both the classical skin time and neoclassical skin time. Fast current ramp up increases the anomalous current diffusion. The measured values of {β P+l i}/{2} and the soft X-ray sawtooth inversion radius imply the anomalous current penetration. The mechanism of anomalous penetration and improved confinement is discussed.

  19. Exergy analysis of a solid oxide fuel cell micropowerplant

    NASA Astrophysics Data System (ADS)

    Hotz, Nico; Senn, Stephan M.; Poulikakos, Dimos

    In this paper, an analytical model of a micro solid oxide fuel cell (SOFC) system fed by butane is introduced and analyzed in order to optimize its exergetic efficiency. The micro SOFC system is equipped with a partial oxidation (POX) reformer, a vaporizer, two pre-heaters, and a post-combustor. A one-dimensional (1D) polarization model of the SOFC is used to examine the effects of concentration overpotentials, activation overpotentials, and ohmic resistances on cell performance. This 1D polarization model is extended in this study to a two-dimensional (2D) fuel cell model considering convective mass and heat transport along the fuel cell channel and from the fuel cell to the environment. The influence of significant operational parameters on the exergetic efficiency of the micro SOFC system is discussed. The present study shows the importance of an exergy analysis of the fuel cell as part of an entire thermodynamic system (transportable micropowerplant) generating electric power.

  20. Electrically driven cation exchange for in situ fabrication of individual nanostructures

    DOE PAGES

    Zhang, Qiubo; Yin, Kuibo; Dong, Hui; ...

    2017-04-12

    Cation exchange (CE) has been recognized as a particularly powerful tool for the synthesis of heterogeneous nanocrystals. Presently, CE can be divided into two categories, namely ion solvation-driven CE reaction and thermally activated CE reaction. Here we report an electrically driven CE reaction to prepare individual nanostructures inside a transmission electron microscope. During the process, Cd is eliminated due to Ohmic heating, whereas Cu + migrates into the crystal driven by the electrical field force. Contrast experiments reveal that the feasibility of electrically driven CE is determined by the structural similarity of the sulfur sublattices between the initial and finalmore » phases, and the standard electrode potentials of the active electrodes. These experimental results demonstrate a strategy for the selective growth of individual nanocrystals and provide crucial insights into understanding of the microscopic pathways leading to the formation of heterogeneous structures.« less

  1. Solution-processed soldering of carbon nanotubes for flexible electronics.

    PubMed

    Rao, K D M; Radha, B; Smith, K C; Fisher, T S; Kulkarni, G U

    2013-02-22

    We report a simple lithography-free, solution-based method of soldering of carbon nanotubes with Ohmic contacts, by taking specific examples of multi-walled carbon nanotubes (MWNTs). This is achieved by self-assembling a monolayer of soldering precursor, Pd(2+) anchored to 1,10 decanedithiol, onto which MWNTs could be aligned across the gap electrodes via solvent evaporation. The nanosoldering was realized by thermal/electrical activation or by both in sequence. Electrical activation and the following step of washing ensure selective retention of MWNTs spanning across the gap electrodes. The soldered joints were robust enough to sustain strain caused during the bending of flexible substrates as well as during ultrasonication. The estimated temperature generated at the MWNT-Au interface using an electro-thermal model is ∼150 °C, suggesting Joule heating as the primary mechanism of electrical activation. Further, the specific contact resistance is estimated from the transmission line model.

  2. Aerobrake plasmadynamics - Macroscopic effects

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1990-01-01

    The flow around an aerobraking spacecraft (such as the Aeroassist Flight Experiment reentry vehicle) will contain a region of partially ionized gas, that is, a plasma. It is shown here by numerical simulation that macroscopic plasmadynamic effects (which are not included in standard aerothermodynamic simulations) will have a noticeable effect on the reentry flow field. In particular, there are thermoelectric phenomena which can have a major influence in flow dynamics at the front of an ionizing bowshock. These thermoelectric phenomena arise because of the presence of large density and temperature gradients at the front of a reentry bowshock, and they include strong local magnetic fields, electric currents, and ohmic heating. One important result is the dramatic increase in temperature (over the case where plasma effects are neglected) at a reentry shock front; the implication is that macroscopic plasmadynamic effects can no longer be neglected in simulations of hypersonic reentry flow fields.

  3. Ohmic resistance in a multi-anode MxCs

    EPA Pesticide Factsheets

    A-3txf_sequence summary.xksx: Abundance of contigs or unique sequences for each biofilm samples from anodes in the MEC reactorHodon Waterloo final_fasta_working.docx: Raw sequences with their identification numbersRNA S1_MEC.docx: Representative sequences with their ID number and taxonomyThis dataset is associated with the following publication:Santodomingo, J., H. Ryu, B. Dhar, and H. Lee. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell. JOURNAL OF POWER SOURCES. Elsevier Science Ltd, New York, NY, USA, 331: 315-321, (2016).

  4. Efros-Shklovskii variable range hopping and nonlinear transport in 1 T /1 T'-MoS2

    NASA Astrophysics Data System (ADS)

    Papadopoulos, N.; Steele, G. A.; van der Zant, H. S. J.

    2017-12-01

    We have studied temperature- and electric-field-dependent carrier transport in single flakes of MoS2 treated with n -butyllithium. The temperature dependence of the four-terminal resistance follows the Efros-Shklovskii variable range hopping conduction mechanism. From measurements in the Ohmic and non-Ohmic regime, we estimate the localization length and the average hopping length of the carriers, as well as the effective dielectric constant. Furthermore, a comparison between two- and four-probe measurements yields a contact resistance that increases significantly with decreasing temperature.

  5. Equilibrium dynamics of the sub-Ohmic spin-boson model under bias

    NASA Astrophysics Data System (ADS)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σ z for the biased sub-Ohmic spin-boson model. The small-ω behavior C(ω )\\propto {ω }s is found to be universal and independent of the bias ɛ and the coupling strength α (except at the quantum critical point α ={α }{{c}} and ɛ = 0). Our NRG data also show C(ω )\\propto {χ }2{ω }s for a wide range of parameters, including the biased strong coupling regime (\\varepsilon \

  6. Effect of morphology on the non-ohmic conduction in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Jayakumar, K.

    2016-05-01

    Nanostructures of ZnO is synthesized with nanoflower like morphology by simple wet chemical method. The structural, morphological and electrical characterization have been carried out. The temperature dependent electrical characterization of ZnO pellets of thickness 1150 µm is made by the application of 925MPa pressure. The morphological dependence of non-ohmic conduction beyond some arbitrary tunneling potential and grain boundary barrier thickness is compared with the commercially available bulk ZnO. Our results show the suitability of nano-flower like ZnO for the devices like sensors, rectifiers etc.

  7. Transient snakes in an ohmic plasma associated with a minor disruption in the HT-7 tokamak

    NASA Astrophysics Data System (ADS)

    Mao, Songtao; Xu, Liqing; Hu, Liqun; Chen, Kaiyun

    2014-05-01

    A transient burst (ms, an order of the fast-particle slowdown timescale) of a spontaneous snake is observed for the first time in a HT-7 heavy impurity ohmic plasma. The features of the low-Z impurity snake are presented. The flatten electron profile due to the heavy impurity reveals the formation of a large magnetic island. The foot of the impurity accumulation is consistent with the location of the transient snake. The strong frequency-chirping behaviors and the spatial structures of the snake are also presented.

  8. Initial results in SST-1 after up-gradation

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Khan, Z.; Tanna, V. L.; Prasad, U.; Paravastu, Y.; Raval, D. C.; Masand, H.; Kumar, Aveg; Dhongde, J. R.; Jana, S.; Kakati, B.; Patel, K. B.; Bhandarkar, M. K.; Shukla, B. K.; Ghosh, D.; Patel, H. S.; Parekh, T. J.; Mansuri, I. A.; Dhanani, K. R.; Varadharajulu, A.; Khristi, Y. S.; Biswas, P.; Gupta, C. N.; George, S.; Semwal, P.; Sharma, D. K.; Gulati, H. K.; Mahajan, K.; Praghi, B. R.; Banaudha, M.; Makwana, A. R.; Chudasma, H. H.; Kumar, M.; Manchanda, R.; Joisa, Y. S.; Asudani, K.; Pandya, S. N.; Pathak, S. K.; Banerjee, S.; Patel, P. J.; Santra, P.; Pathan, F. S.; Chauhan, P. K.; Khan, M. S.; Thankey, P. L.; Prakash, A.; Panchal, P. N.; Panchal, R. N.; Patel, R. J.; Mahsuria, G. I.; Sonara, D. P.; Patel, K. M.; Jayaswal, S. P.; Sharma, M.; Patel, J. C.; Varmora, P.; Srikanth, G. L. N.; Christian, D. R.; Garg, A.; Bairagi, N.; Babu, G. R.; Panchal, A. G.; Vora, M. M.; Singh, A. K.; Sharma, R.; Nimavat, H. D.; Shah, P. R.; Purwar, G.; Raval, T. Y.; Sharma, A. L.; Ojha, A.; Kumar, S.; Ramaiya, N. K.; Siju, V.; Gopalakrishna, M. V.; Kumar, A.; Sharma, P. K.; Atrey, P. K.; Kulkarni, SV; Ambulkar, K. K.; Parmar, P. R.; Thakur, A. L.; Raval, J. V.; Purohit, S.; Mishra, P. K.; Adhiya, A. N.; Nagora, U. C.; Thomas, J.; Chaudhari, V. K.; Patel, K. G.; Dalakoti, S.; Virani, C. G.; Gupta, S.; Kumar, Ajay; Chaudhari, B.; Kaur, R.; Srinivasan, R.; Raju, D.; Kanabar, D. H.; Jha, R.; Das, A.; Bora, D.

    2017-04-01

    SST-1 Tokamak has recently completed the 1st phase of up-gradation with successful installation and integration of all its First Wall components. The First Wall of SST-1 comprises of ∼ 3800 high heat flux compatible graphite tiles being assembled and installed on 132 CuCrZr heat sink back plates engraved with ∼ 4 km of leak tight baking and cooling channels in five major sub groups equipped with ∼ 400 sensors and weighing ∼ 6000 kg in total in thirteen isolated galvanic and six isolated hydraulic circuits. The phase-1 up-gradation spectrum also includes addition of Supersonic Molecular Beam Injection (SMBI) both on the in-board and out-board side, installation of fast reciprocating probes, adding some edge plasma probe diagnostics in the SOL region, installation and integration of segmented and up-down symmetric radial coils aiding/controlling plasma rotations, introduction of plasma position feedback and density controls etc. Post phase-I up-gradation spanning from Nov 2014 till June 2016, initial plasma experiments in up-graded SST-1 have begun since Aug 2016 after a brief engineering validation period in SST-1. The first experiments in SST-1 have revealed interesting aspects on the ‘eddy currents in the First Wall support structures’ influencing the ‘magnetic Null evolution dynamics’ and the subsequent plasma start-up characteristics after the ECH pre-ionization, the influence of the first walls on the ‘field errors’ and the resulting locked modes observed, the magnetic index influencing the evolution of the equilibrium of the plasma column, low density supra-thermal electron induced discharges and normal ohmic discharges etc. Presently; repeatable ohmic discharges regimes in SST-1 having plasma currents in excess of 65 KA (qa ∼ 3.8, BT = 1.5 T) with a current ramp rates ∼ 1.2 MA/s over a duration of ∼ 300 ms with line averaged densities ∼ 0.8 × 1019 and temperatures ∼ 200 eV with copious MHD signatures have been experimentally established. Further elongation of the plasma duration up to one second or more with position and density feedback as well as coupling of Lower Hybrid waves are currently being persuaded in SST-1 apart from increasing the core plasma parameters with further optimizations and with wall conditioning.

  9. Improved fabrication techniques for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Lange, A. E.; Kreysa, E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.

    1983-01-01

    Techniques are described for producing improved infrared bolometers from doped germanium. Ion implantation and sputter metalization have been used to make ohmic electrical contacts to Ge:Ga chips. This method results in a high yield of small monolithic bolometers with very little low-frequency noise. When one of these chips is used as the thermometric element of a composite bolometer, it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond has been measured and found to be undesirably large. A procedure for soldering the chip to a metalized portion of the substrate is described which reduced this resistance. The contribution of the metal film absorber to the heat capacity of a composite bolometer has been measured. The heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber has significantly lower heat capacity. A low temperature blackbody calibrator has been built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approx. 0.1 sr sq cm was constructed using the new techniques. In negligible background it has an optical NEP of 3.6 10((exp -15) W/sq root of Hz at 1.0 K with a time constant of 20 ms. The noise in this bolometer is white above 2.5 Hz and is somewhat below the value predicted by thermodynamic equilibrium theory. It is in agreement with calculations based on a recent nonequilibrium theory.

  10. Effects of alloying and local order in AuNi contacts for Ohmic radio frequency micro electro mechanical systems switches via multi-scale simulation

    NASA Astrophysics Data System (ADS)

    Gaddy, Benjamin E.; Kingon, Angus I.; Irving, Douglas L.

    2013-05-01

    Ohmic RF-MEMS switches hold much promise for low power wireless communication, but long-term degradation currently plagues their reliable use. Failure in these devices occurs at the contact and is complicated by the fact that the same asperities that bear the mechanical load are also important to the flow of electrical current needed for signal processing. Materials selection holds the key to overcoming the barriers that prevent widespread use. Current efforts in materials selection have been based on the material's (or alloy's) ability to resist oxidation as well as its room-temperature properties, such as hardness and electrical conductivity. No ideal solution has yet been found via this route. This may be due, in part, to the fact that the in-use changes to the local environment of the asperity are not included in the selection criteria. For example, Joule heating would be expected to raise the local temperature of the asperity and impose a non-equilibrium thermal gradient in the same region expected to respond to mechanical actuation. We propose that these conditions should be considered in the selection process, as they would be expected to alter mechanical, electrical, and chemical mechanisms in the vicinity of the surface. To this end, we simulate the actuation of an Ohmic radio frequency micro electro mechanical systems switch by using a multi-scale method to model a current-carrying asperity in contact with a polycrystalline substrate. Our method couples continuum solutions of electrical and thermal transport equations to an underlying molecular dynamics simulation. We present simulations of gold-nickel asperities and substrates in order to evaluate the influence of alloying and local order on the early stages of contact actuation. The room temperature response of these materials is compared to the response of the material when a voltage is applied. Au-Ni interactions are accounted for through modification of the existing Zhou embedded atom method potential. The modified potential more accurately captures trends in high-temperature properties, including the enthalpy of mixing and melting temperatures. We simulate the loading of a contacting asperity to several substrates with varying Ni alloying concentrations and compare solid solution strengthening to a phase-separated system. Our simulations show that Ni concentration and configuration have an important effect on contact area, constriction resistance, thermal profiles, and material transfer. These differences suggest that a substrate with 15 at. % Ni featuring phase segregation has fewer early markers that experimentally have indicated long-term failure.

  11. Electron Beam/Optical Hybrid Lithography For The Production Of Gallium Arsenide Monolithic Microwave Integrated Circuits (Mimics)

    NASA Astrophysics Data System (ADS)

    Nagarajan, Rao M.; Rask, Steven D.

    1988-06-01

    A hybrid lithography technique is described in which selected levels are fabricated by high resolution direct write electron beam lithography and all other levels are fabricated optically. This technique permits subhalf micron geometries and the site-by-site alignment for each field written by electron beam lithography while still maintaining the high throughput possible with optical lithography. The goal is to improve throughput and reduce overall cost of fabricating MIMIC GaAS chips without compromising device performance. The lithography equipment used for these experiments is the Cambridge Electron beam vector scan system EBMF 6.4 capable of achieving ultra high current densities with a beam of circular cross section and a gaussian intensity profile operated at 20 kev. The optical aligner is a Karl Suss Contact aligner. The flexibility of the Cambridge electron beam system is matched to the less flexible Karl Suss contact aligner. The lithography related factors, such as image placement, exposure and process related analyses, which influence overlay, pattern quality and performance, are discussed. A process chip containing 3.2768mm fields in an eleven by eleven array was used for alignment evaluation on a 3" semi-insulating GaAS wafer. Each test chip contained five optical verniers and four Prometrix registration marks per field along with metal bumps for alignment marks. The process parameters for these chips are identical to those of HEMT/epi-MESFET ohmic contact and gate layer processes. These layers were used to evaluate the overlay accuracy because of their critical alignment and dimensional control requirements. Two cases were examined: (1) Electron beam written gate layers aligned to optically imaged ohmic contact layers and (2) Electron beam written gate layers aligned to electron beam written ohmic contact layers. The effect of substrate charging by the electron beam is also investigated. The resulting peak overlay error accuracies are: (1) Electron beam to optical with t 0.2μm (2 sigma) and (2) Electron beam to electron beam with f 0.lμm (2 sigma). These results suggest that the electron beam/optical hybrid lithography techniques could be used for MIMIC volume production as alignment tolerances required by GaAS chips are met in both cases. These results are discussed in detail.

  12. H-mode achievement and edge features in RFX-mod tokamak operation

    NASA Astrophysics Data System (ADS)

    Spolaore, M.; Cavazzana, R.; Marrelli, L.; Carraro, L.; Franz, P.; Spagnolo, S.; Zaniol, B.; Zuin, M.; Cordaro, L.; Dal Bello, S.; De Masi, G.; Ferro, A.; Finotti, C.; Grando, L.; Grenfell, G.; Innocente, P.; Kudlacek, O.; Marchiori, G.; Martines, E.; Momo, B.; Paccagnella, R.; Piovesan, P.; Piron, C.; Puiatti, M. E.; Recchia, M.; Scarin, P.; Taliercio, C.; Vianello, N.; Zanotto, L.

    2017-11-01

    The RFX-mod experiment is a fusion device designed to operate as a reversed field pinch (RFP), with a major radius R = 2 m and a minor radius a = 0.459 m. Its high versatility recently allowed operating it also as an ohmic tokamak, allowing comparative studies between the two configurations in the same device. The device is equipped with a state of the art MHD mode feedback control system providing a magnetic boundary effective control, by applying resonant or non-resonant magnetic perturbations (MP), both in RFP and in tokamak configurations. In the fusion community the application of MPs is widely studied as a promising tool to limit the impact of plasma filaments and ELMs (edge localized modes) on plasma facing components. An important new research line is the exploitation of the RFX-mod active control system for ELM mitigation studies. As a first step in this direction, this paper presents the most recent achievements in term of RFX-mod tokamak explored scenarios, which allowed the first investigation of the ohmic and edge biasing induced H-mode. The production of D-shaped tokamak discharges and the design and deployment of an insertable polarized electrode were accomplished. Reproducible H-mode phases were obtained with insertable electrode negative biasing in single null discharges, representing an unexplored scenario with this technique. Important modifications of the edge plasma density and flow properties are observed. During the achieved H-mode ELM-like electromagnetic composite filamentary structures are observed. They are characterized by clear vorticity and parallel current density patterns.

  13. The role of creep in the time-dependent resistance of Ohmic gold contacts in radio frequency microelectromechanical system devices

    NASA Astrophysics Data System (ADS)

    Rezvanian, O.; Brown, C.; Zikry, M. A.; Kingon, A. I.; Krim, J.; Irving, D. L.; Brenner, D. W.

    2008-07-01

    It is shown that measured and calculated time-dependent electrical resistances of closed gold Ohmic switches in radio frequency microelectromechanical system (rf-MEMS) devices are well described by a power law that can be derived from a single asperity creep model. The analysis reveals that the exponent and prefactor in the power law arise, respectively, from the coefficient relating creep rate to applied stress and the initial surface roughness. The analysis also shows that resistance plateaus are not, in fact, limiting resistances but rather result from the small coefficient in the power law. The model predicts that it will take a longer time for the contact resistance to attain a power law relation with each successive closing of the switch due to asperity blunting. Analysis of the first few seconds of the measured resistance for three successive openings and closings of one of the MEMS devices supports this prediction. This work thus provides guidance toward the rational design of Ohmic contacts with enhanced reliabilities by better defining variables that can be controlled through material selection, interface processing, and switch operation.

  14. Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Mason, Thomas J.; Millichamp, Jason; Neville, Tobias P.; El-kharouf, Ahmad; Pollet, Bruno G.; Brett, Daniel J. L.

    2012-12-01

    This paper describes the use of an in situ analytical technique based on simultaneous displacement and resistance measurement of gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs), when exposed to varying compaction pressure. In terms of the losses within fuel cells, the ohmic loss makes up a significant portion. Of this loss, the contact resistance between the GDL and the bipolar plate (BPP) is an important constituent. By analysing the change in thickness and ohmic resistance of GDLs under compression, important mechanical and electrical properties are obtained. Derived parameters such as the 'displacement factor' are used to characterise a representative range of commercial GDLs. Increasing compaction pressure leads to a non-linear decrease in resistance for all GDLs. For Toray paper, compaction becomes more irreversible with pressure with no elastic region observed. Different GDLs have different intrinsic resistance; however, all GDLs of the same class share a common compaction profile (change in resistance with pressure). Cyclic compression of Toray GDL leads to progressive improvement in resistance and reduction in thickness that stabilises after ∼10 cycles.

  15. A study of the Au/Ni ohmic contact on p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, D.; Yu, L. S.; Lau, S. S.

    2000-10-01

    The formation mechanism of the ohmic Au/Ni/p-GaN contact has been investigated. We found that it is essential to (i) deposit a structure of Au and Ni in the proper deposition sequence, and (ii) anneal the bilayer structure in an oxygen containing ambient. Our findings indicated that oxygen assists the layer-reversal reactions of the metallized layers to form a structure of NiO/Au/p-GaN. The presence of oxygen during annealing appears to increase the conductivity of the p-GaN. It is further suggested that Ni removes or reduces the surface contamination of the GaN sample before or during layer reversal. In the final contactmore » structure, an Au layer, which has a large work function, is in contact with the p-GaN substrate. The presence of Au in the entire contacting layer improves the conductivity of the contact. An ohmic formation mechanism based on our experimental results is proposed and discussed in this work. (c) 2000 American Institute of Physics.« less

  16. The Improvement of Electrical Characteristics of Pt/Ti Ohmic Contacts to Ga-Doped ZnO by Homogenized KrF Pulsed Excimer Laser Treatment

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk

    2018-04-01

    We investigated the effect of KrF excimer laser surface treatment on Pt/Ti ohmic contacts to Ga-doped n-ZnO ( N d = 4.3 × 1017 cm-3). The treatment of the n-ZnO surfaces by laser irradiation greatly improved the electrical characteristics of the metal contacts. The Pt/Ti ohmic layer on the laser-irradiated n-ZnO showed specific contact resistances of 2.5 × 10-4 ˜ 4.8 × 10-4 Ω cm2 depending on the laser energy density and gas ambient, which were about two orders of magnitude lower than that of the as-grown sample, 8.4 × 10-2 Ω cm2. X-ray photoelectron spectroscopy and photoluminescence measurements showed that the KrF excimer laser treatments increased the electron concentration near the surface region of the Ga-doped n-ZnO due to the preferential evaporation of oxygen atoms from the ZnO surface by the laser-induced dissociation of Zn-O bonds.

  17. Simulation of the Plasma Density Evolution during Electron Cyclotron Resonance Heating at the T-10 Tokamak

    NASA Astrophysics Data System (ADS)

    Dnestrovskij, Yu. N.; Vershkov, V. A.; Danilov, A. V.; Dnestrovskij, A. Yu.; Zenin, V. N.; Lysenko, S. E.; Melnikov, A. V.; Shelukhin, D. A.; Subbotin, G. F.; Cherkasov, S. V.

    2018-01-01

    In ohmically heated (OH) plasma with low recycling, an improved particle confinement (IPC) mode is established during gas puffing. However, after gas puffing is switched off, this mode is retained only for about 100 ms, after which an abrupt phase transition into the low particle confinement (LPC) mode occurs in the entire plasma cross section. During such a transition, energy transport due to heat conduction does not change. The phase transition in OH plasma is similar to the effect of density pump-out from the plasma core, which occurs after electron cyclotron heating (ECH) is switched on. Analysis of the measured plasma pressure profiles in the T-10 tokamak shows that, after gas puffing in the OH mode is switched off, the plasma pressure profile in the IPC stage becomes more peaked and, after the peakedness exceeds a certain critical value, the IPC-LPC transition occurs. Similar processes are also observed during ECH. If the pressure profile is insufficiently peaked during ECH, then the density pump-out effect comes into play only after the critical peakedness of the pressure profile is reached. In the plasma core, the density and pressure profiles are close to the corresponding canonical profiles. This allows one to derive an expression for the particle flux within the canonical profile model and formulate a criterion for the IPC-LPC transition. The time evolution of the plasma density profile during phase transitions was simulated for a number of T-10 shots with ECH and high recycling. The particle transport coefficients in the IPC and LPC phases, as well as the dependences of these coefficients on the ECH power, are determined.

  18. Disruption avoidance by means of electron cyclotron waves

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Granucci, G.; Maraschek, M.; Nowak, S.; Lazzaro, E.; Giannone, L.; Gude, A.; Igochine, V.; McDermott, R.; Poli, E.; Reich, M.; Sommer, F.; Stober, J.; Suttrop, W.; Treutterer, W.; Zohm, H.; ASDEX Upgrade, the; FTU Teams

    2011-12-01

    Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, Ip = 0.6 MA, Bt = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power <=1.7 MW (H-mode NBI-heated plasmas, PNBI ~ 7.5 MW, Ip = 1 MA, Bt = 2.1 T, q95 ~ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ'H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.

  19. Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern.

    PubMed

    Luan, Donglei; Wang, Yifen; Tang, Juming; Jain, Deepali

    2017-02-01

    In this study, snapshots of operating frequency profiles of domestic microwave ovens were collected to reveal the extent of microwave frequency variations under different operation conditions. A computer simulation model was developed based on the finite difference time domain method to analyze the influence of the shifting frequency on heating patterns of foods in a microwave oven. The results showed that the operating frequencies of empty and loaded domestic microwave ovens varied widely even among ovens of the same model purchased on the same date. Each microwave oven had its unique characteristic operating frequencies, which were also affected by the location and shape of the load. The simulated heating patterns of a gellan gel model food when heated on a rotary plate agreed well with the experimental results, which supported the reliability of the developed simulation model. Simulation indicated that the heating patterns of a stationary model food load changed with the varying operating frequency. However, the heating pattern of a rotary model food load was not sensitive to microwave frequencies due to the severe edge heating overshadowing the effects of the frequency variations. © 2016 Institute of Food Technologists®.

  20. Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations

    DOE PAGES

    Makwana, Kirit; Li, Hui; Guo, Fan; ...

    2017-05-30

    Here, we simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope betweenmore » $${k}_{\\perp }^{-1.3}$$ and $${k}_{\\perp }^{-1.1}$$, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. By heating the parallel E∥ centerdot J∥ term dominates the perpendicular E⊥ centerdot J⊥ term. Regions of strong E∥ centerdot J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.« less

  1. Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets

    NASA Astrophysics Data System (ADS)

    Cohen, Ofer; Glocer, Alex; Garraffo, Cecilia; Drake, Jeremy J.; Bell, Jared M.

    2018-03-01

    We present a method to quantify the upper limit of the energy transmitted from the intense stellar wind to the upper atmospheres of three of the TRAPPIST-1 planets (e, f, and g). We use a formalism that treats the system as two electromagnetic regions, where the efficiency of the energy transmission between one region (the stellar wind at the planetary orbits) to the other (the planetary ionospheres) depends on the relation between the conductances and impedances of the two regions. Since the energy flux of the stellar wind is very high at these planetary orbits, we find that for the case of high transmission efficiency (when the conductances and impedances are close in magnitude), the energy dissipation in the upper planetary atmospheres is also very large. On average, the Ohmic energy can reach 0.5–1 W m‑2, about 1% of the stellar irradiance and 5–15 times the EUV irradiance. Here, using constant values for the ionospheric conductance, we demonstrate that the stellar wind energy could potentially drive large atmospheric heating in terrestrial planets, as well as in hot Jupiters. More detailed calculations are needed to assess the ionospheric conductance and to determine more accurately the amount of heating the stellar wind can drive in close-orbit planets.

  2. Measurement of tokamak error fields using plasma response and its applicability to ITER

    DOE PAGES

    Strait, Edward J.; Buttery, Richard J.; Casper, T. A.; ...

    2014-04-17

    The nonlinear response of a low-beta tokamak plasma to non-axisymmetric fields offers an alternative to direct measurement of the non-axisymmetric part of the vacuum magnetic fields, often termed “error fields”. Possible approaches are discussed for determination of error fields and the required current in non-axisymmetric correction coils, with an emphasis on two relatively new methods: measurement of the torque balance on a saturated magnetic island, and measurement of the braking of plasma rotation in the absence of an island. The former is well suited to ohmically heated discharges, while the latter is more appropriate for discharges with a modest amountmore » of neutral beam heating to drive rotation. Both can potentially provide continuous measurements during a discharge, subject to the limitation of a minimum averaging time. The applicability of these methods to ITER is discussed, and an estimate is made of their uncertainties in light of the specifications of ITER’s diagnostic systems. Furthermore, the use of plasma response-based techniques in normal ITER operational scenarios may allow identification of the error field contributions by individual central solenoid coils, but identification of the individual contributions by the outer poloidal field coils or other sources is less likely to be feasible.« less

  3. Recent developments in minimal processing: a tool to retain nutritional quality of food.

    PubMed

    Pasha, Imran; Saeed, Farhan; Sultan, M Tauseef; Khan, Moazzam Rafiq; Rohi, Madiha

    2014-01-01

    The modernization during the last century resulted in urbanization coupled with modifications in lifestyles and dietary habits. In the same era, industrial developments made it easier to meet the requirements for processed foods. However, consumers are now interested in minimally processed foods owing to increase in their awareness to have fruits and vegetables with superior quality, and natural integrity with fewer additives. The food products deteriorate as a consequence of physiological aging, biochemical changes, high respiration rat,e and high ethylene production. These factors contribute substantially to discoloration, loss of firmness, development of off-flavors, acidification, and microbial spoilage. Simultaneously, food processors are using emerging approaches to process perishable commodities, along with enhanced nutritional and sensorial quality. The present review article is an effort to utilize the modern approaches to minimize the processing and deterioration. The techniques discussed in this paper include chlorination, ozonation, irradiation, photosensitization, edible coating, natural preservative use, high-pressure processing, microwave heating, ohmic heating, and hurdle technology. The consequences of these techniques on shelf-life stability, microbial safety, preservation of organoleptic and nutritional quality, and residue avoidance are the limelight of the paper. Moreover, the discussion has been made on the feasibility and operability of these techniques in modern-day processing.

  4. Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makwana, Kirit; Li, Hui; Guo, Fan

    Here, we simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope betweenmore » $${k}_{\\perp }^{-1.3}$$ and $${k}_{\\perp }^{-1.1}$$, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. By heating the parallel E∥ centerdot J∥ term dominates the perpendicular E⊥ centerdot J⊥ term. Regions of strong E∥ centerdot J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.« less

  5. Role of Reynolds Stress-Induced Poloidal Flow in Triggering the Transition to Improved Ohmic Confinement on the HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Y. H.; Yu, C. X.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.; Wan, B. N.; Wan, Y. X.

    2000-04-01

    Time and space resolved measurements of electrostatic Reynolds stress, radial electric field Er, and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and Er, which may further trigger the transition.

  6. Role of reynolds stress-induced poloidal flow in triggering the transition to improved ohmic confinement on the HT-6M tokamak

    PubMed

    Xu; Yu; Luo; Mao; Liu; Li; Wan; Wan

    2000-04-24

    Time and space resolved measurements of electrostatic Reynolds stress, radial electric field E(r), and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and E(r), which may further trigger the transition.

  7. A highly manufacturable 0.2 {mu}m AlGaAs/InGaAs PHEMT fabricated using the single-layer integrated-metal FET (SLIMFET) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havasy, C.K.; Quach, T.K.; Bozada, C.A.

    1995-12-31

    This work is the development of a single-layer integrated-metal field effect transistor (SLIMFET) process for a high performance 0.2 {mu}m AlGaAs/InGaAs pseudomorphic high electron mobility transistor (PHEMT). This process is compatible with MMIC fabrication and minimizes process variations, cycle time, and cost. This process uses non-alloyed ohmic contacts, a selective gate-recess etching process, and a single gate/source/drain metal deposition step to form both Schottky and ohmic contacts at the same time.

  8. Low resistance contacts for shallow junction semiconductors

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S. (Inventor); Weizer, Victor G. (Inventor)

    1994-01-01

    A method of enhancing the specific contact resistivity in InP semiconductor devices and improved devices produced thereby are disclosed. Low resistivity values are obtained by using gold ohmic contacts that contain small amounts of gallium or indium and by depositing a thin gold phosphide interlayer between the surface of the InP device and the ohmic contact. When both the thin interlayer and the gold-gallium or gold-indium contact metallizations are used, ultra low specific contact resistivities are achieved. Thermal stability with good contact resistivity is achieved by depositing a layer of refractory metal over the gold phosphide interlayer.

  9. Experimental investigation on the heat transfer characteristics and flow pattern in vertical narrow channels heated from one side

    NASA Astrophysics Data System (ADS)

    Huang, Lihao; Li, Gang; Tao, Leren

    2016-07-01

    Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.

  10. Electrical property heterogeneity at transparent conductive oxide/organic semiconductor interfaces: mapping contact ohmicity using conducting-tip atomic force microscopy.

    PubMed

    MacDonald, Gordon A; Veneman, P Alexander; Placencia, Diogenes; Armstrong, Neal R

    2012-11-27

    We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.

  11. Bias induced transition from an ohmic to a non-ohmic interface in supramolecular tunneling junctions with Ga2O3/EGaIn top electrodes.

    PubMed

    Wimbush, Kim S; Fratila, Raluca M; Wang, Dandan; Qi, Dongchen; Liang, Cao; Yuan, Li; Yakovlev, Nikolai; Loh, Kian Ping; Reinhoudt, David N; Velders, Aldrik H; Nijhuis, Christian A

    2014-10-07

    This study describes that the current rectification ratio, R ≡ |J|(-2.0 V)/|J|(+2.0 V) for supramolecular tunneling junctions with a top-electrode of eutectic gallium indium (EGaIn) that contains a conductive thin (0.7 nm) supporting outer oxide layer (Ga2O3), increases by up to four orders of magnitude under an applied bias of >+1.0 V up to +2.5 V; these junctions did not change their electrical characteristics when biased in the voltage range of ±1.0 V. The increase in R is caused by the presence of water and ions in the supramolecular assemblies which react with the Ga2O3/EGaIn layer and increase the thickness of the Ga2O3 layer. This increase in the oxide thickness from 0.7 nm to ∼2.0 nm changed the nature of the monolayer-top-electrode contact from an ohmic to a non-ohmic contact. These results unambiguously expose the experimental conditions that allow for a safe bias window of ±1.0 V (the range of biases studies of charge transport using this technique are normally conducted) to investigate molecular effects in molecular electronic junctions with Ga2O3/EGaIn top-electrodes where electrochemical reactions are not significant. Our findings also show that the interpretation of data in studies involving applied biases of >1.0 V may be complicated by electrochemical side reactions which can be recognized by changes of the electrical characteristics as a function voltage cycling or in current retention experiments.

  12. Trap-assisted tunneling in aluminum-doped ZnO/indium oxynitride nanodot interlayer Ohmic contacts on p-GaN

    NASA Astrophysics Data System (ADS)

    Ke, Wen-Cheng; Lee, Fang-Wei; Yang, Cheng-Yi; Chen, Wei-Kuo; Huang, Hao-Ping

    2015-10-01

    This study developed an Ohmic contact formation method for a ZnO:Al (AZO) transparent conductive layer on p-GaN films involving the introduction of an indium oxynitride (InON) nanodot interlayer. An antisurfactant pretreatment was used to grow InON nanodots on p-GaN films in a RF magnetron sputtering system. A low specific contact resistance of 1.12 × 10-4 Ω cm2 was achieved for a sample annealed at 500 °C for 30 s in nitrogen ambient and embedded with an InON nanodot interlayer with a nanodot density of 6.5 × 108 cm-2. By contrast, a sample annealed in oxygen ambient exhibited non-Ohmic behavior. X-ray photoemission spectroscopy results showed that the oxygen vacancy (Vo) in the InON nanodots played a crucial role in carrier transport. The fitting I-V characteristic curves indicated that the hopping mechanism with an activation energy of 31.6 meV and trap site spacing of 1.1 nm dominated the carrier transport in the AZO/InON nanodot/p-GaN sample. Because of the high density of donor-like oxygen vacancy defects at the InON nanodot/p-GaN interface, positive charges from the underlying p-GaN films were absorbed at the interface. This led to positive charge accumulation, creating a narrow depletion layer; therefore, carriers from the AZO layer passed through InON nanodots by hopping transport, and subsequently tunneling through the interface to enter the p-GaN films. Thus, AZO Ohmic contact can be formed on p-GaN films by embedding an InON nanodot interlayer to facilitate trap-assisted tunneling.

  13. Self-Organized Patterns in Gas-Discharge: Particle-Like Behaviour and Dissipative Solitons

    NASA Astrophysics Data System (ADS)

    Purwins, H.-G.

    2008-03-01

    The understanding of self-organise patterns in spatially extended nonlinear dissipative systems (SOPs) is one of the most challenging subjects in modern natural sciences. In the last 20 years it turned out that research in the field of low temperature gas-discharge can help to obtain insight into important aspect of SOPs. At the same time, due to the practical relevance of plasma systems one might expect interesting applications. In the present paper the focus is on self-organised filamentary patterns in planar dc and ac systems with high ohmic and dielectric barrier, respectively. - In the discharge plane of these systems filaments show up as spots which are also referred to as dissipative solitons (DSs). In many respect experimentally detected DSs exhibit particle-like behaviour. Among other things, isolated stationary or travelling DSs, stationary, travelling or rotating "molecules" and various kinds of many-body systems have been observed. Also scattering, generation and annihilation of DSs are frequent phenomena. - At least some of these patterns can be described quantitatively in terms of a drift diffusion model. It is also demonstrated that a simple reaction diffusion model allows for an intuitive understanding of many of the observed phenomena. At the same time this model is the basis for a theoretical foundation of the particle picture and the experimentally observed universal behaviour of SOPs. - Finally some hypothetical applications are discussed.

  14. Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern

    NASA Technical Reports Server (NTRS)

    Teng, Haiyan; Branstator, Grant; Wang, Hailan; Meehl, Gerald A.; Washington, Warren M.

    2013-01-01

    Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range.

  15. Stress-induced thermotolerance of ventilatory motor pattern generation in the locust, Locusta migratoria.

    PubMed

    Newman, Amy E M; Foerster, Melody; Shoemaker, Kelly L; Robertson, R Meldrum

    2003-11-01

    Ventilation is a crucial motor activity that provides organisms with an adequate circulation of respiratory gases. For animals that exist in harsh environments, an important goal is to protect ventilation under extreme conditions. Heat shock, anoxia, and cold shock are environmental stresses that have previously been shown to trigger protective responses. We used the locust to examine stress-induced thermotolerance by monitoring the ability of the central nervous system to generate ventilatory motor patterns during a subsequent heat exposure. Preparations from pre-stressed animals had an increased incidence of motor pattern recovery following heat-induced failure, however, prior stress did not alter the characteristics of the ventilatory motor pattern. During constant heat exposure at sub-lethal temperatures, we observed a protective effect of heat shock pre-treatment. Serotonin application had similar effects on motor patterns when compared to prior heat shock. These studies are consistent with previous studies that indicate prior exposure to extreme temperatures and hypoxia can protect neural operation against high temperature stress. They further suggest that the protective mechanism is a time-dependent process best revealed during prolonged exposure to extreme temperatures and is mediated by a neuromodulator such as serotonin.

  16. Communication: spin-boson model with diagonal and off-diagonal coupling to two independent baths: ground-state phase transition in the deep sub-Ohmic regime.

    PubMed

    Zhao, Yang; Yao, Yao; Chernyak, Vladimir; Zhao, Yang

    2014-04-28

    We investigate a spin-boson model with two boson baths that are coupled to two perpendicular components of the spin by employing the density matrix renormalization group method with an optimized boson basis. It is revealed that in the deep sub-Ohmic regime there exists a novel second-order phase transition between two types of doubly degenerate states, which is reduced to one of the usual types for nonzero tunneling. In addition, it is found that expectation values of the spin components display jumps at the phase boundary in the absence of bias and tunneling.

  17. Low nonalloyed Ohmic contact resistance to nitride high electron mobility transistors using N-face growth

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Pei, Yi; Palacios, Tomás; Shen, Likun; Chakraborty, Arpan; McCarthy, Lee S.; Keller, Stacia; DenBaars, Steven P.; Speck, James S.; Mishra, Umesh K.

    2007-12-01

    Nonalloyed Ohmic contacts on Ga-face n+-GaN/AlGaN/GaN high electron mobility transistor (HEMT) structures typically have significant contact resistance to the two-dimensional electron gas (2DEG) due to the AlGaN barrier. By growing the HEMT structure inverted on the N-face, electrons from the contacts were able to access the 2DEG without going through an AlGaN layer. A low contact resistance of 0.16Ωmm and specific contact resistivity of 5.5×10-7Ωcm2 were achieved without contact annealing on the inverted HEMT structure.

  18. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    NASA Astrophysics Data System (ADS)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  19. Transparent ZnO-based ohmic contact to p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminska, E.; Piotrowska, A.; Golaszewska, K.

    2002-04-09

    Highly conductive ZnO films were fabricated on p-GaN in a two-step process. First, zinc was thermally evaporated on p-GaN. Next, zinc film was oxidized in oxygen flow. To increase the conductivity of ZnO, nitrogen was introduced into zinc during its deposition. The above procedure proved successful in fabricating ZnO of the resistivity of {approx}1 x 10{sup -3} {Omega}cm and resulted in ohmic contacts of resistivity {approx}1 x 10{sup -2} {Omega}cm{sup 2} to low-doped p-GaN, and light transmittance of {approx}75% in the wavelength range of 400-700 nm.

  20. Better Ohmic Contacts For InP Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Four design modifications enable fabrication of improved ohmic contacts on InP-based semiconductor devices. First modification consists of insertion of layer of gold phosphide between n-doped InP and metal or other overlayer of contact material. Second, includes first modification plus use of particular metal overlayer to achieve very low contact resistivities. Third, also involves deposition of Au(2)P(3) interlayer; in addition, refractory metal (W or Ta) deposited to form contact overlayer. In fourth, contact layer of Auln alloy deposited directly on InP. Improved contacts exhibit low electrical resistances and fabricated without exposing devices to destructive predeposition or postdeposition treatments.

  1. The effect of acute exposure to hyperbaric oxygen on respiratory system mechanics in the rat.

    PubMed

    Rubini, Alessandro; Porzionato, Andrea; Zara, Susi; Cataldi, Amelia; Garetto, Giacomo; Bosco, Gerardo

    2013-10-01

    This study was designed to investigate the possible effects of acute hyperbaric hyperoxia on respiratory mechanics of anaesthetised, positive-pressure ventilated rats. We measured respiratory mechanics by the end-inflation occlusion method in nine rats previously acutely exposed to hyperbaric hyperoxia in a standard fashion. The method allows the measurements of respiratory system elastance and of both the "ohmic" and of the viscoelastic components of airway resistance, which respectively depend on the newtonian pressure dissipation due to the ohmic airway resistance to air flow, and on the viscoelastic pressure dissipation caused by respiratory system tissues stress-relaxation. The activities of inducible and endothelial NO-synthase in the lung's tissues (iNOS and eNOS respectively) also were investigated. Data were compared with those obtained in control animals. We found that the exposure to hyperbaric hyperoxia increased respiratory system elastance and both the "ohmic" and viscoelastic components of inspiratory resistances. These changes were accompanied by increased iNOS but not eNOS activities. Hyperbaric hyperoxia was shown to acutely induce detrimental effects on respiratory mechanics. A possible causative role was suggested for increased nitrogen reactive species production because of increased iNOS activity.

  2. Observations of Rotation Reversal and Fluctuation Hysteresis in Alcator C-Mod L-Mode Plasmas

    NASA Astrophysics Data System (ADS)

    Cao, N. M.; Rice, J. E.; White, A. E.; Baek, S. G.; Creely, A. J.; Ennever, P. C.; Hubbard, A. E.; Hughes, J. W.; Irby, J.; Rodriguez-Fernandez, P.; Chilenski, M. A.; Diamond, P. H.; Reinke, M. L.; Alcator C-Mod Team

    2017-10-01

    Intrinsic core toroidal rotation in Alcator C-Mod L-mode plasmas has been observed to spontaneously reverse direction when the minimum value of the normalized collisionality ν*, crosses around 0.4. In Ohmic plasmas, the rotation is co-current in the low density linear Ohmic confinement (LOC) regime and counter-current in the higher density saturated Ohmic confinement (SOC) regime. The reversal manifests a hysteresis loop in ν*, where the critical collisionalities for the forward and reverse transitions differ by 10-15%. Temperature and density profiles of the two rotation states are observed to be indistinguishable to within experimental error estimated with Gaussian process regression. However, qualitative differences between the two rotation states are observed in fluctuation spectra, including the broadening of reflectometry spectra and, under certain conditions, the appearance of high-k features in phase contrast imaging (PCI) spectra (kθρs up to 1). These results suggest that the turbulent state can decouple from local profiles, and that turbulent self-regulation may play a role in the LOC/SOC transition. This work is supported by the US DOE under Grant DE-FC02-99ER54512 (C-Mod).

  3. Traveling-wave induction launchers

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1989-01-01

    An analysis of traveling-wave induction launchers shows that induction is a feasible method of producing armature current and that efficient accelerators can be built without sliding contacts or arcs. In a traveling-wave induction launcher the armature current is induced by a slip speed between the armature and a traveling magnetic field. At 9 m/s slip speed a 9 kg projectile with an aluminum armature weighing 25 percent of the total mass can be accelerated to 3000 m/s in a 5 m-long barrel with a total ohmic loss in the barrel coils and armature of 4 percent of the launch kinetic energy and with an average armature temperature rise of 220 deg C, but a peak excitation frequency of 8600 Hz is required. With a 2 kg launch mass the ohmic loss is 7 percent. A launcher system optimized for rotating generators would have a peak frequency of 4850 Hz; with an aluminum armature weighing 33 percent of the launch mass and a slip speed of 30 m/s the total ohmic loss in the generators, cables, and accelerator would be 43 percent of the launch kinetic energy, and the average armature temperature rise would be 510 deg C.

  4. A new method of making ohmic contacts to p-GaN

    NASA Astrophysics Data System (ADS)

    Hernández-Gutierrez, C. A.; Kudriavtsev, Yu.; Mota, Esteban; Hernández, A. G.; Escobosa-Echavarría, A.; Sánchez-Resendiz, V.; Casallas-Moreno, Y. L.; López-López, M.

    2016-12-01

    The structural, chemical, and electrical characteristics of In+ ion-implanted Au/Ni, Au/Nb and Au/W ohmic contacts to p-GaN were investigated. After the preparation of Ni, Nb and W electrode on the surface of p-GaN, the metal/p-GaN contact interface was implanted by 30 keV In+ ions with an implantation dose of 5 × 1015 ions/cm2 at room temperature to form a thin layer of InxGa1-xN located at the metal-semiconductor interface, achieved to reduce the specific contact resistance due to the improving quantum tunneling transport trough to the structure. The characterization was carried out by high-resolution X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and secondary ion mass spectrometry to investigate the formation of ternary alloy, re-crystallization by rapid thermal annealing process after In+ implantation, and the redistribution of elements. The specific contact resistance was extracted by current-voltage (I-V) curves using transmission line method; the lowest specific contact resistance of 2.5 × 10-4 Ωcm2 was achieved for Au/Ni/p-InxGa1-xN/p-GaN ohmic contacts.

  5. Glass-Based Transparent Conductive Electrode: Its Application to Visible-to-Ultraviolet Light-Emitting Diodes.

    PubMed

    Lee, Tae Ho; Kim, Kyeong Heon; Lee, Byeong Ryong; Park, Ju Hyun; Schubert, E Fred; Kim, Tae Geun

    2016-12-28

    Nitride-based ultraviolet light-emitting diodes (UV LEDs) are promising replacements for conventional UV lamps. However, the external quantum efficiency of UV LEDs is much lower than for visible LEDs due to light absorption in the p-GaN contact and electrode layers, along with p-AlGaN growth and doping issues. To minimize such absorption, we should obtain direct ohmic contact to p-AlGaN using UV-transparent ohmic electrodes and not use p-GaN as a contact layer. Here, we propose a glass-based transparent conductive electrode (TCE) produced using electrical breakdown (EBD) of an AlN thin film, and we apply the thin film to four (Al)GaN-based visible and UV LEDs with thin buffer layers for current spreading and damage protection. Compared to LEDs with optimal ITO contacts, our LEDs with AlN TCEs exhibit a lower forward voltage, higher light output power, and brighter light emission for all samples. The ohmic transport mechanism for current injection and spreading from the metal electrode to p-(Al)GaN layer via AlN TCE is also investigated by analyzing the p-(Al)GaN surface before and after EBD.

  6. Parasitic Currents Caused by Different Ionic and Electronic Conductivities in Fuel Cell Anodes.

    PubMed

    Schalenbach, Maximilian; Zillgitt, Marcel; Maier, Wiebke; Stolten, Detlef

    2015-07-29

    The electrodes in fuel cells simultaneously realize electric and ionic conductivity. In the case of acidic polymer electrolytes, the electrodes are typically made of composites of carbon-supported catalyst and Nafion polymer electrolyte binder. In this study, the interaction of the proton conduction, the electron conduction, and the electrochemical hydrogen conversion in such composite electrode materials was examined. Exposed to a hydrogen atmosphere, these composites displayed up to 10-fold smaller resistivities for the proton conduction than that of Nafion membranes. This effect was ascribed to the simultaneously occurring electrochemical hydrogen oxidation and evolution inside the composite samples, which are driven by different proton and electron resistivities. The parasitic electrochemical currents resulting were postulated to occur in the anode of fuel cells with polymer, solid oxide, or liquid alkaline electrolytes, when the ohmic drop of the ion conduction in the anode is higher with the anodic kinetic overvoltage (as illustrated in the graphical abstract). In this case, the parasitic electrochemical currents increase the anodic kinetic overpotential and the ohmic drop in the anode. Thinner fuel cell anodes with smaller ohmic drops for the ion conduction may reduce the parasitic electrochemical currents.

  7. Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.

    PubMed

    Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish

    2013-10-15

    A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  9. Structured back gates for high-mobility two-dimensional electron systems using oxygen ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berl, M., E-mail: mberl@phys.ethz.ch; Tiemann, L.; Dietsche, W.

    2016-03-28

    We present a reliable method to obtain patterned back gates compatible with high mobility molecular beam epitaxy via local oxygen ion implantation that suppresses the conductivity of an 80 nm thick silicon doped GaAs epilayer. Our technique was optimized to circumvent several constraints of other gating and implantation methods. The ion-implanted surface remains atomically flat which allows unperturbed epitaxial overgrowth. We demonstrate the practical application of this gating technique by using magneto-transport spectroscopy on a two-dimensional electron system (2DES) with a mobility exceeding 20 × 10{sup 6} cm{sup 2}/V s. The back gate was spatially separated from the Ohmic contacts of the 2DES,more » thus minimizing the probability for electrical shorts or leakage and permitting simple contacting schemes.« less

  10. Design and Fabrication of the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid

    2006-10-01

    The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.

  11. Landmarks in the historical development of twenty first century food processing technologies.

    PubMed

    Misra, N N; Koubaa, Mohamed; Roohinejad, Shahin; Juliano, Pablo; Alpas, Hami; Inácio, Rita S; Saraiva, Jorge A; Barba, Francisco J

    2017-07-01

    Over a course of centuries, various food processing technologies have been explored and implemented to provide safe, fresher-tasting and nutritive food products. Among these technologies, application of emerging food processes (e.g., cold plasma, pressurized fluids, pulsed electric fields, ohmic heating, radiofrequency electric fields, ultrasonics and megasonics, high hydrostatic pressure, high pressure homogenization, hyperbaric storage, and negative pressure cavitation extraction) have attracted much attention in the past decades. This is because, compared to their conventional counterparts, novel food processes allow a significant reduction in the overall processing times with savings in energy consumption, while ensuring food safety, and ample benefits for the industry. Noteworthily, industry and university teams have made extensive efforts for the development of novel technologies, with sound scientific knowledge of their effects on different food materials. The main objective of this review is to provide a historical account of the extensive efforts and inventions in the field of emerging food processing technologies since their inception to present day. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Tianhuan; Li, D.; Virostek, S.

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which willmore » produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.« less

  13. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, T.; Stratakis, D.; Li, D.

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which willmore » produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.« less

  14. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liangping, Wang; Mo, Li; Juanjuan, Han

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. Themore » kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns.« less

  15. Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs

    NASA Astrophysics Data System (ADS)

    Puchert, Robin P.; Steiner, Florian; Plechinger, Gerd; Hofmann, Felix J.; Caspers, Ines; Kirschner, Johanna; Nagler, Philipp; Chernikov, Alexey; Schüller, Christian; Korn, Tobias; Vogelsang, Jan; Bange, Sebastian; Lupton, John M.

    2017-07-01

    Few inventions have shaped the world like the incandescent bulb. Edison used thermal radiation from ohmically heated conductors, but some noble metals also exhibit 'cold' electroluminescence in percolation films, tunnel diodes, electromigrated nanoparticle aggregates, optical antennas or scanning tunnelling microscopy. The origin of this radiation, which is spectrally broad and depends on applied bias, is controversial given the low radiative yields of electronic transitions. Nanoparticle electroluminescence is particularly intriguing because it involves localized surface-plasmon resonances with large dipole moments. Such plasmons enable very efficient non-radiative fluorescence resonance energy transfer (FRET) coupling to proximal resonant dipole transitions. Here, we demonstrate nanoscopic FRET-light-emitting diodes which exploit the opposite process, energy transfer from silver nanoparticles to exfoliated monolayers of transition-metal dichalcogenides. In diffraction-limited hotspots showing pronounced photon bunching, broadband silver electroluminescence is focused into the narrow excitonic resonance of the atomically thin overlayer. Such devices may offer alternatives to conventional nano-light-emitting diodes in on-chip optical interconnects.

  16. Functionalization of super-aligned carbon nanotube film using hydrogen peroxide solution and its application in copper electrodeposition.

    PubMed

    Xiong, Lunqiao; Shuai, Jing; Hou, Zecheng; Zhu, Lin; Li, Wenzhen

    2017-07-15

    In order to make super-aligned carbon nanotubes (SACNT) homogeneously spread in electrolytes, a swift and effective method was devised for surface functionalization of SACNT film by ohmic heating using hydrogen peroxide solution. Controllable generation of defects and notable graft of oxygen functional groups on the sidewall of SACNTs were induced as proven by X-ray photoelectron spectroscopy and Raman spectroscopy. Differently from the harsh wet chemical oxidation, the super-aligned morphology and structural integrity of carbon nanotubes in the SACNT film were found to be well preserved by electron microscopy analysis. The functionalized treatment can remove extraneous material contaminating SACNT film and improve its conductivity. The grafting of polar ionizable groups has been proved to effectively eliminate the agglomeration of SACNTs. When the oxidized SACNT film was used as host material for electrodeposition of copper, the composite film of well-bonded SACNTs and Cu was successfully prepared. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Stoichiometric and Oxygen-Deficient VO2 as Versatile Hole Injection Electrode for Organic Semiconductors.

    PubMed

    Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen

    2018-03-28

    Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.

  18. Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs.

    PubMed

    Puchert, Robin P; Steiner, Florian; Plechinger, Gerd; Hofmann, Felix J; Caspers, Ines; Kirschner, Johanna; Nagler, Philipp; Chernikov, Alexey; Schüller, Christian; Korn, Tobias; Vogelsang, Jan; Bange, Sebastian; Lupton, John M

    2017-07-01

    Few inventions have shaped the world like the incandescent bulb. Edison used thermal radiation from ohmically heated conductors, but some noble metals also exhibit 'cold' electroluminescence in percolation films, tunnel diodes, electromigrated nanoparticle aggregates, optical antennas or scanning tunnelling microscopy. The origin of this radiation, which is spectrally broad and depends on applied bias, is controversial given the low radiative yields of electronic transitions. Nanoparticle electroluminescence is particularly intriguing because it involves localized surface-plasmon resonances with large dipole moments. Such plasmons enable very efficient non-radiative fluorescence resonance energy transfer (FRET) coupling to proximal resonant dipole transitions. Here, we demonstrate nanoscopic FRET-light-emitting diodes which exploit the opposite process, energy transfer from silver nanoparticles to exfoliated monolayers of transition-metal dichalcogenides. In diffraction-limited hotspots showing pronounced photon bunching, broadband silver electroluminescence is focused into the narrow excitonic resonance of the atomically thin overlayer. Such devices may offer alternatives to conventional nano-light-emitting diodes in on-chip optical interconnects.

  19. CHI during an ohmic discharge in HIT-II

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis; Nelson, Brian A.; Redd, Aaron J.; Hamp, William T.

    2004-11-01

    Coaxial Helicity Injection (CHI) has been used on the National Spherical Torus Experiment (NSTX), the Helicity Injected Torus (HIT) and HIT-II to initiate plasma and to drive up to 400 kA of toroidal current. The primary goal of the CHI systems is to provide a start-up plasma with substantial toroidal current that can be heated and sustained with other methods. We have investigated the use of CHI systems to add current to an established, inductively driven plasma. This may be an attractive method to add edge current that may modify the stability characteristics of the discharge or modify the particle and energy transport in a spherical torus. For example, divertor biasing experiments have been successful in modifying particle and energy transport in the scrape-off layer of tokamaks. Use of IGBT power supplies to modulate the injector current makes analysis of current penetration feasible by comparisons of before and after CHI using EFIT analysis of the data.

  20. A study on improvement of discharge characteristic by using a transformer in a capacitively coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Cheol; Kim, Hyun-Jun; Lee, Hyo-Chang

    In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10%more » by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.« less

  1. Soft x-ray tomography for real-time applications: present status at Tore Supra and possible future developments.

    PubMed

    Mazon, D; Vezinet, D; Pacella, D; Moreau, D; Gabelieri, L; Romano, A; Malard, P; Mlynar, J; Masset, R; Lotte, P

    2012-06-01

    This paper is focused on the soft x-ray (SXR) tomography system setup at Tore Supra (DTOMOX) and the recent developments made to automatically get precise information about plasma features from inverted data. The first part describes the main aspects of the tomographic inversion optimization process. Several observations are made using this new tool and a set of shape factors is defined to help characterizing the emissivity field in a real-time perspective. The second part presents a detailed off-line analysis comparing the positions of the magnetic axis obtained from a magnetic equilibrium solver, and the maximum of the reconstructed emissivity field for ohmic and heated pulses. A systematic discrepancy of about 5 cm is found in both cases and it is shown that this discrepancy increases during sawtooth crashes. Finally, evidence of radially localized tungsten accumulation with an in-out asymmetry during a lower hybrid current drive pulse is provided to illustrate the DTOMOX capabilities for a precise observation of local phenomena.

  2. Thermal analysis and management of lithium-titanate batteries

    NASA Astrophysics Data System (ADS)

    Giuliano, Michael R.; Advani, Suresh G.; Prasad, Ajay K.

    2011-08-01

    Battery electric vehicles and hybrid electric vehicles demand batteries that can store large amounts of energy in addition to accommodating large charge and discharge currents without compromising battery life. Lithium-titanate batteries have recently become an attractive option for this application. High current thresholds allow these cells to be charged quickly as well as supply the power needed to drive such vehicles. These large currents generate substantial amounts of waste heat due to loss mechanisms arising from the cell's internal chemistry and ohmic resistance. During normal vehicle operation, an active cooling system must be implemented to maintain a safe cell temperature and improve battery performance and life. This paper outlines a method to conduct thermal analysis of lithium-titanate cells under laboratory conditions. Thermochromic liquid crystals were implemented to instantaneously measure the entire surface temperature field of the cell. The resulting temperature measurements were used to evaluate the effectiveness of an active cooling system developed and tested in our laboratory for the thermal management of lithium-titanate cells.

  3. The magnetic field at the core-mantle boundary

    NASA Technical Reports Server (NTRS)

    Bloxham, J.; Gubbins, D.

    1985-01-01

    Models of the geomagnetic field are, in general, produced from a least-squares fit of the coefficients in a truncated spherical harmonic expansion to the available data. Downward continuation of such models to the core-mantle boundary (CMB) is an unstable process: the results are found to be critically dependent on the choice of truncation level. Modern techniques allow this fundamental difficulty to be circumvented. The method of stochastic inversion is applied to modeling the geomagnetic field. Prior information is introduced by requiring that the spectrum of spherical harmonic coefficients to fall-off in a particular manner which is consistent with the Ohmic heating in the core having a finite lower bound. This results in models with finite errors in the radial field at the CMB. Curves of zero radial field can then be determined and integrals of the radial field over patches on the CMB bounded by these null-flux curves calculated. With the assumption of negligible magnetic diffusion in the core; frozen-flux hypothesis, these integrals are time-invariant.

  4. Simulation of current-filament dynamics and relaxation in the Pegasus Spherical Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryan, J. B.; Sovinec, C. R.; Bird, T. M.

    Nonlinear numerical computation is used to investigate the relaxation of non-axisymmetric current-channels from washer-gun plasma sources into 'tokamak-like' plasmas in the Pegasus toroidal experiment [Eidietis et al. J. Fusion Energy 26, 43 (2007)]. Resistive MHD simulations with the NIMROD code [Sovinec et al. Phys. Plasmas 10(5), 1727-1732 (2003)] utilize ohmic heating, temperature-dependent resistivity, and anisotropic, temperature-dependent thermal conduction corrected for regions of low magnetization to reproduce critical transport effects. Adjacent passes of the simulated current-channel attract and generate strong reversed current sheets that suggest magnetic reconnection. With sufficient injected current, adjacent passes merge periodically, releasing axisymmetric current rings from themore » driven channel. The current rings have not been previously observed in helicity injection for spherical tokamaks, and as such, provide a new phenomenological understanding for filament relaxation in Pegasus. After large-scale poloidal-field reversal, a hollow current profile and significant poloidal flux amplification accumulate over many reconnection cycles.« less

  5. Change of Paradigm for the Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Escande, D. F.

    2010-11-01

    The reversed field pinch (RFP) is a magnetic configuration germane to the tokamak, but it produces most of its magnetic field by the currents flowing inside the plasma; external coils provide only a small edge toroidal field whose sign is reversed with respect to the central one, whence the name of the configuration. Because of the presence of magnetic turbulence and chaos, the RFP had been considered for a long period as a terrible confinement configuration. However, recently a change of paradigm occurred for this device. Indeed, when the toroidal current is increased in the RFX-mod RFP in Padua (Italy), a self-organized helical state with an internal transport barrier (ITB) develops, and a broad zone of the plasma becomes hot (above 1 keV for a magnetic field above 0.8 T). The present theoretical picture of the RFP mainly comes from three-dimensional nonlinear visco-resistive MHD simulations whose dynamics has strong similarities with the experimental one, and triggered the experimental search for RFP states with improved confinement. The RFP ohmic state involves a helical electrostatic potential generating, as an electric drift, the so-called dynamo velocity field. The magnetic topology can bifurcate from a magnetic island to kink-like magnetic surfaces with higher resilience to magnetic chaos. This theoretical scenario was found to be relevant when ITB's enclosing a broad hot domain were discovered. The ITBs occur in the vicinity of the maximum of the safety factor. The new paradigm for the RFP supports its reappraisal as a low-external field, non-disruptive, ohmically heated approach to magnetic fusion, exploiting both self-organization and technological simplicity. Furthermore the RFP has the same Greenwald density limit as the tokamak, and it is an excellent test bed for the efficient control of multiple resistive wall modes. Its helical magnetic structure makes it germane to the stellarator too. As a result the RFP is also useful to bring support to the present two main lines of magnetic confinement.

  6. A multi-model ensemble view of winter heat flux dynamics and the dipole mode in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Liguori, Giovanni; Di Lorenzo, Emanuele; Cabos, William

    2017-02-01

    Changes in surface heat fluxes affect several climate processes controlling the Mediterranean climate. These include the winter formation of deep waters, which is the primary driver of the Mediterranean Sea overturning circulation. Previous studies that characterize the spatial and temporal variability of surface heat flux anomalies over the basin reveal the existence of two statistically dominant patterns of variability: a monopole of uniform sign and an east-west dipole of opposite signs. In this work, we use the 12 regional climate model ensemble from the EU-FP6 ENSEMBLES project to diagnose the large-scale atmospheric processes that control the variability of heat fluxes over the Mediterranean Sea from interannual to decadal timescales (here defined as timescales > 6 year). Our findings suggest that while the monopole structure captures variability in the winter-to-winter domain-average net heat flux, the dipole pattern tracks changes in the Mediterranean climate that are connected to the East Atlantic/Western Russia (EA/WR) atmospheric teleconnection pattern. Furthermore, while the monopole exhibits significant differences in the spatial structure across the multi-model ensemble, the dipole pattern is very robust and more clearly identifiable in the anomaly maps of individual years. A heat budget analysis of the dipole pattern reveals that changes in winds associated with the EA/WR pattern exert dominant control through both a direct effect on the latent heat flux (i.e., wind speed) and an indirect effect through specific humidity (e.g., wind advection). A simple reconstruction of the heat flux variability over the deep-water formation regions of the Gulf of Lion and the Aegean Sea reveals that the combination of the monopole and dipole time series explains over 90 % of the heat flux variance in these regions. Given the important role that surface heat flux anomalies play in deep-water formation and the regional climate, improving our knowledge on the dynamics controlling the leading modes of heat flux variability may enhance our predictability of the climate of the Mediterranean area.

  7. Glass strengthening and patterning methods

    DOEpatents

    Harper, David C; Wereszczak, Andrew A; Duty, Chad E

    2015-01-27

    High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.

  8. Prediction of cold and heat patterns using anthropometric measures based on machine learning.

    PubMed

    Lee, Bum Ju; Lee, Jae Chul; Nam, Jiho; Kim, Jong Yeol

    2018-01-01

    To examine the association of body shape with cold and heat patterns, to determine which anthropometric measure is the best indicator for discriminating between the two patterns, and to investigate whether using a combination of measures can improve the predictive power to diagnose these patterns. Based on a total of 4,859 subjects (3,000 women and 1,859 men), statistical analyses using binary logistic regression were performed to assess the significance of the difference and the predictive power of each anthropometric measure, and binary logistic regression and Naive Bayes with the variable selection technique were used to assess the improvement in the predictive power of the patterns using the combined measures. In women, the strongest indicators for determining the cold and heat patterns among anthropometric measures were body mass index (BMI) and rib circumference; in men, the best indicator was BMI. In experiments using a combination of measures, the values of the area under the receiver operating characteristic curve in women were 0.776 by Naive Bayes and 0.772 by logistic regression, and the values in men were 0.788 by Naive Bayes and 0.779 by logistic regression. Individuals with a higher BMI have a tendency toward a heat pattern in both women and men. The use of a combination of anthropometric measures can slightly improve the diagnostic accuracy. Our findings can provide fundamental information for the diagnosis of cold and heat patterns based on body shape for personalized medicine.

  9. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  10. Performance of a vanadium redox flow battery with tubular cell design

    NASA Astrophysics Data System (ADS)

    Ressel, Simon; Laube, Armin; Fischer, Simon; Chica, Antonio; Flower, Thomas; Struckmann, Thorsten

    2017-07-01

    We present a vanadium redox flow battery with a tubular cell design which shall lead to a reduction of cell manufacturing costs and the realization of cell stacks with reduced shunt current losses. Charge/discharge cycling and polarization curve measurements are performed to characterize the single test cell performance. A maximum current density of 70 mAcm-2 and power density of 142 Wl-1 (per cell volume) is achieved and Ohmic overpotential is identified as the dominant portion of the total cell overpotential. Cycling displays Coulomb efficiencies of ≈95% and energy efficiencies of ≈55%. During 113 h of operation a stable Ohmic cell resistance is observed.

  11. The analysis of energy efficiency in water electrolysis under high temperature and high pressure

    NASA Astrophysics Data System (ADS)

    Hourng, L. W.; Tsai, T. T.; Lin, M. Y.

    2017-11-01

    This paper aims to analyze the energy efficiency of water electrolysis under high pressure and high temperature conditions. The effects of temperature and pressure on four different kinds of reaction mechanisms, namely, reversible voltage, activation polarization, ohmic polarization, and concentration polarization, are investigated in details. Results show that the ohmic and concentration over-potentials are increased as temperature is increased, however, the reversible and activation over-potentials are decreased as temperature is increased. Therefore, the net efficiency is enhanced as temperature is increased. The efficiency of water electrolysis at 350°C/100 bars is increased about 17%, compared with that at 80°C/1bar.

  12. Thermally assisted adiabatic quantum computation.

    PubMed

    Amin, M H S; Love, Peter J; Truncik, C J S

    2008-02-15

    We study the effect of a thermal environment on adiabatic quantum computation using the Bloch-Redfield formalism. We show that in certain cases the environment can enhance the performance in two different ways: (i) by introducing a time scale for thermal mixing near the anticrossing that is smaller than the adiabatic time scale, and (ii) by relaxation after the anticrossing. The former can enhance the scaling of computation when the environment is super-Ohmic, while the latter can only provide a prefactor enhancement. We apply our method to the case of adiabatic Grover search and show that performance better than classical is possible with a super-Ohmic environment, with no a priori knowledge of the energy spectrum.

  13. The influence of current neutralization and multiple Coulomb scattering on the spatial dynamics of resistive sausage instability of a relativistic electron beam propagating in ohmic plasma

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. K.; Manuilov, A. S.; Petrov, V. S.; Klyushnikov, G. N.; Chernov, S. V.

    2017-06-01

    The influence of the current neutralization process, the phase mixing of the trajectories of electrons and multiple Coulomb scattering of electrons beam on the atoms of the background medium on the spatial increment of the growth of sausage instability of a relativistic electron beam propagating in ohmic plasma channel has been considered. It has been shown that the amplification of the current neutralization leads to a significant increase in this instability, and phase mixing and the process of multiple scattering of electrons beam on the atoms of the background medium are the stabilizing factor.

  14. Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps

    NASA Astrophysics Data System (ADS)

    Polzin, A.-E.; Kabelac, S.; de Vries, B.

    2016-09-01

    Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.

  15. Mapping rural community and dairy cow heat stress in Southern Ontario: A common geographic pattern from 2010 to 2012.

    PubMed

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F

    2016-07-03

    Climate change has increased the occurrence of heat waves, causing heat stress among humans and livestock, with potentially fatal consequences. Heat stress maps provide information about related health risks and insight for control strategies. Weather data were collected throughout Southern Ontario, and the heat stress index (HSI) was estimated for 2010-2012. Geostatistical kriging was applied to map heat stress, heat waves, and control periods. Average HSI for each period ranged from 55 to 78 during control periods, and from 65 to 84 during heat waves, surpassing levels where morbidity is known to increase substantially. Heat stress followed a temporally consistent geographic pattern. HSI maps indicate high-risk areas for heat-related illness and indicate areas where agriculture and human health may be at increased risk in future.

  16. Electrical overstress in AlGaN/GaN HEMTs: study of degradation processes

    NASA Astrophysics Data System (ADS)

    Kuzmík, J.; Pogany, D.; Gornik, E.; Javorka, P.; Kordoš, P.

    2004-02-01

    We study degradation mechanisms in 50 μm gate width/0.45 μm length AlGaN/GaN HEMTs after electrical overstresses. One hundred nanosecond long rectangular current pulses are applied on the drain contact keeping either both of the source and gate grounded or the source grounded and gate floating. Source-drain pulsed I- V characteristics show similar shape for both connections. After the HEMT undergoes the source-drain breakdown, a negative differential resistance region transits into a low voltage/high current region. Changes in the Schottky contact dc I- V characteristics and in the source and drain ohmic contacts are investigated as a function of the current stress level and are related to the HEMT dc performance. Catastrophic HEMT degradation was observed after Istress=1.65 A in case of the 'gate floating' connection due to ohmic contacts burnout. In case of the 'gate grounded' connection, Istress=0.45 A was sufficient for the gate failure showing a high gate susceptibility to overstress. Backside transient interferometric mapping technique experiment reveals a current filament formation under both HEMT stress connections. Infrared camera observations lead to conclusion that the filament formation together with a consequent high-density electron flow is responsible for a dark spot formation and gradual ohmic contact degradation.

  17. Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling

    NASA Astrophysics Data System (ADS)

    Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.

    2012-10-01

    Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.

  18. Correlation between the electrical properties and the interfacial microstructures of TiAl-based ohmic contacts to p-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Tsukimoto, S.; Nitta, K.; Sakai, T.; Moriyama, M.; Murakami, Masanori

    2004-05-01

    In order to understand a mechanism of TiAl-based ohmic contact formation for p-type 4H-SiC, the electrical properties and microstructures of Ti/Al and Ni/Ti/Al contacts, which provided the specific contact resistances of approximately 2×10-5 Ω-cm2 and 7×10-5 Ω-cm2 after annealing at 1000°C and 800°C, respectively, were investigated using x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Ternary Ti3SiC2 carbide layers were observed to grow on the SiC surfaces in both the Ti/Al and the Ni/Ti/Al contacts when the contacts yielded low resistance. The Ti3SiC2 carbide layers with hexagonal structures had an epitaxial orientation relationship with the 4H-SiC substrates. The (0001)-oriented terraces were observed periodically at the interfaces between the carbide layers and the SiC, and the terraces were atomically flat. We believed the Ti3SiC2 carbide layers primarily reduced the high Schottky barrier height at the contact metal/p-SiC interface down to about 0.3 eV, and, thus, low contact resistances were obtained for p-type TiAl-based ohmic contacts.

  19. Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition

    NASA Astrophysics Data System (ADS)

    France, Ryan; Xu, Tao; Chen, Papo; Chandrasekaran, R.; Moustakas, T. D.

    2007-02-01

    The authors report on the formation and evaluation of V-based Ohmic contacts to n-AlGaN films in the entire alloy composition. The films were produced by plasma assisted molecular beam epitaxy and doped n-type with Si. The conductivity of the films was determined to vary from 103to10-2(Ωcm )-1 as the AlN mole fraction increases from 0% to 100%. Ohmic contacts were formed by e-beam evaporation of V(15nm )/Al(80nm)/V(20nm)/Au(100nm). These contacts were rapid thermal annealed in N2 for 30s at various temperatures. The optimum annealing temperature for this contact scheme to n-GaN is about 650°C and increases monotonically to about 1000°C for 95%-100% AlN mole fraction. The specific contact resistivity was found to be about 10-6Ωcm2 for all films up to 70% AlN mole fraction and then increases to 0.1-1Ωcm2 for films from 95%-100% AlN mole fraction. These results were accounted for by hypothesizing that vanadium, upon annealing, interacts with the nitride film and forms vanadium nitride, which is consistent with reports that it is a metal with low work function.

  20. Numerical investigation of the droplet condensation on the horizontal surface with patterned wettability

    NASA Astrophysics Data System (ADS)

    Cho, Jaeyong; Lee, Joonsang

    2017-11-01

    The condensation is the one of the efficient heat transfer phenomenon that transfers the heat along an interface between two phases. This condensation is affected by the wettability of surface. Heat transfer rate can be improved by controlling the wettability of surface. Recently, the researches with patterned wettability, which is composed by a combination of hydrophilic and hydrophobic surface, have been performed to improve the heat transfer rate of condensation. In this study, we performed numerical simulation for condensation of droplet on the patterned wettability, and we analyze condensation phenomenon on the wettability pattered surface through the kinetic energy, heat flux curve, and droplet shape in the vicinity of the droplet. When we performed numerical simulations and analyzing the condensation with patterned wettability, we used the lattice Boltzmann method for the base model, and phase change was solved by Peng-Robinson equation of sate. We can find that the droplet is generated at the bottom surface and high condensation rate can be maintained on the patterned wettability. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  1. Printable, flexible and stretchable diamond for thermal management

    DOEpatents

    Rogers, John A; Kim, Tae Ho; Choi, Won Mook; Kim, Dae Hyeong; Meitl, Matthew; Menard, Etienne; Carlisle, John

    2013-06-25

    Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.

  2. Effects of radiant heat exposure on pacing pattern during a 15-km cycling time trial.

    PubMed

    Levels, Koen; de Koning, Jos; Broekhuijzen, Iris; Zwaan, Tamara; Foster, Carl; Daanen, Hein

    2014-01-01

    The goal of this study was to investigate the effects of different durations of skin temperature manipulation on pacing patterns and performance during a 15-km cycling time trial. Nineteen well-trained men completed three 15-km cycling time trials in 18 °C and 50% relative humidity with 4.5-km (short-heat), 9.0-km (long-heat) or without (control) radiant heat exposure applied by infrared heaters after 1.5 km in the time trial. During the time trials, power output, mean skin temperature, rectal temperature, heart rate and rating of perceived exertion were assessed. The radiant heat exposure resulted in higher mean skin temperature during the time trial for short-heat (35.0 ± 0.6 °C) and long-heat (35.3 ± 0.5 °C) than for control (32.5 ± 1.0 °C; P < 0.001), whereas rectal temperature was similar (P = 0.55). The mean power output was less for short-heat (273 ± 8 W; P = 0.001) and long-heat (271 ± 9 W; P = 0.02) than for control (287 ± 7 W), but pacing patterns did not differ (P = 0.55). Heart rate was greatest in control (177 ± 9 beats · min(-1); P < 0.001), whereas the rating of perceived exertion remained similar. We concluded that a radiant heat exposure and associated higher skin temperature reduced overall performance, but did not modify pacing pattern during a 15-km cycling time trial, regardless of the duration of the exposure.

  3. Trap-assisted tunneling in aluminum-doped ZnO/indium oxynitride nanodot interlayer Ohmic contacts on p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Wen-Cheng, E-mail: wcke@mail.ntust.edu.tw; Yang, Cheng-Yi; Lee, Fang-Wei

    2015-10-21

    This study developed an Ohmic contact formation method for a ZnO:Al (AZO) transparent conductive layer on p-GaN films involving the introduction of an indium oxynitride (InON) nanodot interlayer. An antisurfactant pretreatment was used to grow InON nanodots on p-GaN films in a RF magnetron sputtering system. A low specific contact resistance of 1.12 × 10{sup −4} Ω cm{sup 2} was achieved for a sample annealed at 500 °C for 30 s in nitrogen ambient and embedded with an InON nanodot interlayer with a nanodot density of 6.5 × 10{sup 8} cm{sup −2}. By contrast, a sample annealed in oxygen ambient exhibited non-Ohmic behavior. X-ray photoemission spectroscopy resultsmore » showed that the oxygen vacancy (V{sub o}) in the InON nanodots played a crucial role in carrier transport. The fitting I–V characteristic curves indicated that the hopping mechanism with an activation energy of 31.6 meV and trap site spacing of 1.1 nm dominated the carrier transport in the AZO/InON nanodot/p-GaN sample. Because of the high density of donor-like oxygen vacancy defects at the InON nanodot/p-GaN interface, positive charges from the underlying p-GaN films were absorbed at the interface. This led to positive charge accumulation, creating a narrow depletion layer; therefore, carriers from the AZO layer passed through InON nanodots by hopping transport, and subsequently tunneling through the interface to enter the p-GaN films. Thus, AZO Ohmic contact can be formed on p-GaN films by embedding an InON nanodot interlayer to facilitate trap-assisted tunneling.« less

  4. Ohmic contacts to p-GaN Using Au/Ni-Mg-O Metallization

    NASA Astrophysics Data System (ADS)

    Liday, Jozef; Vogrinčič, Peter; Hotový, Ivan; Bonanni, Alberta; Sitter, Helmut; Lalinský, Tibor; Vanko, Gabriel; Řeháček, Vlastimil; Breza, Juraj; Ecke, Gernot

    2010-11-01

    Electrical characteristics and elemental depth profiles of ohmic contacts to p-GaN using Au/Ni-Mg-Ox metallization have been investigated. The objective was to examine the possibilities of increasing the charge carrier concentration in the surface region of GaN by adding Mg, thus of a p-type dopant into the Au/NiOx metallization structure. For this purpose, a Ni-Mg-Ox layer with a low concentration of Mg was deposited on p-GaN by dc reactive magnetron sputtering. The top Au layer was deposited in a similar way. The fabricated contact structures were annealed in N2. When the Ni-Mg layer in the Au/Ni-Mg-Ox/p-GaN structure was deposited in an atmosphere with a low concentration of oxygen (0.2 at%), the structure exhibited a low resistance ohmic nature. The contact resistance was lower than in the case of a Au/Ni-Ox/p-GaN structure without the Mg dopant in the metallic layer. An increase in the concentration of oxygen in the working atmosphere resulted in higher values of the contact resistance of the Au/Ni-Mg-Ox/p-GaN structure. In our opinion the ohmic nature of the contact structure is related to the existence of a metal/p-NiO/p-GaN scheme. The measured values of the contact resistance in the Au/Ni-Mg-Ox/p-GaN structure in comparison with the Au/Ni-Ox/p-GaN structure are caused by an increased charge carrier concentration in the surface region of p-GaN, which is a consequence of Mg diffusion from the Ni-Mg-Ox layer.

  5. Dynamos driven by weak thermal convection and heterogeneous outer boundary heat flux

    NASA Astrophysics Data System (ADS)

    Sahoo, Swarandeep; Sreenivasan, Binod; Amit, Hagay

    2016-01-01

    We use numerical dynamo models with heterogeneous core-mantle boundary (CMB) heat flux to show that lower mantle lateral thermal variability may help support a dynamo under weak thermal convection. In our reference models with homogeneous CMB heat flux, convection is either marginally supercritical or absent, always below the threshold for dynamo onset. We find that lateral CMB heat flux variations organize the flow in the core into patterns that favour the growth of an early magnetic field. Heat flux patterns symmetric about the equator produce non-reversing magnetic fields, whereas anti-symmetric patterns produce polarity reversals. Our results may explain the existence of the geodynamo prior to inner core nucleation under a tight energy budget. Furthermore, in order to sustain a strong geomagnetic field, the lower mantle thermal distribution was likely dominantly symmetric about the equator.

  6. Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuwakietkumjohn, N.; Rittidech, S.

    The aim of this research was to investigate the internal flow patterns and heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves (CLOHP/CV). The ratio of number of check valves to meandering turns was 0.2. Ethanol and a silver nano-ethanol mixture were used as working fluids with a filling ratio of 50% by total volume of tube. The CLOHP/CV was made of a glass tube with an inside diameter of 2.4 mm. The evaporator section was 50 mm and 100 mm in length and there were 10 meandering turns. An inclination angle of 90 from horizontal axis wasmore » established. The evaporator section was heated by an electric heater and the condenser section was cooled by distilled water. Temperature at the evaporator section was controlled at 85 C, 105 C and 125 C. The inlet and outlet temperatures were measured. A digital camera and video camera were used to observe the flow patterns at the evaporator. The silver nano-ethanol mixture gave higher heat flux than ethanol. When the temperature at the evaporator section was increased from 85 C to 105 C and 125 C. It was found that, the flow patterns occurred as annular flow + slug flow, slug flow + bubble flow and dispersed bubble flow + bubble flow respectively. The main regime of each flow pattern can be determined from the flow pattern map ethanol and a silver nano-ethanol mixture. Each of the two working fluids gave corresponding flow patterns. (author)« less

  7. Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2

    NASA Astrophysics Data System (ADS)

    Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark

    2003-12-01

    Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.

  8. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.

    PubMed

    Okamoto, Eiji; Nakamura, Masatoshi; Akasaka, Yuhta; Inoue, Yusuke; Abe, Yusuke; Chinzei, Tsuneo; Saito, Itsuro; Isoyama, Takashi; Mochizuki, Shuichi; Imachi, Kou; Mitamura, Yoshinori

    2007-07-01

    We have developed internal battery systems for driving an undulation pump ventricular assist device using two kinds of lithium ion rechargeable batteries. The lithium ion rechargeable batteries have high energy density, long life, and no memory effect; however, rise in temperature of the lithium ion rechargeable battery is a critical issue. Evaluation of temperature rise by means of numerical estimation is required to develop an internal battery system. Temperature of the lithium ion rechargeable batteries is determined by ohmic loss due to internal resistance, chemical loss due to chemical reaction, and heat release. Measurement results of internal resistance (R(cell)) at an ambient temperature of 37 degrees C were 0.1 Omega in the lithium ion (Li-ion) battery and 0.03 Omega in the lithium polymer (Li-po) battery. Entropy change (DeltaS) of each battery, which leads to chemical loss, was -1.6 to -61.1 J/(mol.K) in the Li-ion battery and -9.6 to -67.5 J/(mol.K) in the Li-po battery depending on state of charge (SOC). Temperature of each lithium ion rechargeable battery under a discharge current of 1 A was estimated by finite element method heat transfer analysis at an ambient temperature of 37 degrees C configuring with measured R(cell) and measured DeltaS in each SOC. Results of estimation of time-course change in the surface temperature of each battery coincided with results of measurement results, and the success of the estimation will greatly contribute to the development of an internal battery system using lithium ion rechargeable batteries.

  9. Metallization for Yb14MnSb11-Based Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad; Li, Billy Chun-Yip; Ravi, Vilupanur; Sakamoto, Jeffrey; Caillat, Thierry; Ewell, Richard C.; Brandon, Erik J.

    2011-01-01

    Thermoelectric materials provide a means for converting heat into electrical power using a fully solid-state device. Power-generating devices (which include individual couples as well as multicouple modules) require the use of ntype and p-type thermoelectric materials, typically comprising highly doped narrow band-gap semiconductors which are connected to a heat collector and electrodes. To achieve greater device efficiency and greater specific power will require using new thermoelectric materials, in more complex combinations. One such material is the p-type compound semiconductor Yb14MnSb11 (YMS), which has been demonstrated to have one of the highest ZT values at 1,000 C, the desired operational temperature of many space-based radioisotope thermoelectric generators (RTGs). Despite the favorable attributes of the bulk YMS material, it must ultimately be incorporated into a power-generating device using a suitable joining technology. Typically, processes such as diffusion bonding and/or brazing are used to join thermoelectric materials to the heat collector and electrodes, with the goal of providing a stable, ohmic contact with high thermal conductivity at the required operating temperature. Since YMS is an inorganic compound featuring chemical bonds with a mixture of covalent and ionic character, simple metallurgical diffusion bonding is difficult to implement. Furthermore, the Sb within YMS readily reacts with most metals to form antimonide compounds with a wide range of stoichiometries. Although choosing metals that react to form high-melting-point antimonides could be employed to form a stable reaction bond, it is difficult to limit the reactivity of Sb in YMS such that the electrode is not completely consumed at an operating temperature of 1,000 C. Previous attempts to form suitable metallization layers resulted in poor bonding, complete consumption of the metallization layer or fracture within the YMS thermoelement (or leg).

  10. Influence of convection at outer ceramic surfaces on the characterization of thermoelectric modules by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Beltrán-Pitarch, Braulio; García-Cañadas, Jorge

    2018-02-01

    Impedance spectroscopy is a useful method for the characterization of thermoelectric (TE) modules. It can determine with high accuracy the module's dimensionless figure of merit (zT) as well as the average TE properties of the module's thermoelements. Interpretation of impedance results requires the use of a theoretical model (equivalent circuit), which provides the desired device parameters after a fitting is performed to the experimental results. Here, we extend the currently available equivalent circuit, only valid for adiabatic conditions, to account for the effect of convection at the outer surface of the module ceramic plates, which is the part of the device where convection is more prominent. This is performed by solving the heat equation in the frequency domain including convection heat losses. As a result, a new element (convection resistance) appears in the developed equivalent circuit, which starts to influence at mid-low frequencies, causing a decrease of the typically observed semicircle in the impedance spectrum. If this effect is not taken into account, an underestimation of the zT occurs when measurements are performed under room conditions. The theoretical model is validated by experimental measurements performed in a commercial module with and without vacuum. Interestingly, the use of the new equivalent circuit allows the determination of the convection heat transfer coefficient (h), if the module's Seebeck coefficient is known, and an impedance measurement in vacuum is performed, opening up the possibility to develop TE modules as h sensors. On the other hand, if h is known, all the properties of the module (zT, ohmic (internal) resistance, average Seebeck coefficient and average thermal conductivity of the thermoelements and thermal conductivity of the ceramics) can be obtained from one impedance measurement in vacuum and another measurement under room conditions.

  11. Data mining of space heating system performance in affordable housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaoxin; Yan, Da; Hong, Tianzhen

    The space heating in residential buildings accounts for a considerable amount of the primary energy use. Therefore, understanding the operation and performance of space heating systems becomes crucial in improving occupant comfort while reducing energy use. This study investigated the behavior of occupants adjusting their thermostat settings and heating system operations in a 62-unit affordable housing complex in Revere, Massachusetts, USA. The data mining methods, including clustering approach and decision trees, were used to ascertain occupant behavior patterns. Data tabulating ON/OFF space heating states was assessed, to provide a better understanding of the intermittent operation of space heating systems inmore » terms of system cycling frequency and the duration of each operation. The decision tree was used to verify the link between room temperature settings, house and heating system characteristics and the heating energy use. The results suggest that the majority of apartments show fairly constant room temperature profiles with limited variations during a day or between weekday and weekend. Data clustering results revealed six typical patterns of room temperature profiles during the heating season. Space heating systems cycled more frequently than anticipated due to a tight range of room thermostat settings and potentially oversized heating capacities. In conclusion, from this study affirm data mining techniques are an effective method to analyze large datasets and extract hidden patterns to inform design and improve operations.« less

  12. Data mining of space heating system performance in affordable housing

    DOE PAGES

    Ren, Xiaoxin; Yan, Da; Hong, Tianzhen

    2015-02-16

    The space heating in residential buildings accounts for a considerable amount of the primary energy use. Therefore, understanding the operation and performance of space heating systems becomes crucial in improving occupant comfort while reducing energy use. This study investigated the behavior of occupants adjusting their thermostat settings and heating system operations in a 62-unit affordable housing complex in Revere, Massachusetts, USA. The data mining methods, including clustering approach and decision trees, were used to ascertain occupant behavior patterns. Data tabulating ON/OFF space heating states was assessed, to provide a better understanding of the intermittent operation of space heating systems inmore » terms of system cycling frequency and the duration of each operation. The decision tree was used to verify the link between room temperature settings, house and heating system characteristics and the heating energy use. The results suggest that the majority of apartments show fairly constant room temperature profiles with limited variations during a day or between weekday and weekend. Data clustering results revealed six typical patterns of room temperature profiles during the heating season. Space heating systems cycled more frequently than anticipated due to a tight range of room thermostat settings and potentially oversized heating capacities. In conclusion, from this study affirm data mining techniques are an effective method to analyze large datasets and extract hidden patterns to inform design and improve operations.« less

  13. Advanced processing of gallium nitride and gallium nitride-based devices: Ultra-high temperature annealing and implantation incorporation

    NASA Astrophysics Data System (ADS)

    Yu, Haijiang

    This dissertation is focused on three fields: ultra-high temperature annealing of GaN, activation of implanted GaN and the implantation incorporation into AlGaN/GaN HEMT processing, with an aim to increase the performance, manufacturability and reliability of AlGaN/GaN HEMTs. First, the ultra high temperature (around 1500°C) annealing of MOCVD grown GaN on sapphire has been studied, and a thermally induced threading dislocation (TD) motion and reaction are reported. Using a rapid thermal annealing (RTA) approach capable of heating 2 inch wafers to around 1500°C with 100 bar N2 over-pressure, evidence of dislocation motion was first observed in transmission electron microscopy (TEM) micrographs of both planar and patterned GaN films protected by an AIN capping layer. An associated decrease in x-ray rocking curve (XRC) full-width-half-maximum (FWHM) was also observed for both the symmetric and asymmetric scans. After annealing, the AIN capping layer remained intact, and optical measurements showed no degradation of the opto-electronic properties of the films. Then activation annealing of Si implants in MOCVD grown GaN has been studied for use in ohmic contacts. Si was implanted in semi-insulating GaN at 100 keV with doses from 5 x 1014 cm-2 to 1.5 x 1016 cm-2. Rapid thermal annealing at 1500°C with 100 bar N2 over-pressure was used for dopant activation, resulting in a minimum sheet resistance of 13.9 O/square for a dose of 7 x 1015 cm-2. Secondary ion mass spectroscopy measurements showed a post-activation broadening of the dopant concentration peak by 20 nm (at half the maximum), while X-Ray triple axis o-2theta scans indicated nearly complete implant damage recovery. Transfer length method measurements of the resistance of Ti/Al/Ni/Au contacts to activated GaN:Si (5 x 1015 cm-2 at 100 keV) indicated lowest contact resistances of 0.07 Omm and 0.02 Omm for as-deposited and subsequently annealed contacts, respectively. Finally, the incorporation of Si implantation into AlGaN/GaN high electron mobility transistor processing has been first demonstrated. An ultra-high temperature (1500°C) rapid thermal annealing technique was developed for the activation of Si dopants implanted in the source and drain. In comparison to control devices processed by conventional fabrication, the implanted device with nonalloyed ohmic contact showed comparable device performance with a contact resistance of 0.4 Omm Imax 730 mA/mm ft/f max; 26/62 GHz and power 3.4 W/mm on sapphire. These early results demonstrate the feasibility of implantation incorporation into GaN based device processing as well as the potential to increase yield, reproducibility and reliability in AlGaN/GaN HEMTs.

  14. Work function measurements of copper nanoparticle intercalated polyaniline nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Patil, U. V.; Ramgir, Niranjan S.; Bhogale, A.; Debnath, A. K.; Muthe, K. P.; Gadkari, S. C.; Kothari, D. C.

    2017-05-01

    The nature of contact between the electrode and the sensing material plays a crucial role in governing the sensing mechanism. Thin films of polyaniline (PANI) and copper-polyaniline nanocomposite (NC) have been deposited at room temperatures by in-situ oxidative polymerization of aniline in the presence of Cu nanoparticles. For sensing applications a thin film Au (gold) ˜100 nm is deposited and used as a conducting electrode. To understand the nature of contact (i.e., ohmic or Schottky) the work function of the conducting polyaniline and nanocomposite films were measured using Kelvin Probe method. I-V characteristics of PANI and NC films investigated at room temperatures further corroborates and confirms the formation of Ohmic contact as evident from work function measurements.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezeshki, Alan M.; Sacci, Robert L.; Delnick, Frank M.

    Here, an improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V 2+/V 3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmicmore » resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.« less

  16. Highly reflective Ag-Cu alloy-based ohmic contact on p-type GaN using Ru overlayer.

    PubMed

    Son, Jun Ho; Jung, Gwan Ho; Lee, Jong-Lam

    2008-12-15

    We report on a metallization scheme of high reflectance, low resistance, and smooth surface morphology ohmic contact on p-type GaN. Ag-Cu alloy/Ru contact showed low contact resistivity as low as 6.2 x 10(-6) Ohms cm(2) and high reflectance of 91% at 460 nm after annealing at 400 degrees C in air ambient. The oxidation annealing promoted the out-diffusion of Ga atoms to dissolve in an Ag-Cu layer with the formation of an Ag-Ga solid solution, lowering the contact resistivity. The Ru overlayer acts as a diffusion barrier for excessive oxygen incorporation during oxidation annealing, resulting in high reflectance, good thermal stability, and smooth surface quality of the contact.

  17. Study on the State of Health Detection of Li-ion Power Batteries Based on Adaptive Unscented Kalman Filters

    NASA Astrophysics Data System (ADS)

    Yan, Xiangwu; Deng, Haoran; Wang, Ling; Guo, Qi

    2017-12-01

    It is essential to estimate the state of charge (SOC) and state of health (SOH) of the monomer battery in the electric vehicle li-ion power battery accurately for extending the li-ion power battery life. Based on the battery Thevenin equivalent circuit model, the paper uses adaptive unscented Kalman filter (AUKF) to estimate the inner ohmic resistance and the state of charge in real time, according to the function between the inner ohmic resistance and the state of health, the state of health can be estimated in real time. The battery charged and discharged experiments were done under two different conditions to verify the feasibility and accuracy of this method.

  18. Quantum correlation of high dimensional system in a dephasing environment

    NASA Astrophysics Data System (ADS)

    Ji, Yinghua; Ke, Qiang; Hu, Juju

    2018-05-01

    For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.

  19. Two-phase flow patterns of a top heat mode closed loop oscillating heat pipe with check valves (THMCLOHP/CV)

    NASA Astrophysics Data System (ADS)

    Thongdaeng, S.; Bubphachot, B.; Rittidech, S.

    2016-11-01

    This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of -90°, evaporator temperature of 125°C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.

  20. Method for measuring residual stresses in materials by plastically deforming the material and interference pattern comparison

    DOEpatents

    Pechersky, Martin J.

    1995-01-01

    A method for measuring residual stress in a material comprising the steps of establishing a speckle pattern on the surface with a first laser then heating a portion of that pattern with an infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress dung heating and enables calculation of the stress.

Top